THE

ENCYCLOPADIA BRITANNICA

ELEVENTH EDITION

$$
\begin{aligned}
& \text { '. . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1:. } \\
& \text { • }
\end{aligned}
$$

THE

ENCYCLOPÆDIA BRITANNICA

A
DICTIONARY
of
ARTS, SCIENCES, LITERATURE AND GENERAL INFORMATION

ELEVENTH EDITION

VOLUME XXI
PAYN to POLKA

NEW YORK
THE ENCYCLOPÆDIA BRITANNICA COMPANY


```
                            ! \(\quad\).
```



```
    ...: ! "
```

Copyright, in the United States of America, 191 t,
by
Thenteryelopadia Britapulpat Cordpany:

$$
i \therefore \therefore, \quad, \quad \therefore \quad \therefore, \quad!
$$

INITIALS USED. IN VOLUME XXI. TO IDENTIFY INDIVIDUAL*. CONTRIBUTORS, ${ }^{1}$ WITH THE HEADINGS OF THE ARTICLES IN THIS VOLUME SO SIGNED.

- I A complete list, ahowing all individual contributora, appean in the final volume.

A. 80.0	Adme Sroowict, M.A., F.R.S. Provewor of Zoology at the Imperial Colkge of Science and Technoloty, London. Fellow, and lormety Tutor, of Triaity Colege, Cambrider. Profenor of Zoology in the Univerity of Cambridge, 1907-1909.	Putpetas,
A. 81	Aethur Sanowill, M.A., M.D., il.d. Member of Council of Epidemiolotical Society. Author of The Lomden Waler. Supply; Industrial Eficiancy; Drint. Temperemce end Legidatiom.	(iw
A. 8. PrP.	Anozew Setr Prinole-Patuson, M.A., LL.D. D.C.L. Profewor of Loxic and Metaphyyicic in the Univerrity of Ediaburgh Cifiond Lecturer in the Univernity of Aberdeen, IIII. Fellow of the Britin	Friomenty.
A. 8. Wo.	Arthie Surta Wooowno, LL.D. F.R.S. Keeper of Geology, Natural Hibtory Musem, Soucth tremiotion. Secretiry of the Geological Society of Loodoa.	
A.T.L	Alexander Tayloz Innes, M.A., LL.D. Scotch Adyocite Author of Jakie Kiox; Leq of Crode in Scolland; Sumdies is Scoltish Hifery; ac.	tos. Prention
R. R.	Sm Bovzatox Rlowood, D.Sc., F.R.S.(Edin.), F.I.C., Assoc.Inst.C.E., M.Inst.M.E. Adviser on Petroleum to the Admiralty, Hoome Offce, Indin Offoe, Corporation of Londag, and Port of Loodon Authority Prevident of the Sockty of Chenalal Industry. Membtrof of Councl of the Chemich Society. Member of Cooncill of and its Products; Chemical Tacknology; de.	notrowin.
C. $\mathrm{BR}^{\text {e }}$	Riv. Charlise Bioc, M.A., D.D. (igyo-mgos). Regias Profemor of Eocibivetical Hinory in the Univerity of Orford, and Canon of Christ Church, rgon-1908. Formerty Semor Studentend Tutor of Chime Church: ac.	Fino (in pers).
C. \mathbf{E}^{*}	Cenalmé Everitt, M:A., F.C.S., F.G.S., F.R.A.S. Sometime Scholar of Magdaken Conege, Orford.	Mooigheter.
C.E.A.	Charies Edwabd Amiss. Fortseriy Times Comperpodent in Bumpo Aires Author of A Eistory of South America. 1854-1004.	Pras: History (in part).
C. El H.	Charles Edward Moss, D.Sc. Emmanuel College, Catmindige. Curator of the Univanity Herbarium.	Phanta: Ecology.
C. C.E.	Cametil Giston Emott, d.Sc. Lecturior on Applise Mathemetict Edioburgh University. Prolemor of Physich Imperial Univertity of Japan, Totro. $18 \mathrm{E}^{2}$-1891. Autbor of EDectricity and Kagnetism; Physici; dc.	Fhotomatry.
C.L. L .	Charifa Letmerdige Kincerond, M.A., F.R.Hist.S., F.S.A. Assistant Secretary to the Board of Education. Author of Lifo of Henry V. Editor of Chroxides of London and Scow's Swryy of Lomdom.	Pryta, Prowr.
C. 1.	Capi Thiocoz Miebt, D.Te Profesor of Church History in the Univerity of Marburg. Author of Publisidit in Zritaller Greger VII.; Quclien aw Gexhichis des Papaillhums; ac.	Pis IX.; Patry, Collogay of.
c. Pr.	Cmistual Prister, D. ès. L. Profemor at the, Sorbonne, Peris. Chevalier of the Legion of Honour. Author of bandes sur le rigne de Robert le Piour.	Pippln I.-III.
C. P. J.	Chirles Pierpoint Jobnson (1791 -i88o). Lecturer on Botany, Guy's Hoopita, London, 38yo-r873. Editor of S. A. Sowerby in 	Pint.
C.R. 1.	Ste Clements Robert Mankiax, K.C.B., F.R.S. See the biographical article: Mantian, Sia Clements Romety.	Pars: History (in ped).
0.s. P.	M.P. Io Perthahire 1888-1874; M. P. For Perth Chty, 18;7-1892. Honorry Fellow formerly Fellow of University Coliege, Oxford. Author of Life of Sir Rodert Ped ac.	Peol Bre Rownt.
c. ${ }^{\text {. }}$	Rev. Chazles Tayloi, M.A., D.D. LILD. (8840-1908). Matter of St Jobn's Colkefe, Cembridge, r88ı-190e. Vice-Chancellox, 1887-18 Anthor of Geometrical Conics; ac.	Prike Aboth
C. W. R.	Majoz-Grneml Curles Waleex Robingon, C.B., D.C.L. Ausiktant Military Secretary, Heedquarters of the Anmy, $1890-1892$. Lieut. 	Pentamar Wer.
D. G. R	Davp Geozoe Hocirta, M.A. Ketper of the Ashmolean Museum, Oxford. Fellow of Magdalen College, Oxford. 	Persa; Perganmi phomer.

F.7.8*	Famprece Williay Rudzer, I.S.O., F.G.S.
a. A. $\mathbf{c o}^{*}$	Rev. Gnoper Alatert Cooze, D.D. Oriel Profemor of the Interpretacion of Holy Scripture, Oxford, and Follow of $\left\{\begin{array}{l}\text { Patas; } \\ \text { Oriel College. Canon of Rocheater. Hon. Canon of St Mary't Cathedral, }\end{array}\right.$ Edinburgh. Author of Text Book of North Samilic Inscripions; be.
Q.A.C.	Grorge Abraman Grreason, C.I.E., Ph.D., D.Litt. Indian Civil Servios, 1873-1q92., In charge of Linguintic Surve of India, ango1902. Cold Medallist, Royal Xatiatic Society 1909. Vioe President of the Royal
0.0.	Geozor Cerystal, M.A, LL.D. Profemor of Mechematices and Dean of the Facrlyy of Arta, Edinburgh Universiky. $\{$ Rrpaten! Motton Hon. Fellow apd formerly Fellow and Lectuser, Corpus Christi Collepe, Cambridge
G. 6.7 .	
C. ${ }^{\text {a }}$	Rev, Grozgr Edyundson, M.A. F.R.Hist.S.
A. \mathbf{F}^{*}	Robert Geompity Elche. Peterhompa, Cambridge. Banfinter-at-Law, Inper Temple. Joist-editor of English $\{$ Prarage. Reports. Author of Pcerage Law and Hiteory.
C. E.	Gzozge Eanl Crurci Soe the biographical article: Crorcr. G. E. $\left\{p_{m a t},\right. \text { wo m }$
C. G. P*	Georce Grenvile Peminone,-M.A., B.C.L. Christ Church, Oxford. Barrister-at-Law, Middle Temple. $\{\text { piot (in pard). }$
C. H. Ba.	Rey. Georaz Herbert Box, MA.
C. H. Fo.	George Herbert Fowler, F.2.S. F.L.S., Pe.D.
C. W. R	Geopge Wrinsar Rewway. Author of The War of Secussion, 186r-180; F Frederichshurg: a Study in Waf, $\left\{\begin{array}{l}\text { Potarihury Campaiga: } \\ (x 86-1865) .\end{array}\right.$
H. $\mathrm{E}_{\text {. }}$	Hizay Bingray, A.M., Pa.D. Acestant Professor of Latio-American History, Yale University. Albert Shaw
H. 0	Ste Huge Crazles Curromp, X.C.M.G. Colonial Secretary. Ceylon. Fellow of the Royal Colonial Institute. Formerly Reaident, Pahang. Colonial Secretary, Trinidad and Tobago, 1903-1907. Author
1. De.	Hippolyte Delebaye, S.J.
H.E	Garl Fieplann Etbif, M.A., Pr.D.
B. F. A.	Hans Furedricr Gadow, F.R.S., Pa.D.
H.e.tiv.	Hermank G. de Watteviles. Ipatructor, Staff College, Camberley, Surrey. $\{\text { Plymonth (England). }$
H. E. T.	Elebert Fall Tuner, M.A., D.Sc., D.C.L., F.R.S. Modern Axtronomy; dic.
H. L. H.	
A. H. $_{\text {W. }}$.	Harty Marsiazl Ward, M.A., D.Sc., F.R.S. (\#. 1905). and Some of its Diseases; The Oak; Soch's Lechares on the Phyoidory of Plantr: Discoses in Plents; ac.

H. R.E	Hariey Recinald Holland Falz, M.A. Author of The Oldes Cwilitasion of Crowti de.	(in pad).
H. $\mathbf{R E}^{\text {E }}$	Haikry Rosert Kmpe, Minst.C.E. Encertina to the General Pont Ofice, London. Author of The Engin Book; ${ }^{2}$	Derneta
H. $\mathbf{R E}^{\mathbf{H}}$	Evger Rosext Mnt, D.Sc., LL.D. of the Royal Meteorotogical Society, ${ }^{1997-19018 . ~ H o s . ~ M e m b e r ~ o f ~ V e n n a ~ G e o-~}$ graphical Sopiety. Hon. Corresponding Mernber of Geographical Societles of Paris, Berlia, Budapest, St Petersburg, Ansterding, ac. Auther of Tio Reoum of Nownel The Intermational Geograity; aric	Polar Reptose
H. R. T.	Figmey Ricgard Teober, Fis:A. Secretary aud Librarian of the Atbenseum Club, London.	
H. E6.	Einget Scelerpen, F.Z.S. Assistanat Nataral History Editor of 77% Fteld: Author of Populer Mitiory Amind for Young People; Pond and Socis Pools; acc.	Fintypis (in part).
H. Im. $^{\text {a }}$	Herge Sweet, M.A., Pr.D., LL.D. Univeruity Reader in Phoneticn Oxford. Correaponding Metpobor of the Acadeniea 	Prometies - : $\because:$
H. 8-2.	Sm Henry Setomerarr C.M.G., MA. M.P. for St Helen's, $1885-1906$. Author of My Sperting fichidays; te.	Pistol
H. 8. 3.	Heney Stuart Jones, M.A. Formerly Fellow and Tutor of Trinity Collegen Oxford, and Director of the British School at Rome. Member of the German Imperal Arehaeological Idurtitute. Author of The Romas Empirs; act.	Pinta (in pard).
F. me $^{+}$	EAvgen W. T. Wigetz, F.R.S. 	Fhent: Cytilogy.
H. W.	 Follow and Tutor of Belliot Colleye Oxfort Fellow of Al Soula' College, Offont 1895-190n. Author of England mider the Normans and A migivin; Charifmagne.	PMer der Rochers
I. A.	Ispael Abrabamg, M.A. Reader in Talmudic and Rabbinic Literature in the University of Cambridge, Formerty President, Jewish Hizrorical Society of England. Author of A Show 	Perios, Jamplat
1.0.	Isfaet Gollancz, M.A., Littr.D. Profeseor of Eagliah Lanquage and Liforature; King's Colleze, London, and Dean of the Yaculty of Arts, Univerity of Lopdon. Petow and Serretary of the British Academy. Editor of the Pearl; The "Temple "Shakeopeare; ac.	Parl, then
J. A. H.	Jomp Axwan Howt, B.Se. Curator and Librarian of the Masom of Prectical Ceolowe Londons Author The Geolesy of Building Stomer.	
\% An易	Jorns Apowaron Symonds, LL.D., D.C.I. See the biographical article: Srronds. J. A.	Ptrarch; Pogedo; Polutan:
J. B_{4}	Jayes Bartiett. Colleze. London. Member of Society of Architects. Member of Institute of Junior Enginecrs Author of Quantities.	Pustar-wher
J. D. B.	Jairss Dand Bovecurge, M.Ay F.R.G.S. King's College, Camaridge Cortespondent of The Tizes in South-Eatern Europe. Greeoe, and Officer of the Order of St Alexander of Butgaria.	Paland
d. \mathbf{E} 8**	Jomn Enem Sandys, M.A., Lixi.D., LL.D. Public Orator ln the Univernity of Cambridge, and Fellow of St John's College. Fellow of the British Academy. Author of History of Classical Scholarship; \&c.	$\left\{\begin{array}{l} \text { Pling the Finder; } \\ \text { Ping the Yonger. } \end{array}\right.$
J. Fris.	Jupas: Firamaulce-Kruy, Inti.D., F.R.Hist.S. Gilmour Pnofessor of Spanish 1 anguage und Literature, Liverpool University. Norman MeColl Lecturer, Cambridge Unlversity. Fellow of the British Aceademy. Member of the Royal Spanish Academy. Knight Commander of the Order of Alphonso XII. Autior of A Hidery of Shamid Liveratwret for.	Purnda, Josed Marta Mo; Parte Galdos, Banito; Prantiqua Hovel, The :
J. F. P.	Josepp Frant Payne, M.D., F.R.C.P. ($1840-1910$). Formarly Harveian Librarian. Royil Coliege of Physicians, Hon. Fellow of Magdalen College, Oxford. Fellow of Univerity of London. Author of Lacwers on Angla-Saxon Yedicine; ac.	Ingua (is fart).
d. 6.	Jares Gampiner, C.B., IL.D. See the biographical article; GafrDNEx, Janiss.	Paray: Jamily (im perd).
J. G.C.A.	Jomn Georgi Clary Anderson, M.A. Student, Censor and Tutor of Christ Church, Oxford. Formeriy Fellow of Lino College. Craven Fellow (Oxford), 18g6. Cóningten Priseman, 1eg3.	Pesinus.

INITIALS AND HEADINGS OF ARTICLES		
J. Q. M.	Jargs Gzozar Fuzza, M.A, D.C.L LL.D. Lutr.D. Profeser of Saciel Antaropology, Livappoil Uatvacity, and Fellow of Trinity College, Carmbridge. Fellow of the British Acadimy. Author of Thm Golden	meatme (im probl
J. H A. $\mathrm{H}_{\text {- }}$	Jona Hemay Aergoi Bist, MA. Fellow, Theological Lacturer and Librarian, St John's Collegre, Camberdge	matrone
	 of the Fitmoillian Mumenme Cambidge $1189-1$ gipe. Art Drector of the South 	$\begin{aligned} & \text { Phigalin (in pard); } \\ & \text { Pinturlecila. } \end{aligned}$
d. H. B .	Joms Hozace Roond, M.A., LL.D. Reliol Collese, Oriond Author of Pemil Racland; Sindies in Pocrege and Remily Eitbory; Perage and Palieroe.	Parcy: family (in Arar);
J. H. 7. 0.	Jobn Hinky Veabnder Czowe. Lamada. Formerly Chief Inetructor in Mifitart of the Reyal Mithery Coikere of and Tactica at the Royal Military Accdemy, Woolvich. Author of Epiome of in Rusto Twrich War, $1877-1878 ; 4 \mathrm{C}$	Frusa
	Jorn Limar Mynes, M.A., F.S.A. F.R.G.S Ancient Ceography, University ot Leverpool Lutecturcy in Comical Archzedion A Histery of Remeride.	Prandurie
J.In ${ }^{\text {m }}$.	Jessis Lambay Wegion. 	nerovil
J. m	Jancs Mortatt, M.A., D.D. Miniuter of the Uaitud Free Church of Scothod. Authore of Bisteried Now Teve. mentifer	Pafiomon:
	Jobi Maccola Mitchitil Sonetimes Scholar of Queen's College, Offord, Lacturer in Chaster, Bast Loedon 	Postatratim; Faloponneatan War; Pardme Hidury (Trmellion Period) Frutush (in parr).
J. P. P.	Jomp Pricival Postante, M.A, Ittr.D. 	Pheodrus
J. R. $\mathbf{C a}^{\text {a }}$	Josera Rocirpos Cortre, M.A. Asciremat to the Prodemor of Naturil and Experimental Phllomophy. Triniry Colkege, Dublin. Editor of zod edition of Preston's theory of Heal.	Phosphorescanas
J. R. $\mathbf{c r}$	Joskpa Reywolds Gamen, M.A., D.Sc., F.L.S., F.R.S. Fellow, Lecturer and Librerian of Downing Collgege, Cambridge. Formerty Hartey 	Pants: Physidogy.
J.8. 8.	Jom Butr Flett, D.Sc. P.G.S. Petrogrepher to the Geological Survey of the United Kingdom. Formerly Lecturer En Petrology in Edinburgh University. Neill Medallist of the Royal Society of Edioburgh- Biguiby Medellite of the Ciologial Socioty of London.	
S. T. 5.	Joms Tromas Bealey. Ioint-author of Stapiond's Eerropo. Formedy Edtoor of the Scoulish Gourreplical 	
J.T. G.	Josepr Thomas Cunninghax, M.A. FZ.S. Lecturer on Zoology at the South.Wextern Polytechnic, London. Formerly Fellow of Uaiversity Codege. Oxford. Amistant Profemof of Natural History	Pount; Ptiolmard.
ग. m .	James Wnluas, MA. D.C.L., LL.D. All sote Reader in komani Leme in the Univenity of Oxford, and Fellow of Linooln 	Purconal Projerty.
J. W/.	Javasi watranouse. Major-General. Indian Army (rofered), Ambanat Surveror-Gerveral of India in charge of Photographic and Lithographic Brapch, Calcuttic ${ }^{1866-1897 \text {. President }}$ of the Royal Phopographic Society. 2905-1906. Author of Preparation of 	Photography: 1 pparalys.
J. Wal*	Iames Walier, M.A. Christ Church, Oxford. Demonstrator in the Cherendon Laboratory. Foxmerly Vice-Presticat of the Phywical Society. Author of The A malyical Theory of Light: de.	Polarisution of Leatit
J. W. D.	J. Whitiy Drxom Captain RN. Nautiral Ameroor to the Court of Appeal.	$\{$ plot (in part).

E. ${ }^{\text {a }}$	Kari Feimbicge Geconex, Pa.D. Profemor of Sankirit and Comperative Philology in the University of Marburg. Author of Vedische Sludien ; \&cc.	Porcla: Langinge $\quad \therefore .4$
K.I.	Rev Kresopp Laxe, M.A. Lincoln College. Oxford. Professor of Early Christian Literature and New Testament Emesenie in the University of Leiden. Author of The Text of the New Testament, The Histornail Evidence for the Ressurraction of Jeses Christ; ac.	Petor, saints: Petor, Bretios of
K. 8	Eatraritar Ecmesinger. Editor of the Porfolio of Musical Archacologe." Autlior of The Instrmments of the Orchesina.	Pedal Clartmot; Famomels Fifsharmonient Pramotorto (is part);
L.	Comis Lotzow, Lrtr D., Pr.D., F.R.G.S. Chamberlain of H.M. the Emperor of Austria, King of Bohemia. Hon. Member. of the Royal Society of Literature. Member of tbe Bobemian Academy, tcc. Author of Buthinc. A Fistorical Skecth; The Hisharians of Bohemia (Ilchester Lecture, Owford, s904); The Life and Times of Joan Hus; \&ec.	
L. G.	Rev. Lewis Campaeli, D.CL., IL.D. See the biographical article: CaM pbsil, Lewis.	ate $\because \because$
L. F. V.EIL	Leveson Feancts Vernon-Hazcoukt, M.A., M.Inst.C.E. (1839-1907). Profemor of Civil Engineering at University College, London, 1882-1905. Author of Rymers and Canaly; Harbours and Docks: Cinil Engineering as appliad in Construchos; ate	
L. 3.8	Leomato Jaies Spencer, M.A. Anistant in Department of Mimeralogy. British Museum. Formerly Scholar of Sidney Susex College, Cambridge, and Harknems Scholar. Editor α the Mimeralogivat Magamine.	Peonvilum; Intalita; Pharmeociderta; Fronsalto; PMinipltor \qquad
1.	Lord Macatlay. Sed the biographical article: Macavlay, Thomas Bympngrox Macaulay, Bazon.	Pitt
1.80	Maycone Bexl Author of Fomer Phas; 80.	$\{\text { Puwler } \quad: \quad \therefore \quad:$
H. $\mathbf{D}^{\text {d }}$	Rev. Makcos Dods, D.D. See the biographical articie: Dons, Mareos.	Platios
1. H. T.	Mancus NaEsule TOD, M.A. Fellow and Tutor of Oriel College, Oxlord. Univeriiky Lecturer in Epigraphy. Joint-author of Catologue of the Sparta Museman.	Purbeet
1.0.86	Mamminan Orto Bismarct Caspaze, M.A. Reader in Ancient History at London University. Lecturer in Greek at Birmingham University, 1905-1908.	$\left\{\begin{array}{l} \text { Poloplays Pertandir; } \\ \text { Poricies; Fhocion; } \\ \text { Phoels; Fiatese. } \end{array}\right.$
7. 7.	Max Verworn, D.Sc., M.D. Ph,D. Profesaor of Physiology and Director of the Phymiological Institute in the University of Bonn. Author of A Heimciace Physiolocic ; dc.	Fhysialony.
H. D. 2.	Newtor Deinitson Mereness, A.M., Ph.D. Author of Maryland as e Proprielary Province.	$\left\{\begin{array}{l} \text { Philipptae Ishnds: } \\ \text { Geogathy and Statistian. } \end{array}\right.$
1. 㿽.	Nopinan Mcleara, M.A. Leeturer in Apamaic, Cambridge Univermity. Fellow and Hebrew Lecturer, Chriatis College, Cambridge. Joint-editor of the larger Cambridge-Septmadine.	$\{\text { Fhillosonme }$
\%..$^{\text {. }}$	Josepr Marte Noel Valots. Member of Academie dea Inveriptions et Belles-Lettrex, Purta. Honorary Archivist at the Archives Nationales Formerly President of the Societt de I'firtoire de France and the Socifet de I'Ecole des Chartes. Author of La Pramce a te gramd seluisme d'Oecidens; de.	$\left\{\begin{array}{l} \text { Yra, coumon do } \end{array}\right.$
7. W. T.	Norticote Whitridee Thomas, M.A. Government Anthropologist to Southern Nigeria. Corresponding Member of the Sociét d'Anthropologic of Parin. Author of Thonght Tramsfercuce; Kinship and Marviage in Austratic; 8e.	Phytion Prenomena
O. A.	Onrum Arty, M.A., LI.D. H.M. Inepector of Schoots and Impector of Training Colleges, Board of Education. London. Author of Lomis XIV. and the Eughish Restoration; Charles II.; ace. Editor of the Lauderdate Papers; \&e.	Buan Whana
O. D2	Oswald Barron, FS.A. \therefore Editor of Thi Ancestor, 1903-1905. Hon. Cencalogite to Standing Council of the Honourable Soclety of the Baronetage.	Pols (family).
O.C. W.	Rev. Ofen Charies Whitehouse, M.A., D.D. Senior Theological Tutor and Lecturer in Hebrew, Cheabunt College. Cambridge. Principal of the Countess of Huntingdon's Collewe, Cheahunt, 1895-1905.	$\{\text { Ponteoost . } \quad \because: ?$
O. H.	 Profeser of Mechmalce and Mathematice in the Central Technical College of the City and Quilds of London Institute. Author of Vectort and Retors; Conervan pigwres; aco.	\{ Porciection
P.A.E	Prince Petizi Almanitcy Reopotims. See the Blographical article: Kropotivi, Punce P. A	Pumin (4n pein); Podome (in part); Polung, Euntan (is pors).

P.A.t.	P. A. Tiele. A. Trzus. Formerly Libraplan, Utrecht University. Author of Biograplical and Eistorical \{ Fimanim, Momoir on the Voyages of the Duch Naigalors, dic
P.C.IL	 Secretary of the Zoolopical Society of Loddon Univeruity Demonatrator in $\{$ Phompharimeonane in Zoology. Author of Oudines of Drology; ar.
P. G $^{\text {a }}$	Ereger Gandign, ILL.D., F.S.A., D.Intr. Sea the biographical artiche: Gamprren, Panct.
P. at	Prite Gums, M.A., IL.D., Litt.D. Fellory and Clasical Lecturer of Ermmanuel College, Carmbridge, and Univeraity Reader in Comparative Philology Formerly Secretary of the Cambrrige Phulological Society. Ermmanuel College, Carmbridge, and Univeraty $\{$ Phnoleng (in Andity
P.In	Pmor Lats, M.A., T.G.S. Lecturer on Physical and Regioan! Geography in Cambridge University Formerly of the Geolotical Survey of India Author of Monograph of Brifish Camberalis Ivatas Codogy.
P. 8	
P. 7.	Pasquals Veliagr. See the biographizal article. Villath, Paspoale $\{\text { Pien }$
R. 0.3.	Sis Rreanio Claveriouse Jebs, LL.D. D C.L. $\{\text { Print }(i x \text { pard }$
B. ${ }_{\text {G }}$	Ricmasd Garnett LIL.D. See the biographical article: Gaknett, Ruckind. $\{$ Peacouk, Thomas Lone
R L. P.	Reamald Imenes Pococte, F.Z.S. Supermitedident of tho Zoolofical Gextem, Dondon \{Podipalin; Peatatomede
R.S. $\mathbf{D}_{\text {. }}$	Sn Romesz Remaway Dovglas. Formerly Profeseor of Chineze, King's Collese, Londoo. Keeper of Optental Printed Books and MSS. at Britich Musum, ${ }^{1892-1907 . ~ M e m b e r ~ o f ~ t h e ~ C b i n e v e ~ C o n s u l a r ~}\{$ Paldigs. Service, $1838-1865$. Author of The Language and Litarowne of Ching; China;
R.3\%	
	Rosizrt Niseet Ban (d. ry99), Anistant Librarian. Britith Muneum, 1883-2909. Author of Scandinavia; the Pacminy; Pechlin; Poditical History of Denmark, Norway aind Sheden. 1513-1goo; The Fzrs Romanovs, Poter I. and III. of Remiay 1003-17as; Stanonic Ruropo: The Political Hittory of Poland and Rutssa from Pototi, Aherandar; Phllarot; 1409 to 1790; \& 8 C Piper, Carl; Polncid: Histery (is pert).
2.80.	Reve Pooparinn, D. ts I.
R.P.8	R. Prient Spleps, F.S.A., F.R.I.B.A. Formerly Manter of the Architectural School, Royal Academy, London. Past Presideme of Architectural Astociation Asociate and Fellow of King ${ }^{\circ}$ © College. Pior (in archilecturs). Prenident of Architectural Astociation Aseaciate and Fellow of King e Coilege.; Fior (in archiatime History of Archilecture. Author of Architecture: East and West; Ac.
R. 8.*	Ralpe Stoctian, M.D. F.R.S.(Edin.), F.R.C.P.(Edin.). Profesoor of Materia Medica and Therapeutics in the University of Glasgow. \{ Pharmacolosy.
RSQ	Robert Seymour Conway, M.A., DLits.
R. W.	Robert Warlace, F.R.S.(Edin.), F.L.S. Professor of Agriculture and Rural Economy at Edinburgh University, and Garton Lecturer on Colonial and Indian Agriculturb Professor of Agriculture. R.A.C Cirencester, ${ }^{1882-1885}$. Author of Farm Live Slock of Greot Brivain; The Agri- Pit (in part). cuclure and Rural Ecomomy of Australic and New Zealand; Parming Indusirics of
8.AQ	Stanley Arthor Coor, M.A. Lecturer in Hebrew and Syriac, and formerly Fellow, Conville and Calus College. Cambridge Editor for the Palestine Exploration Fund. Examiner in Hebrew and Aramaic. London University, 1904-1909. Author of Ghassary of Aramaic In scriptions; The Lavo of Hoses and the Code of Ham: Testament History; Religion of Anciont Palestine; \&c.
8.78.	Somey Fuederic Harier, M.A., D.Sc., F.R.S., F.Z.S. Keeper of Zoology, Natural History Department, British Museum. Fellow, Cormerly Tutor and Lecturer, King's College, Cambridge. Joint-editor of The Combridge Natural Hisiory.

E. 7^{*}	Symgy Howard Vines, M.A., D.Sc. F.R.S. Sherardian Profeswor of Botany, University of Oxford and Fellow of Megdalen College. Fellow of the University of London. President of the Linnean Society, 1900-1904 Formerly Reader in Botany in the Univetcity of Cambridge and Fellow and Lecturer of Christ's College. Author of A Sindeufa Textbooh of Boldny; Ac.
6. 3.	Simon Newcome, D.Sc., LL.D. See the biographical article: Newcome, Smon. $\quad\left\{\begin{array}{l}\text { Rlapot; } \\ \text { Planots, Misor }\end{array}\right.$
T. As,	 Thomas Asyby, M.A., D.LTtr. the Imperial German Archaeological Institute. Author of The Classical Topogrephy of the Roman Compagma.
T. 8	
T. F. 0.	Theonore Faeyunghuysen Collier, Pe.D.
T. G.	Thomas Greoor Brodte, M.D., F.R.S. Professor Superintendent, Brown Animal Sanatory lastitution, Unlversity of London. Prolessor of Physiology, Royal Veterinary Collese, London. Lecturer an Physiology, London School of Medicine for Women. Fellow of King's College, London. Author of Essentials of Experimentat Physiology.
T. 1.t.	Rev. Thomas Martin Lindsay, LL.D., D.D. Priacipal of the United Free Church College, Clasgow. Pormery Ansantant to the $\{$ Plomoth Brothran (in part) Professor of Logic and Metaphysice in the Uaiveraity of Ediaburgh, Author of $\{$ Pgmowh Erolhron (in part) History of ihe Reformalion; Life of Lulher; acc.
Thet.	
T. 8*	Sie Tromas Stevenson, M.D., F.R.C.P. (1838-1908). Formerly Senior Scientific Analyt to the Home Oitice "- Lecturek on Cbemistry $\{$ Pownon. and Forensic Medicine at Guy's Honpital, London.
T. W-D.	Warter Theodore Warts-Dunton. See the biographical articin: Warte-Duyton, Walrza Thzodone. $\{\text { Pookry }$
T. W. B.	Authar of Adantic Essays; Cheerful Yesterdays; History of the United Slotes; Ac. $\{$ Pulliph, Wonilen. Teomas Whatworth Higcinson, A.M., LL.D.
T. W. R. D.	Thomas Wrilian Reys Davids, LL.D., Pa.D. Proteasor of Comparative Religion. Manchester University. President of tha Pali Text Society. Fellow of the British Academy. Secretary and Librarian of Pipriwa Royal Asiatic Society, 1885-1902: Author of Buddhism; Sacred Books of the Buddhists; Bavly Buddhirm; Euddhist Indic; Diologues of the Buddha; Axc.
F. C. 8t	Waltek Coventry Sumuers, M.A. Professor of Latin in the University of Sheffield. Formerly Fellow of St John's $\{$ Pomius;
W.D. G.	William Dovglas Cazor, M.A., F.S.A., P.R.I.B.A. Trinity College, Cambridge. Architect to the Eccleaiantical Cormasaion ard the $\{$ Pearoon, John longhmeromeg.
W. D. W.	Wirisay Dwicity Whiney. Soe the biographical article: Whitney, Willlam Dwight. $\quad\{$ Philology (in part).
W.de W. A	Sie Milliay de Wiveleslie Abney, K.C.B., D.C.L., D.Sc., F.R.S. Adviser in Science tn the Board of Education for England. Member of the Advisory Council for Education to the War Office. Formerly President of Royal Astronomical Society. Physical Society and Royal Photographic Society. Author of Insfruction in Pholography; Colour Vision; 3be
W. E. A.E.	Williay Edward Garrett Fisuez, M.A. Author of The Trassreal and the Boers. $\{$ Phylloxara.
W. Pr.	Williax Freay, LL.D. (d. 1906). Agricultural Correspondent of The Times.
W. B.C	Willam Feilden Cuites, M.A. liam Feilden Coutes, M.A. Barrister-at-Law, Inner Temple and Lecturer on Criminal Law. King's College, $\{$ Plaading- London. Editor of Archbold's Criminal Pleading (23rd edition).
V. en	Walter Garstang, M.A., D.Sc. Professor of Zoology in the University of Leeds. Formerly Fellow of Lincoln College, Oxiond. Screntific Adviser to H.M. Delegates on the International Council for the Exploration of the Sew, 1901-1907. Author of The $\mathbf{I m p o r e r i s h m e n t ~ o f ~ t h e ~}$ Sea; ace.
W. ER.	Whellton Hind M.D., F.R.C.S., F.G.S. Surgeon. North Staffs Infirmary, Lyell Medallist, Ceological Society, 1902. Author $\{$ Pendieatle series, of British Carbonifcrous Lambelibranchiala; \&ec.
V. 8. P.	Siz William Henry Flower, F.R.S. See the biographical article: FLowEr, Sin W. H. $\{\text { Platypus (in pord). }$

xiv. INITIALS AND HEADINGS OF ARTICLES

Perugino, Piatro.
W. II. Pa - Siz Wriliam Mriciegl Raysay, LI.D., D.C.L., D.Litr. See the biographical article: Ransay, Sid W. M.
W. P.C. Williay Prdeadz Courtney.

See the article: Courtney, Biron.
W. R. \mathbf{M}.

Williay Richazd Moyitll, M.A. (d. 19io). Formerly Profescor of Ruscian and the other Slavonic Languages in the University of Oxford. Curator of the Taylorian Institution, Oxford. Author of Russea; Slespuic Lileralure; \&c.
\{ Purygla; Plaldia.
f Peterborough and Mommonth Eat OL.

Poland: Litroature.
W. R. S. Williay Robertson Sutth, LL.D. See the biographical article: Suith, Williga Robsptson.
V. R. S. ${ }^{*}$ Wrliay Roy Surtw, M.A., Pe.D. Assciate Professor of History, Bryn Mawr College, Pennsylvania. Author of \{ Rolle, James Enoz
W. S. R. Willuax Syyti Rocestro. Author of A Great Mistory of Music from the Infancy of the Great Drama to the $\{$
Present Pariod; and other works on the history of music.
W. T. T.-D. Sue William Turner Thasglton-Dyeg, F.R.S., E.C.M.G., C.I.E., D.Sc., LL.D., Pa.D. F.L.S Hon. Student of Christ Church, Oxford. Director, Royal Botanic Gardena, Kew. 1885-1905. . Botanical Adviser to Secrntary of State for Colonien, 1902-1906. Joint-author of Flora of ASiddleser.
W. W. R* Whune Walke Rockwell, Lic.Theol Asaistant Profeswor of Church History, Unica Theological Seminary, New York
W. T. 8.

Wriliay Young Seilar, Ll.d. Sea the biographicai article: Sellar, W. Y.

Phin Sons.

Pants: Distribution.
$\{$ Pins VI., VII, and VIIL
$\{$ Petronius (in part).

PRINCIPAL UNSIGNED ARTICLES.

$\begin{aligned} & \text { Peat } \\ & \text { Peach } \end{aligned}$	
Pear.	
Peat.	
Reobjoeshire.	
Pombroke, Earis of.	
Pembrote.	
Pembrokeshtre.	
Pen.	
Pendll	
Pepitiontial.	
Proutur Cuats	
Ponnoylvanis,	
Penssylvanis,	Univarsity of.
Pensacols.	
Pension.	
Penrance.	
Peorin	

Philostrates. Phonograph. Phormitum. Phocphorris Fhotios. Photochamistry.
Physiceratic School
Physlologus.
Piacenza.
Plcardy.
Flecolomini.
Plohegra.
Piotism.
Pigeon-lylog.
Pilgrim.
Pin.
Plink.
Pipe.

Prquet.
Pistola. Pitcher Plarts Pitesbirg. Peantation. Platinum.
Pleurlsy.
Plouro-Pieumonia,
Plock.
Plough and Ploughing.
Piem.
Plymouth (U.S.A.).
Pnoumatic Gun.
Ppoumonia.
Pnom-Panh.

Poltiers.

Poker.
Pola.

ENCYCLOPÆDIA BRITANNICA ELEVENTH EDITION

VOLUME XXI

PAYH, JAMES (1830-1898), English novelist, was born at Cheltenham, on the 28th of February 1830, his father being clerk to the Thames Commissioners and treasurer to the county of Berkshire. He was educated at Eton, and afterwards entered the Military Academy at Woolwich; but his health was not equal to the demands of a military carecr, and be proceeded in 1847 to Trinity Collcge, Cambridge. He was among the most popular men of his time, and served as president of the Union. Before going to Cambridge he had published some verses in Leigh Hunt's Journal, and while still an undergraduate put forth a volume of Slories from Boccoccia in 1852, and in ${ }^{28} 53$ a volume of Pocms. In the same year he left Cambridge, and shortly aftermards married Miss Louisa Adelaide Edlin, sister of Sir Peter Edin. He then scttled down in the Lake district to a literary career and contributed regularly to Houschold Words and Chambers's Journal. In 2858 be removed to Edinburgh to act as joint-editor of the latter periodical. He became sole editor in 1859 , and conducted the magazine with much success for fifteen years. He removed to London in 1861. In the pages of the Journal be published in 1864 his most popular story, Lost Sir Massingberd. From this time he was always eagaged in novel-writing, among the most popular of his productioas being Married Bencalh Him (1865), Carlyon's Ycar (1868), By Proxy (1878), and The Talk of the Town (1885). In 1883 he succeeded Leslie Stephen as editor of the Cornhill Magazine and continued in the post until the breakdown of his health in 1896. He was also literary sdviser to Messrs Smith, Elder \& Company. His publications included a Handbook to the English Lakes (1859), and various volumes of occasional essays, Maxims by a Man of the World (1869), Some Pritate Views (1881), Some Literary Recollections (1884). A posthumous work, The Backwater of Life (18o9), revealed much of his own personality in a mood of kindly, seasible reflection upon fąmiliar topics. He died in London, on the 25 th of March 1898.
A biographical introduction to The Bechroaler of L Life was furnished by Sir Ledie Stephen.
PAYNE, PEIER (c. 1380-1455), English Lollard and. Taborite, the son of a Frenchman by an English wife, was born at Hough-on-the-Fifll near Grantham, about 1380. He was educated at Oxiord, where he adopted Lollard opinions, and had graduated as a master of arts before the 6th of October 1406, when he was concerned in the irregular proceedings through which a letter declaring the sympathy of the university was addressed to the Bohemian reformers. From 1410 to 1414 Payne was principal of St Edmund Hall, and during these years was engaged in controversy with Thomas Netter of Walden, the Carmelite defender of Catholic doctrine. In 1414 he was compelled to leave Oxford and taught for a time in London. Ulimately
he had to flee from England, and took refuge in Bohemia, where he was received by the university of Prague on the 13th of February 1417, and soon became a leader of the reformers. He joined the sect of the "Orphans," and had a prominent part in the discussions and conferences of the ten years from 1420 to 1430. When the Bohemians agreed to send representatives to the Council of Basel, Payne was naturally chosen to be one of their delegates. He arrived at Basel, on the 4 th of January 1433, and his unyielding temper and bitter words probably did much to prevent a settlement. The Bohemiaas left Basel in April. The party of the nobles, who had been ready to make terms, were attacked in the Diet at Prague, by the Orphans and Taborites. Next year the dispute led to open war. The nobles were victorious at Lipau on the 29th of May :434, and it was reported in Engiand that Payne was killed. When soon afterwards the majority of the Orphans joined the moderate party, Payne allied himself with the more extreme Taborites. Nevertheless his reputation was so great that he was accepted as an arbitrator in doctrinal disputes amongst the reformers. In February 1437 the pope desired the emperor Sigismund to send Payne to be tried for heresy at Basel. Payne had to leave his pestorate at Saas, and took refuge with Peter Chelcicky, the Bohemian author. Two years later he was captured and imprisoned at Guteastein, but was ransomed by his Taborite friends. Payne took part in the conferences of the Bohemian parties in 1443-1444, and agatri in 1452. He died at Prague in 1455. He was a learned and eloquent controversialist, and a faithful adherent to Wyclife's doctrine. Payne was also known as Clerk at Oxford; as Peter English in Bohemia, and as Freyng, after his French father, and Hough from his birth place.

Bibliografiy.-The chief facts of Payne's English carcer are given in the Loci e libro verilatum of T. Gascoigne (ed. Thorold Rogers, Oxford, 1881. For his later life the principal sources are contained in the (onumenta conciliorwm generalium saecult v ., Saeculi x.o., or saecwli quintodecimi, vols i.-iii. (Vienna, 1857-1894). For modern authorities consult Palacky, Geschichte som Bokmen, vii.--ix., and Creighton's History of the Papacy. The biography by Jamen Baker, A Forgetten Greal Englishmon (Lomdon, ison) is too partial.
(C. L. K.)

PAYITRR (or Pantier), WILLIAM (c. 1540-1594), English author, was a native of Kent. He matriculated at St John's College, Cambridge, in 1554 . In 1561 he became clerk of the ordnance in the Tower of London, a position in which be appears to have amassed a fortune out of the public funds. In 1586 be confessed that he owed the government a thousand pounds, and in the next year further charges of peculation were brought against him. In rggi his som Anthony owned that he and his father had abused their trust, but Paynter retained his office uptil his death. This event probably followed

Immediately upon his will, which was nuncupative and was dated the I4th of February 1594 . The first volume of his Pulace of Plecsure appeared in 1566, and was dedicated to the carl of Warwick. It included sixty tales, and was followed in the next year by a second volume containing thirty-four new ones. A second improved edition in 1575 contained seven new storics. Paynter borrows from Herodotus, Plutarch, Aulus Gellius, Aclian, Livy, Tacitus, Quintus Curtius; from Giraldi Cinthio, Matteo Bandello, Ser Giovanni Fiorentino, Straparola, Queen Margaret of Navare and others. To the yoguc of this and similar collections we owe the Itallan setting of so larte a proportion of the Elizabecthan drama. The early tragedies of Appius and Virginia, and Tancred and Gismund were taken from The Palace of Pleasure; and among better-known plays derived from the book are the Shakespearian Timan of Ahens, All's Well thal Ends Well (from Giletta of Narbonne), Beaumont and Fletcher's Trium ph of Death and Shirley's Love's Cruclly.

The Palace of Plearure was edited by Joseph Haslewood in 1813. This edition was collated (1890) with the British Museum copy of 1575 by Mr Joseph Jacobs. who added further prefartory thattef, including an introduction dealing with the importance of litalian novelle in Elizabethan drama.

PAYSANDf, or Paisandf, a town and river port of Uruguay and capital of a department of the same name, on the left bank of the Uruguay River about 314 m . N.W. of Montevideo, with which it is connected hy rail. Pop. (1008 estimate), 150000 . It has railway connexion with Rio Negro and Montevideo to the south-east, and with Salto and Santa Rosa, on the Brazilian frontier, on the north; it is at the head of low water navigation on the Uruguay River, and is in regular steamer communication with Montevideo and Buenos Aires.
There are some good public huildings, including two churches, a. hospital, a theatre and the government offices. Paysandí exports cattle and sheep and salted meats, hides, ox tongues, wool and other animal products. There is a meatcuring establishment (saladcro) at Guaviyt, in the vicinity. The town was named in honour of Pay, or Pai (Father) SandG, a priest who settled there in 1772 . It has suffered severely from revolutionary outhreaks, was bomharded by Rivera in 2846, and was partly destroyed in 3865 hy a Brazilian bombardment, after which ita gallant defenders, Leandro Gomex and his companions, were hutchered in cold hlood.
The department of Paysandu-area 5117 sq. m.; pop. (1907, estimate), 54,097 -is ope of the richest stock-raising regions of the republic.

PAYSON, EDWARD ($1783-2827$), American Congregational preacher, was born on the 25 th of July 2783 at Rindge, New Hampshire, where bis father, Seth Payson (1758-1820), was pastor of the Congregational Church. His uncle, Phillips Payson (1736-1801), pastor of a church in Chelsea, Massachusetts, was a physicist and astronomer. Edward Payson graduated at Harvard in 1803, was then principal of a school at Portland, Maine, and in $: 807$ became junior pastor of the Congregational Church at Portland, where he remained, after 1815, as senior pastor, until his death on the 22nd of October 1827.
The most complete collection of his sermons, with a memoir by Ass Cummings originally published in 1828. is the Mfemoir, Select Thoughes and Sermons of the late Rev. Edward Payson (3 vols., Port. land, 1846; Philadelphia. 1859). Based on this is the volume. Mementos of Edvoard Payson (New York. 1873), by the Rev. E. L. Jancs of the Methodist Episcopal Church.

Plizulivy, PEfMR ($1570-1637$), Fungatian cardinal and statesman, was born at Nagyvárad on the 4th of October 1570, and educated at Nagyvárad and Rolozsvar, at which latter place he quitted the Catvinist confession for the Roman communion (1583). In 1587 he entered the Jesuit order. Pazmany went through his probation at Cracow, took his degree at Vienna, and studied thcology at Rome, and finally completed his a cademic course at the Jesuit college at Graz. In 1601 he was sent to the order's estahlishment at Sellye, where his cloquence and dialectic won bact hundreds to Rome, including many of the noblest families. Prince Nicholas Esterbázy and Pau! Rakoczy were among his converts. In 1607 he was attached
to the archhishop of Esztergom, and in the following year attracted attention by his denunciation, in the Diet, of the 8th point of the peace of Vienna, which prohibited the Jesuits from acquiring landed property in Hungary. At about the same time the pope, on the petition of the emperor Matthias 11 ., relcased Pazmany from his monkish vows. On the 25 th of April 1616 he was made dean of Turbcz, and on the 28th of September became primate of Hungary. He received the red hat from Urban VIII. in 1629. Pizminy was the soul of the Roman Cacholic reaction in Hungary. Particularly memarkable is his Izazsdgac mared Kalays (Guide of Truilin), which appeared in 16:3. This manual united at the advantages of scientific depth, methodical arrangement and popular style. As the chief pastor of the Hungarian church Pazmany used every means in his power, short of sbsolute contravention of the laws, to obstruct and veaken Pretestantism, which had risen during the 161 h century. In 1619 he founded a seminary for thcological candidates at Nagyazomhat, and in 1623 haid the foundations of a similar institution at Vienna, the still famous Pazmanseum, al a cost of 200,000 florins. In 1635 he contributed 100,000 florins towards the foundation of a Hungarian university. He also huilt Jesuit colleges and schools at Presshurg, and Franciscan monasterics at Ersékajvar and Kurmbcabinya. In politics he played a considerahic part. It was chicfly due to him that the diet of 16×8 clected the archduke Ferdinand to succeed the childess Mathias II. He also repeatedly thwarted the martial ambitions of Gahriel Bethlen, and prevented George Rak ${ }^{\text {cry }}$ I., over whom he had a great influence, from combining with the Turks and the Protestants. But Pazmany's most unforgetahle service to his country was his creation of the Hungarian literary language. As an orator he well deserved the epithet of "the Hungarian purple Cicero." Of his numerous works the chief are: The Four Books of Thomas a Kempis on the imitation of Christ (Hung., 8603), of which there are many editions: Diatribe theologica de visibili Christi in terris ecelcsia (Graz, 1615); Vindicioe ecclesiasticae (Vienna, 1620); Sermons for coery Sunday in the Year (Hung., Presshurg, 1636); The Triumph of Truth (Hung., Presshurg, 1614).
See Vilmos Fraknoi, Peier Pdzmdny and his Times (Hung. Pest. 1868-187,2); Correspondence of Pdizmdny (Hung. and Latin), published by the Hungarian Academy (Pest, 1873).
(R.N.B.)

PAZ soldan, Mariano felype (r8ay-i886), Pervian historian and geographer, was born at Arequipa, on the 22nd of August 182x. He studied law, and after holding some minor judicial offices, was minister to New Granada in 1853 . After his return he occupied himself with plans for the establishment of a model penitentiary at Lima, which he was enabled to accomplish through the support of General Castilla. In 1860 Castilla made him director of public works, in which capacity he superintended the erection of the Lima statue of Bolivar. He was also concerned in the reform of the currency by the withdrawal of the debased Bolivian coins. In 1862 he published his great atlas of the republic of Peru, and in 1868 the first volume of his history of Peru after the acquisition of her independence. A second volume followed, and a third, hringing the history down to 1839, was published after his death by his son. In 1870 he was minister of justice and worship under President Balta, hut shortly afterwards retired from public life to devote himsclf to his great geographical dictionary of Peru, which was published in 1877. During the disastrous war with Chile he sooght reluge at Buenos Aires, where he sas made professor in the National College, and where he wrote and published a history of the war (1884). He died on the 3ist of December 1886.
PEA (Pisum), a genus of the order Leguminosae, consisting of herbs with compound pinnate leaves ending in tendriks, hy means of which the weak stems are enabled to support themselves, and with iarge leafy stipules al the base. The flowers (fig. I) are typically "papilionaccous," with a "standard" or large petal above, two side petals or wings, and two front petals below forming the keel. The stamens are ten-nine united, the tenth usually free or only slighily joined to the others.

Mis expmeration allows approsect to the hoser which is mocreted at the bate of the staminal tube The ovary fo protongod

Fic. 1.-Flower of Pea. c. Calyx.
n Standard.
o, Alae, or wings.
ew, Carins, or Keel. into a lons thick bent atyle, comp presed frem tide to side at the tip and fringed with hars. The fruit is a chartacteristic "lemume" of pod (fig. .s), bursting when ripe into balves, which bear the larce slobnlar seeds (peas) on their cdges. These meeds are on ahort atalla, the upper ertremity of which is dilated into a thallow edp (ril); the two seed-lenves (colyldons) are thick and fleshy, with a radicle bent alone their . Alon on ane side. The genus is exceedinily close to Lathyuts, being anly diadingished technisally by the stylt, which in the bater mons is compreated from tbove downwards and not thick It is mot surpriming therefore, that under the general nieme "pen" species both of Plosem and of Cathyrus are included. The common field pea with tan-coloured or compreard motled reeds, and iwo to four leafteis is Pirym crness, which is cultirated in all temperate. parts of the slobe, but which, socording 10 the Italina botaniats, is tuly a mative of centrat and southern Italy: it hes purple flowers. The gerden pen, P.. satiowm, which has white flowers, is nore tender than the preceding and its origin is not known. It hes not beet cound is a wild state anywhers, and-it is comidered that it gay be form of P, urtespe, having, homever, from fonr to sis leaficts to each. leaf and gohuiar seeds of uniforen colout.
P. 'sationtim whow to Theopheretan: and De Candalle (Origin of Cmlirached Platis, pe 329) pointa out that the word "pison" or its equivalent occurs in the Aftanian tongue as well as in Latin. whetce he condindee thut the pet waskown to the Aryand and vae perhape brought by them into Greece and Italy. Peas have been found Calyr s, Seeds in the Swiss lake-dwellings of the bronze period. The garden peas differ considerably in size, shape of pod, degree of productiveoete form and colow of end, se. The thrar petsart thootin which the inanar linigg of the pod is very; thin instead of boing momewhat borty, to that the whole pod can be eaten. Unlike most papilionaceous plante, peaflowers are perfectly fertile without the aid of insects, and thus do not intercross so freely as most similer piants do. On the other hand, case is known wherein the pollen from a purplepodded peapplied to the ztignty of one of the susenrpodded augar peas produced a purple pod, ahowing that not onty the ovule but even the ovary was afiected by the cross. The numerous varicties of peas in cultivation have been obtained by crossfertilization, but chietry by gelection. Peas constitute a highly nutritlous article of diet from the hare quantity of mitwomenou materials they contain in addition to starohy and socoharine mattere

The sweet pea, euhtivated for the bearty and fragrance of its flowers, is a species of the allied genus Latkymus (L aderolus); a native of southern Euyope. The chick pea (q.a) (Cherr arietirum), not cultivatod in England, is still farther removed from the true pees. The everlasting pata of gardens is a species of Lathyrus (L. latifolius) with very deep teshy rotets, bold foliage, and beautiful but scentless flowers; the field pea (Pisum arbense) is better adapted than the bean to light soils, and is bett cultivated in rows of such a width as to admit of horse-hoeing. The early stage at which the planst fall over, and forbid further culture, renders it even more needful than in the case of beans to sow them onily on land eiready clean. If annual weeds an be lept in check until the peas once get a close cover, they then occupy the ground so completely that nothing else can live ander them; and the ground, after their removal, is lound in the choicest condition. A thin crop of peas should never be allowed to stand, as the land is sure to get perfectly wild. The
difficulty of getting this crop well harvested readers it peculiarly advisable to sow only the early varisties.

The pen prefers a friable calcancima loam, doeply morked, and weil eariched with eood hothed or farm-yard menure. The early crope require a warm wheltered situation, but the later are betcer grown 6 or 8 ft . apart, or more, in the open quarters, dwarf crops being introduced between the rown. The dwarf or early sorte may be cown 3 or 4 ft . apart. The deep working of the soil is of importance, lest the plants aboald sulfier in hot dry weather from mildew or atreet of growth. The first cowing may be made about the beginning or middle of November, in front of a eouth wall, the plants being defended by apruce fir branches or other spray throughout the winter. In Feberyry sowings are cormindmes nade in private garden, is llowerpots or boxes, and the young plants elterwards planted out The maia crop ahould be sown towards the end of February, and moderate sowings should be made twice a month afterwarda, up to the beginning of July for the north, and about the third week in July for warmer districts. During dry bot wether bate pees derive great benefis from mulching ard watering. Tbe lateat sowings, at the middle or end of Auguit, should contist of the best early sorith as they are not so long in produxing pods as the lerrer and finee sorts, and by this meses the supply may be prolonged till October or November. As they eqrow the earth is drawn up to the steman which are also eupported by stakes, practice which in a well-kept garden is always advisable, although it is said that the early varietiea arrive sooner at maturity when recumbent.
Peas grown lato in autumn afe subject to roilder, to obviate which St has been proposed to dis over ate ground in the usual way and to soak the spaces to be cocupied by the rows of peas thoroughly with water-the earth on each side to be then cellected so is to form ridges 7 of 8 in . bigh, these ridges being well watered, and the seed sown on them in single rows. If dry weather at any time set in, water should be supplied profusely once a weck.
To produce very eariy crops the Prench market-gardeners tred to mow andy in November, in framea on a border haring a. good aspect. the seeds being covered very alightly. The young plants are trans: planted into other frames in December, the ground inside being dut out so as to be 18 or 20 in . bulow the sanbes, and the earth thus removed gheed againat the outside of the frasto The youns plantes, when 3 or 4 im. fighy are planted in patchee of three or Cour. 8 in asurider, in four longitudinal rows. The cashes are covererl at night with straw mats, and opened whenever the wearher it sufficiently mild. When 8 or 10 in. hith the oftins met indixed cowarte the beck of the frame, a litthe tarth being drawn to lheir base, and whea the plante conse into blomom the tapa are pinched out above the third or fourth flower to force thera into bearing. As won as they begin to pod, the soil may have a gentle watering. whenever sufficiently wermed by the sun, but a too vigorous growt at an earlier period would be decrimental. Thus treated the plantie boar pods fot for pathering in the frot fortnight in April.

A very convenient means of obtaining an early crop ls to sow in 5 -in. pots, a few eeeds in each, the plants to be ultimately planted out on a warm border. Peas may also be obtained early if gently forced in framosia in the same way as lidmey bearn, the dwerfom varieties being preferable.
For the very early peas the rows should range east and west, but for the main crope north and south. The average depth of the drils should be about 2 in. for smatl sorts, and a trite more for the larger kinda. The drills should be made wide and fint at bottom 30 that the weds may be better separaced in sowing. The large sorte are the better for being sown 3 in. apart. Chopped furye may be advantageously scattered in the drill before covering in. to check the depredations of mice, and before levelting the surface the soil shorld be gently trodden down over the sceeds.
A.grod solection of sorts may be made from the foltowing:-

Early.-William Hurst; Cheben Gem ; Sution's Bountifui and Excelsior; Gradus.

Second Early--Stratagem ; Telephone; Telegraph; Carter's Daisy; Duke of York: Veitrh's Autocrat.
Lato.-Veitch's Perfection: Ne Plus Utra, the fippot of all late peas, but a little delicate in cold wet soils and eeasons; Britisb Queen; Champion of England; Duke of Albany.
 clergyman and author, was born in Beverly, Massachusetts on the 19th of March 1811, and was descended from Lieut. Francis Peabody of St Albans, who emigrated to Massachusetts in 1635. He learned to read belore he was three years old, entered Harvard Coilege at the age of twelve, and graduated in 1826, with the single exception of Paul Dudley (class of 1690) the youngest graduate of Harvard. In 1833 he became ascistant pastor of the South Parish (Unitarian) of Portsmouth, New Hampshire; the senior pastor died belore Peabody had been preaching a month, and be succeeded to the charge of the church, which he held until 1860 . In 18 52-1860 he was proprietor and editor of the North American Renire. He was preacher to

Harvard University and Phummer professor of Christian morals from $\mathbf{1 8 6 0}$ to 1881, and was professor emaritus from 188 r until his death in Boston, Marsachusetts, on the Iotb of March 1893. On the walls of Appleton Chapel, Cambridge, U.S.A., is a bronze tablet to his memory.

Besides many brief memairs and articles, he wrote: Christianily the Religion of Nature (2ed ed., 1864), Lowell Inatitute Lectures: Reniniscences of Exropear Trasel (1868); 1 Mainual of Moral Philosophy (1873); Christias Belief and Life (1875), and Harsard Reminiscraces (1888). See the Yomoir (Cambndge, 1896) by Edward J. Young.

PBABODY, ELYABETA PALEER ($1804-1894$), American educationist, was born at Bilerica, Massachusetts, on the $16 t h$ of May 1804. Early in life she was assistant in A. Bronson Alcott's school in Boston, Mase, the best account of which is prohably her Recons of Mr Aleotr's School (1835). She had been instructed in Greek by Emerson at Concord when she was cighteen years old. She became interested in the educational methods of Froebel, and in 1860 opened in Boston a small school resembling a kindergarten. In 1867 she visited Germany for the purpose of studying Froebel's methods. It was largely through her efforts that the first public kindergarten in the Uaited States was eatablished in Boston in 1870. She died at Jamaica Ptain, Boston, on the 3rd of January 1894. She was the sister-in-lew of Nathaniel Hawthorne and of Horace Mana.
Among her puhlications are: Kindergarlew in ILaly (1872); Reminiscences of Williane Ellery Channing (1880); Lechuras in Whe Training Schools for Kindergarlners (1888); and Last Evewing with Allston, and ether Papars (1886).
PRABODY, GEORGE ($1795-1869$), American philanthropist, was descended from an old yeoman family of Hertfordshire, England, named Pabody or Pebody. He was born in the part of Danvers which is now Peabody, Mass., on the r8th of February 1795. When eleven ypars old be became apprentice at a grocery store. At the end of four ycars he became assistant to his brother, and 2 year afterwards to bis uncle, who had a business in Georgetown, District of Columbia. After serving as a volunteer at Fort Warburton, Maryland, in the War of 1812, he became partner with Elisha Riggs in a dry goods store at Georgetown, Riggs furnishing the capital, while Peabody was manager. Through his energy and akill the businesa increased with astounding rapidity, and on the retirement of Riggs about 1830 Perbody found himsell at the head of one of the largest mercantile concerns in the world. About 8837 he established himself in London as merchant and money-broker at Wanford Court, in the city, and in 1843 he withdrew from the American business. The number of his benefactions to public objects was very large. He gave $\{50,000$ for educational purposes at Danvers; [200,000 to found and endow a scientific Institute in Baltimore; various sums to Harvard University; $£ 700,000$ to the trustees of the Peabody Educational Fund to promote education in the southern states; and $\mathbf{2 5 0 0 , 0 0 0}$ for the erection of dwelling-houses for the working-classes in London. He received from Queen Victoria the offer of a baronetcy, but declined it. In 1867 the United States Congress awarded him a special vote of thanks. He died in London on the 4 th of November 1869; his body was carried to America in a British warship, and was buried in his native town.
Sce the Life (Boston, 1870) by Phebe A. Hanalord.
PRABODY, a township of Essex county, Massachusetts, U.S.A., in the eastern part of the state, 2 m. N.W. of Salem. Pop. (1905) 13,098 ; (1910) 15,721 . It is served by the Boston \& Maine railroad. The township covers an area of 57 sq . m. Ins principal village is also known as Peabody. It contains the Peabody institute (1852), a gift of George Peabody; in 1909 the institute had a library of 43,200 vols., and in connexion with it is the Eben Dale Sutton reference lihrary, containing 4100 vols. in 1909. In the institute is the portrait of Queen Victoria given by her to Mr Peabody. Among the places of interest in the township are the hirthplace of George Peabody, the home of Rufus Choate (who lived here from 1823 to 1828), and the old burying-ground, where many soldiers of the War of Independence are buried; and the town has a Lexington monument,
dedicated in 1835, and a soldiers' momment, dedicated in athes. Manufacturing is the principal industry, and leather is the principal product; anong other manufactures are shoes, gloves, glue and carriages. The value of the factory products in ' 1905 was $\$ 10,236,669$, an increase of $\mathbf{4 7 . 4} \%$ over that for 1900, and of the total the leather product represented 77.3%.

Peabody was originally a part of the towaship of Salem. In 1752 the district of Danvers was created, and in 1757 this district was made a separate township. In 1855 the township was divided into Danvers and South Danvers, and in 1868 the name of South Danvers was changed to Peabody, in honour of George Peabody.
See OUd Nammheeg (Salem, 1877), by C. H. Webber and W. H. Nevins

Pracs, a river of western Canada. It rises in the Rociy Moantains near $55^{\circ} \mathrm{N}$., and breaking through the momptains, flows N.E. into Slave River, near lake Athabasca. The district between $56^{\circ} 40^{\prime}$ and $60^{\circ} \mathrm{N}$., and between $112^{\circ} \mathrm{W}$. and the Rocky Mountains is usually known as the Peace River district.

PRACE (Lat. pax; Fr. paix; Ger. Friede), the contrary of war, conflitt or turmoll, and the condition which follows their cessation. Its sense in international lave is the condition of not being at war. The word is also used as an abridgment for a treaty of peace, in such cases as the Peace. of Utrecht (1713) and the Peace of Amlems (1802).

Iniroduction.-Peace until quite recently was merely the political condition whicb prevailed in the intervals between wars. It was a purely negative condition. Even Grotius, who reduced the tendencies existing in his time to 2 sort of orderly expression, addressed himsell to the law of war as the positive part of international jurisprudence and dealt only with peace as its negative alternative. The very name of his historic treatise, Do jure belli ac pacis ($\mathbf{1 6 2 5 \text {), shows the subordination }}$ of peace to the main subject of war, In our own time peace has attained a higher status. It is now customary among writers on international law to give peace at any rate a volume to itself. Pcace in fact has become a separate branch of the subject. The rise of arbitration as an method of set ling international difficulties has carried it a step further, and now the Hague Peace Conventions have given pacific methods a standing apart from wat, and the preservation of peace has become an object of ditect political effort. The methods for ensuring such preservation are now almost as precise as the metbods of war. However reluctant some states may be to bind themselves to any rules excluding recourse to brute force when diplomatic negotiations bave failed, they have nevertheless uoanimously at the Hague Conference of 1907 declared their "firm determination to cooperate in the maintenance of general peace" (h) ferme oulonte de conchurir au mainlien de la paix gendrale)', and their resolution "to favour with all their efforts the amicable settlement of international conflicts " (preamble to Peace Convention). The offer of mediation by independent powers is provided for (Peace Convention: art. 3), and it is specifically agreed that in matters of a" legal character" such as "questions of interpretation and application " of international conventions, arbitration is the " most efficacious and at the same time most equitable method" of settling differences wbich have not been soived by diplomacy (Peace Convention: art. 38). In the final act, the conierence went farthor in agreeing to the "principle of compulsory arbitration," declaring that "certain disputes, in particular those relating to the interpretation and application of the provisions of international agreements, are suitable (susceptible) to he submitted to compulsory arbitration without any restriction."

These declarations were obviously a concession to the widespread feeling, among civilized nations, that peace is an object in itself, an international political condition requiring its code of methods and laws just as much as the domestic political conditions of nations require their codes of methods and laws. In othep words peace among nations has now become, or is last becoming, a positive subject of international regulation, while war is
${ }^{1}$ This has been incorrectly rendered in the English official tranafation as "the aincere deaire to work for the maintenagce of trenetal реасе;"
comint, amone procrewive peopies, to be raunded merchy as an acridental disturbance of that harmony and concord ansong mankind which mations require for the foutering of their domestic welfare.
Though the iden of preserving peace by gemeral faternational regulation has had eveveral exponenta in the course of agea, no delibernte plan has ever yet been carried into effect. Indirectly, however, there have been many agencies which have operated towards this end. The earliest, known to history, is the Amphictyonic Council (q.v.) which grew out of the common wornhip of the Hellenes. It was not so much a political as a relitious body. "II it had any claim," says Freeman," "" to the tille of a general council of Greece, it was wholly in the sense in which we speak of geaeral conncils in modern Eusope. The Amphictyonic Council represented Greece' as an ecclotination synod represented western Chriatendom. Its primary business was to regulate the concerne of the temple of Apollo at Delphi. The Amphictyonic Council which met at Delphi was only the moot famous of several bodies of the same kind." "It is eary, however," adds Freemna, "to understand bow the religjous fanctions of such a body might assume a political character. Thus the old Amphictyonic outh forbade certain eatreme measures of houtility againt any dity sharing in the common Amphictyonic worahip, and it was forbiddea to rese any Amphi: ctyoaic city or to cut off its water. As the only deliberative body in which most Greek communities were repreeented, lis decisions were those of the balk of the Helienic people. It aank eventually into a mere political tool in the hands firt of Thebes, and then under Philip of Macedonia."

The so-called pas romama was merely peace whin sa empire governed from a centrid authority, the constituent parts of which were beld together by a network of centralised authority.
The feudal systern afrim was a system of offence and defence; and its ohjoct was efficiency for war, not the organfred regulation of pesce. Yet it had elements of federation within the boads of its bierarchy
The spiritual influence of tho Church again was exerted to preserve relative pesee among feudal princes. The "Truce of Cod " was established ty the clergy (originally in Guyenne in roji) to take advantage of holy days and festivals for the purpose of restricting the time available for bloodished.
The "grand design" of Henry IV. (France), which some historians regard merely as the fantastic idea of a visionary, was probably a scheme of bis great minister Sully to avert by a liederation the conflict which be probably foresaw would break out sooner or later between Catholic and Protestant Europe, and which, in fact, broke out some fifteen years later in the Thirty Years' War.
The Holy Roman Empire itself was in some respects an agent for the preservation of perce among its constituent states. In the same way the federation of Swiss cantons, of the states of the North American Union and of the present German Empire have served es means of reducing the number of possible parties to war, and consequently that of its possible occasions.
Not only the number of possible war-making states but also the territorial area over which war can be made has been reduced in recent times by the creation of peutralized states such es Switzeriand, Beiglum, Luxemburg and Norway, and areas such as the Congo basin, the American lakes and the Suer Canal.
The " balance of power," which has played in the history of moders Europe such en important part, is inherent in the notion of the independence and stability of states. Juat as in Italy the common weal of the difierent republics which were crowded within the limited area of the peninsula required that to one of them should become so powerful as to threaten the findependence of the others, so western Europe had a similar danger to counteract. France, Spain and the Empire were competifig with each other in power to the detriment of smaller states. Great Britain and the Netherlands, Prussia and Russia,
${ }^{1}$ Hislory of Foderal Gobernment in Greect and Ihaly (and ed., London, 1893). p. 97 .
had finterests in the promervation of the stolur que, and with were waged and treatica concluded to adjust the strength of states in the common intereat of preventing any one of them from obtaining undrue predominalice. Then came the break up of what remained of feadd Europe and a readjustment under Napoleon, which left the western world with five fairly balanced homogeneous netions. These now took the place of the old beterogencous areas, soverned by their respective sovercigns without reference to any iden of nationality or of national representation. The leading nations assumed the hegemony of the weat, and is more recent times this combination has become known as the "concert of Europe." This concert of the great powers, as its name implies, is contrudistinction to the "bulance of power," was esentially a factor for the preservation of petice For a century back it has played the part of an upper comncil in the management of Europe. In all mattera affecting the Near Eest, it comiders itself oupremes. It matters of general interest it has frequently called conferences to which the mioor states have been invited, such as the West Arrican Conference in Berin in 1885, and the Anti-Slavery Conference at Biruscls is $1889-$ 1890, and the Conference of Algeciras in 1906. Meanwhile the concert has sdmitted among its members first in 1856 Turkey, later in 1878 at the Congress of Berlia the United Statea, and now undoabtedly Japan will expect to be included as a great power in this controlling body. The eseential feature of the concert has been recegnition of the advantage to all the great powers of common action in reference to teritorial changen in the Near Eest, of meating together as a council, in preference to unonocerted negotiation by the powers acting severally.

A departure of more recent origin has been the calling together of the smaller powers for the settlement of matters of general tdministrative interest, conferences such as those which lod to the conclusion of the conventions creating the Poptal Juion, the Copyright and Industrial Property Unions, Be.
These conferences of all the powers serve in practice asa sort of common council in the community of states; fust as the concert of the great powers acts as a kind of senate. We have thus the nucleus of that international parliament which idealist peacemakers have dreamt of since the time of Henry IV.' "grand design."

This bringe ns down to the greatest deliberate effort ever mado to secure the pesce of the work by a general convention. It was due to the initiative of the young tsar Nicolas II., who, in his famous reacript of the 24th of Angust 1898 , stated that he thought that the then moment was "very favourable for secking, by means of international diseussion, the most effectual means of assuring to all peoples tbe henefits of a real and durable peace." "In the coorse of the last twenty years," added the rescript, "the preservation of peace had become an object of international policy." Economic crises, due in great part to the existing system of excessive armaments, were transforming armed peace into a crushing burden, which peoples had more and more difficulty in bearing. He therefore proposed that there should be en international conference for the purpose of focusing the efforts of all states which were "sincerely seeking to make the great idea of universal peace triumph over the elements of trouble and discord." The first corricrence was heid in 1899, and another followed it in 1907: at the earlier one twenty-gis powers were represented; at that of 1907 there were forty-four, this time practically the whole world. The conventions drawn up at the second conference were a deliberate codification of many branches of international law. By them a written law has been substituted for that unwritten law which nations had been wont to construe with a latitude more or leas corresponding to their power. At the conference of 1899 , moreover, a court of arbitration was instituted for the purpose of dealing judicially with sach matters in dispute as the powers agreed to suhmit to it.

In the interval between the two Hague Conferences, Great Britain and France concluded the first treaty applicable to future difficulties, as distingrished from the trenties which had preceded it, treaties which releted in all cases to dlfficulties already
exibing and confined to them. This treaty made arhitration applicable to all matters not affecting "national honour or vital intereats." Since then a network of aimilar treaties, adopted by different nations with each other and based on the AngloFrench model, has made ceference to the Hague Court of Arhitretion practically compulsory for all matters which can be settled by an award of damages or do not affect any vital national intereab.
The third Hague Conference is timed to be held in 1917. Meanwhile a conference of the maritime powers was held in London in 1908-1909 for the elaboration of a code ofinternational maritime law in time of war, to be applied in the international Court of Prize, which bad been propoped in a convention signed ad referondum at the Hague Conference of 1907.

A further development in the coramon efforts which have been made by different powers to assure the reign of justice and judicial methods among the states of the world was the proposal of Secretary Knox of the United States to insert in the instrument of ratification of the International Prive Court Convention (adopted at the Hague in 7897) a clause stating that the International Prise Court shall be invested with the duties and functions of a court of arbitral justice, euch as recommended hy the first Vaes of the Final Act of the conference. The object of this proposal was to give effect to the idea that the axisting "permanent" court lacked the essential characteristics of national courts of juatice in not being ready et all times to hear cases, and in needing to be specinlly constituted for every case suhmitted to it. The new court would be permanently in ceasion at the Hague, the fult pacel of judges to assemhle in ordinary or extraordinary session once a year.

Thus, while armaments are increasing, and wars are being fought out in the press and in public discussion, the great powers are steadily working out a system of written law and establishing a judiciary to adjust their differences in accordance with it. ${ }^{1}$

The Current Grouping of Mankind and Nation-making.In the consulidation of peace one of the most important factors is unqueationahly the grouping of mankind in accordance with the final territorial and racial limitations of their apparent deatiny. Language has played a vital part in the formation of Germany and Italy. The language queation still disturbs the tranquillity of the Near East. The Hungarian government is regarded by the Slav, Ruman and German inhahitanta of the monarchy as an oppressor for endeavouring to force everybody within the realm to learn the Magyar language. The "Young Turkish" governmeat bas prohlems to face which will be equally difficult, if it insines on endeavouring to institute centralized government in Turkcy on the French model.

Whereas during the roth century states were being cut out to suit the existing distrihution of language, in the zoth the tendency seems to be to avoid further rearrangement of boundaries, and to complete the homogencity, thus far attained, by the artificial method of forcing reluctant populations to adopt the language of the predominant or governing race. In the United States this artificial method has become a necessity, to prevent the upgrowth of alien communities, which might at some later date cause domestic trouble of a perilous character. For example, when a community of French Canedians, discontented with British rule, many years ago migrated and setuled in Massachusetts, they fcund none of the tolerance they had been enjoying in Canada for their French schools and the French language they wished to preserve. In Alsece-Lorraine German-speaking immigrants are gradually displacing, under
'Schemes of thinkers, like William Penn's European Parliament (1693); the Abbe St Pierre's elaboration (c. 17oo) of Henry lV.'s " grand devign" (see suppa); Jeremy Bentham's International Tribunal (1786-1789); Kant's Permancu! Congress of Nadions and Perpetual Peace (i796): John Stuart Mill's Federal Supreme Cowrl; Seeloy's, Bluntechli's, David Dudley Field's, Professor Leone Levi's. Sir Edmund Hornby's co-operative schemes for promoting law and order among nations, have all contributed to popolariaing in different countries the idea of a federation of mankind for the preservation of peace.
governithent encouragement, the Fremeh-apealtite population. Poland is another case of the difficudty of meanging a popnietion Which apeaks a language not that of the govarning majority, and Russia, in trying to solve one problem by aboorbing Finland into the national syatem, is burdening hernelf with another which may work out in centuries of unrest, if not in domestic violence. Not very long ago Pan-Germans were payiag much attention to the German rettlers in the Bracilian province of Rlo Grande do Sul, where large villagesspoke nothing but German, and German, as the only language known on the spot, had become the tongue in which municipal butiness was fiangacted. The Brazilian sovernment, in view of the danger to which such a state of thinga might give riac, followed the erample of the United States in dealing with the language question.

Thus while in the one case homogenelty of haganga within skate boundaries seems to be one of the conditions making for peace, the avoidance of interfecance with a well-marted homogeneous area like Fioland would neem to contribute equally to the same end.
Mcanwhile the difficulties in the way of contemporary mationmaking art fostered hy many ext rneons infuences, as well at by doesed resiatance of the races in question. Not the leat important of these influences is the sentimental sympathy falt for those who are suppoted to be deprived of the use of thetr mother-tongue, and who are subjected to the hardship of leamins an alien one. The hardship inficted on those who have to learm a seoond language is very easily exaggerated, though is is to ba regretled that in the case of Hungary the second language is not one more useful for international purposes.

Confamporary Stalecrafl.-Nation-making has hitherto been more or less unconscious- the outcome of necessity, 2 matural growth due to the play of circumstance and events. But in our own age conscious statecraft is also at work, as in Canada; where the genius of statesmen is gradually endowing thel dominion with all the attrihutes of independence and power. Australis has not learnt the lesson of Cagada in vain. Whatever value may attach to the consolidation of the British Empive itself as a factor in spreading the peace whlch reigna within it, It is also a great contrihution to the peace of the world that the British race should have founded practicully independent states like the Dominion of Canada, the Commonwealth of Australim, the South African Union and the Dominion of New Zealand. These self-governing colonies with their spheres of infuence, with vast areas still unpeopled, have a future before them which is dissocinted from the methods of an over-peopled Europo, and among them the preservation of peace is the durect object and condition of their progressive development. Like the United States, they have or will have their Monroe doctrine. Colonized by the steady industrial peoples of northern Europe, there is no danger of the turbulence of the industrially indolent but more passionate peoples of Central and South America. As in Europe, these northern peoples will hold the. power which intelligent democracies are consciously absorbing, and the British faculty for statecraft is gradually welding new nations on the British model, without the ohsolete traditions and without that human sediment which too frequently chokes the currents of national vitality in the older communities of Europe.
Militarism.-It is often stated, as if it were incontrovertible, that conscription and large standing armics are a menace to peace, and yet, although throughout the civilized word, except in the British Empire and the United States, conscription is the system employed for the recruiting of the national forces of both defence and offence, few of these countries show any particular disposition to make war. The exceptional posilion of the United States, with a population about equal to that of the rest of the American continent, and of Great Britain, an island state but little exposed to military invasion, places both beyond absolute need of large standing armies, and renders an enlisting system feasible which would be quite inadequate for the recruitment of armies on the French or German scale. Democratic progress on the Continent has, however, absorbed
conscription as a feature in the equalization of the cittrion's rights and liabilities. Just as in Anglo-Sazon lands a national ideal is gradually materializing in the principle of the equalization of chances for all citizens, so in continental Europe, along with this equalization of chances, has still more rapidly developed the ideal of an equalization of obligations, which in tum leads to the chim for an enlargement of political rights co-extensive with the obligations. Thus universal conscription and universal suffrage tend to become in continental political development complemeutary conditions of the eitiren's polftical being. In Germany, moreover, the military service is designed not only to make the recruit a good soldier, but also to give him a bealthy physical, moral and mental training. German statesmen, under the powerful stimulus of the emperor William II., have, in the eyes of some citicics, carried this secondary object of conscript training to such excess as to be detrimental to military efficiency. To put it shorty, the Germans have taught their soldiers to think, and not merely to obey. The Prench; who naturally looked 10 German methods for inspiration, have come to apply them more particularly in the development of their cavelry and artillery, especially in that of the former, which has taken in the French artny an ever higher place as its observing and thinking organ.

Militarism on the Continent has thus become allied with the very factors which made for the reign of reason. No agitation for the development of national defences, no beating of drums to awaken the military spirit, no anti-foreign clemour or invasion panic, no parading of uniforms and futile clash of arms, are necessary to entice the groundling and the bompkin into the service. In Germany patriotic waving of the fiag, as a political method, is directed more especially to the strengthent ing of imperial, as distinguished from local, patriotism. Where conscription has existed for any appreciable time it bas sunk into the national economy, and men do their military service with as little concern as if it were a civil apprenticeship.
As implied above, military training under conscription does not by any means necessarily tend to the promotion of the military spirit. In France, so far from taking this direction, it has resulted, under democratic government and universal sinfrage, in a widespread abhorrence of war, and, in fact, has converted the French people from being the most militant into being the most pacific nation in Europe. The fact that every family throughout the land is a contributory to the military forces of the country has made peace a family, and hence a national, ideal. Paradoxical as it may seem, it is the begical conclusion of such comparisons that militarism only exists in countrics where there are no citizen armies, and that, where there are citizen armies, they are one of the elements which make for permanent peace.
Normal Nalure of Peace.-America has been the pioneer of the view that peace is the normal condition of mankind, and that, when the causes of war are eliminated, war ceases to have a raison d'lire. The objects and causes of war are of many kinds. War for fighting's sake, although in the popular mind there may be, during most wars, only the excltement and the emotion of a great gamble, has no conscious place among the motives of those who determine the destinies of peoples. Apart, however, from self-defence, the main causes of war are four: (1) The desire for territorial expansion, due to the overgrowth of population, and insufficiency of the available food-supply; if the necessary territory cannot be obtained by negotiation, conquest becomes the only alternative to emigration to foreign laods. (2) The prompting of national ambition or a desire to mipe out the record of a humiliating defeat. (3) Ambitious potentates again may seck to deffect popular tendencies into channels more satisfactory for their dynasty. (4) Nations, on the other hand, may grow jealous of each other's commercial exccese or material power. In many cases the apparent cause may be of a nobler character, but historians have seldom been content to accept the allegations of those who have claimed to ewry on war from disinterested motives.
On the American conlinent South and Central American
states have bad many wars, and the divarious efiecta of them not only in retarding their own development, but in impalring their national credit, have led to carnest andoavours on the part of their leading statermen to arrive at ench an understanding as will banish from their international polity all excuses for resorting to armed conficts. In 188ı Mr Blaine, then U.S. secretary of state, addressed an instruction to the ministers of the United States of America accredited to the various Central and South American nations, directing them to invite the governments of these countries to participate in a congress, to be beld at Washington in 2882, "for the parpose of considering and discussing the methods of preventing wer between the nations of America." Owing to different circumstances the conference was delayed till the autumn of $\mathbf{1 8 8}$. At this conference a plan of arbitration was drawn op, under which arbitration was made obligatory in an controversie whatever their origin, with the singlo exception that it should not apply where, in the judgment of any one of the nations involved in the controversy, its national independonce was imperilled, and even in this case arbftration, though optional for the nation so judging, was to be obllgatory for the adversary power. At the second Intertational Conference of American States, which sat in the city of Mexico from the 3 mid of October 1901 to the 3rat of January 1902, the same subject was again discussed, and a scheme was frnally adopted as a compromise which conicrred authority on the government of Mexico to ascertain the views of the difierent governments represented in the conference, regurding the most advanced form in which a general arbitration convention could be draw up that would meet with the approval and socure ratification by all the countries represented; and fiferwards to prepare a plan for such a general treaty. The third Pan-American Conference was held in the months of July and August rgo6, and was attended by the United Stetes, Argomitina, Bollvia, Brazil, Chile, Colombia, Coste Rica, Cabe, the Dominican Republic, Ecusdor, Guatemala, Honduras, Merico, Nicaragua, Panama, Paraguay, Peru, Selvador and Uruguay. Only Haiti and Venezuela were absent. The conference, being beld only 2 year before the time fixed for the second Hague Conference, applied Itself mainly to the question of the extent to which force might be used for the collection of pecuniary claims against defaulting governments, and the forwarding of the principle of arbitration under the Hague Conventions. The powible causes of war on the American continent had meanwhile beed considerably reduced. Difierent states hed adjusted their frontiers, Great Britain in British Geiana had eettled an outstanding question with Venezuela, France in Frencl Gulana another with Brazil, Great Britain in Newfoundland had removed time-honoured grievances with France, Great Britain in Canada others with the United States of America, and now the most difficult kind of international questions which can arino, so far as the American continent is concerned, have been remfored from among existing dangers to peace. Among the Southern Republics Argentina and Chile concluded in 1902 a treaty of arbitration, for the settlement of all difficulties without distinction, combined with a disamament agretment of the same date, to which more ample reference will be made hereafter. Thus in America progress is being rapldity mede towards the realization of the idea that war can be atperannuated by elimination of its causes and the development of positive methods for the preservation of peace (ace Pass. American Conferences).

With the American precedent to fraspire him, the emperor Nicolas 11. of Russia in 1898 issued his invitation to the powers to hold a sfmilar conference of European atates, with a more or less similar ohject. In 1899 twent y-six states met at the Haguo and began the work, which was continued at the second conference in 190\%, and furthered by the Maritime Conference of London of t908-1g00. The creation of the Fiague Court and of a code of lav to be applied by it have furthar eliminated causes of difference.

These efforts in the two heminpherss ase based on the lies
that international differences can be adjusted without war, Fhare the parties are honestly aggrieved. With this adjustment of existing cases the number of possible pretexta for the employment of force is being rapidly diminished.
Peace Procedure undar the Hagme Connentions.-The Hague Peace Convention of 1007, which re-enacts the eseantial perts of the earlier one of $\mathbf{1 8 9 9}$, mets out fivo ways of adjusting international conflicts without recourse to war. Firstly, the signatory powers have undertaken to use their best efforts to ensure the pacific settlement of international difficulties. This is a geaeral declaration of intention to lend themselves to tho peaceable adjustment of difficulties and employ their diplomacy to this end. Secondly, in case of serious disagreement, diplomacy having failed, they agree to have recourse, as far as circumstances allow, to the good offices or mediation of one or more friendly powers. Thirdly, the aignatory powers agree that it shall not be regarded as an unfriendly act if one or more powers, strangers to the dispate, on their own initialive offer their good offices or taediation to the states in disagreement, or oven during hostilities, if war hes already hroken out. Fourthly, the convention recommends that in disputes of an international nature, involving neither national honour nor vital interests, and arising from a difference of opinion on points of fact, the parties who heve nol been able to come to an agreement by means of diplomacy should institute an international commistion of inquiry to facilitate asolution of these disputes by an investigation of the facts. Lastly, the high contracting parties have agreed that in questions of a legal nature, and especially in interpretation or application of international conventions, arbitration is recognized as the most effective, and at the same time the most equitable, means of eettling disputes which diplomscy has failed to adjusk.

Down to 19 ro no aggestion of mediation had actually been carried oul, but a number of cases of arbitration had been tried by the Hague Court, created by the Hague Peace Canvention (see Alabiranios, Intimational), and one case, vil. that of the Dogger Bank incident, was submit ted to a commission of inquiry, Which set in January $1005 .{ }^{1}$

If Secretary Knox's proposel (see swpec) to convert the International Prize Court into a permanently sitling court of arbitration is adopted, a detailed procedure and jurisprudence will no doubl grow out of a continuity which is lacking in the present system, under which the court is recruited from a large panel for each special case. Secretary Rnox's idea, as expressed in the identical circular note addressed by him on the 18th of October 1909 to the powers, was to Invest the International Prize Court, proposed to be eatablished by the convention of the 18 th of October 1907, with the functions of a "court of arbitral justice." The court contemplated by the convention was a court of appeal for reviewing prize decisions of national courts both as to facts and as to the law applied, and, in the exercise of its judicial discretion, not only to confirm in whole or in part the national decision or the contrary, but also to certify its judgment to the national court for enforcement thereof. The adoption of this jurisdiction would have involved a revision of the judicial systems of prohably every country accepting it. The United States government therefore proposed that the signatories should insert in the act of ratification a reservation to the effect that resort to the International Prize Court, in respect of decisions of their national tribunals, should take the form of a direct claim for compensation. This in any case would remove the United States' constitutional objection to the establishment of the proposed court. In connerion with this enabling clause $\mathbf{M r}$
${ }^{1}$ The procedure adopted by the commiasion was afterwards incorporated in the convention of 1907. Under the rules adopted, the examination of witnesses is conducted by the president in accordance with the system prevailing in most continental countries: members of the commission may only put questions to wit nesses for : hhe cliciting of further information; and they may not interrupt the witness when he is in course of making his statement, but they may ask the president to put any additional questions. This seems likely to become the procedure also in cases before the Hague Court, where withesses are exemined.

Secretary Knox also proposed that a further enabling clause be inserted providing that the International Court of Prize be competent to accept jurisdiction in all matters, arising between signataries, submitted to it, the Court to sit at fixed periods every year and to be composed according to the panel which was drawn up at the Hague. This court, which the American government proposed to call a "Court of Arbitral Justice," would take the place of that which it was proposed to institute under Van No. I of the Final Act of the conference of 1907. The intention of the Hague draft annexed to the Vaw was to create a permanent court as distinguished from that established in 1899, which, though called permanent, was not so, having to be put together ad hoc as the occasion arose. The new court, if adopted, would hold regular and continuous sessions, consist of the same judges, and pay due heed to the precedents created hy its prior decisions. The two courts would have separate spheres of activity, and litigants would practically have the option of submitting theirdifferences toa judicial court which would regard itself as being bound by the letter of the law and by judicial methods or to a special court created ad hoc with a purely arbitrative character.
The Place of Diplomacy. - The utility of the diplomatic service has been considerably diminished through the increasing efficiency of the public press as a medium of information. It is not too much to say that at the present day an experienced journalist, in 2 place like Vienna or Berlin, can give more information to an ambassador than the ambassador can give to him. It is even true to say that an amhassador is practically debarred from coming into actual touch with currents of public feeling and the passing influences which, in this age of demorrscy, determine the course of events in the political life of peoples. The diplomatist has therefore lost one of his chief functions as on informant of the accrediting government. The other chiel function of diplomacy is to be the courteous medium of conveying messages from one government to another. Even this function is losing its significance. The ciphered telegram leaves little discretion to the envoy, and written notes are exchanged which are prsctically a mere transcription of the deciphered telegram or draft prepared at the instructing foreign office. Nevertheless, the personality of an ambassador can play a great part, if he possesses charm, breadth of understanding and interest in the social, intellectual and industrial life of the country to which he is accredited. There are several instances of such men in Europe and America, but they are so rare that some reformers consider them is hardly justifying the large expenditure necessary to maintain the existing system. On the other hand, the utility of the consular service has concurrently increased. Administrative indifference to the eminently useful officials forming the service has led, in many cases, to diminishing instead of increasing their number and their salaries, but it is obvious that the extension of their duties and a corresponding raising of their status would be much more in accordance with the national interest. The French, with that practical sense which distinguishes so much of their recent administrative work, have connected the two services. A consul-general can be promoted to a diplomatic post, and take with him to his higher office the practical experience a consul gains of the material interests of the country to which he belongs.
There is thus still good work for diplomacy todo, and if, in the selection of diplomatic representatives, states followed on the one hand the above-mentioned French example, and on the other hand the American example of selecting for the heads of diplomatic missions men who are not necessarily de la carritre, diplomacy might obtain a new lease of activity, and become once more an extremely useful part of the administrative machinery by which states maintain good business relations as well as friendly political intercourse with one another.
Intarnational Regulation by Treaty.-It seems a truism to say that among the agencies which most effectively tend to the preservation of peace are treaties which regulate the relations of states in their intercourse with other states. Such treaties, however, are of quite recent origin. The first of a comprehensive
chsracter was the general act adopted at the South African Conference at Berlin in 1885 , which laid down the principle, which has since become of still wider application, that "any Power which henceforth takes possession of a tract of land on the coast of the African continent outside of its present possessions or which, being hitherto without such possessions, shall acquire them . . . shall accompany the act relating to it with a notification thereof, addressed to the other Signatory Powers of the present act, in order to enable them, if need be, to make good any claims of their own," and, furthermore, that "the Signatory Powers of the present act recognize the obligation to ensure the establishment of aut hority in the regions occupied by them on the cossts of the African continent sufficient to protect evisting rights, and, as the case may be, freedom of trade and transit under the conditions agreed upon." Under these articles occupation of unoccapied territory to be legal had to be efiective. This led to the creation and determination of spheres of infuence. By fixing the areas of these spheres of infinence rival states in western and central Africa evoided conflicts and preserved their rights until they were able to take a more effective part in their development. The idea of "spheres of infuence" has in turn been applied even to more settled and civilized countries, such as China and Persia.

Other cases of regulation by treaty are certain contractual engagements which have been entered into hy states for the preservation of the status quo of other states and territories.

The Anglo-Japanese Treaty of the 12 th of August 1905 sets out its objects as follows:-
a. "The consolidation and maintenance of the general peace in the regions of Eastern Asia and India;
b. "The preservation of the common interests of the Powers in China, of insuring the independence and the integrity of the Chinese empire, and the principle of equal opportunities for the commerce and industry of all nations in China;
c. "The maintenance of the territorial rights of the high contracting parties in the regions of Eastern Asia and of India, and the delence of their special interests in such regions."
It is a treaty for the maintenance of the stafus quoo in certain parts of Asia in which the partics to it have dominant intercsts. The same principle underlies different other self-denying arrangements and declarations made by the powers with reference to Chinese integrity.
The Treaty of Algeciras is essentially a generalization of the Franco-German agreement of the 28 th of September rgos. By it all the powers represented agree to respect the territorial integrity of Miorocon, subject to a possible intervention limited to the purpose of preserving order within it.
Differing from these general achs in not being contractual is the Monroe doctrine, which is a policy of ensuring the maintenance of the territorial status quo as regards non-American powers throughout the American continent. If necessary, the leading republics of South and Central America would no douht, however, further ensure respect for it hy treaty.
With these precedents and current instances of tendency to place the territorial relations of the powers on a permanent footing of respect for the existing status quo, it seems possible to go beyond the mere enunciation of principles, and to take a step towards their practical realization, by agreeing to respect the territorial status quo throughout still larger tracts of the world, neutralize them, and thus place them outside the area of possible Fars.
A third contractual method of avoiding conflicts of interest tas been the signing of agreements for the maintenance of the "open-door." The discussion on the question of the "opendoor" in connexion with the Morocoo difficulty was useful in calling general public attention once more to the undesir. ability of allowing any single power to exclude other nations from trading on territory over which it may be called to exercise 2 protectorate, especially if equality of treatment of foreign trade had been practised hy the authority ruling over the territory in question before its practical annexation under the name of protectorate. The hahitable parts of the world are a limited area, exclusion from any of which is a dimination of
the available markets of the nations excinded. Every power, is, therefore, rightfully interested in the preveption of such exclusion.
The United States government in 8899 called attention to the subject as regards China, without, however, going into any question of principle. It thought that danger of international irritation might be removed by each power making a declaration respecting the "sphere of interest" in China to which it laid claim. Lord Salisbury informed Mr Choate that H.M. government were prepared to make a declaration in the sense desired. All the powers concerned eventualiy suhscribed to the declaration proposed by the United States government.
The principle of the "open-door" in fact has already been consistently applied in connexion with certain non-European areas. As these areas are practically the only artas which of late years have come within the scope of European regulation, the time seems to be approaching when the principle may be declared to be of general application. From the point of vietr of diminiahing the possible causes of confitt among nations, the adoption of this principle as one of international contractual obligation would be of great utility. While putting an end to the injustice of exclusion, it would obviously reduce the danger of nations seeking colonial aggrandizement with a view to imposing exclusion, and thus one of the chief temptations to colonial adventure would be eliminated.
In the fourth place, there is the self-denying ordinance against employment of arms for the enforcement of contractual obligetions adopted at the Hague Conference of $\mathbf{1 9 0 \%}$. Under it the high contracting powers have agreed not' to have recourse to armed force for the recovery of contractual debts claimed from the government of one country by the government of another country as due to its subjects. The only qualification admitted under the new convention is that it shall not apply when the debtor-state refuses or leaves unanswered an offer of arbitration, or in case of acceptance renders the settlement of the terms of arbitration impossible, or, after arhitration, fails to comply with the award. The theory on which this convention is based is known as the Drago theory, having taken a practical form during the administration of Dr L. M. Drago, when he filled the post of Argentine minister of foreign affairs. The doctrine, howevet, is not new, having already been enunciated a century before by Alexander Hamilton and reiterated since then by several American statesmen, such as Albert Gallatin, William L. Marcy and F. T. Frelinghuysen, as the view prevailing at Washington during their respective periods of office.

Limitations of Disarmament.-Disarmament, or to speak more correctly, the contractual limitation of armaments, has become, of late years, as much an economic as a humanitarian peace-securing object.
" The maintenance of universal peace and a possible reduction of the excessive armaments which weigh upon all nations, represent, in the present condition of affairs all over the world, the ideal towards which the efforts of all governments should be directed," were the opening words of the Note which the Russian Minister of Foreign Affairs, Count Mouraviev, handed to the diplomatic representatives of the different powers auggesting the first Hague Conicrence.
"The over-increasing financial burdens," the Note went on, "strike at the root of public prosperity. The physical and intellectual forces of the people, labour and capital, are diverted for the greater part from their natural application and wasted unproductively. Hundreds of millions are spent in acquiring terrible engines of destruction, which are regarded to-day as the latest inventions of science, but are destined to-morrow to be rendered obsolete by some new discovery. National culture, economic progress and the production of weath are elther paralysed or developed in a wrong direction. Therefore the more the armameats of each power increase the less they answer to the objects aimed at by the governments. Economic disturbances are caused in great measure by this system of excessive armaments; and the constant danger involved in this accumulation of war material renders the armed peace of to-day a crushing
burden more and more difficult for nations to bear. It consequently soems evident that if this situation be prolonged it will inevitably result in the very disaster it is sought to avoid, and the thought of the horrors of which makes every humane mind shudder. It is the supreme duty, therefore, of all states to place some limit on these increasing smmaments, and find some means of averting the calamities which threaten the whole world."
A further Note suhmitting the programme proposed gave more precision to this item, which thereupon took the following form: "An understanding not to increase for a fixed period the present effectives of the armed military and maval forces, and at the same time not to increase the budgets pertaining thereto; and a preliminary examination of the means hy which even a reduction might be effected in future in the forces and budgets above mentioned.".

When the subject came on for discossion at the conference the German military delegate stated his view that the question of effectives could not be discussed by itself, as there were many others to which it was in some measure subordinated, such, for instance, as the length of service, the number of cadres whether existing in peace or made rendy for war, the amount of treining received by reserves, the situation of the country itself, its railway system, and the number and position of its fortresbes. In a modern army all these questions went together, and national defence included them all. In Germany, moreover, the military system " did not provide for fixed numbers annually, but increased the numbers each year."
After many expressions of regret at finding no method of giving effect to the proposal, the commission confined itsell to recording its opinion that "e further examination of the question by the Powers would prove a great benefit to humanity."
The Conference, bowever, were unanimous in the adoption of the following resolution:-
"The Conference is of opinion that the restriction of military hudgets, which are at present a heavy burden on the world, is extremely desirable for the increase of the material and moral wellare of mankind;"
and it passed also the following raw :-
"That governments, taking into account the proposala made at the Conference, should examine the possibility of an understanding concerning the limitation of military and naval armaments, and of war hudgeta."

The general public, more particularly in Great Britain and France, shows an ever-increasing distrust of the rapid growth of armaments as a possible cause of grave economic troubles. A high state of military preparedness of any one state obliges all the others to endeavour to be prepared on the same level. This process of emulation, very appropriately called by the late Sir H. Camphell-Bannerman "a policy of huge armaments," unfortunately is a policy trom which it is impossible for any country to extricate itself without the co-operation, direct or indirect, of other nations.

The subject was brought forward in view of the second Hague Conference in both the French and Italian parliaments.
The declaration of the French government stated that:-
"France hoped that other nations would grow, as she had done, more and more attached to solutions of international difficulties based upon the respect of justice, and she trusted that the progress of universal opinion in this direction would enable nations to regard the lessening of the present military budgets, declared hy the states represented at the Hayuc to be greatly desirahle for the benefit of the material and moral state of humanity, as a practical possibility." (Chamber of Deputies, June 12, t906.)

In the Italian Chamber of Deputies, an interpellation was addressed to the minister of loreign affairs about the same time asking " whether the Government had knowledge of the motion approved by the British House of Commons, and of the undertaking of the British govemment that, in the programme of the coming Hague Conference, the question of the reduction of armaments should be inserted, and in what spirit the Italian government had taken or proposed to take the propositions of the British government, and what instructions it would give to the Italian representatives at the conference."

The minister of foreign afiairs, M Tittoni, in reply expressed the adhesion of the Italian government to the humanitarian ideas which had met with such enthusiasm in the historic House of Parliament at Westminster. "I have always believed," he said, "that, as far as we are concerned, it would be a national crime to weaken our own armaments while we are surrounded by strongly armed European nations who look upon the improvement of armaments as a guarantee of peace. Nevertheleas, I should consider it a crime against bumanity not to sincerely co-operate in an initiative having for object a simultaneous reduction of armaments of the great powers. Italian practice has always aimed at the maintenance of peace; therefore, I am happy to be able to say that our delegates at the coming Hague Conference will be instructed to further the English initiative."
The only existing case of contractual reduction of armaments is that of the Disarmament Agrecment of the 28th of May 1 goa between the Chilian and Argentine republics, adopted "owing to the initiative and good offices of His Britannic Majesty," which is as follows:-
Art. I.-In order to remove all cause of fear and distrust between the two countriea, the governments of Chile and of the Argentine Repuhlic agree not to take possession of the warships which they are having built, or for the present to make any other acquisitions. The two governments lurthcrmore agree to reduce their respective feets, according to an arrangement establishing a reasonable proportion between the two flects. This reduction to be made within one year from the date at which the present agreement shall be ratified.
Art. II.-The two governments reapectively promise not to increase their maritime armaments during five ycarm unleas the one who shall wish to increase them shall give the other eighteen months' notice in advance. This agreement does not include any armaments for the purpose of protecting the shore and porta, and each party will be at liberty to acquire any vessels (maquina folante) Intended for the protection thereof, such as suhmarines, \&c.
Art. III.-The reductions (i.e. ships disposed of) resulting from this agreement will not be parted with to countries having any dispute with either of the two contractlng parties.
Art. IV.-In order to facilitate the tranafer of the pending orders the two governments agree to increase by two months the time stipulased for the beginning of the construction of the reapective ahipa. They will give instructions accordingly.
An agreement of this kind is obviously more feasible is among states whose navies are small and of comparatively recent origin than among states whose navies are composed of vessels of many and widely difierent ages. It may be difficult to agree in the latter case on a principle for assessment of the proportionate Gighting value of the respective fects. The break-up or sale of obsolete' warships is a diminution of the paper effective of a navy, and their purchase by another state a paper increase of theirs. Even comparatively slight differences in the ages of ships may make great differences in their fighting value. It would be a hard, though probably not insurmountable, task to establish "a reasonable proportion," such as provided for in Art. II. of the Chile-Argentina Agreement, as between large and old-standing navies like those of Europe.
On the other hand, as regards military power, it seems sometimes forgotten in the discussion of the question of armaments, that the conditions of tbe present age differ entirely from those of the time of the Napoleonic wars. With conscription a national army correspopds more or less numerically to the proportion of males in the national population. Great Britain, without conscription, has no means of raising troops in any such proportion. Thus, so long as she refrains from adopting conscription, she can only carry on defensive warfare. The object of her navy is therefore necessarily defensive, unless it act in co-operation with a foreign conscript army. As there are practically only three great armies available for the purpose of a war of aggression, the negotiation of contingent arrangements does not seem too remote for achievement by skilful and really well-meaning negotiation. The Hague Conference of 1907, owing to difficulties which occurred in the course of the preliminary negotiations for the conference, did not deal with the subject.

Principle and Capabilitics of Neutraliation.-Among the diferent methods which have grown up practically in our own
time for the exclusion of war is neutralization. We have been dealing hitherto with the elimination of the causes of war; neutralization is a curtailment of the areas of war and of the factors in warfare, of territory on the one hand and states on the other. The neutralization of territory belonging to states which are not otherwise neutralized includes the neutralization of waterways such as the Suer and Panaraa canals.
Under the General Act of Berlin of the 16th of February 1885 , "in case a power exercising rights of sovereignty or protectorate " in any of the regions forming the basin of the Congo and its affluents, includiag Lake Tanganyika, and extending away to the Indian Ocean, should be involved in a war, the parties to the General Act bound themselves to lend their good offices in order that the territories belonging to this power be placed during the war "under the rule of neutrality and considered as belonging to a neutral state, the belligerents thenceforth abstaining from extending hostilities to the territories thus neutralized, and from using them as a basis for warliie operations" (art. 2).
Neutralization is not necessarily of general application. Thus two states can agree to neutralize specific ecrritory as between them. For example between Costa Rica and Nicaragua by a treaty of the 15 th of April 1858 the parties agreed that "on no account whatever, not even in case of war," should "any act of bostility he allowed between them in the port of San Juan del Norte nor on the river of that name nor on Lake Nicaragus " (art. 2). ${ }^{1}$
Again, the Straits of Magellan are neutralized as between Argentina and Chile under a treaty of the 23rd of July 188y. Article 5 provides that they are " neutralized for ever and their free navigation is guaranteed to the flags of all nations. To ensure this neutrality and freedom it is agreed that no fortifications or military defences which might interfere therewith shall be crected."
Luxemburg was declared by the Treaty of London of the irth of May 1867 (art. 1) to be a perpetually neutral state under the guarantee of Great Britain, Austria, Prussia and Ruscia. Switzerland, by a declaration confirmed by the Treaty of Vienna, of 18:5 (art. 84), -likewise enjoys perpetual neutrality. And now Norway has placed hersell under a neutral regime of a similar character.
A neutralized state does not mean a state which is forbidden to bave fortifications or an army; in tbis it differs from nentralized territory of a state not otherwise neutralized. Thus Belgium, which is a neutralized state, not only has an army hut bas fortifications, although by tbe treaties of 1831 and 1839 she was recognized as a "perpetually neutral state, bound to observe the same neutrality with reference to other states."
Of waterways, international rivers have been the chief sabject of neutralization. It has long been an established principle in the intercourse of nations, that where the navigable parts of a river pass through different countries thcir navigation is free to all. The rivers Scbeldt and Meuse were opened up in this way to riparian states by a decree of the French Convention of the 16th of November 1792. By the treaty of Vienna of the oth of June 18s 5, the powers wbose territories were separated or traversed by the same navigable river, undertook to regulate hy common consent all that regarded its navigation, and for this purpose to ame commissioners wbo should adopt as the bases of their proceedings the principle that the navigation of such rivers along their whole course "from the point where each of them becomes navigable to its mouth, shall be entirely froe, and shall not in respect of commerce be prohilited to amyone." The only case in Europe in which this internationalization of rivers has been maincained is that of the Danube On the other hand sertralization has made progress in respect of waterways,
${ }^{1}$ Uader the treaty of the 29th of March 1864, the courta of Great Britain, France and Rusain in their character of guaranteeing prowers of Greece declared with the assent of the courts of Austria and Prumia that the islands of Corfu and Paxo as welf as thetr dependencies should, after their union to the Hellenic kingdom, enjoy the advantages of perpetual neurrality, and the king of the Hellenea undertook on his part to maintain such neutrality. (Art. s).
natural as well as artiticial. Thus the Bosporus and Dardacilies under the Treaty of Paris of 1856 and by the Treaty of London 1871 were and remain closed to the passage of forcign armed vessels in time of war, though the Porte may permit their passage in time of peace in certain cases. The Suez and the Panama canals have been permanently seutralized, the former by a convention among the great powern, and the litter by a treaty between Great Britain and the United States.
Alongride this neutralization has grown up a collateral institution, the purpose of which is in some respects similar. We refer to "buffer" zones. "Buffor" zones are of quite recent origin as a political creation, ${ }^{2}$ i.e. where their object is to establish upon the territory of two contiguous states a strip or zone on either side of the frontier which the respectivestates agres to refard as peutral, on which the parties undertake to erect no fortifications, and maintain no ermed forces but those necessary to enforce the ordinary respect of goverament. The word "neutral" does not correctly describe the character of the zone. It is not neutral in the sense of being rocognized as such by any third state, and it necesearily coases to be mentral in case of war between the states concemed. The word "buffet" comes nearest to the object, but even this term implies more than is meant. Between Spain and Morocco a treaty of the 5 th of Manch r894 extablished between the Camp of Melilla and Moroccan territory a zone within which no new roade were to be asade, no herts to be allowed to graze, no land to be cultívated, no troops of either party, or even private persons carryine arma, to set foot, no inhabitants to dwell, and all habitations to bo razed. The zone between Burms and Siam, catablished by an agreement between Great Britain and France dated the isth of Jamuary r896, declared ' the portion of Siam which is comprised within the drainage bosin of the Menem, and of the coast streans of a corrempooding longitude," neatsal as between them. Wiehin this area the two powers undertoak not to "operate by their millitary or eaval forces, except in so far as they might do 30 in concert for any purpose requisite for maintaining the independence of Siam." They also andertook not to acquise within that area any privileges or commercial facilities not exteaded to both of thers.
"Buffer " wones might fulfil a oscind purpeae even in Europe. Thery would obviousty react against the feeling known a "esprit de frontiere," and diminish the danger of incidents arising out of this feeling, and might attenuato the rivalry of neighbouring counter-armanenta.

These considerations no doubt led the Swedinh and Norwegian governments, in their settlement of September 1905, to establish a " hufler " zone of 15 kilometres on either side of the frontier between the two states in question. Within these sokilometres all existing fortreses are dismantled, ${ }^{2}$ no new ones are to be erected, and no srmed troops to be maintained; any queation between the two states relative to the provisions reapecting the "bafier" sone to be decided by arbitration.

A rather eppecial case of necutralization of a territorial area
"The institution of "huffer" zones in a more terictly correct ense of the term is of very ancient origin. One is mentioned in the annals of Chins two ceaturies before our era, betwen the tertitories of the Hund in the west and thove of the Tunguses io the east-a vast area of some 300 to 400 .m. on the opposite margin of which the two peoples kept watch. In Europe, bands of territory from time to time have been made desert to better establich mon. ration. The Romana and Germags protected themselves in this way. In the middle ages tbe Teutonic Order extablisbed a frontier belt on the side of Lithuania. Later, Austria dealt in the same way in her policy in regard to Turkey in the organization of a "military (rontier." See Nya, Droit Indermationof (Brumels, 1904). i. 4^{18}

It was stipmlated that the dismanting ahould be controlled by a technical comminion of three officers of forcign nationality, to be choseo, one by each of the contracting powers and the third by the two officers thus appointed, or, in defauit of an agreemeat on their part, by the prosident of the Swisc Confederation. The dismantling of the forts in question has now been carried out. The Commission was composed on the part of Sweden of an enginees on the staff of the Austrian army, and on the part of Norway of a colonel in the German army, and, by agreement of chese, of a colonel in the Dutch army.
is that of the practical neutralization of the Great Lakes in America. In 1817 , at the instance of John Quincy Adams, the United States and Great Britain entered into a compact whereby the Great Lakes, and the wraterways from them to the ocean by the St Lawrence river, which divide the United States from the Dominion of Canada, weve practically excluded from any pomsible hostilities. Through a simple agreement," conditions which make for peace and prosperity, and the absence of those which so often lead to disastrous war, have for nearly a century reigned over these great inland waters, whowe commerce, conducted for the bencfit of the states and nations of Europe and America, rivals that which passes through the Sues Canal or over the Mediterranean Sea, and with a reault foreshadowed in these words of President Monroc in his comounication to the Senate commending the proposed agreement: 'In order to avoid collision and save expense.' Forts which had been erected at salient points on either side of the lakes and rivers dividing the United States from Canada, which but for this agreement would, in the natural course of events, have been enlarged, increasingly garrisoned, and provided with modern implements of destruction, at large expense, have remained substantially as when the agreement was made, or now constituto but interesting or picturesque ruins; and the great cost of constructing and maintaining, through a long series of years, naval armaments of ever-increasing power has been avoided." ${ }^{1}$

As we have already said, the Monroe doctrine is a means of excluding European wariare from the American continent and therefore is in the nature of a form of neatralization. A sort of Monroe doctrine is growing intn popular favour also throughout the Australian Commonwealth, where it is felt that a continent so far removed from European rivalries ought not to be exposed to complications on account of them.

From time to time questions of adding to existing neutralized areas are raised. When it was announced in 1905 that a British fleet was about to manceuvre in the Baltic Sea, several German newspapers suggested that Germany should combine with other Baltic powers to assure its neutralization.' No official observation on the subject, however, was made on the part of any Baltic power. The Baltic is still an open sea for the whole world, whthout restriction of any kind; and even hostilities between any two non-Baltic powers could be carried on in the Baltic, as elsewhere on the high sea, under the existing practice.
When the Dogger Bank incident occurred, the possibility of operations of war being carried on within a few miles of British home ports, and amid the busy traffic of the North Sea, was brought vividly home to British minds.
A movement set on foot at the instance of Edward Atkinson, the well-known Boston economist, and warmly supported by the Massachusetts State Board of Trade, seeks to establish by treaty neutral zones from the ports of North America to the ports of Great Britain and Ireland and the continent of Europe, within which zones steamship and sailing vessels in the conduct of lawful commerce should be free to pass without seizure or interruption in time of war. There is however no precedent of neutralization of any such arca of the high sea, and international rivers, ocean canals and neutralized states are obviously no criterion in discussing a proposal to neutralize a strip of the ocean, which may be defined accurately enough on the map and which skilful navigators could approximately determine, but which might be violated without any practical means of detection by a belligerent commander whenever he misread, or it suited him to misread, his bearings.
Connected with the principle of neutralization is that of guaranteeing the integrity of states. Several such guarantees have been given in quite recent times. In November 1907 a treaty was concluded between France, Germany, Great Britain and Russia on the one part and Norway on the other, for the maintenance of the integrity of Norway. This treaty differed

[^0]from the older one of 8855 in which France and Great Britain guaranteed the integrity of Norway and Sweden, in the fact that whereas the older treaty was for the protection of these two states against Russia, the new treaty is intended, if it is to serve at all as a protection against invasion, to protect Norway against Sweden.
Another such guarantee of a vaguer character is that which the North Sea powers recently entered into for the maintenance of the stalus quo of their respective Nortb Sea territories; and the similar one entered into by the Mediterranean powers for the same objects in the Mediterranean. Lastly in the same order of ideas Austris-Hungary and Russia are said to have concluded an arrangement between them for the maintenance of the stalus quo in the Balkans.

The future has no douht still other extensions of the principle of neutralization in store for us. Not the least interesting of existing possibilities is the limitation of the area of visit and search in time of war itself, as a restriction of belligerent right. It seems contrary to common sense thet neutral ships should be exposed to being detained, taken out of their course, and overbauled on mere suspicion of carrying contraband, when they are so far from the seat of war that there can be no presumption as to their destination. Neutrals have a right to carry on their ordinary business unmolested in so far as they do nothing to assist either belligerent. When they are beyond a certain distance from the seat of war it seems reasonable that the presumption that they are merely carrying on their legitimate husiness should be considered absolute. Such a limitation of the area of hostilities is not only feasible, hut it was actually put in practice by the British government during the Boer War. ${ }^{2}$
In the course of the Russo-Japanese War the question came up again, being raised this time by Great Britain. Lord Lansdowne called the attention of the Russian foreign office to the extreme inconvenience to neutral commerce of the Russian search for contraband not only in the proximity of the scene of war, but over all the world, and especially at places at which neutral commerce could be most effectually intercepted. H.M. Government had become aware that a large addition was likely to be made to the number of Russian cruisers employed in this manner, and they had, thercfore, to contemplate the possibility that such vessels would shortly be found patrolling the narrow seas which lie on the route from Great Britain to Japan in such a manner as to render it virtually impossible for any neutral vessel to escape their attention. The effect of such interference with neutral trade, he said, would be disastrous to legitimate commerce passing from a British port in the United Kingdom to \& British port in the Far East. The British government had no desire to place obstacles in the way of a belligerent desiring to take reasonable precautions in order to prevent the enemy from receiving supplies, but they insisted that the right of taking such precautions did not imply a "consequential right to intercept at any distance from the scene of operations and without proof that the supplies in question were really destined for use of the enemy's forces, any articles which that belligerent might determine to regard as contraband of war."

- In January 1900 it was reported that the British government had issued instructions to British naval commanders not to stop or soarch German merchant vessels at any places not in the vicinity of the seat of war. There is no proper statement of the British position on this subject, the only official information having been given by the German chancellor in a speech to the Reichstag. According to this information, the area was ultimately limited as north of Aden, and afterwards is was agreed that the immunity from search should be extended to all places beyond a distance from the seat of war equal to the distance from it of Aden. This was substantially correct, though the telegrams sent by the Admiralty can hardly be said to have fixed any precise area. As a fact, the commanders-in-chief on the East Indies and Cape of Good Hope stations were instructed that in consequence of the great practical difficulty of proving at ports so remole from the scene of war operations as Aden and Perim-the real destination of contraband of war carried by vessels visiting those parts, directions were to be given to the officers concerned to cease to search such vessels, and to merely report to the commander-in-chicf at the Cape the names of ships suspected of carrying contraband, and the date of clearance.

The pesition thus assumed is not clear. On the one hand the British claim did not, it is seen, go the length of the restriction Great Britain consented to place on her own right of search during the Boer War, seeming to apply only to the case of ships carrying conditional contraband. On the other, the complaint is based on the "interference" with peutral trade, which means the stoppage and search of vessels to ascertain whether they have contraband of any kind on board or nol.

It must not be forgotien in this connexion that restriction of the rights of the belligorent necessarily entails extension of the dutics of the neutral. The belligerent has an unquasioned right to "interfere" with all neutral vessels mavigating in the direction of the seat of war, for the purpose of ascertaining whether they are carrying any kind of contraband or not. Under the Declaration of London of the 26th of Fepruary 1909 it is provided under arts. 32 and 35 that a ship's papers are conclusive proof as to the voyage on which she is engaged unless she is clearly out of the course indicated by her papers and is unable to give adequate reasoms to justily her deviation. Thus the interference, if the declaration is ratificd, will be confined to an examination of the ship's papers where the ship is not bound for a belligerent port (cf. art. 30 of the same convention).

Standing Peace Agrecments.-Foremost among standing peace agreements are, of course, the International Hague Conventions relating direetly to peace, agreements which have not only created a special peare jurisdiction lor the settlement of international difficulties by judicial methods but also 2 written law to apply within the scope of this jurisdiction.

Alongside the Hague Peace Conventions and more or less connected with them are standing treaties of arbitration which have been entered into by different nations for terms of years separately. The first of what may be called a new series was that between Great Britain and France. It has now been followed by over a hundred others forming a network of international relationships which shows that, at any rate, the wish for peace is universal among mankind. ${ }^{1}$
${ }^{1}$ The following list of standing arbitration treaties concluded after the signing of the Anglo Frencn treaty of October 14 th 1903 is as complete as possible down to June 1910:-

Argentina-Brazil, September 7, 1905.
Austria-Hungary-Switzerland, December 3, 1904.
Betgium-Denmark, April 26, 1905.
Greece, May 2, 1905.
Nurway and Sweden. November 30, 1904.
Rumania. May 27, 1905 .
Russia, Oetober 30, 1904.
Spain. Januaty 23: 1905.
Switzerland. Noveraber 15, 1904.
Brazil-Portugal, March 25, 1909
. Spain, April 8, 1909.
.. Mexico. April $11,1909$.
. Honduras, April 26, 1909.
.. Venczuela, April 30, 1909.

- Panama, May 1, 1909.
.. Ecuador, May 13. 1909.
.. Costa Rica, May 18, 1909.
\because Cuba, June 19, 1909.
- Bolivia, Jure 25. 1909.
- Nicaraglua, une 28, 1909.
.. Norway July 13, 1909.
., China, August 3. rgog.
-. Salvador, September 3, 590.9.
I. Pery, Decentiber 7, 1909.

OH Sweden, December 14, 1909.
Colombia-Peru, September :12. 1905.
, France, Becember 16, 1900.
Denmark-France, Septernber 15, 1905-
Italy, December 16, 1905 .
Netherlands, February 12, igo4.
Russia. March 1, 1905.
Spain, December 1. 1905
Norway. October 8, 1908.
France-Italy, December 26. 1903.
. Netherlands. April 6, 1904.
.. Norway and Sweden, July 9, rgo4.

- Spain, February 26, 1904.

There are, however, a-large ammber of conventions which, although not concluded with the direct object of assuring peace where difficulties have arisen, tend in a very practical menner to contract the ares of possible difficulties. These are conventions for the regulation of intercourse between the subjects and citizens of different states. Such conventions obviously remove occasions for friction and are therefore among the most effective agencies contributing to the preservation of peace among civilized peoples. In most cases such conventions have created international unions of states for all matters which lend themsclves to international co-operation. The first in order of date was the postal union. The system it inaugurated has now extended its scope to telegraphs, copyright, industrial property, railway traffic, the publication of customs tarifs, metric measures monetary syatems and agriculture. Berne, being the capital of the most central of the neutral European states, is the adminisIrative centre of most of these unions. Customs tariffs and the monetary unions, however, are centralized at Brussels,

France-Sweden and Norway, July 9, rgo4.

- Switzerband, December 14,1904 .

Brazil, Aprit 7, 1909.
Great Britain-France, October 14, 1903.

- Germany. July 12, 1904.
.. Italy, Febsuary I, 1907.
- Ausiria-Hungary, January II, 1905.
- Netherlands, February 15, 1005.

Colombia, December 30, 1908.
Sweden and Norway, August IS, 1904.
Denmark, Oetober 25, 1904.
Portugal. November 16, 1904. Spain, February 27, 1904.

- Switzeriand, November 16, 1904

United States, A pril 4, 1908.
Brazil. June 18, 1909 .
Hoüdurns-Spain, May 13 . 1905 .
Italy-Argentine, September 18, 1907.
.- Mexico, October 1, 1907.

- Peru, April 18, 190%.
\because Portugal, May 11, 1905.
." Switzerland, November 23, 1904.
" Neiherlands, November 21, 1909.
Neiherland-Port ugal. October 26, 1905.
Norway-Sweden, October 36. 1905 .
Norway and Sweden-Ruasia, December 9, 1904.

Portugat-Spain, May 31, 1904.
Auetrie-Hungary, February 13, 1906.
Denmark, March 20, 1907.
France, June 29, 1906.
Italy, May is 1905.
Netherlands. October I, 1904.
Norway and Sweden, May 6, 1905. (Suapended for Norway by a new one dated December 8, 1908.)
Spain, May 31, 1904.
Switzertand. Auguer 18, 1905.
Nicaragua, july 17, 1909.
Rescia-Norway and Sweden. November 36,1904
Sp.tin-Crace, December 3-ik. rym Switzerland, May 84,800\%.
United States-Spain. April $20,1908$.
Denmark, May 18, 1908.
Italy, March 28, 1908.
Japan, May 5, 1908.
Ketherlands. May z, 1900.
Portugal, April 6, 1908.
Sweden, May 2. 1 gos.
Switzerland, February 29, 1906
Argentina, December 23, 1908.
Peru, December 3, 1908.
Salvador, December 21, 1908.
Norway, April 4, 1908.
Mexico, March 24, 1908.
France, February 2, 1908.
Ecuador, January 7, 1909.
Bolivia, January 7, 1909.
Maini, January 7, 1909.
Uruguay, January 9i 1909.
Chile. January 13, 1909.
Costa Rica, January 13. 1909.
Aust ria-Hungary, Janvary 15. 1909.
Brazil, January 23. 1909.
Paraguay, March 13.1909.
China, October 8. 1908.
the weights and mensures enfon in Paris and the stricultural institute at Rome.

The general postal union was created by a convention signed at Berne in 1874. A convention for a similar union for telegraphs was signed in Paris in 1875 (revised at St Petershurg and replaced by another the same year). Both unions issue monthly bulletins and other publications giving usoful information about these two services. ${ }^{\text {b }}$
The international burean of weights and measures at Parls was created hy a coavention sisned there in 1875, for the purpose of comparing and verifying wights and measures on the metric system, and preserving their identity for the contracting states.
Tho doublestandard Latin union monetary system was founded by a convention of 1865 , between Belgium, France, Italy and Switzerland. In 1868 it was joined by Greece. A single standard union exists between Eweden, Norway and Denmark under a convention of 1873 .
The copyright union was created by an international convention signed in 1874. The official bureau of the sunion is at Berne. It issues a periodical publication called Le Drois d'aufeur giving information respecting the lawe of different states relating to published matter of all kinds,
The term" industrial property" covers patents, trade marks, merchandise marks, trade names, designs and models. The convention dealing with them signed in 8883 created 2 union with its centrai office at Berne. It, 100 , issues a bulletin and other pubiications which help to prevent misunderstandings.

The railway traffic union was formed by a convention of 1890. The central bureau at Berne issucs a monthly bulletin. A subsequent convention was signed at Berne in 1886 relating to matters of technical unification,
${ }^{1}$ A subsidiary convention not quite falling within the ecope of the above convention is the submarine tecgraphs oonnention, which was signed in 1884 It applica outaide territovial watera to all legally established submarine cables landed on the territorics, colonies or possessions of one or more of the high contracting partics. Under its provisions it is a punishablie offence "to break or injure a submarine cable willully or by culpable negligence in such manner as might interrupt or obatruct teicgraphic communication either wholly or partially, such punishment being without prejudice to any civil action for damages it also provides that:-
Vesscls engaged in laying or repairing submarine cables shall conform to the regulations as to signala which have been, or may be, adopted by mutual agreement among the high contracting partice with the view of preventing collishons at mea. When a ship engaged in repairing a cable exhibits the esid signals, other vessels which see them or arc able to sce them ahall withdraw to or kecp beyond a distance of one nautical mite at least from the ship in question so as not to interfere with her operations" (art. 5). "Owners of shipe or vesscls who can prove that they have sacrificed an anchor, z net or ofher fishingegear in order to avoid injuring a submarine cable shall receive compensation from the owner of the cable," and "in order to earablish a cloim to such compensation a starement supported by the evidence of the crow abould whenever possible be drawn up inmmediately after the occurrence and the master must within twenty-four hours afier his return to or next putting into port make a declaration to the proper authorities: (art. 7). "The tribunals competent to takecognizanceof iniractions of the present convention are those of the couniry to which the vessel on board of which the offence was committed belongs" (art. 8). By art. 15 it is provided that the etipulationa of the convention do not in any way reatrict the action of belligerents. It may be remarked that the British representative at the time of signing the convention declared that his government understood that in the time of war a belfigerent would be free to act in repard to submarine cables as though the convention did not exist. The act to carry into effect the above convention is the Submarine Telegraph Act 1885 (48 a 49 Vict. e.49) which was slightly modified by 50 Vict. c. 3 . Section 3 of the earlier act provides that a person who injures the cable either witfully or by culpable nagifgence is "guilty of a misdemennour and on conviction: (a) if be acted willully, shall be liable to penal servitude for a term not exceeding five years, or to lmprisonment with or without hard labour for a term not exceeding two years, and to a fine either in lieu of or in addition to suoh penal servitude or imprisonment; and (b) If he acted by culpable negligence shall be liable to im: prisonment for a term not exceeding three monthe without hard pribour, and soa a fine not exceeding fioo either in lieu of or in addition to such imprisonment."
See Board of Trade Correspondence on Protection of Submarine Cables. printed on the 24th of July 1882 ; and Parliamentary Paper

Undet the convention creating the customs tarifis union, signed in 1800, thirty states, intcluding Great Brtain and most British colonies, are associated for the purpose of prompt publication of custom tariffs and their modifications.

The agricultural institute, created by a convention of 1905 with its seat at Rome, as the latest in date is perhaps the most interesting of the serics. It shows how deep and widespread the sense of the utility of international state co-operation has become. The convention sets out the scope and objects of the Institute, which a recent British official publication states has been jolned by 38 states, inctading Great Britaiti and all other great powers, as follows:-
Whilst fintiring its action to international questions, it shall be the duly of the institute: (a) To collect, claborate and publish, with as litule deloy as possibie, statistical, technical, or econemic inlormation regarding the cuitivation of the soil, its productions, whether animal or vegetable, the trade in agricultural products, and the prices obtained on the varioue markets. (b) To communicate to intercsted partics, abo without dclay, full information of the nature above mentioned. (c) To indicale the wages of sutal labour. (d) To notify ali new discases of plants which may appear In any part of the world, indicating the districts affected. the spread of the disease, and, if possible, the efficacious means of resistance. (c) To consider questions relating to agricuttural co-operation, insurance and credit, in all their forms, collecting and publishing information which may be useful in the various countries for the organization of undertakings relating to agricultural co-operation, insurance and credit. () To present, If expedient, to the governments, lor their approva, measurcs for the protection of the compmos interests of agricuiturises and for the improvement of their comdition after having previously taken every means of obtaining the necessary information, e.g resolutions passed by international congresses or other congresees relating to agriculture or to sciences applied to agriculturc, agricultural mocictics, academien learned cocieties, es.
All questions relating to the coonomic intercats, the lepisislation and adminisiration of any paricular state, must be excluded from the sphere of the institute. (Art. 9).

Lastly, there is a class of dificulties which might arise from preferential treatment of trade from diferent countries. To obviate them statesmen have been led to adopt the principle of the " most-favoured-nation-clause "-that is to say, a clause providing that if any reductions of tariff or other advantages are granted by either contracting state to any third state, the others shall have the benefit of it. In Europe this clause has been uniformly treated as applying to all reductions of tariff without distinction. The United States interpretation, on the other hand, distinguishes between reductions of a general character and reductions made specifically in return for reductions by some other state. The latter do not come within the operation of the clause, and a co-contracting state is only entitled to obtain extension of them to itself on granting similar concessions. In other words, concessions to any co-contracting state are only allowed gratuitously to a third co-contracting state when nothing has been given for them, the clause not covering advantages granted in return for advantages. It is to be hoped that this speciai view of the meaning of the clause will be met in the future, as in some recent treaties, by specifically dealing with the exceptions.?

The Ulility of Popular Effort.-Untilquite recently it had been a distinctive mark of practical wisdom to treat private efforts for the improvement of international relations for the preservation of peace, with the patronizing tolerance courteous people of the world extend to half-crazy idealists. Since the opening of the century, an immense change has taken place in the attitude of the icaders of popular opinion towards the advocacy of peace. This new attilude has been contemporary with the greater interest displayed by the mercantile classes of England and the United States in the improvement of their political relations with their neighbours. It may be said to have begun with the visit of the Astociation of British Chambers of Commerce to Paris in 1000 , at a time when France was stili smarting from the humiliation of the Fashoda affair, and the Boer War was exciting hostile demonst rations against Great Britain throughoat the cont; nent of Europe. That some four hundred British manufacturers
${ }^{2}$ See Barclay. Problems of International Practice and Diplomacy (1907). p. 137 ceq.
end mercbants, representing about eighty chambers of commerce of the United Kingdom, should have swept aside all political objections and have boldly trusted to the efficacy of friendly advances as between man and man, appealed to the French people. It seems to have been the first great popular effort ever made deliberately by a representative body of the midde class of a nation for the promotion of international friendshlp without the aid of diplomacy and without officialassistance or even countenance of any.kind.
Otherwise, private agencies of a standing character which coitribute towards the promotion of peace may be divided into four clases, viz (1) those which, without having peace for tbeir direct object, promote friendship among men of different races and nationalities; (2) those which directly address themselves to the promoting of friendship and goodwill among peoples; (3) those which regarding peace as the immediate object of their efiorts, endeavour to educate deqnocracy in this sense; (4) those which endeavour to remove the causes of international Iriction by the codification of international law and the promotion of the international regulation of common interests. Lastly, there are two agencies which cannot be chassed among the foregoing; one is the International Parliamentary Union and the other the Nobel Prise Committee.

1. Agencies which are indirectly maling for peace are of many kinds. Science and medicine now bring men of all nations together in periodical congresses. Technology; electricity, mining, railways, navigation and many other subjects are now dealt with in international congresses. International exhibitions are always used as an occasion for holding many such mectings.
2. One of the most notable efforts directed to the deliberate cementing of friendship has been the interchange of official visits hy municipal bodies. In the course of the Anglo-French agitation which culminated in March 1903 with the visit of King Edward to Patis, the French municipal councils passed many resolutions in favour of the endente. After the conclusion of the Anglo-French standing treaty of arbitration (Oct. 14, 1903) and the arrangements for the general settlement of outstanding difficulties with France (April 8, 1904), the municipal bodies in France were prepered to go a step farther, and in 1006 the Municipal Council of Paris was invited by the London County Council to pay an official visit to England. This visit was followed by a return visit to Paris and a similar exchange of visits between the London City Corporation and the Paris Municipal Council, exehange visits of the city corporations of Manchester, Glasgow and Edinburgh and Lyons, and a visit of the Manchester Corporation to Disseldorf, Barmen and Cologne. A society, numbering many thousands of working men among its members, which has set itself the more special task of promoting the interchange of visits between working men of different nations, is called the " International Brotherbood Allianee," or, after the initials of its motto, Frotervilas inter gentes, the F.I.G. Another agency, called the "American Association for International Conciliation," seeks by the publication of cssays on the different aspects of international friendship to promote the same cause.
3. The "peace societies," which are scattered over the whole world, number several hundreds. Their first International Congress was beld in London at the suggestion of Joseph Sturge ia 1843. In 8848 a second congress. was held at Brussels. The third in 1849 took place in Paris, and was presided over by Victor Hugo. Other congresses were held at Frankfurt, again in London, and in 1853 at Manchester, where Richerd Cobden and John Bright took pert in the discussions. Then foilowed an interval of wars dusing which the Pacifists were unable to taise their woices. At length in 1898 a congregs was held at the Paris International Exhibition of that year, but it was not till the next Paris International Exhibition of 1889 that these intemational peace congresses became periodical. Since then numerous congreses have been held, the seventeenth having sat in London in 1908, and the eighteenth at Stockholm in 1970 . Thesc congresses have been supplemented by national congresses in

- See Annueire du monotement pacifiste poxi Fanuke 19ro, published by the Burean Internaticnal de la Paix, at Bern.
both Great Britain and France. Sucb congresses are doing admirable. work in the populariaing of thought upon the numerous questions which are discussed at the meetings, such as compulsory arbitration, the restriction of armaments, private property at sea in time of war, the position of subject races, airships in war, \&c. ${ }^{\text {a }}$

4. First among the bodies which try to remove the causes of international friction is the Institute of International Law. This is a body of international lawyers, consisting of sixty members and sixty associates recruted by election-the members from those who " have rendered services to international law in tbe domain of theory or practice," and associates from those " Whose knowiedge may be useful to the lnstitute." It was formed in 1873, chiefly through the efforts of M. Rolin-Jaequemyns. The official language of the Institute is French, and its annual meetings are held wherever the members at the previous meeting decide to assemble: Its mode of operation is to work out the matters it deals with during the intervals between the sessions, in permanent commissions, among which the whole domain of international law is divided up. The commissions, under tbe direction of their rapporteurs or conveners, prepare reports and proposals, which are printed and distributed among the members some time belore the plenary sittings at which they are to be discussed. If the members are not agreed, the subject is adjourned to another session, and still another, until they do agree. Thus the resolutions of the Institute have the authority atlaching to a mature expression of the views of the leading international jurists of Europe. Another body having a more or less similar purpose is the International Law Association, which was founded in 1873 as the "Association for the Reform and Codification of the Law of Nations," with practically the same objects as those which led to the constitution of the Institute of International Law. It also meets in different countries, but it differs from the Institute in the number of its members being unlimited and in all respectable persons being eligible for membership. A report is published after each meeting. There are now numerous volumes of such reports, many of them containing most valuable matcrials for international jurists. In i8gs the name was changed to International Law Association.
A new society was recently (1906) formed in America called the American Society of Intemational Law, "to loster the study of international law and promote the establishment of international relations on the basis of law and justice." "Mcmbership in the society is not restricted to lawyers, and any man of good moral character interested in the objects of the socicty may be admitted to membership." The publications of this society have already taken an important place among the literature of international law.
Still more recently yet another society came into being in Switzerland with objects which seem to be similar to those of the Institute of International Law.

The Inter-Parliamentary Union, which dates beck to 1887 , owes its origin to the initiative of the late Sir W. R. Cremer. It is composed of groups of the different parliaments of the world, who meet periodically to "bring about the acceptance in their respective countries, by votes in parliament and by means of arbitration treatics, of the principle that dififerences between nations should be submitted to arbitration and to consider other questions of international importance."3 The sixteentb conference was beld at Brussels in August-Scptember, 1910.

[^1]The Nobel Committee owes its existence to the will of the late Alfred B. Nobel ($\mathbf{1 8 3 3}_{3-1896}$), the inventor of dynamite, who left a considerable fortune for the encouragement of men who work for the benefit of humanity. The interest of this money was to be divided into five equal parts, to be distrihuted every year as rewards to the persons who had deserved beat of mankind in five departments of human activity. The clauses of the will governing the distribution of these prizes are as follows:-
"The entire sum shall be divided into five equal parts, one to go to the man who shall have made the most important discovery or invention in the domain of physical science; another to the man who shall have made the most important discovery or introduced the greatest improversent in chemistry; the thirf to the author of the moot important discovery in the domain of physiology or medicine; the fourth to the man who shall have produced the most remarkable work of an idealistic nature; and, finally, the fifth to the man who ahall have done the most or best work for the fraternity of nations, the supprection or reduction of standing armies, and the formation and propagation of peace congresaes, The prizes shall be awarded as followa: For physical science and chemistry, by the Swedish Academy of Sciences: lor physiological or medical work, by the Caroline Inslitution at Stockholm, for literature, by the Stockiolm Acsidemy, and for peace work, by a committee of five members clected by the Norweglan Storthing. It is my express desire that, in a warding the prizes, no account shali be taken of nationality, in order that the prize may fall to the lot of the most deserving, whether he be Scandinavian or not."
Peace v. Wor.-Peace is the ultimate object of all statecraft -peace in the development of the domestic activities of the nation administered, and peace in the relations of states with one another. For the purpose of ensuring peace an expensive diplomacy is maintained by all states, and to perpetuate it treaties are entered into hy states with one another. Even war has no other avowed purpose tban that of placing specific international relations on a definite footing. Ultimate peace is uniformly proclaimed by every dictator at home, by every conqueror abroad, as the goal to which he is directing bis efforts. And yet dissentient voices are sometimes heard defending war as if it were an end in itself. Without going back to the wellknown reply of Count Moltke to Prolessor Bluntschli respecting the Mannal of the Latws of War drawn up by the Institute of International Law in 1880,' we need only quote that highly up-to-date philosopher, Nietzsche: "It is mere illusion and pretty sentiment," he observes, "to expect much (even anything at all) from mankind if it forgets how to make war. As yet no means are known which call so much into action as a great war, that rough energy born of the camp, that deep impersonality born of hatred, that conscience born of murder and cold-bloodedness, that fervour born of effort in the annihilation of the enemy, that proud indifference to loss, to one's own existence, to that of one's fellows, to that earthquake-like soul-shaking which a people needs when it is losing its vitality." 2

It is pleasant to contrast this neurotic joy of one onlooker with the matter-of-fact refexions of another, the late W. E. H. Lecky. "War" he says "is not, and never can be a mere passionless discharge of a painful duty. It is in its essence, and it is a main condrion of its success, to kindle into fierce exercise among great masses of men the destructive and combative passions-passions as fierce and as malevolent as that with which the hound hunts the fox to its death or the tiger springs upon its prey. Destruction is one of its chief ends. Deception is one of its chief means, and one of the great arts of skilful generalship is to deceive in order to destroy. Whatever other elements may mingie with and dignily war, this at least is never absent; and however reiuctantly men may eater into war, bowever conscientiously they may endeavour to avoid it, they must know that when the scene of carnage has once opened, these things must be not only accepted and condoned, but stimulated, encouraged and applauded. It would be difficult to conceive a disposition more remote from the morals of ordinary life, not to speak of Christian ideals, than that with
"" Perpetual peace." he said, "is a dream. and it is not even - besutiful dream. War is an element in the order of the world ordained by God. Without war the world would stagnate and lose itself in materialism.:
*Menschliches, Alleumenschliches, No. 477.
which the soldiers most animated with the fire and passion that lead to victory rush forward to bayonet the foe. . . . It is allowable to deceive an enemy by fabricated deapatches parporting to come from his own side; by tampering with telegraph messages; by spreading false intelligence in newspapers; by sending pretended spics and deserters to give him untrue reports of the numbers or movements of the troops; by employing false signals to lure him into an ambuscade. On the use of the flas and uniform of an enemy for purposes of deception there has been some controversy, but it is supported by high military authority.

Hardly any one will be 20 confident of the virtue of his rulers as to believe that every war which his country wages in every part of its dominions with uncivilized as well as civilized populations, is just and necessary, and it is certainly prima facie not in accordance witb an ideal morality that men should bind theraselves absolutely for life or for a term of years to kill without question, at the command of their superiors, those who have personally done them no wrong." ${ }^{3}$
Surely with all the existing activity in the removal of canses of war, in the reduction to precise expression of the rulcs of law governing the relations of states witb one another, in the creation of international judicatures for the application of these rulea, in the concluding of treaties specifically framed to facilitate the pacific settlement of dificulties diplomacy may have failed to adjust, in the promotion of democratic civilian armies with everything to lose by war, and all the other agencies which have been described above, the hope seems warranted that, in no distant future, life among nations will become still more closely assimilated to life among citisens of the same nation, with legislation, administration, reform all tendings to the one great object of law, order and peace among men. (T.BA.)

PRACR, BREACH OF THE Theoretically all criminal offences cognizahle by English law involve a breach of the king's peace, and all indictments whether for offences against the common law or by statute conclude "against the peace of our lond the king, bis crown and dignity." Historically this phrase, now legaliy superfuous, represents the last trace of the process by which the royal courts assume jurisdiction over all offences, and gradually extruded the jurisdiction of the sheriff and of lords of manors and franchises, making crime a matter of national concern as distinguished from civil wrongs or infractions of the rights of local magnates, or of the rights of the tribal chiefs of the Teutonic conquerors of Britain. The peace of the king was sworn on his accession or full recognition, and the jurisdiction of his courts to punish all violations of that peace was gradually asserted. The completion of this process is marked by the institution of the office al justice of the peace.
In modern times the expression " breach of the peace" is usually limited to offences involving actual tumult, disturbances or disorder. As regards such offences, allhough they do not fall into the class of grave crimes described as felonies, officers of police and even private persons have larger powers and duties, as to immediate arrest without waiting for judicial warrant, than they possess as to other minor offences (see Arress). Justices of the peace have under early statutes and the commission of the peace power to take sureties of the peace from persons who are threatening to commit a breach of the peace, and it is within the power of any court on conviction of any misdemeanour and of many felonies to require the offender to enter into a recognizance ($q .0$.) to keep the peace.

PEACE CONFBRENCES, the official title of the two international conferences held at the Hague in 1899 and 1907. Both were organized at the instance of the emperor Nicholas II. of Russia. The chicf object of the first conference; es set out in the note of Count Mouraviev, the Ruscian minister of foreign affairs (Jan. 11, 1899), was to arrive at an "understanding not to increase for a fixed period the present effectives of the armed military and naval forces, and at the same time pot to increase the budgets pertaining thereto; and a preliminary examination of the means by which even a reduction might be effected in future in the forces and budgets above
${ }^{3}$ The Lap of Lije, 1902, pp. 92-97.
mentioned": The conference, which wes attended by representatives of 26 states, sat from the 18th of May to the 29th of July 1899.

When the subject of excessive armaments came up for discussion, the objections of the German military delegate led to its abandonment. Other very important matters, however, were dealt with, and three momentous conventions wereadopted, viz.-
I. A convention for the pacific settlement of International diappotea
11. A convention relating to the hays and custome of war by land.
III. A convention for the adaptation to maritime warfare of the principles of the Geneva Convention of the 22nd of August 1864
Thrce declarations on the following matters were aloo adopted:-
a. Promibition of the Launcting of projectiles and explosives from balloons or by otber simiar new melhods.2
b. Prolibition of the use of projectiles the only object of which is the diffusion of asphyxiating or deteterious gases.
c. Prohibition of the use of builets which expand or flatterr easily in the human body, such as bullets with a hard envelope, of which the envelope doea not entirely cover the core. or is pierced with inciaions.
The conlerence furthermore pased the following resolutions:"The Conference is of opinion that the restriction of military budgets, which are at present a heavy burden on the world, is extremely desirable for the increase of the material and moral wellare of mankind.

- The Conference, taling into consideration the preliminary steps taken by the Swisa Federal Government for the revision of the Geneva Convention, expresses the wish that steps may be shortly taken for the assernbling of a special, Conference, having for ita object the revision of that Convention."

The following verux were adopted, but not unanimously:-
${ }^{6} \mathrm{If}$. The Conference expresses the wish that the question of the rights and duties of neutrals may be inserted in the programme of a conference in the near future.
. 2. The Conference expressel the wish that the questions with regard to riffes and naval guns, as considered by it, may be studied by the Governments with the object of coming to an agrecment respecting the employment of new types and calibres.
13. The Conference expresses the wish that the Governments, taking into coossideration the proposals made at the Conference, may examine the possibility of an agreement as to the limitation of armed lorces by land and sea, and of war budgets.
"4. The Conference expresses the wish that the proposals which contemplate the declaration of the inviolability of private property in naval wariare may be referred to a subsequent conference for consideration.
"s. The Conference expresses the wish that the proposal to settle the question of the bomberdment of ports, towns and villages by naval forces may be referred to a subsequent conference for consideration."

Great Briteln aigned and became a party to the three Conventions, but not to all the declarations, sec.

The Conference of 1907 , which was attended by representatives of forty-four states, sat from the 15 th of June to the 18 th of October. Again, in spite of the resolution and dask on armaments handed down from the Conference of 1809 this subject was waived, but still more important conventions than in 1899 were adopted on other matters. These were as follows:-
l. Convention for the pacific settlement of international disputes. ${ }^{2}$
II. Convention resperting the limitation ol the employment of Sorre for the recovery of contract debts.
III. Convention relative to the commencement of hastilities.

IV; Conventions concerning the laws and customs of war on land.
V. Convention respecting the rights and duties of neutral powers and persons in war on land.
VI. Convention relative to the matus of enemy merchant-shipa at the outbreak of hootilities.

[^2]VII. Convention relafive to the conversion of treechant-thipe into war-ahipa.
VIII. Convention relative to the laying of automatic submarine contact mines.
IX. Convention respecting bombardment by aaval forces in time of war.
X. Conventions for the adaptation of the priaciples of the Geneva Convention to maritime war.
XI. Convention relative to certain restrictions on the exercise of the right of capture in maritime war. 4
XII. Convention relative to the establishment of an international prize court.
X111. Convention respecting the rights and duties of neutral powers in maritime war.
XIV. Declaration prohibiting discharge of projectike, \&c., 'rom balloonsas

A draft Convention relative to the creation of a Judicial arbitration court was also drawn up in connexion with the first of the foor following nemar:-

1. The Conference calls the attention of the signatory powera to the advisability of adopting the annexed dralt convention for the creation of a judicial arbitration court, and ol bringing it into force as zoon an an agreement has been reached respecting the eelection of the judges and the constitution of the court.
2. The Conlerence expresses the opinion that, in ease of war, the responsible authorities, civil as well as military, should make it their special duty to ensure and saleguard the maintenance of pacific relations, more.especially of the commercial and industrial relations between the inhabitants of the bolligerent states and neutral courtries.
3. The Conference expresses the opinion that the powers should regulate, by special treaties, the position, as regards military charges, of foreigners residiag within their territories.
4 The Conference expresses the opinion that the preparation of regulations relative to the laws and customs of naval war whould figure in the programme of the next conference. ${ }^{6}$ and that in any case the powers may apply, as far as possible, to war by sea the principlea of the Coavention relative to the laws and customs of war on land.

Finally, the Conference recommended to the powers the assembly of a Third Peace Conference, and it called their attention to the necessity of preparing the programme of this Third Conference a sufficient time in advance to ensure its deliberations being conducted with the necessary authority and expedition.
In order to attain this object the Conference considered that it " would be very desirable that, some two years before the probable date of the meeting, a preparatory committee should be charged by the governments with the task of collecting the various proposals to be submitted to the Conference, of ascertaining what subjects nre ripe for embodiment in an international regulation, and of preparing a programme which the governments should decide upon in sufficient time to cnable it to be carefully examined by the countries interested," and that this committee should further be entrusted with the task of proposing a system of organization and procedure for the Conference itself. (T. BA)

PBACH, CHARLES WILLIAM ($1800-1886$), British naturalist and geologist, was born on the 30 th of September 1800 at Wansford in Northamptonshire; his father at the time was a saddler and harness-maker, and afterwards became an innkecper farming about 80 acres of land. He received an elementary education at Wansford and at Folkingham in Lincolnshire; and assisted for several years in the inn and farm. In 1824 he was appointed riding officer in the Revenue Const-guard at Weybourn in Norfolk. Sea-weeds and other marine organisms now attracted his attention, and these he zealously collected. His duties during the next few years led him to remove successively to Sheringham, Hasboro (Happisburgb), Cromer and Cley, all in Norfolk. In, the course of his rambles he met the Rev. James Layton, curate at Catfield, who lent him books and assisted in laying the foundations of accurate knowledge. About the year 1830 he was transferred to Charmouth in Dorset, thence to Beer, and Paignton in Devon, and to Gorran Haven near Mevagissey in Cornwall. Here he continued to pursue his zoological studies

[^3]and aupplied many specimens to G. Johnston, who was then preparing his History of the British Zoophytes (1838). It was here too that he first found fossils in some of the older rocks previously regarded as unfossiliferous-t the discovery of which proved the presence of Bala Beds (Ordovician or Lower Silurian) in the neighbourbood of Gorran Haven. In 1841 he read a paper before the British Association at Plymouth "On the Fossil Organic Remains found on the south-east coast of Cornwall." and in 1843 he brought before the Royal Ceological Society of Cornwall an account of his discovery of fish remains in the Devonian slates near Polperro. Peach was transicrred for a time to Fowey; and in 1849 to Scotland, first to Peterhead and then to Wick (1853), where be made acquaintance with Robert Dick of Thurso. He collected the old red Sandstone fishes, and during a sojourn at Durness he first found fosals in the Cambrian limestone (1854). Peach retired from the government service in 1861, and died at Ediaburgh on the 28th of February 1886.
Biographical notice, with portrair. In S. Smiles's Roberl Dick, Baker, of Thurso, Geologist and Botamist (1878).

PRACH, the name of a fruit tree which is included by Bentham and Hooker (Gesera plantarum, i. Gro) under the genus Prunus (Prunus persica), its resemblance to the plum is indeed obvious. Others have classed it with the almond as a distinct genus, Antygdolus; while others agnin have considered it aufficiently distinct to constitute a separate genus, Persica.

In general terms the peach may be said to be a medium-sized tree, with lanceolate, stipulate leaves, borne on long, slender,

Fic. 1.-Fruit (drupe) of Peach cut leagthwise.
e, Skin or epicarp.
m. Flesh or mesocarp.

3 , Stone or endocap. within which is the seed or kernel. relatively unbranched shoots, and with the flowers arranged singly, or in groups of two or more, at intervals along the shoots of the previous year's growth. The flowers bave a hollow tube at the base bearing at its free edge five sepals, an equal number of petals, usually concave or spoon-shaped, pink or white, and a great number of stamens. The pistil consists of a single carpel with its ovary, style, stigma and solitary ovule or twin ovules. The fruit is a drupe (fig. 1) having a thin outer skin (epicarp) enclosing the flesh of the peach (mesocarp), the inner layers of the carpel becoming woody to form the stone, while the ovule ripens into the kernel or seed. This is exactly the structure of the plum or apricot, and differs from that of the almond, which is identical in the first instance, only in the circumstance that the fleshy part of the latter eventually becomes dry and leathery and cracks open slong a line called the suture.

The nectarine is a variation from the peach, mainly characterized hy the circumstance that, while the skin of the cipe fruit is downy in the pesch, it is shining and destitute of hairs in the nectarine. That there is no ossential difference between the two is, however, shown by the facts that the seeds of the peach will produce nectarines, and vice versa, and that it is not very uncommon, though still exceptional, to see peaches and nectarines on the same branch, and fruits which combine in themselves the characteristics of both nectarines and peaches. The blossoms of the peach are formed the autumn previous to their expansion, and this fact, together with the peculiarities of their form and position, requires to be borne in mind by the gardener in his pruning and training operations. The only point of practical intercst requiring mention here is the very singular fact attested hy all peach growers, that, while certain peaches are liable to the attacks of mildew, others are not. In the case of the peach this peculiarity is in some way connected with the presence of small glandular outgrowths on the stalk, or at the base of the leaf. Some peaches have globular, others reniform glands, others none at all, and these latter trees are much more subject to mildew than are those provided with glands.

The history of the peach, almond and pectarinc is intereating and important as regarda the question of the origin of specica and
the production and perpetuation of varieciea. As to the erfain of the peach two views are held, that of Alphome de Candotie, who attributes all cultivated varieties to a distinct upeciks, probably of Chinese origin, and that adopted by many maturalists, but more eapecially by Darwin, who looke upon the peach as a modification of the almond.
In the first place, the peach as we now know it has bees nowhere recognized in the wild state. In the few instances where it is aid to have been found wild the probabilities are that the tree was an escape from culuvation. Aitchuson, however, gathered ip the Hazhrdarakht ravine in Aighanistan a lorm with difierent-dheped frutt from that of the almond, being langer and flatur 1 . The surface of the fruit," he observes, 'resembles that of the peach in texture and colour; and the nut is quite distinct from that of the wild almond. The whole shrub resembles more what one might consider a wild form of the peach than that of the almond" "It is admitted, howevcr, by all competent botanists that the almond is wild in the hotter and drier paris of the Mediserranean and Leventine regions Aitchison also mentions the atmond as wild in some parts of Arghanistan, where it is known to the natives as "bedim." the same word that they apply to the cuftivater almood. The branches of the trec are carried by the pricsts in religious ceremonies. It is not known as a wild plant in China or Japan As to the necta. rine, of its origin as a variation from the peach chere is abundant evidence, as hat already been mentioned: it is only requisite to add the very important fact that the seeds of the nectarine. even whea that nectarine has been produced by bud variation from a peach, will generally produce nectarines. or, as gardeners say, conse true. Darwin brings together the records of several cates. not only of gradations between peachcs and nectarines, but aloo of intermediate forms between the peach and the almond. So far as we know, however, no casc has yct been recorded of a peach or a necta. rine producing an almond, or vice verat, alihough if all have had a common origin uph an evont might be expected. Thus the botanical evidence seems to indicate that the wild almond is the source of cultivated almonds, peaches and nectarines, and consequently that the peach was introduced from Asia Minor or Persia, whence the name Persics given to the peach; and Aitchison's discovery in Aghanistan of a form which reminded him of a wild peach leade additional force to chis view.
On the other hand, Alphonse de Candolle, from philological and other considerations, considers the peach to be of Chinese origin. The peach has not, it is true, been found wild in Chiaa, bur it hat been cultivated chere from time immemorial; it has entered inso the literature and folk-lore of the people; and it is designated by a distinct name, " to " or "tao," a word found in the writings of Confucius five centuries belore Christ, and even in other writinge dating from the roth century belore the Christian era. Though now cultivated in India. and almost wild in some parts of the northwest, and, at we have seen, probably aleo in AJganistan, it has no Sanskrit name; it is not mentioned in the Hebrew text of the Scriptures, nor in the earliest Greek times. Xenophon mabes no mention of the peach, though the Ten Thousand muat have traversed the country where, scoording to some, the peach is native; but Theophrartua, a hugdred years hater, doese apeak of it as a Perian fruit, and De Candolle suggests that it might have been introduced into Greece by Alexsander. According to his view. the seeds of the peach, cultivated for ages In China, might have been carried by the Chinece into Kashmir, Bolchara, and Peria between the period af the Sanakrit emigration and the Gracoo-Perrian period. Once established, its cultivation would readily extend westward, or, on the other hand, by Cabul to north-western India, where its cultivation ia not ancient. While the peach has been cuitivated In China for thousunds of years, the almond does not grow wild in that conatry and its introduction is supposed not to go back farther than the Christian era.

On the whole, greater wright is due to the evidence from botanical sources than to that derived from philology, particularly since the discovery botb of the wild almond and of a form like a wild peach in Aghanistan. It may, however, well be that both peach and almond are derived from some pre-existing and now extinct form whose descendants have spread over the whole geographic area mentioned; but this is a mere speculation, though lndirect evidence in its support might be obtained lrom the nectarine, of which no mention is made in ancient literature, and which, as we have seen, originatea from the peach and reproduces itself by eeed. thus ofering the characteritice of a epecies in the act of developing itself.

The treatment in borticulture of the peach and nectarine is the ame in every respect. To perpetuate and multiply the choleer varieties, peaches and nectarines are budded upon plum or almond stocks. For dry situations almond stocks are preferable, but they are not long-lived, while for damp or clayey loama it is better to use certain kinds of plums. Double-working is sometimes beneficial; tbus an almond budded on a plum stock may be rebudded with a tender peach, greatly to the advantage of the latter. The peach border sbould be composed of turfy menlow
loam, ach as is suitable for the vine and the fig; thieshould be used in as rough a state as possible, or not broten small and fine. The bottom should slope towards the outer edge, where a drain should be cut, with an outtet, and on this sloping bottom should be laid a thickness of from 9 in . to 11 in . of roogh materials, such as broken bricks or mortar rubbish, over which should be placed a layer of rough turf with the grassy side downwards, and then the good loamy soil to form the border, which should have a depth of about 2 ft .6 in . The peach-tree is most produetive When the roots ire kept neat the surface, and the borders, whick should be from 8 ft . 1 is ft . wide, should not be cropped heavily wich colinary vegetables, as deep trenching is very injurious. Sickly and unfruilful trees may often be revived by bringing up ther roots within 5 or 6 in . of the surface. It is questionahle whether it is not better, in cold soils and bleak situations, to abandon outdoor peach culture, and to cover the walls whth a casing of giass, so that the trees may be under shelter during the uncongenial spring weather.

The fruit of the peach is produced on the ripened shooes of the preceding yerr. If these be too lurwriant, they yield nothing but leaves; and if too weak, they are incapable of developing fower buds. To furnish young shoots in sulficient abundance, and of requisite strength, is the great object of peach 1 raining and pruning. Troes of alender-sowing, twiggy hablt naturally fall most readily fno the fan form of training. and accordingly this has gencrally been

Fig. 2.-Montreuil Fan Trainiag. headed dowin to five or in the following summer from two to fout shoots, accordiag to the vigour of the plant, are tralned in, the latecals from which, if any, ere thinned out and nailed to the wall. If there are four branches, the two central oncs are shortened back at the cubsequent winter pruning so as 10 produce others. the two lower ones being isid In nearly at full length. In the following season addrional shoote are went forth; and the procesa is repeated till eight or ten priscipal limbe or mother branchee ate obtained, forming. as it were, the frame-work of the future tree. The branches may be depressed or clevated, so as to check or encourage them, as occasion may arise; and it is highly advantagcous to keep them thin, without therr becoming in any part defiricnt of young shoots. Sometimea s more rapid mode of formation is now adopted, the maln shoots being from the first laid in nearly at full length, instead of being shortencd. The pruning for fruit consists in shortening back the htetals which had been nailed in at the disbudding. or summer proning, their length depending on their individual vigour and the Huxuriance of the tree. In. well-developed shoots the buda se generally double, or rasher triple, a wood bud growing bet ween two Iruit buds; the shoot must be cut back to one of these, or clee to a wood bud alone, so that a young shoot may be produced to draw up the map beyond the fruit, this woing generally desirable to tecure its proper swelling. The point of this leading shoot is subecquently pinched off, that it may not draw away too much of the sap. If the fruit sets too abundantly, it must be thinned, first when as large as peas, reducing the clusters, and then then at Iarge ge nuts to distribute the crop equally; the exteat of the thinsing must depend on the vigour of the tree, but one or two fruits ultimasely keft to each square foot of wall is a full average crop. The final thinning should take place after toning.

The bete-plated healthy young shoot produced from the wood buds at the base of the bearing branch is to lee carefully prescrved and in due time nailed to the wall. In the following winter this will qake the place of the braneh which has just borne, and which is to be cut out. If there be no young shoot below, and the bearing branch is short, the shoot ax the point of the latter may cometinaes be preserved as a fruis bearer, though if the bearlng branch be long it is better to cut it back for young wood. It is the neglect of this which constitutes the principal lault in carrying out the English Ien system, as it is usually practised. Several times during summer the trees oaght to be regularly examined, and the young shoota respectively topped or thimaed out; thost that remain are to be nailed to the wall. or braced in with pieces of slender twigs, and the trees ought ocensionally to be washed with the garden engine of rhoroughly gyringed, especially during very hot summers. Arter Ghhring the fruit all the wood not secded for exteadian the tre
or for fruft betrint nest meation should be cut out so se to givet the shoote heft full exposure to air and light.
The Montreuil form of training is represented by fis. 2 . The principal feature is the suppreation of the direct channel of the sap, and the substitution of four, or more commonly two, mother branches, so laid to the wall that the central angle contains about g0. The other branches are all created as wubordinate mernbers. This form is open to the objection that, if the under branch ahould die, the upper one cannot be brought down into ite place.

The form a la Dumoutler (6g. 3), so called from ite inventor, is merely a refinement on the Montreuil method. The formation

of the tree begins with the inferior limbe and proceeds towarda the centre, the branches being kwered from time to time as the tree scquires etrength. What is most worthy of potice in this method is the management of the subordingtes in the pruning for fruit. When a shoot promises blowom, it is gencrally at come diatance from the point of ingertion Into the old wood, and the intermediate epace is covered with wood huds. All the latter, therefore, which are between the old wood a and the bloseoms c in fig. 4, except the lowest b, are carcfully removed by rubbing them of with the finger. Thrs never fails to produce a choot d, the growth of which is

Fig. 4.-Pruning al La
Dumoutier. favoored by destroying the ureless spray above the blowems, and pinching of the points of thone which are necersary to peffect the fruit. A replacing shoot is thus obtained. to which the whole is invariably shortened at the end of the year.

Seymour's form (Gg. 5) approwches more mearly to the Freach method than any other prectited in Engtand; but the direct channel

Fig. 5.-Seymour's Fan Training.
of the eap is not auppresed, and this rewults in the production on branches of unequal vigour, which is very undesirable.

For cold and late situations, Thomas Andrew Knight fecommended the encouragement of spurs on the young wood, as such spurs, when elose to the wall, generate the best organized and most vigorous blossoms, and generally ensure a crop of fruit. They may be produced, by agiking care, during the summer pruning or disbudding, to preserve a nurnber of the little shoots emitted by the yearly wood, only pinching off the minute succulent points. On the spurs thus lormed blossom buds will be developed carly in the following seaton. This practice is well adapted to cold situations. Peachtrees require protection, eppecially at the period of blossoning, particularly in the north of England and in Scotand. Canyas or bunting acreens are most effectual. By applying these early in the season, great bencfit may be derived from retarding the blossom till the frosty nights of spring have passed. Wooden and glass copings are also very useful in warding of frosts. Care murt be taken that the roots always bave anficient oupply of moisture and that the soil is moist wherever the roots rua.

Forcing. -The pruning and traiping of the trees in the peach house do not differ materially from the methods practised out of doors. It may also be stated here that when occasion arised peachtrees well furnished with buds may be transplanted and forced immediately without sisking the crop of fruit, a matter of some importance when, as sometimes happens, a tree may accidentally fall. In the forcing of peaches fire heat is commonly applied about December or January; but it may, where there is a demand, begin a month tooper. The treet must be got so cart growth very
sredually, and at first the touse should be merely kept closed at a temperature of about 45°, but the heat should gradually increase to 50° at night by the time the trees are in flower, and to 60°. When the fruit is ret, after which the house should be kept moist by sprinkling the walls and paths, or by placing water troughs on the return pipen, and the temperature should range fram 65° by day to 70° or more with sun heat. Aiter the fruit has set, the Ioliage should be refreshed and cleansed by the daily use of the ayringo or garden enpine. When the fruit has otoned-that in, as soon as the kernels have been formed-the termperature should be raised to about 65° asa minimum, and to 70°, with 73° by mun heat, as a maximum. Water must now be copiously supplied to the border, and air admitted in abundance, but cold draughts which favour the attack of mildew must be avoided. After the end of April little fire heat is required. When the fruit begins to ripen, ayringing must be dircontinued till the crop is gathered, after which the syringe must be again occasionally used. If the leaves should happen to chade the fruit, not only durisg the ripening process but at any time after the stoning period, they should be gently turned aside, for, in order that the fruit may acquire pood colour and flavour, it chould be frecly exposed to light and air when ripening; it will bear the direct rays of the sum, even if they should rive to 100°, but nectarines are much more liable to damage than peachea. The trees of ten suffer from mildew, which is best prevented by koeping the borders of the peach house clear and sufficiently moist and the house well ventilated. and if it should appear the treess should be sprayed with 1 os. potassium sulphide dissolved in 3 gallons of water. Care must be taken in using this fungicide not to wet the painted wood, as it is oure to become discoloured.

Peaches and nectarines are frequently cultivaced in well-drained pots, and are then usually trained as pyramids, and in some cames as half-standards. The potting must be done very firmly, using turfy loam with which a little mortar rubble has been mixed. The trees are to be top-dressed from time to time with well-decayed manure and turfy boam, and considerable space must be left in the pots for this and the watcring.
The following are some of the best peaches and nectarines, arranged in the order of the times of their ripening:-

Peaches.

PRACRAM; HENRY (c. 1576-s. 1643), English writer, was the son of Henty Peacham, curate of North Mimms, Hertfordshire, and author of a book on thetoric called the Garden of Rhetoric (1577). The elder Peacham became in 1597 rector of Leverton, Lincolnshire. The son was educated at Trinity College, Cambridge, where he graduated B.A. in $1594-1595$ and M.A. in isg8. He was for some time a schoolmaster at Wymondham, Norfolt, but settled in London in 1612, earning his living as tutor to young men preparing for the universities. His first book was Graphice (1606), a treatise on pen and water-colour drawing, which, as The Genlleman's Exercise, passed through three editions. The years $1613-1614$ he spent abroad, part of the time as tutor to the three young sons of Thomas Howard ($1585-1646$), earl of Arundel, and partly on his own account. He travelled in Italy, France, Westphalia and the Netherlands. The table of Sir John Ogle, English governor of Utrecht, was, be says, a " little academy," where he met soldiers and scholars of all nationalities. When he returned to London he was accused of libel on the king. Incriminating papers had been discovered in the house of Edmond Peacham, rector of Hinton Saint George, who, on being charged with an attack on the king denied the
autborship, stating that they were witten by a nameanke, "a divine, a scholar and a traveiler." The change was, bowever, easily rebutted. Peacham had many friends in London, amont them Thomas Dowland the musician, Inigo Jones, and Edward Wrigit the mathematician. In 1622 appeared Peachem's magnum opus, the Compleat Gentlemon. Enlarged editions appeared in 1636 and 1627 . The 1627 edition was reprinted in 1634, and a third, with additional notes on blasonry by Thomas Blount (1617-1679), appeared in 166r. The book is a tert-book of mannern and polite learning; it includes chapters on cosmography, geometry, poetry, music, antiquities, painting, the lives of the painters, the "art of limming " (Peacham himeclif was a proficient engraver), and the military art, including the order of "a maine battaile or pitched field in eight severall wayes." The book differs from the Cowrtier of Castiglione, which had been the guide of an earlier generation. Peacham was a Cevalier, even an ardent polemist in the royal cause, but the central point of his book is a more or less Puritan sentiment of duty. In his later years Peacham was reduced to extreme poverty, and is said to have written children's books at a penny each. His last book was published in 1642, and it may be concluded that he died soon afterwards.
His other worka include: Minerva Brilama (16ia), dedicated to Heary, prince of Wales; The Period of Mourning (16i3) io honowe of the mame prince; Thalic's Banquet (1620) a book of epigrams; The Art of Living in London (1642), and The Worth of a Peny (1641), \&ve. There is a nearly complete collection of Peacham's works in the Bodleian, Oxford. Harleian MS. 6855 contains a translation by Peacham of James l.'s Basilicon doron monto Latia verse, written in his own hand and ornamented with pen and ink drawingar His Compleaf Gentleman was edited by G. S. Gordoa in 1906 for the Clarendon Press; the Art of Lipint is reprinted in the Harlecias Misc. ix. ; The Worth of a Peny in E. Arber! English Garser (vol vi. 1883).

PRACOCRL SIR BARME (1810-1890), English judge, was born in 1810, the son of Lewis Peacock, a soticitor. After practising as a special pleader, he was called to the bar in 1836 , and in 1844 obtained great reputation by pointing out the flaw which invalidated the conviction of Daniel O'Connell and his fellow defendants. In 1852 he went to India as legal member of the governor-general's council. He here displayed great activily as a law reformer, but sometimes manifested too little consideration for native susceptibilities. The legislative council was established soon after his arrival, and although no orator, he was so frequent a speaker that legislation enjoining councillors to deliver their speeches sitting was said to have been devised with the sole object of restraining him. As a member of Lord Dalhousie's council he supported the anneration of Oudh, and he stood by Lord Canning all through the Mutiny. In 1859 he became chief justice of the Supreme Court. He returned to Enghand in 1890 and in 1872 was placed upon the judicial committee of the privy council, where his Indjan experience rendered him invaluable. He died on the 3rd of December 1890.

PRACOCK OBOROR ($1791-1858$), English ${ }^{-}$mathematician, was born at Thornton Hall, Denton, near Darlington, on the 9th of April 1791. He was educated at Richmond, Yorkshire. and entered Trinity College, Cambridge, in r8og. He was second wrangler in 18 t 2 (Sir J.F.W. Herschel being senior), was elected fellow of his college in 1814, became assistant cutor in 1815 and full tutor in 1823. While still an undergraduate be formed a league with John Herschel and Charles Babbage, to conduct the famous struggle of "d-ism mersus dot-age," which ended in the introduction into Cambridge of the continental notation in the infinitesimal calculus to the exclusion of the fluxional notation of Sir Isaac Newton. This was an important reform, not so much on account of the mere change of notation (for mathematicians follow J. L. Lagrange in using both these notations), but because it signified the opening to the mathematicians of Cambridge of the vast storehouse of continental discoveries: The analytical society thus formed in 1813 published various memoirs, and translated S. F. Lecroix's Differfial Calculus ini 1816. Peacock powerfully aided the movement hy publishing in 1820 A Collection of Examples of the Application of the Diferential and Integral Calculus. In 184 I he published a pamphlet on the
university statutes, in which he indicated the mecessity for - reformiand in 1850 and 1855 he was a member of the commission of inquiry relative to the eniversity of Cambridge. In 1837 he was appointed Lowndean professor of astronomy. In 1830 he took the degreo of D.D., and the same year was appointed by Lord Melbourne ta the deanery of Ely. Peacock threw bimselif with characteristit ardour into the duties of this new position. He improved the sanitation of Ely, published in 1840 Obsersations on Plans for Calhedral Reform, and carried out extensive, works of restorntion in his own calhedral. He was twice prolocutor of the lower bouse of convocation for the province of Canterbury. He was also a prime mover in the establishment of the Cambridge Astronomical Observatory, and in the founding of the Cambridge Philosophical Society. He was a fellow of the Royal, Royal Astronomical, Geological and ot her scientific societies. In 1838, and again in 1843, he was one of the commissioners for standards of weighte and measures; and he also fumished valuable information to the commissioners on decimal coinage. He died on the 8th of November $\mathbf{8} 88$.

Pcacock's original contributions to mathematical science were concemed chielly with the philosophy of its first principles. He did good service in systematizing the operational laws of algebra, and in throwing light upon the nature and use of imaginaries. He published, first in 1830 , and theri in an enlatged form in 1842, a Treatise on Alschnc, in which he applied his philosophical ideas concerning algebraical ansalynis to the elucidation of its elements. A second great service was the publica. tion in the Britisk Association Reports for 1833 of his "Report on the Recent Progress and Present State of certain hranches of Analysis." Modern thathematicians may find on reading this brilliant summary a good many dicta which they will call ia question, but, whatever its defects may be, Pencock's report remains a work of permanent value. In 1855 he published a memoir of Thomas Young, and about the same time there appeared Young's collected works in three volumes, for the first twool which Peacock was responsible.

PEACOCK, THOMAS LOVE ($1785-1866$), English novelist and poet, was born at Weymouth on the 18 th of October 1785. He Was the only son of a London glass merchant, who died soon after the child's brth. Young Pcacock was educated at a private school at Englefield Green, and after.e brief experience of business determined to dewote himself to fiterature, white living with his mother (dsughter of Thomas Love, a naval man) on their private mears. His first books were poctical, The Monks of Si Mark (1804), Palnyw (1806), The Genios of the Thames (1810), The Philosophy of Modandhaly (1812)-works of no grest merit. He also made several dramatic attempts, which were never acted. He served for a short tine as secretary to Sir Home Popham at Flushing, and paid several visits to Wales. In 18 ra he became ecquainted with Shelley. In 1815 he evinced his peculiar power by writing his novel Headtong Hall. It was pablished in 18i6, and Melincourl followed in the ensuing year. During 1817 he lived at Great Mariow, enjoying the almost daily socicty of Shelley, and writing Nightmare Abbey and Rhododephone, by far the best of his long poems. In 1819 he was appointed assistant examiner at the India House. Peacock's nomination appears to have been due to the infivence of his old schooffellow Peter Auber, secretary to the East India Company, and the peppers be prepared as tests of his ahility were returned with the comment, "Nothing superfuove and nothing wanting." This was characteristic of the whole of his intellectual work; and equally characterfitic of the man was hls marriage about this time to Jane Grfinth, to whom ho proposed by letter, not having seen her for eight years. They had four chitdren, only one of whom, a son, survived his father; one daughter was the first wite of George Meredith. His novel Maid Marias appeared in 1882 , The Misfortumes of Efftin in 1829, and Crolchet Castle in 1831; and he would probably have written more but for the death in 1833 of his mother. He also contributed to the Westmimuler Review and the Examiner. Hisservices to the East India Company, outside the usall official routine, were comsiderable. He defensind it encecuefully against the allacks of James Silk

Buckinghan and the Liverpool salt interest, aod made the aubject of steam navigation to India peculimisy his own. He represented the company before the various parliamentary committees on this question; and in 1839 and 1840 superintended the construction of iron steamers, which not only made the voyage round the Cape anccessfully, but proved very useful in the Chinese War. He also drew up the instructions for the Euphrates expedition of 1835 , subsequently pronounced by its commander, Ceneral F. R. Chesney, to be models of angacity. In 1836 he socceeded James Min as chief examiner; and in 1856 he' retired upon a pension. During his later years he contributed severad papers to Fraser's Magazine, inctuding reminiscences of Shelley, whose executor he was. He also wrote in the same magazine his last novel, Gryll Grange (1860), inferior to his earlier writings in humour and vigour, but sttl a surprising effort lor a man of his age. He died on the 23 rd of January 1866 at Lower Halliford, near Chertsey, where, so far as his London occupations would allow him, he had resided for more than forty years.

Peacoct's posltion in English literature is unique. There was nothing like his type of novel before his time; though there might have been if it had occurred to Swift to invent a story as a vehicle for the dialogue of his Polite Conversation. Peacock speaks as well in his own person as through his puppets; and his pithy wit and sense, combined with remarkable grace and accuracy of naturd description, atone for the primitive simplicity of plot and charactes. Of his seven fictions, Nighimare Abbey and Crotchet Castle are perhaps on the whole the best, the former displaying the most vis comica of situation, the latter the fullest maturity of intellectual power and the most skilful grouping of the molley erowd of "perfectibilians, detcriorationists, statu-quo-ites, phrenologists, transcendentalists, political economists, theorists in all sciepces, projectors in all arts, morbid visionaries, romantic entbusiasts, lovers of music, lovers of the picturesque and lovers of good dinners," who constitute the dramatis personse of the Peacockian novel. Maid Marias and The Misfortwnes of Elphim are hardly less entertaining. Both contain descriptive passages of extraordinary beauty. Melincownt is a comparative failure, the excellent idea of an orang-outang mimicking humanity bcing insufficient as the sole groundwork of a novel. Headlong Hall, though more than foreshadowing the author's subsequent excellence, is marred by a certain bookish awkwardness characteristic of the recluse student, which reappears in Grydl Grange as the pedantry of an old-fashioned scholar, whose likes and dislikes have become inveterate and whose sceptical liberalism, always rather inspired by hatred of cant than enthusiasm for progress, has petrified into only too earnest conservatism. The book's quaint resolute paganism, however, is very refreshing in an age eaten up with introspection; it is the kindliest of Peacock's writings, and contains the most beautiful of his poems, "Years Ago," the reminisoence of an early altachenent. In gencral the ballads and songs interspersed through his tales are models of exact and melodious diction, and instinct with true feeling. His more ambitious poems are worth little, except Rhododaghne, attrective as a story and perfect as a composition, but destitute of genuine poetical inspitation. His critical and miscrllancous writings are always tnteresting especially the retstorations of lost classical plays in the Horoc dramaticas, but the only one of great mark is the witty and crushing exposare in the Wealmimster Review of Thomas Moore's ignorance of the manners and belief he has ventured to portray in his Epicwrean. Peacock resented the misrepresentation of his favourite sect, the good and ill of whose tenets were fairly represented in his own person. Somewhat sluggish and self-indulgent, incapable of enthusiasm or selfsacrifice, he yet possessed a deep undemonstrative kindliness of nature; he could not bear to see anyone near him unhappy or uncomfortahle; and his sympathy, no less than his genial humour, gained him the attachmert of children, dependants. and friends. In offcial life he was upright and conscientious; his judgment was shrewd and robust. What Shelley justly termed " the lighness, strength and chastity " of his diction secures him an honourable rank among those English writers whose claims to rernembrance depend not only upon matter but upon style.

Peacock's works were collected, though not compictely, and pubi lished in three volumes in 1875, at the expense of his friend and former prothgo, Sir Henry Cole, with an excellent memoir by his granddaughter Mrs Clarke, and a critical essay by Lord Houghton. His prose works were collected by Richard Garnett in ten volumes (1891). Separate novels are included in "Macmillan's Illustrated Standard Novels," with incroductions by Mr Saintsbury. For an interesting personal notice, see A Yoct's Shelch Book, by R. W. Buchanan (1884).
(R. G.)

PEACOCK (Lat. Pavo، O. Eng. Powe, Du. paurno, Ger. Pfaw, Fr. Peon), the bird so well known from the splendid plumage of the male, and as the proverbial personification of pride. It is a native of the Indian peninsula and Ceylon, in some parts of which it is very abundant. Setting aside its importation to Palestine by Solomon (t Kings x. 22; a Chron. ix. 21), its assignment in classical mythology as the favourite bird of Hera testifies to the eariy acquaintance the Greeks must have had with it; but, though it is mentioned by Aristophanes and other older writers, their knowledge of it was probably very slight until after the conquests of Alexander. Throughout all succeeding time, however, it has never very freely rendered itself to domestication, and, though in earlier days highly esteemed for the table, ${ }^{\text {t }}$ it is no longer considered the delicacy it was once thought; the young of the wild birds are, however, still esteemed in the East.

Japan or " black-shouldered "Peafowla.
As in most cases of domestic animals, pied or white varieties of the ordinary peacock, Pavo cristatins, are not infrequently to be seen, and they are valued as curiosities. Greater interest, however, attends what is known as the Japanese or Japan peacock, a form which has received the name of P. nigripennis, as though it were a distinet species. In this form the cock, besides other less conspicuous differences, has all the upper wing-coverts of a deep lustrous blue instead of being motiled with hrown and white, while the hen is of a more or less griseledwhite. It "breeds true"; but occasionally a presumably pure stock of birds of the usual coloration throws out one or more having the Japan plumiage. It is to be observed that the male has in the coloration of the parts meationed no little resemblance to that of the second indubitably good species, the P. mulicus (or P. spicijer of some writers) of Burma and Java, though the character of the latter's crest-the fealhers of which are barbed along their whole length instead of at the tip only-and its
: Clasaical authors contain many allusions to Its high appreciation at the most sumptuous banquets; and medieval bills of fare on state occasions nearly always include it. In the days of chivalry one of the most solemn oaths was taken " on the peacock," which seems to have been served up garnished with its gaudy plumage.
golden green neck and breast furmish a ready means of distinction. Sir R. Heron was confident that the Japan breed had arisom in Engiand within his memory, ${ }^{2}$ and C. Darwin (Animale end Plants ander Domestication, i. 290-292) was inclined to believe it only a variety; but its abrupt appearance, which rests on indisputable evidence, is most suggestive in the light that it may one day throw on the question of evolution as exhibited in the origin of "species." It should be stated that the Japan bird is not known to exist anywhere as a wild race, though apparently kepe in Japan. The accompanying illustration is copied from a plate drawn by J. Wolf, given in D. G. Elliot's Momogreph of the Phasianidac.
The peafowls belong to the group Gallince, from the normal members of which they do not materially differ in structure; and, though by some systemalists they are mised to the rank of a family, Pavonidoe, most are content to regard them as a sub-family of Phasionidoe (Piensant, q.o.). Akin to the genus Pavo is Polyplectrum, of which the males are armed with two or more spurs on each leg, and near them is generally placed the genus Argusianus. containng the argus-pheasants, remarkable for their wonderfully ccellated plumage, and the extraordinary length of the secondary quills of their wings, as well as of the tail-feathers II must always be remembered that the so-called "tail " of the peacock' is lormed not by the reetrices or true tail-feathers, but by the singular development of the tail-coverts.
(A. N.)

PEAK, THE, a high table-land in the north of Derbyshire, England, included in the Pennine range of hills. The name, however, is extended, without definite Jimits, to cover the whole of the hilly district north of Buxton. The table-land reaches an elevation of 2088 ft . in Kinder Scout. The geological formation is millstone-grit, and the underlying beds are not domed, hut cup-shaped, dipping inward from the fanks of the mass. The summit is a peaty moorland, through which masses of rock project at intervals. The name of this high plateau has from the 17th century been identified with " peak," the pointed or conical top of a mountain, but the very early references to the district and certain places in it show clearly, as the Now English Dictionary points out, that this connexion is unwarranted. The name appears in the Old English Chronicle (934) as Plachond, of the district governed from the castle of Peveril of the Peak (see Derbyshire), and also in the name of the cavern under the hill at Castleton, Ptac's Arse. Péac, it has been suggested, is the name of a local deity or demon, and possibly may be indentified with Puck. For the etymology of "peak," point, \&cc., and its variants or related words, "pick" and "pike," see Pike.

Prale, Charles willson ($1742-1826$), American portrait painter, celebrated especially for his portraits oi Washington, was born in Queen Anne county, Maryland, on the 16 th of April 1741. During his infancy the family removed to Chestertown, Kent county, Marylaad, and after the death of bis father (a country schoolmaster) in 1750 they removed to Annapolis. Here, at the age of 13 , he was apprenticed to a saddler. About 1764 he began serioualy to study art. He got some assistance from Gustavus Hessebus, a Swedish portrait painter then tiving near Annapolis, and from John Singleton Copley in Boston; and in $1767-1770$ he studied under Benjamin West in London. In 1770 he opened a studio in Philadelphia, and met with immediate success. In 1772, at Mount Vernon. Peale painted a three-quarters-length study of Washington (the earliest known portrait of him), in the uniform of a colonel of Virginia militia. This canvas is now in the Lee Memorial Chapel of Washington and Lee University. He painted various other portraits of Washington; probably the best known in a full-length, which was made in 8778 , and of which Pesle made many copies. This portrait had been nodered by the Continental Congress, which, however, made no appropriation for it, and eventually it was bought for a private collection in Philadelphia. Peale painted two miniatures of Mrs Washington (1772 and 1777), and portraits of many of the famous men of the time, a number of which are in Independence Hall, Philadelphia. His portraits of Washington do not appeal so strongly to Americans as do those of Gilbert Stuart, but his admitted skill as a draughtsman gives to all of his work considerahle historical value. Peale removed to
'A. Newton himself regarded this as probably incorrect.

Philadelphia in 3777 , and served as a member of the committee of public safety; be aided in raising a militia company, became a lieutenant and afterwards a captain, and took part in the battles of Trenton, Princeton and Germantown. In 1779-1780 he was a member of the Pennsylvania assembly, whero he voted for the abolition of slavery-he freed his own slaves whom he had brought from Maryland. In 1801 he undertook, largely at his own expense, the excavation of the skeletons of two mastodons in Ulster and Orange counties, New York, and in 1802 he established at Philadelphia Peale's Museum. He was one of the founders, in 180s, of the Pennsylvania Academy of the Fine Arts at Philadelphis. At the age of eighty-one Peale painted a large canvas, "Christ Healing the Sick at Bethesda," and at eightythree a full-length portrait of bimself, now in the Academy of the Fine Arts. He died at his country home, near Germanlown, Pennsylvania, on the a2nd of February 1826.

His brother, Janes Peale ($1749-1831$), also an artist, painted two portraits of Washington (one now the property of the New York Historical Society, and the other in Independence Hall, Philadelphia), besides landscapes and historical compositions.

PRALS, REMBRAYDF (1778-1860), American artist, was born in Bucks county, Penasylvania, on the 22nd of February 1778, the son of Charles Willson Peale (q.e.). He studied under his (ather, under Benjamin West in London (x802-1803), and in Paris in 1807 and 1809 . As early as 1795 he had begun from life a portrait of Washington. Of this he made many replicas, the latest in 1823, purchased hy the United States government in 1832, and now in the Capitol of Washington. Peale was one of the first of American lithographers. He was an excellent draughtsman, but in colour his work cannot rank with his father's. Ia 1843 he devised for the Philadelphia public schools a system of teaching drawing and penmanship. His portraits include those of President Jefferson, Mrs Madison, Commodores Perry, Decatur, and Bainhridge, Houdon, the sculptor, General Armstrong, and an equestriain portrait of General Washington, now is Independence Hall, Philadelphia. His "Court of Death" (1820) is in the Detroit Art Gallery. In 1825 Peale succeeded John Trumbull as president of the American Academy of Fine Arts (founded in 8802 ns the New York Academy of Fine Arts), and he was one of the original members of the National Academy of Design. He wrote several books, among them Noles on Ilaly (1831), Rominiscences of Arl and Arlisks (1845). He died in Philadejphia on the 3rd of October 1860.

A brother, Raphazlile Peas ($1774-1825$), was one of the earlient of American still-iife painters; and another brother, Tithan Ramsey Peale (1800-1885), made numerous drawings, some of them in water-colour, in illustration of animal life.
See " Rembrandt Peale." partly autobiographical, in C. E. Lester's The Artists of A merica (New York, 1846).
pRas (Pyrus comminis), a member of the natural order Rosaceae, belonging to the same genus as the apple ($P . m a \prod_{\text {us }}$), which it resembles in floral structure. In both cases the socalled fruit is composed of the receptacle or upper end of the flower-stalit (the so-called calyz tube) greatly dilated, and enclosing within its cellular flesh the five cartilagioous carpels which coastitute the "core" and are really the true iruit. From the apper rim of the receptacie are given of the five sepals, the five petals, and the very numerous stamens. The form of the pear and of the apple respectively, although usually characteristic enoush, is not by itself sufficient to distinguish them, for there are peass which cannot by form alone be distinguished from apples, and apples which cannot by superficial appearance be recognized from pears. The main distinction is the occurrence in the tissue of the fruit, or beneath the rind, of clusters of cells Glled with hard woody deposit in the case of the pear, constituting the "grit," while in the apple no such formation of woody cells takes place. The appearance of the tree-the bark, the foliage, the fowers-is, bowever, usually quite characteristic in the two species. Cultivated pears, whose number is enormous, are without doubt derived from one or two wild species widely distributed throughout Europe and western Asia, and sometimes forming pert of the matural vegetation of the forests. In England,
where the pear is sometimes considered wild, there is always the doubt that it may not really be so, but the produce of some seed of a cultivated tree deposited by birds or otherwise, which has degenerated into the wild spine-bearing tree known as Pyrus соmmamis.
The cultivation of the pear extends to the remotest antiquity. Traces of it have been found in the Swiss lake-dwellings; it is mentioned in the oldest Greek writings, and was cultivated by the Romans. The word "pear "or its equivalent occurs in all the Celtic languages, while in Slavonic and other dialects difierent appellations, but still referring to the same thing, are found-a diversity and multiplicity of nomenclature which led Alphonse de Candolle to infer a very ancient cultivation of the tree from the shores of the Caspian to those of the Allantic. A certain sace of pears, with white down on the under surface of their leaves, is supponed to have originated from P. mivalis, and their fruit is chiefly used in France in the manufacture of Perry (see Cmaz). Other small-fruited pears, distinguished by their precocity and apple-like fruit, may be referred to P. condata, a specien found wild in western France, and in Devonshire and Cornwall.
Karl Koch considered that cultivated pears were the descendants of three apecics-P. persica (from which the bergamots have descended), P. dowayrifolia and P. rinensis. J. Decaisne, who made the eubject one of critical study for a number of years, and not only inventigated the wild forms, but carcelully studied the peculiarities of the numerous varietics culivated in the Jardin des Plantes at Paris, refers all cultivated pesirs to one species, the individuals of which have in course of time diverged in various directions. so as to. form now six races: (1) the Celtic, including P. cordefa; (2) the Germanic, including P. communais, P. achva, a and P. pisasler; (3) the Hellenic, including P. parrifiors, P. sinaica and others: (4) the Pontic, including P. eloeaprifolia; (5) the Indian, comprising P. Paschoe; and (6) the Mongofic, represented by P. sinensis. With reference to the Celtic race, P. cordata, it is interesting to note its conarexion with Arthurian legend and the Isle of Avalon or Isle of Apples. An island in Loch Awe has a Celtic legend containing the principal "eatures of Arthurian story: but in this case the word is "berries " instead of "spples." Dr Phene visited Armorica (Brittany) whth a view of investigating these matters, and brought thence Irvite of a small berry-like pear, which were identified with the Pyrus cordata of western France.

Cullimation.-The pear may be readily raised by sowing the pips of ordinary cultivated or of wilding kinds, these forming what are known as free or pear stocks, on which the cbeicer varieties are grafted for increase. For new varieties the flowers should be fertilized with a view to combinc, in the seedlings which result from the union, the desirable qualities of the parents. The dwarf and pyramid trees, more usually planted in gardens, are obtained by grafting on the quince stock, the Portugal quince being the best; hut this stock, from its surface-rooting habit, is most suitable for soils of a cold damp nature. The pear-stock, having an inclination to send its roots down deeper into the soil, is the best for light dry soils, as the plants are not then so likely to suffer in dry seasons. Some of the finer pears do not unite readily with the quince, and in this case douhle working is resorted to; that is to say, a vigorous-growing pear is first grafted on the quince, and then the choicer pear is grafted on the pear introduced as its foster parent.

In selecting young pear trees for walls or espaliers, some persons prefer plants one year old from the graft, but trees two or three years trained are equally good. The trees should be planted immediately before or after the fall of the leal. The wall trees require to be planted from 25 to 30 ft . apart when on free stocks, and from 15 to 20 ft . When dwarfed. Where the trees are trained es pyramids or columns they may stand 8 or io ft . apart, but standards in orchards should be allowed at least 30 ft ., and dwarf bush trees half that distance.

In the formation of the trees the same plan may be adopted as in the case of the apple. For the pear orchard a warm situation is very desirable, with a soin deep, substantial, and thoroughly drained. Any good free loam is suitable, hut a calcareous loam is the beat. Pear trees worked on the quince should have the stock covered up to its junction with the graft. This is effected by raising upa small mound of rich compost around it, a cont rivance which induces the graft to emit roots into the suriace soil.
and also keeps the stock from becoming hard or bark-bound. The fruit of the pear is produced on spurs, which appear on shoots more than one year old. The mode most commonly adopted of training wall pear-trees is the horizontal. For the slender twiggy sorts the fan form is to be preferred, while for strong growers the half-fan or the horizontal is more suitahle. In the latter form old trees, the summer pruning of which has been neglected, are apt to acquire an undue projection from the wall and become scraggy, to avoid which a portion of the old spurs should be cut out annually.
The summer pruning of established wall or espalier-rail trees consists chiefly in the timely displacing, shortening back, or rubbing off of the superfluous shoots, so that the winter pruning, in horizontal training, is little more than adjusting the leading shoots and thinning out the spurs, which should be kept close to the wall and allowed to retain but two or at most three buds. In fan-training the subordinate hranches must be regulated, the spurs thinned out, and the young laterals finally estahlished in their places. When horizontal trees have fallen into disorder, the branches may be cut back to within 9 in . of the vertical stem and branch, and trained in afresh, or they may be grafted with other sorts, if a variety of kinds is wanted.
Summer and autumn pears should be gathered before they are fully ripe, otherwise they will not in general keep more than a few days. The Jargonelle should be allowed to remain on the tree and be pulled daily as wanted, the fruit from standard trees thus succeeding the produce of the wall trees. In the case of the Crassane the crop should be gathered at three different times, the first a fortnight or more before it is ripe, the second a week or ten days after that, and the third when fully ripe. The first gathering will come into eating latest, and thus the season of the fruit may be considerahly prolonged. It is evident that the same method may be followed with other sorts which continue only a short time in a mature state.
Diseases.-The pear is subject to several discases caused hy fungi. Gymnosporancium sabinac, one of the rusta (Uredincac) passes one stage of its life-history on living pear leaves, forming large raised spots or patches which are at frst yellow but soao become red and are visible on both laces; on the lower lace of each patch is a group of cluster-cups or accidia containing spores which escape when ripe. This stage in the life-history was formerly regarded as a distinct fungus with the name Roestedia cancellata $;$ it is now known, however. that the spores germinate on young juniper leaves, in which they give rise to this other stage in the plani's history known as $C_{\text {ymneospor. }}$ angium. The gelatinous, gencrally reddish-brown masses of sporesthe teleutosporcs-iormed on the juniper in the spring germinate and form minute spores-sporidia-which give rise to the aecidium clage on the pear. Discased pear leaves should be picked off and destroyed before the spores are scattcred and the various species of juniper on which the alternate stage is developed should not be allowed near the pear trees.
Pcar scab is caused by a parasitic fungus, Fu sicladium pryinum, very closely allied and perhaps merely a form of the appl: suab [ungus. F. dendriticum. fis in

(From a mecimes in Ibe British Myseum.)
Pear Scab (Fusiclodimes pyrinum).

1. Leal thowing diseased areas.
2. Scetion of leal surface showing the spores or comidia. c. bornc on long stalks (conidiophores)
injured by the pearl oyster scale (Aspidiofms ostreacformis), which
may be removed by washing in winter with soft soap and bot water. A number of larvae of Lepidoplerc feed on the leaverthe remedy is to capture the mature insects when possible. The winter moth (Cheimatobia brumate) must be kept in check by putting greasy bands round the trunks from October till December or January. to catch the wingleas lemales that crawl up and deposit their eqgs in the eracks and crevices in the bark. The caterpilars of the leopard moin (Zensera pyrina) and of the goat moth (Cossus ligniperda) sometimes bore heir way into the trinks and destroy the sap channels. If badly bored. the trees are useless; but in

Pear-leal Cluster-cups (Gymnasporamsiwm sabinas). 1. Leal showing groups of cups or aecidia. 2, Earty stage of disease. 3. Cupa.
the carly stages if the entrance of the caterpillars has been detected, a wire should be pushed into the hole. One of the worst pestif of pear trees is the pear midges known as Diplosis pyrioora or Cecidomyia nizra, the 符的ales of which hay their eggs in the flowerbuds belore they open. The ycliow maggots devour the seeds and thus ruin the crop. When delormed fruiss are noticed they abould be picked off and burned immediatcly. Specics of aphides may be removed by tobacco infusion. soapsuds or other solutions. A gall mite (Phyloplus pyrs) sometimes severcly injures the leaves, on which it lorms blistcrs-the best remedy is to cut of and burn the discased leaves.
The Alligator or Avocado Pear is Persea gratissime, a member of the natural order Lauraceae, and a native of the Weat Indies and other parts of tropical America. It is a tree of 25 to 30 ft . high and bears large pear-shaped fruits, green or deep purple in colour, with a firm yellowish-green marrow-like pulp surrounding a large seed. The pulp is much esteemed in the West Indies and is eaten as a salad, usually with the addicion of pepper, selt and vinegar. The pulp contains much oil, which is used for lighting and soap-making, and the seeds yield a decp indelible black stain which is used for marking linen.
Prickly, pear is the popular name for species of Opwrlia (see Cactus).
The name wooden pear is applied to the fruits of $\boldsymbol{X y l o m o l i m}$ (nat. ord. Proteaceae), an Australian genus of trees with very thick, woody. inversely pear-shaped fruits which split into two parts when ripe.
PRARCE, CHARLES SPRAGUE (1851-), Americen artist, was born at Boston, Massachusetts, on the 13th of October 1851. In 1873 he became a pupil of Leon Bonnat in Paris, and after 1885 he lived in Paris and at Auvers-sur-Oise. He painted Egyptian and Algerian scenes, French peasants, and portraita, and also decorative work, notably for the Congressional Library at Washington. He received medals at the Paris Salon and elsewhere, and was decorated with the Legion of Honour, the order of Leopold, Betgium, the order of the Red Eagle, Prussia, and the order of Dannebrog, Denmark. Among his bert known paintings are "The Docapitation of St John the Baptist" (1881), in the Art Institute of Chicago; "Prayer" (1884), owned by the Massachusetts Charitable Mechanic Association; "The Return of the Flock," in the Bohemian Club, San Francisco; and " Meditation," in the New York Metropolitan Museum.

PEARL. Pcarls are calcareous concretions of peculiar lustre, produced by certain molluses, and valued as objects of personal ornament. The experience of pean-fishers shows that those shells which are irregular in shape and stunted in growthan or

Which bear escresecesoes, or are honeycombed by bocing parniten, are thooe moot likely to yield pearis.
The substance of a pearl is essentially the same as that which tines the interior of many sbells and is known as "mother-ofpearL" Sir D. Brewster first showed that the iridescence of this sabslance wha an optical phenomenon due to the interference of rays of light reffected from microscopic corrugations of the surface -an effect which may be imitated by artificial striations on a suitable medium. When the inner laminated portion of a nacreous sbell is digested in adid the calcareous layers are dimoolved away, leaving a very delicate membranous pellicle, which, as shown by D_{r} Carpenter, may retain the iridescence as Jong as it is undisturbed, but which loees it when pressod or atretched.
It is obvious that if a pearl presents a perfectly spherical form it must have remained loose in the substance of the muscles or other soft tissues of the mollusc. Frequently, however, the pearl becomes cemented to the interior of the sbell, the point of attechment thus interfering with its symmetry. In this position te may receive successive nacreous deposits, which ultimately form a pearl of hemispherical shape, so that when cut from the shell it may be fat on one side and convex on the other, forming what jewelets know as a "peric bouton." In the coursc of growth the pearl may become involved in the general deposit of mother-of-pearl, and be ultimately buried in the substance of the shell. It has thus happened that fine pearls have occasionally been unexpectedly brought to light in cutting up mother-of-pearl in the workshop.
When a pearl oyater is attacked by a boring parasite the mollusc protects itself by depositing nacreous matter at the point of invacion, thus forming a hollow body of irregular shape known as a " blister peari." Hollow warty pearl is sometimes termed in trade "coq de perle." Solid pearie of irregular form are often produced by deposition on rough objects, such as small fragments of wood, and these, and in fact ali ixregular-shaped pearts, are terned " perles baroques," or "barrok pearls." It appears that the Romans in the period of the Decline restricted the name wnio to the globular pearl, and termed the beroqua margarisum. It was fashionable in the 16 th and 17 th centurien to mount curiously shaped baroques in gold and enaroel so as to form ornemental objects of grotesque character. A valuable collection of such mounted pearls by Dinglinger is preserved in the Green vaults at Drenden.
A pearl of the finat water should possesa, in jowelens' language, a perfect "stin" and a fine "orient"; that is to say, it must bo of delicate texture, free from speck or flaw, and of clear almost translucent white colour, with 2 subdued irideacent sheen. It should aleo be perfectly spherical, or, if not, of a symmetrical pear-shape. On removing the outer layer of a peard the suljacent surface is gencrally dull, like a dead fish-eye, hut it occasionally happens that a poor peard ancloses a "lively kernel," and may therefore be improved by careful peeling. The moat perfect pearl in existence is said to be one, known as "La Pelliegrina," in the muscum of Zosime in Moscow; it is a perfectly dobular Indian pearl of singular benuty, weighing 28 carats. The larguat known pearl is one of irregular shape in the Bercaford Hope colloction at the Victoria and Albert Museurn. This magnificent pearl weighas 3 oz , has a circumference of 4it in., and is surmounted by an enamelled and jewelled gold crown, forming 2 pendant of great value.
Pearl Fiskeries.-The ancients obtained their pearls chiefly from India and the Persian Gulf, but at the present time they are she procured from the Sulu sease, the canst of Australie, the shores of Central Americe and some of the South Pacific Islands. The ancient faheries of Ceylon (Taprobane) are situated in the Gulf of Manaer, the fishing:banks lying from 6 to 8 m . off the vestern由ore, a litte to the south of the isle of Mapaar. The Tinnevelly Gisbery is on the Madras side of the strait, near Tuticorin. These Indian fishing-groumda are under the control of government inspectors, who reguiate the fisheries. The oysters yield the best pearls at about four years of age. Fishing generally commences in the second week in March, and lasts for from four to six weeks, scoording to the renson. The boats are grouped in Alects
of from dinty to seventy, apd start usually at midnight so as to reach the oyster-benks at sunrise. Euch boat generally carries ten divera. On resching the banka signal-gun is freed, and diving commances A stome weighing about 40 lb is atteched to the cord by which the diver is let down. The divers work is pairs, one man diving while the other watches the signal-cord. draving up the sink-stone first, then hauling up the baskets of oysters, and fimally raising the diver himself. On an average the divers remain under water from fifty to eighty seconds, though exceptional instances are cited of men remining below for as long as six minutes. After resting for a minute or two at the surface, the diver descends again; and $s 0$ on, until exhausted, when he comes on board and watches the rope, while his comrade relieves him as diver. The native descends naked, carrying only a girdie for the support of the basket in which he places the peath oystecs. In his submarine work the diver makes skilful use of his tocs. To erm himself egainst the attacks of the aharks and other fishes which infest the Indian waten be carries spikes of inon. wood; and the genuine Indian diver never descends without the incantations of shark-charmers, one of whom accompanies the boat while others remain on shore. As a rule the diver is a short. lived map.

The diving continues from sunrise to about noon, when a gan is fred. On the arrival of the fleet at ahore the divers carry their oysters to a ehed, where they are made up into four heapes, one of which is taken by the diver. The oysters are then sold by auction in lots of 1000 each. The pearis, after removal from the dead oysters, are "chased" by passing through a number of small brass colanders, known as "baskets," the holes in the successive vessels being smaller and smaller. Having been sized in this way, they are sorted as to colour, weighed and valued.

Since the days of the Macedonians pearl-fishing has been carried on in the Persian Guf. It is said that the oyster-beds extend along the entire Arabian coast of the gulf, but the most important are on sandbanks off the islands of Bahrein. The chief centre of the trade is the port of Lingah. Most of the produtts of this fishery are known as "Bombay pearis," from the fact that many of the best are sold there. The shells usually present a dark colour about the edgea, like that of "smoked pearl." The yellow-linted pearls ase sent chiefy to Bombay, while the whiteat go to Bagdad. Very small pearls, much below a pea in size, are generally known as "sced-pearls," and these are valued in India and Chine as constituents of certain electuaries, while occasionally they are calcined for cimmam, or lime, uned with betel as a mesticatory. There la a small peati-fishery near Farachil on the coast of Bombay.

From the time of the Ptolemies pearl-fishing has been prosecuted along the coast of the Rod Sen, especially in the neighbourhood of Jiddah and Koseir. This fishery is now insignificant, but the Arabs still obtain from this district a quantity of mother-af-pearl shells, which are shipped from Alexandria, and come into the market as "Egyptians."

Very fine pearls are obtained from the Sulu Archipelago, on the northeast of Borneo. The mother-of-pearl shells from the Sulu seas are characterized by a yellow colour on the border and back, which unfits them for many ornamental purpoees. Pearl oysters are alco abundant in the seas around the Aru Islands to the south-west of New Guinea. From Labuan a good many peari-shells are occasionally sent to Singapore. They are also obtained from the neighbourhood of Tlmor, and from New Caledonia. The pearl oyster occurs throughout the Pacific, mostly in the clear water of the lagoons within the atolls, though fine shells are also found in deep water outaide the coral reefs. The Polynedin divers do not employ sink-stones, and the women are anid to be more akilful than the men. They anoint their bodies whth oll before diving. Fine pearl-shells are obtained from Navigators' Islands, the Society Ialands, the Low Archlpelago or Paumota Isles and the Gambier Islanda Many of the Gambler pearla present a bronzy tint.

Peari-fishing is actively prosecuted along the western coast of Central America. especially in the Gulf of Calfornia, and to a less ertest around the Pearl Islaods in the Bay of Panama. The
frshing-grounds are in water about 40 ft . deep and the season lasts for four months. An ordinary fishing-party expects to obtain about three toms of shells per day, and it is estimated that one shell in a thousand contains a peari. The pearls are shipped in barrels from San Francisco and Panama. Some pearls of rare beauty have been obtained from the Bay of Mulege, near Los Coyetes, in the gulf of California; and in 1883 a pearl of 75 carsts, the largest on record from this district, was found near La Paz in Californis. The coast of Guayaquil also yields pearis. Columbus found that peart-fishing was carried on in his time in the Gulf of Mexico, and pearls are still obtained from the Caribbean Sea. In the West Indies the best pearls are obtained from St Thomas and from the island of Margarita, off the coast of Vencanela. From Margarita Philip II. of Spain is said to have obtained in 1579 a famous peari of 950 carats.

Of late years good pearls have been found in Shark's Bay, on the coast of West Australia, especially in an inlet termed Useless Harbour. Mother-of-pearl shells are also fished at many other points along the western coast, between the 1 gih and 25 th parallels of south latitude. An important pearl-fishery is also established in Torres Strait and on the coast of Queensland. The shells occur in water from four to six fathoms deep, ahd"the divers are generally Malays and Papuans, though sometimes native Australians. On the western coast of Australia the pearl-abells are obtained by dredging rather than by diving. Pearl-shells have also been found at Port Darwin and in Oakley Creek, New Zealand.
River pearls are produced by the specien of Unio and Amodonto. especially by Unio margaritiferus. Theme speciea belong to the family Unionidae, order Eulamellebranchia. They inhabit the mountainstreams of temperate climates in the northern hemisphereespecially in Scotland, Wales, Ircland, Saxony, Bohemia, Bavaria, Lapland and Canada. The pearla of Britain are meotioned by Tacitus and by Pliny, and a breastplate sudded with Britich pearle was dedicated by Juiius Caesar to Venus Genetrix. As early as 1355 Scotch pearla are referred to in a statute of the goldsmiths of Paris; and in the reign of Charies 11. the Scotch peart trade was aufficiently important to attract the attention of parliament. The Scotch pearl-fiahery, after having declined for years, wae revived in 1860 by a German named Moritz Unger, who visited Scotland and bought up all the pearis he could find in the hands of the peasan: try, thus leading to an eager search for more pearls the following season. It is eotimated that in 1865 the produce of the menson's fishing in the Scotch sivers was worth at least $\{12,000$. This yield, however, was not maintained, and at the present time only a few pearls are obtained at irregular intervals by an occasional Gsherman.
The principal rivers in Sookland which have yielded pearls are the Spey, the Tay and the South Esk; and to a less extent the Doon. the Dee, the Don, the Ythan, the Teith, the Forth and many other streams. In North Wales the Conway was at one time celebrated for its pearls; and it io related that Sir Richerd Wynn, chamberlain to the queen of Charles 11 . presented her with a Conway pearl which is believed to ogcupy a place in the Brtish crowe. in Ifeland the rivers of Donegal, Tyrone and Wexford have yuelded pearla. It is said that Sir John Hawkins the circumnavigator had a patent for pearl-Gishing in the Irt in Cumberland. Although the peart fisheries of Britain are now neglected, it is otherwise with thowe of Gormany. The mont important of these are in the forest-atreame of Bavaria, between Ratisbon and Pamau. The Saxon fisheries are chiefly confined to the basin of the White Elster, and those of Bohemia to the Horazdiowitz district of Wotawa. For more than two centuries the Saxoo fisheries have been carefully regulated by inspectors, who examine the wtreams every apring. and determine where fashing is to be permitted. After a tract has been Gabed over, it is left to rest for ten or fifteen years. The fisber-folk open the valves of the mussels with an lron instrument, and if they find no pear! rentore the muscel to the water.

River pearls are found in many parts of the United States, and have been systematically worked in the Little Miami river, Warrea county, Ohio, and also on the Mississippi, especially about Musca. tine. lowa. The ecason extends from June to October. Japan produces fresh-water pearls, found empecially in the Amodonta paponica. But it is in China that the culture of the peart-mumel is carried to the greatert perfection. The Chinese also obtain marine peerls, and use a large quantity of mother-of-pearl for decorative purposes. More than twenty-two centuries before our era pearls are enamerated as a tribute or tax in Chima ; and they are memioned as products of the western part of the empire in the Rhiys, a dictionary compiled earlier than 1000 B.C. A proceas for promoting the artificial formation of pearls in the Chincse river-museels was discovered by Ye-jin-yang, a native of Hoochow, in the 13 th century; and this process is etill extensitely carried on mear the city
of Teh-tuats, where it forme the staple induaty of meveral willegen, and is aaid to give employment to abtout 5000 people. Leme nume bers of the mussels are collected in May and fune, and the valvea of each are gently opened with a spatula to allow of the introduction of various foreign bodies, which are inserted by means of a forked bamboo stick. These "matrices" are gereernily pellets of prepareed mud, but may be small bosess of bone, brass or mood. After a numbber of thene objects have been placed in convenient positions on ons valve, the unlortunate mollusc is turned over and the operation is repreated on the other valve. The mussels are then placed in challow ponds connected with the canals, sut are nourinhed by tubs of nightwoil beins thrown in from time to time. After several monthe it tome cases two or three years, the mussels are removed, and the pearls which have formed over the matrices are cut from the sbella, While the mollusca themselves serve as food. The matrix lo senerilly extracted from the pear and the cavity filled with whice trax, the aperture being neatly mealed up so as to render the appearamos of the pearl as perfect ais possible. Millions of such pearle are annually sold at Soo-chow. The most curious of these Chinese pearls are those which present tbe form of small seated images of Buddha. The fignres are cat in very thin lead, or stamped In tin, and ase treerted as previoully described. Specimens of theme Buddha pearlo in the Britich Museum are referred to the apecies Dipsas plicata. It should be mentioned that Linnaeus, probably ignorant of what lad long been practised in China, dernonstrated the possibility of producing metificial pearls in the freeh-water musweln of Sweden.
Pink pearis are occasionally lound in the great conch or foumtain shell of the Weat Indies, Strombus cizas, L.; but these, though much prized; are not nacreous, and their tint is apt to fade. They are also produced by the chank shell, Twebinella scol ymus, L. 1 Yellowishbrown pearla, of hittie or no value, are yielded by the Pteme aymamara, and bed-coloured concretions are formed by the Placuma placente. ${ }^{2}$ Black pearls, which are very highly valued, are obtained chiefly from the pear oyster of the Gulf of Mexico. The common marine musel Mytilus edulis aloo produces pearls, which are, however, of little value.

According to the latest researches the cause of pearl-formation is in most cases, perhaps in all, the dead body of a minute parasite within the tissues of a mollusc, around which nacreous deposit is secreted. The parasite is a stage in the life history of a Trematode in some cases, in others of a Cestode; that is to say of a form resembling the common liver-finke of the sheep, or of a tapeworm. As long ago as 1852 Filippi of Turin showed that the species of Trematode Distomum duplicatum was the canse of a pearl formation in the fresh-water mussel Anodontc. Kuchenmeister subsequently investigated the question at• Elster in Saxony and came to a different conclusion, namely that the central body of the pearl was a small specimen of a apecies of water mite which is a very common parasite of A nodonta. Filippi however states that the mite is only rarely found within a pearl, the Trematode occurring in the great majority of cases. R. Drobois and Dr H. Lyster Jameson have made apecial investigations of the process in the common mussel Mytilus edodis. The latter states that the pearl is produced in a sac which is situated beneath the epidermis of the mantle and is lined by an epithelium. This epitbelium is not derived from the cells of the cpidermis but from the internal connective-tissue cells. This statement, if correct, is contrary to what would be expected, for calcarcous matter is usually secreted by the external epidermis only. The sac or cyst is formed by the larva of a species of Trematode belonging to the genus Lewcithodendriwm, a species closely resembling and probably identical with L. somoperiae, which lives in the adult state in the eider duck. At Billiers, Morbihan, in Fraice, the host of the adult Trematode is another species of duck, nimely the common Scoter, Oedemia nisra, which is notorious in the locality for its avidity for mussels. Tremstodes of the family Distomidae, to which the parasite under consideration belongs, usually have three hosts in each of which they pass different stages of the life history. In this case the first host at Billiers is a species of bivalve called Tapes decussefios, but at Plei in Lancashire there are no Tapes and the first stages of the paresite are found in the common cockle. The Trematode enters the first host as a minute newly hatched embryo and
${ }^{1}$ Strombus giear, Le, is a Gastropod belonging to the famity Strombidag of the order Pectiaibranchia. Fuedinive scolymas, Lam. is a Gastropod of the amme order.
${ }^{1}$ Placura placenta, L : belongs to the family Anomiidae; it is found on the shores of North Australia. Pinna squamose, Gmelln, belongs to the Ostreacea; it ocurs in the Mediterranean. Both are Lamelliorteda.
louves it in the form called Carcaria, which is really an immature condition of the adult. The Cercaria makes its way into the timpes of a muaral and there becomes onclosed in the cyst previouly described. If the museel is then swallowed by the duck the Cercarino develop into adult Trematodes or flukes in the Liver or intestines of the bind. In the musels which cseape being devoured the parasites cannot develop further, and they die and become embedded in the nacreous deposit which forms a peerl Dr Jamean points out that, as in other caecs, pearls in Mytilua are conmon in certaio special localitios and rare elsewbere, and that the said localities are those where the parasise and its houta are plentiful.
The first magestion that the most valuable pearls obtained from pearl oysters in tropical oceans might bo due to parasites was made by Kehart in reports to the government of Ceylon in 1857-1859. Recently a spocial investigation of the Ceylon peand Gabery has been ergenixed by Professor Herdman. Herdman and Hornely sind that in the pearl oyster of Ceylon Margaritifara nowgoris, Schum, the nucleus of the pearl is, in all specimens examined, the larva of a Cestode or tapeworm. This larva is of globular form and is of the type known as a cysticercus. As in the case of the musel the larva dies in its cyst and its remains are enshrined in nacreous deposit. so that, is a French writer has said, the ornament associsted in all ages with beauty and riches is nothing but the brilliant sarcophagus of a worm.

The cysticercus described by Herdman and Hornell has on the surface a muecular zone within which is a depression containing a papilla which can be protruded. It was at first identified at the larva of a tapeworm called Tetrarhynchus, and Professor Herdman concluded that the life-history of the pearl parasite consiated of four stages, the first being exhibited by free larvae which were taken at the surface of the sea, the second that in the pearl oyster, the third a form found in the bodies of file-fishes which feed on the oysters, and the fourth or adult stage living in some species of large ray. It has not however been proved that the pearl parasite is a Tetrarhynchus, nor that it is connected with the free larva or the form found in the filc-fisb, Balistes; nor has the adult form been identified. All that is certain is that the pearls are due to the presence of a parasite which is the larva of a Cestode; all the rest is probability or possibility. A French naturalist, M. Scurat, studying the pearl oyster of the Gambler Archipelago in the Pacific, found that pearl formation was due to a parasite quite similar to that described by Herdman and Hornell. This parasite was described by Professor Giard as characterized by a rostrum armed with a singie terminal sucter and he did nol identify it with Tetrarhynchus.

Genuine precious pearle and the moat valuable mother-of-peart are produced by various species and varieties of the genus Moleagrine of Lamarck, for which Dr Jameson in his recent revision of the species prefern the name Margaritutera. The genus is represented in tropical regions in all parts of the world. It befongt to the fa mily Aviculdae, which is allied to the Pectems or seallop abells. In this family the hinge border is straight and prolonged into two auriculac; the foot has a very stout byssus. Melsagrina is distinguished by the small size or comptete absence of the postcrior auricula. The species are as follows. The type species is Melecgrina margaritifera, which has no teeth on the hinge. Geographical races are distinguished by different na mes in the trade. Specimens from the Malay Archipelago have a dark band along the margin of the nacre and are known as black-edged Banda shell; those from Australia and New Guinea and the neighbouring islands of the western Pacific are called Australian and New Guinea black-lip. Another variety occurs la Tahiti, Gambier Islands and Eastern Potynesia generally, yieldinf both pearia and chell. It occurs aleo in Cbina, Coylon. the Andaman Islands and the Maldives. Another form is talicen at Zanzibar. Mada. pascar, and the neighbouring islands, and is called Zansibar and Madagascar shell. Bombey shell is another tocal form faitied in the Persian Gulf and shipped via Bombay. The Red Sea variety in known as Egyptian shell. Another variety occurs along the weat coast of America and from Panama to Vancouver, and supplics Panama shell and some pearls. A larger form attaining a foot in diameter and a meight of 10 B per pair of shella, is comedered sa a distinct apecies by br Jameson aad named Margaritiforc mentima. It is found along the north coast of Auserabia and New Guinet and the Malay Archipelago. The nacreous surface of this shell is white, without the black or dark margin of the common species; it is known in the trade as the silvertip, gold-lip and by other names

Dr Jameson distinguishes in addition to the above thirty-two species of Morgarififera or Meleggrinis; all these have rudimentary teeth on the hinge. The most important species in Meleagher vulgaris, to which belong the pearl oyster of Ceylon and aoutharn India, the lingah shell of the Persian Gulf and the pearl oyster of the Red Sea. Since the opening of the Suez Cenal the latter form has invaded the Medicerrancan, specimens having been taken at Alexandria and at Malta, and attempts have been made to cultivate it on the French coast. The species occurs also on the coasts of the Malay Peninsula, Australia and New Guicen, where it is fushed both for its shells (Australian lingah) and for pearls. Two species occur on the coasts of South Arrica but have no market value. Meleagrind carchayiarum is the Shark's Bay shell of the London market. It is taken in large quannities at Shark'e Bay. Western Australiz, and is of rather snuall value; it also yields pearls of inferior quality. The pearl oyster of Japan, known as Japan lingah, is probably a variety of Mcleagrina vulgaris. Meleagrina radiala is the West. Indian pearl oyster.

The largest and steadiest consumption of mother-odopearl in in the button trade, and much is also consumed by cutlers for handle of íruit and chessert knives and forks, pocket-knives, \&c. It is also used in the inlaying of Japanese and Chinese tacquers, European lacquered papier-mache work, trays, \&ic., and as an ormamental inlay generally. The carving of pilgrim shelly and the ebaboration of crucifuxes and ornamental work in mother-of-pearl is a dirtinctive industry of the monks and other inhabitants of Bethlehem. Among the South Sea lslands the shell is largely fashioned into fishing-hooks. Among shells other than those of Meleagritho martarilifera used as mother-of-pearl may be mentioned the Creen Ear or Onmer shell (Haliotis \&ubercmiala) and aeveral other apecies of Hatiotis, besidee various species of Turbo.

Artificial pearls were first made in western Europe In 1680 by Jacquin, a rosary-maker in Paris, and the trade is now largely carried on in France, Germany and italy. Spherem of thin glase are filled with a preparasion known as "essence d'orient," made from the silvery scales of the bleak or "ablette," which is caused to adhere to the inner wall of the glube, and the cavity is iben flled with white wax. Many imitation pearls are now formed of an opaline glass of nacreous lustre, and the soft appearance of the pearl obtained by the judicious use of hydrofluoric acid. An excelleat substitute for black pearl is found in the so-called "iromatone jeweiry," and consists of cluse grained hacmatite, not too highly polished; Dut the great density of the hacmatite immediately destroys the illusion. Pink pearls are imitated by turning amall ophere out of the rosy part of the conch shell, or even out of pink coral.

See Clements R. Markitam "The Tinnevelly Pearl Fishery" in Journ. Soc. Ards (1867), xva, 256: D. T. Macgowan. "Pearla and Pearl-making in China, ibid. (1854). iu. 72: F. Hague, "On the Natural and Artificial Production of Pearls in China." in Journ. Rey. Asiatic Soc. (1856), vol. xvi.: 11. J. Le Heck. "Pearl Fishery to the Gulf of Manar.' in Asıatıc Reseorches (t798), v. 393; K. Mobius, Due echlem Perlen (Hamburg, 1857): H. Lyser Jameson, "Formation of Pearls," Proc. Zood. Soc. (1902), pl. I; tdem." On the Itlentity and Distribution of Mother-of-Pearl Oysters," Proc. Zoed. Soc. (igoi), pl 1. pp. 372-394; Herdman and HorneH. Rep. Cejdom Peorl Fisheries (London, Royal Soc-, 1903): and Kunz and Stevenson, Book of the Pearl (New York, 1908), with bibliography.
(U. T, C.)

PEARL THB. The Middle-English poem known as Pearl, or The Pearl, is preserved in the unique manuscript Cotton Nero Ax at the British Muscum; in this volume are contained also the poems Cleanress, Poticnce, and Sir Gawayne and the Green Knight. All the picces are in the same handwriting, and from internal evidences of dialect, style and parallel references, it is now generally accepted that the poems arc all by the same author. The MS., which is quaintly illustrated, belongs to the end of the 14th or the beginning of the $15^{\text {th }}$ century, and appears to be but little later than the date of composition; no line of Peorl or of the other poems is elsewhere to be found.

Pcasl is a pret's lament for the loss of a girl-child, "who lived not upon earth two years "-the poet is evidently the child's father. In grief be visits the little grave, and there in a vision beholds his Pearl, now transfigured as a queen of heaven-he sees her beneath "a crystal rock," beyond a stream; the dreamer would fain cross over, but cannot. From the opposite bank Pearl, grown in wisdom as in stature, instructs him in lessons of faith and resignation, expounds to bim the mystery of her transfiguration, and leads him to a glimpse of the New Jerusalem. Suddenly the city is filled with glorious maidens, who in long procession glide towards the throne, all of them clad in white, pearl-bedecked robes as Pearl herself. And there he sees, 100 , "his little queen." A great lovelonging possesses him to be by her. He must peeds, plunge
into the stream that keeps him from her. In the very effort the dreamer awakes, to find himself resting upon the little mound where his Peanl had "strayed below":-

> "1 roured me, and fell in preat dismay,
> And, eighing, to ruyself reid: Now all be to that Privec's pletsure.".

The poem consists of one hundred and one stanzas, each of twelve lines, with four accents, rhymed $a b, a b, a b, a b, b c, b c$; the versification combines rhyme with alliteration; trisyllabic effects add to the easy movement and lyrical charm of the lines. Five stanzas (in one case six), with the same refrin, constitute a section, of which accordingly there are twenty in all, the whole sequence being linked together by the device of making the first line of each stanza catch up the refrain of the previous verse, the last line of the poem roechoing the first Une. The author was not the creator of this form, nor was be the last to use it. The extant pieces in the metre are short religious poems, some of the later (e.s. God's Comploins, falsely atuributed to Scottish authorship) revealing the influence of Pearl.
The dialect is West Midland, or rather North-WCst Midland, and the vocabulary is romarkable for the blending of native apeech with Scandinavian and Romance. elementa, the latter partly Anglo-French, and partly learned French, due to the author's knowledge of French literature.
"While the main part of the poem," according to Gollances, "is a paraphrase of the closing chapters of the Apocalypse and the parable of the Vineyard, the poet's debt to the Romauns of the Rose is noteworthy, more particularly in the description of the wonderful land through which the dreamer wanders; and it can be traced throughout the poem, in the personification of Pearl as Reason, in the form of the colloquy, in the details of dress and ommament, in many a characteristic word, phrase and reference. 'The river from the throne,' in the Apocalypse, here meets 'the waters of the wells' devised by Sir Mirth for the Garden of the Rose. From these two sourcos, the Book of Revelation, with its dilmost Celtic glamour, and The Romamnt of the Rase, with its almost Oriental allegory, are derived much of the wealth and brillisncy of the poem. The poet's fancy revels in the richness of the heavenly and the earthly paradise, but his fancy is subordinated to his earnestness and intensity."
The leading motifs of Pearl are to be found in the Gospelin the allegory of the merchant who sold his all to purchase one pearl of great price, and in the words, wo fraught with solece for the child-bereft, "for of such is the Kingdom of Heaven." Naturally arising from the theme, and from these motijs, some theological problems of the time are touched upon, or treated somewhat too elaborately perhapa, and an attempt has beeri made to demonstrate that Pearl is merely allegorical and theological, and not really a lament. Those who hold this view surely ignore or fail to recognize the subtie personal touches whereby the poem transcends all its theological interests, and makes its simple and direct appeal to the human heart. Herein, too, lies its abiding charm, over and above the poetical talent, the love of nature, colour and the picturesque, the technical skill, and the descriptive power, which in a high degree belonged to the unknown poet.
Various theories have been advanced as to the authorship of Pearl and the other poems in the manuscript. The claims of Huchown "of the Awle Ryale" have been vigorously (but unsuccessfully) advocated; the case in favour of Ralph Strode (Chaucer's "philosophical Strode ")-the most attractive of all the theories-is still, unfortunately, " not proven." By piecing together the personal indications to be found in the poems an imaginary biography of the poet may be constructed. It may safely be inferred that he was born about 1330 , somewhere in Lancashire, or a littie to the north; that he delighted in openair life, in woodcraft and sport; that his early life was passed amid the gay scenes that brightened existence in medieval hall and bower; that he availed himself of opportunities of study, theology and romance alike claiming him; that he wedded, and bad a child named Margery or Marguerite-the Dnisy; or the

Peart-at whose death hin happlness drooped and lifet foy ended.
The four poems are closedy linked and belong to othe pariod of the poet's carser. In Geamayne, probably the firat of the four, the poet is still the minstrel rejoicing in the glamour of the Arthurian tale, but uading it, in almost Spenserian apirit, to poine a moral. In Pearl the minstrel has become the elegiac poet, harmonizing the old Teatonic form with the newer Romance rhyme. In Clearness be has discarded all attructions of form, and writes, in direct alliterative metre, a atern homily on chastity. In Pationce-a bomiletic paraphrate of Jonah-he eppears to be autobiographical, reminding himself, while teaching othern, that "Poverty and Patience are needs playtellows." Hit had evidently fallen on evil daya.
It is noteworthy that soon after 135^{8} Boccucclo wrote bis Latin eclogue OXympia in memory of his young duughter Violante. A comparative atudy of the two poems is quil of interest; the direct influence of the Latin on the English poem is not so clear as has been maintained. Pearl cannot be placod earlier than 1360 ; it is moat probably later than Olympio.
Bibliographr.-Texts and Translations: Early Aliteration Poems in the West Mydland Dralect of the Rowplownik Cemtary (odited by Richard Morrio, Early English Text Society 1. 1864; revived, 1869, 1885, 1896, 1901); Pcarl, an Emglash Poem of the Fourteent Century, edited. with a Modern Renderven, by Israel Gollanci (with frontispiece by Holman Hunt, and prefatory lines, went to the editor by Tennyson): revised edition of the text, privately printed, 1897; new edition of text and translation "King's Clatics," prato 1911; Factimile of MS, Corton Nero Ax, 1910-1911; The Pearl, (edited by C. G. Osgood; Borton, 1906). Translatione by Gollancs las above); G. G. Coulton (1906); Osgood (1907); Miss Mead (1908); Mise Jewett (1908) ; part of the poem, by S. Weir Mitctrell (1906).

Luerary History: Tenbrink, Aisisory of Englask Luterouve (tran lated by H. M. Kennedy, 1889, i. 336-351); G. Neleon, Huchosm of the Aute Ryale (Glasgow, 1902) Carleton Brown, The Author of the Pearl, considered in the Light of his Theological Opionions (publications of the Modern Languages Asoociation of Arnerice, xix. 115-153; 1904); W. G. Schofield, The Nature and Fabre of an Pearl (ibid. pp. 154-a15: 1904); aleo Symbolsmm, Allegory and A ulobrogra phy (ibid. xxiv. $585-675$; 1909); I. Gollance, Cambridst Haslory of English Luteralupe, vol. i. ch. xv.

Works connected with Pearl: Sis Gawayme, a Collection of Anchent Romantes Poems (edited by Sir F. Madden; London, 1dyo); St Gawayne (re-edited by Richard Morris, E.E.T.S., 1864, 1869: text revised by 1. Collancz. 1893); The Parlement of the The Ases, and Wymnere and Wasloure (edited by I. Gollancz: London, 1897); Hymns to the Virtin and Chrest (edited by F. J. Fumivall, E.E.T.S. 1867): Poditical, Relsqious and Love Poems (edited by F. J. Furnivall E.ETS, 1866, 1903)

Metre.-Clark 5 Northup, Sludy of the Melrucal Siructure of the Paarl' (publications of the Modern Languages Assoclation, xif. 326-340).
Phonologr.-W. Fick, 2 sm mittelenglischen Gedicht son deer Perle (Kiel, 1885).
(1. G.)

PEARSALL ROBERT LOCAS DB ($1795-1856$), English composer, was born on the 14th of March 1795, at Clifton. Educated for the bar, he practised till $\mathbf{~} 8 \mathbf{2 5}$, when he left England for Germany and studied composition under Panny of Mainz: with the exception of three comparatively short visits to England, during one of which he made the acquaintance of the English school of madrigals, he lived abroad, selling his family property of Willsbridge and settling in the castle of Wartensee, on the lake of Constance. He produced many works of lasting beauty, nearly all of them for voices in combination: from his part songs, such as "Oh, who will o'er the downs?" to his elaborate and scholarly madrigals, such as the admirable eight-part compositions, "Great God of Love" and "Lay a Garland." or the beautiful "Light of my Soul." His reception into the Roman Church in his later years may have suggested the composition of some beautiful sacred music, among other things a fine "Salve Regina." He wrote many valuable treatises on music, and edited Roman Catholic hymn-book. He died on the sth of August 1856 .

PRAISONT, CHARLES HENRY (1830-1894), British historian and colonial statesman, was born in London on the 7 th of September 1830. After receiving his early education at Rugby and King's College, London, he went up to Oxford, where he
was generally regarded as the most brilliant of an exceptionally able set, and in 1854 obtained a fellowship at Oriel College. His constitutfonal weakness and bad eyesight forced him to abandon medicine; which he had adopted as a caseer, and in 1855 be returned to King's College as lecturer in English language and literature, a post which he ahmost immediately quitted for the profescorship of modern history. He made numerous journeys abroad, the most important being his visit to Russia in 8858 , his account of which was published anonymously in 1859 under the titie of Ressio, by a Recent Trateller; an adves. turous journey through Poland during the insurrection of $\mathbf{1 8 6 3}$, of which be gave a sympathetic and much praised account in the Specteror; and a visit to the United States in 1868, where be gathered materials for his subsequent discussion of the negro problem in his National Life and Character. In the meantime, besides contributing regularly, first to the Saturday Revicu and then to the Specteter, and edising the National Review, he wirote the first volume of The Early and Middle Ages of England (1861): The work: was bitterly attacked by Freeman, whose "extravi. gant Saxionlsm "Peatson had been umeble to adopt. It appeared in 1868 in a revised form with the title of History of England daring the Early and Middle Ages, accompanied by a second volume which met with general reoognition. Still better was the recoption of his admirahle Maps of England is the Firss Thinteen Cenfaries (1870). But as the resalt of these habours he whs threstened with total blindsess; and, disappointed of receiving a professorship at Onford, in r871 he emigrated to Aistralla. Here he married and settled down to the life of a sbeep-larmer; hut finding his bealth and eyesight greatly improved, he came to Melbourne as lecturer on history at the universlty. Soon afterwards he became head master of the Presbyterim Ladies' College, and in this position practically organised the whole system of higher ectucation for women in Victoria. On his electlom in 1878 to the Legisfative Assembly be definitely adopted polities as his carem. His viows as the hand quastion and secular education aromed the bitter hostility of the rich squatters and the clergy; but his singular nobility of charecter, no lose than his powers of mind, made him one of the most influemital men in the Asecmbly. He was minister without portfolio in the Berry cabinet ($8880-188 \mathrm{x}$), and as minister of education to the coalition government of 1886 to 1890 te was able to pass into law many of the'recommendations of his report. His reforms eatirely remodelled state education in Victoria In 18gz a frech uttaek of illness decided mim to return to England. Here be puhlithed in 18gs the best known of his works, National Life and Charocter. It is an attempt to show that the white man ean fourish only in the temperate zones, that the yellow and hlack races must increase out of all proporcion to the white, and must in time crush out his civilization. He died in London on the 2gth of May 1894.
A volume of his Reviews and Critical Essays was published in 1896, and was followed in 1900 by his autoblography, a work of great interemt.
PRARSOH, 50HR (1612-r686), English divine and scholar, was born at Great Snoring, Norfolk, on the 28th of Fehruary 1612. From Eton he passed to Queen's College, Cambridge, and was elected a scholar of King's in April 1632, and a fellow in 1634. On taking orders in $\mathbf{r} 639$ he was collated to the Salisbury prebend of Nether-Avon. In 1640 be was appointed chaplain to the lord-keeper Finch, by whorn he was presented to the living of Thorington in Suffalk. In the Civil War he acted as chaplain to George Goring's forces in the west. In 1054 he was made weekly preacher at St Clement's, Eastcheap, in London. With Peter Gunning be disputed against two Roman Catholics on the subject of schism, $\&$ one-sided account of which was printed in Paris by one of the Roman Catholic disputants, under the titte Scisme Unawak't (1658). Pearson also argued against the Puritan party, and was much interested in Brian Walton's polyglot Bible. In 1659 he published in London his celebrated Exposition of the Creed, dedicated to his parishioners of St Clement's, Eastcheap, to whorn the substance of the work had been preached several years before. In the same year he
published the Colden Remains of the eve-memorade Mr. Johm Hakes of Elom, with an interesting memolr. Soon after the Restoration he was presented by Juron, bishop of London, to the rectory of St Christopher-le-Stocks; and in 1660 he was created doctor of divinity at Camhridge, appointed a royal chaplain, prebendary of Ely, archdeacon of Surrey, and master of Jesus Colloge, Cambridge. In 1661 he was appointed Lady Margaret professot of divinity; and on the firat day of the ensuing year he was nominated one of the commissioners far the review of the liturgy in the cooference held at the Savoy. There he won the estecm of his opponents and high praise from Richard Baxter. On the 14th of April 1662 he was made master of Trinity College, Camhridge. In 1667 he was admitted a fellow of the Royal Society. In 16ya he puhlished at Cambridge Vindiciae epistolarum S. Ignatii, in 4to, in answer to Jean Daille. His defence of the authenticity of the letters of Ignatius has been confirmed by J. B. Lightfoot and other recent scholars. Upon the death of John Wilkins in 1672, Pearson was appainted to the bishopric of Chester. In 1682 his Annoles cypriamici were published at Oxford, with John Fell's edition of that father's works. He died at Chester on the 16 th of July 1686. His last work, the Two Dissertations on the Succession and Times of the First Bishops of Romet, formed with the Arnales Poulini the principal part of his Opera posikma, edited hy Henry Dodwell in 1688.

See the memoir in Biographia Britannica, and another by Edward Churton, prefised to the edition of Pcarson's Minor Theological Works (2 vols., Oxford, 1844). Churton also edited almost the whole of the theological writinge.
 architect, son of William Pearson, etcher, of Durham, wes born in Brussels on the gth of July 1817. He was articled at the age of fourteen to Ignatius Bopomi, architect, of Darham, but soon removed to London, and worked under the elder Handwicke. He revived and practised largely the art of vanlting, and acquired in it a proficiency unnivalled in hisgeneration. He was, bowever, hy no means a Gothic purist, and was also lond of Renaissance and thoroughly grounded in classical architecture. From the erection of his first church of Ellerker, in Yorkshire, in 1843, to that of St Peter's, Veunhall, in 1864, his buildings are Geometrical in manner and exhibft a close adherence to procedent, but elegance of proportion and refinement of detail tift them out of the commonplace of mere imitation. Holy Trinity, Westminster (1848), and St Mary's, Dalton Holme (1858), are notable examples of this phase. St Peter's, Vauxhall (1864), his fint groined church, was also the first of a series of buildings which brought Pearson to the forefront among his contemporaries. In these he applied the Early English style to modern needs and modern economy with unrivalled suceess. St Ausustine's, Kilbarn (8_{871}), St John's, Red Lion Square, Londom (1874), St Alhan's, Birmingham (i880), St Michacl's, Croydon (1880), St John's, Norwood (1881), St Stephen's, Bournemouth (1889), and All Saints', Hove (1889), are characteristic examples of his matured work. He is best knowt hy Truro Cathedral (1880), which has a special interest in its apt incorporation of the south aisle of the ancient church. Pearson's conservative spirit fittod him for the reparation of ancient edifices, and amont cathedrals and other mistarical buildinga placed under his caro were Lincoin, Chichester, Peterborough, Bristal and Exeter Cathedrals, St George's Chapel, Windeor, Weatminster Hail and Westminstor Abbey, in the surveyorship of which last he succeoded Six G. G. Scott. Except es to the porches, the work of Scoct, he re-faced the morth transept of Westminater Abbey, and atso deaigned the vigorous organ cases. In his handling of ancient bulldings he was repcatedly opposed by the ultra anti-restorers (as in the case of the west front of Peterbonough Cathedral in 1896), but he generaliy proved the soumdness of his judgment by his executed work. Pearson's practice wess not confined to church building. Treberfydd House (2850), Quar Wood (1858), Lechlade Mianor, an Elizabothan house (1873), West wood House, Sydenham, in the French Remaisanace style (1850), the Astor estate offices (1891) upon the Victoris

Embankment, London, the remodelling of the Interiors of Clieveden House (1893) and No. 18 Carlton House Terrace (1894), with many parsonages, show his aptitude for domeslic architecture. In general design he first aimed at form embracing both $^{\text {ent }}$ proportion and contour; and his work may be recognized by accurate scholarship coupled with harmonious dotail. Its keynotes are caniousnesa and refinement rather than boldness. He died on the 1sth of December 1897, and was huried in the nave of Westminster Abbey, where his grave is marked by the appropriate motto Suslinuit et abstinuil. He was elected A.R.A. in 1874 , R.A. in $\mathbf{8 8 0}$, was a fellow ol the Socicty of Antiquaries, aad.a fellow and member of the Council of the Royal Institute of British Architects.
The following are nome of Pearson's more important works, not already named: Ferriby church (1846); Stow, Lincolnshire (restoration, 1850): Weybridge. St James'a (1853) ; Frecland church, parsonage and schools (1866); Kilburn. St Petcr's Home (1868); Wentworth church (1872): Horslorth church (8874); Cullercoutt, St George's (s882): Chiswick. St Michael's (restoration, 1882); Great Yarmouth church (restoration. 1883); Liverpool, St Agnes' (1883): Woking Convalemcent Home (1884); Headingley church (1884): Torquay, All Saints (1884), Maidstone, All Saints (restoration, 1885); Shrewsbury Abbey (i886); Ayr, Holy Trinity ((8866); Hythe church (rettoration, 1887); Oxiord. New College, reredos (completion, 1889): Cambridge University Librery (additions, 1889); Friern, Barnel,'St John'a (i8go); Cambridge, Sidney Sussex College (riernitions, 1890): Middlesex Hospital chapel (i8go): Bishopsgate, St Helen's (restoration, 1891): Maida Hill (Irvingite) church (1891); Barking. All Hallows (restoration, 1893); Cambridge, Emmanuci College' (additions, I893); Ledbury, St_{t} Michaed's (restoration, 1894): Malta, Memorial chureh (1894) ; Port Talbot chureh (1895). (W. D.C.)

PRARY, ROBERT EDFIS (1856-), American Arctic explorer, was born at Cresson, Pennsylvania, on the 6th of May 1856. He graduated at Bowdoin College in 1877, and in 188! became a civil engineer in the U.S. navy with the rank of lieutenant. In 188, he was appointed assistant-engineer in connexion with the surveys for the Nicaragua Ship Canal, and in $\mathbf{2} 887$ - 1888 he was in charge of these surveys. In 1886 he ohtained leave of absence for a summer excursion to Disco Bay on the west coast of Greenland. From this point he made a journey of nearly a hundred miles into the interior, and the experience impresed him with the practicability of using this so-called inland ice-cap as a bighway for exploration. In 8891 he organized an expedition under the auspices of the Academy of Natural Sdences of Philadelphia. The party of seven included Lieut. Peary's wife, the first white woman to accompany an Arctic expedition. After wintering in Inglefield Gulf on the northwest coast of Greenland, in the following spring Lieut. Peary, with a young Norwegian, Eivind Astrup, crossed the inland ice-cap along its northern limit to the north-east of Greenland and back. The practical geographical result of this journey was to establish the insularity of Greenland. Valuable work was also performed by the expedition in the close study which was made of the isolated tribe of the Cape York or Smith Sound Eskimos, the most northerly people in the world. ${ }^{1}$ Licut. Peary was able to fit out another Arctic expedition in 1893, and was again accompanied by Mrs Pcary, who gave birth to a daughter at the winter quarters in Inglefield Gulf. The expedition returned in the season of 1894, leaying Peary witb his coloured servant Henson and Mr Hugh G. Lee to renew the attempl to cross the inland ice in the next year. This they succeeded in doing, but without being able to carry the work of exploration any farther on the opposite side of Greenland. During a summer excursion to Melville Bay in 3894, Peary discovered three large meteorites, which supplied the Eskimos with the material for their iron implements, as reported by Sir John Ross in 1858, and on his relurn in 1805 he hrought the two smaller poes with him. The remsining meteorite was brought to New York in 1897. In 8898 Lieut. Peary published Northward ower the Great Ice, a record of all bis expeditions up to that time, and in the same year be started

[^4]on another expedition to the Aretic regiona. In thil and aubsequent expeditions be received finaacial aid Irom Mr Morria Jesup and the Peary Arctic Club. The greatest forethought was bestowed upon the organization of the expedition, a lour. years' programme being laid down at the outset and a syatem of relief cxpeditions provided Kor. A distinctive feature was the utilization of a company of Eskimos. Although unsuccessful as regards the North Pole, the expedition aethieved tbe accurate survey (1900) of the northern limit of the Greenland continent and the demonstration that beyond it lay a Polar ocean. In 1902 Peary with Henson and an Eskimo advanced as far north as lat. $84^{\circ} 17^{\prime} 27^{\circ}$, the highest point then reached in the western hemisphere, Lieut. Peary had now been promoted to the rank of Commander, and on his return he was elected. president of the American Geographical Society. In November 1903 he went to England on a naval commission to inquire into the system of naval barracks in Great Britain, and was presented with the Livisgstone Gold Medal of the Royal Scottish Geographical Society, Commander Peary then began preparations for another expedition by the consuruction of a special ship, named the "Roosevelt," the firat ever buidt in the United Statcs for the purpose of Arctic exploration. He sailed from New York on the roth of July roos, having two years' supplics on board. The "Roosevelt" wintered on the north coast of Grant Land, and on the a1st of February a start was made with sledges. The party experienced serious delay owing to open water between 84° and 85°, and farther north the ice was opened up during a six days' gale, which cut off communications and destroyed the depors which had been established. A steady easterly drift was experienced. But on the 21 st of April, 1906, $87^{\circ} 6^{\prime}$ was reached-the "farthest north" altained by man-by which time Peary: and his companions were suffering severe privations, and had to make the return journey in the face of great difficulties. They reached the north coast of Greenland and subaequenily rejoined the abip, from which, after a week's rest, Peary made a sledge journey along the north coast of Grant Land. Returning home, the expedition reached Hebron, Labrador, on the igth of October, the " Roosevelt "having been nearly wrecked en routc. In 1907 the narrative of this journey, Necrest the Pole, was published.

In rgos Peary started in the "Roosevelt" on the journey which was to bring him his final success. He left Etah on the 18th of August, wintered in Grant Land, and set forward over the ice from Cape Columbia on the rat of March 1gog. A party of sis started with him, and moved in sections, one in front of another. They were gradually seat back as supplies diminished. At the end of the month Captain Bartlett was the only white man left with Peary, and he turned back in $87^{\circ} 4^{\prime} \mathrm{N}$., the highest latitude then over reached. Peary, with his negro servant and four Eskimos, pushed on, and on the 6th of April 1909 reached the North Pole. They remained some thirty hours, took observations, and on sounding, a few miles from the pole, found no bottom at 1500 fathoms. The party, with the exception of one drowned, returned safely to the "Roosevelt." which left ber winter quarters on the s8th of July and reached Indian Harbour on the sth of September. Pcary's The North Pole: IIs Discosery in 1000 was published in 1910.
Just before the news came of Peary's success another American explorer, Dr F. A. Cook (b. 1865), returning from Grecnland to Europe on a Danish ship, claimed that be had reached the North Pole on the arst of April 1908 . He had accompanied an expedition northward in 1907, prepared to attempt to reach the Pole if opportunity offered, and according to his own story had done so, leaving his party and taking only some Eskimos, early in 1908 . Nothing had been heard of him since March of that year, and it was supposed that he had perished. Cook's claim to have forestalled Peary was at first credited in various circles, and he was given a rapturous reception at Copenhagen; but scientific opinion in England and America was more reserved, and eventually, after a prolonged dispute, a special committee of the university of Copenhagen, to whom his documents were submitted, declared that they
contained no prool that he had reached the Pole. By that time most other people had come to an adverse conclusion and the censation was over.

Prasant (O. Fr. paysant, Mod. paysan; Lat. pagensis, belonging to the pagus or country; cf. "pagan "), a countryman or rustic, either working for others, or, more specifically, owning or renting and working by his own labour a small plot of ground. Though a word of not very strict application, it is now frequently used of the rural population of such countries as France, where the land is chiefly held by small holders, "peasant proprietors." (See Alloments and Metayage).

PRASS, EDWARD ($1767-1858$), the founder of a tamous industrial Quaker family in the north of England, was born at Darlington on the 3 1st of May 1767, his father, Joseph Pease (1737-1808), being a woollen manufacturer in that town. Having retired from this business Edvard Pease made the acquaintance of George Stephenson, and with him took a prominent part in constructing the railway between Stockton and Darlington. He died at Darlington on the 3 tst of July 18j8. His second son, Joseph Pease ($1799-1872$), who assisted his father in his rilway enterprises, was M.P. for South Durham from 1832 to 1841, being the first Quaker to sit in parliament. He was interested in collieries, quarries and ironstone mines in Durham and North Yorkshire, as well as in cotton and woollen manufactures; and te was active in educational and philanthropic work. Another son, Henry Pease (1807-188r), was M.P. for South Darham from 1857 to 1865. Like all the members of bis family he was a supporter of the Peace Society, and in its interests he visited the emperor Nicholas of Russia just before the outbreak of the Crimean War, and later the emperor of the French, Napoleon III.
Joseph Pease's eldest son, Sir Joseph Whitwell Pease (18281903), was made a baronet in 1882. He was M.P. for South Durham from 1865 to $188{ }_{\mathrm{g}}$ and for the Barnard Castle division of Durham from 1885 to 1903. His elder son, Sir Alfred Edward Pease (b. 1857), who succeeded to the baronetcy, became famous as a hunter of big game, and was M.P. for York from 1885 to 1892 and for the Cleveland division of Yorkshire from 1897 to 1902. A younger son, Josepb Albert Pease (b. 1860), entered parliament in 1892 ; and in 1908 became ctrief Liberal whip, being advanced to the cabinet as chancellor of the duchy of Lancaster in 1910.

Another son of Joseph Pease was Arthur Pease (1837-1898), member of parliament from 1880 to 1885 and again from 1895 to 1898. His son, Herbert Pise Pease (b. 1867), M.P. for Darlington 1898-1910, was one of the Unionist Whips.
The Diaries of Edsocrd Pease were edited by Sir Alfred Pease in 1907.

PEAT (possibly connected with Med. Lat. petia, pecia, piece, ultimately of Celtic origin; cf. O. Celt. pet, O. Ir. pit, Welsh peth, portion), a prodict of decayed vegetation found in the form of bogs in many parts of the wodd. The continent of Europe is estimated to contain $212,700 \mathrm{sq}$. m . of bog; Ircland has $2,858,150$ acres, Canada 30,000,000 acres, and the United States $20,000,000$ acres. The plants which give origin to these deposits are mainly aqualic, including reeds, rushes, sedges and mosses. Sphagnum is present in most peats, but in Irish peat Thacomitrum lanuginosum predominates. It seems that the disintegration of the vegetable tissues is effected partly by moist at mospheric oxidation and partly by anaerobic bacteria, yeasts, moulds and fungi, in depressions containing fairly still but not stagnant water, Fhich is retained by an impervious bed or undertying strata. As decomposition proceeds the products become waterlogged and sink to the bottom of the pool; in the course of time the deposits attain a considerable thickness, and the lower layers, under the superiscumbent pressure of the water and later deposits, are gradually compressed and carbonized. The most favourahle conditions appear to be a moist atmosphere, and a mean annual temperature of about 45°. F.; no bogs are found between latitudes $45^{\circ} \mathrm{N}$. and $45^{\circ} \mathrm{S}$.
Peat varics from a pale yellow or brown flious substance, resembling turf or compressed hay, containing conspicuous plant
remains, to a compact dark brown matetial, resembling black elay when wet, and some varieties of lignite when dry. Two typical forms may be noticed: "Hill peat" (the mountain or brown bogs of Ireland), found in mountainous districts, and consisting mainly of Sphagnwm and Andromoda; and "Bottom peat " (the lowland or red bogs of Ireland), found in lakes, rivers, and hrooks, and containing Hypmam. It always contains much water, up to 90%, which it is necessery to remove belore the produet can be efficiently employed as a fuet, and for most other purposes. A specimen dried at $100^{\circ} \mathrm{C}$. had the composition: carbon $=60 \cdot 48 \%$, hydrogen $=6.10 \%$, oxygen $=32 \cdot 55 \%$, nitrogen $=0.88 \%$, ash $=3.30 \%$; the ash is very variable-fron I to 05%-and consists principally of clay and sand, with lesser amounts of ferric oxide, lime, magnesia, \&c. The specific gravity has been variously given, owing to the variable water content and air spaces; when dried and compressed, however, it it denser than water.

Peat-winning presents certain special features. The general practice is to cut a trench about a foot deep with a peculiarly shaped spade, termed in Ireland a "slane," and remove sods from 3 to 4 ft . long. When one layer has been removed, the next is attacked, and so on. If the deposit be more solid stepworking may be adopted, and should water be reached recourse may be had to long-handied slanes. The sods are allowed to drain, and then stacked for drying in the air, being occasionally turned so as to dry equally; this process may require about six weeks. The dried sods are known as "dug peat." Excavators and dredges are now extensively used, and the drying is effected in heated chambers, both fixed and revolving.
The low value of ordinary dug peat as a fuel has led to processes for obtaining a more uselul product. In M. Eikenberg's process the wet peat is pulped and milled so as to make it of uniform composition, and the pulp passed into an oven maintained at $180^{+}-200^{\circ}$ F., where it is carbonized by superheated water. The pressed product, which resembles lignite, still contains 8 to 14% of water; this is driven of by heat, and the residue briquetted. The final product is ncarly equal to coal in calorific value, and has the additional advantage of a lower sulphur content- 0.2 to 0.4% against about 2% in ordinary coal. M. Zeigleris method leads to the production of a useful cokc. Both these processes permit the recovery of valuable by-products, especially ammonium sulphate. Experiments for obtaining a gas suitable for consumption in gasengines have been followed by commercial processes devised by the Mond Gas Corporation, London, and Crossley Bros, of Manchester, and by Caro and Frank in Germany. The processes essentially consist in destructively distilling peat in special retorts and under specified conditions, and, in addition to the gas, there is recovered a useful coke and also the nitrogen as ammonium sulphate.
The conversion of the nitrogen into ammonia has been the oubject of much work, and is commercially punued at a works at Carnlough. Co. Antrim, under patents held by H. C. Woltereck. The peat is treated with a mixture of air and water vapour in special furnaces, and the gascous products, including paraffin tar, acetic acid and ammonia, are led through a special scrubber to. remove the tar. then through a tower contalning milk of lime to abworb the acid (che calcium acetate formed being employed for the manufacture of acetone, \&cc.), and finally through a sulphuric acid tawer, where the ammonia is converted into ammonium sulphate which is recovered by crystallization.

Peat has atso been exploited as a wource of commercial akcohol, to be employed in motors. In the process founded on the experiments of R. W. Wallace and Sir W. Ramsay, which gives 25 to 26 gallons of spirit from a ton of peat, the peat is boiled with water containing a little sulphuric acid, the product neutrafized with conta and then distilled; the ammonia is aloo recovered. In another process a yield of 40 gallons of apirit and 66 tb of amaronium sulphate per ton or peat is claimed.

Or oi her applications we may notice C. E. Nelson's process for making a paper, said to be better than ordinary wrapping; the first factory to exploit this idea was opened at Capac, Michigan, in 1906. Peat has been employed ae a manure for many years, and receplly attempts have been made to convert artificially its nitrogen into asamilable nitrates; such a process was patented by A_{1} Montz and A. G. Girard of Paris, in 1907.
See P. R. Björting and F. T. Gissing, Peat and is Mampacture (1907); P. T. Gissing, Commercial Peal (1909): E. Nyarom, Peat and Ligwite (1908), publisbed by Department of Mines of Canada.

Plicaitr, FEMI (1828 -1898), French educationalist, member of an old Huguenot family, was born at Salies de Béarn, m 1828. He was for some months evangelical pastor at Salies, but be had no pretence of sympathy with ecclesiastical aptiority

He was consequently compelled to resign his pastorate, and for some years occupied himself by utging the claims of a liberal Cbristianity. In 1879 be conducted a general inspection of primary education for the French government, and several similar missions followed. His fame chielly rests in his successful organization of the training school for women teachers at Fontenoy-aun-Roses, to which he devoted fifteen years of ceaseless toil. He died on the 3 1st of July 2898.
A summary of his educational vicws is given in his Public Educttion and National Life (1897).

PECCARY, the name of the New World representatives of the swine (Suidae) of the E. bemisphere, of which they constitute the sub-family Dicotylinoe (or Tagasruinae). (See Artiodactyla and Swine.)

The teeth of the peccaries differ from those of the typical Old World pigs (Sus), numerically, in wanting the upper outer incisor and the anterior premolar on each side of each jaw, the dental formula being: i. $\frac{7}{2}$, c. $\frac{1}{2}$, p. $\frac{1}{3}, \mathrm{~m} . \frac{8}{8}$, total 38 . From those of all Old World swine or Suinae, the upper canines, or tusks, differ in having their points directed downwards, not outwarcis or

The Collared Peccary (Dicotyles tajacu).
upwards; these being very sharp, with cutting hinder edges, and completely covered with enamel until worn. The lower canincs are large and directed upwards and outwards, and slightly curved backwards. The cheek-teeth form a continuous series, gradually increasing in size from the first to the last: the molars having square four-cusped crowns. The stomach is much more complex than in the true pigs, almost approaching that of a ruminant. In the feet the (wo middle (third and fourth) metacarpal and metatarsal bones, which are completely scparate in the pigs, are united at their upper ends. On the fore-foot the two (second and fifth) outer toes are equally developed as in pigs, but on the hind-foot, although the inner (or second) is present, the outer or fifth toe is entirely wanting. As in all Suidac the snout is truncated, and the nostrils are situated in its flat, expanded, disk-like termination. The ears are rather small, ovate and erect; and there is no external appearance of a tail.

Peccaries, which range from NewMexicoand Texas to Patagonia, are represented by two main types, of which the first is the collared peccary, Dicatyles (or Tagassu) tajacu, which has an extensive range in South America. Generally it is lound singly or in pairs, or at most in small herds of from eight to ten, and is not inclined to attack other animals or buman beings. Its colour is dark grey, with a white or whitish band passing across the chest from shoulder to shoulder. The length of the head and body is about 36 in . The second form is typified by the white-lipped peccary or warri, D. (or T.) labiatus, or . pecari, representing the sub-genus Oidosus. Typically it is rather larger than the collared species, being about 40 in. in lengtb, of a blackish colour. with the lips and lower jaw white. It is
not found farther north then Guatemala, or south of Paraguay. Generally met with in large droves of from fifty to a hundred, it is of a more pugnacious disposition than the former species, and a hunter who encounters a herd in a forest has often to climb a tree as his only chance of safety. Peccaries are omnivorous, living on roots, fallen fruits, worms and carrion, and often inflict great devastation upon crops. Both types are so nearly allied that they will breed together freely in captivity. Unlike pigs, they never appear to produce more than two young ones at a birth.

Remains of extinct peccaries referable to the modern genus occur in the caverns and superficial deposits of South America, but not in the earlier formations. This, coupled with the occurrence of earlier types in North America, indicates that the group is a northern oae. Of the extinct North American peccaries, the typical Dicolyles occur in the Pliocene while the Miocene Bothriolabir, which has tusks of the peccary type, approximates in the structure of its cheek-teeth to the European Miocene genus aprong the Suinae. From this it may be inferred that the ancestral peccaries entered America in the Upper Oligocene. Plalygomes is an aberrant type which died out in the Pleistocene.
(R.L.")

PRCRLLN, KARL FREDRIK (1720-1796), Swedish politician and demagogue, son of the Holstein minister at Stockholm, was educated in Sweden, and entered the Swedish army. He rose to the rank of major-general, but became famous by being the type par excellence of the corrupt and egoistic Swedish parliamentarian of the final period of the Frihetstiden (see Sweden: Hislory); he received for many years the sobriquet of "Gencral of the Riksdag." Pechlin first appears prominently in Swedish politics in 1760, when by suddenly changing sides he contrived to save the "Hats" from impeachment. Enraged at being thus excluded from power by their former friend, the "Caps". procured Pechlin's expulsion from the two following Riksdags, In 1769 Pechlin sold the "Hats" as he had formerly sold the "Caps," and was largely instrumental in preventing the projected indispensable reform of the Swedish constitution. During the revolution of 1772 he cscaped from Stockholm and kept quietly in the background. In 1786, when the opposition against Gustavus III. was gathering st rength, Pechlin reappeared in the Riksdag as one of the leaders of the malcontents, and is said to have been at the same time in the pay of the Russian court. In 1789 he was one of the deputies whom Gustavus III. kept under lock and key till he had changed the government into a semi-absolute monarcby. It is fairly certain that Pechiin was at the bottom of the plot for murdering Gustavus in 1792. On the eve of the assassination (March 16) the principal conspirators met at his house to make their final preparations and discuss tbe form of government which should be adopted after the king's death. Pechlin undertook to crowd the fatal masquerade with accomplices, but took care not to be there personally. He was arrested on the ${ }^{4} 7$ th of March, but nothing definite could ever be proved against him. Neverthcless he was condemned to imprisonment in tbe fortress of Varberg, wbere he died four years later.
See R. N. Bain, Guslatus III. and his Conlemporaries (London, 1905).
(R. N. B.)

PECHORA, a river of N. Russia, rising in the Urals, almost on $62^{\circ} \mathrm{N}$., in the government of Perm. It fiows W. for a short distance, then turns N. and maintains that direction up to about $66^{\circ} 20^{\prime} \mathrm{N}$. It then describes a double loop, to N . and to S., and difter that resumes its N. course, finally emptying into the Gulf of Pechora, situated betw.en the White Sea and the Kara Sea. Its total length is 970 m . At its mouth it forms nn elongsted delta. Although frozen in its upper reaches for 190 days in the year and for 138 days in its lower reaches, it is navigable throughout the greater part of its course. Its drainage basin covers an nrea of $127,200 \mathrm{sq}$. m . The principal tributaries are, on tbe right, the Ilych and the Usa, and na the left the Lzhma, the Tsylma and the Sula

PECK, a dry measure of capacity, especially used for grain. It contains 8 quarts or 2 gallons, and is i of a bushel. The
imperial peck contains $554-548$ eub. in., in the United States of America 537.6 cub . in. The word is in M.E. pek, and is found latinized as peccum or pekka. In Med. Lat. are found picotinus, "mensura frumentaria," and picotus, "mensura liquidorum" (Du Cange, Gloss. s.wo.). These words seem to be connected with the Fr. picoler, to peck, of a bird, and this would identify the word with " peck," a variant of "pick," a tap or siroke of the beak, especially used of the action of a bird in picking up grain or other food. The sense-development in this case is very obscure, and the name of the measure is found much earlier than "peck" as a variant form of "pick."

PLCKHAII, JOHM (d. 1292), archbishop of Canterbury, was probably a native of Sussex, and received his early education from the Cluniac monks of Lewes. About 1250 he joined the Franciscan order and studied in their Oxford convent. Shortly afterwards he proceeded to the university of Paris, where he took his degree under St Bonaventure and became regent in theology. For many years Peckham taught at Paris, coming into contact with the greatest scholars of the day, among others St Thomes Aquinas. Aboat $\mathbf{2 3 7 0}$ he returned to Oxford and taught there, being elected in 1275 provincinl minister of the Franciscans in England, but be was soon afterwards called to Rome as leclor sacri palatii, or theological lecturer in the achoois of the papal palace. In 1279 he returned to England as archbishop of Canterbury, being appointed by the pope on the rejection of Robert Burnell, Edward I.'s candidate. Peckham was always a strenuous advocate of the papal power, especially as shown in the council of Lyons in 1274. His enthronement in October 1279 maris the beginning of an important epoch in the history of the English primacy. Its characteristic note was an insistence on discipline which offended contemporaries. Peckhan's real was not tempered by discernment, and he had little gift of sympathy or imagination. His first act on arrival in England was to call a council at Reading, which met in July 1279. Its main object was ecclesiastical reform, but the provision that a copy of Magna Carta should be hung in all cathedral and collegiate churches seemed to the king a political action, and parliament declared void any action of this council touching on the royal power. Nevertheless Peckham's relations with the king were often cordial, and Edward called on him for belp in bringing order into conquered Wales. The chief note of his activity was, however, certainly ecclesiastical. The crime of "plurality." the holding by one cleric of two or more benefices, was eapecially attacked, as also derical absenteeirm and ignorance, and laxity in the monastic life. Pectham's main instrument was a minate system of " visitation," which he used with a frequency hitherto unknown. Disputes resulted, and on some points Peckham gave way, but his powers as papal legate complicated matters, and he did much to strengthen the court of Canterbury at the expense of the lower courts. The lamous quarrel with St Thomas of Cantilupe, bishop of Hereford, arose out of similar causes. A more attractive side of Peckham's career is his setivity as a writer. The numerous manuscripts of his works to be found in the libraries of Italy, England and France, testify to his industry as a philosopher and conmentator. In philosophy he represents the Franciscan school which attacked the teaching of St Thomas Aquinas on the "Unity of Form." He wrote in a quaint and elaborate style on scientific, scriptural and moral subjects and engaged in much controversy in defence of the Franciscan rule and practice. He was "an excellent maker of songs," and his hymns are characterized by a lyrical tenderness which seems typically Franciscan. Priated examples of his work as commentator and bymn writer respectively may be found in the Piramentum frium ordinum (Paris, 1512), and his office for Trinity Sunday in the "unreformed" breviary.
The ehief authority on Peckham as archbishop of Canterbury, is the Recistrum frauris Johownis Packham. edited by C. Trice Martin for the Rolls Series (London, 1882-i88y). A sympathetic account of his life as a Franciscan is to be found in L. Wadding, Annales mbormm (Lyons. 1625: 1654). Sce also the article by C. L. Kingslord in Dict. Nial. Biog., and Wilkin'a Comeilia mapnat Eritomiace (London, 1737).
(E. ON.)

PROOCK (or Peacoct), Reamatd (c. 1395-c. 1460), English prelnte and writer, was probably bom in Wales, and was educated at Oriel College, Oxford. Having been ordained priest in 1421, be secured a mastership in London in 1431, and soon became prominent by his attacks upon the religious positlon of the Lollards. In 1444 he became bishop of St Asaph, and six years later bishop of Chichester. He was an adherent of the house of Lancaster and in 1454 became a member of the privy council. In attacking the Lollards Pecock put forward religious views far in advance of his age. He asserted that the Scriptures were not the only standard of right and wrong; he questioned some of the articles of the creed and the infallibility of the Church; he wished " bi cleer witte drawe men into comsente of trewe feith otherwise than bi fire and swerd or hangement "and in general he exalted the authority of reason. Owing to these views the archbishop of Canterbury,Thomas Bourchier, ordered his writings to be examined. This was done and he was found guilty of heresy. He was removed from the privy council and be only saved himself from a painful death by privately, and then publicly (at St Paul's Crass, Dec. 4, 1457), renouncing his opinions. Pecock, who has been called "the only great English theologisn of the 15th century," was then forced to resign his bishopric, and was removed to Thomey Abbey in Cambridgeshire, where he doubtless remained until his death. The bishop's chief work is the famous Refressor of over-much veeting [blaming] of the Clergie, which was issued about 1455. In addition to its great importance in the history of the Lollard movement the Repressor has an exceptional interest as a model of the English of the time, Pecock being one of the first writers to use the vernacular. In thought and style alike it is the work of a man of learning and ability.
A biography of the author is added to the edition of the Repressor published by C. Babington for the Rolis Series in 1860 . Pecock's other writings include the Book or Rule of Christicn Religion; the Donet. "2n introduction to the chicf truths of the Jhistian faith in the form of a dialogue between father and son "; a 1 the Foleotir to the Domet. The two last wortes are extant in manuscript. His Book of Foilh has been edited irom the manuscript in the library. of Trinity College, Cambridge, by J. L. Morison (Glasyow, 1gog): See also John Lewis, Life of Pecoch (i744; ncw ed. 2820).

PECORA (plural of Lat, peows, cattle), a term employed-in a more reatricted sense-in place of the older title Ruminantia, to designate the group of ruminating artiodactyle ungulates represented by oxen, sheep, goats, antelopes, deer, giraffes, \&c.

The leading characteristics of the Pecora are given in some detail in the article Asmodactyra (q.e.); but ft is meceseary to allude to a fer of these here. Pecora, or true rumlnants as they may be conveniently called, have complex stomachs and chew the cud; they have no upper incicor teeth; and the lower canines are approximated to the outer incisors in such a manner that the three incisors and the one canine of the two sides collectively form a continuous semicircle of four pairs of nearly similar teeth. In the cheek-teeth the component columns aro crescent-abaped, constituting the selenodont type. In the forelimbs the bones corresponding to the third and fourth metacarpals of the pig's foot are fused into a cannon-bone; and a similar condition obtains in the case of the corresponding metatarsals in the hind-limbe. Thero is generally no stigittal crest to the skull; and the condyle of the lower jaw is transversely elongated. Another gencral, although not universal, characteristic of the Pecore is the presence of simple or complex appendages on the forchead commonly known as boons. In a few existing specias, sucb as the musk-deer and the wator-deer, these appendages are absent, and they are likewise lacking in a harge number of extinct members of the group, in fact in all the earlier ones They are, therefore, a epecialized feature, which has only recently attained its full development.

These horns presert eeveral distinct etructural types, which may be clamified an follows:-

1. The eimpleat cype is that of the giraffe, in which throe bony provinences-a single one in front and a pair behind-quite peparate from the underlying bones and covered during Iffe Ith akin, occupy the front wurfice of the skull. The mammite of the bind pair are marmounted by briskly hairs. In the extact

Sinaltherium there ere two peirs of such eppendages, of which the hinder are large and were probably covered during life either with skin or thin born. In the giraffes the separation of the horns from the steull may be a degeperate character.

If. In the Asiatic muntjac deer ve find a pair of skin-covered horns, or "pedicles, corresponding to the paired horns of the pirafie, sithough welded to the skull. From the summits of these

Fig. 1.-Head of Siamese Deer (Cerous schomburgkii), showing antlers.
pedicles arise secondary outgrowths, at first covered with skin, which (owing to the growth of a ring of bone at the base arresting the flow of hlood) eventually dries up and leaves bare bone incapable of further growth. In the muntjac the bare bony part, or "antler," is emall in proportion to the skin-covered pedicle, and simple in structure; but in the majority of deer the antler increasces in size at the expense of the pedicle-which dwindles-and in some species, like the Siamese deer (fig. 1), the sambar and the red deer, becomes very large and more or less branched. Owing to liability to necrosis, the permanent retention of such a mane of dead bone would be dangerous; and the antlers are consequently shed annually (or every (ew years), to be renewed the following year, when, till the animal becomes past its prime, they are larger than their predecesmors. The periodical shedding is alto necessary in order to allow of this increase in size. With the exception of the reindeer, antlers are confined to the males.
III. The third type of horn is presented by the American prongbuck, or pronghorn. in which bony processes. or "cores," correeponding to the horms of the giraffe, have acquired a horny sheath, in place of skin: the sheath being in this instance forked, and annually shed and renewed, although the core is simple. The sheaths are akin to hair in structure, thus suggesting alfinity with the hairs surmounting the giraffe's horns. Fernale prongbuck may or may not have herne.
IV. In the great majority of "Hollow-horned Ruminants," such as oxen, sheep, goats and antelopes (fig. 2), the horny sheath (or true "horn") forms a simple unbranched cone, which may be compressed, spirally twisted, or curved in one or more directions, but is permaneatly retained and continues to grow throughout life from the base, while it becomes worn a way'at the tip. Rarely, as in the four-horned antelope, there are two pairs of horns. In many cases these horns are present in both sexes.
D H . Gadow is of opinion that the antlers of the deer, the hornlike protuberances on tbe skull of the giraffe, and the true horns of the proagback and other hollow-horned ruminanta (Bovidac) are all different stages of evolution from a single common type: the antlers of the deer being the most primitive, and the horas of the Bovidae the most specialized. From the fact that the bony horn-core of the hollow-horned ruminants first develops as a separate ossification, is do the horns of the giraffe, while tbe pedicle of the antlers of the deer frow direct from the frontal bone, it bas been propoeed to place the hallow-horned ruminants (inclusive of the prongbuck) and the girafice in one group and the deer in another. This arrangement has the ditadvantage of acperating the deer from
the giraffes, to which they are evidently nearly related; But. Dr Gadow's work brings them more into line. Whether he is right in regarding the hollow-horned ruminants as derived from the primitive deer may, however, be a matter of opinion. One very important fact recorded by Dr Gadow is that calves and lambe shed their horns at an early age. The Booidae are thus brought into nearer relationship with the American prongbuck (the only living ruminant which sheds its horn-cover in the adult condition) than has generally been supposed.

The above-mentioned lour types of skull appendages are generally regarded as aevcrally characteristic of as many family groupa
namely the Girafidae, Cervordac, Antiocopridde and Bovidde. The two last are, however, much more closely connected than are either of the others, and should perhape be united.
Giraffidae.-In the Gwaffidae, which include not only girafics (Giraf (c) but also the okapi (Ocapia) and a number of extinct species from the Lower Pliocene Tertiary deposits of southern Europe, Asia and North Africa, the appendages on the gkull are of type No. 1., and may well be designated "antler-horns.' Another important feature is that the lower canine has a cleft or two-lobed crown, so that it is unlike the incisors to which it is approximated. There are no upper canines: and the cheek-teeth are short-crowned (brachyodunt) with a peculiar grained enamel, rescembling the akin of a slug in character. The feet have only two hoofs, all traces of the small lateral pair found in many other ruminants having disappeared.
The giraffes (Gizaffa) are now an exclusively African genus, and have long legs and neck, and three horns-a a digle one in front and a pair behind-supplemerted in some instances with a tudimentary pair on the occiput.
The okapi (Ocapia), which is also African but restricted to the tropical forest-region, in place of being an inhabitant of more or less open country, represents a second genus, characterized by the shorter neck and limbs, the totally different type of colouring, and the restriction of the borns to the male sex, in which they forin a pair on the forchead; these horns being mose cornpreseed than

F1g. 2.--Head of Grant's Gazelle (Gasella granti), showing horns,
the paired horns of the giraffe, and penetrating the skin at their summits (see GIRAFFE and OKA PI). Remains of extinct species of giraffe occur in the Lower Pliocene formations of Greece, Hungary. Persia, Northern India and China. From deposits of the same age in Greece, Samos and elsewhere have been obtained skulla and other remains of Paiacotragus or Samotherium, a ruminant closely allied to Ocapia, the males of which were armed with a very similar pair of dagger-shaped horns. Helladotheriums was a much larger animal. known by a single bornless akull from the Pliocene of Greece, which may be that of a femate. In the equally larso

Brometherivem and Bydarpinderium of Indie the horta of the malee were complex, thoes of the lormer including an occipital pair. while thoee of the latter arise from a common base. In both penerz, as in the okapi, there is a vacuity in front of the orbit. Largest of all is Stiadherixm, typically from the Lower Phiocene of Northern India, but aboo recorded from Adrianople, in which the skull of the male io short and wide, with a pair of simple conical horns above the eye, and a huge branching pair at the vertex. Libstherium is an allied form from North Africa. Whether the Giraffidae were originally an Alrican or a Euro-Asiatic group there is not yet sufficient evidence to decide. The family is enroprosented in the wastern hemisphere.
Cervidoa- In the deer-tribe, or Cervidoe, the lower canine, as in the two following laminites, is simple and similar to the incisors. The frontal appendages, when present, are confined (except in the case of the reindeer) to the mates, and take the form of anclers, that is to $\begin{gathered}\text { y } \\ \text { of } \\ \text { type No. II. in the foregoint deacription. A A senernt }\end{gathered}$ rule, the molars, and more especially the first, are partially brachyodont (short-crowned): although they are tatler in the chital (Cerrws axis). In the skulit there are two orifices to the lachrymal duct, situated on or inside the rim of the orbit. A preorbital vacuity of such dimensions as to exclude the lechrymal bone from articulation with the nasal. Upper canines usualily present in both sexees and sometimes attaining a very great sixe in the male (see fig. 3).

Fio. 3.-Stall of Chinese Water-Deer, Hydrolaphws inermis (ad-At make), a Deer without Anthers, but with lergely developed upper canibe teeth.
Lateral digits of both lore and hind feet aimost always present and Irequently the lower ends of the metacarpala and the metatanals as well. Placenta with few cotyledons. Gall-bladder abseat (except in the musk-deer, Moschss). This family contains numerous specied, having a wide geographical distribution, ranging in the New Word from the Arctic circle as lar south as Patagonia, and in the Old World throughout the whole of Europe and Asia, but abeent in Africa south of the Sahara, and, of course, Australasia. Evidently the family originated in the northern continent of the Old World, from which an entrance was effected by way of Bering Strinit into America. Some of the more northern American deer, Auch as the wapiti, reindeer and elk (moose), are closely allied to OId World species ; but there is also a group of exclusively American deer ((axama)-the only one found in Central and South America \rightarrow the member of which are umlike any living Old World deer; and thene must he regarded as having reached the westera hemiephere at an earlier date than the wapiti, reindeer and elk (sece Dzer, Ele, Fallow-Deer. Muntjac, Musx-Deer, Pere David's Dene, Reindezr, Rogivece, Water-DEER, Re.).
Remains of deer more or leas nearly allied to species inhabiting the rame districte are found over the greater part of the present habitat of the family. It is noteworthy, however, that certain Pliocene European deer (Anoplockis) appear to be closely allied to the modern American deer (Hasama). As we descend in the geoopical seriea fle deer have simpler antlers. as in the European Miocene Dicrocerus; while in the Oligocene Amphilragulus, Drematheriwm and Palocomeryx, constituting the family Palaeomerycidae, anters were absent, and the crowns of the molars so low that the whote depth of the hollows between the crescentic columns is com. pletely visible. Most of these animals were of small size, and many and long upper canines, like those of the existing Hodrdaphus; White in all there was no depression for a gland in front of the eyo
From North America have been obtained remains of certain Paninants which seem in some degree intermediate between deer ind the prongbuck. Of one of these a complete akcieton was obtained in 1 got from the Middle Miocene deposits of north-eastern Colorado, and as mounted stands 19 in. in beight at the withers With the eaception that the right antler is mallormed and partially aborted, and that the bones of the lateral toes have beer lost, the aleleton is practically complete. The one complete antler has a well-marked burt and a long undivided beam, which eventually lorks. Alter this there is a bifurcation of the hinder branch, thus producing three tines. From the presence of these well-marked esclers the skeletion would at first sight be set dowa as that of a small and primitive deer, conforming in regard to the structure of there appendages to the American type of the group. Mr W. D.

Matthew showe, however, that the akeleton of Marpoodus, at the extinct rusminant is called, differs markedly from thit of all deer. The moot noteworthy point of distinction is in the skull, in which the facial portion is sharply bent down on the posterior basal axin In the fachion characteriotic of the hollom-horned suminmote (osen, antelopes, acc.), and the American prongbuck inptead of ruaning more or less neqrly parallel to the same, as in deer. Again, the cheek-tceth have the tall crowns characteristic of a large number of representatives of the first group and of the prongbuck, thereby showing that Mecryodos can cearcely be reganded as a primitive type. As roparde the generes structure of the reat of the plceleton, it must suffice to say that this agrees closely with that of the antelopes and the prongbuck, and difiers markedly from the cervine type. In the absence of any trace of the lower extremities of the mecacarpel and metatarmal bones of the hateral coes the akeletion differs from the American deer, and revembles thooe hollow-horned ruminants in which these tocs persist.
As a whole Merycodus presents a curious moxture of cervine and antilopine character. To explain these, two altematives are offered by the describer. Either we must regard Meryoodus as a deer which parallels the artelopes and the prongbuck in every detail of skeletal structure, or dse. like the prongbuck, an antclope separated from the main stock at a date sufficiently carly to have permitted the development of a diatinct type of cranial appendagen. namely, antlers in place of true horme. The former aternative it is urged, involves a paralinlism too close and too uniform between unrelated typea to have been probable. On the latter view Mcrycodus. the prongbuck (Antilocapra) and the antclopes must be regarded as representing three branches from an original commos ulock, divergent as regards the stracture of their cramial appendages, but parallel in other respects. If, therefore, Antilocappe deserves to be separated as a family from the Bowidae, the same can scarcely be refused Ior Merycodus. But American extinct types appear to indicate signs of Intimate relationship between antelopes, prong buck and deer, and it may be nocessiry evendilly to amend the current clamification. As a temporiry meamure it eeem preferable to regard Merycodus either as representing a distinct subfamily of Antiocapridiee or a family by itself, the latter course being adopted by Mr Mattbew.
Whatever be the ukimate verdiet, the amociation of antlersand these, be it noticed, conforming alriont exactly with the forked type characteristic of American deer-with an antilopiso type of skull, skeleton and teeth in Merycodus is a most interesting and unexpected feature. Merycodus was named many years ago by Professor J. Leidy on the evidence of imperfect materials, and other remaigs now known to belong to the asme type were subsequentiy described as Casaryx, to which Blastomeryx seems to be allied. Not till the discovery of the skeleton of the species described by Mr Matthew was it possible to arrive at an adequate conception of the affirities of this remarkable ruminant.

Artilocapridae.-By many modern writers the American prongbuck, pronghorn or "antelope," alone forming the genus Anfil大 capra, is regarded as representing merely a sub-family of the Bovidac, to which latter group the animal is structurally akin. In view of What has been stated in the preceding peragraph with regard to the extinct American genus Merycodus, it seems, however, at leak provisionally advisable to allow the pronghuck to memain as the type of a family-A nitiocapridoe. The characteristic of this family \Rightarrow as represented by the prongbuck-is that the sheath of the hornu is forked, and abed ammully, or every few years. The cheekteeth are tall-crowned (hypsodont), and hateral hoofs are wating (ze Prongbuck).
Bovidac.-Lastly, we have the grest family of hollow-horned ruminants or Bopidoe, in which the horns (present in the males at least of all the existing species) take the form of aimple non-deciduous hollow sheaths growing upon boty cores. As a rule the molart are tall-crowned (hypsodont). Usually only one orifice to the lachrymal canal, situated inside the rim of the orbit. Lachrymal bone almost always articulating with the nasal. Canines absent in both sexes. The lateral toes may be completely aboent, but more often are represented by the hools alone, suppeored son etires by a very tudimentary stedeton, consirting of mere irregular nodules d bone Lower ends of the lateral metacarpals and metatarsals rever present. Gall-bladder almost always present. Placenta with many yledons.
The Bovidai form a most extensive famity, with member: widely distributed throughout the Old World, with the exception of the Australian tyion; but in America they are less numerous, and confined to e Aretic and northern temperate regions, no species ticing indigit: wra either to South or Central America. The home of the family was evidently the Old World. whence a small number of forms made their way into North America by way of what is now. Bering Strait. It has already been pointed out that the Cervidae orginated in. the northem continent of the Old World: and it has been suggested that the Bovidace were developed in Africa. Unforturately. we know at present practically nothing as to the past history ol the group, all the foesil species at present discovered approximating more or less closely to existing types. While admitting, therefore, that there are several facts in favour of the theory of an Arican origin of the Bovidec, final judgment
must for the present be waptinded. For the various generic types ase Bovidar, and the special astigle referred to under that heading
(R. L. ${ }^{\text {. }}$)
plecs (Ger. Funfkirchen), a town of Hungary, capital of the counitry of Baranya, 160 m . S.S.W. of Budapest by rail. Pop. (1900), 42,252. It lies on the outskirts of the Mecsek Hills, and is composed of the inner old town, which is hid out in an almost regular square, and four suburba. Ptos is the see of a Roman Catholic bisbop, and its cathedral, reputed one of the oldest churches in Hungary, is also one of the finest medieval buildings in the country. It was built in the suth century in the Romanesque style with four towera, and completely restored in 1881-1892. In the Cathedral Square is situated the Sacellum, a subterranean brick structure, probably a burial-chapel, dating from the end of the 4th or the beginning of the 5th century. Other noteworthy buildings are the parish church, formerly a mosque of the Turkish period; the hospital church, also a former mosque, with a minaret 88 ft . high, and another mosque, the bishop's palace, and the town and county ball. Pies has manufactories of सoollens, percelain, leather and paper, and carrics on a considerahle trade in tobaceo, gall-nuts and wine. The hills around the town are covered with vincyards, which produce one of the best wines in Hungary. In the vicinity are valuable conl-mines, which since 1858 are worked by the Danube Steamship Company.
According to tradition Ptes existed in the time of the Romans under the name of Sompiana, and several remains of the Roman and carly Christian period bave been found here. In the Frankish-German period it was known under the name of Quinque ecdesioc; lis bishopric was founded in roog. King Ludwig I. founded here in 1367 a university, which existed until the batule of Mohacs. In 1543 it was taken by the Turks, Who retelned possession of it till 1686 .
PEGTORAL, a word applied to various objects worm on the breast (Lat. pectus); thus it is the name of the ornamental plate of metal or embroidery formerly worn by bishops of the Roman Church during the celebration of mass, the breastplate of the Jewish high priest, and the metal plate placed on the breast of the embalmed dead in Egyptian tombs. Tho "' pectoral cross," a small cross of precious metal, is worn by bishops and abbots of the Roman, and by bishops of the Anglican, communion. The term has also been used for the more general "poitrel" or "peitrel" (the French and Norman French forms respectively), the piece of armour which protected the breast of the war-home of the middle agea.

PECULAAR, a word now generally used in the sense of that which solely or exclusively belongs to,or is particularly characteristic of, an individual; bence strange, odd, queer. The Lat. pecwliarir meant phimarily "belonging to private property," and is formed from peculium, private property, particularly the property given by a poterfamilios to his children, or by a master to his alave, to enjoy as their own. As a term of ecclesiastical law "peculiar" is applied to those ecclesiastical districts, parishes, chapels or churches, once aumerous in England, which were outside the jurisdiction of the bishop of the diocese in which they were situated, and were subject to a jurisdiction "peculiar" to themselves. They were introduced originally, in many cases by papal authority, in order to limit the powers of the bishop in his diocesc. There were royal peculiars, es. the Chapel Royal St James's, or St George's Windsor, peculiars of the archbishop, over certain of which the Court of Peculiars exercised jurisdiction (see Arches, Coust or), and peculiars of bishops and deans (see Dean). The jurisdiction and privileges of the "peculiars" were abolished by statutory powers given to the Ecclesiastical Commissioners, by the Ecclesiastical Commissioners Acts 1836 and 1850 , by the Pluralities Act 1838 , the-Ecrlesiastical Jurisdiction Act 1847, and other statutes.

PECULLAR PEOPLE, a small sect of Christian faith-healers founded in London in 1838 by John Banyard. They consider themselves bound by the literal interpretation of James v. 14, and in cases of sickness'seck no medical aid but rely on oil, prayer and nursing. The community is in the main composed
of simple working people, who, apert from their peculiarity, have a good reputation; but their avoidance of professional medical attendance has led to severe criticism at inquests on children who have died for want of it.
PEDAGOAUR a teacher or schoolmastex; a term usually now applied with a certain amount of contempt, implying pedantry, dogmatism or narrow-mindedness. The Gr. raidaywho (rais, boy, bywys, leader, dyeuy, to lead), from which the English word is derived, was not strictly an instructor. He was a slave in an Athenian household who looked after the personal safety of the sons of the master of the house, kept them from bad company, and took them to and from school and the gymnasium. He probably sat with his charges in achool. The boys were put in his charge at the age of slx. The rasfaruybs; being a alave, was necessarily a foreigner, usually a Thraciun or Asiatic. The Romans adopted the paedagogus or pedagogus towards the end of the repuhlic. He probably took some pert in the instruction of the boys (see Scyools). Under the empire, the pedagogus wes specifically the instructor of the boy slaves, who were being trained and educated in the housebold of the emperor and of the rich nobles and other persons; these boys lived together in a pacdagagimm, and were known as pweri paedagosiani, a name which has possibly developed into "page " (q.v.).

PEDAL CLARINET, a contrabass instrument invented in 189: by M. F. Besson to complete the quartel of clarinets, as the contrafagotto or double bassoon completes that of the oboe family; it is constructed on practically the same principles as the ctarinet, and consista of a tube 10 ft . long, in which cylindrical and conical bores are so ingeniously combined that the acoustic principles remain unchanged. The tube is doubled up twice upon itself; at the upper end the beak mouthpiece stands out like the head of a viper, while at tho lower a metal tube, in the shape of a U with E wide gloxines-chaped bell, is jotned to the wooden tube. The beak mouthpiece is exactly like that of the other clarinets but of larger size, and it is furnished with a single or beating reed. There are 13 keys and 2 rings on the tube, and the fingering is the same as for the B flat clarinet except for the eight highest semitones. The compass of the pedal clarinet is as follows:-

The instrument is in B flat two octaves below the B flat clarinet, and, like it, it is a transposing instrument, the music being written in a key a tone higher than that of the composition, and in order to avoid ledger lines a whole octave higber besides. The tone is rich and full except for the lowest notes, which are unavoidably a little rough In quality, but much more sonorous than the corresponding notes on the double bassoon. The upper register resembles the chalumenu register of the B flat clarinet, being reedy and sweet. The instrument is used as a fundamental bass for the wood wind at Kneller Hall, and it has also been used at Covent Garden to accompany the music of Fainer and Hunding in the Nibelongen Ring.

Many attempts have been made since the beginning of the 19th century to construct contra clarinets, but all possessed iaherent faults and have been discarded (see Batyphona). A contrabass clarinet in F, an octave below the baspet horn, constructed by Albert of Bruspels in 1890, was, we belicve, considered successful, but it differed in design from the pedal clarinet.
(K. S.)

PEDANT, one wbo exaggerates the value of detailed erudition for its own sake; also a person who dellghts in a display of the exact niceties of learning, in an excessive obedience to theory without regard to practical uses. The word came into English in the latter part of the 16th century in the sense of schoolmaster, the original meaning of Ital. pedante, from which it is derived. The word is usually taken to be an adaptation of Gr. тadeiken.
to teach. Others connect with an O. Ital. pedere, to tramp about (Lat. pes, foot), of an usber tramping ebout with his pupils.
PEDER, ALBEAIDER (c. 1636-1686), Scottish divinc, one of the leading forces in the Covenant movement, was born at Auchincloich, Ayrshire, about 1626, and was educated at Glasgow University. He was ordained minister of New Luce in Galloway in 1660, but had to leave his parish under Middleton's Ejectment Act in 1663 For 23 years he wandered far and wide, bringing comfort and succour to his co-religionists, and often very narrowly escaping capture He was indeed taken in June 1673 while holding a conventicle at Knockdow, and conderned by the privy council to 4 years and 3 months' imprisonment $O D$ the Bass Rock and a further is months in the Tolbooth at Edinburgh. In December 1678 be was, with sixty others, sentenced to banishment to the American plantalions, but the party was liberated in London, and Peden mande his way north again to divide the remaining years of his life between his own country and the north of Ireland His last days were spent in 2 cave in the parish of Sorn, near his hirthplace, and there he died in 1686, worn out by hardship and privation.

See A. Smeilie, Men of the Coremant, ch. xuxiv.
PEDEASEA, CHRLSTIERY (c. 1480-1554), Danish writer, known as the "father of Danish literature," was a canon of the cathedral of Lund, and in 1510 went to Pars, where he took his master's degree in igis In Paris he edited the proverbs of Peder Lale and (1514) the Historsa danica of Saxo Grammaticus He showed signs of the spirit of reform, asperting that the gospels should be translated into the vernacular so that the common people might understand. . He worked at a continuation of the history of Sexo Grammaticus, and became secretary to Christian II., whom be followed into exile in 1525. In Holland pe translated the New Testament (1529) and the Pralms (1531) from the Vulgate, asd, becoming a convert to the reformed opinion, he issued severad Lutheran tracts. Aiter his return to Denmark in 1531 he set up a printing press at Malmo. He published a Danish version (Kirdsike om Hodger Danske) of the French romance of Ogier the Dane, and another of the Charlemagne legends, which ls probably derivel immediately from the Norwegian Karlamagnus saga. His greatest work, the Denish version of the Holy Scriptures, which is known generally as "Christian IIL.'s Bible," is an important landmark in Danish literature. It was founded on Luther's version, and was edited by Peder Palladius, bishop of Zealand, and others.
See C. Pedersen's Danskc Skrifter, edited by C J. Brandt and B. T. Fenger (5 vols., Copenhagen, $1850-1856$).

PEDESTAL (Fr. piedestol, Ital. picdestallo, foot of a stail), a term generally applied to a support, square, octagonal or circular on plan, provided to carry a statue or a vase. Althougb in Syria, Asia Minor and Tunisiz the Romans occasionally raised the columns of their temples or propylaea on square pedestals, in Rome itself they were employed only to give greater importance 10 isolated columns, such as those of Trajan and Antoninus, or as a podium to the columns employed decoratively in the Roman triumphal arches. The architects of the Italian revival, however, conceived the idea that no order was complete without pedestal, and as the orders were by them employed to divide up and decorate a building in several storeys, the cornice of the pedestal was carried through and formed the sills of their windows, or, in open arcades, round a court, the balustrade of the arcade. They also would seem to have considered that the height of the pedestal should correspond in Is proportion with that of the column of pilaster it supported, thus in the church of St John Lateran, where the applied order is of considerable dimensions, the pedestal is 13 ft bigh unstead of the ordinary height of 3 to 5 ft .
pediculosis, or Prituriasis, the medical term for the pathological symptoms in man due to the presence of lice (pediculi), either on the head (pediculus capilis), body (pediculus corporis, or jestimenterum). or pubes (pediculus putis)
PEDIGREE, a genealogical tree, a tabular statement of descent 'see Genealocy) The word first appears at the beginning of the 1 gth century ard takes an extraordinaty variety of forms.
 accepted that these point to a corruption of Fr. pled de grow, foot of a crane, and that the probable reference is to the marks sesembling the ciaw of a bird lound in old genealogies showing the lines of descent. Such etymologies as Minshea's par degots, by degrees or the deghls, descent by the father, are mere guosecs.

PEDIIIENT (equivalents, Gr. dends, Lat. Jostigimon, Fr. ponton), in classic architecture the triangular-thaped portion of the wall above the comice which formed the terraination of the roof behind it. The projecting mouldings of the condsce which surround it enclose the tympanum, which is sometimes decorated with eculpture. The pediment in classic architecture corresponds to the gable in Gothic architecture, where the roof is of loftier pitch. It was employed by the Greeke onily as the frome of the noof which covered the min building; the Romans, however, adopted it as a decorative termination to a doormay, piche or window, and cccasionally, in a sow of windows or nuches, alternated the trinngular with a segmental pediment. It was reserved for the Italian architects of the decadence to break the pediment in the ceatre, thus destroying its original purpose. The eadient English form of the word is periment or percomint, probably a workman's corruption of "pyramid. "
PRDIPALPI, Arachnida (q \circ) rchated to the splders, and serving in a measure to bridge over the structaral interval between the latter and the scorpions. The appendages of the second pair are layge and prehensile, as in scorpions, but aro armed with spines, to impale and hold prey. The appendages of the thind peir, representing the firtt pair of walking legs ith spiders and scorploms, are, on the contrary, long, attencated and mamyjointed at the ead. Like the antennae of insects, they act as feelers. It is from this structural feature that the term" "pedtpalpi " has been derived. In the talless division of the Pedipalpi,

Mexican tailed Pedipalp (Matskoproetus cisomicus).
namely the Amblypyg of which Phrynus is a commonly cited type, these tactile appendages are execedingly long and lashlike, whereas in the tailed division, the Uropygi, of which Thely. phonus is best known, the limb is much shorter and less modified. Thelyphonus and its allies, however, have a long tactile caudal flagellum. the homologue of the scorpion's sting; but its exact use is unknown. A third division, the Tartarides, a subordinate. group of the Uropygi, contains minute Arachnida differing principally from the typical Uropygi in having the caudal process unjointed and short. Apart from the Tartaridea, the Pedipalpi
are large or mediam-sized Arachnida, nocturnal in habits and spending the day under stones, logs of wood or loosened bapk. Some species of the Uropygi (Thelyphanidae) dig hurrows; and in the east there is a family of Amblypysi, the Charontidae, of which many of the species live in the recesses of deep caves. Specimens of another apecies have been found under stones between tide marks in the Andaman Islands. The Pedipalpi feed upon insects, and like spiders, are oviparoui. The eggs after being laid are carried about by the mother, adhering in a glutinous masa to the underside of the abdomen.

Pedipalpi date back to the Casboniferous Period, occurring in deposits of that age both in Europe and North Americe. Moreover, the two main divisions of the order, which were as sharply differentiated then as they are now, bave existed practically unchanged from that remote epoch.

In spite of the untold ages they have been in existence, the Pedipalpi are more restricted in range than the scorpions. The Uropygi are lound only in Central and South America and in wouth and eastern Asia, from India and south China to the Solomon Islands. The absence of the entire order from Africa is an interesting fact. The distribution of the Amblypygi practically covers that of the Uropygi, hut in addition they extend from India through Arahia into tropical and southern Africa. Both groups tre unknown in Madagascar, in Australia, with the exception possibly of the extreme north, and in New Zealand. Very little can be said with certaint y aboul the distribution of the Tartarides. They have been recorded from the Indian Region, West Africa and aub-tropical Anerica.
(R. I. P.)

PEDOMETER (Lat. pes, foot, and Gr. pkipap, measure), an apparatus in the form of a wetch, which, carried on the person of a walker, counts the number of paces he makes, and thus indicates approximately the distance travelled. The ordinary lorm has a dial-plate marked for yards and milea. The registration is effected by the fall of a beavy pendulum, caused by the percussion of each step. The pendulum is torced back 10 a horizontal position by a delicate spring, and with each stroke a fine-toothed ratchet-wheel connected with it is moved round a certain length. The ratchet communicates with a train of wheels which work the dial-hands. In using the apparatus a measured mile or other known distance is walked and the indication thereby made on the dial-plate observed. According as it is too great or too small, the stroke of the pendulum is shortened or lengthened by a screw. Obviously the pedometer is littie better than an ingenious toy, depending even for rough measurements on the uniformity of pace maintained throughout the journey measured.

PEDRO II. (1825-1891), emperor of Brazll, came to the throne in childhood, having been born on the and of December 1825, and proclaimed emperor in April 1831, upon the abdication of his lather. He was declared of full age in 1840. For a long period few throncs appeared more secure, and his prosperous and beneficeat rule might have endured throughout his life but for his want of energy and inattention te the signs of the times. The rising gencration had become honeycombed with repuhlicanism, the prospects of the imperial succession were justly regarded as unsatisfactory, the higher classes had been estranged by the emancipation of the slaves, and all these causes of discontent found expression in a military revolt, which in November 1889 overthrew the seemingly solid edifice of the Brazilian Empire in a few hours. Dom Pedro retired to Europe, and died In Paris on the 5 th of December 189r. The chicf events of his reign had been the emancipation of the slaves, and the war with Paraguay in 1864-70. Dom Pedro was a model constitutional sovercign, and a munificent patron of science and letters. He travelled in the United States (1876), and thrice visited Europe ($1871-1872,1876-1877,1886-1889$).

PERBLES, a royal and poilice burgh and county town of Peehlesshire, Scotland, situated at the junction of Eddleston Water with the Tweed. Pop. (1001), 5266 . It is 27 m . south of Edinhurgh by the North. British Railway (22 m . hy road), and is also the terminus of a branch line of the Caledonian system from Carstairs in Lanarkshire. The hurgh consists of the new
town, the principal quarter, on the south of the Eddleston, ind the old on the north, the Tweed is crossed by a handsome fivearched bridge. Peebles is a noted haunt of anglers, and the Royal Company of Archers shoot here periodically for the silver arrow given by the hurgh. The chief public buildings are the town and coanty halls, the corn exchange, the hospital and Chambers Institution. The last was once the town house of the earls of March, but was presented to Peebles by William Chambers, the publisher, in 1859 . The site of the castle, which stood till the beglnning of the 18th century, is now occupied by the parish chureh, hurik in 2887. Of St Andrew's Church, founded in 119s, nothing remains hut the tower, restored by William Chambers, who was buried beside it in 1883 . The church of the Holy Rood was erected by Alexander III. in 1261, to contain a supposed remnant of the true cross discovered here. The building remalned till 1784, when it was nearly demolished to provide slones for a new parish church. Portions of the town walls still exist, and there are also vaulted cellars constructed in the 16th and $17^{\text {th }}$ centuries as hiding-placcs against Border freebooters. The old cross, which had stood for several yeats in the quadrangle of Chambers Institution, was restored and erected in High Street in $\mathbf{2 8 9 5}$. The industries consist of the manafactures of woollens and tweeds, and of meal and flour mills. The town is also an important agricultural centre.

The name of Peebles is said to be derived from the pebylls, or tents, which the Gadeni pitched here in the days of the Romans. The place was early a favourite residence of the Scots kings when they came to hunt in Eltrick Corest. It probably received its charter from Alexander III., was created a royal hurgh in 1367 and was the scene of the poem of Pcblis to the Play, ascribed to James I. In 2544 the town sustained heavy damage in the expedition led by the ist earl of Hertford; afterwards the protector Somerset, and in 1604 a large portion of it, was destroyed by fire. Though James VI. extended its charter, Peehies lost its importance after the union of the Crowns.

On the north bank of the Tweed. one mile west of Peebles, gtands Neidpath Castie. The ancient peel tower dates probably from the ${ }^{13}$ th century. Ite first owners were Twecddale Frasers or Frinels, (rom whom it passed, by marriage, to the Hays of Yeuer in Haddingtonshire, carls of Tweeddale. It was besieged and taken by Cromwell in 1650. The third carl of Tweeddale (1645-1713) sold it to the duke of Queensberry in 1686. The carl of Wemyse succeeded to the Neidpath property in $\mathbf{d} 10$.

PEEELEsshing, or Twexdoale, a southerm inland county of Scotland, bounded N and N.E. by Edinhurghshire, E. and S.E. by Selkirkshire, S. by Dumfriesshire, and W. hy Lanarkshire. Its area is 222,599 acres or $547.8 \mathrm{sq} . \mathrm{m}$. The surface consists of a succession of hills, which are bighest in the south, broken by the vale of the Tweed and the glens formed by its numerous tributaries. South of the Tweed the highest points are Broad Law and Cramalt Craig on the confines of Sclkirkshire (each 2723 ft .), while north of the river are, in the west centre, Broughton Heights (1872), Trahenna Hill (1792), Penvalla (1764) and Ladyurd Hill (1724), and in the north-west the Pentland eminences of Mount Maw (1753), Byrchope Mount (1752) and King Seat (1521). The lowest point above sea-level is on the banks of the Tweed, where it passes into Selkirkshire (about 450 ft .). The principal river is the Tweed, and from the fact that for the first 36 m . of its course of 97 m . it flows through the south of the shire, the county derives its alternative name of Tweeddale. Its affluents on the right are the Stanhope, Drummelzier, Manor and Qualr; on the ieft, the Biggar, Lyne, Eddlestone and Leithen. The North Esk, rising in Cairnmuir, forms the boundary line between Midlothian and Pecblesshire for about four miles, during which it presents some very charming pictures, especially at Hahbic's Howe. where Allan Ramsay laid the scene of the Gentle Shepherd. For 4 m . of its course the South Medwin divides the south-western part of the parish of Linton from Lanarkshire. Portmore Loch, a small sheet of water 2 m. northeast of Eddlestone church, lies at a height of 1000 ft . above the sea, and is the only lake in the county. The shire is in favour with anglers, its streams heing well stocked and unpolluted, and few restrictions being placed on the fishing.

Geoloty.-The somthern elevated portion of the county is occupied by Sifurian rocks, mainly by shales and grits or greywackes of Elandovery age. Owing to the repeated fording and crumpling of the rocks in this region there are mumerous elliptical expossures of Ordovician streta within the Silurian tract; but the principal arez of Ondovician rocks lies north of a line running south-west from the Moorfoot Hills through Lyne and Stobo. Here these rocks form a belt some four to five miles in breadth; they are composed of radiolarian cherts and mudstones with associated cont teaporaneous volcanic rocke of Arenis age, and of shales, grits and limestones of Landeilo and Caradoc age. The general direction of strike of all these formations is south-west-north-east, but the dips are sometimes misleading through occasional inversion of the strata. Patches of higher Silurian, with Wenlock and Ludiow fossila, ste found in the north of the country in the Pentiand Hills, and resting conformably upon the Silurian in the same district is the Lower Old Red Sandstone. The Old Red Sandstone here consists of a lower division, red and chocolate marls and sandstones; a middle division, volcanic rocks, porphyrites, tuffs, \&c., which are unconformable on the lowes marls in this asea; and an upper division. sandstones and conglomerates. The south-west extrerpity of the Edinburgh coalield just enters this county over the northwest border where a slice of Carboniferous strata is found let down between Silurian and Oid Red rocks by two important faulte. Both Calciferous saindatone and Carboniferous limcstone occur. with useful beds of conal limestone, ironstone. fircclay and alum shale An outlier of Carbonifcrous limestone, surrounded by Lower Old Red Sandstone, lics south of Linton. Much giacial boulder clay with gravel and aand rests upon the higher ground, - hik morainic deposits are fompd in the valleys.

Climate and Industries.-The apnual rainfall averages from 33 to 42 in.; the mean temperature for the year is $475^{\circ} \mathrm{F}$., for January $38^{\circ} \mathrm{F}$., and for July $59^{\circ} \mathrm{F}$. The character of the soil varies considerably, peat, gravel and clay being all represented. The low-lying lands consest gencrally of rich loam, composed of sand and clay The farming is pastoral rather than arabie. The average holding is about 200 ecres of arable land, with pastarage for from 600 to 800 sheep. Roughly speaking, one-fifth of the tolal areas is under cultivation. Oats are the chief grinin and turnipa the chief rool crop. The hill pastures are better suited to sheep than to cattle, but both focks and herds are comparatively large. Cheviots and half-breds are preferred for the grass lands, the heathery ranges being stocked with black. isced sheep. Cuesses oi Cheviots, black-faced and balf-bred twes with Leicestershire rams are common. The favourite breed of cattle is a cross between Ayrshires and shorthorns, the cows being Ayrshire. Many of the borses are Clydesdales bred in the count y. Pig-keping is on the decline. A few acres have been laid down as nurseries and market gardens, and about 10,000 acres are under wood, especiaily at Dalwick, where larch and horse-chestrit were first grown in Scolland. Apart from agnculture, the ooly induserics are the woollen factories and flour mills at Peebles and Lnnerieithen.

The Nort h British railway erosecs the count y in the north from Leadburn $t o$ Dolphinton, and runs down the Eddlestone valley from Leadburn to Peebles and Thomielee, while in the south the Caledonian railway connects the county town with Biggar in Linarkshire.

Popmation and Administration.-In ngot the population numbered 15,066 or 43 persons to the $s q . m$. In 1901 one person spoke Gaelic only, 72 Gaelic and English. The chief towns are Peebles (pop 5266) and lanerlcithen (2181) West Linton, on Lyne Water, is a holiday resort. The shire combines with Selkirkshire to return one member to parliament, the electors of Peebles town voing with the county Peeblesshire forms a sheriffom with the Lothians and a sheriff-substitute sits in the county town. There is a high school in Peebles, and one or more schoods in the count y usually earn grants for secondary education.
History. - The country whe originally occupied by the Gadeni, a British tribe, of whom there are many remains in the shape of camps and sepulchrel mounds (in which atone coffins, axes and hammers have been found), white several place-mones (such as Peebles, Dalvick and Stobo) also attest their presence The standing stones netr the confluence of the Lyne and Tweed are supposed to commemorate a Cymric chief. The natives were reduced by the Romans, who have left iraces of their military tale in the fine camp at Loyne, locally known as Randal's Walle.

The hill-side terraces at Romanno are conjectared, somewhat fancifully, to be remains of a Roman method of cultivation. On the retreat of the Romans the Gadeni came into their own again, and although they are said to have been defeat od by King Arthur at Cademuir in 530 , they held the district until the consolidation of the kingdom after Maicolm II.'s victory at Cerhem in 10r8, before which the hand, constantly harried by Danes, was nominally included in the territory of Northumbria. This tract of Scotland is closely associated with the legend of Merlin. David I. made the distriet a deanery in the archdeaconry of Peebles, and it afterwards formed part of the diocese of Glasgor. Towards the middle of the 1ath century lt was placed under the jurisdiction of two sheriffs, one of whom was settled at Traquair and the otber at Peebles. At Happrew, in the valley of the Lyne, the English defeated Wallace in 1304 . The Scoltish sovercigns had a lodge at. Polmood, and often hunted in the uplands and the adjoining forests. English armies accasionally invaded the county, but more frequently the people were harried by Border raiders. Many castles and peels were erected in the valley of the Twoed from the Bield to Berwick. Several were renowned in their day, among them Oliver Castle (built by Sir Oliver Fraser in the reign of Davad I.), Drumelzier, Tinnis or Thane's Castio, and Neidpath. Three miles south of Romanno stand the ruins of Drochil Castle, designed for the Regent Morton who was beheaded at Edinburgh in 1581 , and the building was pever completed. Memories of the Covenanters cluster around Tweedhopefoot, Tweedshaws, Corebead, Tweedsmuir, Talla Linns and ather spots. In the churchyard of Tweedsmuir is the tombstone of John Hunter, the martyr, which was relettered by "Old Mortality" The " men of the moss hags " did little fughting in Peeblesshire, but Montrose first drew rein at Traquair House after he was defeated at Philiphaugh on the Yarrow in 1645 . The plain of Sheriffmuir near Lyne is the place where the Tweeddale wapinschaws used to be held in the 17 th century. The Jacobite sisings left the county untouched, and since the beginning of the 19 th century the shire has been more conspicuous in literature than in politics.

Bibliogeaphy.-Pennecuick, Drecription of 7 weeddale (1715): William Chambers, Hishory of Peeblesshire (Edinburgh, 1864); Dr C. B. Gunn. Innerlesthen and Traquair (Innerleit hen, 1867); Sir George Reid, The River Tweed from its Source to the Sea (Text by Professor Vcitch) (Edinburgh, 1884); Professor Vcitch, History and Poetry of the Scottish Borde7 (Edinburgh, 1893); Border Essays (Edinburgh. 1896): Rev W. S. Crockett, The Scoll Comstry (Edinburgh, 1902).

PBETSKILI a village of Westchester county, New York, USA., on the E. bank of the Hudson River, about 41 m. N. of New York City. Pop. (1910, census), 15,245. It is served by the New York Central \& Hudson river railway, and by passenger and ireight steamboat lines on the Hudson river. The village is the home of many New York business men. At Peckskill are the Peekskill military academy (1833 , nonseclarian); St Mary's school, Mount St Gabriel (Protestant Episcopal), a school for girls established by the sisterhood of St Mary; the Field memorial library; St Joseph's home (Roman Catholic): the Peekskill hospital, and several sanatoria, Near the village is the state military camp, where the national guard of the state meets in annual encampment. Pcekskill has many manulactures, and the factory products were valued in 1905 at $\$ 7,251,897$, an increase oi $306 \cdot 7 \%$ since 1900 . The site was settied early in the 18 th century, but the village itself dates from about 1760 , when it took its present name from the adjacent creek or "kill," on which a Dutch trader, Jans Pcek, of New York City, had established a trading post. During the latter part of the War of Independence Peekskill was an importait outpost of tbe Continental Army, and in the neighbourhood several small engagements were fought between American and British scouting parties. The village was incorporated in 1816 . Peekskill was the country home of Henry Ward Beecher.

PERH ARTHUR WELLESLET PESL, iST VISCOUNT (1829-), English statesman, youngest son of the great Sir Robert Peel, was born on the 3rd of August 1829, and was educated at Eton and Balliol College, Oxford. He unsuccessfully
contented Coventry in 8863 ; in 1865 he was elected in the liberal interest for Warwick, for which he sat until his elevalion to the peerage. In December 1868 he was appointed parliamentary secretary to the poor law board. This office he filled until 1871 , when he became secretary to the board of trade, an appointment which the held for two years. In 1873-5874 he was patronage secretary to the treasury, and in 1880 be became undersecretary for the home department. On the retirement of Mr Brand (afterwards Viscount Hampden) in 1884, Peel waselected Speaker. He was thrice re-elected to the post, twice in $\mathbf{8 8 6}$, and again in 1892. Throughout his carcer as Speaker be exhibited conspicuous impartiality, combined with a perfect knowledge of the traditions, usages and forms of the house, soundness of judgment, and readiness of decision upon all oceasions; and he will always rank as one of the greatest holders of this important office On the Bth of April 1895 he announced that for reasons of health he was compelled to retire. The farewell ceremony was of a most impressive character, and warm tributes were paid from all parts of the house. He was created a viscount and granted a pension of f4000 for lite. He was presented with the freedom of the City of London in July 1895. The public interest in the ex-Speaker's later life centred entirely in his somewhat controversial connexion with the drink traffic. A royal commission was appointed in April 1806 to inquire into the operation and administration of the licensing laws, and Viscount Peel was appointed chairman. In July 1898 Lord Peel drew up 2 draft report for discussion, in five parts. Some differences of opinion arose in connexion with the report, and at a mecting of the commissioners on the 2 ath of April 1899, when part 5 of the draft report was to be considered, a proposal was made to substitute an alternative draft for Lord Peel's, and also a series of alternative drafte for the four sections already discussed. Lord Peel decined to put these proposals, and left the room Siz Algernon West was elected to the chair, and ullimately two main reports were presented, one section agreeing with Lord Peel, and the other-including the majority of the commis-sioners-presenting a report which differed from his in several important respects. The Peel report recommended that a large reduction in the number of licensed houses should be immediately effected, and that no compensation should be paid from the public rates or taxes, the money for this purpose being raised by an annual licence-rental levied on the rateable value of the licensed premises; it at once became a valuable weapon in the hands of advanced reformers.
Lord Peel married in $\mathbf{2} 862$, and had four sons and two daughters (married to Mr J. Rochfort Maguire and to Mr C. S. Goldman). His eldest son, William Robert Wellesley Pcel (b. 1866), married the daughter of Lord Ashton; he was Unionist M.P. for South Manchester from 1900 to 1905, and later for Taunton, and also acted as Municipal Reform leader on the London Coonty Council.

PEEL, SIR ROBERT, Bart. (1788-1850), English statesman, was born on the sth of February 1788 at Chamber IFall, in the neighbourhood of Bury, Lancashire, or, less probably, at a cottage near the Hall. He was a scion of that new aristocracy of wealth which sprang from the rapid progress of mechanical discovery and manufactures in the latter part of the 18 th century. His ancestors were Yorkshire yeomen in the district of Craven, whence they migrated to Blackburn in Lancashire. His grandfather, Rohert Peel, first of Peelfold, and afterwards of Brookside, near Blackburn, was a calico-printer, who, appreciating the discovery of his townsman Hargreaves, took to cotton-spinning with the spinning-jenny and grew a wealthy man. His father, Robert Peel (1750-1830), third son of the last-named, carried on the same husiness at Bury with still greater success, in partnership with his uncle, Mr Haworth, and Mr Yates, whose daughter, Ellen, he married. He made a princely fortune, became the owner of Drayton Manor and member of parliament for the neighbouring borough of Tamworth, was a trusted and honoured, as well as ardent, supporter of Pitt, contributed munificently towards the support of that leader's war policy, and was rewarded with a baronetcy (1800).

At Harrow, according to the acenunts of his contemporaries, Peel was a steady industrious boy, the best scholer in the school, fonder of country walks with a friend than of school games, but reputed one of the best football players. At Christ Church, where he entered as a gentleraan commoner, he was the first who, under the new examination statutes, took a first class both in classics and in mathematics. His examination for his B.A. degree in 2808 was an academical ovation in presence of a numerous audience, who came to hear the first man of the day. From his classical studies Robert Peel derived not only the classical, - though somewhat pompous, character of his speeches and the Lutin quotations with which they were often happily interspersed but something of his lofty ideal of political ambition. To his mathematical training, which was then not common among public men, he no doubt owed in part his method, his clearness, his great power of grasping steadily and working out difficult and complicated questions. His speeches show that, in addition to his academical knowledge, he was well versed in English literature, in history, and in the principles of law, in order to study which he entered at Lincoln's Inn. But while reading hard he did not neglect to develop histall and vigorousframe, and, though he lost his iife partly through his bad riding, he was always a good shot and an untiring walker after game. His Oxford education confirmed his atachment -to the Church of England. His practical mind remained salisfied with the doctrines of his youth, and he never showed that he had studied the areat religious centroversics of his day.
In $\mathbf{8} 809$, heing then in his twenty-second year, he was brought into parliament for the close borough of Cashet, which he afterwards exchanged for Chippenham, and comusenced his parliamentary career under the eye of his father, then member for Tamworth, who fondly saw in him the future leader of the Tory party. In that House ol Commons sat Wilberforce, Windham, Tierney, Grattan, Perceval, Castlcreagh, Plunkett, Romilly, Mackintosh, Burdett, Whitbread, Horner, Brougham, Parncll, Huskisson, and, above all, George Canning. Lond Palmerston entered the house two ycters earlier, and Lord John Russell three years later. Among these men young-Peel had to rise. And he rose, not by splendid eloquence, by profound political philosophy or by great originality of thought, but by the closest attention to ali his parliamentary dutics, by a study of all the business of parliament, and by a style of speaking which owed its force not to high nights of oratory, but to knowledge of the subject in hand, clearness of exposition, close reasoning, and tact in dealing with a parliamentary audience. With the close of the strugge against revolutionary France, political progress in England was soon to resume the march which that struggle had arrested. Young Peel's Jot, however, was cast, through his lather, with the Tory parly. In his maiden speech in 1810, scconding the addrcess, he defended the Walcheren expedition, which he again vindicated soon afterwards against the report of Lord Porchester's commiltee. It is said that even then his father had discerned in him a tendency to think for himself, and told Lord Liverpool that to make sure of his support it would be well to place him early in harness. At all evenis he began official tife in 1810 as Lord Liverpool's under-secretary for war and the colonies under the administration of Perceval. In 1812 he was transferred by Lord Liverpool to the more important but unhappy post of secretary for Ireland. There be was engaged till 1818 in maintaining English ascendancy over a country heaving with discontent, teeming with conspiracy, and ever ready to burst into rebellion. A middle course between Irish parties was impossible, and Peel plied the established engines of coercion and patronage with a vigorous hand. At the same time. it was his frequent duty to combat Grattan. Plunkett, Canning and the other movers and advocates of Roman Catholic emancipation in the House of Commons. He, however. always spoke on this question with a command of temper wonderful in hot youth, with the ut most courtesy towards his opponents, and with warm expressions of sympathy and even of admiration for the Irish people. He also, thus early, did his best to advocate and promote joint education in Ircland as a means of reconciling
rects and raising the character of the people. But his greateet service to Ireland as secretary was the institution of the regular Irish constabulary, nicknamed after him "Peelers," for the protection of life and property in a country where both were insecure. His moderation of tone did not save him from the violent abuse of O^{\prime} Connell, whom he was ill advised enough to challenge-n affair which covered them both with ridicule. In 1817 he ohtained the highest parliamentary distinction of the Tory party by being elected member for the university of Oxford -an honour for which he was chosen in preference to Canning oa account of his hostility to Roman Catholic emancipation, Lord Eldon lending him his best support. In the following year he resigned the Irish secretaryship, of which he had long been very weary, and remained out of office till $\mathbf{2 8 2 1}$. But he still supported the ministers, though in the affair of Queen Caroline he stood aloof, disapproving some steps taken by the government, and sensitive to popular opinion; and when Canning retired on account of this affair Peel declined Lord Liverpool's invitation to take the vacant place in thie cabinet. During this break in his tenure of office he had some lime for reflection, which there was enough in the aspect of the political world to move. But early office had done its work. It had given him excellent habits of business, great knowledge and a high position; but it had left him somewhat stif and punctilious, too cold and reserved and over anxious for formal justifications when he might well have left his conduct to the judgment of men of honour and the heart of the people. At the same time be was no pedant in business; in corresponding on political subjects he loved to throw off official forms and communicate his views with the freedom of private correspondence; and where his confidence was given, it was given without reserve.

At this period he was made chairman of the bullion committee on the death of Horner. He was chosen for this important ofice by Huskisson, Ricardo and their fellow-economists, who saw in him a mind open to conviction, though he owed bereditary allegiance to Pitt's financial policy, and had actually yoted with his Pittite father for a resolution of Lord Liverpool's government asserting that Bank of England notes were equivalent to legal coin. The choice proved judicious. Peel was converted to the currency doctrines of the economists, and proclaimed his conversion in a great speech on the 24th of May 1819, in which be moved and carried four resolutions embodying the recommendations of the bullion committee in favour of a-return to cash payments. This laid the foundation of his financial reputation and his 0 -operation with the economists tended to give a liberal turn to his commercial principles. In the courso be took he somewhat diverged from his party, and particularly from his father, who remained faithful to Pitt's depreciated paper, and between whom and his schismatic son a solemn and touching passage occurred in the debate. The author of the Cash Payments Act had often to defend his policy, and he did so with vigour. The act is sometimes said to have been hard on debtors, iocluding the nation as debtor, because it required debts to be paid in cash which had been contracted in depreciated paper; and Peel, es beir to a great fundholder, was even charged with being hiased by his, personal interests. But it is answered that the Bank Restriction Acts, under which the depreciated paper had circolated, themselves contained a provision for a retumi to cash payments six months after peace.
In 1820 Peel married Julia, daughter of General Sir John Foyd, who bore him five sons and two daughters. The writers tho have most severely censured Sir Robert Peel as a public man have dwelt on the virtues and happiness of his private end domestic life. He was not only a most loving husband and father hut a true and warm-hearted friend, Ir Whitehall Gardens or at Drayton Manor he gathered some of tha most distinguished intellects of the day. He indulged in free and cheerful talk, and sought the converation of men of science; he took delight in art, and was a great collector of pictures; be was fond of farming and agricultural improveruents; be actively promoted useful works and the advancement of knowhedge; he
loved making his friends, dependants, tenanta and neighbours happy. And, cold as he was in public, few men could be more bright and genial in private than Sir Robert Peel.

In 181 Peel consented to strengthen the enfeebled ministry of Lord Liverpool hy becoming home secretary; and in that capacity be had again to undertake the office of coercing the growing discontent in Ireland, of which he remained the real admintstrator, and had again to lead in the House of Commons the opposition to the rising cause of Roman Catholic emancipation. In 1825, being defeated on the Roman Catbolic question in the House of Commons, be wished to sesign office, but Lord Liverpool pleaded that his resignation would break ap the government. He found a congenial task in reforming and humanising the criminal law, especially those parts of it which related to offences against property and offences punishable by death. The five acts in which Peel accomplished this great work, as well as the great speech of the 9th of March 1826, in which he opened the subject to the house, will form one of the most solid and enduring monuments of his fame. Criminal lat reform was the reform of Romilly and Mackintosh, from the hands of the latter of whom Peel received it. But the masterly bills in which it was embodied were the bills of Peel-not himself a creative genius, but, like the founder of his house, a profound appreciator of other men's creations, and unrivalled in the power of giving them practical and complete effect.
In $\mathbf{2 8 2 7}$ the Liverpool ministry was broken up by the fatel illness of its chief, and under the new premier, George Canning, Peel, like the duke of Wellington and other high Tory members of Lord Liverpool's cabinet, refused to serve. Canning and Peel were rivals; but we need not interpret as mere personal rivalry that which was certainly, in part at least, a real difference of connexion and opinion. Canning took a Liberal line, and was supported by many of the Whigs; the seceders were Tories, and it is difficult to see how their position in Canning's cabinet could have boen otherwise than a false one. Separation led to public coolness asd occasional approaches to bitterness on both aides in debate. But there seems no ground for exaggerated complatitis agalnst Peel's conduct. Canning himelf said to a friend that "Peel was the only men wbo had bobaved decently towards him." Their private intercourse remained uninterrupted to the end; and Canning's son afterwards entered public life under the auspices of Peel. The charge of having urged Roman Catholic emancipation on Lord Liverpool in 1825, and oppowed Canning for being a friend to it in 1827, made against Sir Robert Peel in the fierce corn-law debates of $\mathbf{1 8 4 6}$, has been withdrawn by those who made it.

In January 1898, after Canoing's death, the duke of Welling4 ton formed a Tory government, in which Peel was home secretary and leader of the House of Commons. This cabinet, Tory as if was, did not Include the impracticable Lord Eldon, and did include Huskiseon and thrte more friends of Canning. Its policy was to endeavour to stave off the growing demand for organic change by administrative reform, and by lightening the burdens of the people. The civil list was retrenched withan unsparing hand, the public expenditure was reduced lower than it had been since the Revolutionary war, and the import of corn was permitted under a aliding scale of duties. Peel also inero: duced into London the improved system of police which he had previously established with so much success in Ireland. But the tide ran too strong to be chus beaded. First the governmeat were compelled, after a defeat in the House of Commons, to acquiesce in the sepeal of the Test and Corporation Acts, Peel bringing over their High Church supporters, an far as be could. Immediately afterwards the question of Roman Catholic emancipation was brought to a crisis by the election of O'Connell for the county of Clare. In Ausust Peel expremed to the duke of Wellington his conviction that the quention must be settied. He wrote that out of office be would co-operste in the settlement but in his judgment it should be committed io other banda thas his. To this the duke assented, but in Jamuary 1829, owing to the declared opinions of the king, of the House of Lords, and of the Church against a chagge of policy, Wellington came to the
conclusion that without Peel's aid in office there was no prospect of success. Under that presbure Peel consented to remain, and all the cabinet approved. The consent of the king, whlch could acarcely hove been obtained except by the duke and Peel, was extorted, withdrawn (the ministers being out for a few hours), and again extorted; and on the 5th of March 1829 Peel proposed Roman Catholic emancipation in a speech of more than four houm. The apostate was overwhelmed with obloquy. Having been elected for the univgrity of Oxford as a leading opponent of the Roman Catholics, he had thought It right to resign his seat on being converted to emancipation. His friends put him agait in nomination, but he was defeated by Sir R. H. Ingits. He took refuge in the close borough of Westbury, whence he afterwards removed to Tamworth, for which he sat till his death. Catholic emancipation was forced on Peel by circumstances; but it was mainly owing to him that the measure was complete, and based upon equality of eivil rights. This great concession, however, did not save the Tory goverament. The French Revolution of July 1830 gave fresh strength to the movement against them, though, schooled by the past, they promptly reoognized King Louis Philippe. The pariamentary reform movement was joined by some of their ofiended Protestant supporters. The duke of Wellington committed them fatally against all reform, and the elections went against them on the demise of the Crown; they were beaten on Sir H. Parnell's motion for a committee on the civil list, and Wellington took the opportunity to resign rather than deal with reform.

While in affice, Peel sucseeded to the haronetcy, Drayton Manor and a great estate by the death of his father (May 3, 8830). The old man had lived to see his fondest hopes fulfilled in the grestress of his son; but he had also lived to see that a father must not expect to fix his son's opinions-above all, the opinions of such a son ta Sir Robert Peel, and in such an age as that which followed the French Revolution.

Sir Robert Peel's resistance to the Reform Bill won back for him the alletiance of his party.' His opposition was resplute bat it thas temperate, and once only be betrayed tho suppitessed fire of his temper, in the historical debate of the a2nd of April 1833; when his speech was brokien off by the arrival of the king to dissolve the parliament which had thrown out reform. He refused to join the duke of Wellington in the desperale enterprise of forming a Tory government at the height of the storm, when the Groy ministry had gone out on the refusal of the king to promise them an unlimited creatiou of peers. By this conduct he secured for his party the full benefit of the reaction which be no doubt knew was sure to ensue. The general election of 1832, after the passing of the Reform Bill, left him with barely 150 Followers in the House of Commons; but this handful rapidly swelled nider bis management into the great Conservative party. He Irankly sccepted the Reform Act as irrevocable, taught his party to register instead of despairing, appealed to the intelligence of the middle classes, whose new-born power he appreciated, steadily supported the Whig ministers against the Radicals andO'Connell, and gained every moral advantage which the most dignified and constitutional tactics could afford. To tbis policy, and to the great parliamentary powers of its autbor, it was mainly due that, in the course of a few years, the Conservatives were as strong in the reformed parliament as the Tories had been in the unjeformed. It is valn to deny the praise of genius to sucb a leader, though the skill of a pilot who steered for many years over such waters may sometimes have resembled craft. But the duke of Wellington's emphatic culogy on him was, "Of all the men I ever knew, he hed the greatest regard for truth." The duke might bave added that his own question, "How is theking's government to be carried on in a reformed parliament 7" was mainly solved by the temperase and constitutional policy of Sir Robert Peel, and by his personal influence on the debates and proceedings of the House of Commots during the yean which followed the Reform Act.

In 1834, on the dismissai of the Melboume ministry, power came to Sir Robert Peel beiore he expected or desired it. He lurried from Rome at the call of the duke of Wellington, whose
sagacious modesty yielded him the first place, and became prime minister, tolding the two offices of first lord of the treasury and chancellor of the exchequer. He vainly sought to include in his cabinet two recent seceders from the Whigs, Lord Stanley and Sir James Graham. A dissolution gave him a great increase of strength in the house, but not enough. He was outvoted on the election of the speaker at the opening of the session of 8835 , and, after struggling on for six weeks longer, resigned on the question of appropriating part of the revenues of the Church in Ireland to national education. His time had not yet come; but the capacity, energy and resource he displayed in this short lenure of office raised him immensely in the estimation of the house, his party and the country. Of the great budget of practical reforms which he hrought forward, the plan for the commutation of tithes, the ecciesiastical commisslon, and the plan for setting the question of dissenters' marriages bore Iruit.
From 1835 to 1840 he pursued the same course of patient and fat-ighted opposition. In 2837 the Conservative members of the House of Commons gave their leader a grand banquet at Merchant Taylors' Hall, where he proclaimed in a great speech the creed and objects of his party. In 1839, the Whigs having resigned on the Jamaica Bill, he wat calied on to form a government, and submitted names for a cabinet, but resigned the commisslon owing to the young queen's persistent refusal to part with any Whig ladies of her bedcbamber (see Victorin, QUEEN). In 1840 he was hurried into a preqmature motion of want of confidence. But in the following year a similar motion was carried by a majority of one, and the Whigs ventured to appeal to the country. The result was a majority of ninety-one against them on a motion of went of confidence in the autumn of 1841, upon which they resigned, and Sir Robert Peet became first lord of the treasury, with a commanding majority in botb Houses of Parliament.
The crisis called for a master-hand. The finances were in disorder. For some years there had been a growing deficit, estimated for 2842 at more than two mlliions, and attempts to supply this by additions to assessed taxes and customs duties had failed. The great finencier took till the spring of 1842 to mature his plans. 'He then boldly supplied the deficit by imposing an Income-tax on all facomes above fiso a year. He accompanied this tax with a reform of the tariff, by which prohibitory duties were removed and other dulles abated on a vast number of artieles of import, especially the raw materials of manufactures and prime articles of food. The increased consumption, as the reformer expected, countervailed the reduction of duty: The income-tax was renewed and the reform of the tariff carried still farther on the same principle in 1845. The result was, in place of a deficit of upwards of two milions, a surplus of five millions in 5845 , and the removal of seven millions and a half of taxes up to 8847, not only without loss, but with gain to the ordinary revenue of the country. The prosperous state of the finances and of public affairs also permitted a reduction of the interest on a portion of the national debt, giving a yearly saving at once of $\mathbf{6 2 5 , 0 0 0}$, and ultimately of a million and a quarter to the public. In 1844 another great financial measure, the Bank Charter Act, was passed and, though severely controverted and thrice suspended at a desperate crisis, has ever since regulated the currency of the country. In Ireland O'Connell's agitation for the repeal of the Union had now assumed threatening proportions, and verged upon rebellion. The great agitator was prosecuted, with his chief adherents, for conspiracy and sedition; and, though the conviction was quashed for informality, repeal was quelled in tts chief. At the same time a healing hand was extended to Ireland. The Charitable Bequests Act gave Roman Catholles a share in the administration of charities and legai power to endow their own religion. The allowance to Maynooth was largely increased, notwithstanding viofent Protestant opposition. Three queen's colleges, for tbe higher education of all the youth of Ireland, without distinction of religion, were founded, notwithstanding violent opposition, both Protestant and Roman Catholic. The principie of toleration once accepted, was thoroughly carried out. The last remnants of the penal laws
were awepl loom the statute-hoolis, mad justice was ertended to the Roman Catholic Church in Canada and Malta. In the same apirit acts were passed for clearing from doubt Irish Presbyterian marriages, for settling the Litles of a large mamber of dimonters' chapels in England, and removins the municipal disabilities of lbe Jewn. The grant for national education was trebled, and an attempt was made, though in vain, to introduce offective education clauses into the fectory bills. To the alienstion of any part of the revenues of the Eatablished Church Sir Robert Peel never would consent; but he had isured the eeclesiatical commission, and he now made better provision for a number of populous pariahes by a redistribution of part of the revenues of the Churcb. The weakest part of the conduct of this great sovernment, perhapa, was its tailure to control the railway mania by promptly. laying down the lines on a government plan It passed an act in $\mathbf{5 8 4}$, which gave the government a xight of purchase, and it had propared a palliative mensure in $1 B_{4} 6$, but was compelled to sacrifice this, like all other secondary measures, to the repeal of the com laws. It tailed also, though not without an effort, to avert the great schism in the Cburch of Scotland. Abroad in was as prosperous as at home. It had found disaster and diagrace in Afghanistan. It speedily ended tbe war there, and in India the invading Sikhs were destroyed upon the Sutlej. The sore and dangerous questions with France, touching tbe right of search, the war in Moricco, and tbe Tahiti affair, and with the Uaited States touching the Maine boundary and the Oreson territory, were settled by negotiation.

Yet there were malcontents in Sir Robert Peel's party. The Young Engiandens dialited him because be had hoisted the flag of Conservatism instead of Toryiste on the morrow of the Reform Bil. The atrong philanthropists and Tory Chartists dialiked bim because be was a strixt economist and an upholder of the new poor law. But the fatal questios was protection. That question was being fast brought to a crisis by public coploion and the Anti-Corn-Law Leagua. Sir Robert Peel had been recognized In 1841 by Cobden as a Free Trader, end after expertence in affice be had become in principle more and more so. Since bis accession to pewer he had lowered the duties of the sliding scate, and thereby caused the secession from the cabinet of the duke of Buckingham. He had alarmed the farmers by admitting foreign cattle and meat under his new tarif, and by admitting Canadian corn. Hic had done his best in his speeches to put the maintenance of the corn laws on low grousd, and to ween the landed Interest from thelr reliance on protection. The approach of the Irish famine in $\mathbf{3 8}$ as tarned decisively the wavering balance. When at firat Sir Robert proposed to his cebinet the reviaion of the corn laws, Lard Stanley and the duke of Buccieuch dissented, and Sis Robert resigned. But Lord John Russell failed to form a new government. Sir Robert again came into office; and now, witb the consent of all the cabinet hut Lord Stanley, who retired, he, in a great speech on the 27th of January 1846, brougbt the repeal of the cora laws beiore the House of Commons. In the long and fietce debate that ensued be was assailed, both by pofitical and pemonal enemies, wth the most virulent invective, whicb he bore with his wonted calmness, and to which he made no relorts. His measure was cartied; but immediately afterwards the offiended protectionists, led by Lard George Bentinck and Benjarrin Disraeli, coalesced with the Whigs, and threw him out on the Lrish Cocrcion Bill. He went home from his defeat, escorted by a great crowd, who uncovered as he passed, and he immediately resigned. So fell a Conservative government which would olherwise have probahly ended only wilh the life of its chief.

Though out of office he was not out of powes. He had " lost a party, but won a nation." The Whis ministry which succeeded bim leent much on his support, with which be never tazed them. He joined them in carrying forward free-trade principles by the repeal of the navigation lawe. He helped them to promote the prineiple of religious liberty by the hill for the emancipation of the Jews. One important measure was bis own. While in office he had probed, by the Devon commission of inquiry, the sores of Ireland connected wilb the ownership and occupation of
innd. In I849, in a epeoch on the Irith Poor Lams, be firet sugxested, and in the next year he aided in establishing, a commission to facilitate the sale of estates in a hopeless state of encumbrance. The nincumbered Eatates Act made no attempt, like later legiglation, to secure by law tho uncertain customary rights of Irish temants, but it trassferred tbe land from ruined landlonds to solvent owners capable of performing the duties of property towands the people. On the 28th of June 1850 Sir Robert Peel made a great speech on the Greek question against Lord Palmerston's foreign policy of interference. This speech was thought to show that if pecessury be would return to offica. It was his last. On the following day be was thrown from bis horve on Constitution Hill, and mortally injured by the fall. Three days he lingered and on the fourth (July 2, 1850) be died. All the tributes which respect and gratitude could pay were paid to him by the sovereign, by parliament, by public men of all parties, by the country, by the press, and, above all, by the great towns and the maneas of the people to whom he had given "bread unleavened with injustice." He would have beea buried amang the great men of England in Westminster Abbey, but his will desired that ho might be laid in Drayton church. It also renounced a peerago for his family, as he had before declined the garter for himself when it was offered him by the queen through Lord A berdeen.

Those who judge Sir Robert Peel will remember that be was bred a Tory in days when party was a religion; that be entered parliament a youth, was in office at twenty-four and secretary for Ireland at twenty-five; that his public life extended ovar a long period rife with change; and that his own changes wert all forward and with the advancing intellect of the time. They will enumerate the great practical improvements and the great act of legislative justice of those dayga, and note bot lange a thare Slr Robert Peel had, 4 not in originating, in giving thorough practlcal effect to all. They will reffect that as a pariamentsty ststesman he could not govern without a party, and that it is difficult to goyern at once for a party and for the whole peopla. They will think of his ardent love of his conatry, of his abstinence from intrigue, violence and faction, of his boundiess labour through a long lifo devoted to the public service. Whether he was a model of statesmiknship may be doubted. Models of statesmanship are rare, if by a model of statesmanship is meant a great administrator and party leader, a great political phitosopper and a great independent orator, all in one. But if the question is wbether he was a nuler loved and trusted by the English people there in no arguing against the tears of a mation
Thowe who wish to know more of him will consult his own powt humous Memoits (1856), edited by his bterary executors Eat Stanhope and Vicount Cardwell; his private correapondence edited by C. S. Parker (i8g1-1899) ; the four volumes of his speeches; - aketch of his Hife and character by Sir Lawrence Pee! (1860); min historical sketch by Lord Dalling (1874): Guizot's Sir Robert Ped (1857); Kanze's Leben und Reden Sir Robert Ped's (1851); Diwraeli's Life of Lord Groree Bendinck (1858) ; Morley's Life of Cobden; monographs by F. C. Montague (1888), , R. Thurseld (1891), and the ear of Rooebery (1899); Poel and O'Connell, by Lond Everkley; the Life of Sti J. Grahom (1907). by C. S. Parker; Lord Stanmore's Life of Lord Aberdets (1893); and the general histories of the time.
(C. S. P.)

Four of Sir Robert's five sons attained distinction. The eldest, Sir Robszt Pexl (182a-1895), who became the 3 rd baronet on his father's death, was educated at Harrow and at Christ Church, Oxford. He was in the diplomatic service from 1844 to 1850 , when he succeeded his father as member of parliameat for Tamworth, and he was chief secretary to the lordlibutensat of Ireland from 1861 to 1865 . He represented Tamworth until the general election of 1880 ; in 1884 be became member for Huntingdon and in 1885 for Blackburn, but after 1886 he ceased to sit in the House of Commons., Sir Robert described himself as a Liberal-Conservative, but in bis later years he opposed the policy of Gladstone, although after 1886 he championed the cause of bome rule for Ireland. In 8871 he sold his father's collection of pictures to the National Gallery for £75,000. and in his later life he was troubled by fimancial difficulties. Sir Robert was interested in racing, and was known on tho
turf as Mr F. Rovinson. He died in London on the gth of May 1895, and was nucceeded as 4th baronet by his son, Sir Robert Peel (b. 1867).
 non, was educated at Harrow and at Trinity College, Cambridge, becoming a barrister in 8849 . He entered parliament in that year, and with the exception of the period between 1857 and 1859 he remained in the House of Commons until 1865 . In 1851-1852 and again in 1853-1855 he was under-tecretary for the colonies; from 1855 to 1857 he was under-secretary for wer; and from 1859 to 1865 he was secretary to the treasury. He became a privy councillor in 1857 and was knighted in 1869. Sir Frederick Peel's chief service to the state was in comnexion with the railway and canal commiasion. He was appointed a commissioner on the inception of this body in 1873, and was its president until its reconstruction in $\mathbf{7 8 8 8}$, remaining a member of the commission untll his death on the 6th of June 1906.
The third son was Sir Winliay Pegr (1824-1858), and the youngest Viscount Peel (q.v.). Sir William was à sailor, who distinguished himself in the Crimea, where he gained the Victoria Cross, and also during the Indian Mutiny, being wounded at the relief of Lucknow. He died on the 27th of April 1858. Sir William wrote A Ride throwgh the Nwbian Desert (1852), giving an account of his travels in 1851 .

Two of Sir Robert Peel's brothers were also politicians of note. Willian Yates Peel ($17^{89-1858), ~ e d u c a t e d ~ a t ~ H a r r o w ~ a n d ~}$ at St John's College, Cambridee, was a member of partiament from 1817 to 1837, and again from 1847 to 1852 : he was undertecretary for home affains in 1828, and was a lord of the treasury in 1830 and again in 1834-1835. Jonathan Peel (1799-1879) was first a soldier and then a member of parliament during the long period between 1826 and 1858 , first representing Norwich and then Huntingdon. From 1841 to 1846 he was murveyor-general of the ordnance, and in 1858-1859 and again in 1866-1867 he was a very competent and nuccessul wecretary of state lor war. Gencral Peel was also an owner of racehorses, and in 1844 his horse Orlando won the Derby, after another horse, Running Rein, had been diegualified.
For the hintory of the Peel family see Jane Haworth, A Memoir of the Famity of Peel from the year r600 (1836).

Preth, a seaport and watering-place of the Isle of Man, on the W. coast, x 1 t m . W.N.W. of Dơuglas by the Isle of Man rallway. Pop. (1901), 3304 . It lies on Peel Bay, at the mouth of the small river Neb, which forms the harbour. The old town consists of narrow streets and lanes, but a modern residential quarter has grown up to the east. On the west side of the river-mouth St Patrick's Isle is connected with the mainland by a ceusoway. It is occupied almost wholly by the ruins of Peel castle. St Patrick is said to have founded here the firat church in Man, and a small chapel, dedicated to him, appears to date from the 8th or roth century. There is a round tower, also of very eariy date, resembling in certain particulars the round towers of Ireland. The ruined cathedral of St German has a transitional Norman choir, with a very early crypt bencath, a nave with an early English triplet at the west end, transepts, and a low and massive central tower still standing. There are remains of the bishops' palace, of the so-called Fenella's tower, famous through Scott's Peteril of the Pcok, of the palace of the Lords of Man, of the keep and guardroom above the entrance to the castle, and of the Moare or great tower, while the whole is surrounded by battiements. There are also a large artificial mound supposed to be a defensive earthwork of higher antiquity than the castle, and another mound known as the Giant's Grave. The guardroom is associated with the ghostly apparition of the Moddey Dhoo (black dog), to which reference is made in Peveril of the Peok. In 1397 Richard II. condemned the earl of Warwick to imprisonment in Peel Castle for conspiracy, and in 1444 Eleanor, duchess of Gloucester, received a jike sentence on the ground of having compassed the death of Henry VI. by magic. Peel has a long-established fishing industry, which, however, has declined in modern times. In the town the most notable building is the church of St German, with a fine tower and spire. Peel was called by the Northmen Holen (island, i.e. St Patrick's Iale); the existing hame is Celtic,
menning "fort " (cf. the peel towaw of the bordertand of Endend and Scotland).

PRES. (t) The skin or rind of a fruit; thus " to peel" is to remove the outer covering of anything. The etymology of the word is closely connected with that of "pill," to plunder, urviving in "pillage." Both words are to be referred to French and thence to Latin. In French peler and pilley, though now distinguiabed in meaning (the first used of etripping hask or rind, the second meaning to roh), were aomewhat confused in application, and a nimilar confusion occurs in Baglish till comparatively late. The Latin worde from which they are derived are pellis, skin, and pilare, to strip of hair (pilms). (a) The name of a class of small fortfied dwelling-housen built during the 16th century on the bosders between Scotland and England. They are also known as "bastel-bouses," ife "bastille-houses," and consist of a square massive tower with high pitched roof, the lower part being vaulted, the upper part containing a few living rooms. The entrance is on the upper floor, access being gained by a movable lidder. The vaulted ground-loor chamber served for the cattle when there was danger of allack. The word appears in various forms, e.s. pele, peil, and Latinized as pelum, tre. ${ }^{\text {" }}$ pille " it also foumd used synonymously, hat the New Eaglish Dictiomary (s.v. pile) conslders the two words distinct. It seems more probable that the word is to be identified with "pale," a stake (Lat. pelurs). The carlier meaning of "peei" is a palisuded enclosure used as an additional defence for a fortified post or as an independent stranghold.

PRELE GBORGE ($1558-2$ r 598), English dramatist, was born in London in 1558 . His father, who appears to have belonged to a Devonahire family, was clerk of Christ's Hospital, and wrote two treatines on book-keeptng. George Peele was educated at Christ's Hospital, and entered Broadgates Hall (Pembroke College), Oxford, in $\mathbf{1 5 7 1}$. In $\mathbf{x} 574$ he removed to Christ Church, taking his B.A. degree in 1577, and proceeding M.A. 如 1579 . In 1579 the governors of Christ's Hospital requested their clert to "dischargs his house of his con, George Peele." It is not necessary to read into thin anything more than that the govemors insisted on his begioning to earn a liveiihood. Fie went up to London about 1580 , but in 2583 when Albertus Alasco (Albert Laski), a Polish nobieman, was entertained at Christ Church, Offord, Peele was entrusted with the arrangement of two Latin plays by Wiliam Gager (A. 1580-1629) presented on the occasion. He was aloo compllmented by Dr Gager for an English verse translation of one of the Iphigentas of Euripides. In 1585 he was employed to write the Device of the Pogetunt borme beford Waolstom Divion and in 1591 he devised the pageant in honour of another lond mayor, Sir William Webbe. This was the Descensks Astraece (printed in the Harleian Miscellany, 1808), in which Queen Elizabeth is honoured as Astraea. Peele had married as carly 251583 a lady who brought him some property, which he speedily dissipated. Robert Greene, at the end of his Groatsworth of Wir, exhotts Peele to repentance, saying that he has, like himself, "been driven to extreme shifts for a living." The sorry traditions of his reckless. life were emphasized by the use of his name in connexion with the apocryphal Merria conceited Jests of George Peele (printed in 1607). Many of the storica had done service before, but there are personal touches that may be biographical. He died before $\mathbf{1 5 9 8}$, for Francis Meres, writing in that year, speaks of his death in his Palladis Tamia.

His pastoral comedy of The Araggnoment of Paris, presented by the Children of the Chapel Royal before Queen Elizabeth perhaps as early as 1581 , was printed anonymously in 1584. Charlea Lamb, sending to Vincent Novello a song from this piece of Peele's, said that if it had been less uneven in execution Fletcher's Failhful Shepherdess "had been but a second name in this sort of writing." Peele shows considerable art in ble flattery. Parls is arraigned before Jupiter for having wasigned the apple to Venus. Diana, with whom the final decision rests, gives the apple to none of the competitors but to a nymph called Eliza, whose identity is confirmed by the further
explanation, "whom some Zabeta call." The Pamous Chrowite of King Edvare the first, sirmamed Edward Longshanhes, with his rekuree frow the koly lamd. Also the bife of Llevellen, rebell in Wales. Lastly, the sinking of Quesm Diner, who surche at Charingorosse, and rase again of Pathershilth, nowe named Queewchith (printed r593). This "chronicle history," formless enough, as the rambling tikle shows, is pevertheless an advance on the old chronicle plays, and marks a step tobvande the Shakespearian historical drama. The Batlell of Alcasar-with the death of Captaine Stukeley (acted 1588-1589, printed 1594), published anonymously, is attributed with much probability to Peele. The Old Wives Tale, reglstered in Stationers' Hall, perhaps moro correctly, wa "The Owide wiles tale" (printed 1595), was followed by The Love of King David and fatr Behtrebe (written e. 1588, printed 1599), which ts notable as an exampie of Elizabeahan drama drawn entirely from scriptural sources. Mr Fleay sees in it a political satire, and Identifies Elizabeth and Leicester as David and Bathsheba, Mary Queen of Scots as Absalori. Sir Clyomon and Sir Clamydes (printed 1599) has been attributed to Peele, but on-insufficient grounds. Aroong his occasional poems are "The Honour of the Garter," which has a prologue containing Peele's judgments on his contempareries, and "Polyhymnia" (1590), a blank-verse deacription of the ceremonies attendint the retirement of the queen's champion, Str Henry Lee. This is conchuded by the "Sonnet." "His golden locks time hath to silver turn'd," quoted by Thackeray in the 76th chapter of The Neweomes. To the Phoosix Nest in 1593 be contributed "The Praise of Chastity." Mr F. G. Fleay (Biog. Chron. of the Drama) credits Peele with The Wisdom of Doclor Doddipoll (printed 1600), Wily Beguiled (printed 1606), The Life and Death of Jack Strexin, a malable rebd (1587), a Bhare in the First and Second Parts of Henery VI., and on the authority of Wood and Winstanley, Alphowsus, Emperoy of Germany.

Peete. belonged to the group of nniversity scholars who, in Greene's phrase, "spent their wits in making playes." Greene went on to say that he was "In some things rarer, in nothing inferior," to Merlowe. Nashe in his preface to Greene's Mencphon called him "the chief supporter of pleasance now living, the Alles of Poctrie and primus verberum artifex, whose first encrease, the Arraignement of Paris, might plead to your opinions his pregnant dextertie of wit and manifold varietie of invention, wherein (me judice) hee goeth a step beyond all that write." This pralse was not unfounded. The credif given to Greene and Marlowe for the increased dignity of English dramatic diction, and for the new smoothness infused into blank verse, must certainly be shared by Peele. Professor F. B. Gummere, in a critical essay prefixed to his edition of The Old Wives Tale, puts in another claim for Peele. In the contrast between the romantic story and the realistic dialogue he sees the first instance of humour quite foreign to the comic "business" of earlier comedy. The Old Wives Tale is a play within a play, slight enough to be perhaps better described as an interlude. Its background of rustic folk-lore gives it additional interest, and there is much fun poked at Gabriel Harvey and Stanyhurst. Perhaps Huanebango, ${ }^{1}$ wha parodies Harvey's hexameters, and actually quotes him on one occasion, may be regarded as representing that arch-enemy of Greene and his friends.

Peele's Works were edited by Alexander Dyce (1828, 1829-1839 and 1861): by A. H. Bullen (2 vols., 1888). An examination of the metrical peculiaritics of his work is to be found in F. A. R. Liammerhirt's Georg Peele. Dntersuchungen ubber sein Leben und seine Werke (Rostock 1882). See also Prolessor F. B. Gummere, in Representative English Comedies (1903): and an edition of The Batlell of Alcazar, prinsed for the Malone Society in 1907.

PEEP-OP-DAY BOYS, an Irish Protestant secret society, formed about 1785 . Its object was to protect the Protestant peasantry, and avenge their wrongs on the Roman Catholics. The "Boys" gained their name from the hour of dawn which

[^5]they chose for thetr raids on the Roman Catholie villages. The Roman Catholics in return formed the society of "The Defenders."
PEEPPUL, or Pirux (Fitus relisiosa), the "sacred fig" trat of India, also called the Bo tree. It is not unlike the banyar, and is venerated both by the Buddhists of Ceyton and the Vaishnavite Hindus, who say that Vishnu was born beneath its shade. It is planted near temples and houses; its sap abounds in caoutchouc, and a good deal of lat is obtained from insects who feed upon the branches. The fruit is about the size of a walnut and is not much eaten.
'PBtrana (Fr. pairage, med. Lat. paragixm; M.E. pere, O. Fr. Her, pear, later pair; Lat. paris, "equal "). Although in England the terms "peerage," "nobility," " House of Lords" are in common parlance frequently regarded as synobymous, in reality each expresses a different meaning. A man may be a peer and yet not a member of the House of Lords, a member of the House of Lords and yet not strictly a peer; though all peers (as the term is now understood) are members of the House of Lords either in esse or in posse. In the United Kingdom the rights, duties and privileges of peerage are centred in an individual; to the monarchial nations of the Comtinent nobillty conveys the idea of family, as opposed to personal, privilege.
Etymologically " peers "are "equals" (pares), and In AngloNormen daye the word was invariably so understood. The feudal tenants-in-chief of the Crown were all the peers of earb other, whether lords of one manor or of a hundred; so too a bishop had his ecclesiastical peer in a brother bishop, and the tenants of a manor thefr peers in their fellow-tenants. That even so late as the reign of John the word was still used in this gencral sense is ciear from Magna Carta, for the term "fudicium parium" therein must be understood to mean that every inan had a rigbt to be tried by his equals. This very right was asserted by the bayons as a body in 1233 on behall of Richard, eart marshal, who had been declared a traitor by the king's command, and whose lands were forfeited without proper trial. In 1233 the French bishop Peter des Roches, Henry III.'s minister, denied the barons' right to the claim set up on the ground that the king might judge all his subjects alike, there being, he said, no peers in England (Math. Paris. 389). The English barons undoubtedly were using the word in the sense it held in Magnt Carta, while the bishop probably had in his mind the French peers (pairs de Frances), a amall and select body of feudatories possessed of exceptlonal privilcges. In England the term was general, in France technical. The change in England was gradual, and probably gathered force as the gulf between the greater barons and the lesser widened, until in course of time, for judicial purposes, there came to be only two classes, the greater barons and the rest of the people. The larons remained triabie by their own order (i.e. by their peers), whilst the rest of the pcople rapidly became subject to the general practice and procedure of the king's justices. The first use of the word "peers" as denoting those members of the baronage who were accustomed to receive regularly a writ of summons to parliament is found in the record of the proceedings against the Despensers in 132 I (Stubbs, Const. Hist. ii. 347), and from that time this restricted use of the word has remained its ordinary sense.

Properly to understand the growth and constitution of the peerage it is necessary to trace the changes which occurred in the position of the Anglo-Norman baronage, first through the gradual strengthening of royal supre- Amporion macy with the consequent decay of haronial power Buracege locally, and subsequently by the consolidation of parliamentary institutions during the reigns of the first three Edwards.

Bcfore the conquest the national assembly of England (sce Parciament) was the Witan, a gathering of notables owing their presence only to personal influence and standing. The Saxam The imposition of a modified feudal system resulted wheasin a radical alteration. Membership of the Great sowoth Councils of the Norman kings was primarily an incident of
tenure, one of the obligations the tenantein-chief were bound to periorm, although this merobership gradually became restricted by the operation of the Royal prerogative to a small section of the Baronial class and eventually hereditary hy custom. The Norman Councils may have arisan from the oshes of a Saxon Witenagemot, hut there is little evidence of any historical continuity hetween the two. The Church in England, as in Christendom generally, occupied a position of paramount importance and far-reaching influence; its leaders, not alone from their special sanctity as ecclesiastics, but as practically the only educated men of the period, of necessity were among the chief advisers of every ruler in Western Europe. . In England churchmen formed a large proportion of the Witan, the more influential of the great landowners making up the rest of its memhership.

In place of the scattered individual and absolute ownership of Saxon days the Conqueror became practically the sole Narman owner of the soil. The change, thaugh not immePeodef diately complete, followed rapidly as the country Tramart.
settled down and the power of the Crown extended to its outlying frontiers. As Saxon land gradually passed into Norman hands the new ownert became direct tenants of the king. Provided their loyal and military ohligations were duly performed they had fixity of tenure for themselves and their heirs. In addition fixed money payments were exacted on the succession of the heir, when the king's eldest son was knighted, his eldest daughter married, or his person ransomed from captivity. In like manner and under similar conditions the king's tenanta, or as they were termed tenants-in-chicf, sub-granted the greater portion of their holdings to their own immediate followers. Under Norman methods the manor was the unit of local government and jurisdiction, and when land was given away by the king the gift invariably took the form of a grant of one or more manors.

When he brought England into suhjection the Conqueror's main idea was to exalt the central power of the Crown at the expense of its feudatories, and the first two centurics following the conquest tell one long tale of opposition by the great tenants-in-chief to a steadily growing and unifying royal pressure. With this idea of royal supremacy firmly fixed in his mind, William's grants, excepting outlying territory such as the marches of Wales or the debateable ground of the Scottish bordor, which necded special consideration, were seldom in bulk, but took the form of manors seattercd over many countics. Under auch conditions it was practically impossible for a great tenant to set up a powerful imperium in imperio (such us the ficfs of Normandy, Brittany and Burgundy), as his Torces were dis tributed over the country, and could be reached by the long arm of royal power, acting through the sherif of every county, long before they could effectively come together for lighting purposes. The tenants-in-chiel were termed generally barons (sce Baron) and may be regarded historically as the parcnts of the peers of later days. The pages of Domesday (1086), the early Norman fiscal record of England, show how unevenly the land was distributed; of the fifteen hundred odd tenants mentioned the majority held but two or three manors, while a favoured few possessed more than a hundred each. Land was then the only source of wealth, and the number of a baron's manors might well be regarded as a correct index of his importance.

The king's tenants owed yet another duty, the service of attending the King's Court (curia regis), and out of this custom The ktemg grew the parliaments of later days. In theory all Cown the king's tenants-in-chief, great and small, had a right to be present as incident to their tenure. It has therelore been argued hy some authoritics that as the Conqueror's system of tenure constituted him the sole owner of the land, sttendance at his courts was solely an incident of tenure, the Church having been compelled to accept the same conditions as those imposed on laymen. But, as already pointed out, the change in tenure had not been immediate, and there had been no general forfciture suffered by ecclesiastical bodies;
consequently throughotr'the eurly years of Willinm's relfo some of the English bishops and abbots atteoded his coutts as much by virtue of their personal and ecclealastical importance as by-right of tenure. The King's Court was held regulariy at the three great festivals of the Church and at such other times as were deemed advisable. The assembly for several generations neither poaseased nor pretended to any legislative powers. Legislative power was a product of later years, and grew out of the custom of the Estates granting supplies only on condition that their grievances were'first redressed. The great hulk of the tenants were prosent for the purpose of assenting to special taxation above and beyond their ordinary feudal ducs. When necessary a general summons to attend was sent through the sherif of every couaty, who controlled a system of local government which enshled him to reach every tenant. In course of time to a certain number of barons and high ecchesiastics, either from the great extent of their possessions, their official duties about the king ar thelr personal importance, It hecame customary to isque a personal writ of summons, thus distinguishing them from the general mass summoned through the sherif. That this custom was in being within a century of the Conquest is clear from an incident in the bitter fight for nupremacy between Archbishop Becket and Henry III. in 2164 (Stubbs, Const. Hist. i. Sa4), it heing recorded that the king withheld the Archbishop's personal summons to parliament, and put upon him the indignity of a summons through the sheriff. During the succeeding fifty years the line becomes even more definite, though it is evident that the Crown sometimes disregarded the custom, as the barons are found complaining that many of their number decmed entitled to a personal summons had frequently boen overlooked.
The sequel to these complaints is found in Magna Carta, wherein it is provided that the archbishops, bishops, abbots, carls and greater barons are to he called up to the mayay corta council by writ directed to each sciverally; and all mad Powtonal who hold of the king in chicf, below the rank of Smement greater barons, are to be summoned by a general to the writ addressed to the sherifl of their shire. ${ }^{1}$ Magna Baromes. Carta thus indicates the existence of iwo definite ecclioss of the king's tenants, a division which had evidently persisted for some time. The "greater barons" are the immediate parents of the peerages of later days, every member of which for more than four centurics had e seat in the House of Lords. As for the rest of the tenants-In-chlef, poorer in estate and thercfore of less consequence, it is sufficient here to note that they fell hack into the general mass of country families, and that their representatives, the knights of the shire, after some hesitation, at length joined forces with the city and hurghor representatives to form the House of Commons.

In 1254, instead of the general summons through the sheriff to all the lesser tenants-in-chicf, the king requires them to elect two knights for each shire to attend the council as the accredited representative of their fellows. In parthase the closing days of 1264 Simon de Montfort summoned to meet him early in 1265 the first parliament worthy of the name, a council in which prelates, earls and greater barons, knights of the shire, citizens and burghers were present, thus constituting a representation of all classes of people. It has been argucd that this assembly cannot be regarded as a full parliament, inasmuch as Simon de Montfort summoned personally only such members of the haronage as were favourable to his cause, and issued writs generally only to those counties and cities upon which he could rely to return representatives in support of his policy. Stubbs holds the view that the first assembly we ought to regard as a full parliament was the Model Parliament which met at Westminster in 1295 . This Model parliament, unlike Simon's partisan assembly of Parlimeme 1265 was free and representative. To cvery spiritual of cast.
${ }^{2}$ Et ab habendum commune consilium regni ... summoneri faciemus archicpiscopos, episcopos, abbates, comites et majores burones sigillatim per lit teras nost ras et praeterea faciemus mumoneti in generali per virecomes et ballivos nostros omnes illot qui de nobis tenent in capite (cited in Stubbs, Const. Histi. i. 547 n.).
and temporal barion accustomed to receive an individual writ, one was issued. Every county elected its knights and every city or borough of any importance was instructed by the sherifl to elect and to return its allotted number of representatives. Stubbs's view (Consl. Hist. ii. 223) may probably be regarded as muthoritative, fnasmuch as it was adopted by Lord Ashbourne in the Norfolk peerage case of 1906 (Law Reports [1907], A.C. at p. 15). Edward I. held frequent pariinments throughoat his reign, and although many must be regarded as merely baronial councils, nevertheless year after year, on all important occasions, the knights of the shire and the citizems appear in their places. The parliament of Shrewsbury in 1283 , for instance, has been clained as a full parliament in several peerage cases, but no clear decision on the point has ever been given by the Committee for Privieges. It imay be taken for granted, however, that any assembly held since 1295, which did not conform substantially to the model of that year, cannot be regarded constitutionally as a full pariament. The polnt is even of modem importance, as in order to establish the existence of a barony by writ it must be proved that the claimant's ancestor was summoned by individual writ to a full parliament, and that either he himsclf or one of his direct descendants was present in perliament.
It is now convenient to consider the various grades into which the members of the peerage are grouped, and their .elative positions. An examination of the carly writs Crates of issued to individuals shows that the baronage consisted of archbishops, bishops, ahhots, priors, earls and barons. In course of time every member of these classes came to hold his land by feudal tenure from the Crown, and eventually in every instance the writs issued as an incident of tenure. It is therefore necessary to discover, if possibic. what comhination of attributes clothed the greater baron with a right to receive the king's personal writ of summons. While the archbishops and bishops received their writs with regularity, the summonses to heads of ecciesiastical houses and greater barons were intermittent. The prelate held an office which lived on regardiess of the fate of its temporary holder, and if by reason of death, absence. or transhation the office became vacant, a writ still issued to the "Guardian of the Spiritualities." The abbot, on the other hand, often outside the jurisciction of the Eagish Church, and owing allegiance to a foreign order, was but the personal representative of a land-holding community. It has already been pointed out that the amount of land held direct from the king by individuals varied greatly, and that the extent of his bolding must have had something to do with a man's importance. A landless nohle in those days was inconceivable. The conclusion, then, may be drawn that in theory the issue of a writ was at the pleasure of the Crown, and that in practice the moving factor in the case of the prelates was office and personal importance, and in the case of abbots and barons probably, in the main, extent of possession. There is nothing however to show that in the carly years of the custom any person had a right to claim a writ if it were the king's pleasure or caprice to withhold it and to treat everyone not summoned individually as being duly. summoned undet the general writs issued to the sheriff of the county.
The next point for consideration is when did the peerage, as the baronage subsequently came to be called, develop into a body definitely hereditary? Here again growth fermeners a body definitely hereditary ? Here again growth the reigns of the Edwards summonses were not al ways issued to the same individual for successive parliaments; and it is quite certain that the king never considered the issue of one writ to an individual hound the Crown to its repetition for the rest of his life, much less to his heirs in perpetuity. Again we must look to tenure for an explanation. The custom of primogeniture tended to secure estates in strict family succession, and if extent of possession had originally extracted the acknowledgment of a personal summons from the Crown it is more than probable that as suctessive heirs came into their finheritance they teo would similarty be acknowledged. In
carly days the summons was a burden to be sulfered of necessity, an unpleasant incident of tenure, in itself undesirable, and probably so regarded by the majority of recipients during at least the two centurics following the Conquest. The age of the Edwards was in the main a rule of setuled law, of increase in population generally, of growing power in the large landowners and of opportumitics for those about the person of the king. The times were chatiging, and in place of the idea of the writ being a burden, its receipt gradually came to be looked upon as a mark of royal favour, a recognition of position and an opportunity leading on to fortune. Once such a view was established it is casy to understand how desirous any individual would be to preserve so valuable a privilege for his posterity; and primogeniture with its strict settlement of estates pointed out an easy way. The Crown was itself an hereditary dignity; and what more natural then that it should be surrctanded by an hereditary peerage? Thus the free and indiscriminate choice of the Crown became fettered by the custom that once a summons had been issued to an individual to sit in parliament and be had obeyed that summons he thereby acquired a night of summons for the rest of his lifetime; and in later years when the doctrine of nobility of blood became established his descendants were beld to bave acquired the same privilege by hereditary right.

The earl's position in the baronage needs some explanation. Various suggestions have been made as to Saxon of Norman origin of a high officin nalure, but historical opinion seems generally to incline towards the theory that the term was a name of dignity conferred by royal prerogative on a person already classed among the greater barons. At first the dignity was official and certainly not hereditary, and the name of a cotnty of which he is said to have been an officer in the king's name was not easential to his dignity as an earl. There were also men who, though Scottish and Nomman eatls, and commonly so addressed and summoned to parliament, were rated in England as barons (Lords Reports, ii. 116, 120; Earldom of Norfolk Peerage Case, Law Reports (1907), A:C. p. 18). Earls received individual summonses to parliament by the name of Earl (g.v.); but there is reason to believe, as already mentioned, that in eariy days at any rate they sat not in right of their caridoms but by tenure as members of the baronage,

If we.review the political situation at the beginning of tha 14th cemtury a great change is evident. The line between those members of the baronage in parliament and wot the rest of the pcople is firmly and clearly drawn. Semeranow Tenure as the sole qualification for presence in the Tomera. naticnal assembly has disappeared, apd in its place there appears for the haronage a system of royal selection and for the rest of the people one of representation. The rules and customs of law relating to the baronage slowly crystallized so as to provide the House of Lords, the history of which for generations is the history of the peerage of England, whilst the representative part of parliament, after shedding the lower clergy, ultimately became the Honse of Commons.

Until the reign of Richard II. there is no trace of any use of the term baron (q.o.) as importing a personal dignity existing apart from the tenure of land, barons owing their seats in pariinment to tenure and writ combined. This is borne out by the fact that a husband was often summoned to parliament in his wife's right and name, and while she lived fulfilled those feudal, military and parliamentary obligations attached to her lands which the physical disabilities of sex prevented her from carrying out in het own person (Pike, House of Lords, p. 103).

Primogeniture, a custom. somewhat uncert ain in early AngloNorman days, had rapidly developed into a definite rule of law. As feudal dignities were in their origia Inseparable from the tenure of land it is not surprising that they peorage too followed a similar course of dicscent, ahthough Promal as the idea of a dignity being exclusively personal Disaky. gradually emerged, some necessary deviations from the rules of law relaling to the descent of land inevitably resulted. In the eleventh year of his reign Richard 11. created by letters patent

John Besuchamp " Lond de Beauchamp and baron of Kyddermynster, to hold to him and the heirs of his body." These letters patent were not founded on any right by tenure of land possessed by Beauchamp, for the king makes him " for his good services and in reapect of the place which he had holden at the coronation (i.e. steward of the household) and might in future hold in the king's councila and parliaments, and for his noble descent, and his abilities and discretion, one of the peers and barons of the kingdom of England; willing that the asid John and the hcirs-male of his body issuing, should have the state of baron and should be called by the name of Lord de Beauchamp and Baron of Kyddermynster." The grant rested wholly on the grace and favour of the Crown and was a personal reward for services rendered. Here then is a barony entirely a personal dignity and quite unconnected with land. From Richard's reign to the present day baronies (and indeed all other peerage honours) have continued to be conferred by patent. The custom of summons by writ was not in any way interfered with, the patent operating merely to declare the dignity and to define its devolution. Summons alone still continued side by side for many generations with summons founded on patent; but after the reign of Heary VIII. the former method fell into disuso, and during the last two hundred and fifty years there have been no new creations by writ of summons alone. ${ }^{1}$ So from the reign of Richard II. barons werc of two classes, the older, and more apcient in lineage summoned by writ alone, the honours descending to heirs-general, and the newer created by letters patent, the terms of whicb governed the issuc of the summons and prescribed the devolution of the peerage in the line almost invariably of the direct male descendants of the person first ennohled. The principle of hereditary succession so clearly recognixed in the Beauchamp creation is good evidence to show that a prescriptive right of hereditary summons probably existed in those families whose members had long been accustomed to receive individual writs. By the time the House of Lancaster was firmly seated on the throme it may be taken that the peerage had become a body of men possessing well-defined personal privilegen and holding personal dignities capable of descending to their heirs.

The carly origin of peerages was so closely connected with the tenure of land that the idea lons prevailed that there were Armates or 7antire. originally peerages by tenure only, i.e. dignities or titles annexed to the possession (and so following it on alienation) of certain lands beld in chief of the king. The older writers, Glanville (bk. ix. cc. 4, 6) and Bracton (bk. ii. c. 16), lend some colour to the view. They are followed, but not very definitely, hy Coke, Selden and Madox. Black. stone, who discusses the question in his Commentaries (bk. i. c. xii.), seems to believe that such dignities existed in preparliamentary days hut says further: "When alienations grew to be frequent, the dignity of peerage was confined to the lineage of the party ennobled, and instead of territorial became personal." The Earidom of Arundel case, in 1433, at first sight seems to confirm the theory, but it may be noted that when in later years this descent came to be discussed the high authority of an act of parliament was found necessary to confirm the succession to the dignity. The case is discussed at some lengtb in the Lords Reports (ii. 115), the committee regarding it as an anomaly from which no useful precedent can be drawn. Other cases discussed in the same Report are those of De Lisle, Abergavenny, Fitzwalter and Berkelcy. The Berkeley case of 1858-1861 (better reported 8 H.L.C. 2I) is essential for the student who wishes to examine the question carefully; and may be regarded as finally putting an end to any idea of bare tenure as an existing means of establishing a peerage right (see also Cruise on Dignities, 2nd ed. pp. 60 et seq.).

The main attribute of a peerage is that hereditary and inalien-
I Not intentional at any rate. In come cases where it was in. tended to call a son up in his lather's barony, a mistake in the name has been made with the resuln that a new peerage by writ of summons has been created. The barony of Buller, of Moore Park (cr. (1663), now in abeyance. is said to be an instance of such a mistakc.
able quality which ennobles the blood of the holder and his heirs, or, as a great judge put it in 1625 in the Earldom of Oxford case, " he cannol alien or give away this inheritance because it is a personal dignity annexed to the posterity and Gixed in the blood " (Dodridge, J., at p. 123, Sir W. Jones's Reports). Were the theory of barony by teDure accepted it would be possible for the temporary holder of such a barony to sell it or even to will it away to a stranger possessing none of the holder's blood, with the effect that, in the words of Lord Chancellor Campbell (Berkeley case, 8 H.L.C. 77), " there might be various individuals and various lines of peers successively ennobled and created peers of parlia. ment hy a subject," an impossible condition of aflairs in a country where the sovereign has always been the fountain of honour. Moreover, while no peerage bonour can be extinguished or surrendered, the owner of lands can frecly dispose of such rights as he posecsses by sale or transer. Finally we may accept the verdict in the Fitzwalter case of 1669 (Cruise, ibid. p. 66), which was adopted by the House of Lords in the Berkeley case: " and the nature of a barony by tenure being discuseed, it was found to have been discontinued for many ages, and not in being, and so not fit to be revived or to admit any pretence or right of succession thereupon."

Until the reign of Edward III. the pecrage consisted only of high ecclesiastics, earls and barons. The carls were herons with their apecial name of dignity added, and their names always appear on the rolls before those of the Doden. barons. In 1337 King Edward created his son, the Black Prince, duke of Cornwall, giving him precedence over the rest of the peerage. The letters patent (under which the present heir to the throne now holds the dukedom) limited the dignity in perpetuity to the first-born son of the king of England.' Subsequently several members of the royal family were created dukes, but no subject received such an honour until fifty years later, when Richard II. created his favourite Robert de Vere, earl of Oxford, duke of Ireland (for life). The original intention may have been to confine the dignity to the blood royal, as with the exception of de Vere it was some years before a dukedom was again conferred on a subject.
In 1385 Richard II. had created Robert de Vere marquess of Dublin, thus importing an entirely new and unl nown title into the peerage. The grant was, however, only for Hife, and was in fact resumed by the Crown in 1387, when
its recipient was created duke of Ircland. It was not until 1397 that another creation was made, this time in favour of one of the hlood royal, John de Beaufort, eldest legitimated son of John of Gaunt, who became marquess of Dorset. His title was shortly afterwards taken away by Henry IV's first parliament. Subsequently creations were made only at long intervals, that of Winchester (1551) being the only one (of old date) under which an English marquess at present sits in the House of Lords (see Marquess).

Under the name of viscount (q.v.) Henry VI. added yet another order, and the last in point of time, to the peerage, creating in 1440, John, Baron Beaumont, Viscount Beaumont and giving him precedence next above the barons.
The name of this dignity was also borrowed from the Continent, having beenin use for some time as a title of honour in the Ling's French possessions. None of the new titles above mentioned ever carried with them any official position; they were conferred originally as additional honours on men who were already members of the peerage.

The application of the hereditary principle to temporal pecrages early differentiated their holders from the spititual peers. Both spiritual and temporal peers were equally lords of parliament, but hereditary preten- spimen sions on the one side and ecclesiastical exclusivencss on the other soon drew a sharp line of division bet ween the two orders. Gradually the temporal peers, strong in their doctrine of "ennobled".blood, came to consider that theirs was an order
${ }^{2}$.principi et ipsius et haeredum suorum Regum Anglize filis primogenitis (The Prince's Case. 8 Co. Rep. 27a; 77 ER. \$13).
above and bayond all other lords of pentiament, and before long, arrogated to themselves the exclusive right to be called peers, and as such the only persons entitled to the privieges of peerage.
In early parliamentary days it had been the custom to sammon regularly to attend the Lords for deliberative purposes another body of men-the judges Less important than the prelates, they also awed their summons to official position, and like them were eventually overahadowed by the hereditary principle. Tbe force of hereditary right gave to emnobled blood a position never possessed by either judge or prelate. It is true the prelate, in point of antiquity, was senion to both eart and baron, and in many cases superior in extent of possessions; but these attributes belonged to his office, the resignation or deprivation of which would at any time have coused him to lose his writ of summons. The writ issued really to the office. The judge's position was even worse. His jadicial office evoked the writ, but at any moment be might be deprived of that office at the arbitrary pleagure of the Crown. It is doubtful whether the judges ever had voite and vote in the same sense as the other lords of parliament, and even if they had they soon came to be regarded merely as counsellors and assessors.

The pretensions of the lay-peers were not admitted without a strugilo on the part of the prelates, who made the mistake of aiming at the establishment of a privileged position for their own order while endeavouring to retain every right possessed by their lay brethren. They fell between two stools, lost their position as'peers, and were beaten back in their fight for ecolesinstical privilege. In the reign of Richard II. the prelates are found clearly defining their position. Neville, archbishop of York, de Vere, duke of Ireland and others, were "appealed" for treason, and the archbishop of Conterbury took the opportonity is parliament of making clear the rights of his order. He said " of rigbt and by the custom of the realm of England it belongeth to the Archbishop of Canterbury for the time being as well as others his suffragans, brethren and fellow bishops, abbots and priors and other prelates whatsoever, holding of our lord the king by harony, to be present in person in ali the king's parliaments whatsocver as Pears of the Realm aforesald, and there with the other Peors of the Realm, and with other persons having the right to be there present, to advise, treat, ordain, establish and determine as to the affairs of the realm and other matters there wont to be treated and to do all else which there pressea to be done." After this he went on to say that as to the particular matters in question they intended to be present and to take their part in all matters brought before parliament "save our estate and order and that of each of the prelates in all things. But because in the present perliament there is question of certain matters, in which it is not lawful for us or anyone of the prelates acconding to the institute of the Holy Canons in any manner, to take part personally " we intend to retire "saving always the rights of our peerage" (Rof. Part. II Rich. II. No. 6-printed iti. 236-237). At the desire of the prelates this statement of their rights was duly enrolled in parliament, but their claim to be peers was neither denied nor a dmitted, and the proceedings went on without them. For themselves Churchmen never claimed the privilege of trial by peers. Whenever they were arraigned they claimed to be altogether outside secular jurisdiction, and it was therefore a matter of small concern to them whether they were in the hands of peers or peasants. Such was the attitude of Becket towards Henry II. (Stubbs, Comst. Hist. i. 504), of Archbishop Stratford towards Edward III. (Pike, pp. 188 seq.), and it was probably with the history of these two cases in his mind that the archbishop of Richard II.'s reign speaks of the saving rights of his order. These rights were never willingly admitted in England, and as the pope's powet for interference waned so the prelates were forced under the ordinary law of the land. Henry VIII. ceptainly never regarded eeclesiastics as peers, as may be gathered from a grant early in his reign to the then abbot of Tavistock for himself and each succeeding abbot the right to he " one of the spiritual and religious lords of parliament." As to abbots, the subsequent dincolution of the monasterios put an end to the xx: 2
discuscion. In this reign aleo Cranmer and Fisher, though the former was archbishop of Canterbury, were tried by a common jury, and they certainly claimed no privilege of peerage. The Standing Orders of the House of.Lords for 1625 contain the statement that "Bishopa are only Lords of Pariament and not Peers " (Lords Journals, iii. 349). In r640 the "Lords Spiritual " were altogether excluded from the House of Lords by act of parliament, and were not brought back until the second year of the Restoration. From thet period there has been no question as to their position. Peers and holders by barony when parliaments first met, by the end of the a sth century they had put themselves outaide the pale of the peerage. To-day their ancient lands ara vested in trasteen (Ecclesiastical Commissioners), and ofice alone constitutes a bishop's qualification, and that only if he occupies one of the five great sees of Cainterbury, York, London, Durham and Winchester, or is of sufficient seniority in appointment to fill one of the remaining twenty-one places on the bench of bishops in the house-for there are now only twenty-six seats for thirty-six prelates.
The reign of Henry VIII. brought about far-reaching changes in the position of the peerage. When that king ascended the throne the bereditary clement wan in a decided meary vill minority, but the balance was gradually redressed amdibe until-at length a-bare hereditary majority was moman secured and the dissolution of the monasteries made possible. The peers, many now grown fat on abbey lands, at once began to consolidate their position; precedents were eagerly sought for, and the doctrine of ennobled blood began to find definite and vigorous expression. So long, the peers deciared, as there in any ennobled blood, a peerage must exist; and it can be extinguished only hy act of parliament, failure of heirs, or upon corruption of blood by attainder. Stubbs writes with some contempt of the doctrine (Comst. Hisf. ii. 458 n .), apparently on the ground that it is absurd to speak of ennobled blood so long as the children of a peer still remain commoners. The doctrinc is neither unreasonable nor illogical. By it is meant-blood in which there atways exists a capacity to inherit a particular peerage, and every person in whose veins the ennobled blood rans is competent to occupy the peerage if the chances of nature should remove those who are senior to him in the line of descent. A good illustration is the popular use of the term "blood royal," which of course does not mean that an individual of the blood royal necessarily occupies a throne but that he or she is in the line of succession to it. Similarly, persons of "ennobled blood". are not necessarily peers but in the line of descent to peerages; to which they may or may not surceed. (See Nobrurry.)
The English peer is not like the continental noble the member of a caste, but the holder for life of an office clothed with high and exceptional legislative and judicial attributes entirely dependent on his office and exercisable only in conjunction with his fellow peers in parliament assembled. Such privileges as he possesses are due primarily to his office rather tban to his blood. His children are commoners, who though accorded courtesy tities by the usage of society have no legal privileges not shared with the humblest of British subjects. It is this peculiar official quality of an English peerage which saved England from the curse of a privilcged noble easte such as that which so long barred all progress in France and Germany. As a result there are hundreds of familits in the United Kingdom who, commoners there, would yet, from their purity of blood, position and influence. be accounted noble in any cominental country.
From the doctrine of nobillty of hiood is derived the rule of law that no peerage (a Scots peerage is under Scots Law) can be surrendered, extinguished, or In any way got rid of unless the blood be corrupted. The rule is apmenter well illustrated by the earldom of Norfolk case
(Lato Reports [1907], A. C. 10) in which its development was traced, and the principle authoritatively confirmed. In 1302 the hereditary earldom of Norfolk (created in 1135) was in the' possession of Hugh Bygod, one of the most powerful nobles of

Piantagenet days. The earl got into difficulties, and as some say, for a consideration, and others, to spite his brother and debtor, surrendered his earldom and all the lands thereto belonging, to King Edward I. from whom he subsequently received it back with an altered limitation to himself and the beirs of his body. As he was a childless old man this was practically a short life interest to the exclusion of all his relatives, the neareat of whom hut for the surrender would have succeeded. Soon after Bygod died, and the earldom fell into the hende of Edward II. who granted it to his hrother Thomas of Brotherton in 1312. Lord Mowbray, the lineal descendant of this Thomas, recently came forward and claimed the earldom, hut in 1906 the House of Lords decided against his claim on the ground that in law Bygod's surrender was invalid, and that therefore Edward II. had no valid power to grant this particular carldom to Thomas of Brocherton. Historically there is litule to support such a decision, and indeed this rigid application of the law is of comparatively recent date. Without douht king, nobles and lawyers alike were all agreed, right down to Tudor days, that such surrenders were entirely valid. Many certainly were made, but, according to the decision of sgo6, any living beirs of line of those nobles who thus got rid of their peerage hopours can, if their pedigrees be provable, come to the House of Lords with a fair chance of reviving the ancient honours. Even as late as 1663 we find the Crown, naturally with the concurrence of its legal advisers, stating in the barony of Lucas patent (1663) that, on the appearance of co-heirs to a barony, the honour may be suspended or extinguished at the royal pleasure. The royal view of the law (at any rate as to extinction) was strongly ohjected to hy the Lords, who guarded their privilegen in Stuart days even more strictly than did the Commons As early as 1626, in the celehrated dispute over the earldom of Oxford, the lord great chamberlainship and the baronies of Bolebec, Badlesmere and Sandford, Mr Justice Dodridge, who had been called in by the Lords to advise them, said that an earl could not give away or alien his inheritance, because it was "a personal dignity annexed to the posterity and fixed in the blood." Fourteen years later, in the Grey de Ruthyn case, the Lords solemaly resolved, "That no peer of the realm can drown or extinguish his honour (but that it descends unto his descendants), peither hy surrender, grant, fine nor any other conveyance to the king." In 1678 the Lords became, if possible, even more definite, in view probably of the fact that the Crown had disregarded the Grey de Ruthyn resolution, having in 1660 taken into its hands, hy surrender of Robert Villiers, and viscount, the viscounty of Purbeck. In 1676 the san of the second viscount applicd for his writ of summons, and on the advice of Sir William Jones, the attorney-general, who reported that "tbis (surrender) "was a considerable question, never before resolved that he knew of," the king referred the whole matter to the Lords. The Lords were very explicit, being '" unanimously of the opinion, and do resolve that no fine now levied, or at any time' hereafter to be levied by the king, can bar such title of honour (i.e. of a peer of the realm), or the right of any person claiming under him that levied, or shall levy such fine." On these resolutions passed in the seventeenth century, the Lords of 1906 find itlegal a surrender of 1302 . The result seems strange, but it is, at any rate, logical from the legal point of view. It was urged that in 1302 no real parliament, in the sense applied to those of later years, was in existence; and consequently, a resolution founded on parliamentary principles should not apply. To this answer was made: Although it may be true that the law and practice of pariament had not then crystallized into the definite shape of even a hundred years fater, the "Model Parliament" was summoned seven years before Bygod's surrender, and it is necessary to have some definite occurrence from which to date a legai beginning-a point of law with which an historian can have little sympathy.

Briefly, perhaps, from the teaching of the case it may be permissible to state the rule as follows: In early days the Norman and Plantagenet kings took upon themselves to deal with the barons in a manner which, though illegal, was suffered
because no one dared oppose them; hut as time went on, becoming stronger and more determined to enforce their privileges and exalt their order the peers were able to compel recognition of their rights, and their repolutions in Stuart days were only declaratory of law which had always existed, but had been systematically disregarded by the Crown. This being so, resolntions of the peers deliberately and expressly haid down must, when in point, always be followed.

The application of the doctrine of corruption of blood to peerages arises out of their close connexion with the tenure of land, pecrage dignities never having been regarded as personal until well on into the suth ceptury. Autucder Conviction for any kind of felony-and treation mpeaen of originally was a form of felony-was always followed Eboed by attainder. This resulted in the immediate corruption of the blood of the offender, and its capscity for inheritance was lost for ever. Such corruption with all its consequences could be set aside only by act of parliament. This stringent rule of forfeiture was to some extent mitigated by the passing in 1285 of the statute De Donis Conditionalibus (Blackstone's Commentaries, ii. 116) which made possihle the creation of estates tail, and when a tenant-in-tail was attuinted forfeiture extendod only to his life interest. The statute De Donis was soon applied by the judges to such dignities as were entailed (e.g. dignities conferred by patent with limitations in (ail), but it never affected baranies by writ, which were not estates in tail but in the nature of eatates in fee simple descendible to heirs general. In the reign of Henry VIII. an act was passed (1534) which brought estates tail within the law of forfeiture, hut for high treason only. The position then became that peerages of any kind were forfeitahle by attainder following on high treason, while baronics by writ remained as before forfeitable for attainder following on felony. In 1708, just after tbe Union with Scotland, an act was passed hy which on the death of the Pretender and three years after Queen Anne's death the effects of corruption of blood consequent on attainder for high treason were to be abolished. and the actual offender only to be punished (stat. 7 Anne, c. $21, \% 10$). Owing to the ry45 rising, the operation of this act was poatponed until the decease of the Pretender and all his sons (stat. 17 Geo. II. C. 39, 8 3). In 18is forfeiture for every crime other than high and petty treason and murder was restricted to the lifetime of the pernon attaimed (stat. 54 Geo. III. c. 145). Finally in 1870 forfeitene, except upon outlawry, was altogether abolished and it was provided that " no judgment of or for any treason or felony should cause any attainder or corruption of blood, or any forfeiture or escheat." The necessity for ascertaining the exact condition of the law with regard to attainder throughout the whole period of English parliamentary history will be realized when it is remembered that there still exist dormant and abeyant peerages dating from 1295 onwards whicb may at any time be the subject of claim before the House of Lords, and if any at tainders exist in the history of such peerages the law governing their consequences is not the law as it exists to-day hut as it existed when the attainder occurred. The dukedom of Atholl case of 1764 is interesting as showing the effect of attainder on a peerage where the person attainted docs not actually succeed. John first duke of Atholl died in 1725 leaving two sons James and George. George the younger was attainted of treason in 1745 and died in 1760 , leaving a son John. James, the second son of the first duke, who had succeeded his father in 1725 died in 1764 without issue. John his nephew then claimed the dukedom, and was allowed it on the ground that his father never having been in the possession of the dukedom his attainder could not bar his son, who succeeds hy reason of his heirship to bis uncle. It would have been otherwise had the younger son outlived his brother, for he would then have succeeded to the dukedom and so destroyed it by his atteinder.

In many cases there have been passed special parliamentary acts of attainder and forfeiture, and these, of course, operate apart from the gencral law. In any event, attainder and forfeiture of a dignity, whether resuling from the rules of the common law or from special or general acts of parliament can
only be reversed by act of partiament. The procedure in reversing an attainder and recovering a dignity is as follows The Crown signifes its pleasure that a bill of restoration shall be prepared and signs \hat{i}. The bill is then brought in to the House of Lords, passed there, and sent to the Commons for essent. The last bills of the kind became law in 1876, when Earl Cowper procured the removal of the attainder on one of his Ormond ancestors and so by purging the blood of corruption became entitled to, and was allowed, the barony of Butier of Moore Park (created in 1663). There should also be noted the Eardom of Mar Restitution Act 1885, which, while mainly confirmatory of a disputed succession, at the same time reversed any attainders that existed.
The House of Lords grew steadily throughout the Tudor period, and during the reign of the first two Stuarts underwent a still greater increase. In the Great Rebellion the majority of the peers were the king's stoutest supporters and thus inevitahly involved themselves in the ruin of the royal cause. Immediately after tbe execution of Charles 1. the Republicans proceeded Comeno- $t 0$ sweep away everything which savoured of monFenth Atmilioce of the Lente. archy and aristocracy. The House of Commons voted the Lords "useless and dangerous," got rid of thern as a part of parliament by the simple expedient of a resolution (Comms. Journs. 1648-1649, vi. III) and placed the sole execative power in Cromwell's hands, but there was no direct abolition of the peerage as such. Evidently it took Cromwell but little time to realize the fallacy, in practice, of comestafa single-chamber government, as he is found ten moweof years after the "uscless and dangerous" resoluLonke tion busy establishing a second chamber.' What to call it aroused much discussion, and eventually the unruly Commons consented to speak of and deal with "the other house." It is very difficult to realize what was the constitution of this body, so short was its life and so contemptuous its treatment hy the Commons. The members of "the other house " were summoned by writs under the Great Seal, similar in form to those used to summon peers of past days. Some sixty writs were issued, and presumably their recipients were entitled thereby to sit for the duration of the parliament to which they were summoned; but it may be considered as certain that Cromwell's lords were never regarded as hereditary peers. They were entitled to the courtesy appeliation "Lord" and appear to have been in the main substantial men-existing peers, judges, distinguished lawyers and members of well-known county families. Judging from Cromwell's speech at the opening of pariiament, and subsequent entries in Whitelock's diaries, the new house appears to have had revising functions both of a legislative and judicial nature and also the duty of taking cognizance of foreign affairs. Cromwell certainly issued two patents of hereditary peerage-the barony of Burneil and the harony of Gilsland (with which went the viscounty of Howard of Morpeth), but neither title was recognized on the Restoration, and it does not appear that the possession of these tinles ever conferred on their holders any hereditary right to i writ of summons to sit in "the other house." Whitelock bimself was promised a viscounty hy Cromwell, but no patent ever appears to have passed the Great Seal. Eventually husiness between the two houses grew impossihle, and Cromwell was compelled to dissolve parliament. Richard's first parliament also contained Lords as well as Commons, the latter considera tely roting " to transact business with the persons sitting in the other house as an House of Parliament, saving the right of the peers who had been faithful to the parliament," the saving chuse evidently a loophole for the future. The dissolution of this pariament and the retirement of the protector Richard into private life preceded by only a few months the restoration to the throne of Charies II. With the king the peers returned to their ancient places.
From the reign of Willam of Orange the peerage has been freshened by a steady stream of men who es a rule have served ${ }^{1}$ Whitelock's Mcomorials of Ennlish Afairs (in the reign of Chartes I. and up to the Reatoratiom) (rB53 ed. iv. 313).
their country as statesmen, lawyers and soldiers. Littie of note occurred in the history of the peerage until the reign of Anne. By the Act of Union with Scotland (1707) Scothh the Scottish parliament was abolished; hut the apowastor Scottish peerage were given the privilege of the Pame. electing, for each parliament of Great Britain, sixteen of their number to represent them in the House of Lords. Further creations in the Scottish peerage were no longer to be made. The effect of this act was to leave the great majority of the Scol tish peers outside the House of Lords, as only sixteen of their number were to become lords of parliament. Close upon a hundred years later lreland was united with Great Britain, the lrish parliament being merged in the anthereporparliament of the United Kingdom of Great Britain somexive and Ireland. Twenty-eight Irish peers were to be perse elected for life by their order to represent it in the House of Lords. One archbishop and three bishops were also chosen in turn to represent the lish Church in the House of Lords, but when that Church was disestablished in 8867 the spiritual lords lost their seats. The merger of the three kingdoms had an important effect on their peerages. Every peer in his own country had been a lord of pariament hy hereditary right. The English peer (and, as the Acts of Union were passed, the peer of Great Britain and the peer of the United Kingdomp) continued by hereditary right a lord of parliament. The Scottish and Irish peers lost this right though by the two Acts of Union they retained every other privilege of peerage. Henceforth they were iords of parliament only as and when their fellow peers elected them. Thus though not all were lords of pariiament in esse, every one was always so in posse, and in any case it was the heredilary quality of the peerage which either actually seated its holder in the House of Lords or made it possibile for him to get there hy the votes of his fellows.
It now becomes possibic to arrive at the modern meaning of the term "a peerage," and we may define it as a dignity of England, Scotland or Ireland, which, by its heredi- Modere tary quality, confers on its holder for the time Monesteran being the right to be or not to be elected a lord of "Puoram" parliament. The term "peerage" is also used in a collective sense.
The reign of Anne is remarkable for an attempt made by the House of Lords to 11 mit its numbers hy law. The queen, in order to sccure a majority for the court party, Quera Aane had created a batch of twelve peers at one time, a amparase considerahle number in relation to existing peerages; Lithelioe. and it was feared this expedient might be used as a precedent. A peerage limitation bill was introduced into the House of Lords in 1719 . Six new creations were to be allowed, hut after these the Crown, except in the case of royal princes, was to create a new peerage only when an oid one became extinct. Twenty-five hereditury peerages in Scolland were to take the place of the sixteen representative peers for all time. The hill passed the Lords, but was eventually thrown out in the House of Commons, though not by an overwhelming majority.
In $\mathbf{1 8 5 6}$ it was desired to strengt han the judicial element in the House of Lords, and the Crown issued letters patent creating Sir James Parke, one of the barons of the exchequer, Baron Wensleydale and a peet "for Womenteresh and during the term of his natural life." The hurden of an hereditary peerage is heavy, and many men thoroughly well qualified in legal attainments have been known to refuse it on the ground of expense alone. This life-peerage was thought to be a way out of the difficulty, and it was on Lord Chancellor Cranworth's advice that the Crown issued the Wensleydale patent. The Fouse of Lords at once reatized that the creation of life-peers, at the will of the ministry of the day, might put the hereditary section into an absolute minority and possilly in time, hy form of law, get rid of it altogether. Eventually it was decided hy the house that " neither the said ketters patent nor the said letters patent with the usual writ of summons enahle the grantec to sit and vote in partiament,": a formal resolution which closed the door in the face of every
person whom the Crown might endenvour to make a life-peer. The government of the day accepted the situation, and soon afterwards a new patent was made out which followed the usual liruitation to heirs-male. The precedents in favour of the Crown's action were not strong. The essential and outstanding attribute of the house was its hereditary character. The whole balance of the constitution worked on the pivot of the independence of the peers. They existed as a moderating force in the counsels of parliament, and the alteration of the hereditary character of the House of Lords might easily have rendered it amenable to whatever pressure the government of the day might see fit to excrcise. In such circumstances its position as arbiter between people and government would tend to disappear. A change fraught with so many scrious possibilitics ought not, it was said, to be made by the simple prerogative of the Crown. If so far-reaching an alteration in the law were justifiahle it was for parlinment to make it. Further, it was pointed out, there had been no life-creations for centuries, and those that are recorded to have been conferred since the crystallization of our parliamentary system were of such a nature thit the grantees never sat in the housc hy virtue of their lifehonours, inasmuch as they were existing peers or women. Soon

Deplety
perers after the Wensleydale debates the government introduced a bill into the House of Lords to authorize the creation of two life-pecrs, who were to be persons of at least five years' standing as judges. They were to sit as lords of appeal but to he pecrs for life. Eventually the bill disappeared in the House of Commons. In 1869 Earl Russell introduced another life-pecrage bill of far wider scope. Twentyeight life-peerages might be in existence at any one time, but not more than four were to be created in any one ycar. The life peers would be lords of parliament for life. They were to he selected' by the Crown from the peerages of Scotland and Ireland, persons who had sat for ten years in the Commons, distinguished soldiers, sailors, civil servants and judges or persons distinguished in science, literature or art. The bill received a rough handling in committee of the Lords, and the time was evidently not sipe for change, as the bill failed to pass its third reading.

In 8870 attempte werc made in the House of Lords to alter the position of the Scottish and Irish representative peers. In Sumpoted 1876 the need of further judicial strength. in the Reformasad Lords was tardily admitted, and an act was passod Alleredouse authurixing the creation of two lords of appeal in ordinary, and power was reserved to appoint two more as cortain judicial vacancies occurred. They were to be entitled to the rank of baron during their lives but were to sit and vote in parliament only so long ase they held their judicial office. Their dignities lasted for life only. Eleven years later another act enabled all retired lords of appeal to sit and vote as members of the House of Lords for life. To those interested in House of Lords reform the pages of Hansard's Parliamentary Debakes are the best'authority. In 1888 reform bills were introduced by Lords Dunraven and Salisbury, and in 1907 by Lord Newton. In December 1908 the publication of a long report with sweeping recommendations for reform ended the labrours of a House of Lords committec which had been appointed to consider the question in detail. In the session of 1910, following the general election, long discussions took place in both houses of parliament. Opinion generally was freely expressed that the time had arrived for diminishing the number of lords of parliament and for putting into practice the principle that hereditary right alone should no longer confer lordship of parliameat. (See Parlitament.)
The Scottish peerage, like that of England, owes its origin to feudalism. In Anglo-Norman days Scotland was a small Scoutish country, and for some generations after England was settled the Scottish king's writ ran litule beyond the foot of the Highlands, and even the Lord of the Isles reckoned himself an independent sovereign until the begianing of the isth century. The weak and usually ineffective control of the Crown resulted in opportunities for acquiring personal power which the nobles were not slow to take advanuge
of. Seldom accustomed to act in concert. they soon developed particularist tendencies which steadily increased the atrength of their territorial position. These condiulons of existence were entlrely unfavourable to the establishment of any system of parliamentary government such as centralization had made possible in Enginad, therefore it is not surpriang to find that the lesser barons were not relleved of thcir atlendance at the national assemblies until well on in the isth century (Burton's Scotitend, iii. 13x). Again, when the Scottiah earls and barons came to parliament, they did not withdraw themselves from the rest of the people, it being the custom for the estates of Scotland to deliberate together, and this custom persisted until the abolition of their parliament by the Act of Union in 1707. The territorial spirit of the nobles inevitably led them to regard the honour as belonging to, and inseparable from, their land, and until comparatively late in Scotlish history there is nowhere any record of the conferment of a personal digolty unattached to land such as that conferred in England on Beauchang by Richard II. This explains the frequent surrenders and altered grants which are so common in Scottish peerage history, and which, in sharp distinction to the English rule of liaw, are there regarded as perfectly legal. To-day there exists no Scottish dukedom (except the royal dukedom of Rothesay), marquessate or viscounty created before the reign of James VI. of Sootiand (and I. of England). Of the existing Scoltish peerages sixtythree were created in the period between James's accestion to the English throne and the Act of Union. There are now only eighty-seven in all. Unlike one of the English peerages owing its origin exclusively to a writ of summons, ancient Scottish peerages do not fall into abeyance, and when there are only heirs-general, the eldent heir of line succeeds.
Whencver a new parliament is summoned, proclamation is made in Scotland summoning the peers to meet at Holyrood to clect sixteen of their number to represent them in such parliament. The Scotlish peerages are recorded on a roll, and this is called over by the lord clerk registor before the assembled peers seated at a long tabic. Each peer answers to the name of the peerage (it may be one or more) he possestes. The roll is then read again and each peer in turn (but only once) riscs and reads out the list of those sixtcen peers for whom he votes. Proxics are allowed for absent peers and are handed in after the second roll-call. The votes are counted and the lord cherk register reads out the names of those clected, makes a return, and signs and seals it in the presence of the peers assembled. The return eventually finds its way to the House of Lords. The Scottish representative peer so elected receives no writ of summons to parliament, hut attends the House of Lords to take the oath, his right to sit being evidenced by the return made. It might be thought that the rules of election in so important s matter would be more stringent, but the fact remains that it is quite possible for an entircly unqualified person to attend and vote at Holyrood. No evidence of identity or of a man's right to be present is required and the lord clerk register is compelled to rccive any vote tendered except in respect of peerages for which no vote has been given since 1800 , these being struck of the roll (io \& in Vict, c. 52). Any person claiming to represent such a peerage must prove his right before the House of Lords, as was done in the case of the barony of Fairfax in 1908. It is true that by the act last cited any two peers may protest against a vote at Holyrood, and the lord clerk register thercupon reports the proccedings to the House of Lords, who will consider the question if application be made for an inquiry, but nothing is done unless an application is made. The right to vote certainly needs better proof than that now accepted. For many years the House of Lords maintained that the Crown could not conier a new peerage of Crcat Britain on a Scottish peer, the ground being that the Scottish peerage was only entitled to the sixtecn representative peers gived it by the Act of Union, but eventually in 1782 in the case of the duke of Hanilton this contention was given up.
The Anglo-Norman conquerors of Ireland carried with them the laws and the system of tenure to which they were accustomed

In England, and consequently the growth of the baronage and the establishment of parliamentary government in Ircland

Mruph
Avorago proceeded on parallel lines with the changes Fhich cccurred in England. Until the reign of Henry VIII. the Irish were without representation in parliament, but gradually the Irish were admitted, and by the creation of new parliamentary countics and boroughs were enabled to clect'representatives. In 1613 the whole country shared in represcntation (Ball's Legisiative Systems of Ireland). Just as James I. bad added many members to the Scottish peerage, so he increased the number of Irish peers.

In 1800 the Union of Great Britain and Ireland abolished the parliament of Ireland. By the Act of Union the Irish peers became entitled to elect twenty-cight of their number to represent them In the House of Lords. The election is for life, and only those peers are entitled to vote at elections of representative peers who have proved their right of succession to the satisfaction of the lord chancellor, who issues his notice to that effect after each individual proof. The names of such peers are added to the voting-roll of the peerage, and when voting papers are distrihuted-the Irish peers do not meet for election purposes as do those of Scotland-they are sent only to those peers who have proved their right to vote. If any claim to the right to vote is rejected by the lord chancellor the claimant must prove his case hefore the Committee for Privileges (barony of Graves, 1907). When an Irish peer has been elected a representative peer he receives, 18 a matter of course, 2 writ of summons at the beginning of each parliament. The great bulk of the Irish peerage owres its existence to creations during the last two centuries, only saven of the existing peerages dating back beyond the ayth century; of the rest twenty-two were crented during the year of Union, and thirty-three have been added since that date. Some hundred or more years ago ministers foand the Irish pecrage a uscful means of political reward, in that it vers possible to bestow a title of honour, with all iks social prestige, and yet not to increase the numbers of the House of Lords.

On the death of a representative peer of Scotland or Ireland a vacancy occurs and a new election takes place, but in accordance with modern practice promotion to a United Kingdom peerage does not vacate the holder's representative position (May's Parliamentary Practice, p. 11 n.). Scottish and Irish peers, if representative, posscss all the privileges of peerage and parliament enjoyed by pcers of the United Kingdom; if non-representative all privileges of peernge, except the right to a writ of summons to attend parlinment and to be present at and vote in the trial of peers. A Scottish peer, if non-representative, is in the anomalous position of being disabled from serving his country' in either bouse of parliament, but an Irish peer may sit for any House of Commons constituency out of Ireland, though while a member of the Commons bis peerage privileges sbate.

Though many peers possess more'than one peerage, and frequently of more than one country, only tbat titic is publicly used which is first in point of precedence. It was once argued that whenever a barony by writ came into the possession of a person already a peer of higher rank, the higher pecrage "attracted" or overshadowed the lower, which thenceforth followed the course of descent of the dignity which had attracted it. This doctrine is now exploded and cannot be regarded as applyIng to any case except that of the Crown (Baronics of Fitzunt/cr, 1660, and De Ros, 1666; Collins's Clajms, 168, 261). Every peerage descends according to the limitations prescribed in its patent of creation or its charter, and where these are nonexistent (as in the case of baronics by writ) to beirs-general. (See Abeyance.)

In dealing with English dignities it is essential to redilize the difference between a mere tille of honour and a peerage. The Crown as the fountain of bonour is capable of conferring upon a subject not only any existing title of honour, but may even invent one for the purpose. So James I. instituted an order of hereditary knights which he termed baronets,
and Enward VII. created the duchess of Fife "Princess Royal "-a life dignity. The dignities of prince of Wales, earl marshal and lord great chamberlain have been for centuries hereditary, and though of high court and cocial precedence, of themselves confer no right to
t sest in the House of Lords-they are not peerages. creators truaf be acomble The grant of a peerage is a very different matter; lis holder becomes thereby a member of the Upper House of Parliament, and therefore the prerogative of the Crown in creatIng such in office of honour must be exercised strictly in accordance with the law of the land. The Crown's prerogative is limited in several directions. The course of descent must be known to the law; and so, in the first place, it follows that a peer cannot be created for life with a denial of succession to his descendants (unless it be as one of the lords of appeal in ordinary under the acts of 1876 and 7887). The courses of descent of modern patents are invariably so marked out as ultimatcly to fix the peerage in some male line according to the custom of primogendture, though the immedinte successor of the first holder may be a woman or even a stranger in hlood. The following instances may be cited; Amabell, Baroness Lucas, was in 1816 created Countess de Grey with a limitation to the heirs-male of bor sister; a nephew afterwards succeeded her and the earldom is now beld by the marquess of Ripon. Other courses of descent known to the law are as follows: Fee simple, which probahly operates as if to heirs-general, earldoms of Oxford (1155) and Norfolk (1:35), both probably now in abeyance; and Bedford (1367), extinct; to a second son, the eldest being alive, dukedom of Dover (1708), extinct, and earldom of Cromartie (1861) called out of abeyance in 1895 ; a son-in-law and his beirs-male by the dnughter of the first grantee, earidom of Northumberland (1747); to an elder daughter and her heirs-male, earldom of Roberts (Igor); to an elder or younger brother and his heirs-male, viscounty of Kitchener (i902) and barony of Grimt horpe (1886). It is, however, not lawful for the Crown to make what is called a shifting limitation to a peerage, i.e. one which might vest a pecrage in an individual, and then on a certain event bappening (c.g- his succession to a peerage of higher rank) shift it from him to the representative of some other line. Such a limitation wes held illegal in the Buckhurst case (1864). A peerage may not be limited to the grantec and " his heirs-male for ever." Such a grant was that of the earldom of Wiltes in 3398 . The original grantee died without issue, but left a male heir-at-law, whose descendants in 1869 claimed the earldom, but the original limitation was held invalid:

There is no limftation on the power of the Crown as to the number of United Kingdom peerages which may be ercated. As to Scotland, the Act of Union wilh that country operates to prevent any increase in the number of Scoltish peerages, and consequently there have been no creations since 1707, with the result that the Scottish peerage, as a separate order, is gradually approaching extinction. The Irish peerage is supposed always to consist of one hundred exclusively Irish peers, and the Crown has power to grant lrish peerages up to the limit. When the limit is reached no more pocrages may be granted until cxisting ones become extinct or their holders succeed to United Kingdom peerages. Only four lords of appeal in ordinary may hold office at any one time. The number of archbishops and bishops capable of sitting in the House of Londs is fixed by various statutes at twenty-six, but, as pointed out previously, the spiritual lords are not now regarded as peers.

Since party government became the rule, the new peerages have usually been created on the reconmendation of the prime minister of the day, though the Crown, especially in considering the cleims of royal blood, is belicved

Arvation to Numbers in sorme instances to take its own course; and constitutionally such action is entirely legal. By fat the greater number of pecrage bonours granted daring the last two centurics have been rewards for political services. Usually these services are well known, but there exists several instantes in which the reasons for conferring the honour bave not been quite clear. Until the reign of George III. the peerage was
comparatively small, but that moparch issued no fewer than 388 patents of peerage. Many of these have become extinct or obscured by higher titles, but the general tendency is in the direction of a steady increase, and where the peers of Tudor times might be counted by tens their successors of 1910 were numbered in hundreds. The full body would be 546 English peers. There are also 12 ladies holding English peerages. The Irish peerage has 175 members, but 82 of these are also peers of the United Kingdom, leaving 98 representative and 65 without seats in the House of Londs. Of 87 Scottish peers 5 I hold United Kingdom peerages, the remainder consisting of 16 representative and 20 without seats.

As centuries have gone by and customs changed, many privileges once kecnly asserted have either dropped out of Panditeges use or been dorgotten. The most important now in being are a seat in the House of Lords and the nght to trial by peers. The right to a seat in parliament is one sanctioned by centuries of constitutional usage. The right of a peer in England to a seat in parliament was not, as pointed out in the carly part of this articie, entircly admitted by the Crown until hate in the Plantagenet period, the king's pleasure as to whom he should summon always baving been a very material factor in the question. Charles I. made a deliberate attempt to recover the ancient discretion of the Crown in the issue of writs of summons. The earl of Bristol was the subject of certain weasonahie charges, and though be was never put on his trial the king directed that his writ of summoas should not issue. The excluded peer petitioned the Lords, as for a breach of privilege, and a committee to whom the matter was referred reported that there was no instance on record in which a peer capable of sitting in parliament had been refused his writ. There was a little delay, hut the king eventually gave in, and the carl had his writ (Lords Journals, iii. 544).

At the beginning of a new parliament every peer entitled reecives a writ of summons issued under the authority of the Great Seal; he presents his writ at the tahle of the House of Lords on bis first attendance, and before taking the aath. If the peer be newly created he presents his letters-patent creating the peerage to the lord chancellor on the woolsack, together with the writ of summons which the patent has evoked. A peer on succession presents his writ in the ordinary way, the Journals recording, e.g. that Thomas Walter, Viscount Hampden, sat first in Parliament after the death of his father (Lords Journals, croxix. 4). The form of writ now issued (at the beginning of a parliament: for the variation when parliament is sitting see Lords Journals, cxixix. 18ई) corresponds closely to that in use so long ago as the 14 th century. It runs as follows:-

George the Fifth by the Grace of God of the United Kingdon of Greas Britain and. Ircland and of the British Dominions beyond the seas King Defender of the Faith to our right trusty and wellbeloved Greeting Whereas by the advice and consent of our Council for certain arduous and ungent affairs concerning us the state and the delence of our said United Kingdom and ihe Church we have ordered a certain Parliament to be holden at our City or Westminster on the ... day of . . . Dext ensuing and there to treat and have conference with the prelates great men and peers of our realm We strictly enjoining command you upon the raith and allegiance by which you are bound to us that the weightiness of the said affairs and imminent perils considered (waiving all excuses) you be at the said day and place personally prescnt with us and with the said prelates great men and peers to treat and give your counsel upon the affairs aforesaid. And this as you regard us and our bonour and the salety and defence of the said United Kingdom and Church and despatch of the said afairs in no wiso do yoth onnit.

Formerly all pecrs were roquired to attend parliament, and there are numerous recorded inslances of special grants of leave of absence, but nowadays there is no compulsion.
After the right to a summons the principal privilege possessed
 by a peer is his right to be tried by his peers on a charge of treason or felony. Whatever the origin of this right, and some writers date it back to Saxon times (Trial of Lord Morley, 167s, Slute Trials vii.
145), Magoa Carta has alwaym been regarded as itanfirmatory authority. The important words ares-
" mullus liber homo capistur imprisonetur aut dimethiatur de libero tenenento suo vel libertatibus seu liberis conssuetudinibess suis, aut utlagetur aut exuletur nec aliquo modo distruatur nec dominus rex super ipsum ibit nec super eum mittet nisi per legale judicium parium suorum vel per legem terrac."

The peers have always strongly insisted on this privilege of trial by their own order, and several times the heirs of thooe wroagly condemned recovered their rights and heritage on the ground that there had been $n o$ proper trial by peers (R.D.P., v. 24). In 1442 the privilege received parliamentary confirmation (stat. 20 Henry V1. C. 9). If parlianent is siting the trial takes place before the House of Laxds in full seasion, i.e. the court of our lord the king in parlimment, if not then before the court of the lord high steward. The office of bord high steward was formerly bereditary, but has not been so for centuries and is now only granted pro hac vice. When neoescity arises the Crown issues a special commission maming some petr (usually the lord chancellor) lord high stewerd pre hac vice (Blackstone's Comm. iv. 258). When a trial taker place in full parliament a lord high steward is also appointed, but his powers there are confined to the presidency of the court, all the peers sitting as judges of law as well as of fact. Should the lord high steward be sitting as a court out of parliament be summons a number of peers to attend as a jury, but rules alone on aلl points of law and practice, the peers present being judges of fact only. Whichever kind of trial is in progress it is the invariable practice to summon all the judges to attend and advise on points of law. The distinction between the two tribunals was fully discussed and recognized in 1760 (Trial of Earl Ferrers, Foster's Criminal Coses, 139). The most recent trial was that of Earl Russcll for bigamy (reported 1901, A.C. 446). Among others are the Kilmarnock, Cromarty and Balmerino treason trials in pariament in 1746 (State Trials xviii. 441), and in the court of the Jord high steward, Lord Morley (treason, 1666, State Trials vi. 777), Lord Cornwallis (murder, 1678 State Trials vii. 145), Lord Delamere (1686, treason, Slath Trials $\mathbf{x i}$. 510). Recently some doubt has been expressed as to the origin of the court of the lord high steward. It is said that the historical document upon which the practice is founded is a forgery. The conflicting views are set forth in Vernon Harcourt's His Grace the Slcward and Trial of Pears, p. 429, and in Pike's Constilutional Hislory of the House of Lords, p. 2x3: In any case, whatever its historical origin, the court for centuries as 2 matter of fact has received full legal recognition as part of the constitution. The right to trial by peers extends only to cases of treason and felony, and not to thase of misdemeanour; nor can it be waived by any peer (Co. 3 Inst. 29; Kelyng's Rep. 56). In the case of R. v. Lord Grates (1887), discussed in Hansard's Parliamentary Debates, 3 rd serien, vol. ccex. p. 246, Lord Halsbury points out that the question. of trial by peers is one of jurisdiction established by lap rather than a cham of privilege in the discretion of the accused. Scottish and Irish peers, whether possessing seats in the House of Lords or not, are entitled to trial by peers, the same procedure being followed as in the case of members of the House of Lords.
Peers with a sent in the House of Lords possess practically the same parliamentary privileges as do members of the House of Commons. Among other privileges peculiar to themselves they have the right of personal access to the sovereige (Anson's Lazo of the Constitution, i. 227). In the House of Lords, when a resolution is passed contrary to his sentiments, any peer, by leave of the bouse, may "protest," that is, enter his dissent an the joumals of the house (Blackstone, Comm. i. 162). Formerly a peer might vote by proxy (Blackstone, ibid.), but since 1868 there has been a standing order discontinuing this right. In accordance with resolutions passed by the two houses, neitber house has power by any vote or declaration to clothe itsell with new privileges unknown to the law and customs of parlizment (Cammons Jowrnal, xiv. 555). Peeresses and non-representative peers of Ireland and Scotland have,
with the exception of the right to sit in the House of Lords and its attendant parliamentary privilcges, every peerage privilege: a widowed peeress retains her privilege of peerage while unmarried, but loses it if she marries a commoner (Co. Litt. 166; Cowley v. Coroly [1901] A.C. 450). Dissolution of marriage probably deprives a peeress of all peerage privileges which she acquired by marriage.

The children of peers are commonern. The eldest son of a poer of the rank of eart (and above) is ussally known socially by the poratom of name of his father's next peerage, but the courtesy Fambion of nature of such titie is cleariy indicated in every public ners. or legal document, the phraseology employed being "" John Smith. Eaq., commonly known as Viacount Blackacre. sctually borme courtesy titles not pomesemed as peerage honours by their fathers, but inasnuch as such are only accorded by courtexy, no question of peerage privilege arises. The younger! sons of dukes and marquesses are entitled to the prefix "Lond " before their Cluriatian mames, and all the daughters of earts as well as of dukes and manquedes are entithed similarly to atyle themgelven "Lady," on the principie that all the daughters are equal in rank and precedence. The younger cons of earis and all the Younger children of viscounts and banons are eptitled to the prefix 1. Honourable." Usually when the direct heir of a peor dien his children are given, by the Crown, on the death of the peer, the courtery tinten and precedence they would have enjoyed had their Iather actually succeeded to the peerage.
An alien may be created a peer, but while remaining an alien cannot sit in the House of Lords, nor, if a Scottish or Irish peer. crouina of cat he vote at elections for representative peers. peerPoerceren ases nay be crested (1) by writ of summons, (a) by except in the case of celling up an eldent mon in the barony of his Eather. This does not create a new peerage but only accelerates the heir's appearance In the House of Lords. On the father's death the peerage remains vested in the son. Should the son die without heir the peerape revests in the father. The imvariable method of creation in all ondinary casea is by petent. The letuers patent describe the name of the dignity, the person upon whom it is conferred, and specify its course of descent.

Claime to peerages are of two kinds: (1) of right. (a) of grace. In theory the Crown, as the fountain of honour, might mettle any chase to claim without reference to the House of Lords and monge issuc a writ of summons to jts petitioner. This would not in any way prevent tbe House of Lards from eamining the petent and writ of summons when the favoured petitioner or any heir claining through him came to take hie meat. If of opinion that the petent, was illeyal the house might refuse admittance, as it did in the Wensleydale case. Ia the case of a petitioner who has persuaded the Crown to terminate in his Cavour as a co-beir the abeyance of an ancient barony and who has rectived his wric of cummona, the matter is more difficult. The house cannot refuse to admit any person properly summoned by the Crown, as the prerogative is unlimited in point of numbers; bat it can taike into account the precedence of the newcomer. If be has an old barony he naturally expects its proper place on the bench of basoma, but if the house thought fit they might compel him to prove his pedigroe before acoording any precedence. Il he refused to do this they would still be bound to admit him, but it would be as the junior baron of the hoose with a peerage dating, for parliamentary purposes, from the day of his summons. The pencral result is that the Crown, unlens there can be wo question as to pedigree, seldom terminates an abeyance without referring the matter to the House of Lorda, and invariably so refers all claims which are disputod or which involve any question of law. ${ }^{1}$ The procedure is as follows: The claimant petitions the Crown through the home wecretary, metting forth his pedigree and stating the nature of his claim. The Crown then refers the petition to its legal adviser, the attorney-general. The petitioner then in course of time appears before the attorney-general with his proofs. Finally the attorney-general reports that a prima facie case is, or is not, made out. If a cate be mede out, the Crown. if it does not take immediate action. refers the whole matter to the House of Lords, who pase it on to their Committee for Privileges for examination and report.
The Committee for Privileges, which for peerage claims is usually constituted of the law lords and one or two other lords interested Communtes in peerage history, sits as an ondinary court of justice arervos and follows all the rulea of law and evidence. The mos. attorney-gencral attends as adviser to the committee and to watch the interests of the Crown. According to the nature of the case the Committee reports to the house, and the bouse to the Crown, that the petitioner (if succesp(ui) (i) hat made out his claim end is entitled to a writ of sumamons, of (a)
${ }^{1}$ This was not done in the case of the earldom of Cromartic called out of abeyance in 1895. The holder of the titte being a indy the bouse has had, as yet, to opporturity of coasidering the valdity of the Crown't ection.
has proved his co-hcirahip to an exiating peerage, and has also proved the descent of all existing co-beirn. In the first case the writ of summons is issued forthwith. but the second, being one of abeyance, is a matter for the pleasure of the Crown, which need not be expercised at all, but, it exercised, may terminate the abeyance in favour of any one of the co-beirs. The seniority of a co-beir (though this alone is of little moment), his power to support the dignity, and the number of existing co-heirs, are all factors which count in the chances of success.
Reference has already been made in the earlier part of this article to the reply of Bishop Peter de Roches to the English baroas who claimed trial by their peers, and, as was sugcested the bishop probably had in his mind the peers of France. Possibly the word pares, as eventually used in England,

Premen was borrowed from this source, but this is uncertaln. The great men known origioally as the twelve pairs de Frawce, were the feudal holders of large territories under the nominal wway of the king of France. They were the (archbishop) duke of Rheims, the (bishop) dakes of Langres and Laon, the (bishop) counts of Beaurais. Noyon and Chatons, the duloes of Burgundy, Normandy and Aquitaline, and the counte of Flandera, Toulouse and Champagne. These magnates, nominally feudatories, were practically independent rulers, and their position can in no way be compared to that of the English baronage. It is said that this body of peers was instituted in the reign of Philip Augustus, though nome writers even ascribe its origin to Charlemagne. Some of the peers were present at Phillp's coronation in 1179, and later again at the alleged trial of John of England when his fief of Nomandy. was adjudged forfeit to the Fremch Crown.
As the central pover of the French kings grew, the various fiefs lost their independence and became united to the Crowa, with the exception of Flanders which passed into the bands of the emperor Charles V. In the Ifth century the custom arose for the soverrign to honour his more important nobles by granting them the titie of Peer of France. Ae first the grant was confined to the royal dukes, but later it was conferred on others, amongst whom hate in the 17th century appears the archbishop of Paris. To several counties and baronies the honour of a pecrage was added, but moot of these cventually became reunited with the Crown. As a masislative body a chamber of peers in France was first lounded by Louis XVIII. in 1814 ; it was hereditary and modeiled on the English House of Lords. The revolution of 1830 reduced its bereditary quality to life tenure, and in the troubles of 1848 the chamber itself finally dizappeared.
Austria, Hungary and Portugal are other coantries posessaing peeragos which to some extent follow the English model. In Austria there is 2 large hereditary nobility and those oum members of it in whose familics the legislative dignity pitarign. is hereditary by nomination of the emperor it in the Pvange. Lates and a large number of nominated life-membern. In Hungary all those nobles who possess the right of hereditary peerage (as admitted by the act of 1885 and subsequent acts) and who pay a land tax of ecrtain value, are members of the House of Magnates, of whicb they corm a large majority, the remainder of the mem. bers being Roman Catholic prelates, repreacntatives of Protestant churches and tife peers. In Portugal until recent years the House of Peers was an hereditary body, but it is now practically a chamber of life-peera.
(G. E. ${ }^{-}$)

PRERLRAMP, PETRUS HOPIAAN ($1786-1865$), Dutch classical scholar and critic, descended from a family of French refugees named Perlechamp, was born at Groningen on the and of February 1786. He was prolessor of ancient literature and universal bistory at Leiden from 1822 to 1849, when be resigned his post and retired to Hilversum mear Utrecht, where he died on the 37 th of March 1865. He wis the founder of the subjective method of textual criticism, which consisted in rejectiog in a classical author whatever failed to come up to the standard of what that author, in the critic's opinion, ought to have written. His ingeouitity in this direction, in which he went much farther than Bentley, was chiefly exercised on the Odes of Horace (the greater part of which he declared spurious), and the Aeneid of Virgil. He also edited the Ars poetica and Satires of Horace, the Agricola of Tacitus, the romance of Xenophon of Ephesus, and was the author of a history of the Latin poets of the Netherlands (De vila, doctrina, at facullate Nederlamborwm qui carmina tating composwermert, 1838),
See L. Moller, Gasch. der hlassischem Philologic in den Niedertanden (1869), and J. E.' Sandys, Hisf. of Class. Sahol. (1908), iii. 276.

PEESEMSKY, ALEXEY PEOFILACTOVICR (1820-188i), Russian novelist, was born on his father's estate, in the province of Kostroma, on the roth/2and of March 1820. In his auto hiography he describes his family as belonging to the ancient

Ruseian nobility, but his more immediate progenitors were all very poor, and unable to read or write. His grandfather ploughed the fields as a simple peasant, and his father, as Peesemsky himself said, was washed and clothed by a rich relative, and placed as a soldier in the army, from which he retired as a major after thirty years' service. During childhood Pecsemsky read eagerly the translated works of Walter Scott and Victor Hugo, and Liter those of Shakcspeare, Schiller, Goethe, Rousseau, Voltaire and George Sand. From the cymnasium ol Kostroms he passed through Moscow University, and in 1884 entered the government service as a clerk in the office of the Crown domatios in his mative province. Between 1854 and 1872, when he finally quitted the civil service, he occupied similar posts in St Petersburg and Moscow. His early works exhibit a profound disbelief in the higher qualities of humanity, and a disdain for the other sex, although he appeara to have been attached to a particularly deyoted and sensible wile. His first novel, Boyarstchina, was lorbidden for its unfattering description of the Russian nobility. His principal bovels are Tufak ("A Mufl"), 1850 ; Teariche doush ("A Thousand Souls "'), 1862, which is considered his best work of the kind; and Vabalomoncheneoe more (" A Troubled Sea "), giving a picture of the excited state of Rusian sociely about the year 1862. He also produced a comedy, Gorkaya soudbina (" A Bitter Fate"), depicting the dark sides of the Russian peasantry, which obtained for him the Ouvarof prize of the Russian Academy. In 1856 he was sent, together with other literary men, to report on the ethnographical and commercial condition of the Russian interior, his particular field of inquiry having been Astrakhan and the region of the Caspian Sea. His scepticism in regard to the liberal reforms of the 'sixtiea made him very unpopular among the more progreasive writers of that time. He died at Moscow on the and of February 188 x (Jan. 2x, Russian style).
b PEGASUS (from Gr. mifos, compact," strong), the famous winged horse of Greek fable, said to have sprung from the trunk of the Gorgon Medusa when het head was cut off by Perseus. Belleraphon caught him as he draik of the spring Peirene on the Acrocorinthus at Corinth, or received bim tamed and bridled at the hands of Athena (Pindar, OA. siil. 63; Pausanias ii. 4). Mounted on Pegasus, Bellerophon alew the Chimara and overcame the Solymi and the Amazons, but when he tried to fly to heaven on the horse's back he threw him and continued his heavenward course (Apollodorus ii 3). Arrived in heaven, Pegasus served Zeus, fetching for him his thander and lightning (Hesiod, Theog. 28r). Hence some have thought that Pegasus is a symbol of the thundercloud. According to 0 . Gruppe (Griechische Mydhologic, i. 75, 123) Pegasus, like Arion the fabled offspring of Demeter and Poocidon, was a curse-horse, symbolical of the rapidity with which curses were fulfilled. In later legend he is the horse of Eos, the morning. The erroneous derivation from xirh, "a spring of water," may have given birth to the legends which connect Pegasus with water; e.g. that his father was Poocidon, that he was born at the springs of Ocean, and that he had the power of making springs rise from the ground by a blow of his hoof. When Mt Helicon, enchanted by the song of the Muses, began to rise to heaven, Pegasus stopped its ascent by stamping on the ground (Antoninus Liberalis 9), and where he struck the earth Hippocrene (horsespring), the fountain of the Muses, gushed forth (Pausanias ii. 3 r, ix. 31). But there are facts that speal for an independent mythological connexion between horses and water, e.g. the sacredness of the horse to Poseidon, the epithets Hippios and Equester applied to Poseidon and Neptune, the Greek fabie of the origin of the first horse (produced by Poseidon striking the ground with his trident), and the custom in Argolis of sacrificing horses to Poscidon by drowning them in a well. From his connexion with Hippocrene Pcgasus has come to be regarded as the horse of the Muses and hence as a symbol of poetty. But this is a modern attribute of Pegasus, not known to the ancients, and dating only from the Orlondo innamorato of Bofardo.
 Inaseem (1902), vol. viti., pt. 4

PEOAU, town of Germany, in the kingdom of Saxony, situated In a fertile country, on the Elster, 18 m . S.W. from Leipaig by the rallway to Zeita Pop (1905), 5656. It hat two Evangelical churcbes, that of St Lawrence being a fine Gothic structure, a ${ }^{16}$ th-century town-hall; a very old houpital and an agricultural achool. Its industries embrace the manir fecture of felt, boots and metal wares.

Pegau grew up round a monastery founded in 1096 , but does not appear as a town before the close of the 82th century. Markets were held here and its prosperity was further enhanced by its position on a main road running east and west. In the monastery, which was dissolved in 1539, a valuahle chronicle was compiled, the Annales pegavienses, covering the period from 1039 to 8227 .
See Ftasel. Anfang and Emde des' Klosters St Jacob mw Pegan (Leipzig, 1857); and Dillner, Grossel and Gunther, Alics and mewes aus Peqay (Leipsig. 1905). The Anmales pegasienses are published in Bd. XVI. of the Monsmeanta Germaniae historice. Scriptores.

PREMATITE (from Gr. fifya, a bond), the name given by Hally to those masses of graphic granite which frequently occur in veins. They consist of quartz and alkali feldspars in cryatallige intergrowth (see Petroloax, Plate II. Gig. 6). The term wad subsequently used by Naumann to signify also the coarsely crystalline veins rich in quartz, feldspar and muscovite, which often in great numbers ramify through outcrope of granhte and the surrounding rocke. This application of the name has now obtalned general acceptance, and has been extended by many authors 10 include vein-rocks of similar structure and geological relationships, which occur with syenites, diorites and gabbros Only a few of these pegmatites have graphic structure or mutual intergrowth of their constituents. Many of them are exceedingly cosrse-grained; in granite-pegmatites the feldspars may be several feet or even yards in diameter, and other minerale such as apatite and tourmaline often occur in gigantic crystals. Peg-: matites conaist of minerals which are found also in the rocks from whlch they are derived, e.g. granite-pegmatites contain principally quartz and feldspar while gabbro-peqmatites consist of diallage and plagioclase Rare mineraks, however,' often occur in these veins in exceptional amount and ois very perfect crystals. The minerals of the pegmatites are always those which were last to ecparate out from the parent rock. As the basic minerals are tho firut formed the pegmatites contain a larger proportion of the acid or more siliceous components which were of later origin: In granite-pegmatites there is little bornbiende, biotite or sphene, but white mica, feldspar and quartz make up the greater part of the veins. In gabbro-pegmatites, olivine seldom occurs, but diallage and plagioclase occur in' abundance. In this respect the pegratites and aplites agrec; both are of more acid types than the average rock from which they came, but the pegmatites are coarsely crystalline while the aplites are fine-grained. Segregations of the early minerals of a rock are frequent as nodules, lumps and streaks scattered through its mass, and oiten dikes of basic character (lamprophyres, \&c.) are injected into the surrounding country. These have been grouped together as intrusions of melanocrate facies (μ inas, black, xphros, strength, predominance) because in them the dark basic minerals preponderate. The aplites and pegmatites, on the other hand, are leucocrote (neunds, white); since they are of acid character and contain relatively large amounts of the white minerals quartz and feldspar.

Pegmatites are assoclated with plutonic or intrusive rocks and were evidently formed by slow crystallization at considerable depths below the surface: nothing similar to them is knowa in Iavas. They are very characteristic of granites, especially those which contain muscovite and much alkali feldspar; in gabbros, diorites and syenites pregmatite dikes are comparatively rare. The coarsely crystalline structure may be ascribed to slow crystalization; and is partly the result of the rocks, in which the veins lie, having been at a bigh temperature when the minerals of the pegratites separated out. In accordance with this we find that pegmatite veins are nearly always restricted
to the area occupied by the parunt sock (ag. the granite), or to its immediate vicinity, and within the zone which has been creatly heated by the plutonic intrusion, vis, the contact aureole. Another very important factor in producing the coarse crystallization of the pegmatite veins is the presence of abundant water vapour and other gases which served an mineralizing agents and facilitated the building together of the rock, molecules in large crystalline individuals.

Proof that these vapous were important agents in the formation of pegmatites is afforded by many. of the minerals contained in the veins. Boron, fluorine, hydrogen, chlorine and other volatile substances are estential components of some of these minerals. Thus tourmaline, which contains boron and fluorine, may be common in the pegmatites but rare in the granite itself. Fluorine or chlorine are present in apatite, another frequent ingredient of granite pegmatites. Muscovite and gilbertite both contain hydrogen and fluorinc; topaz is sich in fluorine also and all of these are abundant in some pegraatites. The stimulating effect which volatile subatances exert on crystallizing molten masses is well known to experimental geologists who, by mixing tungstates and fluorides with fused powders, have been able to produce artificial minerals which they coold not otherwise obtain. Most pegmatites ere truly igneous tocks so fat as their composition goes, but in their structure they show relations to the aqueous mineral veina Many of them for example have a comby structure, that is to sey, their miperals are columnar and stand perpendicular to the walls of the fissure occupied by the vein. Sometimes they have a banding owing to successive deposits having been hidd down of different character; mica may be external, then feldspar, and in the centre a leader or string of pure quarts. In pegmatite veins also there are very frequently cavities or vues, which are lined by cryatals with very perfect faces. These bear much resemblance to the miarolitic or drusy cavities comamon in granite, and like them were probably filled with the reaidual liquid which was left over aiter the mineral substances were deposited in crystals.
Pegmatites are very irregular not only in distribution, width and persistence, but also in composition. The relative abusdance of the constituent minerals may difer rapidly and much from point to point. Sometimes they are rich in mica, is enormous cryatals for which the rock is mived or quarried (India). Other pegmatites are nearly pure feldeper, while others are locally (especially near their terminations). very full of quartz. They may in fact pass into quartr veins (alatiotes) some of which are auriferous (N. America). Quatts veins of enother type are very largely developed, especially in regions of slate and phyllite; they are produced by segregation of dissolved silica from the country rock and its concentration into cracks produced by stretching of the rock matases during tolding. In these segregation veins, especially when the beds are of feldspathic nature, crystals of albite and orthochase may appenr, in large or small quantity. In this way a second type of pegmatite (aegregation pegmatite) in formed which is very difficult to distinguish from true igneous vains. These two have, howerer, much in commen as regards the ponditions ander which they were formed. Great preasures, presence of water, and a high thoush noi. necessarily very high temperature were the principal agencies at work.
Granite pegmatites are laid down after their parent mase hed solidified and while it was cooling down: mometimes they contain such minerals as garnet, not found in the main mass, and showing that the temperature of eryatallization was comparatively low. Another special feature of these veiss is the presence of minerals containing precious metals or rare earthe. Gold occurs in not a few cescs; tin in others, while sulphides wuch as copper pyrites are found also. Beryl is the commonest of the minerals of the second group: spodumene is another example, and there is much reason so hold chat diamond is a native of sone of ehe pegmatices of Brazil and India, though this is not yet incontestrably prowed. The syenitcpegmatites of mouth Norway are remarkable both for their coarse crystallization and for the great number of rare minerals they have yielded. Among thete may be mentioned havenite, rinkite, rosenbuschite, mouandrite, pyrochlore, perolsktite and lamprophy吾ite.
(9.5.F.)

Fromintis a fiver of Cermagy. It rises near Lídenhand in Upper Franconia (Bavaria) from two sources. At first it is called the Fichtenohe, but at Buchau it takes the mame of the Pegnits, and flowing in a south-westerly direction disappears below the small town of Pegnitz in a mountain cavern. It emerges through three orifices, enters Middle Franconia, and after flowing through the heart of the city of Nuremberg falls into the Regnits at Firth.
See Specht, Das Pegnitsgetict in Besug auf seinem Wasserhaushafl (Munich, 1905).
The Pegmitz Order (Order of the society of Pegnitz sbepherds), also known as "the crowned flower order on the Pagnity," was one of tho societies founded in Germany in the course of the ryth century for the purification and improvement of the German language, eapecially the domain of poetry. Geors Philipp Harsdorfier and Johana Kiaj instituted the order in Nurembers in 8644 , and named it after the river. Ite emblem was the passion flower with Pan's pipes, and the motto Mit Nutaen afreulich, or Alle sw ainem Tom ainclimmoig. The members set themsetve the task of counteracting the pedantry of another achool of poetry by imagination and gaiety, but lacking imagination and broad view they took refuge in allegarical subjects and puerile trifling. The result was to debase rather than to raise the atandard of poetic art in Germany. At first the meetinge of the order were heid in private grounds, but in 1681 they were transferred to 2 foreat near Rraftshof or Naunbof. In 1794 the order was reorganised, and it now exists merely as a literary society.

Soe Tittman, Dis mermberect Dicherschalo (Gottinged, IB47); and the Fastrchrifl zur 250 -jahrigen Jubelfaiey des pegmesischen Blumenordens (Nuremberg, 1894).

PEOONOTTI, FBANCEACO BALDUCCI (f. 1315-1340), Florentine merchant and writer, was a factor in the service of the mercantile bouse of the Bardi, and in this capacity we find him at Antwerp from 1315 (or earlier) to 1317; in Iondon in 1317 and apparently for some time after; in Cypris from 1324 to 1327, and agnin (or perhaps in unbroken continuation of his former residence) in 1335. In this last year be obtained from the king of Little Armenia (i.e. medieval Cilicia, Ac.) a grant of privileges for Florentine trade. Between 1335 and 1343, probably in 1339-1340, be comptied his Libro di divisainenti di pacsi a di miswa di mercatanaic o d'allre cose bisognesoli di sajere a' mercolanti, commonly known as the Pralica della mercatura (the name given it by Pagminf). Beginning with a sort of glomary of foreign terms then is ase for all kinds of taxes or payments on merchandise as well as for "every hind of place whare geods might be bought or sold in cities," the Prafica nest.demacribes wome of the chief trude moutes of the 14 th century, and many of the principal markets tben known to Italian merchants; the imports and exports of various impertant commercial resiona; the buaines customs prevalent in each bf thone regiona; and the comparative value of the leading moneys, wefghts and measures. The most distant and extensive trade routes deacribed by Pepolotii are: (I) that from Tana or Azov to Pehing vis Astrakhan, Khiva, Otrar, Kulja and Kanchow (Gituarchan, Orgenci, Ottrarre, Armaleceo and Camexu in the Protica); (a) that from Lajnseo on the Cillician cosst to Tabrie in morth Persia vis Sivas, Erringap and Eescrum (Salvastro, Arzinga and Arverone); (3) that frovi Trebisond to Tabrix Amons the markets enumerated are: Tana, Conutantinople, Alexandria, Damietta, and the ports of Cyprus and the Crimea. Pesoloti's notices of ports on the north of the Bleck Sea are very valuabio; his worts ahow us that Florentine exports had now grined a bigh repmatation in the Levant. In other chapters an eccount is given of 14th-century methods of pecking goods (ch. 29); of amaying gold and ainver (ch. 35); of chipmem; of "Londoa in Eagland in itself" (ch. 62); of monasterica in Scotland and Englad ("Scotland of Englandy" Scosio of Inghillerra) that were rich in wool (ch. 63). Among the latter are Newbattle, Balmering, Cupar, Dunfermline, Dundrennan. Glenfuce, Coldingham, Keho, Nowmineter near Morpetb, Furness, Fountains, Kirkstall, Kirstead, Swimenheed, Sawley
and Caider. Pegolotti'm intereat in England and Scotland is chiefly connected with the wool trade.
There is only one MS. of the Pratica, vis. No. 2441 in the Riceardian Library at Florence (24I fols, cocupying the whole volume), written in 1471; and one edition of the text, in vol. iii, of Gian Francesco Pagnini's Della Decima e delle allore gravezze imposte dal commune di pirenze (Lisbon and Lucca-really Florence-1766); Sir Henry Yule, Calley, ii. 279-508, translated into English the most interesting sections of Pegolothi, with valuable commentary (London, Hakluyt Society, 1866). Sce aloo W. Heyd, Commerce du Levant, ii. 12, 50, 58, 78-79, 85-86, 112-119 (Leiprig, 1886); H. Kiepert, in Suzunssberichte der philos.-hist. Cl. der berliner Akad., p. و01, \&c. (Berlin, 1881); C. R. Beadey, Down of Modern Geography, iii. 324-332، 550، 555 (Oxfordi، 1906).
PBAU, a town and former capital of Lower Burma, giving its name to a district and a division. The town in situated on a civer of the same name, 47 m . N.E. of Rangoon hy rail; pop. (1901), 14,132. It is still surrounded hy the old walls, about 40 ft . wide, on which have been huilt the residences of the British officials. The most conspicuous object is the Shwe-maw-darr pagoda, 324 ft . high, conslderahly larger and even more holy than the Shwe-dagon pagoda at Rangoon. Pegu is said to have been founded in 573, as the first capital of the Thaings; but it was as the capital of the Toungoo dynasty that it became known to Europeans in the 16 th century. About the middle of the 18 th century it was destroyed by Alompra; but it rose again, and was important enough to be the scene of fighting in both the first and second Bummese Wars. It gave its name to the province (including Rangoon) which was annezed by the British in 1852.

The district, which was formed in 2883, consists of an alluvial tract between the Pegu Yoma range and the Sittang river: area, 4276 sq. m.; pop. (1901), 339,572, showing an increase of 43% in the decade. Christians numbered neariy 9000 , mostly Karess. Almost the only crop grown is rice, which is exported in large quantitics to Rangoon. The district is traversed hy the railway, and also crossed by the Pegu-Sittang canal, navizahie for 85 m ., with locks.
The division of Pegu comprises the five districta of Rangoon city, Hanthawaddy, Tharrawaddy, Pegu and Prome, lying east of the Irrawaddy: area 13,084 sq. m.; ppp. (1901), 2,820,638.

Pegu has also given its name to the Pegu Yoma, a range of hills zunning north and south for about 200 m ., between the Irrawaddy and Sittang rivers. The height nowhere exceeds 2000 ft . but the slopea are steep and rugeed. The forests yield teak and other valuable timber. The Pegu river, which rises in this range, falls into the Rangoon tiver just below Rangoon city, after a course of about 180 m .
PBILK JOEN ($\mathrm{I}_{3} 8$-1010), English philologist, was borm at Whitehaven on the a4th of April 3838. He was educated at Repton and Christ's College, Cambridge. After a distinguished career (Craven scholar, senior classic and chancellor's medallist), be became fellow and tutor of his college, reader of comparative philology in the university (1884 -1891), and in 1887 was elected master of Christ's. He took a great interest in the higher education of women and became president of Newnham College. He was the first to introduce the great philological works of George Curtius and Wilhelm Corssen to the English student in his Introduction to Greck and Latin Etymology (1869). He died at Cambridge on the gth of October roto, leaving practically completed his exhaustive history of Christ's College.
PEINE, a town of Germany, in the Prussian province of Hanover, 16 m . hy rail N.W. of Brunswick, on the railway to Hanover and Hamburg. Pop. (1905), 15,421. The town has a Roman Catholic and a Protestant church and several schools Its industries inclade iron and steel works, breweries, distillerias and hrickyards, and the manufacture of starch, sugar, malt, machinery and artificial manure. There are also large horse and cattle markets held here. Peine was at one time a strongly fortified place, and until 1803 belonged to the hishopric of Hildesheim.
PENER PORTE ET DURR (French for "hard and severe punishment '), the term for a barbarous torture inflicted on those who, arraigned of feloay, refused to plead and stood silent, or
chalkenged more than twenty jurors, which was deemed a contumaey equivalent to a refusal to plead. By early English law a prisoner, before be could be tried, must plead "guilty" or " not guilty." Before the 13 th century it was usual to imprison and starve till suhmission, hut in Henry IV.'s reign the peine was employed. The prisoner was stretched on his hack, and stone or iron weights were placed on him till he either suhmitted or was pressed to death. Pressing to death wat abolished in 1772; "standing mute" on an arraignment of felony being then made equivalent to conviction. By an act of 1828 a plea of "not guilty" was to be entered against any prisoner relusing to plead, and that is the rule to-day. An alternatlve to the peine was the tying of the thumbs tightly together with whipcord untll pain foreed the prisoner to speak. This was said to be a common practice at the Old Bailey up to the igth century.

Among recorded instances of the infliction of the peine age: Juliana Quick (1442) lor high treason in speaking derinively of Henry V1.; Margaret Clitherow, "the martyr of fork" (1586); Walter Calverly, of Calverly, Yorks, lor the murder of his children (1605); and Major Strangways at Newgate, charged with munder of bls liother-in-law (1657). In this last case it is said that upon the weights being placed in position several cavalicr friends of Strangways sprangon his body and put hlm out of his pain. In 1721 one Nathanicl Hawes lay under a weight of 250 Ib for mevee minutes, finally suhmitting. The peine was last employed in 1741 at Cambridge assizes, when a prisoner was so put to death ; the penalty of thumb-eying having first been tried. In 1692 at Sulem, Masso. chusetts, Giles Corey, accused ol witcherrfe, refusing to plead. wan pressed to death. This is believed to be the only lastance of the infliction of the penalty in America.

PRIPUS, or Crudssoye Ozero, a lake of north-west Russia, between the governments of St Petershurg, Pskov, Livonia and Esthonis. Including its southem extension, sometimes known as Lake Pbkov, it has an area of $1356 \mathrm{sq} . \mathrm{m}$. Its shores are flat and sandy, and in part wooded; its waters deep, and they afford valuahle fishing. The lake is fed hy the Velikaya, which enters it at its southem extremity, and hy the Emhach, which flows in half way up ite western shore; It drains into the Gulf of Finland hy the Narova, which issues at its north-east corner.
peiraisus, or Preazos (Gr. Hepeueis), the port town of Athens, with which its history is inseparably connected. Pop. (z907), 67,982. It consists of a rocky promontory, containIng three natural barbourn, a large one on the north-west which is still one of the chief commercial harbours of the Levant, and two smaller ones on the east, which were used chiefly for naval purposet. Themistocles was the first to urge the Athenians to take advantage of these harbours, instead of using the sandy bay of Phaleron; and the fortification of the Peiracus was begun in 493 b.c. Later on it was connected with Athens by the Long Walls in 460 B.c. The town of Peiracus was laid out by the architect Hippodamus of Miletus, probahiy in the time of Pericles. The promontory itself consisted of two parts-the hill of Munychia, and the projection of Acte; on the opposite side of the great harbour was the outwork of Eetioncia. The most stirring episode in the history of the Peiracus is the seizure of Munychia hy Thrasyhulus and the exiles from Phyie, and the consequent destruction of the " 30 tyrants" in 404 B.c. The three chief arsenals of the Peiraens were named Munychia, Zea and Cantharus, and they contained galley slipa for 82, 196 and 94 ships respectively in the 4tb century b.c.

See under Athens. Also Angelopoulos, Ifal Inapecin eal rio duciuser ailrố (Athens, 1898).

PEIRCR, BERJAMIN (1809-1880), American mathematician and astronomer, was born at Salem, Massachusetts, on the 4th of April 1809. Graduating at Harvard College in 1829, be became mathematical tutor there in 1831 and professor in 2833. He had already assisted Nathaniel Bowditch in his translation of the Mecanique calcste, and now produced 2 series of mathematical textbooks characterized hy the brevity and terseness which made his teaching unattractive to inapt pupils. Young men of talent, on the contrary, found his instruction most stimulating, and after Bowditch's death in 1838 Peirce stood first among American malbematicians. His researches into the perturbations of Uranus and Neptune (Proc. Amer.

Acod., 1848) gave him a wider fame; he became in r\$49 consulting astronomer to the American Namical Almanac, and for this work prepared new tables of the moon (1852). A discussion of the equilibrium of Saturn's rings led him to conclude in 1855 that they must be of a fluid nature. From r86y to 1874 he was superintendent of the Coast Survey. In 1857 be pablished his best known work, the System of Analyical Mechanics, which was, however, surpassed in brilliant originality by his Limear Associative Algebre (lithographed privately in a few copies, 1870; reprinted in the Amer. Jowrn. Matk., 1882). He died at Cambridge, Mass., on the 6 th of October 1880.
See New A mer. Cyclopacedice (Ripley and Duna), vol. xiin. (1861); T. J. J. See, Popular Astromomy, iil. 49: Nature, xxii. 607; R. Grant, Hist. of Phys. Astronomy, Pp 205, 292; J. C. Poggendorff, Biog. lii. Handwofterbuch; Monlk. Notices Roy, Astr. Sociely, xil. 191.

PEISANDER, of Camirus in Rhodes, Greek epic poet, supposed to have flourished about 640 B.C. He was the author of a Heracleia, in which he introduced a new conception of the hero, the lion's skin and cluh taking the place of the older Homeric equipment. He is also said to have fixed the number of the " labours of Hercules " at twelve. The work, which according to Clement of Alexandria (Stromata, vi. ch. 2) was simply a plagiarism from an unknown Pisinus of Lindus, enjoyed so high a reputation that the Alexandrian critics admitted the author to the epic canon. From an epigram (20) of Theocritus we learn that a statue was erected in honour of Peisander by his countrymen. He is to be distinguished from Peisander of Laranda in Lycia، who lived during the reign of Alexander Severus (A.D. 222-335), and wrote a poem on the mixed marriages of gods and mortals, after the manner of the Eoiai of Hesiod.
See fragments in G. Kinkel, Epicorum gracicorum fragmenta ($1 \delta_{78}$): also F. G. Welcker. Kleine Schriftem, vol. i. (1844), on the twelve Gbours of Hercules in Peisander.
PEiBISTRATUS, (Cos?-527 B.c.), Athenian statesman, was the son of Hippocrates. He was named after Peisistratus, the youngest con of Nestor, the alleged ancestor of his family; he was second coasin on his mother's side to Soton, and numbered among his ancestors Codrus the last great king of Athens. Thus among those who became "tyrants" in the Greek werth he gained his position as one of the old nobility, like Phalaris of Agrigentum, and Lygdamis of Naxos; but unlike Orthagoras of Sicyon, who had previously been a cook. Peisistratus, though Solon's junior by thirty years, was his lifelong friend (though this isdenied), nor did their friendship suffer owing to their political antagonism. From this widely accepted belief arose the almost certainly false statement that Peisistratus took part in Solon's successful war against Megara, which necessarily took place before Solon's archonship (probably in 600 B.c.). Aristotle's Constitation of Athens (ch. 17) carefully distinguishes Solon's Megarian War from a second in which Peisistratus was no doubt in command, undertaken between 570 and 565 to recapture Niseas (the port of Megara) which had apparently been recovered by the Mestrians since Solon's victory (see Sandys on The Constioution of Alhens, ch. 14, 1, note, and E. Abboti, History of Greece, vol. i. app. p. 544). Whatever he the truecxplanation of this problem, it is certain (x) that Peisistratus was regarded as a leading soldier, and (2) that his position was strengthened by the prestige of his family. Furthermore (3) he was in man of great ambition, persuasive eloquence and wide generosity; qualitics which especially appealed at that time to the classes from whom he was to draw his support-hence the warning of Solon (Frag. II. B): "Fools, you are treading In the footsteps of the fox; can you not read the hidden meaning of these charming words?" Lastly, (4) and most important, the times were ripe for revolution. In the article on Socos (ad fr.) it is shown that the Solonian reforms, though they made a great advance in some directions, failed on the whole. They were too moderate to please the people, too democratic for the nobles. It was found that the government by Boule and Ecciesis did not mean popular control in the full sense; it meant goverameat by the lefrured classes, inasmuch as the industrious farmer or herdiman could not heave his work to give his vote at the Ecclesin, or do his duty at econcillor. Partly owing to this, and pardly to
ancient fouds whose origin we camot ttace, the Athenian people was split upinto three great factions known as the Plain (Pedicis) led by Lycurgus and Miltiades, both of noble families; the Shore (Parali) led by the Alcmaconidac, represented at this time by Megacles, whe was strong in his wcalth and by his recent marriage with Agariste, daughter of Cleisthenes of Sicyon; the Hill or Upland (Diacreis, Diacri) led hy Peisistratus, who no doube owed his influence among these hillmen partly to the possession of large estates at Marathon. In the two former divisions the influence of wealth and birth predominated; the hillmen were poorly housed, poorly clad and unable to make use of the privileges which Solon had given them. Hence their attachment to Peisistratus, the " man of the people," who called upon them to sweep away the last berriers which separated rich and poor, nobles and commoners, city and countryside. Lastly, there was a class of men who were discontented with the Solonian constitution: some had lost by his Seisachtheia, others had vainly hoped for a general redistribution. These men sav their only hope in a rewolution. Such were the factors which enabled him to found his tyranny.

To enter here inco an exhaustive account of the various theories which even before, though enpecially after, the appearance of the Conssitution of Athens have been propounded as to the chrenology of the Peisistratean tyranny, is impossible. For a summary of these hypotheses see J. E. Sandys's edition of the Constitulion of Altens (p. 56, c. 14 note). The following is in brief the sequence of events: In 560 s.c. Peisistratus drove into the market-place, showied to an todignant assembly marks of violence on himself and his mules, and claimed to be the victim of assault at the hands of political enemics. The people unhesitatingly awarded their "champion" a bodyguand of fifty men (afterwards four hundred) armed with clubs. With this force he proceeded to make himself master of the Acropolis and tyrant of Athens. The Alcmaconids fled and Peisistretes remained in power for about five years, during which Solon's death occurred. In 555 or 554 8.c. a coalition of the Plain and the Cosst succeeded in expelling him. His property was confiscated and sold hy auction, but in his absence the strife between the Plain and the Coast was renewed, and Megactes, unable to hold his own, invited him to return. The condition was that their families should be allied hy the marriage of Peisistratus to Megacles' daughter Coesyra. A second coup d'dut was thon effected. A beautiful woman, it is said, by name Phya, was disguised as Athena and drove into the Agors with Peisistratus at ber side, while proclamations were made that. the goddess herself was restoring Peisistratus to Athens. The ruse was successful, but Peisistratus soon quarrelled with Megacles over Coesyra. By a former marriage he already had two sons, Hipplas and Hipparchus, now growing up, and in his first tyranay or his first exile he married an Argive, Timonassa, hy whom he had two other sons lophon and Hegesistratus, the latter of whom is said to be identical with Thessalus (Aith. Pat. c. 17), though from Thucydides and Herodotus we gather that they were distinct-a.s. Herodotus desetibes Hegesistratus as a bastard, and Thucydides says that Thesselus was legitimate. Futher It is suggreted that Peisistratus was unwiling to have children by one on whom lay the curse of the Cylonian outrage. The result was that in the seventh year (or month, see Ath. Pof. c. 15. 1. Sandys's note) Megecies aecused him of neglecting his daughter, comhined once more with the third faction, and drove tbe tymunt into an exile lasting apparently for ten or cleven years. During this period be lived first at Rhaccehs and later near Mt Pangueus and on the Strymon coliecting resources of men and money. He came finally to Eretria, and, with the help of the Thebans and Lygdamis of Nasos, whom he afterwards made ruler of that island, he passed over to Attica and defeated the Athenian forces at the battle of Pallenis or Pellene. From this time till his death he remained undlisputed master of Athens. The Alcmaeonids were compelled to Irave Albens, and from

[^6]the other poble fantilies which remained he exacted seo hostages whom he put in the care of his ally Lygdamis.

In the heyday of the Athenian democracy, cilizess both conservative and progressive, politicians, philosophers and historians were unanimous in their denunciation of "tyranny." Yet there is no doubt thot the rule of Peisistratus was most beneficial to Athens both in het foreign and in her intermal relations. (x) During his enforced absence from Athens he had evidently acquired a far more extended idea of the future of Athens than had hitherto dawned on the somewhat parochial minds of her leaders. He was friendly with Thebes and Argos; his aon Hegesistratus he set in power at Sigeum (see E. Abbott, Hist. of Gr. vol. i. xv. 9) and his friend Lygdamis at Naxos From the mines of Thrace, and perhaps from the harbour dues and from the mines of Laurium, he derived a large revenue; under his encouragement, Milciades bad planted an Athenian colony on the shores of the Thracian Chersonese; he had even made friends with Thessaly and Macedonia, as is evidenced by the hospitality extended by them to Hippias on his final expulsion. Finally, he did not allow his friendliness with Argos to lnvolve him in war with Sparta, towards whom he pursued a policy of moderation. (2) At home it is admitted by all authorities that his rule was moderate and beneficent, and that he was careful to preserve at least the form of the established constitution. It is even said that, belng accused of murder, he was ready to be tried by the Areopagus. Everything which he did during bis third period of rule was in the interests of discipline and order. Thus he hired a mercenary bodyguard, and utilized for his own purpones the public revenues; he kept the chlef magistracies (through which he ruled) in the hands of his family; he imposed 2. general tax ${ }^{1}$ of 10% (perhaps reduced by Hippias to 5%) on the produce of the land, and thus obtained control over tbe fleet and spread the burden of it over all the citizens (see the spurious letter of Pcisistratus to Solon, Diog. Laert. i. 53; Thuc. vi. 54 and Arnold's note ad loc.; Boeckh iii. 6; Thirlwall c. xi., pp. 72-74; and Grote). But the great wisdom of Peisistratus is shown most ciearly in the skill with which he blinded the people to his absolutism. Pretending to maintain the Solonian conatitution (as he could well afiord), he realized that people would never recognize the deception if a sufficient degree of prosperity were ensured. Secondly, he knew that the greater the proportion of the Athenians who were prosperously at work in tbe country and therefore did not trouble to interfere in the work of government the less would be the danger of sedition, whose seeds are in a crowded city. Hence he appears to have encouraged agriculture by abating the tax on small farma, and even by assisting them with money and stock. Secondly, he established deme law-courts to prevent people from having recourse to the city tribunals; it is said that he himself occasionally "went on circuit," and on one of these occasions was so struck by the plaints of an old farmer on Hymettus; that he remitted all taxation on his land. Thus Athens enjoyed inamunity from war and internecine struggle, and for the first time for years was in enjoyment of settled financial prosperity (sec Constitution of Athens, c. 16. 9 i ixi Kporav plios).

The money which be accumulated he put to good use in the construction of roads and public buildings. Like Cleisthenes of Sicyon and Feriander of Corinth, he realized that one great source of strength to the nobles had been their presidency over the local cults. This he diminished by increasing the splendour of the Panathenaic festival every fourth year and the Dionysiac: rites, and so created a national rather than a local religion. With the same idea he buile the temple of the Pythian Apollo and began, though be did not finish, the temple of Zeus (the magnificent columns now standing belong to the age of Hadrian).
It should be noted as against this, the general account, that Thucydides, speaking apparently with accuracy, describes the tax as clenat (5%); the Constitution of Athens speaks of (the familiar) sarart (10%).
${ }^{2}$ Dionysus, as the god of the rustics, was especially worshipped at Icaria, near Marathon, and 80 was the god of the Diacrii. It seems likely that Peisistratus, to pleate his supporters, originated the City-Dionysia.

To him are ascribed also the original Parkenon on the Acropolis, afterwards burned by the Pernians, and replaced by the Parthenon of Pericles. It is said that he gave a great impetus to the dramatic sepresentations which belonged to the Dinnysiac cult, and that it was under his encouragement that. Thespis of Icaria, by impersonating character, laid the foundation of the great Greek drama of the sth and 4th canturies. Lastly, Peisistratus carried out the purification of Delos, the sacred island of Apollo of the Ionians; all the tombe were resnoved from the neighbourhood of the shrine, the abode of the god of light and joy.

We have spoken of his services to the state, to the poor, to religion. It remains to mention his alleged services to literature. All we can reasonably believe is that he gave encouragement to poetry as he had done to architecture and the drama; Onomacritus, the chief of the Orphic succession, and collector of the oracles of Musacus, was a member of his houschold. Honestly, or to impress the people, Peisistratus made considerahle use of oracles (e.g. at the battle of Pellene), and his descendants, by the oracles of Onomacritus, persuaded Darius to undertake their restoration. As to the library of Peisistratus, we have no good evidence; it may perhaps be a fiction of an Alexandrian writer. There is strong reason for believing the story that he first collected the Homeric poems and that his was the text which ultimately prevailed (see Honer).

It appears that Peisistratus was benevolent to the last, and, like Julius Caesar, showed no resentment against enemies and calumniators. What Solon said of him in his youth was true throughout, " there is no hetter-disposed man in Athens, save for his ambition." He was succerded by his sons Hippias and Hipparchus, by whom the tyranny was in various way brought into disrepute.

It should be observed that the tyranny of Peisistratus is one of the many epochs of Greek history on which opinion has almost entirely changed since the age of Grote. Shortly, his services to Greece and to the world may be summed up under three heads: In foreign policy, he sketched out the plan on which Athens was to act in her external relations. He advocated (a) alliances with Argos, Thessaly and Macedon, (b) ascendancy in the Aegean (Naxos and Delos), (c) control of the Hellespontine route (Sigeum and the Chersonese), (d) control of the Strymon valley (Mt Pangaeus and the Strymon). Further, his rule exemplifies. what is characteristic of all the Greek tyrannies-the advantage which the ancient monarchy had over the republican form of government. By means of his cons and his depulies (or viceroys) and by his system of matrimonial alliances he gave Athens a widespread influence in the centres of commerce, and brought her into connexion with the growing sources of trade and production in the eastern parts of the Greek world. (2) His importance in the sphere of domestic policy has been frequently underrated. It may fairly be held that the reforms of Solon would have been futile had they not been fulfilled and amplified by the genius of Peisistratus. (3) It was under his auspices that Athens began to take the lead in literature. From this period we must date the beginning of Athenian literary ascendancy. But see Atzens.
Authoritiss,-Ancient: Herod. i. 59; Plut. Salon 30; Arist. Poditics, v. 12, 5-1315 b.; Constilution of Aithens (Alk. Pal.) ce. 14-19. On the chronological problems sce also P. Meyer, Arist. Pol. and the Aih. Pol. pp. 48-9; Gomperz. Die Schrift D. Staatrwesen. Ae. (1891): Bauer, Lit. wid hist. Farsch. s. Arist. Aih. Pol. (50 sq9.) On the characteristics of the Peisistratid tyranny gee Greenidge. Handbook of Greck Consfitwional Huslory. pp. 26 sqq.; and the histories of Greece. On the question of the family of Pcisistrapus see Wilamo-witz-Moellendorf, A isloteles und Alhen (Berlin. 1893) and a criticism by E. M. Walker in the Classical Reviews, vol. viil. p. 206, col. 2.
(J. M. M.)

PEKTM, a city and the county-seat of Tazewell county, llinois, U.S.A., on the Illinois river, in the central part of the state, about 11 m. S. of Peoria, and about 56 m . N. of Springfield. Pop. (1910), 9897 . It is served by the Atchison, Topeka \& Santa Ft, the Chicago \& Atton, the Chicago, Peoria \& St Louis, the Illinois Central, the Cleveland, Cincinnati, Chicago \& St Louis, the Peoria.Railway Terminal Company, the Peoria
8. Pekin Urion and (for freight between Peoria and Pekin) the Hinois Valley Belt railways. Situated in a rich agricutural region and in the Illinois coaliselds, Pekin is a shipping point and grain martet of considerable importance, and has various manufactures. The value of the factory products in 1905 was \$1,121r,130. Pekin was first settled about 1830, was incorporated in 1839, and re-incorporated in 1874.

PLKIME, or Pexin, the capital of the Chinese Empire, siluated in $39^{\circ} 57^{\prime} \mathrm{N}$. and $116^{\circ} 29^{\prime}$ E., on the northern extremity of the great alluvial delta which extends southward from tis walls for 700 m . For mine centuries Peking, ander various names and under the dopinion of guccesaive dynasties, has, with some short intervales, remained an imperial city. Its situation near the northern frootier recommended it to the Tatar invaders as a convenient centre for their power, and its peculiatly fort unate position at regards the wipernatural terrestrial inftuences pertainung to it has inclined succeeding Chinese monarcha to accept it as the seat of their courts. In 986 it was taken by an invading force of Khitan Tatars, who adopted it as their headquarters and named it Nanking, or the "southern cupital." During the early part of the iath century the Chinese recaptured it and reduced it from tbe rank of a metropolis to that of a provincial city of the first grade, and called ft Yen-shan Fu. In if 5 r it fell into the bands of the Kin Tatars, who made it a noyal residence under the name of Chuas-tu, or "central capital." Less than a century later It became the prize of Jenghis Khan, Who, having his main interests centred on the Mongolien steppes, declined to move his court southwards. His great sucecssor, Kublai Khan ($1280-1294$), rebuik the town, which be called Yenking, and which became known in Chinese as Ta-tu, or "great court," and in Mongolian as Khanbalit (Cambaluc), or "rity of the khan." . Daring the reign of the first emperer of the dynasty (1368-1399) which sacceeded that founded by Jenghia Khan the court resided at the modem Nanking, but the surcoeeding sovereign Yung.lo (1403-1425) transferred bis court to Pe-king (ic. "north-court"), wbich bes ever since been the seat of government. For furiher history see Cimaluc.
Duriag the periods above mentioned the exten and boundaries of the city varied comsiderably. Under the Kin dymesty the walls extended to the south-west of the Tatar portion of the present city, and the foundations of the northern ramparts of the Khan-balik of Kubhi Khan are still to be traced at a distance of about 2 m . north beyond the existing walls. The modern city consists of the mei ch' ${ }^{2}$ g, or inner city, commonly known to lorcigners as the "Tatar city," and the woi ch' 2 ng, or outer city, known in the same way as the "Chinese city." These menes are somermat maleading, as the inner city is not enclosed within the outer city, but adjoins its northern wall, which, being longer than the nci $\mathrm{ch}^{\prime} \mathrm{th}$ in wide, outfianks it considerably at both ends. The outer walls of the double city contain an area of about 25 sq. m., and measure 30 m . in circumference. Unlike the walls of moot Chincso cities, those of Peking ase lept in perfect order. Those of the Tatar portion, which is the oldest part of the city, are go ft. high, with a width of 60 ft . at the base and 40 ft . at the top, while those of the Chinese ctty, which were touit by the emperor Kia-tsing in 1543, measure 30 ft . in beight, and bave a width of 25 ft . at the base and is ft . at the top. The terre-plein is well and smoothily paved, and is defended by a crenellated parapet. The outer faces of the walls are strengthened by square buttresses built out at intervals of 60 yds., and on the summits of these stand the guard-houses for the troops on duty. Each of the sixteen gates of the city is protected by a semi-circular enceinte, and is surmounted by a high tower built in galleries and provided with countlens loopholes.
Peking suffered soverely during the Boxer movement and the siege of the legations in the summer of 1000 . Not only were mast of the foreign buildings destroyed, but also a large number of important Cbincsa buildings in the vicinity of the foreign quarter, including the ancient Hanlin Yuen, the boards of war, rites, alc. Almost the whole of the business quarter, the wealthiest part of the Cbinese cily, was laid in athes (see Cmura: Histery).

The popolation of Peking is recknoed to be about $1,000,000$, a number which is out of all proportion to the fmmense area enclosed within its walls. This disparity is partly accounted for by the facts that large apaces, notably in the Chinese city, are not boilt over, and that the grounds surnounding the imperial palace, private residences and temples are very extersive. One of such enclosures constitutes the British legation, and most of the other foreign legations are similarly, though not so sumptaously, lodged. Viewed from the walls Pcking looks like a cily of gardenss Few crowded neighbourboods ase visible, and the characteristic features of the scene which meets the eje are the upturned roofs of temples, palaces, and mansions, gay with hlue, green and yellow glased tiles, glittering among the groves of trees with which the city abounds. It is fortunste that the city is not closebuilt or crowded, for since the first advent of forelgners in Peking in r 860 nothing whatever had been done until 1900 to improve the streets or the drainage. The streets as originally latd out were wide and spacious, but being umpaved and undrained they were no better than mud tracks diversified by piles of garbage and foul-smelling stagnant pools. Such dralnage as had at one time existed was allowed to get choked up, giving rise to typhoid fever of a virulent typa. Somb attempt bes been made to improve matters by macadamizing one of the principal thoroughfares, but it will be the labour of a Hercules to cleanse this vart city from the accumulated filth of ages of neglect.

Encloced within the Tatar city is the Frwoug ch'ing, or "Imperial city." which in its tum encloses the Tre-Ain ch'ong, or "Forbidden city," in which stands the emperor's palace. On the north of the Treohin cheng, and separated from it by a moat, is an artificial mound known as the King shaw, or "Prospect Hill." This mound, which forms a prominerit object in the view over the city, is about 150 ft . bigh, and is topped with five sumanits, on each of which stands a temple. It is encircled by a wall measuring upwards of a mile in circumference, and is pretily planted witb trees, on one of wbich the last emperor of the Ming dynasty (1644), finding escape from the Manchu invaders impossible, hanged himself. On the west of Prospect Hill is the Si ywan, of "Western Park," which forms part of the palace grounds. This park is tastefully laid out, and is traversed by a lake, which is mainly noticeable from the remarkably handsome marble bridge which crosses it from east to west. Directly northwards from Prospect Hill stands the residence of the T'itu, or "governor of the city," and the Bell and the Drum Towers, both of which have attained celebrity from the nature of their content-the first from the buge bell which bangs in it, and the second from the appliances it contalns for marting the time. The bell is one of five whicb the emperor Yuns-lo ordered to be cast. In common with the others, it weighs $250,000 \mathrm{ID}$, is 14 ft . high, 34 ft . in circumference at the rim, and 9 in . thick. It is struck by a wooden beam swang on the outside, and only at the changes of the nigbt-watches, when its deep tone may be heard In all parts of the city. In the Drum Tower incense-aticke, specially prepared by the astronomical board, are kept burning to mark the passage of time, in which important duty their accuracy is checked by a clepsydra. Another of Yung-lo's bells is hung in a Buddhist temple outside the north-west anglo of the city wall, and is covered botb on the inside and outside witb the Cbinese texts of the Lankiootdra Soltra, and the Saddharma pundarika Sulfa.

Turning southwards we come again to the Forbidden City, the central portion of whicb forms tbe imperial palace, where, in halls which for the magnificence of their proportions and barbaric splendour are probably not to be surpassed anywhere, the Son of Heaven holds his court. In the eastern and western portions of this city are situsted the residences of the bigbest dignitaries. of the empire; while beyond its confines on the south stand the offices of the six official boards which direct the affairs of the eighteen provinces. It was in the "yamen" of one of these boards-the Li Pu or bourd of rites-that Lond Elgin signed the treaty at the conclosion of the war in $\mathbf{8 6 0 - a n}$ event which darives especial interest from the fact of its having been the firat
occasion on which a European plenipotentiary ever entered Peking accompanied by all the pomp and circumstance of his tank.

Outside the Forbidden City the moat noteworthy building is the Temple of Heaven, which stands in the outer or Chinese city. Here at early morning on the 21st of December the emperor offers sacrifice on an open altar to Shang-ti, and at periods of drought or famine presents prayers for relici to the same supreme deity. The altar at which these solemn rites are performed consists of a triple circular marble terrace, 250 ft . wide at the base, 150 in the middie and 90 at the top. The uppermost surface is paved with blocks of the same material forming nine concentric circles, the innermost consisting of nine blocks, and that on the outside of eighty-one blocks. On the central stone, which is a perfect circle, the emperor kneels. In the same temple stands the altar of proyer for good harvests, which is surmounsed by a triple-roofed circular structure 99 ft . in height. The tiles of these roofs are glazed porcelain of the most exquisite deep-blue colour, and add a conspicuous element of splendour to the shrine.
The other powers of nature have shrines dedicated to them in the altar: to the Earth on the north of the city, the altars to the Sun and Moon outside the north-castern and north-western angles respectively of the Chinese city, and the altar of agricurture inside the south gate of the Chinese city. Next to these in religious importance comes the Confucian temple, known as the Kwo-lsse-hien. Here there is no splendour; everything is quite plain; and one hall contains all that is sacred in the building. There the tablets of "the soul of the most holy ancestral teacher, Confucius," and of his ten principal disciples stand as objects of worship ior their countless followers. In one courtyard of this temple are deposited the celebrated ten stone drums which bear poetical inscriptions commemorative of the huoting expeditions of King Saan (827 -781 m.c.), in whose reign they are believed, though erroneously, to have been cut; and in anuther stands a series of stone tablets on which are inscribed the names of all those who have obtained the highest literary degree of Tsinshi for the last five'centuries.

In the south-eastern portion of the Tatar city used to stand the observatory, which was built by order of Kuhlai Khan in 1296. During the period of the Jesuit ascendancy in the reign of K'ang-hi (1661-1721), the superintendence of this institution was confided to Roman Catholic missionaries, under whose guidance the bronze instruments formerly existing were constructed. The inhabitants of Peking being consumers only, and in no way producers, the trade of the city is very small, though the cily is open to foreign commerce. In 1897 a railway was opened between Tientsin and Peking. This was only effected after great opposition from the ultra-Conservatives, but once accomplished the facilities were gladly accepted by all classes, and the traffic both in goods and passengers is already enormous. Out of deference to the scruples of the ultra-Conservatives, the terminus was fixed at a place called Lu-Kou-ch'ino, some 4 m . outside the walls, hut this distance has since been covered by an electric tramway. The trunk line constructed by the Franco-Belgian syndicate connects Lu-Kou-ch'ino, the original terminus, with Hankow-hence the name Lu•Han by which this trunk line is generally spoken of, Lu being short for Lu-Kou-ch'iao and Han for Hankow.
Bibliography.-A Williamson, Journeys in North China, Mancheria and Eastern Mongolia (2 vols., London, 1870); S. W. Wiltiams, The Middle Kingdom, revised ed. (New York, 1883); A Favier, Plking, histoire et description (Peking, 1900 contains over 800 illusirations, most of them reproductions of the work of Chinese artists) ; N. Oliphant, A Diary of the Sicge of the Legations in Peking during the Summer of 1900 (London, 1901); A. H. Smith, China in Cosvulsion (2 vols., Edinburgh, 1902).
(R. K. D.)

PELAGIA, ST. An Antiochene saint of this name, a virgin of fifteen years, who chose death by a leap from the housctop rather than dishonour, is mentioned by Ambrose (De virg. iii. 7.33; Ep. xaxpii. ad Simplic.), and is the subject of two sermons by Chrysostom. Her festival was celebrated on the 8th of October (Wright's Syriac Maplyrology). In the-Greek synaxaria
the same day is assigned to two other saints of the name of Pelagia-one, also of Antioch, and sometimes called Margarito and also "the sinner"; the other, known as Pelagis of Tarsus, in Cilicia. The legend of the former of these two is famous. She was a celebrated dancer and courtesan, who, in the full flower of her beauty and guilty sovereignty over the youth of Antioch, was suddenly converted by the influence of the holy bishopi Nonnus, whom she had heard preaching in front of a chureh which she was passing with her gay train of attendants and admirers. Secking out Nonnus, she overcame his canonical scruples by ber tears of genuine penitence, was baptized, and, disguising herself in the garb of a male penitent, retired to a grotto on the Mount of Orives, where she died after three years of strict penance. This story seems to combine with the name of the older Pelagia some traits from an actual history referred ta by Chrysostom (Hom. in Mallh. kevii. 3). In associating St Pelagia with St Marina, St Margaret (q.v.), and nthers, of whom either the name or the legend recalls Pelagia, Hermann Usener has endeavoured to show hy a series of subile deductions that this saint is only a Christian travesty of Aphrodite. But there is no doubt of the existence of the first Pelagia of Antioch, the Pelagia of Ambrose and Chrysostom. The legends which bave subsequently become connected with her name are the result of a very common development in literary history.
See Acta samelorum, October, iv. 248 seq.; H. Usener, Legendon der heiligen Pelagia (Bonn, 1879), H. Delehaye, The Legeads of the Seimes (London, 1907), pp. 197-205.
(H. De.)
pelaigids, the name of two popes.
Pelagius I., pope from 555 to $56 x$, was a Roman by birth, and first appears in histnry at Constantinople in the rank of deacon, end as apocrisiarius of Pope Silverius, whose overthrow in favour of Vigilius his intrigues promoted. Vigilius continued him in his diptomatic appointment, and he was sent by the emperor Justinian in 542 to Antioch on ecelesiastical business; he afterwards took part in the synod at Gaza which deposed Paul of Alexandria. He had amassed some wealth, which on his return to Rome he so employed among the poor as to sccure for himself greal popularity; and, when Vigilius was summoned to Byzantium in 544, Pclagius, now archdeacon, was left behind as his vicar, and by his tact in dealing with Totila, the Gothic invader, saved the citizens from murder and outrage. He appears to have followed his master to Constantinople, and to have taken part in the Three Chapters controversy; in 553, at all ovents, he signed the "constitutum " of Vigilius in favour of these, and for refusing, with him, to accept the decrees of the fifth general council (the and of Constaninople, 553) shared his exile. Even after Vigilius had approved the comdemnation of the Three Chapters, Pelagius defended them, and even published a book on the subject. But when Vigilius died (June 7, 555), be accepted the council, and allowed himself to be designated by Justinian to succeed the late pope. It was in these circumstances that he returned to Rome; but most of the clergy, suspecting his orthodoxy, and believing him to have had some share in the removal of his predecessor, shunned his fellowship. He enjoyed, however, the support of Narses, and, after he had publicly purged himself of complicity in Vigilius's death in the church of St Peter, he met with toleration in hisownimmediate diocese. The rest of the western bishops, however, still held aloof, and the episcopate of Tuscany caused his name to be removed from the diptychs. This elicited from him a circular, in which he asserted bis loyalty to the four general councils, and declared that the hostile hishops had been guilty of schism. The bishops of Liguria and Aemilia, headed by the archbishop of Milan, and those of Istria and Venice, headed by Paulinus of Aquileia, also withheld their fellowship; but Narses resisted the appeals of Pelagius who would have invoked the secular arm, Childebert, king of the Franks, also refused to interfere. Pelagius died on the 4th of March 561, and was succeeded by John III.

Pelagus IL., a native of Rome, but of Cothic descent, was pope from 579 to 500 , having been consecrated successor of Benedict I., without the sanction of the emperor, on the 261h of

November. To make bis apologies for this irregularity he sent Deacon Gregory, who afterwards became Pope Gregory the Great, as his apocrisianius to Constantiople. In 585 he sought to beal the achism which had subsisted since the time of Pelagius I. in connescion with the Three Chapters, but his efforts were without success. In 588 John, patriarch of Constantinople, by reviving the old and disputed claim to the title of oecumenic patriarch, elicited a vigorous protest from Pclagius; but the decretal which professes to convey the enct words of the document is now known to be false. He died in January 590, and was succeeded by Gregory I.

PRLAOIUS (c. 360-c. 420), early British theologisa. Of the origin of Pelagius almost nothing is known. The name is supposed to be a graecized form of the Cymric Morgan (seabegotten). His contemporaries understood that he was of Britigh (probably of Irish) hirth, and gave bim the appellation Brifo. He was a large ponderoos person, heavy both in body and mind (Jerome, "stolidissimus et Scotorum puhibus praegravatus"). He was influenced by the monastic enthusiasm which had been kindled in Gaul hy Athanasius (336), and which, through the energy of Martin of Tours (36s), repidly communicated itself to the Britons and Scots. For, though Pelagius remained a layman throughout his life, and though he never appears in any strict connexion with a coenobite fraternity, be yet adhered to monastic discipline ("veluti monachus"), and disuinguished himself by his purity of life and exceptional sanctity ("egregic Christianus '). He seems to have been one of the earliest, if not the very carliest, of that remarkable serics of men who issued from the moamsteries of Scotland and Ireland, and carried back to the Continent in a purified form the religion they had received frum it. Coming to Rome in the beginning of the 5 th century (his earliest known writing is of date 405), be found a scandalously low tone of morality prevalent. But his remonstrances were met by the plea of buman weaknese. To remove this plea by exhibiting the actual powers of human nature became bis first object. It seemed to him that the Augustinian doctrine of total depravity and of the consequent bondage of the will both eut the sinew of all human effort and threw upon God the blame which really belonged to man. His lavourite maxim was, "If I ought, I can."
The views of Pelagius did not originate in a conscious reaction against the influence of the Augustinian theology, although each of these systems was developed into its ultimate form by the opposition of the other. Neither must too much weight be allowed to the circumstance that Pelagius was a monk, for he was unquestionably alive to the delusive character of much that passed for monkish sanctity. Yet possibly his monastic training may have led him to look more at conduct than at character, and to believe that holiness could be arrived at hy rigour of discipline. This view of things suited his matter-of-fact temperament. Judging from the general style of his writings, his religious development had been equable and peaceful, not marked by the prolonged mental condict, or the abrupt transiions, which characterized the experience of his great opponent. With no great penetration he saw very cleariy the thing before him, and many of his practical counsels are marked by sagacity, and are expressed with the succinctness of a proverb ("corpus non frangendum, sed regendum est '). His interests were primarily ethical; hence his insistence on the freedom of the will and his limitation of the action of divine grace.
The peculiar tencts of Pelagius, though indicated in the commentarics which be published at Rome previous to 409 , might not 90 speedily have attracted attention had they not been adopted hy Coelestius, a much younger and bolder man than his teacher. Coelestius, probably an Italian, had been trained as a lawyer, but abandoned his profession for an ascetic life. When Rome was sacked by the Goths (4i0) the two friends crossed to Africa. There Pelagius once or twice met with Augustine, hut very shortly sailed for Palestine, where he justly expected that his opinions would be more cordially received. Coelestius remained in Carthage with the view of receiving ordination. But Aurehus, bishop of Carthate, being warned
against him, summoned a synod, at which Paulinus, a deacom of Milan, charged Coelestius with holding the following six errors: (1) that Adam would have died even if he had not sinned; (2) that the sin of Adam injured himself alone, not the human race; (3) that new-born children are in the same condition in which Adam was before the fall; (4) that the whole human race does not die because of Adam's death or sin, nor will the race rise again because of tbe resurrection of Christ; (s) that the law gives entrance to heaven as well as the gospel; (6) that even befoce the coming of Christ there were men who were entirely without sin. To these propositions a seventh is sometimes added, " that infants, though unbaptized, have eternal bife," a corollary from the third. Coelestius did not deny that he held these opinions, hut he maintained that they were open questions, on which the Church had never pronounced. The synod, notwithstanding, condemned and excommunicated him. Coelestius, after a futile appeal to Rome, went to Ephesus, and there received ardination.

In Palestine Pelagius.lived unmolested and revered, until in 415 Orosius, a Spanish priest, came from Augustine, who in the meantime had written his De peccotorum merivis, to warn Jerome agginst him. The result was that in June of that year Pelagius was cited by Jerome before John, bishop of Jerusalem, and charged with holding that man may be without sin, it only he desircs it. This prosecution broke down and in December of the same year Pelagius was summoned before a synod of fourtcen bislops at Diospolis (Lydda). The prosecutors on this occasion were two deposed Gallican bishops, Heros of Arles and Lazarus of Aix, but on account of the illness of one of them neither could appear. The proceedings, being conducted in various languages and hy means of interpreters, lacked certainty, and justified Jerome's application to the synod of the epithet "miscrable." But there is no douht that Pelagius repudiated the asscrtion of Coelestius, that "the divine grace and help is not granted to individual acts, but consists in free will, and in the giving of the law and instruction." At the same time he affirmed that a maṇ is able, if he likes, to live whthout sin and keep the commandments of God, inasmuch as God gives him this ability. The synod was setisfied with these statements, and pronourced Pelagius to be in agreement with Catholic teaching. Pelagius naturally plumed himseli on his acquittal, and provoked Augustine to give a detailed account of the synod, in which be shows that the language used by Pelagius was ambiguous, hut that, being interpreted by his previous written statements, it involved a denial of what the Church understood by grace and hy man's dependence on it. The North Arican Church as a whole resented the decisions of Diospolis, and in 416 sent up from their synods of Carthage and Mileve (in Numidia) an appeal to Innocent, hishop of Rome, who, flattered by the tribute thus paid to the see of Rome, decided the question in lavour of the Airican synods. And, though his successor Zosimus wavered for some time, he at length fell in with what he saw to be the general mind of both the ecclesiastical and the civil powers. For, simultaneously with the largely attended Airican synod which finally condemned Pelagianism in the West, an imperial edict was issued at Ravenna hy Honorius on the 3oth of April 418 , peremptorily determining the theological question and enacting that not only Pelagius and Cociestius but all who accepted their opinions should suffer confiscation of goods and irrevocable benishment. Thus prompted, Zosimus drew up a circular inviting all the bishops of Christendom to subscribe a condemnation of Pelagian opinions. Nineteen Italian hishops refused, among them Julian of Eclanum in Apulia, a man of good birth, approved sanctity and great capacity, who now became the recognized Jeader of the movement. But not even his acuteness and real could refieem a cause which was rendered hopeless when the Eastern Church (Ephesus, 433) confirmed the decision of the West. Pelagius himself disappears after 400 ; Coclestius was at Constantinople secking the aid of Nestorius in 428.

Pelacianism.-The gystem of Pelagius is a consistent whole. each part involving the existence of every other. Starting from the idea that "abnity limits obligation," and resolved that men
chould feei their responibility, he lasisted that man is able to do 44 that God commands, and that there is, and can be, no sin where the will is not absolutely free-able to choose good or evit. The favourite Pelagian formula, "Si necessitatis est, peccatum non ces; * voluntatis, vitari potest," had an appearance of finality which imposed on superficial minds. The theory of the wilt involved is this fundamental axiom of Pelagianism is that which is commonly known as the " liberty of indifference." or "power of contrary chotce"-a theory which affirms the freedom of the will, not in the sense that the individual is eetr-determined, but in the wense that it each volition and at each moment of life, no matter what the provioun career of the individual has been, the will is in equipoise, tble to choose good or evil. We are born characterless (non pleni), and with no bias towards good or evil (ut sine virtute, ita et sine vitio). It follows that we are uninjured by the sin of Adam, save in wo far as the evil example of our predecesors misloads and influences us (non propagine sed exemplo). There is, in fact, no such thing as original sin, sin being a thing of will and not of nature; for if it could be of nature our in would be chargeable on God the creator. This will, capable of good as of evil, being the natural endowment of men, is found in the heathen as well as in the Christian, and the heathen may therefore perfectly keep such law as they know. But, if all men have this natural ability to do and to be all that is reguired lor perfect righteousness, what becomes of grace, of the aid of the Holy Spirit, righteousness, what becomes of grace, of the aid of the Holy Spirit,
and, in a wrord, of Christianity ? Peligius vacillates considerably in his use of the word " grace.". Sometimes he makes it equivalent to natural endowmert. Indeed one of his mont careful statements is to this effect: "We distinguish three thing"-the ability, the will, the act (posse, velle, esse). The ability is in nature, and must be referred to God, who has bestowed this on His creature; the other two, the will and the act, must be referred to man, because they flow from the fountain of free will" (Aug., De gr. Christi, ch. 4). But at other times he admite a much wider range to grace, 80 as to make Augustine doubt whether bis meaning is not, after alf, orthodox. But, when he speaks of grace "eanctilying," "assisting," and 80 forth, it is only that man may" more easily " accomplish what he couid with more difficulty mecomplish without grace A decisive passage occurs in the ketter he sent to the see of Rome aiong with his Confessio fidei: "We maintain that free will exists generally in all mankind, in Christians, Jews and Gentiles; they have alt equally received it by nature, but in Christians only is it assisted by grace. In others this good of their original creation is naked and unarmed. They shall be judged and condemned because, though possersed of free will, by which they might come to the faith and merit the grace of God, they make an ill use of their Ireedom; while Christians shall be rewerded becausc, by using their free will arisht, they merit the Frace of the Lord and teep His commandments" (ibid. chs 33. 34). Pelagius allowed to grace everything but the initial determining movement towards salvation. He ascribed to the unassisted human will power to accept and use the proffered salvation of Christ. It was at this point his departetre from the Catholic creed could be made npparent: Pelagius maintains, expressly and by implication, thet it is the human will which takes the initiative, and is the determining factor in the salvation of the individual; while the Church maintaing that it is the divine wilt that takes the initiative by renewing and enabling the human will to accept and use the aid or grace offered.

Semipelagiamism.-It was easy for Augustine to show that this was an "impia opinio" it was casy for him to expose the defective eharacter of a theory of the will which implied that God was not holy because He is necersarily holy; it was casy for him to show that the podtions of Pelagius were anti-Scriptural (see Augustine); but, though his arguments prevailed. they did not wholly convince, and the rise of Semipelagianism-an attempt to hold a middle course between the harshness of Augustinianism and the obvious errurs of Pelagianism-is lutl of significance. This carnest and conciliatory movement ditcovered itself cimultaneoushy in North Alrica and in pouthern Gaul. In the former Church, which natumally deaired to adhere to the views of its own great theologian, the monks of Adrumetum found themselves either sunk to the verge of despair or provoked to licentiousness by his predestinarian teaching. When this was reported to Augustine he wrote two elaborate treatiscs to show that when God ordains the end He also ordains the means, and it any man is ordained to life eternal he is thereby ordained to boliness and zcalous effort. But meanwhite some of the monks themscives had struck out a via media which ascribed to God sovereign grace and yet left intact man's responsibility. A similar scheme was adopted by Cassian of Marscillee (hence Semipelagians are often spocen of as Marsilians), and was afterwards ably advocated by Fincent of Lerins and Faustus of Rhegium. These writers, in opposition to Pclagius, maintained that man was damaged by the fall, and acemed indeed disposed to purchase e certificate of orthodoxy by the abusive epithete they heaped upon Pelagiams (ranae, muscae moriturae, \&c.). The differentia of Semipelacianism is the tenet that in regeneration, and all that results fromit, the divine and the human will are co-operating (synergistic) coefficient factors. Afer fuding considerable acoeptance, this theory was ultimately condemned, because it retained the root-principle of Pelagianismthat man has some ability to will good and that the beginning of ealvation may be with man. The Councils of Orange and Valence
($\mathbf{2 9}$), however, which condemned Semapelasianisf, did so with the significant restriction that predestination to evil was not to be taught-a restriction so agreeable to the general feeting of the Church that, throe centurics after. Cottschalk was sentenced to be degraded from the pricsthood, scourged ased imprisoned for teschins seprobation. The quastions raised by Pelagius continally recur. but, without tracing the strifc as sustained. by Thomists and Jansenists on the one side and the Jesuits and Armibians on the other, this article can only indicate the general bearing of the controveray on eocicty and the Church.

The anthropology of Pclagius was eamentially naturalistic. It threatened to supersede grace by nature, to deny all immedinte divine influence, and $s 0$ to make Chiristianity practically useless. Pelagius himself did not carry his rationalimen flough to its issues; but the logical conseqnonce of bis syotem wat, as Aupustine perceived, the denial of the aionetreat and other central truthe of revealed religion. And, whife the Pelagians never existed as a sect scparate from the Church Catholic, yet wherever rationalism has inlected any part of the Church there Pelagianism has sooner or later appeered; and the serm "Pelmgian" has been centinued to denote. views, which minimize the effecta of the fall and ueduhy magaify man's natural ability. These views and teadencies have appeared in theologies which are not in other respects rationalistic. as, c.g. in Arminianism; and their presence in such theotogies is explained by the desire to remove everything which might eeem to discourage human effort.

It is not casy to determine how far the vices wbich ate so deeply into the life of the Church of the middle ages were due to the sharpness with which some of the eeverer featutes of the Augustinian theology were defined during the Pelagian controversy. The pernicious boliof in the magical efficncy of the sacraments and the consequent defective ethical power of religion, the guperxtitious eagerness to accept the Church's creed without examining or really believing it, the falsity and cruclty engendered and propagated by the iden that in the Church's cause all weapons were justiffable. these vices were undoubcedly due to the belief that the visible cherch was the sole divincly-mppointed reporitory of grace. And the sharply accentuated tone in which Augustinianiom affirmed man's inability quickened the craving for that grace or direct agency of God upon the soul which the Charch declared to be needful and adminittened throogh her divinely appointed persons and sacraments, and thus brought a decided impulse to the development of the sacerdotal system.

Again, although it may fairly be doubted whether, as Baur supposes, Augustine was permanently tainted with the Manichaeat notion of the isherent evil of matter, it can scercely be quettioned that his vicwi on marriage as elicited by the Pelagina controvergy gave a considerable impulec to the already prevalent idea of the superiority of virginity When the Pclagians declared that Augustinc's theory of original sin discredited marriage by the implication that even the children of the regenerate were born in sin, he could only reply (De Fimplies ef concspincerpia) that marriagt now cannot partake of the spotless purity of the marriage of unfallen man, and that though what is evil in concupiscence is made a good use of in marriage, it is stitl a thing to be ashamed of not onfy with the ehame of natural modesty (which he does not take into tcocount) but with the shame of guilt. So that, even atithough be is careful to point out the advantage of marriage, an indelible stigma is still left even on the lawful procreation of children.
"The Pelagians deserve respect," says Harnack, "for their purity of motive, their horror of the Manichacan leaven and the opus eparatum, their insistence on cleorness, and their intemtion to defead the Deity. But we cagnot but decide that their doctrine fails to recognize the misery of sin and evil, that in its deepest roots it is godless, that it knows, and seeks to know, nothing of redemption and that it is dominated by an empty formalism (a notional mythology), which does justice at so single point to actual quantities, and on a cloeer examination consicts of shcer contradictions In the form in which this doctrine was expressed by Pelagius-and in fact also by Julian ie. with all the accommodations to which he condescended, it was not a novelty. But in its fundamental thought it mas; or rather, it was an innovation because it abandoned in spite of afl eccommodations in exprogsion, the pole of the mystical doctrine of redemption, which the Church had steadfastly maintained side by side with the doctrine of freedom."

In the Petagian controversy some of the fundamental differences between the Easern and Western theologies appear. The fnrmer laid strese on "the supernatural character of Caristianity as a fact in the nbjective world "and developed the doctrines of the Trinity and the Incarnation; the Western emphasized "the supernatural character of Christianity as an agency in the iubjective world " and developed the doctrinet of sin and grace. All the Greek fathers from Origen to Chryeostum had been jealous for human freedom apd loath to make sin a natural power, though of course admitting a gencral state of ainfulness. The carly British monasterics had been connected with the Orient. Pelagius was familiar with the Greek language and theology, and when he came to Rome he was much in the company of Rufinus and his circle who were endeavouring to propagate Coreek theology in the Latin Church.

Litelatuag-Pelagius's Commentoríi in episloles Pauls, Libellis

个dej ad Imoccation and IPridolo ad Danotriedom are petacrved in Jerome's works (vol. v. of Martiani's ed., vol. xi. of Vallarsi's). The last-named was also published separately by Secoler (Halle, 1775). There are of course many citations in the Anti-Pelagian Treatises of Augustime. On the Comimentaries see Jompmal of Theol. Studies, vii. 50\%, viit. 526; an edition is being prepared for the Cambridge Texts and Sludies by A. Souter.
See also F. Wiggers, Darstellung des Auguslinismus und Pelagianismus (2 vols., Berlin, 183r-1832; Eng, trans, of vot, i., by R. Enierson, Aadover, 18yo); J. L. Jacobl, Die Latre d. Pelagys (Leipzig, 1842): F. Klasen, bie imnere Enthicheluser des Podetiantisums (Freiburg. 1882); B. B. Warfield, Two Studies in the History of Doctrine (New York, 1893); A. Harnack, History of Dogma, Eng. trans, v. 168-202; F. Loofs, Dogmempeschischte and art. in Hauck-Herzog's Realaucribla fir tret. Theologio the Eirche (end of voi. xv.), where a full bibliography is given.
(M. D.)

Preasclans, a name applied by Greck writers to a prehistoric people whose traces werc belleved to exist in Greek lands. If the statements of ancient authorities are marshalled in order of their date It will be seen that certain beliefs cannot be traced back beyond the age of this or that author. Though this does not prove that the beliefs themselves were not held earlier, it suggosts caution in assuming that they were. In the Homeric poems there are Petasgians among the allies of Troy in the catalogue, Ilied, ii. 840-843, which is othervise in strict geographical order, they stand hetween the Hellespontine towns and the Threcians of south-east Europe, i.e. on the Hellespontine border of Thrace. Their town or district is called Larissa and is fertile, and they are celehrated for their spearmanship. Their chiefs are Hippothous and Pylaeus, sons of Lethus son of Teutamus. Iliad, x. 428-429, describes their camping ground between the town of Troy and the sea; but this obviously proves nothing about their hahitat in time of peace. Odyssey, xvii. 175-177, notes Pelasgians in Crete, together with two apparently indigenous and two immigrant peoptes (Achacans and Dorians), hat gives no indication to which class the Pelasgians belong. In Lemnos (lliad, vif. 467; xiv. 230) there are no Pelasgians, but a Minyan dynasty. Two other passages (Iliad, ii 681-684; xvi. 233-235) apply the epithet "Pclasgic" to a district called Argos about Mt Othrys in south Thessaly, and to Zcus of Dodona. But in neither case are actual Pelasgians mentioned; the Thessalian Argos is the specific home of Hellenes and Achacans, and Dodona is inhabited by Perrhacbians and Aenianes (lliad, ii. 750) who are nowhere described as Pelasgian. It looks therefore as if "Pelasgian" were here used connotatively, to mean either "formerly occupied by Pelasgian" or simply "of immemorial age."
Hesiod expands the Homeric phrase and calls Dodona "seat of Pelasgians " (fr. 225); be speaks also of a personal Pelasgus as father of Lycaon, the culture-hero of Arcadia; and a later epic poet, Asius, describes Pelasgus as the first man, whom the earth threw up that there might be a race of men. Hecatacus makes Pelasgus king of Thessaly (expounding Iliad, fi. 681-684); Acusilaus applies this Homeric passage to the Peloponncsian Argos, and engrafts the Hesiodic Pelasgus, father of Lycaon, into a Peloponnesian gencalogy. Hellanicus a generation later repeats this blunder, and identifies this Argive and Arcadian Pelasgus with the Thessalian Pelasgys of Hecatacus. For Aeschylus (Supplices 1, sqq.) Pelasgus is earthborm, as in Asius, and rules a kingdom stretching from Argos to Dodona and the Strymon; but in Promelheus 879, the "Pelasgian" land simply means Argos. Sophocles takes the same view (Inachus, fr. ${ }^{256 \text {) }}$ and for the first time introduces the word "Tyrrhenian "into the story, apparentiy as synonymous with Pelasgian.
Herodotus, like Homer, has a denotative as well as a connotative use. He describes actual Pelasgians surviving and mutually intelligible (a) at Placic and Scylace on the Asiatic shore of the Hedespont, and (b) near Creston on the Strymon; in the latter area they have "Tyrrhenian" neighbours. He alludes to other districts where Pelasgian peoples lived on under changed names; Samothrace and Antandrus in Troas are probably instances of this. In Lemnos and Imbros he describes a Pelasgian population who were only conquered by Athens thortly before 500 B.c., and in this connexion he tells a story of eurlier raids of these Pelasgians on Attica, and of a temporary
setilement there of Hetlespontine Pelasgians, all dating from a time " when the Athenians were first beginning to count as Greeks." Elsewhere "Pelasgian" in Herodotus connotes anything typioal of, or surviving from, the state of things in Greece before the coming of the Hellenes. In this sense all Greece was once "Pelasgic "; the clearest instances of Pelasgian survival in ritual and customs and amiquities are in Arcadia, the "Ionian "districts of north-west Peloponnese, and Attica, which have suffered least from hellenization. In Athens itscif the prehistoric wall of the citadel and a plot of ground close below it were venerated in the sth century as "Pelasgian "; sa too Thucydides (ii. 17). We may note that all Herodotean examples of actual Pelasgi lie round, or near, the actual Pelasgi of Homeric Thrace; that the most distant of these is coofirmed by the testimony of Thucydides (iv. 106) as to the Pelasgian and Tyrthenian population of the adjacent seaboard: also that Thucydides adopts the same gencral Pelasgiaa theory of early Greece, with the refinement that he regards the Pelasgian name as originally specific, and as having come gradually into this generic use.
Ephorus, relying on Hesiodic tradition of an aboriginal Pelasgian type in Arcadia, elaborated a theory of the Pelasgians as a warrior-people spreading (like" Aryans") from a "Pelasgian home," and amexing and colonizing ill the parts of Greece where earlier writers had found allusions to them, from Dodona to Crete and the Troad, and even as far as Italy, where again their settlements had been recognized as early as the time of Hellanicus, in close connexion once more with "Tyrrhenians."
The coplous additional information given by later writers is all by way either of interpretation of local legends in the light of Ephorus's thcory, or of explanation of the name " Pelasgoi"; as when Philochorus expands a popular etymology " stork.folk" (π el $\lambda \sigma \sigma$ of-re入apyot) into a theory of their scasonal migrations; or Apollodorus says that Homer calls Zeus Pclasgian "because
 The connexion with Tyrrhenians which began with Hellanicus, Herodotus and Sophocles becotnes confusion with them in the 3rd century, when the Lemnian pirates and their Altic kinsmen are plainly styled Tyrrhenians, and carly fortress-walls in Italy (like those on the Palatine in Rome) are quoted as "Arcadian " colonies.
Modem writers have elther been content to restate or amplify the view, ascribed above to Ephorus, that "Pelasgian " simply means "prehistoric Greek," or have used the name Pelasgian at their pleasure to denote some one element in the mixed population of the Acgean-Thracian', Illyrian (Albanian) of Semitic. G. Sergi (Origine e diffusione della stirpe mediterranea, Rome, 1895; Eng. trans. The Mediterranea\# Race, London, 1901), followed by many anthropologists, describes as "Pelasgian" onc branch of the Mediterranean or Eur-African race of mankind, and one group of types of skull within that race. The character of the ancient citadel wall at Athens, already mentioned, has given the name "Pelasgic masonry" to all constructions of large unhewn blocks fitted roughly together without mortar, from Asia Minor to Spain.
For another view than that here taken see Achazans; also. Greece: Ancient History, $\frac{8}{8}$ 3, "Homeric Age."
Biblfography.-Besiden sections on the subject in all principal histories of Greece and bibliographies in G. Busott, Gr. Gaschichue, i^{2} (Gotha, 1893, 164-182); and K. F. Hermann (Thumser), Gr. Slaatsallerthymer, 6, see S. Brick, Quae peteres de Pelasgis Cradiderinl (Breslau, 1884); B. Giseke, Thrahisch-pelargische Stamme asf da Balkanhalbiasel (Leipzig, 1858) ; F. G. Hahn, Alhanesische Studiem (Jena. 1854); P. Volkmuth, Die Pelasger als Semicen (Schafthausen, 1860); H. Kiepert. Monatsberichl d. berl. Akademic (1861), pp. 114 sqq.: K. Pauli, Eine vorgriechische Inschrifl auf Lemnos (Leipzig,
 (Halle, 1892), i. 124; W. RIdgeway, Early AEe of Gresce (Cambridge, 1901). vol. i.: J. L. Myres. A History of the Pclasqian Theory (in Journal of Hellenic Studies. xxvit. r7o); H. Marsh. Florae pelasgicae (Cambridge, 1815); L. Benloew, La Grece avant les Grecj (Paris, 1877).
(J. L. M.)

PELEUS, in Greek legend, king of the Myrmidones of Phthia in Thessaly, son of Acacus, king of Aegina, and brother (or
intimate friend) of Telamon. The two brothers, jealous of the at hetic prowess of their step-brother Phocus, slew him; but the crime was discovered, and Peleus and Telamon were banished. Peleus took refuge in Phthia with his uncle Eurytion, who purified him from the guilt of murder, and gave him his daughter Antigone to wife, and a third of the kingdom as her dowry. Having accidentally killed his father-in-law at the Calydonian boar-hunt, Peleus was again obliged to flee, this time to Iolcus, where he was purified by Acastus. The most famous event in the life of Peleus was his marriage with the sea-goddess Thetin hy whom he became the father of Achilles. The story ran that both Zeus and Poseidon had sought her hand, but, Themis (or Prometheus or Proteus) having warned the former that a son of Thetis by Zeus would prove mightier than his father, the gods decided to marry her to Peleus. Thetis, to escape a distasteful union, changed herself into various forms, but at last Peleus, by the instructions of Chiron, scized and heid her fast till she resumed ber original shape, and was unable to offer further resistance. The wedding (described in the fine Epilhalamium of Catullus) took place in Chiron's cave on Mt Pelion. Peleus survived both his son Achilles and bis grandson Neoptolemus, and was carried away by Thetis to dwell for ever among the Nercids.
Sce Apollodorus iii. 12. 13 : Ovid, Mefom. xi. Pindar. Isthmia, viif. 70 , Nemea, iv. 101 : Catullus, Ixiv.; schol. Apoll. Rhod. iv. 816; Euripides, Andromache, 1242-1260.

PELETW ISLANDS (Ger. Palauinscln, also Palao), a group of twenty-six islands in the western Pacific Ocean, between $2^{\circ} 35^{\prime}$ and $9^{\circ} \mathrm{N}$., and $130^{\circ} 4^{\prime}$ and $134^{\circ} 40^{\prime}$ E., belonging to Gcrmany. They lie within a coral barrier reef, and in the south the islands are of coral, but in the north of volcanic rocks. They are well *ooded, the climate is healthy, and the water-supply good. A few rats and bats represent the indigenous mammals, hut the sea is rich in fish and molluscs; and Dr Otto Finsch (Journ, des Muscum Godeffroy, 1875) enumerated 56 species of hirds, of which 12 are peculiar to the group. The total area is $175 \mathrm{sq} . \mathrm{m}$. , the largest islands being Babeltop (Babelthuap, Baobeltaoh and other variants), Uruktapi (Urukthopel), Korror, Nyaur, Pcteliu and Eilmalk (Irakong). The population is about 3100 . The natives are Micronesians, and are darker and shorter than their kinsmen, the Caroline Islanders. They usually have the frizzly hair of the Melanesians, and paint thcir bodies in hrilliant colours, especially yellow. The men vary in height from 5 ft . to 5 ft .5 in ., the women from 4 ft .9 to 5 ft . 2 in . The skuil shows a strong fendency to brachycephalism. Two curious customs may be noted-the institution of an honourable order bestowed by the king, called klilt; and a species of mutual aid socicty, sometimes confined to women, and possessing considerable political influence. There are five kinds of currency in the islands, consisting of beads of glass and enamcl, to which a supernatural origin is ascribed.

The islands were sighted in 1543 by Ruy Lopez de Vilalobos, who named them the Arrecifos. The origin of the name islas Palaos is doubtful. The islands were bought by Germany from Spain in 1899, and are administered together with the western Carolines, Yap being the administrative centre.
See K. Semper, Die Palan-7nsels (Leipzig, 1873); I. S. Kubary; Dis sozialen Runichiumgen der Palaver (Berlin, 1885); X. A. Marche; Lupon at Paloman (Paris, 1887).

PELF, a term now chiefly used of money and always in a derogatory sense. The word originally meant plunder, pillage (O. Fr. pelfre, probably from Lat. pilare; to deprive of hair, pilns), and this significance is still kept in the related word "pilfer," to make petty thefts.

PELLHAI, the name of an English family, derived from Pelham in Hertfordshire, which was owned hy certain Walter de Petham under Edward 1., and is alleged to have been in the possession of the same family before the Norman conquest. The family dignities included the barony of Pelham of Laughton (1706-1768), the earldom of Clare (1714-1768), the dukedom of Newcastle ($1715-1768$), the barony of Pellham of Stahmer from

1762, the earldom of Chichester from 1801 and the earldom of Yarborough from 1837.

Joun de Pelinas, who was one of the captors of John II. of France at Poitiers, acquired lend at Winchetsea by his marriage with Joan Herbert, or Finch. His son, John de Pelhai (d. 1429), was altached to the party of John of Gaunt and his son . Henry IV. In 1393 he reccived a life appointment as constable of Pevensey Castle, an hooour sabsequently extended to his heirs male, and be joined Henry on his invasion in 1399, If he did not actually land with him at Ravenspur. He was knighted at Henry's coronation, and represented Sussex in parliament repeatedly during the reign of Henry IV., and again in 44^{22} and 1427. As constable of Pevensey he had at difierent timee the charge of Edward, duke of York, in 140S; Edmund, earl of March, with his brother Roger Mortimer in 1406; James I. of Scolland in 1414; Sir John Mortiener in 1422, and the queen dowager, Joan of Navarre, from 418 to 1422. He was constantly employed in the defence of the southern porta against French invasion, and his powers were increased in ri407 by his appointment as chief butler of Chichestec and of the Sussex ports, and in 1412 by the grant of the rape of Hastings. He was treasurer of England in 1412-1413, and although he was superscded on the accession of Henry V. he was seat in the next year to negotiate with the French court. He was included among the executors of the wills of Henry IV., of Thomas, duke of Clarence, and of Henry V. He died on the 12th of February 1429, and was succeeded by his son John, who took part in Henry V.'s expedition to Normandy in 1417.

In the reign of Gueen Elizabeih Sir Willina Pelbay (c. $1530-$ 1587), third son of Sir William Pelham (d. ${ }^{3} 53^{8}$) of Laughton, Sussex, became lord justice of Ireland. He was captain of pioneers at the siege of Leith in 1560 , and served at the siege of Havre in 1562, and with Coligny at Caen in 1563. He then returned to Havre, at that time occupied by English troops, and was one of the hostages for the fulfilment of its surrender to Charles IX. in 1564 . Atter his return to England he fortified Bcrwick among other places, and was appointed lieutenantgeneral of ordnance. He was sent to Ireland in 1579, when he was knighted hy Sir William Drury, the lord justice. Drury died in October, and Pelham was provisionally made his successor, an appoint ment subsequently confirmed hy Elizabeth. Alarmed by the procecdings of Gerald Fitzgerald, 15 th earl of Desmond, and his brother John Desmond, be proclaimed the earl a traitor. Elizabeth protested strongly against Pelham's action, which was justified by the sack of Youghal by Desmond. Thomas Butler, roth carl of Ormonde, was entrusted with the campaign in Munster, but Pelham joined him in February 1580, when it was believed that a Spanish descent was about to be made in the south-west. The English generals laid waste northern Kerry, and proceeded to besiege Carrigafoyle Castle, which they stormed, giving no quarter to man, woman or child. Other st rongholds submitted on learning the fate of Carrigafoyle, and were garrisoned by Pelham, who hoped with the concourse of Admiral Winter's fiset to limit the struggle to Kerry. He vainly sought help from the gentry of the county, who sympathized with Desmond, and were only brought to submission by a series of "drives." After the arrival of the new deputy, Lord Grey of Wilton, Pelham returned to England on tbe ground of health. He had retained his office as licutenant-general of ordnance, and was now made responsible for dehts incurred during his absence. Leicester desired his services In the Netherlands, but it was only after much persuasion that Elizabeth set him free to join the army by accepting a mortgage on his estates as sccurity for his liabilities. The favour shown by Leicester to Pelham caused serious jealousies among the English officers, and occasioned a camp brawl in which Sir Edward Norris was injured. Pelham was wounded at Doesburg in 1586, and accompanied Leicester to England in 1587. Returning to the Netherlands in the same year he died at Flushing on the 24th of November 1587 . His half-brother, Slr Edmund Pelham (d. 1606), chief baron of the exchequer in Ircland, was the first English judge to go on circuit in Ulstet.

Sir William married Eleapor, daughter of Henry Neville, earl of Westmorland, and was the ancentor of the Pelhams of Brocklesby, Lincolnshire. In the fourth generation Charles Pelbam died in 1763 without heirs, leaving his estates to bis great-nephew Charies Anderson (1749-1823), who thereupon acsumed the additional name of Pelham, and was created Baron Yarborough in 1794 His son Charles (1781 1-1846), who was for many years commodore of the Royal Yacht Squadron, was created earl of Yarborough and Baron Worsley in 1837. Charles Alired Worsley, the 4th earl (b. 1859), exchanged the name of Anderson-Pelbam for that of Pelham in 1905. He married in 1886 Miarcia Lane-Fox, eldost daughter of the \mathbf{z} ath Baron Congers, who became in 1892 Baroness Conyers in her own tight.

Sir Nicholas Pelinan ($\mathbf{5} 51 \mathrm{j}^{-1} 560$), an elder half-brother of Sir William Pelham, defended Seaford against the French in 2545, and sat for Arundel and for Sussex in parliament. He was the ancestor of the earls of Chichester. His second son, Sir Thomas Pelian (d. 1624), was created a baronet initid. His descendant, Sir Thomas Pelhas, 4 th baronct (c. 1650-1712), represented surcessively East Grinstead, Lewes and Sussex in parlinment, and was raised to the House of Lords as Baron Pelham of Laughton in 1706 . By his second marriage with Grace (d. 1700), daughter of Gilbert Holles, 3rd earl of Clare, and sister of John Holles, duke of Newcastle, he had five daughters, and two sons-Thomas Pelham, earl of Clare, duke of Newcastle-an-Tyne and ist duke of Neweastle-under-Lyme (see Newcastle, Dukes $O P$), and Henry Pelham (g.v.). The duke of Newcastle died without heirs, and the dukedom of Newcastle-under-Lyme descended to his nephew, Henry Fiennes Clinton, afterwards known as Pelham-Clinton, and his heirs, but the barony of Pelham of Loughton became extinct. In 1762 Newcastle had been created Baron Pelham of Stanmer, with reversion to his cousin and heir-male, Thomas Peleasi (17281805), who became commissioner of trade (1754), lord of the admirality ($1761-2764$), comptroller of the houschold. ($1 ; 65^{-}$ 1774), privy councillor (1765), aurveyor-gencral of the customs of London (1775-8805), chief justice in eyre (1774-1775) and keeper of the wardrobe ($4775-1782$), and was created carl of Chichester in 1801 . His thisd s0n, George ($1766-1827$), was succesaively bishop of Bristol, Exeter and Lincoln. Thonas Pexham, and earl of Chichester ($1756-2826$), son of the ist earl, was surveyor-general of ordnapce in Lord Rockingham's ministry (5782), and chief secretary for Ireland in the cealition ministry of 1783 . In 1795 he betame. Irish chief secretary ander Pitt's govermment, retiring in 1798; he was home secretary from July 1801 to August 1803 under Addingtom, who made him chancellor of the duchy of Lancaster in 1803 . Petham went out of office in 1804, and in the next year socceeded to the earldom. He was joint postmaster-general from 2807 to 2823 , and lor the remaining three yetars of his life postmaster-general. His son and heir, Hengy Thomas Prlhay (1804-1886), 3nd eari, was an ecclesiastical commisfioner from 1850 until his death, and was greatly interested in various religious, philanthropic and educational movements; and iwo oher sons were well-known men-Frederick Thomas Pelham (1808-1861), who became a rear-admiral in 1858, and subsequently lond-commissioner of the admiralty, and John Thomes Petham (181t-1894), who waa bishop of Norwich (rom 1857 to 1893. The third carl's son, Walter Johm Pelbam (1838 -1892), sucrecied his tather in 1886, and his neptrew focelyn Brudencil Pelham (b. 1871) became 6th earl of Chichester in 1905.
PELHAIM, HENRY ($1696-1754$), prime minister of England, younger brother of Thomas Holles Pelham, duke of Newcastle, was born in 1606 . He was a younger son of Thomas, ist Baron Pelham of Laughton (1650-1712; cr. 1706) and of Lady Grace Holles, daughtos of the 3 rd earl of Clare (see above). He was educated by a private tutor and at Christ Church, Oxford, which he entered in July 1710 As a voluntecr he served in Dormer's regiment at the battle of Preston in 1715 . spent some tirte on the Conliacnt, and in 1717 entered parliament for Seaford, Sussex Through sirong family Infuence and the
recommendation of Walpole he was chosen in 2797 a lord of the Treasury. The following year he was returned lor Sussex county. In 1724 he eatered the ministry as secretary of war, but this office be exchanged in 1730 for the more lucrative one of paymaster of the forces. He made-bimself conspicuous by his support of Walpole on the question of the excise, and in 1743 a union of parties resulted in the formation of an administration in which Pelham was prime minister, with the office of chancellor of the exchequer; but rank and influence made his brother, the duke of Newcastle, very powerlul in the cabinet, and, in spite of a genuine attachment, there were occasional disputes between them, which led to difficulties. Being strongly in favour of peace, Pelham carried on the war with languor and indifferent success, but the country, wearied of the interminable struggle, was disposed ta ncquiesce in his foreign policy almost without a murmur. The king, thwarted in his favourite schemes, made overtures in 1746 to Lord Bath, but his purpose was upset by the resignation of the two Pelhams (Henry and Newcastle), who, however, at the king's request, resumed affice. Pelham remained prime minister till his death on the 6th of Mfarch 1754, when his brother succeeded him. His very defects were among the chief elements of Pelham's success, for one with a strong personality, moderate sell-respect, or high conceptions of statesmanship could not have restrained the discordant clements of the cabinet for any length of time. Moreover, he possessed tact and a thorough acquaintance with the forms of the house. Whatever quarrels or insubordination might exist within the cabinct, they never broke out into open revolt. Nor can a high degree of praise be denied to his financial policy, especially bis plans for the reduction of the national debt and the simplification and consolidation of its different branches. He had married in 1726 Lady Catherine Manners, daughter of the and duke of Rutland; and one of his daughters married Henry Fiennes Clinton, and duke of Newcastle.
See. W. Coxe, Mencoirs of tha Pelham Administration. (2 vole, 1829). For the family history sec Lowcr. Pelham Family (1873); also the Pelham and Newcastle MSS. in the British Muscum.

PELBAR, HENRY PRANCIS (1846 -1907), English scbolar and historian, was born at Berg Apton, Norfolk, on the 19th of September 1846, son of the Hon. John Thomas Pelham (1811-1894), bishop of Norwich, third son of the 2nd earl ot Chichester. He was educated at Harrow and at Trinity College, Oxiord, where he took a first class in literae humaniores in 1869. He was a tutor of Exeter Callege from 1869 to 1890 . In 1887 he became university reader in apcient history, and two years later. was elected to the Camden professorship. He became curator of the Bodician library in 2892, and in 1897 president of Trinity College. He was also a fellow of Brasenose College, honorary fellow of Excler, a fellow of the British Academy and of ather learned socictics, and a governor of Harrow School. His chief contribution to ancient history was his, article on Roman history in the gth edition of the Encyclopaedia Britannica (1886), which was republished with additions as the Oullines of Roman History (1890). His university lectures, though perhaps laching in inspiration, were full of original research and learning. His death on the 13th of February 1907 not only prevented the publication in systematic form of his own important rescarches, but also delayed the appearance of much that had been left in MS. hy H. Furneaux and A. H. J. Greenidge, and was at the time under his charge. Apart from the Oullines he published only The Imperial Domains and the Colonate (1890), The Roman Frentier System (1895), and articles in periodicals of which the most important was an article in the Quarlerly Revicw on the early Caesars (April, 1905). He did much for the study of archaeology at Oxford. materiaily assisted the Hellenic Socicty and the British School at Athens, and was one of the founders of the British School at Rome, He married in 1873 Laura Priscilla. daughter of Sir Edward North Buxton.

PELIAS, in Gretk legend, son of Foseidon and Tyro, daughter of Salmoneus. Because Tyro afterwards married her father's brother Cretheus, king of Iolcus in Thessaly, 10 whom she bore Aeson, Pheres and Amythaon, Pelits was-by some thought to be

PELICAN-PELISSIER

the son of Cretheus. He and his twin-hrother Neleus were exposed by their mother, but were nurtured by a herdsman. When grown to manhood they were acknowledged by their mother. After the death of Cretheus, Petias made himself master of the kingdom of Iolous, having previously quarrelied with Neleus, who removed to Messenia, where he founded Pylos. In order to rid himself of Jason, Pelias sent him to Colchis in quest of the goiden fieece, and took advantage of his absence to put to denth his father, Aeson, his mother and brother. When Jason returned he sought to avenge the death of his parents, and Medea persuaded the daughters of Pelias to cut in pieces and boil their father, assuring them that he would thus be restored to youth. Acastus, son of Pelias, drove out Jason and Medes and celebrated funeral gamea In honour of his father, which were celebrated by the poet Stesichorns and represented on the chest of Cypselos. The death of Pellas was the subject of Sophocles' Rhizolomai (Root-cutters), and in the Tyro he treated another portion of the legead. Peliodes (the daughters of Pelias) was the name of Euripides' first play.

PELiCAR (Fr. Pelicon; Lat. Pelecanus or Pelicanus), a large fish-eating water-fowl, remarkabic for the enormous pouch formed by the extensible skin between the lower jaws of its iong, and apparentiy formidable but in reality very weak, bill. The ordinary pelican, the Orocrolalus of the ancients, to whom it was well known, and the Pelccanus onocrosalus of ornithologists, is a very abundant bird in some districts of south-eastern Europe, south-western Asin and north-castern Arrica, occasionaliy straying, it is believed, into the northern parts of Gcrmany and France; but the possibility of such wenderers having escaped from confinement is always to be regarded, ${ }^{1}$ since few zoological gardens are without examples. Its usual haunts are the shallow margins of the larger lakes and rivers, where fishes are plentiful, since it requires for its sustenance a vast supply of them. The nest is formed among reeds, placed on the ground and lined with grass. Therein two egss, with white, chaiky sholls, are commoniy laid. The young during the first twelvemonth are of a greyish-brown, but when mature almost the whole plumage, except the black primarics, is white, decply suffused by a rich biush of rose ot salmon-colour, passing into yellow on the crest and iower part of the neck in front. A second and somewhat larger species, Pelecanus crispus, also inbabits Europe, hut has a more eastern distribution. This, when adult, is readily distinguishable from the ordinary bird by the absence of the blush from its plumage, and by the curled feathers that project from and overhang each side of the head, which with some difference of coloration of the hill, pouch, bare skin round the eyes and irides give it a wbolly distinct expression. Two specimens of the humerus have been found in the English fens (Ibis, 1868, p. 363; Proc. Zool. Society, 1871, p. 702), thus proving the existence of the hird in England at no very distant period, and one of them being that of a young example points to its having been bred in this country. It is possible from their large size that they belonged to P crispus. Ornithologists have been much divided in opinion as to the number of living species of the genas Pelecanus (cf. op. cil., 1868, p. 264; 1869, p. 571; 1871, p. 631)-the estimate varying from six to ten or eleven; but the former is the number recognized by M. Dubois (Bull. Mus. de Bedgique, 1883). North America has one, P. erythrorhynchus, very similar to P. onocrotolus both in appearance and habits, but remarkahie for a triangular, horny excrescence developed on the ridge of the male's bill in the breeding scason, which falls off without leaving trace of its existence when that is over. Australia has P. conspicillatus, easily distinguished by its hlack tail and wingcoverts. Of more marine habit are P. philippensis and P. fuscus, the former baving a wide range in Southern Asin, and, it is said, reaching Madagascar, and the latter common on the coasts of the warmer paris of both North and South America.

The genus Pelecanus as instituted by Linnaeus included the
${ }^{1}$ This caution was not neglected by the prudent, even mo long ago as Sir Thomas Browne's days; for he, recording the occurrence of a pelican in Norfolk, was careful to notice that about the same time one of the peticans kept by the king (Charles 11.) in St James's Park, had been lost.
cormorant ($\mathbf{q} . \mathrm{v}$) and gannet ($\mathrm{g} . \mathrm{v}$) as well as the true pelicans, and for a long while these and some other distinct groups, as the snake-birds (q.v.), frigate-birds (q.v.) and tropic-birds (q.v.), which have all the foar toes of the foot connected by a web, were regarded as forming a single lamily, Peteconidac; but this name has now been restricted to the pelicans only, though all are still usually associated in the suborder Steganopodes of Ciconiiform hirds. It may be necessary to state that there is no founda. tion for the venerable legend of the pelican feeding her young with blood from her own breast, which has given it an important place in ecclesiastical heraldry, except that, as A. D. Bartlett suggested (Proc. Zool. Socicty, 1869, P. 146), the curious bioody secretion ejected from the mouth of the flamingo may have given rise to the belief, through that bird having been mistaken for the "Pelicaa of the wilderness."
(A. N.)

PELION, 2 wooded mountain in Thessaly in the district of Magnesia, between Volo and the east coast. Its highest point (mod. Plessidi) is 5340 ft . It is famous in Greck mythology; the giants are said to have piled it on Ossa in order to acale Olympus, the abode of the gods; it was the home of the centaurs, especially of Chiron, who had a cave near its summit, and educated many youthful beroet; the ship "Argo" was huilt from its pine-roods. On its summit whe an altar of Zeus Actacus, in whose honour an annual festival was held in the dog-days, and worshippers clad themselves in skins.

PELISSE (through the Fr. from Lat. pellicia: sc. vestis, a garment made of fur, pellis, skin), properiy a name of a cloak made of or llned with fur, hence particulariy used of the furtrimmed "dolman" worn slung from the shoulders by hussar regiments. The word is now chielly employed as the name of a long-sleeved cloak of any material worn by women and children.

PALISSIER, AIMABLE JBAN JACQUES (1794-1864), duke of Malakoff, marshal of France, was born on the 6 th of November 1794 at Maromme (Selne Inferfeure), of a family of proaperous artisans or yeoman, his father being employed in a powdermagazine. After attending the military college of La Fleche and the special school of St Cyr, he in 1815 entered the army as sub-lieutenant in an artillery regiment. A hriliaat exuminalion in 1819 sacured his appolatment to the staf. He terved as aide-de-camp in the Spanish campaign of 1823, and in the expedition to the Morca in 1828-29. In 1830 he took part in the expedition to Algeria, and on his return was promoted to the rank of chef d'eseadrom. After some years' staff service in Paris he was again sent to Algeria as chicf of staff of the province of Oran with the rank of lieutenant-colonel, and remsined there till the Crimean War, taking a prominent pert in many important operations. The severity of his conduct in suffocating a wbole Arab tribe in the Dahra or Dahna caves, near Mustaganem, wbere they had taken refuge (June 18, 1845), awakened such indignation in Europe that Marshal Soult, the minister of wat, publicly expressed his regret; but Marshal Bugeaud, the governor-general of Algeria, not only gave it his approval, but secured for Pelissier the rank of general of hrigade, which he held till 1850, when he was promoted general of division. After the battles of October and November 1854 before Sevastopol, Pelissier was sent to the Crimea, where on the 16th of May i85s he succeeded Marshal Canrobert as commander-in-chief of the French forces before Sevastopol (see Cbimean War). His command was marked by relentless pressure of tbe enemy and unalterable determination to conduct the campaigo without interlerence from Paris. His perseverance was crowned with
${ }^{2}$ The legend was commonly believed in the middle ages Epiphanius, bishop of Constantia. in his Physiologus (1588), writes that the female bird, in cherishing her young. wounds them with loving, and pierces their sides, and they die. After three days the male pelican comes and finds them dead, and his heart is pained. He smiter his own side. and as he stands over the wounds of the dead young ones the blood trickles down, and thus are they made alive again. The pelican "in his piety "-is. in this pious act of reviving his offspring-was a common aubject for 15 th-century emblem books; is became a symbol of self-sacrifice, a type of Christian redemption and of the Eucharistic doctrinc. The device was adopted by Bishop Fox in 1516 for his new college of Corpus Christi, Oxiord.-(H. Ca.i
wuctess in the storming of the Malatioff on the 8 th of September. On the 12th he was promoted to be marshal. On his return to Paris he was named senator, created duke of Malakoff (July 22, 1856), and rewarded with a grant of 300,000 francs per annum. From March $\mathbf{1 8 5 8}$ to May 1850 he was French ambassador in London, whence he was recalled to take command of the army of obscrvation on the Rhine. In the same year he became grand chancellor of the Legion of Honour. In 1860 he was appointed govemor-general of Algeria, and he died there on the 22nd of May 1864.

See Marbaud, Le Maríchal Pelissier (1863); Castille, Portrails kisloriques, and series (1859).

PRIL, JOHN (16ro-1685), English mathematician, was born on the ist of March 1610 at Southwick in Sussex, where his tather was minister. He was educatod at Steyning, and entered Trinity College, Cambridge, at the age of thirteen. During his university carear he became an accomplished linguist, and even befare he took his M.A. degree (in 1630) cortesponded with Henry Briggs and other mathematicians. His great reputation and the inftuence of Sir William Boswell, the Englith resident, with the states-general procured his election in 1643 to the chair of mathermatics in Amsterdam, whence be removed in 1646, on the invitation of the prince of Orange, to Breda, where he remained till 1652.

From 1654 to $\mathbf{5 6 5 8}$ Pell acted as Cromwell's political agent to the Protestant comtons of Switzerland. On his retura to England he took orders and was appointed by Charles II. to the rectory of Fohbing in Essex, and in 1673 he was presented by Bishop Sheldon to the rectory of Laindon in the same coumty. His devotion to mathematical acience seems to have interfered alike with his advancement in the Church and with the proper management of his private affaiss. For a time be was confined as a debtor in the king's bench prison. He lived, on the invitation of Dr Whistler, for a short time in $\mathbf{6 8 2}$ at the College of Physicians, but died on the rath of December 1685 at the bouse of Mr Cothorne, reader of the church of St Giles-in-the Fields. Many of Pell's manuscripts fell into the hands of Dr Busby, master of Weatminster Scbool, and afterwards came into the possession of the Royal Society; they are still preserved in comething like forty folio volumes, which contain, pot only Pell's own memoirs, but much of his correapondence:with the mathematicinns of his time.

The Diophantive analyuis was a favourise subject with Pell; he lectured on it at Amaterdam; and he io now best remembered lor the indeterminate equation $a x^{2}+1 m y^{2}$, which is known by his mame. This problem was proposed by Pierre de Fermat first to Bernhard Frenicle de Bessy, and in 1657 to all mathematicians. Pellis connexion with the problem simply consists of the publication of the solutiorta of John Wailis and Lord Brounker in his edition of Bramker's Traxstation of Rhomius's Alqabre (i668). His cbief works are: Astronomical History of Observations of Hecvenly Motions and Appearances (1634); Ediptica protnostica (1634): Controcersy rith Lompomontansis concerning the Quadrature of the Cincle (i6467); An ddea of the Mathematios, 12mo (1650); A Table of Ten Thomsand Square Nupthers (fol.; 1672).
PELLA, the capital of ancient Macedonia under Philip II. (who transferred the seat of government hither from Edessa) and Alexander the Great, who was born here. It seems to have retained some importance up to the time of Hadrian. Scanty remains exist and some springs in the neighbourbood are still known as the baths of PCl. The site (identified by leake) is occupied by the village of Neochori (Turk. Yeni-Kewi) about 32 m . north-west of Saloniks.
PELLAGRA (Ital. pelle agra, smarting ghin), the name given, from one of its early symptoms, to a peculiar disease, of comparatively modern origin. For some time it was supposed to be practically confined to the peasantry in parts of Italy (particularly Lomberdy) and France, and in the Asturias (mal de la rasa), Rumania and Corfu. But it hae recencly been ideatified in various outlying parts of the British Empire (Barbadoes, India) and in both Lower and Upper Egypt; also among the Zulus and Basutos. In the United States sporadic cases had been observed up to igot, but since then numerous cases have been reported. It is in Italy, bowever, that it has beea most
prevalent. The malidy is essentially chronic in character. The indications usually begin in the spring of the ycar, declining towards autama, and recurring with increasing intensity and permanence in the spring seasons following. A peasant who is acquiring the matady foels unft for work, suffers from headaches, giddiness, singing in the ears, a burning of the skin, especially in the hands and feet, and diamboen. At the same time a red rash appears on the skin, of the nature of erysipelas, the red or livid spots being tense and painful, especially where they are directly exposed to the sun. About July or August of the first teason these symptoms disappear, the spots on the skid remaining rough and dry. The spring atteck of the year fellowing will probably be more severe and more likely to leave traces behind it; with each successive year the patient becomes more like a mummy, his skin shrivelled and sallow, or even black at certain spots, as in Addison's disease, his angles protruding, his muscles wasted, bis movements stow and languid, and his sensibility diminished. Meanwhile there aremore special symptoms relating to the nervous syatem, including drooping of the cyelid, dilatation of the pupil, and othor disorders of vision, together with symptoms relating to the digestive system, such as a red and dry tongue, a burning feeling in the mouth, pain on swallowing, and diarrboca. After a certain stage the disease passes into a profound disorganization of the nervous system; thero is a tendency to melancholy, imbecility, and a curious mummified condition of body. After death a general thsuse degeneration is observed.

The caugation of this obscure disease has recently come ap for new investigation in connexion with the new work done in relation to slecping-rickness and other tropical diseases. So long as it was supposed to be peculiar to the Italian peasantry, it wats associsted simply with their stapio diet, and was regended as due to the eating of mouldy maire. It was by his views in this regard that Lombroso (q.v.) first made his scientific.reputation. But the area of maize consumption is now known to be wider than that of pellagra, and pellagra is found where maize is at least not an ordinary diet. In 1905 Dr L. W. Sambon, at the meeting of the British Medical Association, suggeated that pellagra was probably protozoal in origin, and subsequently he announced his belief that the protoenon was communicated by sand-fies, just as sleeping-sickness by the tsetse fly; and this opinion was supported by the favourable action of arsenic in the treatment of the disease. His hypothesis was endorsed by Sir. Patrick Manson, and in January 1910 an influential committee was formed, to enable Dr Sambon to pursue his investigations in a pellagrous eres.

PRLLEAAN, CHARLES CAMHLES (1846-) French politician and journalist, was borm in Paris on the 28 th of June 2846, the son of Eugene Pelletan (1813 -1884), a writer of some distinction and a noted opponent of the Seeond Empire. Camille Pelletan was educated in Paris, passed as Ilcentiate in hew, and was qualified as an "archiviste peleographe." At the age of twenty he became an active contributor to the press, and a bitter critic of the Imperial Government. After the war of $1870-7 \pm$ be took a leading place among the most radien section of French politicians, as an opponent of the "opportunists " who continued the policy of Gambelta. In 1880 be became editor of Justice, and worked with success to bring about a revision of the sentences passed on tho Communards. In 188I he was chowen member for the tenth arsondissement of Paris, and in 1885 for the Bouches du Rhone, being re-elected in 1889, 1893 and 1898; and he was repeatedly chosen as "reporter" to the various bureaus. During the Nationalist and Dreyfus apitations he fought vigonously on belalf of the Republican govarnment and when the coalition known as the "Bloc" was formod be took his place am a Radical leador. He'was made minister of matine in the cabinet of M. Combes, Jupe 1902 to Janury 1905, but his sdpinistration wasseverely criticizel, notably by M. do Lancesan and other naval experts. During the great sailors' strike at Marseilles in 1904 be showed pronounced.sympathy. with the socialistic aims and methods of the strikers, and a strong feling was azoused that
his Radical sympathies tended to a serious weakening of the navy and to destruction of discipline. A somewhat violent controversy resulted, in the course of which M. Pelletan's indiscreet speeches did him no good; and he became a common subject for ill-natured caricatures. On the fall of the Combes ministry he became less prominent in French politics.
PRLLICANUS, CONRAD ($147^{8-1556 \text {), Gcrman theologian, }}$ was born at Ruffach in Alsace, on the 8th of January 1478. His German name, Kursner, was changed to Pellicanus by his mother's brother Jodocus Gallus, an ecclesiastle connected with the university of Heidelberg, who supported his nephew for sixteen months at the university in 149x-1492. On returning to Ruriach, he taught gratis in the Minorite convent school that he might borrow books from the library, and in his sixteenth year resolved to become a friar. This step helped his studies, for he was sent to Tubingen in 1496 and became as favourite pupil of the guardian of the Minorite convent there, Paulus Scriptoris, a man of considerable general learning. There seems to have been at that time in south-west Germany a considerable amount of sturdy Independent thought among the Franciscans; Pellicanus himself becarne a Protestant very gradually, and without any such revulsion of feeling as marked Luther's conversion. At Tuhingen the future "apostate in three languages" was able to begin the study of Hebrew. He had no teacher and no grammar; but Paulus Scriptoris carried him a huge codex of the prophets on his own shoulders all the way from Mainz. He learned the lettens from the eranscription of a few verses in the Siar of the Messiah of Petrus Niger, and, with a subsequent hint or two from Reucblin, who also lent him the grammar of Moses Kimbt, made his way through the Bible for himelf with the help of Jerome's Latin. He got on to well that he was not only a useful helper to Reuchlin but anticipated the manusls of the great Hebraist by composing in 1 sor the first Hebrew grammar in the European tongue. It was printed in 1503, and aiterwards included in Reysch's Margarite philosophica. Hebrew remained a favourite study to the last. Pellican's autobiography describes the gradual muttiplication of accessible books on the subjects, and he not only studied but translated a vast mass of rabbinical and Talmudic texts, his interest in Jewish literature being mainly philological. The chief fruit of these studics is the.vast commentary on the Bible (Zurich, 7 vols., $\mathbf{1 5 3 2 - 1 5 3 9}$), which shows a remarkably sound fudgment on questions of the text, and a sense for historical as opposed to typological exegesia.
Pellicanus became priest in 1501 and continued to serve his order at Ruffach, Pforzheim, and Basel till 1 ga6. At Basel he did much laborious work for Froben's editions, and came to the conclusion that the Church taught many doctrines of which the early doctorn of Christendom knew nothing. He apoke his views frankly, but be distiked polemic; he found also more toleration than might have been expected, even after he became active in circulating Luther's books. Thus, supported by the civic authorities, he remained guardian of the convent of his order at Basel from 1519 till 1524, and even when he had to give up his post, remained in the monastery for two years, professing theology in the university. At length, when the position was becoming quite untenable, he received through 2wingli a call to 2arich as professor of Greek and Hebrew, and formally throwing off his monk's bahit, entered on a new life. Here he remained till his death on the 6th of April 1556.

Pellicanus's scholarship, though not brilliant, was really extensive; his sound sense, and his singularly pure and devoted character gave him a great influence. He was remarkably free from the pedantry of the time, as is shown by his views about the uso of the German vernacular as a vehicle of culture (Chrow. 135, 36). As a theologian his natural affinities were with Zwingti, with whom be thared the advantage of having grown up to the views of the Reformation, by the natural progress of his studies and religious life. Thus he never lost his sympathy with humanism and with its great German representetive, Erasmus.

Pellicanus's Latin autobiography (Chronicon C.P.R.) is one of the most lnteresting documents of the period. It was first published
by Riggenbach in 1877, and in thin volume the other courpes for his life are reeistered. See aliso Emil Sillberstein, Conrad Pellicamme; eim Beilrag sup Geschichte des Sludiums der hebr. Sprache (Berling t900).
PELLICIER, GUILLAUVI: (c. 1490-1568), French prelate and diplomatist, was educated by his uncle, the bishop of Maguelonne, whom he succeeded in 1529 . In 8536 he had the seat of his bishopric translerred to Montpeliier. Appointed ambassador at Venice in 1539, he fulfiled his mission to the entire satisfaction of Francis I., but on the discovery of the system of espionage he had employed the king had to Tecall him in 1542 . Returning to his diocese, be was imprisoned in the chatcau of Beaucaire for his tolerance of the Reformers, so he replaced his former indulgence by severity, and the end of his episcopate was disturbed by religious struggics. He was a man of wide learning, a humanist and a friend of bumanists, and took a keen interest In the natural sciences.
See J. Zeller, La Diplomatie francaise . . . d'après le eorrespondance de G. Pellicier ($\mathrm{Paris}, 188 \mathrm{I}$); and A. Tausserat-Radel, Correspondance politique de Gxillaxme Pellicier (Paris, 1899).
PRLLCO, 8ILVIO (1788-1854), Italian dramatist, was born at Saluzzo in Piedmont on the 24tb of June 1788, the earlict portion of his life being passed at Pinerolo and Turin under the tultion of a pricst named Manavella. At the age of ten he composed a tragedy under the inspiration of Caesaroti's translation of the Ossianic pocms. On the marriage of his iwin sister Rosina with a maternal cousin at Lyons he went to reside in that city, devoting himself during four years to the study of French literature. He returned in 1810 to Milan, where he became professor of French in the Collegio degli Oriani Militari. His tragedy Frascesce da Rimini, was brought out with success by Carlotta Marchionni at Milan in 1818. Its publication was followed by that of the tradegy Eufenuo da Messina, but the representation of the letter was forhidden. Pelllco had in the meantime continued his work as tutor, first to the unfortunate son of Count Briche, and then to the two sons of Count Porto Lambertenghi. He threw hirnself heartily into an attempt to weaken the hold of the Austrian despotism by indirect educational means. Of the powerful literary executive which gathered about Counts Porro and Confalonieri, Pellico was the able sceretary-the management of the Conciliatore, which appeared in 18×8 as the organ of the association, resting largely upon him. But the paper, under the censorship of the Austrian officials, ran for a year only, and the society itself was hroken up by the government. In October $\mathbf{1 8 2 0}$ Pellico was arrested on the charge of carbonarism and conveyed to the Santa Margherita prison. After his removal to the Piombi at Venice In February 1821, he composed several Cantiche and the tragedies Ester d'Engaddi and Iginia dAsti. The sentence of death pronounced on him in February 1822 was finally commuted to fifteen years carcere dura, and in the following April he was placed in the Spielberg at Bruin. His chief work during this part of his imprisonment was the tragedy Leonicro da Dertona, for the preservation of which be was compelled to rely on his memory. After his release in 1830 he commenced the publication of his prison compositions, of which the Ester was played at Turin in 1831 , but immediately suppressed. In 1832 appeared bis Gismonda da Mendrizio, Erodiade and the Leoniero, under the title of Tre nuovi tragedie, and in the same ycar the work which gave him his European fame, Le Mie prigioni, an account of his sufferings in prison. The last gained him the friendship of the Marchesa di Barolo, the reformer of the Turin prisons, and in 1834 he accepted from her a yearly pension of 1200 francs. His tragedy Tommaso Moro had been published \ln 1833, his most important subsequent publication being the Opere inedite in 1837. On the decease of his parents in 1838 he was received into the Casa Barolo, where be remained till his death, assisting the marchesa in her charities, and writing chiefly upon religious themes. Of these works the best known is the Dei Doveridegli womini, a series of trite maxims which do honour to his piety rather than to his critical judgment. A fragmentary biography of the marchesa by Pellico was published in Italian and English after her death. He died on the 3 rst of January 1854, and was
buried in the Campo Samo at Turia. His whiags are ulefective in virility and breadth of thought, and his trigedies tisplay nelther the insight into character nor the constructive power of a great dramatist. It is in the simple narrative and maive egotism of Le Mie prigioni that he has eatabliabed hin strongest claim to remembrance, winning fatne by his miofortuses rather than by his genius.
See Pieno Maroncellt, Addrioni atle mie prighomi (Paris, 1834); the biographies by Latoter; Cabriele Romelli; Didier Revme das deux mendas (September 1842); Da Loménie, Calerie das contemp. illustr. iy. (18q2); Chiala (Iurin, 1852); Nollet-Fabert (1854); Giorgio Briano (1854); Bourdon (1868); Rivieri (1899-1901).
PBUMEAON, PAUL (1624-1693), French author, was born at Beziers on the 3oth of October 1624, of a distinguished Calvinist family. He atudied law at Toulonee, and practioed at the bar of Castres. Going to Paris with letters of introduction to Valentia Conrart, who was a co-relisioniat, he became through him scquainted with the members of the acedemy. Pellinsom undertook to be their hintorian, and in z65s pablinhed a Relation concement l'hdeloire de l'aardomin frampaise. This panegyric tras sewarded by a promive of the naxt vecant place and by permimion to be present at their mectings. In 1657 Pellispon becane secretary to the minister of finance, Nicolas Fouquet, and when in 1661 the minister wal arreated, bis secretary was imprisoned in the Bantille. Pellisson had the courtge to stand by his fallen patron, in whose defence he issued his celetrated Mimaire in 260x, with the title Discomrs as roi, par wn de ses fdeles sujets sur le procds ds M. de Fomquat, in which the facts in favour of Fouquet are manghalled with great akill. Another pamphlet, Seconde defenes do M. Powques, followed. Pelliswon was released in $\mathbf{2 6 6 6}$, and from this date sought the royal favowr. He hecame histotiographer to the king, and in that capacity wrote a fragmentary Hisfoire de Lowis XIV., covering the years 1660 to 1670 . In 1670 he was converted to Catholicism and obtained rich eccleaiastical preferment. He died on the 7th of February 1693. He was very intimato with Mile de Scudéry, in whose novels be figures as Herminius and Acante. His sterling worth of character made bim many friends and justified Busyr-Rabutin's description of him as "encore plus honntte homme que bel esprit.'

Sce Sainte-Benve, Camseries dx luadi, vol. xiv.; and F. L. Marcon, Elude sur la vie es hes empras de Peliston (1859).

PRLWTORY, in botany, the common name for a small hairy perennial herb which grown on old walls, hedgebanks and similar localities, and is known botanically as Parielaria efficimalis (Lat. preies, a wall). It has a short woody rootstock from which apring erect or apreading steme I to 3 ft. long, bearing seader lealy branches, and axillary clusters of mall green flowers. It belongs to the nettic order (Urticaceac), and is nearly allied to the nettle, Urtica, but its hairs are not stinging.

PBILOEX, LUIAI (1839-), Italian general and politician, was born on the 1st of March 1839, at La Roche, in Savoy, of parents who retained their Italian nationality when Savoy was annexed to France. Entering the army as lieutenant of artillery in 8857 , he gained the medal for military valour at the battle of Custozza in 1866, and in 1870 commanded the brigade of artillery which battered the breach in the wall of Rome at Porta Pia. He was elected to the Chamber in $\mathbf{1 8 8 1}$ as deputy for Leghorn, which he represented until 1895 , and joined the party of the Left. He had entered the war office in 1870 , and in 1880 became general secretary, in which capacity he introduced many useful reforms in the army. After a succession of high military commands he received the appointment of chief of the general etaff in $\mathbf{1 8 9 6 \text { . He was minister of war in the Rudini and Giolitti }}$ cabinets of $1891-1893$. In July 1896 be resumed the portalio of war in the Rudini cabinet, and was appointed senator. In May 1897 he secured the adoption of the Army Reform Bill, faxing Itatian military expenditure at a maximum of $\{9,560,000$ a year, but in December of that year he was defeated in the Chamber on the question of the promotion of officers. Resigning office, he was in May 1898 sent as royal comtrissioner to Bari, where, without recourse to martial law, he succeeded in restoring
public order. Upon the fall of Rudini in June nog, Generd Pelloux was entruated by King Humbert with the formation of a cabinet, and took for himself the post of minister of the interior. He resigned office in May 1899, but was again edtrusted with the formation of the mixistry. He took stern measures ageinst the revolutionary elements in southern Italy, and his new calinat was emsentially military and conservative. The Public Safety Bill for the ruform of the police lams, taken over by him from the Rudini cabinet, and eventually promub. gated hy royal decree, was fiercely ohatructed by the Socialist party, which, with the Left and Extreme Left, succeeded in forcing General Peiloux to dissolve the Chamber in May 1900, and to resign office after the gencral election in June. In the autumn of 1901 he was appointed to the command of the Turin army corps.

PBLOMYZA so mamed by R. Greeff, a genus of Lobose Rhizopoda (9.8.), maked, multinucleate, with very hlunt rounded pseudopodia, formed by eruption (eee AmoEBA), of fen containing peculiar veaicios (dycogen?), and full of a symbiotic bacterium. It inhabits the come of decomposing organic matter at the bottom of pands and lakes.

PRIOPIDAS (d. 364 b.c.), Theban statesman and general. He was a member of a diatinguished kamily, and possessed great wealth which he expended on his friends, while content to lead the life of an athlete. In 38; s.c. he served in a Theban contingent seat ta the support of the Spartans at Mantincia, where he whe taved, when dangerously wounded, by Epaminondas (q.v.). Upon the scizure of the Thetan citadel by the Spartaiss (383 or 38a) be fied to Athens, and took the lead in a conspiracy to liberate Thebes. In 379 his party surprised and killed their chief political opponerta, and roused the people against the Spartan gartison, which surrendered to an army gathered by Pelopidse. In this and subsequent years be wan elected boedarch, and about 375 he routed a much larger Spartan force at Tegyra (near Orchomenus). This victory he owed natinly to the valour of the Sacred Band, a picked body of 300 infantry. At the battle of Leuctra (371) he contribated greatly to the success of Epaminondas's new tactics by the rapidity with which be made the Sacred Band close with the Spertans. In. 370 be accompanied his friend Epamionndas al boodarch into Pelopomnesus. On their return both generals were unsuccessfully accused of having retained their command beyond the legal term. In 369 , in response to a petition of the Thessalians, Pelopidas was sent with an army againat Alexander, tyrant of Pherae. After drivins Alexander out, he passed into Macedonia and arbitrated between two claimants to the throne. In order to secure the infleence of Thebes, he brought home hostages, including the king's brother, afterwards Philip II., the conqueror of Greece. Next year Pelopidas was again called upon to interfere in Macedonia, but, being deserted by his mercenarics, was compelled to make an agreement with Ptolemaeus of Alorus. On his return through Thessaly he was seized by Alexander of Pherae, and two expeditions from Thebes were needed to secure his release. In 367 Pelopidas went on an embassy to the Persian king and induced him to prescribe a settlement of Greece according to the wishes of the Thebans. In 364 he received another appeal from the Thessalian towns against Alexander of Pherac. Though an eclipse of the sun prevented his bringing with him more than a hendful of troops, he overthrew the tyrant's far superior force on the ridge of Cynoscephalae; but wishing to siay Alexander with his own hand, he rushed forward too eagerly and was cut down by the tyrant's guards.
Plutarch and Nepos, Pelopidas; Diodorus mv. 60-81; Xenophon, Hallenica, vii. I. See aleo Therss.
PELOPOMNESIAN WAR, in Greek history, the name given specially to the striggle between Athens at the head of the Deliar League and the confederacy of which Sparta was the leading power. ${ }^{1}$ According to Thucydides the war, which was

[^7]In his view the greatest that had evier occurred in Greece, linted from 431 to the downall of Athens in 404. The genius of Thucydides has given to the struggle the importance of an epoch in world history, but his view is open to two main crith-cisms-(1) that the war was in its ultimate bearings little more than a local disturbance, viewed from the standpoint of universal history; (2) that it cannot be called a war in the strict sense. The former of these criticisms is justified in the article on Gresecs: History (q.v.). Unless we are to believe that the Maredonian supremacy is directly traceable to the mutual weakening of the Greek cities in 431-403, it is difficult to see what lasting importance attaches to the war. As regards the second, a few chief difficulties may be indicated. The very narrative even of Thucydides himself shows that the "war" was not a connected whole. It may be divided intothree main periods-(1) from 43x to 4 ar (Lysias calla it the "Archidamian" War), when the Peace of Nicias, not merely formally, hut actually produced a cemation of hoatilities; (2) from 421 till the intervention of Sparta in the Sicilian War; during these yearn there was no "Peloponnesian War," and there were several years in which there was in reality no fighting at all: the Siellian expedition was in fnct a side issue; (3) from 413 to 404, when fighting was carried on mainly in the Aegean Ses (lisocrates calls this the "Decelean" War). The disjointed character of the struggle is so obvious from Thacydides himself that historians have come to the conciusion that the iden of preating the whole struggle as a single unit was ex post facto (see Greece: History, A, "Ancient" ad fin.).

The book itself affords evidence which goes lar to justify this view. A very important problem is presonted by bk. v., which is obviously put in as a connecting link to prove a theory. Thucydides expressly warns us not to regard the period of this book as one of peace, and yet the very contents of the book refute his argument. In 419 and 417 there is practically no fighting: the Mantincan War of 428 is a disconnected episode which did not lead.to a resumption of bostilities: in 420 there are only obscure battles in Thrace: in 416 there is only the expedition to Melos; and finally from 421 to 413 there is official peace. Other details may be cited in corroboration. Book v. (ch. 26) contains a second introduction to the subject; son d abdepos in i. 23 and iv. 48 is the Archidamian or Ten Years' War; in v. 26
 Sorne critics think on these and other grounds that Thucydides wrote and published bks. $\mathrm{i},-\mathrm{v} .25$ by itself, then bks, vi. and vii. (Sicilian expedition), and fanally revising his view joined them into one whole by the somewhat ansatisfactory bk. v. 26 and following chapters, and began to round of the story with the incomplete bl, vili. (on this see Geezce: History, as above). It is perhaps most probable that he retalned notes made contemporarily and worked them up some time after 404, in a few passages failing to correct inconsistencies and dying before bk. viti. was completed. The general introduction in bk. i. was unquestionably written shortly after 404 -
The causes of the war thus understood are complex. The view taken by Thucydides that Sparta wan the real foe of Athens has been much modisied by modern writers. The key to the altuation is in fact the commercial rivalry of the Corinthians, whose trade (mainly in the Weat) had been seriounily limited by the naval expansion of the Delian League. Thin rivairy was roused to fever heat by the Athendan intervention in 434-33 on behall of Corcyra, Corinth's rebellious colony (see Corro) and from that time the Corinthians felt that the Thirty Years' Truce was at an end. An opportunity soon offered for making a counter attack. Potidaea, a Dorian town on the western promontory of Chalcidice in Thrace, a tributary ally of Athens-to which however Corinth as metropolis still sent annual magistrates-was induced to revolt, ${ }^{1}$ whith the support of the Macedonian king Perdiceas, formerly an Athentan ally. The Athenian Phormio succeeded in blockeding the city so that
1 The importance of this revolt lay In the fact that it immediately iavolved danger to Athens throughout the Chalcidic promontorie, and ber northeant ponestions generally.
its captere was mencly a question of titwe, and this provided the Corinthians with as urgent reason for declaring war.

Prior to these episodes Athens had not been in hostile contact with any of the Peloponnesian confederate states for more than ten yents, and Perictes had abandoned a great part of hia imperial policy. He now laid an embargo upon Megara by which the Megarians were forbidden on pain of death to pursue trading operations with any part of the Athenian Empire. The circumstances of this decree (or decrees) are not material to the present argument (see Grote, History of Greece, ed. 1907, p. 370 note) except that it turned special attention to the commercial supremacy which Athens claimed to enjoy. In 432 a conference of Peloponnesian allies was summoned and the Corinthian eavoys arged the Spartans to declare war on the ground thet the power of Athens was becoming so great as to constitute a danger to the other states. This might have been arged with justice belore the Thirty Years' Truce (447); but by that truce Athens gave up all her conquests in Greece proper except Naupactus and Plataea, while her solitary gains in Amphipolis and Thurii were compensated by other losses. The fact that the Corintbian argument failed to impress Sparta and many of the delegates is shown by the course of the debate. What finally impelled the Spartans to agree to the war was the velled threat by the Corinthians that they would be driven into another altiance (i.e. Argos, i. 71). We can hardly regard Sparta as the determined enemy of Athens at this time. Only twice since 461 had she been at war with Atbens-in 457 (Tanagra) and 447, when she deliberately abstained from pushing the advantage which the revolt in Euboea provided; she had refused to help:the oll. garchs of Samos in 44 a Corinth however had not only trong. but also immediate and urgent reasons (Potideca and Coscyra) for deairing war. It has been argued tbat the war was uith mately a atruggle between the principles of oligarciny and democracy. This view, however, cannot be taken of the early stages of the war when there was democracy and oligarchy on both sides (see ad fin.); it is only in the later stages that the political difference is prominent.

The Opposing Forces.-The permanent strength of the Psloponnesian confederacy lay in the Peloponnesian atates, all of which except Argos and Achaea were united under Sparta's leadership. But it included also extra-Peloponnetian statesviz. Megara, Phocis, Boeotis and Locris (which had formed part of the Athenian land empire), and the marilane colonies round the Ambrucian Guif. The organization was not claborate. The federal assembly with few exceptions met only in time of war, and then only when Sparta agreed to aummon It. It met in Sparta and the delogates, having stated their views before the Spartan Apella, withdrew till the Apella had come to a decision. The delegates were then invited to return and to confirm that decision. It is cleat that the link was purely one of common interest, and that Sparta had little or mo control over, e.g. so powerful a confederate at Corinth. Sparta was the chief member of the confederacy (hegemon), but the states were autonomons. In time of war each had to provide iwo-thirda of its lorces, and that slate in whose territory the war was to take place bad to equip its whole force.
The Athenian Empire is described eleewhere (Detiar Leacur, Athmens). Here it must suffice to point out that there wal among the real and technical allies no true bond of interest, and that many of the states were in fact bound by close ties to members of the Peloponnesian confederacy (e.g. Potideea to Corinth). Sparta could not only rely on voluntary co-operation but could undermine Athenian influence by posing at the champion of autonomy. Further, Thucydides is wrong on his own ahowing in saying that Sparta relused to tolerate democratic government in confederate cities: it was not till after 418 that this policy was adopted. Athens, on the other hand, had undoubtedly interfered in the interest of democracy in various allied states (see Derian Leaguz).
No detailed examination of the comparative military and naval resources of the combatante can here be attempted. On land the Peloponsecians were superior: they had at leat 30,000
boplites not inciluding zo,000 from Centrul Creent and Bocotia: these soldiers were highly trained Tbe Athonian ermy was undoubtedly maller. There has been considerable discuasion as to the exact figures, the evidence in Thucydides being highly confusiag, but it is most probable that the aralable fighting force was not more than half that of the Peloponnenian confederacy. Even of these we.learn (Thuc. jii. 87) that 4400 died in the great plague. The only light-armed fonce wes that of Boeotia at Delium (10,000 with seo peltasca). Of cavaly Athens had 1000 , Boeotia a similar number. The only othar cavalry force was that of Thessaly, which, had it been loyal to Athens, would have meant a distinct superiority. In naval powez the Atbenians undoubtedly had an overwhelming advantage at the begioning, bosh in numbers and in training.

Financially Athous had an enormons appasent advaatage. She began with a revenuse of 1000 talents (including 600 from ofrunax(c), and had aloo, in apite of the heavy expense which tho building schemes of Pericies hed involved, a neserve of 6000 talents. The Pelopotanerinas had no reetive and mo fized revenue aesescment. On the other hand the Peloponnecian armies were unpaid, while Athens had to spend comaderable sums on the payment of crewrs and mercenaties In the last stages of the war the issue was determined by the poverty of Athens and Pecian gold.

The events of the strugele frome 431 to 404 may be mummarized in the three periods distiogulshed above.

1. The Tci Years' or Archidamien War.-The Spartans sent to Athens no formal declaration of war but zether sought finat to create same specious casses belli by sending requiaitions to Athens. The first, intended to inflnme the exincing hostilities against Periclen (g.v.) in Athens, was that he should be expelled the city as being an Alcmaconid (grad-nephow of Cleisthemea) and so implicated in the curse pronpunced on the murderers of Cyion nearly 200 years befoce. This outrageons demand was followed by three others-that the Athenians should (x) withdraw from Potidece, (z) restore autonomy to Aegina, and (3) withdraw the embargo on Megarian commerce. Upon the refusal of all these demands Sparta finnily made the maintenance of peace contingent upon the restoration by Athens of astonomy to all her allies. Under the guidance of Fericlea Athens replied that she would do nothing on compulsion, but was prepared to submit difficulties to minicable arbitrution on the bask of mutual conceasions. Before anything could come of this proposal, matters were precipitated (end of March 431) by the attack of Thebes upon Platsen (q.r.), which immediately sought and obtained the aid of Athens. War was begun. The Spartala king Archidamus asoembled his army, sent a herald to annonace his epproach, marchcd into Attica and betioged Oenoe.

Mennwhile Pericles had decided to act on the defersive, ie. to abandon Attica, collect all its residents in Athens and treat Athens as an ishond, retaining meanwhile command of the sea and making descents on Peloponnesian shores. The policy, which Thucydides and Grote commend, had grave defectthoughi it is by no means easy to sugest a better; e.g. ft meant the ruin of the landed clacs, it tended to spoil the morel of those who from the walls of Athens annually watched the wasting of their homesteads, and it involved the many perils of an overcrowded city-a peril increased by, if not abo the cavee of, the plague. Motzover sea power was not everything, and delay exhausted the financial reserves of the state, while financial considerations, as we bave seen, were comparatively unimportant to the Peloponnesians. The descents on the Peloponoese were futile in the extreme:

Archidamus, having wasted mach territory, including Acharnae, retired at the end of July. The Athenians retaliated by attacking Methone (which was secured by Brasidas), by sucoesses in the West, hy expelling all Aeginetans from Aegina (which was mede a claruchy), and by wasting the Megarid.

In 430 Archidamus again invaded Attica, systematically wasting the country. Shortly after he entered Attica plague broke out in. Athens, borne thither by tradess from Carthage or Egypt (Holm, Greek History, ii. 346 note). The effect upon
the overtrowded population of the city was terrible. OA the 1200 cavalry (including mounted archers) 300 died, together with 4400 hoplites: altogether the eatimate of Diodorus (xii. 58) that more than ro,000 citizens and slaves surcumbed is by no means ercesive. None the less Pericles miled with 100 triremes, and ravaped the temitory near Epidaurus. Subsequently be returped and the expedition proceeded to Potidaca. But the plague went whin them and no results were achieved. The enemies of Pericles, who even with the ald of Spartan intrigue had hitherto failed to harm hia prestigo, now succeeded in indueing the derperate citisens to fime him for alleged malversation. The verdict, however, shocked public feeling and Pericles was entretated in popalint favour at strategus (c. Ang. 430). About a year later be died. In the autumn of 430 a Spartan attack on Recymothes falled and the Ambraciots were repulsed from Amphilochinn Argou. In roply Athens sent Phormio to Naupactus to watch her interests in that quarter. In the winter Potidees capitulated, recelving extremely favourable terms.

In 429 the Peloponnesians were deterred by the plague from involing Attica and hid riege to Plataca in the interests of Theber. The Athenians failod in an expedition to Clialcidice under Xesoppon, while the Spartan Cnemus with Choonian and Eptuct alties was repulsed from Stratua, capital of Acarnania, and Phormio with only 20 shipe defeated the Corinthian fleet of 47 eall in the Oulf of Corinth. Orders were at once sent from Sparta to repair this disaster and 77 ships were equipped. Heip sent from Athens was diverted to Crete, and after much mancarring Phormio was compelled to fight of Naupactua. Niac of his shipa were driven ashore, but with the otber in he subsequently defcated the enemy and recovered the lost nine. Whith the reinforcement which arrived afterwards he established complete conatrol of the wextem some. A scheme for operating with 8itaces againat the Chalicians of Thrace fell through, and Sitalces joined Perdicens.

The year 428 was marked by a thind invasion of Attica and by the revolt of Leabos from Athens After detay in fruifless negotiatione the Athenian Ciefppides, and afterwards Paches, besieged Mytilenc, whick appealed to Sparts. The Pelopots netian confoderacy resolved to aid the rebels both directly and hy a counter demonstration against Athens. The Athemiana, though their reserve of 6000 talents was by now almost exhausted (except for roco talents in a special reserve), made a tremendous effort (raising 200 talents by a opecial property tax), and not only prevented an favasion by a demonstration of 100 triremes at the Isthmus, but sent Asopfus, son of Phormio, to take his place in the western scas. In spring 427 the Spartans again invaded Attica without result. The winter of 428-427 was marked by the daring escape of half the Platacan garrison under cover of a stormy night, and by the capitulation of Mytilene, which was forced upion the oligurchic rulers by the democracy. The Spertan flet arrived too late and departed without attempting to tecover the town. Paches cleared the Asiatic seas of the enemy, reduced the other towns of Mytilene and returned to Athens with upwards of 1000 prisoners. An assembly was held and under the invective of Clion ($q . v$.) it was decided to lim all male Mytileneans of military ase and to sell the women and children as elaves. This decree, though in accordance with the rigorous customs of ancient warfare as exemplified by the treatment which Sparta shortly afterwarts meted out to the Plataeans, shocked the feelings of Athens, end on the next day it was (ilegally) rescinded just in time to prevent Pacbea carrying it out. The thousand ${ }^{1}$ oligarchic prisoners were however executed, and Leabos was made a cleruchy.

Meanwbile there occurred civil war in Corcyra, in which uttimately, with the aid of the Athenian admlral Eurymedon, the democracy triumphed amid seenes of the wildest savagery. In the sutumn of the year Nicies fortified Minos at the mouth of the harbour of Megara. Shortly afterwards the Spartans

[^8]phated an unacceasful colony at Herncien in the Trachioian territary north-west of Thermopylae.
In the summer of 426 Nicias lod a predatory expedition along the north-west coast without achieving any positive victory. More important, though equally ineffective, was the scheme of Demosthedes to march from Naupactus through Aetolia, subduing the wild hill tribet, to Cytinium in Doris (in the upper valleys of the Cephissus) and thence into Boeotis, which was to be attacked simultaneonaly from Attica. The scheme was crushed hy the courage and akill of the Aetolians, whothereupon summoned Spartan and Corinthian aid for a counter attack on Naupactus. Demosthenes averted this, and immediately afterwards by superior tactics inflicted a complete defeat at Olpae In Acarnania on Eurylochus at the head of a Spartan and Ambracian force. An Ambracien reinforcement was annihilated at one of the peaks called Idomene, and a diagraceful truce was accepted by the surviving Spartinn leader Menedaeur. This was not only the worst dinaster which befell any powerful state up to the peace of Nician (as Thucydides sayb), hut was a serious blow to Corinth, whose trade on the West was, as we have seen, one of the chief causes of the war.

The year 425 is remarkable for the Spartan dianster of Pylos (q.v.). The Athenians had despatched 40 trinemes under Eurymedon and Procies to Sicily with orders to cail first at Corcyra to prevent an expected Spartan attack. Meantime Demosthenes had formed the plan of planting the Messenians of Naupactus in Messenia-now Spartan territory-and ohtained permisaion to accompany the expedition. The fleet was, as it chanced, delayed by a storm in the Bay of Navarino, and rough fortifications were put up hy the sailors on the promontory of Pylos. Demosthenes was left behind in this fort, and the Spartans promptly withdrew from their annual raid'upon Attica and their projected attack on Concyra to dialodge him. After a naval engagement (see PyLOs) a body of Spartan hoplites were cut off on Sphacteria. So acutely did Sparta feel their position that an offer of peace was made on condition that the hoplites should go free. The eloquence of Cleon frustrated the peace party's desire to accept these terms, and ultimately to the astonishment of the Greek world the Spartan hoplites to the number of a9z surrendered unconditionally (see CLEON).

Thus in 424 the Athenians had seriously damaged the prestige of Sparta, and broken Corinthian supremacy in the north-west, and the Peloponnesians had no fleet. This was the zenith of their success, and it was unfortunate for them that they decifinen the various offers of peace which Sparta made. The next two years changed the whole position. The doubling of the tribute in 425 pressed hardly on the allies (ace Delian Leacue): Nicias failed in a plot with the democratic party in Megars to seize that town; and the brilliant campaigns of Brasides (q.v.) in the north-east, culminating in the capture of Arophipolis (422), finaily destroyed the Athenian hopes of recovering their land empire, and entirely restored the balance of auccesa and Spartan prestige. Moreover, the admirahly conceived scheme for a simultaneous triple attack upon Boeotia at Chacronea in the north, Delium in the south-anst, and Siphac in the south.west had fallen through owing to the inefficiency of the generals. The schems, which probably originated with the atticizing party in Thebes, resilted in the severe defeat of Hippocrates at Deliumo hy the Boeotians under Pagondas, and was a final blow to the policy of an Athenian land empire.
These disasters at Megara, Amphipolis and Delium left Athens with only one trump card-Che possession of the Spartan hoplites captured in Sphacteria. This solitary success had stready in the spring of 423 induced Sparta in spite of the successes which Brasidas was achieving in Thrace to accept the "truce of Laches "-which, bowever, was rendered abortive by the refusal of Brasidas to surrender Scione. The final success of Brasidas at Amphipolis, where both he and Cleon were killed, paved the way for a more permanent agreement, the peace parties at Athens and Sparta belng in the ascendant.
2. Prow 42 Y to 413 .-Peace was signed in March 421 on the beais of each side's surrendering what had been acquired by
the war, not including thove citles Which had been acquired by capituhation. It was to last for fifty years. Its weak pointe, however, were numerous. Whereas Sparta had been least of all the allies interested in the war, and apart from the campaigns of Brasidns hed on the whole taken little part in it, her allies benefited lease by the terms of the Peace. Corinth did not regain Sollium and Anactorium, while Megara and Thebes respectively were indignant that Athens should retain Nisaca and receive Panactum. These and other reasons rapidly led to the isolation of Sparta, and there was a general refusal to carry out the terns of agreement. The history of the next three years is therefore one of complex. inter-btate intrigues combined with internal political convulsions. In 421 Sparta and Athens concluded a defensive alliance; the Sphacterian captives were released and Athens promised to abandon Pylos. Such a peace, giving Sparta everything and Athens nothing but Sparta's hare alliance, was due to the fact that Nicias and Alcihiades mere both seeking Sparta's friendahip. At this time the Fifty Years' Truce between Sparta and Argos was expiring. The Peloponneslen malcontents turned to Argos as a new leader, and an alliance was formed between Argos, Corinth, Elis, Mantimes and the Threceward towns (400). This condition between two different elements-an anti-oligarchic party and a war party-had no chance of permanent existence. The war party in Sparta regained its strength under new ephorn and negotiations began for an alliance between Sparta, Argos and Bocotia. The details cannot here be discussed. The result was a re-shuffling of the cards. The democratic states of the Peloponnese weredriven, partly by the intrigues of Alcibindes, now anti-Leconian, into alliance with Athens, with the object of establishing a democratic Peloponnese under the leadership of Argos. Theae unstahle combiantions were soon efter upeet by Alcibiades himself, who, having succeeded in displacing Nicias as atrategus in 419 , allowed Athenian troope to help in ataacking Epidaurus. For a cause not casy to determine Alcihiades was defeated by Nicias in the election to the post of stralegus in the next year, and the suspicions of the Peloponnesian coalition were roused hy the inadequate assistance tent by Athens, which arrived too late to assist Argos when the Spartan king Agis marched againgt it. Ultimately the Spartans were successful over the coalition at Mantinea, and 200 n afterwards an oligarchic revolution at Argos led to an alliance between that city and Sparta (c. Feb. 417). This oligarchy was overthrown again in June, and the new demoeracy having vainly sought an agreement with Sparta rejoined Athens. It was thus left to Athens to expend men and money on protecting a democracy by the ald of which she had hoped practically to control the Pelopoanesus. All this time, however, the alliance bet ween her and Sparta was not officially hroken.

The unsatisfactory character of the Athenian Peloponnesinn coalition was one of the negative canses which led up to the Sicilian Expedition of 4×5. Another negrative cause may be found in the failure of an attempt or attempts to subdue the Thraceward towns. By combining the evidence of Plutarch (in his comparison of Nicias and Crassus), Thuc. v. 83, and the inacription which gives the treasury payments for 418 -415 (Hicks and Hill, Gr. Hisl. Insar. 70), we can scarcely doubt that there were expeditions in 418 (Euthydemus) and the summer of 417 (Nicias), and that in the winter of 417 a blockading equadron under Cbseremon was despatched. This policy-which wat presumably that of Niciss in opposition to Alcibiades-having friled, the way was cleared for a reassertion of that poicy of western conquest which had always had advocates from Themistocles onward in Athens, ${ }^{\text {b }}$ and was part of the democratic programme:

The tragic fiasco of the Sicilian expedition, involving the death
In ass Athens made a treaty with Segesta (inscr. Hiclos and Hill, Greek Hist. Inscr. 34): in 433 with Rhegium and Leontimi
 Chalcidic towns in Sicily) : in 444 the colony of Thurii was fourded: in 427 (see above) 60 ships were sent to Sicily; and if we may believe Aristophanes (Eq, 1302) Hyperbolus asked for 100 triremen for Carthrige.
of Niciss asd the lons of thoasands of men and hundreds of ships, was a blow from which Athens nover recoverod (see undee Srameuse and Excriy). Even before the final cateotrephe the Spartans had reopened houtilitios. On the advice of Alcibiades (9.s.), exiled from Athens in 475, they had fortified Decelen in Attica within fifteen milen of Athens. This plece not only served as a permanent headquarters for prodatory expeditions, but cut off the revense from the Laurium minea, furniabed a ready acylum for runaway slaves, and readered the transference of supplies from Euboes considerably.more dificicult (i.e. by the see round Cape Sunium). Athens thus entered upon the third stage of the conflict with esceedingly poar prospects.
3. The Iomian or Deceloon War.-From the Athenian standpoint this war may be broken up into three periods: (1) period of revolt of allies (413-418), (2) the rally (410-408), (3) the relapse (407-404). As contrasted with the Archidamian War, this war was fought almost exclusively in the Aegean Sea, the enemy was primarily Sperta, and the deciding factor was Persian gold. Furthermore, apart from the gradual disintegration of the empire, Athens was disturbed by pobitical strife.
In 412 many Ionian towns revolted, and appealed either to Agis at Decelea or to Sparta direct. Euboes, Lesboa, Chios, Erythrae led the wey in negotiation and revolt, and simultancously the court of Susa instructed the satraps Pharnabazus and Tinsaphernes to renew the collection of tribute from the Greek cities of Asia Minor. The satraps likewise made overtures to Sparta. The revoit of the Iomizn allies was due in part to Alcibiades also, whose prompt action in co-operation with his friend the ephor Endius finally confirmed the Chian oligarchs in their purpose. In 4It a treaty was signed by Sparta and Timapherves against Athons: the treaty formally aurreadered to the Persian king all territory which he or his predecessors had held. It was subsequently renewed in a form somewhat leas diegraceful to Greek patriotism by the Spartans Astyochus and Theramenes. On the other hand, a democratic rising in Samos prevented the rebellion of that ialand, which for the remainder of the war was invaluable to Athens as a atronghold lying between the two great centres of the strugete.
After the news of the Sicilian disaster Achens was compelled at last to draw on the reserve of 1000 talents which had lain untouched in the treasury. ${ }^{1}$ The revolt of the Ionian allies, and (in 411) the loss of the Hellespontine, Thracian and Island tributes (see Delinar Leacuz), very seriously crippled her finances. On the other hand, Tissaphernes undertook to pay the Peloponnesian sailors a daily wage of one Attic drachma (ufterwards reduced to $\$$ drachma). In Attica itself Athems lost Oenoe and Oropus, and by the end of 411 only one quarter of the empire remained. In the meanwhile Tissaphernes began to play a double game with the object of wating the strength of the combatants. Moreover Alcibiades loat the confidence of the Spartans and passed over to Tiscaphernes, at whose disposal be placed his great powers of diplomacy, at the same lime echeming for his restoration to Athens. He opened nepotiacions with the Athenian leaders in Samos and urged them to upset the democracy and establish a philo-Pernian aligarchy. After eiaborate intrigues, in the course of whicb Alcibiades played false to the conspirators by forcing them to abandon the ides of friendship with Tissaphernes owing to the ecorbitant terms proposed; the new government by the Four Hundred was set up in Athens (see Treaneries). This opernment (which received no support from the armament in Samon) had a hrief life, and on the final revolt of Euboea was replaced by the old democratic system. Akibiades (9.0.) was mon afterwards invited to return to Athens.
The war, which, probably becave of financial trouble, the Spartans had neglected to purnue when Athens was thus in the throes of political convulsion, was now resumed. After much mancurving and intrigues a naval batcle wes fought at Cynoc-
${ }^{1}$ She had already abolished the system of tribute in favour of a 5% ad malorem tax on all lmports and exports carried by wea beiveen her ports and thove of the allies
sema in the Helleapont fin which victory on the whole reated with the Athemians (Aug. 41i), though the net result was inconsiderable. About this time the daplicity of Tisapherneswho having again and aghin promised a Pboenicinn fleet and beving actually brought it to the Aegean finally dismissed it on the excuse of trouble in the Levant-and the vigorous honeaty of Pharabasus definitely transferred the Peloponnesian forces to the north-west const of Asin Minor and the Hellespont. There they were regularty financed by Pharanbazus, while the Atheniass were compelled to rely on forced levice. In spite of thin handicap Akeibiades, who had been seired and imprisoned by Tisaphernes at Sardis but effected his escape, achieved a remarkable victory over the Spartan Mindarus at Cyzicus (about April 410). So complete wat the destriction of the Peloponnesinn Ieet that, according to Diodorns, peace was offered by Sparta (see ad fin.) and would have been accepted but for the wartike speeches of the "demarogue" Cleophon representing the extreme democrats. ${ }^{2}$ Apother result was the return to allegiance (40y) of a number of the north-east cities of the empire. Grent attempts were made by the Athenians to hold tbe Hellespont and then to protect the corn-supply from the Black Sea. In Greece these gains were compensated by the loss of Pylos and Nisaca.
In 408 Alcibiades effectively Invested Chalcedon, which surrendered by agreement with Pharmabazus, and subsequently Byzantium also fell into his hands with the aid of come of ite inhabitants.

Pharmabams, weary of bearing the whole cost of the wer for the Peloponnesians, agreed to a period of truce so that envoys might visit Susa, but at this stage the whole position was changed by the appointment of Cyrus the Younger as satrap of Lydia, Greater Phrygin and Cappadocia. His arrival coincided with the appofntment of Lysander (c. Dec. 408) as Spartan admiralthe third of the three great commanders (Brasidas and Gylippus being the others) whom Spartaproduced during the war. Cyras promptly agreed on the special request of Lysander (q.v.) to pay slightly increased wages to the sailors, while Lysander established a system of anti-Athenian clubs and oligarchic governments in various cities. Meanwhile Alcibiades (May 407), baving exacted levies in Caria, returned at length to Athens and wes efected strategns with full powers (see Straticus). He raised a large force of men and ships and endenvoured to draw Lysander (then at Ephesus) into an engagement. But Cyrus and Lysander were resolved not to fight till they had a clear advantage, and Alcibiades took a small squadron to Phocsea. In spite of his express orders his captain Antiochus in his absence provoked a bettle and was defeated and killed at Notium. This failure and the refusal of Lysander to fight again destroyed the confidence which Alcibiades had 80 recently regained. Ten strategi were appointed to supersede him and he retired to fortified ports in the Chersonese which he had prepared for such an emergency (c. Jan. 406). At the same time Lysander's year of office expired and he was superseded by Callicratidas, to the disgust of all those whom be had so carefully organized in his service. Callicratides, an honourable man of pan-Hellenic patriotiam, was heavily haodicapped in the fact that Cyrus declined to afford him the help which had made Lysander powerful, and had recourse to the Milesians and Chians, with whose aid he filted out a fleet of 140 triremes (only 10 Spartan). With these be pursued Conon (chief of the ten new Athenian strategi), captured 30 of his 70 shipe and betieged bim in Mytilene. Faced with inevitable destruction, Conon succeeded in sending the news to Athens, where by extraordinary efforts a fleet of 110 ships was at ance equipped. Callicratidas, hearing of this feet's approach, withdrew from Mytilene, leaving Eteonicus in charge of the blockade. Forty more ships were collected by the Athenians, who met and defeated Callicratidas at Arginusac with a loss of more than half his fleet. The immediate result was that Eteonicus left Mytilene and Conon found himself free. Unfortunately the victorious generals at Arginusae, through negligence or owing

* Xenophon. H1dl. does not mention it: Thucydides's history had by this tiose comet to an end.
to a storm, failed to recover the bodies of those of their crews who were drowned or killed in the action. They were therefore recalled, tried and condemned to death, except two who had disobeyed the order to return to Athens.
At this point Lysander was again sent out, nominally as secretary to the official admiral Aracus. Cyrus, recalled to Suse by the illness of Darius, left him in entire control of his satrapy. Thus strengthened he sailed to Lampsacus on the Hellespont and laid siage to it. Conon, now in charge of the Athenian fleet, sailed sgainst him, but the feet was entirely destroyed while at anchor at Aegospotami (Sept. 405), Conon escaping with only 12 out of 180 sail to Cyprus. In April 404 Lyasuder sailed into the Peirneus, took posseasion of Athens, and destroyed the Long Walls and the fortifications of Peiracus. An oligarchical government was set up (see Crirus), and Lyrander having compelled the capitulation of Samos, the list Athenian stronghold, stiled in triumph to Sparta.

Two questions of considerable importance for the full onderstandine of the Peloponnesian War may be selected for special notice: (a) bow far was it a war between two antagonistic theories of government, oligarchic and democratic? and (2) bow lar was Athenian statesmanship at lault in declining the offers of peace which Sparta made?

1. A common theory is that Sparta fought throughout the war as an advocate of oligarchy, while Atbens did not week to interfere with the constitutional prefercnoes of her allicn. The view is bamed pertly on Thuc. i. 19, according to which the Spartans took care that their allies should adhere to a policy convenient to themselves. This idea is disproved by Thucydidea' own narrative, which shows that down to 418 (the battle of Mantinea) Sparta tolerated democratic governments in Peloponnesus itself -e.f. Elis, Maxtinea, Sicyon. Achaea. It was only after that date that democracy was suppressed in the Peloponneslan League, and even then Mantinea remained democratic. In point of fact, it was only when lymander became the representative of Spartan foreign policy-i.e. in the last yeare of the war-that Sparta was identified with the oligarchic policy.
On the other hand, there is strong evidence that the Athenian Empirte at a much carlier date was based upon a uniform democratic type of government (cf. Thuc. i. 19, viii, 64; Xen. Pol. i. 14, Hell. if. 47 ; Arist. Pol, viii. 69). It is true that we find oligarchic government in Chios and Lesbos (up to 428) and in Samos (up to 440). but this is discounted by the fact that all three were "autonomous allies. Moreover, in the case of Samos there was a democracy in 439. thougb in 412 the government was again oligarchic. The case of Selymbria (see Hicks and Hill, op, cif. 77) is of little account. because at that time (409) the Empire was in extremis. In generai we find that Athenian orators take special credit-on the ground that the Athenian had given to her allies the constitutional advantages which they thempelves enjoyed.
2. In view of the disactrous incue of the war, it is important to notice that on three occasions- (a) after Pyloe, (b) after Cyzicus, (c) after Arginusae. Athens refused formal peaco proposals from Sparta. (a) Though Clcon was probably wise in opposing peace negotiations before the capture of the Spartans in Sphactera, it seems in the light of subsequent events that he was wrong to refuse the terms which were offered after the hoplites had been captured. No douht, however, the temper in Athens was at that time predominantly warlike, and the surrender of the hoplites was a unique triumph. Powsibly, too, Cleore foresaw that peace would have meant a triumph for the philo Laconian party (b) The peace proposals of 410 are given by Dicdorna, who says that the ephor Endius proposed that a peace should be made on the basia of mis possidetis, except that Athens should evacuate Pylos and Cythera, and Sparta, Docelea. Cleophon, however, perhape doubting whether the offer was stncere (cf. Philochorus in Schol op Eunp. Orest. 371; Frafm. ed. Didot, $117{ }^{11}{ }^{118}$), demanded the statiss quo anle (413 or 431). (c) The proposals of 406, mentioned by Alh Pol. 34, were on the same lines, except that Athens no longer had Pylos and Cythera, and had lost practically half ber empire. At this time peace must therefore have been advantageous to Athens as showing the world that in spite of her lonees she was still one of the preat powers of Greece. Moreover, an alliance with Sparta would havo meant a check to Persian interference. It is probable, again. that party interest was a leading motive in Cleophon's mind, since a peace would have meant the return of the oligarchic exilea and the establishment of a moderate oligarchy.
Aurhorifies-G. Busolt, Griech. Gesch., Bd. iii., Teil ii. (t904), " Der Peloponnesische Krieg" is essential. All histories of Creece may be consulted bee Geexce: History, Ancient sectioa "Authoritien ").
(J. M. M.)

PELOPONNESUS ("Island of Pelops"), the ancient and modern Greek official name for the part of Greece south of the Isthmus of Corinth. In medieval times it was called the Moreh
from its resemblance to a mulbery-louf in shape, and this name ts atill curreat in popular speech.

Pangrat in Greek legend, the grandson of Zeus, son of Tantalus and Dione, and brother of Niobe. His father's bome was on Mt Sipylus in Asia Minor, whence Pelops is spoken of as a Lydian or a Phrygian. Tantalus one day served up to the gods his own son Pelops, boiled and cut in pieces. The gods detected the exime, and none of them would touch the food except Demeter (according to others, Thetis), who, distracted by the loss of her daughter Persephone, ate of the shoulder. The gods restored Pelops to life, and the ahoulder consumed by Demeter was replaced by one of ivory. Wherefore the descendants of Pelops had a white mark on their shoulder ever after (Ovid, Metasm. vi. 404; Virgil, Georgics, lii. 7). This tale is perhaps reminiscent of human sacrifice mongat the Greeks. Poseidon carried Pelops of to Olympus, where he dwelt with the gods, till, for his father's sins, he was cast out from heaven. Then, taking much woalth with him, he crossed over from Asia to Groece. He went to Pisa in Elis as suitor of Hippodameia, daughter of king Oenomaus, who had already vanquiahed in the chariot-race and slain many suitors for his daughter's hand. Bat by the help of Poscidon, who lent him winged steeds, or of Oenomais's charioteer Myrtilus, whom he or Hippodameia bribed, Pelops was victorious in the race, wedded Hippodameia, and became king of Pisa (Hyginus, Fab. 84). The race of Pelops for his wife may be a reminiscence of the early practice of marriage by capture. When Myrtilus claimed his promised reward, Pelops flung him into the sea near Geraestus in Euboee, and from his dying curse sprang those crimes and sorrows of the house of Pelops which supplied the Greck tragedians with such Iruitful themes (Sophocles, Electra, 505, with Jebb's-note). Among the sons of Pelops by Hippodameia were Atreus, Thyeatea and Chrysippus. From Pica Pelops extended his sway over the neighbouring Olympin, where he celebrated the Olympian games with a splendour unknown before. His power and fame were so great that henceforward the whole peninsula was known to the ancients as Peloponnesus, "island of Pelops" (fioos, island). In after times Pelops was honoured at Olympia above all other heroes; a temple was built for him by Heracies, his descendant in the fourth generation, in which the annual magistrates sacrificed to him a hiack ram.

From the reference to Asia in the tales of Tantalus, Niobe and Pelops it has been conjectured that Asiz was the original seat of these legends, and that it was only after emigration to Greece that the people localized a part of the sale of Pelops in their new home. In the time of Pausanias the throne of Pelops was still shown on the top of Mt Sipylus. The story of Pelops is told in the first Olympian ode of Pindar and in prose by Nicolaus Damascenus.

PRIOTA (Sp. " little ball," (rom Lat. pila), a ball game which, originating centuries ago in the Basque provinces, has developed into several forms of the sport. Epigrams of Martial show that there were at least three kinds of pelota played in his time. Bland, practically hand fives against the back wall of a court, is still played on both sides of the Pyrenees. It is so popular that the authorities had to forhid its being played against the walls of the cathedral at Barcelona. In uncovered courts of large sire there are two varietics of pelota. One, the favourite pastime of the Basque, is played against a front wall (fronlon), cither barehanded, whth a leather or wooden long glove-like protector (cesta), or with a chistera strapped to the wrist, a sicklo-shaped wicker-work implement three feet long, much like a hansom-wheel basket mud-guard, in the narrow groove of which the ball is caught and from which, thanks to the leverage afforded, it can be hurled with tremendous force. There are several players to a side, frequently an unoven number to allow a handicap. The score is announced by a cantara, whose melodious vocal efforts make him not the least apprecisted participant in the game. In the other form of the game, played nearly exclusively by professionals (polotaris), there are usually three players on cach side, two forwards and a back, distinguished by a coloured sash or cap. The server (bullexp) slipis off bis chistera to serve, bouncing the ball on the bul, a kind of stool, about 30 ft . from the wall, and
etriking it low against the wall. The side that wips the togs has the first service. The ball must be replayed by the opposing side at the wall, which it must hit over a line 3 ft. from the base of the wall and under the net fixed at the top of the wall. The game is counted $15,30,40$, game, reckoned by the number of faults made by the opposing side. A lault is scored (a) when efter the service the ball is not caught on the volley or first bounce, (b) when it does not on the return strike the wall within the prescribed limits, (c) when it goes out of the preseribed limits of the court, (d) when it strikes the net fuxd at the top of the courl. The side making the faule loses the service. A game like this has been played in Engtand by Spanish professionals on a court 250 ft . long, agninst a wall 30 ft . high and 55 ft . widc. The ball used, a trifie smaller than a base-ball, is hard rubber wound with yam and leather-covered, weighing 5 ounces. The server bounces the ball on the concrete floor quite near the fronton, and hits it with his chistera against the wall with a force to make it rebound beyond a line 80 ft . back. If usually grocs treble that distance
peloras, a city of the state of Rio Grande do Sul, Brazil, on the left bank of the Sano Congalo river near its entrance into the Lagian dos Patos, about 30 m . N.W. of the city of R1o Grande. Pop. ($x 900$), city, about 24,000 ; municipio (communc, 1037 sq. m.),43,091. Tbe Rio Grande Bage railway communicates with the city of Rio Grande, and with the railways extending to Bage, Cacequy, Sania Maria, Passo Fundo and Porto Alegre. The Sas Goncalo river is the outlet of Lagona Mirim, and Pelates is therefore connected with the inland water routes. The city is built on an open grassy plain (campo) litte above the level of the lake (28 ft . above sea-level). The public huildings include the church of Sio Francisco, dating from the early part of the 2oth century, the municipal hall, a fine theatre, the Misericordia hospital, a public library containing about 25,000 volumes and a great central market. Pelotas is the centre of the sarque or carne seeca-(jerked beef) industry of Rio Grande do Sul. In its outskirts and the surrounding country are an immense number of xarqucadas (slaughter-houscs), with large open yards whare the dreseed beel, lightly salted, is exposed to the sun and air. There are many factorica or puiking houses where the by products are prepared for market. Pelotas was only a small settlement at the beginning of the 1gth century and had no parochial organization until 1812. It became a oilla in r830 and a city in 1835 .
PRTOUZA, THLOPEME JULE (1807 -8867), French chemist, was born at Valognes, in Normandy, on the 26th (or 23th) of February 1807 . His (ather, Edmond Pelouze (d. 1847), was an industrial chemist and the aulbor of several technical handbooks. The son, after spending some time in a pharmacy at La_{a} Fére, acted as laboratory assistant to Gay-Lussac and J. L. Lassaigne ($1800-1859$) at Paris from 1827 to 1829 . In 1830 he was appointed associate professor of chemistry at Lille, but returning to Paris next year became repétiteur, and subsequently professor, at the Ecole Polytechnique. He also held the chair of chemistry at the College de France, and In 1833 became assayer to the mint and in 1848 president of the Commission des Monnaies. After the coup d'llat in 185 : he resigned his appoint ments, but continued to conduct a laboratory-school he had started in 2846 . He died in Paris on the 1st of June 1867. Though Pelouze made no discovery of outstanding importance, he was a busy investigator, his work including researches on salicin, on beetroot sugar, on various organic acids-gallic, malic, tartaric, butyric, lactic, \&c.-on oenanthic ether (with Liebig), on the nitrosulphates, on gun-colton, and on the composition and manufacture of glass. He also carried out determinations of the atomic reights of several elements, and with E. Fremy, published Trait de chimict stutrale (8847 -1850); Abreft de chimie (1848); and Notions senerales de chimic (1853).

PRLTIER JEALH CKARLPS ATHANASE (1785-2845), French physicist, was born at Ham (Somme) on the 22nd of February 1785. He was originally a watchmaker, but retired from business about the age of thirty and devoted himself to experimental and observational science. His papers, which are
numarous, ase devoted in grant part to atmoepheric clectncity, waterspouts, cyanometry and polarization of skylight, the tcmperature of water in the spheroodal state, and the boilingpoint al great elcvations. There are also a few devoted to curious points of natural history. But his mame will always be associaled with the thermal effects at junctions in a voltaic carcuit His great experimental discovery, known as the "Peltier effect," was that if a curreal pass from an extermal source through a circuit of two metals it cools the junction through which it passos in the same direction as the thermo-electric cucrent which nould be caused by directiy heating that junction, while it henss the other junction (see Tacamo-Elscrsicity). Peltier died is Parim on the 27 th of October 1845 .
PELTULNUY [mod. Civita Ansidonia], a town of the Vestini, on the Vis Claudia Nova, 12 m . E.S.E of Aquila. It was apparently the chicf town of that portion of the Vaftini who dwell west of the main Apenaine chain. Remains of the town walls, of an aenphitheatre, and of other buildings still exist.

PELUSIUM, an ancient cily and port of Egypl, now represcnted by twa largo mounds close to the coast and the cdge of the desert, 20 m . E. of Port Said. It lay in the marshes at tbe mouth of the mont censterly (Pclusiac) branch of the Nike, which has long since been silted up, and was the key of the land towards Syria and a strong fortrese, which, from the-Pensian invasion at least, played a great part in all wars between Egypt and the East. Its name has not been found on Egyptian monuments, but it may be the Sin of the Bible and of Assur-bani-pal's inscription. Pclusium (" the muddy") is the Farami of the Arabs, Percmoun in Coptic; the name TIns which clings to the locality seems etymolofically connected with the Arabic word for clay or mud. The site, crowned with extensive ruins of burat brick of the Byzantine or Arab period, hat not yielded any important remains.
(F. LI. G.)

PELVIS (Lat. for "basin," cf. Gr. rillus), in anatomy, the bony cavity at the lower part of the abdomen in which much of the genito-urinary apparatus and the lower part of the bowels are contained (see Skelerton, $\$$ Appendicular).

PEIBA, an island in the Indian Ocean off the cast coast of Africa, forming part of the sultanate of Zanzibar. Pemba liea $30 \mathrm{~m} . \mathrm{N}$. N.E. of Zanzibar island between 4° : 80^{\prime} and $5^{\circ} 30^{\prime} \mathrm{S}$, and $39^{\circ} 35^{\prime}$ and $39^{\circ} 50^{\prime}$ E. It is some 40 m . long and 10 acrose at its broadest part, and has an ares of 380 sq . m. It is of corabline formation. On the side facing the mainland the coast is much indented. From its luxuriant vegetation it gets its Arabic name of Al-buthera-"The Green." The interior is diversifiod by hilla, suree of which exceed 600 ft. The land is chicfly owned by great Arab proprietors, who work their plantations with Swahili labour, and with negroes from the mainland. Prior to 1897 the Labourers were all lataves Their gradual manumiscion was accomplished without injury to the prosperity of the island. The population is eatimated at between 50,000 and 60,000 , of whom 2090 to 3000 ase Arabe. Most of the Jnhabitants are of Bantu stock, and are known as Wapembe. In the ports there are many Hindu traders and a few Europeans. The plantations are nearly all devoted ta cloves (the anmual average output being so,00goco D) and coco-nut palms (for the preparation of copra). The number of coco-put plantations is very emall compared with those devoted to cloves. Yet cloves need much care and attention and yleld amall profit, while the coco-nut palm yields a fairly uniform crop of nuts and will grow almost anywhere. The preponderance of clove plantations dates from a cyclone which in 1872 destroyed nearly all the clove-trees in the island of Zanribar. Thereupon, to benefit from the greait rise in the price of cloves, tho Pembe planters cut down their palms and planted cloves. The value of the cloves exported in 1907 was $\mathrm{F} 339,000$, or 92% of the totel exports. India, Cermany and Great Britain are, in the order named, the chief purchasers. Other exports include fire-wood, skins and hides, mother-of-pearl. wax and small quantities of rubber, cowries, tortoiseshell and so-called tortoise-nail. The "tortoise-nail" is the valve with which a shell-fish closes its shell. The Llandolphia rubber-vine is indigenous, and sioce 1906 Ceara rubber-trees hava been
extensively planted. Rice, the chief of Pemba's imports, could easily be grown on the island. Cotton cloths (Kangas) form the next most considerable item in the imports.

Pemba hias three ports, all on the west side of the island. Shakt-Shaki, the capital and the centre of trade, is centrally situated at the head of a shallow tidal creek party hlocked by dense growths of mangroves. Mkoani is on the south-west coast, Kishi-Kashi on the north-west coast; at the last-named port there is a deep and well-sheltered harbour, approached however by a narrow and dangerous channel.

Pemba is administered as an integral part of the Zanzibar dominions, and yields a considerable surplus to the exehequer, mainly from a 25% duty imposed on eloves exported. There is a weekly steamship service to Zanzibar, and in 1907 the (wo islands were connected by wireless telegraphy (see Zanzibar).

PEMBROKE, BARIS OR. The tilic of earl of Pembroke has been held successively by several English families, the jurisdiction and dignity of a palatine earidom being originally attached to it. The first creation dates from 1 r38, when the earldom of Pembroke was conferred by King Stephen on Gilbert de Clare (d. 1148), son of Gilbert Fitz-Richard, who possessed the lordship of Strigul (Estrighoicl, in Domesday Book), the modern Chepstow. After the battle of Lincoln (1141), in which he toot part, the earl jolned the party of the empress Matilda, and he married IIenry I.'s mistress, Isabel, daughter of Robert de Beaumont, earl of Lelcester.

Richard de Clare, and earl of Pembroke (d. isfo), commonly known as "Strongbow," son of the first earl, succeeded to his father's estates in 1148, but had forfeited or lost them by 1 r68. In that year Dermot, king of Leinster, driven out of his kingdom by Roderick, king of Connaught, came to solicit help from Henry II. He secured the services of Earl Richard, promising bim the hand of his daughter Eva and the succession to Leinster. The carl crossed over in person (1170), took boib Wateriord and Dublin, and was married to Eva. But Henry II., jcalous of this success, ordered all the troops to return by Easter 1178 . In May Dermot died; this was the signal of a general rising, and Richard barely managed to keep Roderick of Connaught out of Dublin. 'Immediately afterwards he hurried to England to solicit help from Henry II., and surrendered to him all his lands and easlles. Henry crossed over in October 1172; he stayed in Ireland six months, and put his own men into nearly all the important places, Richard keeping only Kildare. In 1173 be went in person to France to help Henry II., and was present at Verneuil, being reinstated in Leinster as a reward. In 1174 he advanced into Connaught and was severely defeated, but fortunately Raymond le Gros re-cstablished hls supremacy in Leinster. Early in 1176 Richard died, just as Raymond had taken Limerick for him. Strongbow was the statesman, as the Fitzgeralds were the soldiers, of the conquest. He is vividly described by Giraldus Cambrensis as a tall and lair man, of pleasing appearance, modest in his bearing, delicate in fealures, of a low voice, bat sage in council and the idol of his soldiers. He was buried in the cathedral church of Dublin, where his effigy and that of his wife are still preserved.

See Giraidus Cambrensis. Expugnatio hibernica; and the Somg of Dermeot, edited by G. H. Orpen (1892).
Strongbow having died without male issue, his daughter Isabel became countess of Pembroke in her own right, and the citle was borne by her husband, Sir Williay Marshaz, or Le Martchal, second son of John le Martchal, by Sibylle, the sister of Patnick, ear! of Salisbury. John le Maréchal was a partisan of the empress Matilda, and died about 1164.

The date of Sir William Marshal's birth is uncertain, but his parents were married not earlier than 114Y, and he was a mere child in 1152, when he attracted the notice of King Stephen. In 1170 he was selected for a position in the household of Prince Henry, the heir-apparent, and remained there untll the death of his young patron (1883). He undertook a pilgrimage to the Holy Land, where he served as a crusader with distinction for two years. Although he had abetted the prince in rebellion he was pandoned by Heary II. and admitted to the royal service
about ir88. In 5189 he covered the flight of Henry IF. from Le Mans to Chinon, and, in a skirmish, unhorsed the undutifud Richard Coeur de Lion. None the less Richard, on his accession, promoted Marshal and confirmed the old king's licence for his marriage with the heiress of Strigul and Pembroke. This match gave Marshal the rank of an eart, with great estates in Wales and Ireland, and he was included in the council of regency which the king appointed on his departure for the third crusade (1x90). He took the side of Prince John when the latter expelled the justiclar, Wiliziam Longchamp, from the kingdom, but he soon discovered that the interests of John were dilferent from those. of Riehard. Hence in 1193 be joined with the loyalists in making war upon the prince. Richard forgave Marshal bis first error of judgment, allowed him to succeed his brother, John Marshal, in the hereditary marshalship, and on his death-bed designated him as custodian of Rouen and of the royta treasure during the interregnum. Though he quarrelled more than once with John, Marshal was one of the few English laymen who clung to the royal side through the Barons' War. He was one of John's executors, and was subsequently elected regent of the king and kingdom by the royalist barons in 1216 . In spite of his advanced age he prosecuted the war agoinst Prince Louis and the rebels with remarkable encrgy. In the batte of Lincoln (May 1217) he charged and fought at the head of the young king's army, and he was preparing to besiege Louis in London when the war was terminated by the naval victory of Hubert de Burgh in the straits of Dover. He was criticized for the generosity of the terms he accorded to Louis and the rebels (September 1217); but his desire for an expeditious settlement was dictated by sound statcsmanship. Seff-restraint and compromise were the key-notes of Marshal's policy. Both before and after the peace of 1217 he reissued Magna Carta. He fell ill early in the year 1219, and died on the 24th of May at his manor of Caversham near Reading. He was succeeded in the regency by Hubert de Burgh, in his earidom by his five sons in succession.
Sce the metrical French life. Fistoire \&e Guillaume le Martchal (Ed. P. Meyer, 3 vols., Paris, 189 1-1901); the Minority of Henfy III., $^{\text {, }}$ by G. J. Turner (Trans. Royal Hist. Soc., new series, vol. xviti. pp. 245-295): and W. Stubbs, Constidudionch History, chs, ain. ant xiv. (Oxford, $1896-1897$).

Marshal's eldest son, Wriliak Marsial (d. 1231), and earl of Pembroke of this line, passed some years in warfare in Wales and in Ireland, where he was justiciar from 1224 to 1226; he also served Henry III. in France. His second wife was the king's sister, Eleanor, afterwards the wife of Simon de Montfort, bnt he left no chlldren. His brother Richurd Marshai (d. 1234), 3 rd earl, came to the front as the leader of the baronial party. and the chief antagonist of the foreign friends of Heary III. Fearing treachery he refused to visit the king at Gloucester in August 1233 , and Henry declared him a traitor. He crossed to Ireland, where Peter des Roches had Instigated his enemies to attack him, and th April 1234 he was overpowered and wounded, and dled a prisoner. His brother Gtlbert (d. 1241), who became the $4^{\mathrm{t}} \mathrm{h}$ earl, was a friend and ally of Richard, earl of Cornwall. When another brother, Anselm, the 6th earl, died in December 1245, the male descendants of the great earl marshal became extinct. The extensive family possessions were now divided among Anselm's five sisters and their descendasts, the eardom of Pembroke reverting to the Crown.

The next hoider of the lands of the earidom of Pembroke was Williara de Valence (d. 1296), a younger son of Hugh de Lusignan, count of La Marche, by his marriage with Isabella of Angouleme (d. 1246), widow of the English king John, and was born at Valence, near Lusignan. In 1247 William and his hrothers, Guy and Aymer, crossed over to Engliand at the invitation of their hall-brother, Henry III. In 1250 Aymer (d. 1260) was elected bishop of Winchester, and in 1247 Heory arranged a marriage between William and Joan de Munchensi (d. 1307) a granddaughter of William Marshal, ist earl of Pembroke. The custody of Joan's property, which included the castie and lordhhip of Pembroke, was entrusted to her husband, who in 1293 was summoned to purliament as earl of Pembroke. In South Walea

Valence tried to rtguin the palatioe righte which had been attached to the earkdom of Pembroke. But his energies were not confined to South Wales. Henry III. heaped lands and bonceras upon hism, and be was soon thoroughly hased ta obte of the most prominent of the rapacious foreigaers. Moreover, some trouble in Waltes led to a quaxred between him and Simon de. Montiort, and this soon grew more viokent. He would not comply with the provisions of Oxiond, and took refuge in Wolveacy Casto at Winchester, where he was batieged and compolled to surrerder and leave the country. In rasg he and Eapl.Simon were locmally reconciled in Paris, and in $\mathbf{8 2 6 1}$ ho was again in England and once sore enjoying the royal favour. He fought for Heary al the battie of Lewes, and then, after a stay in France, he landed in Pembrokeshire, and took part in 126 g in the siege of Glouctester and the batcie of Evenham After the royalist victory he was restornd to his extates and accompasied Prince Edward, afterwards Edward L., to Palestine. He went several times to France on public business; he assisted in the conquest of North Wales; and he whas one of Edward's represchtatives in the famous suit over the succession to the crown of Scotiand in 1291 and 1292. He died at Bayonne om the 13th of June 1296, his body being buried in Wetminster Abbey. His eldcas surviving son, Anuer (c. 1265-3324), succoeded to his father's estates, but was not formally recognized as carl of Pembroke until aiter the denth of his mother Joan nbout 1307. He was appointed guardian of Scothand in 1306, but with the accesssion of Edward II. to the thronc and the consequent rise of Piers Gaveston to power, his infurence sensibly dedined; be becarne prominent among the discontented nobles and was one of those who were appointod to selectwelhe lord ordainers in 13Ir. In 1312 he captured Gaveston at Scarborough, ziving the lavourite a promise that his lifeshould be spared. Ignoring this undertuting, however, Guy Beauchamp, earl of Warwick, put Gaveston to death, and corisequently Pembroke tefle the allied lords. and attached himsell to Ed ward II. Valance was present at Bannockburn; in 13xy, when returning to England from Rome, be was taken prisoner and was kept in Germany until a large rausom was paid. In 1318 he again took a.conspicuous pert in meking peace between Edward and his nobles, and in 1322 assisted at the focmal conderrantion of Earl Thomas of Lancaster, and received some of his lands. His wife, Mary de Chatillon, a descendent of King Heary III., was the founder of Pembroke College, Cambridge.
In 1339 Launinct, Lovp Hastincos (d. 1348), a great-grandson of Willinm de Valence, having inherited through the femate tine a portion of the entates of the Valence corrs of Pembroke was created, or recognized as, eard of Pembroke. His son Joha (d. 1376) married Margaret Plantagenec, daughter of King Edward III., and on the denth without issuee of his grandson in 13 kg the carldom of Perabeoke revertod aghin to the Crown, wile the barony of Hastings became dormant and ro remained till $\mathbf{1 8} 40$.
In 1414 Humphrey Plantagenet, fourth son of King Heary IV., was created duke of Gloucester and earl of Pembroke for life, these titles being sabsequently made hereditary, with a reversion as regards the earldom of Permhroke, in default of heirs to Humphrey, to William de la Pole, earl of Suffoll. Accordingly, on the death of Humphrey, without issue, in 1447 this nobletnan became earl of Pembroke. He was beheaded in 1450 and his titles were foriecited. In 1453 the title was given to Sir Jasper Tudor, hallf-hrother of King Henry VI. Sir Jasper boing 2 Lancastrian, his title was forfeited during the predominance of the honse of York, but was restored on the accemsion of Henry VII. On bis doalh without heirs in s495, his title became extinct.
Daring his altainder Sir Jasper was taken prisoner hy $S_{\text {sp }}$ Wuruy Herbert (d. 1469), a zealous Yorkist, who had been raised to the peerage as Baron Herbert hy Edward IV., and for this service Lord Herbert was created earl of Pembroke in 5468. His son William (d. 1491) received the earldom of Huntingdon in lieu of that of Pembroke, which he surrendered to Edward IV., tho thereupon conferted it (3479) on his son Edward, prince
of Walm; and when this prince maceceded to the throme as Edward V_{0}, the earidom of Pembroke merged in the crown. ANKE Boleyn; a few. months previpus to her marriage with Henry VIII., was created marchionest of Pemhroke in 3532. It is doubted by authorities on pearage law. whether the title merged in the noyal dignity on the merriage of the marchioness to the king, or became extinct on her death in 1536 .

The title of earl of Pembroke-was next revived in favour of Sir Whinuk Harbert (c. 1501-1570), whose fathet, Richard, was so illegitimate son of the rst earl of Pembroke of the house of Herbert. He had married Anne Parr, sister of Henry VIII.'s sixth wife, and was created earl in 1551. The title has siace been held by his descendants.

An executor of Henry. VLII.'s will and the recipient of valuable grants of land, Herbert was a prominentand powerful personage during the reign of Edward VL., both the protector Somerset and his rival, John Dudley, afterwands duke of Northumberland, angling for his support. He threw in his lot with Dudicy, and after Somersel's fall obtained some of his lands in Wittshire and a peetrage. It has been asserted that he devised the scheme for settling the English crown on Lady Jane Grey; at all events, be was one of her advisers during her short reign, but he declared for Mary when he saw that Lady Jane's camse was loat. By Mary and her friends Pembroke's loyalty was at times suspocted, but be was cmployed as governor of Calais, as president of Wates and in other ways. He was also to some extent in the confidence of Philip II. of Spain. The carl retained his place at court under Elizabeth until 1569 , when he was suspected of favouring the projected marriage bet ween Mary, queen of Scots; and the duke of Norfolk. Among the monastic lands granted to Herbert was the estate of Wilton, near Salisbury, still the residence of the carls of Pembroke.

His cider son Heary (c. 1534-1601), who succeoded as 2nd earl, was president of Wales from 1586 uncil his death. He married in 1577 Mary Sidney, the famous counteas of Pembroke (c. $1561-$ 1621), third daughter of Sir Heary Sidney and his wife Mary Dudky. Sir Philip Sidney to whom she was deeply attached through life, was her eldeat brother: Sir Philip Sidney spent the summer of 1580 with her at Witton, or at Inychurch, a favourite retreat of bers in the neighbourhood. Here at her request he began the Cowntest of Pcmbroke's Ancodia, which was inteaded for her pleasure alone, nol for publication. The two also worked at a metrical edition of the Psalms. When the great sorrow of her brotber's deatb came upon her ahe made herself his literary executor, correcting the unauthorized editions of the Arcadia and of his pocms, which appeared in 2590 and 1591: She also took under her patronago the poets wha had loaked to her brother for protection. Spenser dedicated his Rwines of Time to. her, and refers to her as Urania in Calin Claut's come home againe; in Spenser's Astrophel she is "Clorinda." In 1599 Queen Elizabeth was her guest at Wition, and the countess composed for the occasion a pastoral dialogue in praise of Astraca. After her husband's death she lived chiefly in London at Crosby Hall, where she died.
The Countess's other works include: A Diseourse of Lifo and Death, (ranslated from the French of Plessis du Mornay (1593), and Antoine (1592), a version of a tragedy of Robert Garnier.

Williny Herbitry, 3td earl of Pembroke (i580-1630), son of the and earl and his famous countess, was a conspicuous figure in the society of his time and at the court of James I. Several times be found himself opposed to the achemes of tbe duke of Buckingham, and be was keenly interested in the colonization of America. He was lond chamberlain of the royal housebold from 1615 to 1625 and lord steward from 1626 to 1630 . He was chancellor of the university of Oxford in 1624 when Thomas Tesdale and Richard Wightwick refounded Broudgates Hall and named it Pembroke College in his honour. By some Shatespearian commentators Pembroke tas been identified with the "MrW. H. " referred to as " the oulio begetter "of Shakespeare's sonnets in the dedication by Thomas Thorpe, the ownet of the published manuscript, while his mistress, Mary Fitton (q.D.), has been identifed with the ". dark lady" of the somets. In both
cane the identification reats on very quextiomable evidence (see Sturerrane, Wruray). He and his brother Philip are the "fincopmarible pair of brethren " to whom the firyt folio of Shakespenere is inscribed. The earl left no sons when he died in London on the roth of April 1630. Clarendon gives a very ealogitic account of Pembrolie, who appears, bowever, to have been a man of weat character and dinolute Ife. Gandiner describes him as the Hamket of the Englinh court. He had literary thates and wrote poems; one of his closest triends was the poet Donne, and he was generous to Ben Jonson, Masinger and others.

His brother, Phillp Heneser, the 4th earl (1584-1650), was for some years the chief favourite of James I., owing this position to his comely person and his pession for bunting and for field uports generally. In ifos thoking created him ear of Montgomery and Baron Herbert of Shoriand, and since 16jo, when he succeeded to the cardom of Pembroke, the head of the Herbert family has carried the double title of cart of Pembroke and Montgomery. Athough Philip's quarrelsome disposition often led him into trouble be did not forfeit the esteem of James I., who heaped lands and offices upon him, and the was also trusted by Charles I., who made bito lord chamberlain in 1626 and frequently visited him at Wilton. He worked to bring about peace between the king and the Scots in 1639 and 1640 , but when in the latter year the quarrel between Charles and the English parliament was rencwed, he deserted the king who soon daprived him of his office of chamberiain. Trusted by the popular party, Pembroke was made governor of the Islo of Wight, and the was one of the representatives of the partiament on several occasions, notably during the negotiations at Uxbridge in 1645 and at Newport in 1648, and then the Scots surrendered Charles in 1647. From i641 to 1643, and agnin from 1647 to 1650 , he was chancellor of the university of Oxfordi in 1648 be removed some of the heads of houses from their positions because they would not take the solemn league and covenant, and his foul language led to the remark that he was more fitted " by his eloquence in swearing to preside over Bediam than a learned academy." In 1640, although a peer, be was elected and took his scat in the House of Commons as member for Berkshire, this "ascent downwards" calling forth many entirical writings from the royalist with. The earl was a great collector of pictures and had some taste for architecture His eldeat surviving son, Philip (1621-1669), became 5th earl of Pembroke, and and earl of Montgomery; he was twice married, and was cucceeded in turn by three of his song, of whom Thomas, the 8th earl (c. 1656-1733), was a perion of note during the reigns of Willian III. and Anne. From rtgo to r6ga he was first lord of the admiralty; then he served as lord privy seal until 1699 , being in 1697 the first plenipotentiary of Great Britain at the congress of Ryswick. On two occasions he was lord high adruiral for a short period; he was also lord president of the council and lord-licutenant of Ireland, while be acted as one of the lords justices seven times; and be was president of the Royal Society in 1689-1690. His son Henry, the gth earl (c. 1689-1750), was a coldier, but was better known as the "architect cari." He was largely responsible for the erection of Westminster Bridge. The title descended directly to Henry, roth earl ($1734-1794$), a soldier, who wrote the Method of Breaking Horses (1762); George
 Vienns in 1807; and Robert Henry, 12th earl (1791-1862), who died without intue George Robert Charles, the 13th eanl ($1850-1895$), was a grandeon of the 11 th earl and a son of Baron Herbert of Les (g.a.), whose second son Sidney (b. 1853) inherited all the family titles at his brother's death.

See G. T. Clark. The Egrls, Earldom and Carste of Pembroke (Tenby, ${ }^{18300) ;}$; . R. Planche, "The Earts of Strigul " in vol. x of the Procemdines of abe British Archoposocicel Aspociantion (is55); and C. E. C(olayne). Complete Peerage, vol. vi. (Londoa, 189).

PTPEROLES, a town of Ontarfo, Caneda, capital of Renfrew county, 74 m . W.N.W., of Ottawa by rail on the south shore of Allumette Lake, an expansion of the Ottawn river, and on the Canadian Pacific and Canada Atlantic railways. Pop. (100t), 5rg6. It is the sat of a Roman Catholic billopric, an
importiant centre in the lumber trade, and contatus asw, gist and woollen mills, ane factory, tic. The Muskrat niver affords excedlent mater-power.
PRIBROKI (P cafforo, an ancient municipal borough, a contributory parlianmentary borough and county-town of Pembrokeahire, Wales, situated on a narrow peninsula at the head of the Penaar tidal iniet or "pill " of Milford Haven. Pop. (1901). 4487; together with Pembroke Dock 15,853- Pembroke is a station on the South Wales cystem of the Grest Western railway. The old-fashioned town, consisting chiefly of one long beond areet, retains portions of its ancient walls. A large mill-dam is a conspicuous feature on the north of the tom. St Mary's charch in the centre of the town possesses a massive tower of the 12th century. Near the ruined. West Gate is the entrance to Pembroke Casile, a splendid specimen of medieval fortified architecture. The circular vaulted keep erected by Earl William Marshal (c. r200), remains almost intact. Close to the keep standa the ruined chamber wherein, according to local tradition, Henry VII. was born in 1457. Bencath the fine banqueting hall, a fight of steps descends into " the Wogan," a vast subterranean chamber giving accese to the harbour. Facing the castle, on the western side of the pill, stand the considerable remains of Monkton Priory, a Benediction house founded by Earl Willinm Marshal as a cell to the abbey of Seez or Sayes in Normandy, but uader Henry VI. transferred to the abbey of St Albane The priory church, now the parish church of the suburb of Monkton, contains monuments of the families of Meyrick of Bush and Owen of Orielton. St Danict's chapel forms a prominent landmark on the ridge south of the town.
Pemaroke Dock (formerly known as Pater, or Paterchurch), a naval dockyard and garrison town, is situated close to Habb's Point, at the enstern extromity of Milford Haven. It forms the Pater Ward of Pembroke, from which it is distant 2 m . to the north-west. The place owes its origin to the decision of the government in 1814 to form a naval depot on Milford Haven. The dockyand, enclosed by high walls and covering so acres, is protected by a powerful tort-the construction and repairing of ironclads are extensively carried on here. There is a submarine depot at Penar Gut, and also accommodation for artillery and infantry. Ferry boats ply frequently between Pembroke Doci and Neyland on the opposite shore of the Haven.

Pembroke is probably an Anglo-Norman form of the Cymric Penfro, the territory lying between Milford Haven and the Bristol Channel, now known as the Hundred of Castlemartin. During the invasion of South Wales under William Rufus, Arnulf de Montgomeri, fifth son of Roger earl of Shrewsbury, scems to have erected a fortress of stone (c. 1090) on the site of the castle. The furst castellan of this new stronghold was Giraldus de Windsor, hushand of the Princoss Nest of South Wales and grandfather of Giraldus Cambrensia. Throughout the 12 th and 13 th centarics the castle was strengthened and enlarged under successive earls palatine of Pembroke, who made this fortress their chief seal. As the capital of the palatimate and as the ncarest port for Ircland, Pembroke was in Plantagenet cimes one of the mont important fortified cities in the tingdom. The town, which had grown up under the shadow of the almost impregnable castle, was first incorporated by Henry I. in 1109 and again by Earl Richard de Clare in 1154 (who also eacircled the town with walk), and these privileges were confirmed and extended under succeeding eark palatine and kings of England. In 1835 the corporation was remodelled under the Municipal Corporations Act. Henry II. occasionally visited Pembroke, notably in 1172 , and until the close of the Wars of the Roves, both town and castlo played a prominent part in the history of Britain. With the passing of the Act of Union of Wales and England in 1536 however, the jure regalic of the county palatine of Pembroke were abolishod, and the prosperity of the town began to decline. Although acknowledged as the county town of Pembrokeshire, Pembroke was superseded by Haveriordwest as the fudicial and administrative centre of the shire on accoust of the more convenient position of the latter place. By the act of 1536 Pembroke was declared the leading borough in the

Pembluroke parliamentiry distriet, yet the town continued to divindle matil the settement of the governmeat dockyard and works on Milford Elaven. At the outbreak of the Civil Wars the town and tastle were garrivoed for parliasment by the magor, John Poyer, a leading Presbyterian, who was later appointed governor, with Howland Laugharbe of St Brides for bis lievcenalat. But at the time of the Presbyterian defection in i6a7, Poyer and his lieutenant-governors, Laugharne and Powell, dectared for Charles and held the caste in the king's name. In Jume 1648 Cromwell himself proceeded to invest Pembroke Castle, dwich resisted with great obuinacy. But after the water-aupply of the garrison had been cet off, the besieged were forced to capitulate, on the yith off July 1648, on the condition of earreadering up the three chief defenders of the castle. Poyer, Laugharne and Powell were accordingly brought to Loadon, but finally only Poyer was executed. The magnificent ruin of Pembroke Castle is the nominal property of the Crown, bet has been held on lease since the reigh of James II. by the family of Pryse of Gogerden in Cardigenshire.

PEMERDKEMHIRE (Str Benfoo, Dyfod), the moat westerly county of South Wales, bounded N.E. byCardigan, E.by Carmarthen, S. by the Bristol Channel and W. and N.W. by St Bride's Bay and Cardigan Bay of St George's Channel. Area $615 \mathrm{sq} . \mathrm{m}$. The whole const is extremely indemted, extending over 140 m . in length. The principal inlets are Milford Haven, St Bride's Bay, Freshwater Bay, Fishguard Bay and Newport Bay. The chief promontories are Cemmaes, Dinas, Stramble, St David's, St Ann's and St Gowan's Heads. Five illands of moderate size tie of the coast, vir. Ramsey, Grassholm, Skomer and Skokholm in St Bride's Bay, and Caldy Island (Ynys Pyr) opposite Tenby; the last named having a population of aboaz 70 persons. Rare birds, such as peregrine falcons, ravens and choughs are not uncommon, while guillemots, puffins and other sea-lowl breed in Immense numbers on the Stack Rocks, on Ramsey Island and at various points of the coast. Seals are plentiful in the caves of St Bride's Bay and Cardigan Bay. The county is undulating, and large tracts are bare, bat the valleys of the Cleddau, the Nevern, the Telfi and the Gwaun are well-wooded. The Preselley Mountains stretch from Fishguard to the border of Carmarthen, the principal heights being Preselley Top (1760 ft .) and Carn Englyp (1022 ft.). Trefigarn Rock in the Fumstone Mountains is popularly supposed to mark the northern limit of the ancient settlement of the Flemings. The principal rivers are the Tei6, forming the northern boundary of the county from Ibercych to Cardigan Bay; the Nevern and the Gwaun, both falling into Cardigan Bay; and the Eastern and Western Cleddau, forming the Daugleddau after their junction below Haverfordwest. An these streams contain trout and salmon. There are no lakes, but the broad tidal estuaries of the Daugleddau and other rivers, which fall into Milford Haven and are locally called "pills," constitute a peculiar featnre of south Pernbrokeshire scenery.

Geolosy.-Pembrokechlre is divisible into a northern portion ocerpied mainly by Ordovician aud Silurian atrata, which have boen subjected to presouree from the north, the strike of the beds being south-weat-northeast; and a southern portion, the westerly continuation of the South Wales coalfield, with astociated Lower Carboniferous, Of Red Bendetone and narrow belts of Silurian rocke, the whole having been considerably folded and faulied by preacure from the eouth, wbich has produced a general north-went-souch-eet strike. In the neighbourhood of St Davids are the PreCambrian granitic rocks (Dimetlan) and vokanic rocks (Pebedian). These are surrounded by belte of unconformable Cambrian strate (Liagula Flags. Tremadoc beds), Iollowed by Ordovician (Arenig. Liandeilo and Bala beds) with aseocisted igneous rocke Theme comprise gabbron and diatases of Strumble Head. Fishguard. Lianwnda, Prescelly; dlorites north-west of St Davids, bostonites and porphyrites about Abercastle and the basaltic laccolite of Pen Caer, besides various conternporaneoss actd luves and tufle. The Ordovician and Silurian rocks exterd southward to the neighbourbood of Narberth and Haverfordwest, where Areniz, Llendeilo and Bofa beds (Slade and Red Hili beds; Sholeshook and Robeston Wahthen Limestone) and Llandovery beds are recorded. The Coul Measures, highly inclimed and anthracitic. etretch across from Carmarthan Alay to the shove of St Bride's Bay; they are bordered on the north and soush-ease by the Millatone Grita Carboniferous Limetcone serics and Oid Red Sanditone. On account of the folding XX1 2*
the limestome.' appears quain farther south at Pembectes, Caldy Letand and Sx Commes Head; monx of the remaining grouad aboet Milford Haven being occupied by OId Red Sandsone with infolded strips of Silurian. A farrly large tract of blown-sand occurs in Frechwater Bay south of Milford Haven. Silver-bearing tead has been mined at Llanlymnch.

Chimate and Industries.-The climate is everywhere mild, and in the sheltered valleys near the coast sub-tropical vegetation flourishes in the open air. In the south the rainfall is small, and the districts round Pembroke suffer from occasional droughts. The chief industry is agriculture, wherein stock-raising is preferred to the growing of cereals. Of cattle the long-horned, jet-black Caslemartin breed is everywhere conspicuous. South Pernhroke has long been ceicbrated for its horses, which are bred in great numbers by the farmers. The deep-sea fisheries of Tenby and Milford are vaiuable; and fresh fish of good quality is exported by rail to the large towns. Oysters are found at Langwm and near Tenby; lobsters and crabs abound on the western coast. The South Wales coalfield extends into south Pernbroke, and coal is worked at Saundersfoot, Begelly, Templeton, Kilgetty and other places. There are slate quarries at Glogue, Cllgerran and elsewhere; copper has been worked near $\$ \mathbf{t}$ Davids, and lead at Llaniyrnach.

Communicadions.-The South Wales branch of the Great Western railway enters Pembrokeshire from the east near Clyaderwen Junctlon, whence the main line leads to Fishguard Harbour with its important Irish traffic. Other lines proceed to Neyland and Milford Haven by way of Haverfordwest, and a branch line from Clynderwen to Goodwick foins the main line at Letterston. The Whilland-Cardigan branch traverses the north-east by way of Crymmych and Cilgerran. Another line running south-west from Whitland proceeds by way of Narberth and Tenby to Pembroke Dock.
Population and Administralion.-The area of Pemhrokeshire is $\mathbf{3 9 5 , 1 5 1}$ acres with a population in $\mathbf{1 8 9 1}$ of 89,138 and r901 of 88,732 , showing a slight decrease. The municipal boroughs are Pembroke (pop. 15,853); Haverfordwest (6007); and Tenby (4400). The hamlet of Bridgend and a part of St Dogmell's parish are included within the municipal limits of Cardigan. Newport (Trtidraeth) (1222), the chief town of the barony of Kemes, or Cemmaes, still possesses a mayor and corporation under a charter granted in 1215 by Sir Nicholas Marteine, lord of Kemes, whose hereditary representalive still nominates the mayor and aldermen, hut its surviving municipal privileges are practically honorary. Milford Haven (5102), Narberth (1070) and Fishguard (2002) are urban districts. Other towns are St Davids (1710), St Dogmells (Llandudocb) (1286); and Cilgerran (1038). Pembrokeshire lies in the South Wales circuit, and assizes are beld at Haverfordwest. Two members are returned to parliament; one for the county, and one for the united boroughs of Pembroke, Haverfordwest, Tenby, Fishguard, Narberth, Neyland, Milford and Wiston (Castell Gwys). Ecclesiastically, the county contains 153 parishes and lies wholly in the diocese of St Davids.

History.-Pembrokeshire, anciently known to the Welsh as Dyicd, was originally comprised in the territory of the Dimetac, conquered by the Romans. During the 6th century St David, or Dewi Sant, moved the chjef seat of Souch Welsh monastic and ecclesiastical life from Cactleon-on-Usk to his native place Menevia, which, known in consequence as Tyddewi. or St Davids; continued a centre of religious and educational activity until the Reformation, a period of 1000 years. On the death of Rhodri Mawr in 877, Dyfed fell nominally under the sway of the princes of Deheubarth, or South Wiales; but their hold was never very secure, nor were they able to protect the coast towns from the Scandinavian piratcs. In 108: William the Conqueror penetrated west as far as St Davids, where he is said to have visited St David's shrine as a devout pilgrim. In 2092 Arnulf de Montgomeri, son of Roger, carl of Shrewsbury, did homage to the king for the Welsh lands of Dyfed. With the building of Pembroke Castle, of which Gerald de Windsor was appointed castellan, the Normans began to spread over southern Dyfed; whilst Martin de Tours, landing in Fishguard

Bay and building tho castle of Newport at Trefdraeth, won for hlmself the extensive lordship of Kemes (Cemmaes) between the river Teif and the Preselley Mountains. The systematic planting of Flemish settlers in the hundred of Rhbs, or Roose, in or about the years 1106, 1108 and siti with the approval of Henry I., and agnin in 1156 under Henry II., marks an all-important episode in the history of Pembrokeshire. The castles of Haverfordwest and Tenby were now erected to protect these aliens, and despite the fierce attacks of the Welsh princes their domain grew to be known as "Little England beyond Wales," a district whereof the language, customs and people still remain characteristic. In 1138 Gilbert de Clare, having previously obtained Henty I.'s permission to enjoy all lands he might win for himself in Wales, was created earl of Pembroke in Stephen's reign with the full powers of an earl palatine in Dyled. The devolution of this earldom is dealt with in a separate article.

In 1536, hy the Act of Union (27 Henry VIII.), the king abolished all special jurisdiction in Pembrokeshire, which he placed on an equal footing with the remaining shires of Wales, while its borders were enlarged by the addition of Kemes, Dewishand and other outlying lordships. By the act of 1536 the county returned to parliament one knight for the shire and two burgesses; one for the Pembroke boroughs and one for the town and county of Haverfordwest, both of which since s885 have been werged in the Pembroke-and-Haverfordwest parliamentary division. The Reformation deprived the county of the presence of the bishops of St Davids, who on the partial dismantling of the old episcopal palace at St Davids removed their chief seat of residence to Abergwiliy, near Carmarthen. Meanwhile the manor of Lamphey was granted to the tamily of Devereux, earls of Eisser, and other episcopal estates were alienated to court favourites, notably to Sir John Perrot of Haroldstone (1517-1592), afterwards lord-deputy of Ireland. During tbe Civil Wars the forces of the parliament, commanded by Colonel Laugharne and Captain Swanley, reduced the royal forts at Tenby, Milford and Haverfordwest. In February 1797 some French frigates appeared off Fishguard Bay and landed about r400 Frepehmen at Lanwnde. The invaders soon capitulated to the lacal miftitia, practically without st riking a blow. The rigth century saw the establishment of the naval dockyard at Paterchurch and the building of docks and quays at Neyland and Milford. In 1906 extensive works for crosstraffic with Ireland were opened at Fishguard Harbour.

Many of the old Pembrokeshire families, whose names appear prominent in the county annals, are extinct in the county itself, Amongst these may be meationed Perrot of Haroldstone, Devereux of Lamphey, Barlow of Slebech, Barrett of Gilliswicis, Wogan of Wiston, Elliot of Amroth and Owen of Henllys. Amongst ancient (amilies still existing are Philipps of Lydstep and Amroth (descendants of the old Weish lords of Cilsant): Philipps of Picton Castle (a branch of the same house in the female line); Lort of Stackpole Court, now represented by Earl Cawdor; Scourfield of Moate; Bowen of Llwyngwair; Edwardes, Lords Kensington, of St Brides; Meyrick of Bush; Lort Philipps of Lawrenny; Colby of Fiynone; Stokes of Cuffern; Lloyd of Newport Castle (in which family is vested the hereditary lordship of the barony of Kemes); Saunders-Davies of Pentre; and Gower of Castle Malgwyn.
Anliquilies.-There are few remaining traces in the county of the Roman occupation of Dimetia, hut in British encampments, tumuli, cromlechs and monumental stones Pembrokeshire is singularly rich. Of the cromiechs the best preserved are those at Longhouse, near Mathry; at Pentre Evan in the Nevern Valley; and at Llech-y-dribedd, near Moylgrove; whilst of the many stone circles and alignments, that known as Pare-y-Marw, or "The Field of the Dead," near Fishguard, is the least injured. Stones inscribed in Ogam characters are not uncommon, and good examples exist at Caldy Island, Bridell, St Dogmells and Cilgerran. There are good specimens of Celtic floriated churchyard crosses at Carew, Penally and Nevern. Interesting examples of medieval domestic architecture are the ruins
of the former episoopal manions at Lhawhaden St Devide and Lampley, the two letter of which wese erected by Bithop Gower betwen the years i3a8-i347. With the exception of the cathedral at St Dasids and the principal churches of Haverfordweat and Teaby, the parinh claurcbes of Pembrokeshire are for the moet part amall, but many are ancient and powess Gine mommments or other objects of inlerex, especiaily ia "Little Eagland beyond Wales." Amongat the baore soteworthy are the churchee at Slackpole Elidur, Carew, Burton, Cumifeston, Nevern, St Petroz and Rudbaxtom, the laxt-named containing a fine Jacobesen monurnent of the Hayward faraily. Pembrokeshire has lons been famous for its castles, of which the finest examples are to be observed at Pembroke: Manorbier, built in the $\mathbf{2}$ th century and interesting as the birthplace and home of Ciraldus Camhrensis; Carew, exhibiting many intesesting features both of Norman and Tudor architecture; and Pictoo, owned and inhabited by a branch of the Philipps family. Other castles are the keep of Heveriondwest and the ruined fortresses at Narberth, Tenky, Newport, Wiston, Beaton, Upton and Citgerran. There are some remains of monaatic hoveesat Tenby and Pembroke, but the most important religiovs communities were the priory of the Augastiminn friars at Haverfordweat and the abbey of the Bepredictines at Si Dogmells. Of this latter house, which was founded by Martin de Tours, first lord of Kemes, at the close of the inth century, and who owned the priories of Pill and Caldy, considerable ruins exist near the left bank of the Teif about Im . below Cardigan. Of the ancient preceptory of the Knights of St John at Slebech scarcely a trace remains, but of the college of St Mary at St Davids founded by Bishop Houghton in 1377, the shell of the chapel survives in fair preservation. Pembrokethire contains an unusually large number of county seats, particularly in the south, which includes Stackpole Court, the residence of Earl Cawdor, a fine mansian erected in the 18th century; Picton Castle; Slebech, ance the seat of the Barlows; Orielton, formerly belonging to the Owens; and Ffynone, the residence of the Colby family.
Customs, \&c.-The division of Pembrokeshire ever since the inth century into well-defined Engliahry and Welshry has produced two distinct sets of languages and customs within the county. Roughly speaking, the English division, the Anglia Transmalliana of Camden, accupies the southeastern half and comprises the hundreds of Roose, Castlemartin, Narberth and Dungleddy. In the Welshry, which includes the hundreds of Dewisland and Cilgerran together with the old barony of Kemes, the language, customs, manners and folk-lore of the inhabitante are almost identical with those of Cardigan and Carmarthen. The old Celtic game of Knappan, a pastime partaking of the nature both of football and hockey, in which whole parishes and even hundreds were wont to take an active part, was prevalent in the barony of Kernes so late as the i6th century, as George Owen of Henllys, the historian and antiquary, records; and the playing of krappan lingered on after Owen's day. Amongst the setilers of the Englishry, who are of mingled AngioSanon, Flemish, Welsh and perhapa Soandinavian deacent, many interesting superstitions and customs survive. The English spoken by these dwellers in "Little England beyond Wales "contains many curious idioms and words and the pronunciation of some of the vowels is peculiar. Certain picturesque customs, many of them dating from pre-Reformation times, are still observed, notably in the neighbourhood of Tenby. Such are the sprinkling of persons with dewy evergreens of New Year's morning; the procession of the Cutty Wren on St Stephen's day, and the constructing of little huts at La monastide by the farm boys and girls. As early as the opening years of the soth century, cripples and ophthalmic patients were ia the habit of visiting the ancient hermitage at St Gowan's Head to bathe in its sacred well; and Richard Fenton, the county historian alludes (c. 1808) to the many crulches left at St Gowan's chapel by grateful devotees. Belief in ghosts, Cairies, witches, Re., is still prevalent in the more remote places, and the dress of the fashwives of Langwm near Haverfordwest ls highly pict ureaqua with its short skirt, scatlet shawl and buckled shoes.

Authomites.-Richard Fenton, A Histaricol Towr Alonigit Prubratertire (London, 1810); Edward Laws, History of Little Enfland bryond Wales (London, 1888): Basil Jones and E, A. Freeman, History and Andiquities of St David's (London, 1856), de.
PREMICAN, a North American Indian (Crec) word for a meat prepared in such a way as to contain the greatest amount of dourishment in the most compact form. As made by the Iadians it was composed of the lean parts of the meat, dried in the sun, and pounded or shredded and mized into a paste with melted fat. It is flavoured with ecid berries. If kept dry it will keep for an indefinite time, and is thus perticularly serviceable in arctic or other explorations.
PEMPHICUS (Gr. $\boldsymbol{\pi}\{\mu \phi \in \xi$, a bubble), a skin disease, in which large blebe appear, on a red base, containing a clear or yellowish finid; the blebs occasion much irritation, and when they burst leave raw ulcerated suriaces. The disease is principally known is ushealithy or neglected children. A variety of the malady, penphigus foliaceoks, affects the whole body, and gradually proves fatal. Pemphigus of an acute seplicaemic type occurs in butchers or those who handle hides, and a diplococcus has been isolated by William Bullock. The treatment is mainly constitutional, by means of good nourishment, warm baths, local sedatives and tonics. In chronic pemphigus, streptococel have been found in the blebs, and the opsonic index was low to streptococci. Improvement has been known to take place on the injection of a vaccine of streptococci.
PEM (Lat. penna, a feather, pen), an instrument for writing or for forming lines with an ink or other coloured fluid. The English word, as well as its equivalents in French (p / ume) and in German (Feder), originally means a wing-feather, but in ancient times the implements used for producing written characters were not quills. The earliest writing implement was probably the stilus (Gr. ypag(s), a pointed bodkin of metal, bone or ivory, used for producing incised or engraved letters on boxwood tablets covered with wax. The calamus (Gr. «ähapos) or arundo, the hollow tubular stalk of grasses growing in marshy lands, was the true ancient representative of the modern pen; bollow joints of bamboo were similarly employed.
An early specific allusion to the quill pen occurs in the writings of St Isidore of Seville (early part of the 7th century),' but there is no reason to assume that it was not in use at a still more remose date. The quills still largely employed among Western communitics as writing instruments are obtained principally from the wings of the goose (see Feather). In 1809 Joseph Bramah devised and patented a machine for cutting up the quill into separate nibs by dividing the barrel intothree or even four parts, and cutting these transversely into "two, three, four and some into five lengtha." Bramah's invention first familiarized the public with the appearance and use of the nib slipped into a holder. In 1818 Charles Watt obtained a patent for gilding and preparing quills and pens, which may be regarded as the precarsor of the gold pen. But a more distinct advance was effected in 1822, when J. I. Hawkins and S. Mordan patented the application of born and tortoise-shell to the formation of pen-nibs, the points of which were rendered durable by small pieces of diamond, ruby or other very hard substance. or by lapping a small piece of thin sheet gold over the end of the tortoise-shell.
Metallic pens, though not unknown in classical times-a bronse pen found at Pompeii is in the Naples Museum-were litue used until the 19th century and did not become common till near the middle of that centary. It is recorded that a Birmingham split-ring manufact urer, Samuel Harrison, made a steel pen for Dr Joseph Priestley in 1780. Steel pens made and sold In Loadon by a certain Wise in 1803 were in the form of a tube or barrel, the edges of which met to form the slit, while the sides were cut away as in the case of an ordinary quill. Their price was about five shillings each, and as they were hard, stiff and unsatisfactory instruments they were not in great demand: A metallic pen patented by
i" Instrumenta acribae calamun et penna; ex his enim verba peginis infzuntur: sed calamus arboris est, penna avis, cujus acumen dividitur in duo."

Bryan Dopkin in r808 was made of two separate parts, fist or nearly so, with the flat sides placed opposite each other to lorm the alit, or alternatively of one piece, flat and not cylindrical as in the usuad forma, bent to the proper angle for insertion in tho tube which constituted the holder. To John Mitchell probably belongs the credit of introducing machine-raade pens, about 1822, and James Perry is helieved to have been the firat maker of steel slip pens. In 1828 Josiah Mason, who had been associated with Samuel Harrison, in the mamufacture of aplit rings, gaw Perry's pens on sale in Birmingham, and after examining them saw his way both to improve and to cheapen the process of making them. He therefore put himself in communication with Perry, and the result was that he began to make barrel pens for him in 1828 and slip pens in 1829 . Perry, who did much to popularize the steel pen and bring it into genera! uec, in his patent of 1830 sought to obtain greater flexibility by forming a central hole between the points and the shoulders and by cutting one or more lateral slits on each side of the central slit; and Joseph Gillot, in 1831 described an improvement which cousisted in forming elongated points on the nibs of the pens.

The metal used consista of rolied sheets of cast stee! of the finest quality made from Swedish charcoal iron. These sheets, after being cut into strips of suitable width, annealed is a mufbefurnace and pickled in a bath of dilute sulphuric acid to free the surface from oxidized scale, are rolled between steel rollers till they are reduced to ribbons of an even thickness, about rits in. From these ribbons the pen blanks are next punched out, and then, after being emboased with the name of the maker or other marks, are pierced with the central perforation and tbe side or shoulder slits by which fleribility is obtained. After moother annealing, the blanks, which up to this point are flat, are "ratsed" or rocinded between dies into the famillar semicylindrical shape. The next process is to herden and temper them by heating them in iron boxes in a muffle-furnace, plunging them in oil, and then heating them over a fire in a rotating cylindrical vessel till their surfaces attein the dull blue tint characteristic of spring-ated clasticity. Subsequently they are "scoared" in a beth of dilute acid, and polished in a revolving cylinder. The grinding of the points with emery follows, and then the central slit is cut by the aid of two very fine-edged cutters. Finaliy the pens are again polished, are coloured by being heated ovar a fire in a revolving cylinder, and \ln some cases are coated with a varnish of shelloo dissolved in aloohol. Birmingham was the first home of the steel-pen industry, and continues its principal centre. The manufacture on a large scale was begun in the United Statea about 1860 at Capoden, N. J., where the Esterbroot Steel Pen Manufacturing Company was incorporated in 1866.

Metals othor than steed have frequonily been sugested by invertors, thoee most commonly proposed being gold, silver, zinc. German silver, aluminiom and aluminium bronse. Dr W. H. Wollaston; it is recorded, had Oofr Paza. a gold pen compoeed of two thin strips of gold tipped whh rhodium, apparently made on the principle patented by Donkip in 1808, and Lond Byron used one in 1810 . Gold being entremely resistant to corrosion, pens made of it are very durable, but the metal is too soft for the points, which wear quickly uniess protected by some hasder material. For this putpose iridium is widely employed, by lusing the gold rouad it with a blowpipe.

Various devices have been adopted in order to increate the time for which a pen can be used without a fresh supply of ink. These fall into two maln closses. In one, the form of the nib itself is modified, or come altachment

Rumprover

 is added, to enlarge the ink capacily; in the other, which is by far the more important, the holder of the pen is utikized as a cistern or reaervoir from which ink is supplied to the natb. Pens of the second cissa, which have the further advantage of being pertable, are heard of under the name of "fountuin inkhorss" or "fountion peas " so far beck as the beginaing of the 18th century, but in was not till a buadredgears later that inventors applied themsedves serioumly to their constrection. Joseph Bramah patented several plans; one wis to employ a tube of silver or other metal so thin that it could be readily squeezed out of shape, the ink within it being thua forced out to the nib, and another was to fit the tube with a piaton that could slide down the interior and thus eject ink. In modern fountain pens a feed bar conveys, by capillary action, a fresh stapply of ink to replace that which bas boen left on the paper in the act of writing, means being aleo provided by which air can pass into the reservoir and fill the space left empty by the outfowing link. In another form of reservoir pen, which is usually distinguished by the name stylograph, thert is no nih, but the ink flows out through a minute bote at the end of the holder, which terminates in a conical point. An iridium needle, heid in place by a fine spring, projects slightly through the bole and normally keeps the aperture closed; but when the pen is pressed on the paper, the needle is pusbed back and allows a thin stream of ink to fow out.
See, J. P. Maginnis, " Reservoir, Stylographic and Fountain Pens," Cantor Leccuras. Socisty of Arts (1905).
Pranalty (Lat. poena, punishment), in its original meaning, a punishment inficted for some violation of the law or rule of conduct. Although still freely used in its original sense in such phrates, for example, as "the death penalty," " the penality of rashness," \&c., the more usual meaning attucbed to the word is that of a pecuniary muket. Penalty is used apecifcally for a sum of money recovered hy virtue of a penal statute, or recoverable in a court of summary jurisdiction for infringement of a statute. A sum of money agreed upon to be paid in case of non-performance of a condition in a bond or in breach of a contract or any stipulation of it is also termed a penalty (see Damagrs).
prynaice (Old Fr. penance, fr. Lat. poenilentia, penitence), strictly, repentance of ains. Thus in the Doual version of the New Testament the Greek word merdinoxa is rendered "penance," where the Authorized Version has "repentance." The two words, similar in their derivation and original sense, have however come to be symbolical of conficting views of the essence of repentance, arising out of the controverry as to the mapective merits of " faith" and "good works." The Redormers, upbolding the doctrine of justification by faith, held that repentance consisted in a change of the whole moral attitude of the mind and soul (triorpldeotan, Matt. xiii. is; Luke xxii. 32), and that the Divine forgiveness followed true repentance and confession to God witbout any reparation of "works." This is the view generally held by Protestants. In the Roman Catholic Church the sacrament of penance cansists of three parts: contritio, confessio, satijfactio. Contritio is in lact repentence as Protestant theologians understand it, i,e. sorrow for sin arising from love of God, and long hefore the Reformation the schoolmen debued the question whecher complete "contrition" wis or whe not in itself sulficient to obtein the Divine pardon. The Council of Trent, however, decided that "reconciliation" could not follow such contrition without the other parts of the secrament, which.form part of it (sine sacramenti noto, quod in illa includatur). Contrition is also distinguished from "attrition" (alliuito), i.e. repentance due to fear of punishment. It was questioned whether a state of mind thus produced would suffice for obtaining the benefits of the secrument; this point was also ret at rest hy the Council of Trent, which decided that attrition, though not in itself capabie of obtaining the justification of the sinner, is also inspired by God and thus disposes the soul to benefit hy the grace of the sacrament.
The word "penance," applied to the whole sacrament, is also used of the works of satisfaction imposed by the priest on the penitent, i.c. the temporal punishment (poena). This varies with the character and heinoussoms of the offences committed. In the middle ages "doing penance" was oftes a process as terrible and humiliating to the penitent as it was possibly edifying to the Church. Public penances have, however, long been abolished in all branches of the Christian Church. (See Contrasion.)

Prianam (Pulou Pizeng, i.a. Aroch-mut keland), the town and island which, after Singapore, form the most importane portion of the crown colony of the Straits Settlementis. The island is situated in $5^{\circ} 24^{\prime}$ N. and $100^{\circ} 21^{\prime}$ E., and distant abour 2) m. from the west coast of the Malay Peninsula. The island is about 151 m . long by $10 \frac{1}{\mathrm{~m}}$. wide at its broadest point. Its area is something over $107 \mathrm{sq} . \mathrm{m}$. The town, which is built on a promontory at a point nearest to the mainiand, is largely occupied by Chinese and Tamils, though the Malays are also well repreented. Behind the town, Penang Hill rises to a height of some 2700 ft ., and upon it are buill several government and private bangalows. The town possesses a fine European club, a racecourse, and good golf links. Coco-nuts are grown in considerable quantities along the seashore, and rice is cultivated at Balek Palau and in the interior, hut the jungle still spreads over wide areas. Penang has an excellent harbour, but has suffered from its proximity to Singapore. There are a Church of England and a Roman Catholic church in the town, and a training college under the Roman Catholic missionaries of the Socitte des Missions Etrangeres at Palau Tikus, a few miles outside the town.

Administration.-Since 8867 Penang has been under the administrative control of a resident councillor who is retponsible to the governor of the Straits. He is aided in his daties by officers of the Straits Civil Service. Two unoficial members of the legislative council of the colony, which holds its sittings in Singapore, are nominated by the governor, with the sanction of the secretary of state for the colonits, to represent Penang. Their term of office is for five years. The official name oi the island is Prince of Wales Island and that of the town is Georgetown; neither of these names, however, is in general use. Among the Malays Penang is usually spoken of as Tanjong or "The Cape," on account of the promontory upon which the town is situated. The town is administered by a municipal council composed of ex officio, nominated, and elected members.
Population.-The population of Penang at the time of the census of 1901 was 128,830 , of whom 85,070 were males (69,270 over and 15,860 under 15 years of age), and 43,760 were females (28,725 over and 15,035 under 15 years of age). The population was composed of 71,462 Chinese, 34,286 Melays, 18,740 Tamils and other natives of India, 1649 Eurasians, 993 Europeans and Americans, and $\mathbf{r g g g}$ persons of other nationalities. As in other parts of the Straits Settlements the men are far more numerous than the women. The total population of the settlement of Penang, which includes not only the island but Province Wellesley and the Dindings, was 248,207 in 1901 .
Shipping.-The number of ships which entered and lefe the port of Penang during 1900 was 2324 with an aggregute tonmage of 2.868,499. Of these 1800 werc Britich with an atriczare tonnage of 1.g66, 236 . These figures reveal a considermble falling of during the past decade, the number of vesels entering and leaving the port in 1898 being sith with an aggregate tonnage of $3,761,094$ this is mainly due to the construction of the railway which runt from a point on the mainland opposite to Petann. through the Friderted Malay States of Perak, Sell ngor and the N Etri Smbinan to Malacea. and has diverted to other ports and eventually to Singapore much of the coastal traffic which formerly visited Penang.
Finance and Trade--The revenue of Penang, that is to eyy, not only of the itand but of the entire settlemeat, amourted in 1 god to $86,031,917$. of which $82.004,033$ was derived from the revenue farms for the collection of import duties on opium, wine and spirits: \$1 60,047 Irom postal revenue; $\$ 119,585$ from land revenue; $\$ 329,151$ irom slamps. The expenditure lor 1906 amounted to $\$ \$, 074,406$, of which 3836,097 was apent on administrative establithmenta \$301, 252 on the upkepp of existing public works: s415, 175 on the consiruction of works and buildings. and of new roods, xereete. bridges, \&c. The imports in 1906 were valued at \$94.346,112, the expors at $\$ 90,700,225$. Of the imporis $857,880,389$ worth came rrom the United Kingdom or from Britith ponestions of
 exports, $\$ 23.522 .947$ went to the United Kingdom, or to Britith possessions or protectorates: $\{37,671,033$ went io (orereign countries: and $32,754,238$ went to the Dindings, Malecea or Sispapore.
History-Penang was founded on the 1pth of July 1786, having been ceded to the East India Company by the Suhan of Krdab in 1785 by an agreement with Captain lidht, for an annuity of $\$ 30,000$ for elght years. In 179 s the subaidy was
changed to $\$ 6000$, in perpetulity; for some years later chis was nised to $\$$ ro,000, and is still annually paid. This final addition was made when Province Wellesley was parchased by the East India Company for $\$ 2000$ in $\mathbf{1 7 9 8}$. At the time of the cession Penang was almost uninhabited. In 1796 it was mede a penal settlement, and 700 convicts were transferred thither from the Andaman Islands. In 1805 Penang was made a separate presidency, ranking with Bombay and Madras; and when in 1826 Singapore and Malacca were focorporated with it, Penang continued to be the seat of government. In 1829 Penang was reduced from the rank of a presidency, and eight years later the town of Singapore was made the capital of the Settiements. In 1867 the Straits Settlements were created a Crown colony, in which Penang was included.
See Straits Selltements Blue Book rgod (Singapore, 1907); The Siraids Direclory (Singapore, 1907); Sir Frank Swettenham, Brilish Malaye (Loodon, 1906).
(H. Cl.)

PENARTR, an urban district and seaport in the southern parliameatary division of Glamorganshire, Wales, 166 m . by rail from London, picturesquely situated on rising ground on the south side of the mouth of the Ely opposite Cardiff, from which it is 4 m . distant by rail and 2 m . by steamer. Pop. (1901), 14,228. The place derives its name from two Welsh words, "pen," a head, and "garth," an enclosure. Penarth was a small and unimportant village until a tidal harbour at the mouth of the Ely was opened in 1859, and a railway, 6 m . long, was made about the same time, connecting the harbour with the Taff Vale railway at Radyr. A dock, authorized in 1857, was opened in 1865, when all three undertakings, which had cost $\mathrm{f} 775,000$, were leased in perpetuity to the Taff Vale Railway Company. The anonopoly which the Bute Docks at Cardiff had previously enjoyed in shipping coal from the valleys of the Taft and Rhondda was thus terminated. The town is frequented in summer as a bathing-place, and the Rhactic beds at the head are of special interest to geologists. On this head there stood an old church, probably Norman, which served as a landmark for sailors. The remains of an old chantry have been converted into a barn. Besides two Established and one Roman Catholic church, the principal buildings of Penarth are its various Nonconformist chapels, intermediate and technical school ($\mathbf{1 8 9 4}$), custom house, dock offices, and Turner House with a private art galiery which is thrown open on certain derys to the public. Three miles to the west is Dinas Powis Castle. In 1880-1883 gardeos were haid out along the cliff, in 1894 a promenade and landing-pier with a length of 630 ft . were constructed, and in 1900 a marise subway open at all times for foot passengers was made under the river Ely. The dock, as first constructed, comprised 171 acres, was extended in 1884 at a cost of $\mathbf{E} 250,000$, and now 2 covers 23 acres with a basin of 3 acres. It is 2900 ft . In length, bas a minimum depth of 26 ft , and is furnished with every modem appliance for the export of coal, of which from za,000 to 30,000 tons can be stored in the sidings near by. The Penarth-Ely tidal harbour has a water area of 55 acres with a ainimum depth of 20 ft ., and a considerable import trade is carried on here mainly by cossting vessels; but as only ona of its sides has wharves (about 3000 ft . along) scarcely more than 5% of the total shipping of the port is done here. It has commodious warchouset, also tanks to hold ahout 6000 tons of oil.
PBSATES (from Lat. pener, catables, food), Roman gods of the store-roam and kitchen. The store-room over which they presided was, in old times, beside the atrimen, the room which served as kitchen, parbour, and bedroom in one; but in later times the store-room, was in the back part of the house. It was tanctified by the presesce of the Penates, and none but pure and chaste persoms might enter it, jusst as with the Hindus the kitchen is sacred and inviolable. They had no individual names, but were always knowa under the general designation, Pemates. Clowely assoctated with the Penates were the Lares (q.a) another spectes of domestic deity, who seem to have been the deified spirits of deceased ancestors. But while easch famity had two Penates it had but one Liar. In the household shrine the image of the Lar (dressed in a toga) was placed
between the two images of the Penibles, wifich war represeinted as dancing and elevating a drinking-horn"in token of joy and plenty. The three images together were sometimes celled Penotes, sometimes Lares, and either mame was wed metaphorically for "home." The shrine stood originally in the alrivm, but when the hearth and the kitchen were separated from the dtrimm and removed to the back of the house, and meals were taken in an upper storey, the position of the shrine was also shifted. In the bouses at Pompeii it is sometimes in the kitchen, sometimes in the rooms. In the later empire it was placed behind the house-door, and a taper or lamp was kept hurning before it. But the worship in the interior of the house was also kept up even into Christian times; it was forbidden by an ordinance of Theodosius (A.D. 392). The old Roman used, in company with his children and slaves, to offer a morning sacrifice and prayer to his household gods. Before meals the blessing of the gods was asked, and after the meal, but before dessert, there was a short silence, and a portion of food was placed on the hearth and burned. If the hearth and the images were not in the eating-room, either the images were hrought and put on the table, or before the shrine was placed a table on which were set a salt-cellar, food and a hurning lamp. Three days in the month, viz, the Calends, Nones and Ides (i.e. the first, the fifth or seventh, and the thirteenth or fifteenth), were set apart for special family worship, as were also the Caristia (Feb. 23) and the Salurnelia in December. On these days as well as on such occasions as birthdays, marriages, and safe returns from journeys, the images were crowned and offerings made to them of cakes, honey, wine, incense, and sometimes a pig. As each family had its own Penates, so the state, as a collection of families, had its public Penates. Intermediate between the worship of the public and private Penates were probahly the rites (sacra) observed by each clan (gens) or collection of families supposed to be descended from a common ancestor. The other towns of Latium had thcir public Penates as well as Rome. The sanctuary of the whole Latin league was at Lavinium. To these Penates at Lavinium the Roman priests brought yearly oflecings, and the Roman consuls, practors and dictators sacrificed both when they entered on and when they hid down their office. To them, too, the generals sacrificed before departing for their province. Alba Longa, the real mother-city of Latium, had also its ancient Penates, and the Romans maintained the worship on the Alban mount long after the destruction of Alba Longa. The Penates had a temple of their own at Rome. It was on the Velia near the Forum, and has hy some been identified with the round vestibule of the church of SS. Cosma e Damiano. In this and many other temples the Penates were represented by two.inages of youths seated holding spears. The Penates were also worshipped in the neighbouring temple at Vesta. To distinguish the two worships it has been supposed that the Penates in the former temple were those of Latium, while those in the temple of Vesta were the Penates proper of Rome. Certainly the worship of the Penates, whose altar was the hearth and to whom the kitchen was sacred, was closely connected with that of Vesta, goddess of the domestic hearth.
The origin and nature of the Penates was a subject of much discussion to the Romans themselves. They were traced to the mysterious worship of Samothrace; Dardanus, it was said, took the Penates from Samothrace to Troy, and after the destruction of Troy, Aeneas brought them to Italy and established them at Lavinium. From Lavinium Ascanius carried the worship to Alba Longa, and from Alba Longa it was brought to Rome. Equally umsatisfactory with this attempt to connect Roman religion with Greek legend are the vague and mystic speculations in which the later Romans indulged respecting the nature of the Penates. Some said they were the great gods to whom we owe breath, body and reason, viz. Jupiter representing the middle ether, Juno the lowest air and the earth, and Minerva the hîghest ether, to whom some added Mercary as the god of speech (Servius, on Aen. ii. 296; Macrobius, Sat. iii. 4, 8; Arnohius, Adp. Naf. iii. 40). Others identified them with Apollo
and Neptune (Macrob, iii. 4, 6; Arnob boc. cil.; Servius, on Acs. iii. 1 I y). The Etruscans held the Peastes to be Ceres, Pales and Fortuna, to whom others added Genius Jovialis (Servius on Aen. ii. 329 ; Arnob. loc, cil.). The late writer Martianus Capella records the view that heaven was divided into sixteen regions, in the Girst of which were placed the Penates, along with Jupiter, the Lares, \&c. More fruitiul than these misty speculations is the suggestion, made by the ancients themselves, that the worship of these family gods sprang from the ancient Roman custom (common to many savage tribes) of burying the dead in the house. But this would account for the worship of the Lares rather than of the Penates. A comparison with other primitive religious beliefs suggests the conjecture that the Penates may be a remnant of fetishism or animism. The Roman genii seem certainly to have boen fetishes and the Penates were perhaps originally a species of genii. Thus the Penates, as simple gods of lood, are probably much more ancient than deities like Jupiter, Neptune, Apollo and Minerva.

With the Penates we may compare the Kindly houschold gods of old Germany; they too had their home on the kitchen hearth and received offerings of food and clothing. In the castie of Hudemuhlen (Hanover) there was a kobold for whom a cover was always set on the table. In Lapland each house had one or more spirits. The souls of the dead are regarded as housespirits by the Russians; they are represented as dwarfs, and are served with food and drink. Each house in Servia has its patron-saint. In the mountains of Mysore every house has its bhuta or guardian deity, to whom prayer and sacrifices are oflered. The Chinese god of the kitchen presents some curious analogics to the Penates: incense and candles are burnt before him on the first and fifteenth of the month; some familics burn incense and candles before him daily; and on great festivals, one of which is at the winter solstice (ncarly corresponding to the Saturnalia), he is served with cakes, pork, wine, incense, \&c., which are placed on a table before him.
Sce Roman Religion.
(I. G. FR.; X.)

PENCIL (Lat, penicillus, brush, literally Bittle tail), a name originally applied to a smali fine-pointed brush used in painting, and still employed to denote the finer camel's-hair and sable brushes used by artists, but now commonly signifying solid cones or rods of various materials used for writing and drawing. It has been asserted that a manuscript of Theophilus, attributed to the 13th century, shows signs of having been ruled with a black-lead pencil; but the first distlnct allusion oucurs in the treatise on fossils by Conrad Gesner of Zurich (1565), who describes an articie for writing formed of wood and a piece of lead, or, as he believed, an artlficial composition called by some simmi anglicanmm (English antimony). The famous Borrowdale mine in Cumberland having been discovered about that time, it is probable that we have here the first allusion to that great find of graphite. While the supply of the Cumberiand mine lasted, the material for English pencils consisted simply of the native graphite as taken from the mine. The pieces were sawn into thin shects, which again were cut into the slender square rods forming the " lead " of the pencil.
Strenuous efforts were made on the continent of Europe and In England to enable manufacturers to become independent of the product of the Cumberland mine. In Nuremberg, where the great pencil factory of the Faber family (q.e.) was established in 1760 , pencils were made from pulverized $\dot{g} r a p h i t e ~ c e r n e n t e d ~$ into solid blocks by means of gums, resins, glue, sulphur and other such sulastances, but none of these preparations yielded aseful pencils. In the year 1795 N. J. Conte (q.o.), of Paris, deviscd the process by which now all black-lead pencis, and indeed pencils of all sorts, are manufactured. In 1843 William Brockedon patented a process for compressing pure black-lead powder into solid compest blocks by which he was enabled to use the dust, fragments, and cuttings of fine Cumberland lead. Brockedon's process would have proved suceessful but the exhaustion of the Borrowdale supplies and the excellence of Conte's process readered it more of ecientific intereat than of commercial value.

The pencil leads prepared by the Conté process consist of a mixture of graphite and clay. The graphite, having been pulver: ized and subjected to any necessary purilying processes, is "floated" through a series of setting tanks, in each of which the comparatively heavy particles sink, and only the still finer particles are carried over. That which sinks in the last of the series is in a condition of extremely fine division, and is used for pencils of the highest quality. The clay, which must be free from sand and iron, is treated in the same manner. Clay and graphite so prepared are mixed together in varying proportions with water to a paste, passed repeatedly through a grinding mill, then placed in bags and squeczed in a hydraulic press till they have the consistency of stiff dough, in which condition they are ready for forming pencil rods. For this purpose the plastic mass is placed in a strong upright cylinder, from which a plunger or piston, moved by a screw, forces it out through a perforated base-plate in a contineous thread. This thread is finally divided into suitable lengths, which are heated in a closed crucible for some hours. The two factors which determine the comparative hardness and blackness of pencils are the proportions of graphite and clay in the leads and the beat to which they are raised in the crucible. According as the proportion of graphite is greater and the heat lower the pencil is softer and of deeper black streak.

The wood in which the leads are cased is pencil cedar from Juniperus sirginiana for the best qualitics, and pine for the cheaper ones. A board of the selected wood, having a thickness about equal to hall the diameter of the finished pencil and as wide as four or six pencils, is passed through a machine which smooths the surface and cuts round or square grooves to receive the leads. The leads being placed in the grooves the board is covered with another similarly grooved board, and the two are fastened together with glue. When dry they are takets to rapidly revolving cutters which remove the wood between the leads. The individual pencils thus formed only need to be finished by being dyed and varnished and stamped with name, grade, \&cc. Instead of wood, paper has been tried for the casings, rolled on in narrow strips which are torn off to expose fresh lead as the point becomes worn down by use.
Black pencils of an inferior quality are made from the dust of graphite melted up with sulphur and run into moulds. Such, with a liste callow added to give ihem eotenest, are the pencils commonly used by carpenters. Coloured pencils consist of a mixture of clay, with appropriate mincral colouring marter, wax, and tallow, treated by the Conte method as in making lead pencils. In indelible and copy ing pencils the colouring matter is an aniline preparation mixed with clay and gum. The mixture not only makes a streat which adherea to the paper, but, when the writing is moistened with waver. it dissolves and assumes the appearance and properties of an ink.
PENDA, king of Mercia (d. 654 or 655), son of Pybba, probably came to the throne in 626, but it is doubtful whet her he actuelly became king of Mercis until 633, the year of the deleat and deat h of Edwin of Northumbria. According to tbe Anglo-Sazon Chranicle he was eighty years old at his death, but the energy of his administration and the evidence with regard to the ages of his children and relatives render It almost impossible. In 628 the Chronicle records a battle between him and the West Saxons at Cirencester in that year. In 633 Penda and Ceadwalla oveithrew Edwin at Hatfield Chase; but after the defeat of the Welish king at Oswald at "Hefenfelth" In 634, Mercia seems to have been for a time subject to Northumbria. In 642 Penda slew Oswald at a place called Maeffeld. He was conlinuslly raiding Northumbria and once almost secceeded in reducing Bamborough. He drove Cenwalh of Wesser, who had divorced his sister, from his thrope. In 654 he attacked the East Angles, and slew their king Anna (see East Anglai). In 654 or 655 be invaded Northumbria in epite of the attempts of Oswio to buy him off, and was defeated and slain on the banks of the "Winwaed." In the reign of Penda the districts corresponding to Cheshire, Shropshire and Herefordshire were probably acquired, and he established bis mon Peadr as a dependent prisce in Middle Anglia. Although a pagan, he allowed his daughter Cyneburg to matry Alchirith, the ton of

Oswio, and it was in his reign that Christianity was introduced into Middle Anglia by his son Peada.

See Bede, Fist. Ecel. (ed. C. Piummer, Oxford, 1896) ; Anglo-Saxom Chronicle (ed. Earle and Plummer, Oxford, 1899).
PENDANT (through Fr. from Lat. pendere, to hang), any hanging object, such as a jewel or other ornament hanging from a brooch, bracelet, \&c., or the loose end of a knight's beft left hanging after passing througb the buckle, and terminating in an ornamental end. In architecture the word is applied to an clongated boss, either moulded or foliated, such as hangs down from the intersection of ribs, especially in fan tracery, or at the end of hammer beams. Sometimes fong corbels, under the wall pieces, have been so called. The name has also been given to the large masses depending from enriched ceifings, in the later works of the Pointed style. "Pendants" or "Pendent posts" are those timbers which are carried down the side of the wall from the plate, and reccive the hammer braces.
PENDENYIVE, the teron given in architecture to the bridging across the angles of a square hall, so as to obtain a circular base for a dome or drain. This may be done by corbelling out in the angles, in which case the pendentive may be a portion of a hemisphere of which the half diagonal of the square hall is the radius; or by throwing a series of arches across the angle, earb ring as it rises advancing in front oi the one below and being carried by it during its construction; in this case the base obtained is oclagonal, so that corbels or small pendentlyes are required for each angle of the octagon, unless as in the church of SS. Sergius and Bacchus at Constantinople a portion of the dome is set back; or again, by a third method, by sinking a semicircular niche in the angle. The first system was that employed in St Sophia at Constantinople, and in Byzantine churches generally, also in the domed churches of Perigord and Aquitaine. The second is found in the Sassanian palaces oi Serbistan and Firuzabad, and in medieval architecture in England, France and Germany, where the arches are termed "squinches." The third system is found in the mosque at Damascus, and was often adopted in the churches in Asin Minor. There is still another method in which the pendentive and cupola are part of the same hemispherical dome, and in this case the ring ccurses lie in vertical instead of horizontal planes, examples of which may be found in the vault of Magnesia on Mlacander in Asia Minor, and in the tomb at Valence known as le pendentif de Valence. The problem is one which has taxed the ingenuity of many builders in ancient times; the bas-reliels found at Nimrud show that in the gth century b.c. domes were evidently built over square halk, and must have been carried on pendentives of some kind.

PENDER, SIR JOHN ($1816-1896$), British cable pioneer, was bom in the Vale of Leven, Scotiand, on the soth of September 1816, and after attending school in Glasgow became a successful merchant in textile fabrics in that city and in Manchester. His name is chiefty known in connexion with submarine cables, of which on the commercial side he was an important promoter. He was one of the 345 contributors who each risked a thousand pounds in the Transatlantic Cahle in 1857, and when the Atlantic Telegraph Company was ruined by the loss of the 1865 cable be formed the Anglo-American Telegraph Company to continue the work, hut it was not till be had given his personal guarantee for a quarter of a milion pounds that the makers would undertake the manufacture of a new cable. But in the end he was justified, and telegraphic communication with America became a commercial success. Subsequently he fostered cable enterprise in all parts of the world, and at the time of his death, which occurred at Footscray Place, Kent, on the 7th of July 1896, he controlled companies having a capital of 15 miltions steding and owning 73,640 nautical miles of cables. He represented Wick Burghs in parliarnent from 1872 to 1885 and from 1892 to 1896. He was made a K.C.M.G. in 2888 and was promoted in 1892 to be G.C.M.G. His eldest son James (b. 1841), who wis M.P. for Mid Northamptonshire in 1895-1g00, was created a bepronet in 1897; and his third son, Jobn Denison (b. 185s), was created a K.C.M.G. in 1902.

PERELE the upper division of the Carboniferons Limestone and the Millstone Grits occurring in the Midlands between Stake-onTrent and Settle. It consists of back limestones at the base, followed by black shaies with calcareous nodules, which pass into sandy shales with ganlster-like sandstones. In places the series attains a thickess of $1500-1000 \mathrm{ft}$., and where it is thickest the Milstone Gris aloo attain their maximum thickness. The peculiarities of the serics, which is characterized by a rich fauna with Productus gigancous, P. striatur, Dibunophyllwat, Cyathasomie cornm and Consedalcia foriformis, can be best studied on the western slope of Pendie Hill, Lancashire, in the valley of the Hodder, dividing the counties of Lancashire and Yorkshire, at Mam Tor and the Edele valley in Derbyshire, and Morredge, the Dane valley in north Stafordshire, Bagillt and Teilia in North Wales, and Scantelt and Poolvash, Ifte of Man. The limestones af the base are bard, compact and fissile, often cherty, and vary much in the amoment of calcium carbonate which they contain, at times passing into calcareous shales.
These limestones and shales contain a distinct fauna which appears for the first time in the Midlands, characterized by Pléjnopectcw papyacest, Posidenidla laevis, Pasidonomya Becheri, Posidowomya mambramacea, Nomismoceras roliforms and Clyphioceres ztriatess. Immediately below beds with this fauna are thin limestones with Prolecanites compresows, Strobocores bisukcolws, many trilobites, and corals referable to the genera Cyothaxonia, Zaptrentis and Amplexicaphrentis. The fauma characteristic of the Carboniferous Limestone becomes largely extinct and is rephoced by $\%$ shale fauna, but the oncoming of the age. of Coniatites is shown by the presence in the upper pert of the Carboniferous Limestone of mumerous species and genera of this group, Clyphiocrtas crewsstria being the most common and having the wider hocizontal range. The whole Pendienide series can be divided into zones by the different especies of Coniatites. At the base Pralecamiles compressms cheracterixen the passage beds between the Carboniferous Limestone and the Pendlesides; Nemismoceras roliforme and Glyphiocenas striatus are found in a narrow zone immediately above. Then Clyphioceras reliculafmm appeans and reaches its maximam, and is succeeded by Glyphioceras diadema and Clyphiaceres spirade, while immediately below the Millstone Grits Glyphioccras bilingue appears and passes up in that series. The Millatone Orits are characterimed hy the presence of Castrioceres Listeri. The Pendleside series is thercfore charncterized by an Upper Carbonicerous fauna, Pterinopocten papyracews. Posidomidla lactis and some other species which pass up right through the Coal Measures eppearing for the first time; and the base of the scries marks the division between Upper and Lower Carboniferous timen.

The series passes eastward into Belgium and thence into Germany, when the same foosil zones are found in the basin of Namur and the vaHey of the Dill. Traced west ward the serics is well developed in Co.Dublin and on the west coast of Cos. Clave and Linaerick. There can be no doutht that the Pendleside series of the Midlands represents the Lower Culm of Codden Hill. nortb Devon, and the Lower Culm of the continent of Europe. The faunas in these localities have the same bialogical succession as in the midlands.
See Whedton Hind and J. Allen Howe, Quart. Jowrn Geog. Soc. vol. Ivii. (1901), and humerous other papers by the first-named author.
(W. Hi.)

PENDLETOX, EDMUND (1721-1803), American lawyer and statesman, was born, of English Royalist descent, in Caroline county, Virginia, on the gth of September 1721. He was self-educated, bul after reading law and being admitted to the bar (1744) his success was immediate. He served in the Virginia House of Burgesses from 1752 until the organizatian of the state government in 1776, was the recognized leader of the conservative Whiss, and took a leading part in opposing the British government. He was a member of the, Vlaginia committee of correspondence in 1773, in 1774 was presideat of the Yirginin proviacial convention, and a member of the first

Continental Congress. In r776, as preadent of the provtacial convention, which adopted a state constitution for Virginia, he drew up the instructions to the Virginia members of Congress directing them to advocate the independence of the Americen colonics. In the same year he became president of the Virginia committee of safety, and in October was cloosen the first speaker of the House of Delegates. With Jefferson and Chancellor George Wythe he drew up a new law code for Virginia. He was president of the court of chancery in 1777-1788, and from 1779 until his death. was president of the Virginia court of appeals. He was an enthusiastic advocate of the Federal constiqution, and in 1788 exerted strong influence to secure its ratifcation by his native state. He was a leader of the Federalist party in Virginia until his death at Richmond, Va., on the 23xd of October 5803.

PENDLETON, GEORGB HUNT ($1825-1889$), American lawyer and legislator, was born in Cincinnati, Ohio, on the 25 th of July r825. He was educated at the university of Heidelberg, sludied law, was admitted to the bar, and began $t 0$ practise at Cincinnati. Hie was a member of the Ohio Senate in 1854 and 1855 , and from 1857 to 1865 was a Democratic member of the national House of Representatives, in which he opposed the war policy of Lincoln. In 1864 he was the Democratic candidate for vice-president. After leaving Congress he became one of the carliest champions of the "Onio idea" (which he is said to have originated), demanding that the government should pay the principal of its 5 -20-year 6% bonds in the "greenback" currency instead of in coin. The agricultural classes of the West regarded this as a means of relief, and Pendleton becoime their recognized leader and a candidate for the Democratic nomination to the presidency in 5868, but he failed to receive the requisite two-thirds majority. In 1869 he was the Democratic candidate for governor of Ohio, but was defeated by Rutherford B. Hayes. For the nert cen ycars he devoted himself to the practice of law and to the supervision of the Kentucky Railroad Company, of which be had become president in 1869. From 1879 to $\mathbf{3 8 8 5}$ he was a Democratic member of the United States Senatc, and introduced the so-called Pendieton Act of 1883 for reforming the civil service, hostility to which lost him his seat in 1885 . He was minister to Germany from r885 to the summer of 1889, and died at Brassels on the 24th of November 188.

PENELOPE, in Greek legend, wife of Odysseus, daughter of Icarius and the nymph Periboea. During the long absence of her husband after the fall of Troy many chicftains of Ithaca and the lslands round about became her suitors; and, to rid herself of the importunities of the wooers, she bade them wait till she had woven a winding sheet for old Latertes, the father of Odysseus. But every night she undid the piece which she had woven by day. This she did for three years, till her maids reveaied the secret. She was relieved by the arrival of Odysseus, who returned after an ahsence of twenty years, and slew the wooers. The character of Penclope is less favourable in late writers than in the Homeric story. During her husband's absence she is said to have become the mother of Pan by Hermes, and Odysseus, on his return, repudiated her as unfaithiul (Herodotus ii. 145 and schol.). She thereupon withdrew to Sparta and thence to Mantincia, where she died and where ber tomb was showa. According to another account she married Telegonus the son of Odysseus and Circe, after he had killed his father, and dwelt with him in the island of Aeala or in the Islands of the Blest (Hyginus, Feb. 127).

PEAGGELLY, WILLIAM (1812-1894), English geologist and anthropologist, was born at East Looe in Cornwall on the 22th of Jonuary 1812, the son of the captain of a small coasting veasel. He began life as a sailor, after an elementary edacation in his native village, but in 1828 he abandoned a seafaring life. He had developed a passion for learning, and about 1836 he removed to Torquay and started a school; in $\mathbf{2 8 4 6}$ be became a private tutor in mathematics and natural science. Geology had in early years attracted his attention, but it was not until ise was aboul 30 years of age that he began seriously to cultivato
the study. In 2837 be was instrumental in the reorganization of the Torquay Mechanics' Institute, in $\mathbf{1 8}_{44}$ mainly owing to his energy the Torquay Natural History Society was founded, and in 1862 he assisted in founding the Devonshire Association for the Advancement of Literature, Science and Art. Meanwbile he had been occupied in collecting lossils from many parts of Devon and Cornwall, and in 1860 the Baroness BurdettCowts acquired and presented them to the Oxford Museum, where they form "The Perigely Collection" Through the generosity of the same lady he was called upon to examine the lignites and clays of Bovey Tracey, in conjunction with Dr Oswald Heer, wha undertook the determination of the plant-remains. Their report was published by the Royal Society (1862), and Pengelly was elected F.R.S. in 1863. He aided in the investigations of the Brixham bone-cavern from the date of its discovery in 1858, the full report being issued in 1873; and he was the main explorer of Kent's Hole, Torquay. and from 1864 for more than filleen years he laboured with unlagging energy in examining and recording the exact position of the numerous organic remains that were disinterred during a systematic investigation of this cave, carried on with the aid of grants from the British Association. He first attended the British Association at the Chitenham meeting in 1856, and was present at subsequent mectings (except that at Montreal in 1884) until 1889. His ohservations assisted in establishing the important fact of the contemporaneity of Palaeolithic man with various Pieistocene mammalia, such as the mammoth, cave-bear, cave-lion, \&c. He was awarded the Lyell medal by the Geological Society of London in 1886 . He died at Torquay on the 16 th of March 1894.
See Memoir of William Pengelly, edited by his daughter Hester Pengelly, with a summary of his scientific work by the Rev. Professor T. G. Bonney (1897).

PEvouis, the name of a flightless sea-bird, ${ }^{1}$ hut, so far as is known, first given to one inhabiting the seas of Newfoundland as in Hore's "Voyage to Cape Breton," 1536 (Hakluyt, Researches, iii. 168-170), which subsequently became known as the great auk or garefowl (g.v.); though the French equivalent Pingouin' preserves its old application, the word penguin is by English ornithologists always used for certaln birds inhabiting the Southern Ocean, called by the French Manchots, the Spheniscidae of ornithologists. For a long while their position was very much misunderstood, some systematists having placed them with the Alcidae or Auks, to which they bear only a relationship of analogy, as indeed had been perceived by a few ornithologists, who recognized in the penguins a very distinct order, Impennes. L. Stejneger (Siandard Nal. Hisl. vol. iv., Boston, 1885) gave the Impcnes independent rank equivalent to the rest of Carinate birds; M. A. Menzbier (Vergl. Osteol. d. Penguine, Moscow, 2887) took a similar view; M. Furbringer was first to show their relation to Procellariformes, and this view is now generally accepted.
${ }^{1}$ Of the three derivations assigned to this name, the first is by Drayion in 1613 (Polyolbion, Song 9), where it is said to be the Welsh pen zwyn, or "white head "; the second, which scems to meet with Litre's spproval, deduces it from the Latin pisguis (fat). Which idea has given origin to the German name, Fettydnse, for ihese hirds; the third supposes it to be a corruption of "pin-wing " (Anse Nal. History, 4th series, vol. iv. p. I33), meaning a bird that has undergone the operation of pinioning or, as in one part at least of England it is commonly called, "pin-winging." The fran hypothesis has boen eupported on the ground that Breton sailors speakting a languare closely allied to Welsh were acquainted with the great auk, and that the conspicuous white patches on the head of that bird justified the name "white head." To the second hypothesis Skeat (Dictionary, p. 433) objects that it "will not account for the wffix x-in, ind is therefore wrong; besides which the "Dutchmen " Who were amerted to be the authors of the namel suro out to be Sir Fracis Drake "and his men. in support of the third hypothesis Mr Recka wrote (Zoologist, and series, p. 18541 that the people in Newfoundland who used to meet with this bird always pronounced ita name "pin wing." Skeat's inquiry (loc. cil.), whether the name may not after all be South American, is to be answerod in the negative, since, so far as evidence goes, it was given to the Narth-American bird before the South-American was known in Europe.

Gorfous has also been used by some French writers, being a corruption of Geiffugl or Carrofort.

There is a total wat of quills in their wings, whlch are incmpable of flexure, thougb they move freely at the shoulder-joint, and some at least of the species occasionally make use of them for progressing on land. In the water they are most efficient paddles. The plumage, which clothes the whole body, geaerally consists of small scale-like feathers, many of them consisting only of a simple shaft without the development of barbs; but several of the species have the head decorated with long cirthous tufts, and in some the tail-quills, which are very numerous, are also long. ${ }^{1}$ In standing these birds preserve an upright position, sometimes resting on the "tarsus" ${ }^{2}$ alone, but in walking or running this is kept nearly vertical, and their weight is supported by the toes alone.

The most nortberly limit of the penguins' range in the Atlantic is Tristan d'Acunha, and in the Indian Ocean Amsterdam island, but they also occur off the Cape of Good Hope and alont the coast of Australia, as well as on the south and cast of New Zealand, while in the Pacific one species at least extends along the west coast of South America and to the Galapagos; but north of the equator nohe are lound. In the breeding season they resort to the most desolate lands in higher southern latitudes, and indsed have been met with as far to the southward as nevigators have penetrated. Possibly the Falkland Islands are richest in species, though, as individuals, they

King. Penguin (A plenedyles pennandi).
are not nearly so numerous there as in many other places. The food of penguins consists of crustaceans, cephalopods and other molluses, varied by fish and vegetable matter. The birds form immense breeding colonies, known as "rookeries." The nest of grass, leaves, or where vegetation is scanty of stones or rubbish, is placed on the ground or in holes. Two chaiky whice or greenish eggs are laid. The young penguins, ciad in thick down, are born blind and are fed by the parents for 20 enusually long time before taking to the water. Penguins bite savagely when molested, but are easily trained and display considerable intelligence.
The Spheniscidoe have been divided into at least eight genera, tut three, or at most four, seem to be all that are needed, and
The pterylographical characters of the penguins are well deseribed by A. Hyatt (Proc. Boston Soc. Nat. History, 1871). A. D. Bartett has observed (Proc. Zool. Soc., 1879, pp. 6-9) that, iastead of moulting in the way that birds ordinarily do. penguins ar least in pasting from the immature to the adult dress, cast off the short scale-like feathers from their wings in a manner that he compares to "the shedding of the skin in a serpent."
? The three metatarsals in the penguins are not, as in other birds, maited for the whole of their length, but only at the extremities, thus pereerving a portion of their originally diatioct existence. a fact probably átribuiable to arrest of development, since the remearehes dC. Gexentaur show that the embryos of all birds, so far as is known, ponsess these banes in an independent condition.
three can be well distinguished, aspointed out by E. Cowes in Proc. Acad. of Nat Sci, of Philadelphis, 1872 (pp. 170-2t2), by anatomical as well as by external characters. They are: (1) A penedyles, easily recognized by its long and thin bill, slightly decurved, from whicb Pygoscelis, as M. Watson has shown, is hardly distinguishable; (2) Ewdyples, in which the bill is much sborter and rather broad; and (3) Spheniscus, in which the shortish bill is compressed and the maxilie ends in a conspicuous hook. Afknodyles contains the largest species, amang them those known as the "Emperor " and "King " pengeins A. palagonica and A. longirastris. Three otbers belong also to this genus, if Pysoscelis be nol recognized, but they seem not to require any particular remark. Eudyples, containing the crested penguins, known to sailors as "Rock-boppers" or "Macaronis," would appear to have five apecies, and Spheniscus four, among which S. mendiculus, which occurs in the Galapagos, and tberefore has the most northerly range of the whole group, alone needs notice here.
(A. N.)

The generic and specific clistribution of the penguins is the subject of an excellent exay by Alphonse Milne-Edwards in the Amwales des sciences naturelles for 1880 (vol. ix. art. 9, pp. 23-81); see also the Records of the Antarctic Expedition, 1901-1904.
PRNRALLOW, SAMUEL ($\mathbf{6 6 5} 51726$), American colonist and historian, was born at St Mabon, Cornwall, England, on the and of July 1665 . From 1683 to 1686 he attended a school at Newiogton Green (near London) conducted by the Rev. Charles Mortor ($1627-1698$), a dissenting clergyman, with whom he emigrated to Massachusetts in 1686 . He was commissioned by the Society for the Propagation of the Gospel in New England to study the Indlan languages and to preach to the Indians; but he was soon diverted from this work. Removing to Fortsmouth, New Hampshire, he there married a daughter of John Cutt (1625-1681), president of the province of New Hampshire in 1679-1680, a successful merchant and milhowner, and thus came into possession of considerable property (including much of the present site of Portsmouth). In 1700 he was speaker of the Assembiy and $\ln 1702$ became a member of the Provincial Council, but was suspended by Ledut.-Governot Goorge Vaughan ($6676-1724$). Penhallow, however, was sustained by Govertior Samuel Shute (1662-1742), and Vaughan was removed from office in 1716. In 1714 Penkallow was appointed a justice of the superior court of judicature, and from 1717 until bis denth was chief justice of that court; and be also served as treagarer of the province in 169^{-} 1726, and as secretary of the province in 1714-1726. He died at Portsmouth on the and of December 1726. He wiote a vahiable History of the War of New Englend with the Eastern Indians, or a Narrative of their Contiamed Perfely and Crueliy (1726; reprinted in the Collections of the New Hampshire Historical Society, val: i., 1824, and again at Cincinnati inis89), which covers the period from 1703 to 1726 , and is a standard contemporary authorly.
PENINCTON, SIR ISAAC (c. 1567-1661), ford mayor of Lomdon, eldest son of Robert Penington, a London fishmonger, was born probably in i587. His father besides his London business had ianded estates in Norfolk and Suffolk, which lanac inherited in addition to a property in Buckinghanshire which he himself purchased. In 1638 Isaac became an alderman and high sheriff oi London. In 1640 he was elected to the House of Commons as member for the city of London, and immediately took a prominent place among the Puritan party. In 1642 he was elected lord mayor of London, but retained his seat in pariament by special leave of the Commons; and he was elected lond mayor for a second term in the following year, continuing while in office to raise large sums of money for the opposition to the Court perty. From 1642 to 1645 he was lieutenant of the Tower, in which capacity he was present at tbe execution of Laud; but, though one of the commissioners for the trial of Charles 1 ., he did not sign the death warrant. After the king's death Penington served on Cromweil's cooncit of state, and on several committees of government. His: services were rewarded by considerable grants of land, and a
knighthood conferred in 1649. He wat tried and convicted of treasion at the Restoration, and died white a prisoner in the Tower on the 17th of December 2661. He was twice married, and had sir children by his first wife, eeveral of whom became Quakers.

Isanc Penington (1616-1679), Sir Lsaze's eldest son, was one of the most notable of the s7th-eentury Quakers. He was early troubled by religious perplexities, which lound expression in many voluminous writings. No less than eicven religious works, besides a political treatise in defence of democratic principles, were published hy him in eight years. He belonged for a time to the sect of the Independents; but about 1657, influenced probably by the preaching of George Fox, whom he heard in Bedfordshire, Peningtoa and his wife joined the Sociely of Friends. His wife was daughter and heiress of Sir John Proude, and widow of Sir William Springett, so that the worldly position of the couple made them a valuable aequisition to the Quakers. Isaac Penington was himself a man of very considerable gifts and sweetness of character. In 166I he was impriscned for refusing to take the oath of allegiance, and on several subsequent occasions he passed long periods in Reading and Aylesbury gaols. He died on the 8th of October 1679; his wife, who wrote an account of his imprisonments, survived till 2682 . In 168 I Penington's writings were published in a collected edition, and several later editions were issuad before the end of the 18th century. His son John Penington (1655-1710) defended his father's memory agoinst attack, and published some controversial tracts against Gearge Keith. Edward Penington (1667-1711), another of Isaac Penington's sons, emigrated to Pennsylvania, where he founded a family. Isaac Penington's stepdaughter, Guliclma Springetl, married William Penn.

See Maria Webb. The Penns and Peningtons of the 7th $^{\text {h }}$ Century (London, 1867); Lord Clarendon, Ilistory of the Rebellion and Civil Wars in England (7 vols., Oxiord, 2839) : Bulstrode. Whitelocke, Memorials of English Affairs: Chatles 1 . 10 ihe Restoration (London, 1732): J. Gurney Bevan, Life of Isace Peningion (London, 1784): Thomas Ellwood, History of the Life of Ellwood by his orom hand (London, 1765): Willern Sewel, History of the Quakers (61h ed.: 2 vols., London, 1834).
PENINSULA (Lat. pacninswia, from paenc, almost, and insula, an island), in physical geography, a piece of land nearly surrounded by water. In its original sense it connotes attachment to a larger land-mass by a neck of land (isthmus) darrower than the peninsula itself, but it is often extended to apply to any long promontory, the coast-line of which is markedly longer than the landward boundary.

PENINSULAR WAR (1808-14). This important war, the conduct and result of which greatly enhanced the prestige of British arms, had for its main object the freedom of the Peninsula of Spain and Portugal from the domination of Napolcon; and hence it derives its mame, though it terminated upon the soil of France.

Neison having destroyed the French fleet at Traialgar, Napoleon feared the possibility of a British army being landed on the Peninsular coasts, whence in conjunction with Portuguese and Spanish forces it might attack France from the south. He therefore called upon Portugal, in August 1807, to comply' with his Berlin decree of the arst of November 1806, under which continental nations were to close their ports to British subjects, and have no communication with Great Britain. At the same time he persuaded the weak king of Spain (Charies IV.) and his corropt minister Godoy to permit a French army to pass tbrough Spain towards Portugal; while under a secrat treaty signed at Fontaidebleau on the 27th of October 1807 Spanish troops were to support the French. Portugal was to be subsequently divided between Spain and France, and a new principality of the Aigarve was to be carved out for Godoy. Portugal remonstrated against Napolcon's demands, and a French corpa $\{30,000$) under General Junot was instantly despatched to Lisbon. Upon its approach the prince segent fied, and the country was occupied by Junot, most of the Portuguese troope being disbanded or sent abroad. Napoleon indueed the king of Spain to allow French troops to occupy the country and to
send the flower of the Spanish forces (15,000) under the marquis of Romana ' to assist the French on the Baltic. Then Dupont de l'Elang (25,000) was ordered to cross the Bidaseos on the a and of November 1807; and by the 8th of January 1808 he had reached Burgos and Valladolid. Marshal Moncey wleh a corpa occupied Biscay and Navarre; Duhesme with a division eatered Catalonia; and a littie later Bessières with another corpa had been brought up. There were now about 100,000 French soldiers In Spain, and Murat, grand duke of Berg. as " lieutenant for the emperor," entered Madrid. During February and March 1808 the frontier fortresses of Pampeluna, St Sehastian, Barcelona and Figueras were treacherously occupied and Spain lay at the feet of Napoleon. The Spanish people, in an outburst of fury against the king and Godoy, forced the former to abdicate in favour of his son Fendinand; but the inhabitants of Madrid having (May 2, 2808) risen against the French, Napoieon refused to recognise Ferdinand; both he and the king were compelled to renounce their rights to the throne, and a mercenary council of regency having been induced to desire the French emperor to make his hrother, Joseph Bomaparte, king, he asceded to their request.
The makk was now completely thrown off, and Spain and Portugal rose against the French. Provincial " juntan " (committecs of government) Fere otganized; appeals for astistance made to the British government, which granted arms, money and supplies, and it was resolved to despateh a British force to the Peninsula. Before it ianded, the French under Dupont, Moncey and Marshal Bessières (75,00) had occupied parts of Biscay, Navarre, Aragon and the Castiles, holding Madrid and Toiedo, while Cencral Duhesme (14,000) was in Catalonia. Monccy (7000) had marched towards the city of Valencia, but been repulsed in attempting to storm it (June 23); Bessières had defrated the Spanish general Joachim Biake at Medina de Rio Seco (June 14, 1808) and Dupont (13,000) had been delached (Mav 24) from Madrid to reduce Seville and Cadiz in Andalusia. Sparish levies, numbering nearly 100,000 regulars and militia, brave and enthusiastic, but without organization, sufficient training, or a commander-in-chicf, had collected toget her; 30,000 being in Andalusia, a similar number in Galicia, and others in Valencia and Estremadura. but few in the central. portion of Spain.
At this juncture Dupont, movingupon Cadiz, met with a reverse which greally influenced the course of the Peninsular War. On the 7th of June 1808 he had sacked Cordova; but while he was laden with its spoits the Spanish general Castantos with the army of Andaiusia (30,000), and also a iarge body of armed peasantry. approached. Falling back to Andujar, where he was reinforred 10 22,000 strong, Dupont detached a force to hold the mountain passes in his rear, whoreupon the Spaniards interposed between the detachment and the main body and seized Baylen. Failing to dislodge them, and surrounded by hostile troops and an infuriated peasantry, Dupont capitulated with over Buthe of 20,000 men. This victory, logether with the in- Beplent my trepid defence of Saragnssa by the Spanish general ${ }^{13}$, wed
Jose Palaiox (June 55 to August 13, 180S) temporatily paralysed the French and created unbounded enthusiasm in Spain. Duhesme, having lailed to take Gerona, was blockaded in Barcelona, Joseph ficd from Madrid (Aug. 1, 180S), and the French forcesclosed to their rear to defend theircommunications with France. The British troops were directed towards Lisbon and Cadiz, in order to secure these harbours, to prevent the suhjugation of Andalusia, and to operate up the basins of the Guadiana, Tagus and Douro into Spain. The British lorce consisted of poco men from Cork, under Sir Arthur Wellealeyat first in chicl commend; 5000 from Gibraltar, under General (Sir Brent) Spencer; and 10,000 under Sir John Moore coming from Sweden: Wellesicy and Moore being directed towards Portugal, and Spencer to Cadiz. On the 1st of August 1808

[^9]Wellesley began to lend his troops, unopposed, near Figucita da Foz at the mouth of the Mondego; and the Spanish victory of Bayien having relieved Cadiz from danger, Spencer now joined hims, and, without waiting for Moore the army, under ' 15,000 in all (which included some Portuguese) ${ }^{1}$ with 18 gous, advanced towards Lisbon.
Campaign in Portugal, 1808. - The first skirmish took place at Obridos on the 15 th of August r808, against Delaborde's division (5000 men with 5 guns), which fell back to Roleia (Roriga or Roliça). A battle took place here (Aug. 17) in which Sir Arthur Wellesley attacked and drove him from two successive positions. The allied loss was about 500: the French 600 and three guns. ${ }^{2}$ On the soth of August the Allies, strengthened by the arrival of two more brigades (4000 men), occupled some heights north of VImier (Vimeira or Vimeiro) where the roads branch off to Torres Vedras and Mafra. Wellesley meant to turn the defile of Torres Vedras by Mafra et once if pootible; but on this night Sir Harry Burrard, his senior, arrived off Vimiera, and though be did not land, gave instructions to wait for Sir John Moore. On the arst of August the Allies were attacked by Junot at Vimiera, who, leaving a force at Lisbon, had come up to reinforce Delaborde. In this battle the Allies surthe of numbered about 18,000 with 18 guns, French nearly numere 14,000, with 30 guns. Junot, believing the allied Ampat 2J. left to be weakly held, attacked it without recon: ame noitring, but Wellesley's regiments, marched thither behind the beights, sprang up in line; and under their volleys and bayonet charge, supported by artillery fire, Junot's deep columns were driven off tbe direct road to Lisbon. The losses wete: Allies about 800, Freacb 2000 and 13 guns. It was now again Wellesley's wish to advance and seize Torres Vedras; but Sir Hew Dalrymple, having at this moment assumed command, decided otherwise. On the and of August Junot, knowing of the approach of Moore with reinforcements, and afraid of a revolt in Lisbon, opened negotiations, which resulted in the Convention of Cintra' (Aug. 30, 1808), under which the French evacuated Portugal, on condition that they were sent witb their artillery and arms to France. Thus this campaign hat been rapidly brought to a satisfactory conclusion; and Sir Arthur Wellesley had already given proof of his exceptional gilts as 2 leader. In England however a cry was raised that Junot should have been lorced to an absolutely unconditional surrender; and Sir Arthur Wellesley, Sir Hew Dalrymple and Sir Harry Burrard' were brought before a court of inquiry in London. This acquitted them of blame, and Sir John Moore in the meantime after the departure of Dalrymple (Oct. 6, 1808) had assumed command of the allied army in Portugal, now about 32,000 strong.
Maore's Campaign in Spain, 1808-9.-The British government notified to Sir John Moore that some 10,000 men were to be sent to Corunna under Sir David Baird; that he, with 20,000, was to join him, and then both act in concert with the Spanish armies. As the conduct of this campaign was largely infoenced by the operations of the Spanish forces, it is necessary to mention their positions, and also the fact that greater reliance had been plated, both in England and Spain, upon them than luture events justified. On the 26th of October 1808, when Moore's troops. had left Lisbon to join Baird, the French still beld a defensive position behind the Ebro; Bessières being in the basin of Vitoria, Marshal Ney north-west of Logrofo, and Moncey concring Pempeluna, and near Sanguessa. With the garrisons of Biscay, Navarre, and a reserve at Bayonne, their strength was about 75,000 men. Palafox (20,000) was near Saragossa and observing Sanguessa; Castaños with the victors of Baylen
In this account of the wer the losscs and numbers engaged in diferent bailles are given approximately only; and the former inchude killed, wounded and missing. Historians differ much on these malters.
'It was not, bowever, signed at Cintra, but at Lisbon. and was mainly megotiated near Torres Vedras.
The two latier were recalled from the Peninsula: Sir Arthur Wellesley bad procesded to London upon leave. and had only signed Wellesley had procesded to London upon leave. and
(34,000) west and asuth of Tudele and near Logrotio; Blake (32,000) east of Reynosa, having captured Bilbio; Count de Betwedere (11,000) near Burgos; rescrves (57,000) were assembling about Segovia, Talavera and Condova; Catalonia was beld by 33,000 , and Madrid had been reoccupied.

Moore had to decide whether to join Baird by sea or land. To do so by sea at this season was to risk delay, while in moving by land he would have the Spanish armies between him and the French. For these reasons be marched by land; and as the roads north of the Tagus were deemed impassable for guns, while transport and supplies for a large force were also difficult to procure, he sent Sir Jobn Hope, with the artillery, cavalry and reserve ammunition column, south of the river, through Badajoe to Almaraz, to move thence througb Talavera, Madrid and the Escurial Pass, involving a considerable détour; while he himself with the infantry, marching by successive divisions, took the shorter roads north of the Tagus through Coimbra and Almeida, and also by Alcantara and Coria to Ciudad Rodrigo and Salamanca. Baird was to move south through Galicia to meet him, and the army was to concentrate at Valladolid, Burgos, or whatever point might seem later on to be best. But as Moore was moving forward, the whole situation in Spain changed. Napolcon's forces, now increased to some 200,000 men present and more following, were assuming the offensive, and he himself on the zoth of October-had left Paris to place himself at their head. Before them the Spaniards were routed in every direction: Castaños was defeated near Logrofio (Oct. 27); Cattatios and Palalox at Tudela (Nov. 23); Blake at Zornoza (Oct. 29), Espinoss (Nov. 11) and Reynosa (Nov. 13); and Belvedere at Gamonal, near Burgos (Nov, 10). Thus when Moore reached Salamanca (Nov. 28) Baird was at Astorga; Hope at the Escurial Pass; Napoleon himself at Aranda; and French troops at Valladolid, Arevalo and Segovia; so that the French were nearcr than either Baird or Hope to Moore at Salamanca. Moore was ignorant of their exact position and strength, but he knew that Valladolid had been occupied, and ∞ his first orders were that Baird should fall back to Galicia and Hope to Portugal. But these were soon changed, and he now took the Important resolution of striking a blow lor Spain, and for the defenders of Madrid, by attacking Napoleon's communications with France. Hope having joined him through Avila, and magazines having been formed at Benavente, Astorga and Luso, in case of retreat in that direction, he moved forward, and on the 13th of December approached the Douro, at and near Rueda eest of Taro. Here he learnt that Madrid had fallen to Napoleon (Dec. 3) after he had by a brilliant charge of the Polish lancers and chasseurs of the Guard forced the Somosietra Pass (Nov. 30) and in another action stormed the Retiro commanding Madrid itself (Dec. 3); that the French were pressing on towards Lisbon and Andalusia; that Napoleon was unaware of his vicinity, and that Soult's corps, isolated on the Carrion River, had been ordered towards Benavente. He then finally decided to attack Soult (intending subsequently to fall back through Galicia) and ordered up transports from Lisbon to Corunna and Vigo; thus changing his base from Portugal to the north-west of Spain; Blake's Spanish army, now rallying under the marquis de la Romana near Leon, was to co-operate, but was able to give little effective aid.

On the zoth of December Baird joined Moore near Mayorga, and a brilliant cavalry combat now took place at Sahagun, in which the British hussar brigade distinguished itselt. But on the $23 r d$ of Deeember, when Moore was at Sahagum and about to attack Soult, he learnt that overwhelming French forces were hastening towards him, so withdrew accoss the Esla, near Benevente (Dec. 18), destroying the bridge there. Napoleon, directly he realized Moore's proximity, had ordered Soult to Astorga to cut him off from Galicia; recalled his other troops from their march towards Lishon and Andalusia, and, with 50,000 men and 1 go guns, had leit Madrid himself (Dec. 28). He traversed over 100 m . in less than five days acrust the snowcovered Escurial Pass, reaching Tordesillas on the Douro on the 20th of Derember. Hence he wrote to Soult,"II the Engtish
pass to-day in their position (which he believed to be Sahagun) they are lost." But Moore had passed Astorga by the 31st of December, where Napoleon arrived on the ist of January 1809. Thence he turned back, with a large portion of his army towards France, leaving Soult with over 40,000 men to follow Moore.
On the "Retreat to Corunns" fatigue, wet and bitter cold, combined with the sense of an enforced retreat, shook the discipline of Moore's army; but he reached Corunna on the aith of January i8og, where he took up a position across the rond from Lugo, with his left on the river Maro. On the rath of January the transports arrived; and on the \mathbf{t} th Soult atlacked. anute of In this battle the Freach numbered about 20,000 with Corumen. 40 guns; the British 15,000 with 9 very light guns. denouery 16, Soult failed to disiodge the British, and Moore was 1503. about to deliver a counter-attack when he himseli fell mortally wounded. Baird was also wounded, and as night was approaching, Hope suspended the advance, and subsequently embarked the army, with scarcely any further loss. The British casualies were about 1000, the French 2000. When tbe troops landed in England, half clothed and hall shod, their leader's conduct of the campaign was at first blamed, but bis reputation as a general rests soidily upon these facts, that when Napolcon in person, baving nearly 300,000 men in Spain, had stretched forth his hand to seize Portugal and Andalusia, Moore with 30,000, forced him to withdraw it, and follow him to Corunne, escaping at the same time from his gratp. Certainly a notable achievernent.

Campaign in Porlugal and Spain, 1809.-On the aznd of April 1800 Sir Arthur Wellesley reached Lisbon. By this time, French armies, to a great extent controlled by Nnpoleon from a distance, had advanced-Soult from Galicia to capture Oporto and Lisbon (with Gencral Lapisse from Salamanca moving on bis left towards Abrantes) and Marshal Victor, still farther to the left, with a sicge train to tale Badajoz, Mcrida and subsequently Cadiz. Soult (over 20,000), leaving Ney In Calicia, had taken and sacked Oporto (March 29, $\mathbf{1 8 0 9 \text {); but the Portuguese }}$ having closed upon his rear and occupied Vigo, he balted, detaching a force to Amarante to keep open the road to Braganza and asked for reinforcements. Vietor had crossed the Tagus, and defented Cuesta at Medellin (March 28, 180g); hut, surtounded by insurgents, he also had halted; Lapisse had joined him, and together they were near Merida, 30,000 strong. On the allied side the Brilish (25,000), including some German auxillaries, were about Leiria: the Portugucse regular troops ($\mathbf{t} 6,000$) near Thomar; and some thousands of Portuguese militia were observing Soult in the north of Portugal, a body under Silveira being at Amarante, which Soult was now approaching. Mach progress had been made in the organization and training of the Portuguese levies; Major-General Wiilinm Carr Beresford, with the rank of marshal, was piaced at their head. Of the Spaniards, Palafox, after his defeat at Tudela had most gallantiy defended Saragossa a second time (Dec. 20, 1808-Feb. 20, 1809); the Catalonians, after reverses at Molins de Rey (Dec. 21, $\mathbf{1 8 0 8}$) and at Valls (Feh. 25, 1809) had taken refuge in Tarragona; and Rosas had fallen (Dec. 5, 1808) to the French general Gouvion St Cyr wha, baving relieved Barcelona, was besieging Gcrona. Romatia's force was now near Orense in Galicia. A supreme junta had been formed which could nominally assemble about 100,000 men, but jealousy anong its members was rift, and they still declined to appoint any commander-in-chief.
On the 5th of May 1809, Wellesley moved towards the river Douro, having detached Beresford to scize Amarante, from which the French had now driven Silveira. Soult mange of expected the passage of the Douro to be attempted the boub near its mouth, with fishing craft; but Wellesley, by May 12,1809. a daring surprise, crossed (May 12) close above Oporto, and also by a ford higher up. After some fighting Oporto was taken, and Soult driven back. The Portuguese being in his rear, and Wellesley closing with him, the only good road of retreet available lay through Amarante, but he now learsed that Beresford had taken this important point from Silveira; so the was tben compelled, abandoning his guns and
much baggage, to escape, with a toes of some 5000 men, over the mountains of the Sierra Catatina to Salamonde, and thence to Orense.

During the above operations, Victor, with Lapisse, had forced the passage of the Tagus at Alcantara but, on Wellesley returning to Abrantes, he retired. News having been recejved that Napoleion had suffered a serious check at the battle of Aspern, near Vienna (May 22, 180g), Wellesley next determined-lenving Beresford (20,000) ncar Ciudad Rodrigo-to move wilh 22,000 men, in conjunction with Cuesta's Spanish army (40,000) towards Madrid against Victor, who, with 25,000 supported by King Joseph (50,000) covering the capital, was near Talavera. Sir Robert Wilson with 4000 Portuguese from Salamanca, and a Spanish force under Vencgas (15,000) from Carolina, were to co-operate and occupy Joseph, by closing upon Madrid. Cuesta, during the advance up the valley of the Tagus, was to occupy the pass of Batios on the left flank; the Spanish authorities were to supply provisions, and Venegas was to be at Arganda, near Madrid, by the 22nd or 23rd of July; but none of these arrangements were duly carried out, and it was on this that the remainder of the campaign turned. Writing to Soult from Austria, Napoleon had placed the corps of Ney and Morticr under his orders, and said: "Wellesley will most likely advance by the Tagus against Madrid; in that case, pass the mountains, fall ob his flank and rear, and crush him."
By the zoth of July Cucsia had joined Wcllesley at Oropesa; and both then moved forward to Talavera, Victor falling back before them: hut Cuesta, irritable and jealous, sutch of
 counter-ordered it is said by the Spanish junta-did Moly 28
not go to Arganda, and Wison, though he advanced close to Madrid, was forced to rctire, so that Joseph joined Victor, and the united force attacked the Allies at Talavera de la Reina on the Tagus. The battle lasted for two days, and ended in the defeat of the French, who fell back towards Madrid. ${ }^{\text {I }}$ Owing to want of supplies, the British had fought in a hall-starved condition; and Wellesley now learnt to his surprise that Soult had passed the mountains and was in his rear. Having turned about, he was on the march to attack him, when be heard (Aug. 23) that not Soult's corps alone, but thrce French corps, had come through the pass of Batos without opposition; that Soult himself was at Naval Moral, between him and the bridge of Almaraz on the Tagus, and tha! Cuesta was retreating from Talavera. Welleslcy's force was now in a dangerous position: but by withdrawing at once across the Tagus at Arzolispo, he reached Jaraicejo and Almaraz (by the south bank) blowing up the bridge at Almaraz, and thence moved, through Merida, northwards to the banks of the Agucda, commencing to fortify the country around Lisbon.
Elsewhere in the Peninsula during this ycar, Blake, now in Catalonia, after routing Suchet at Aicaniz (May 23, 1800), was defealed by him at Maria (June 15) and at Bclchite (June 18); Venegas, by King Joseph and Sćbastiani, at Almonacid on the nith of August; Del Parque (20,000), after 2 previous victory near Salamanca (Oct. 18), was overthrown at Alba de Tormes by Gencral Marchand (Nov. 28): the old forces of Vencgas and Cuesta (50,000), now united under Arcizaga, were decisively routed by King Joscph at Ocaña (Nov.19); and Gerona after a gadlant defence, had surrendered to Augcreau (Dec. 10).

Sir Arthur Wellosley was for this campaign created Baron Douro and Viscount Wellington. He was made captain-general by Spain, and marshal-general by Portugal. But his experience alter Talovera had been akin to that of Moore; his expectations from the Spaniards had not been realized; he had been almost intercepted by the French, and he had narrowiy escaped from a critical position. Henceforth he resisted all proposals for joint operations, on any large scale, with Spanish armics not under his own direct command.
${ }^{1}$ After the battle the Light Division, under Robert Craufurd: joined Wellestey. In the endeavour to reach the field in time is had covered, in heavy marching order, over 50 m . is 25 bours, in hot July weather.

Compaits in Porimsal, 1810.-Napoieon, having avenged Aspern by the victory of Wagram (July 6, 1809), despatched to Spain large reinforcements destined to increase his army there to about 370,000 men. Marshal Masséna with 120,000 , including the corps of Ney, Junot, Reynier and come of the Imperial Guard, was to operate from Salamanca against Portugal; but first Soult, appointed major-general of the army in Spain (equivalent to chicf of the staff), was, with the corps of Victor, Mortier and Sebastiani (70,000), to reduce Andalusim. Soult (Jan. 31, 1810) occupied Seville and escaping thence to Cadis, the Supreme Junte resigned its powers to a regency of five members (Feb. 2, 1810). Cadir was invested by Victor's corpe (Feb. 4), and then Soult halted, witing for Masstna, who arrived at Valladolid on the 1 sth of May.
In Egghod a party in parliament were urging the withdrawal of the British troops, and any reverse to the allied arms would have strengthened its hands. Wellington's policy was thus cantious and defensive, and he had already commenced the since famous lines of Torres Vedras round Lisbon. 'In June 1810 his headquarters were at Celorico. With about 35,000 British, 30,000 Portuguese reguler troops and 30,000 Portuguese militia, he watched the roads leading into Port ugal past Cindad Rodrigo to the north, and Badajoz to the sorth of the Tagus, as ulso the line of the Douto and the country between the Eliga and the Ponsul.
Soult having been instructed to co-operate hy taking Badajoz and Elvas, Masoena, early in Jone 1810, moved forward, and Ciudad Rodrigo surrendered to him (June 10). Neat puabing back a British force under Craufurd, be invested Almeida, taking it on the 27th of August. Then calling up Reynier who during this had moved on his left towards Alcantara, be marched down the right bank of the Mondego, and entered Viseu (Sept. 21). Wellington fell back before him down the left bank, ordering up Rowland Hill's force from the Badiajoz road, the peasantry having been previously called upon to destroy their crops and retire within the lines of Torres Vedras. A fitle north of Coimbre, the rosed which Massena followed crossed the Sierra de Bussaco (Busaco), a very strong position where Wellington resolved to offer him battle. Masséna, superior in numbers and over-confident, made a direct attack upon the heights on the 27th of September 18ro: his sedts of strength being about 60,000 , while that of the Allies Bestecos was about 50,000 , of whom nearly hall were Portuenpenper guese. After a stern conflict the French were st, 49M. repused, the loss being five generals and nearly 5000 men, while the Allies lost about 1300 . The next day Massena turned the Sierra by the Boyalva Pass and Sardso, which latter place, owing to an error, had not been occupied by the Portuguese, and Wellington then retreated by Coimbra and Leiria to the lines, which he entered on the rith of October, having within them fully 100,000 able-bodied men.
The celehrated "Lines of Torres Vedras" were defensive works designed to resist any army which Napolcon couid send

Comed
Torres
rowres
turnh against them. They consisted of three great hines, strengthened by about 150 redoubts, and earthworks oi various descriptions, mounting some 600 cannon; the outer line, nearly 30 m . long, stretching over beights north of Lisbon, from the Tagus to the sea. As Massena advanced, the Portuguese closing upon his rear retook Coimbra (Oct. 7), and when he neared the lines, astounded at their strength, be sent General Foy to the emperor to ask for reinforcements. After an effort, defeated by Hill, to cross the Tagus, he withdrew (Nov. 15) to Santarem. This practically closed Wellington's operations for the year 1810, his pollcy now being not to lose men in battle, but to reduce Masstna by hunger and distress.
In other parts of Spain, Augerean had takeh Hostalrich (May 10); captured Lerida (May 14); Mequinenza (June 8); and invested Tortosa (Dec. 15). The Spanish levies had beein unable to contribate much aid to the Allies; the French having subdued limost all Spain, and being now in possession of Cludad Rodrigo and Almcida. On the other hand Wellington still held Lisbon with parts of Portugal, Elvas and Badajoz, for Soult had not fit disposed to attempt the capture of the last two fortresses.

Campaign of 18 rir.-Napoleon, whose attention was now directed towards Rusia, refused to reinforce Massena, bnt enjoined Soult to aid him by moving against Badajoz. Soult, therefore, leaving Victor beforc Cadiz, invested Badajos (Jan. 26, 181I) and took it from the Spaniards (March 10). With the bope of taising the blockade of Cadia, a foree uider Sir Thomas Graham (afterwards Lord Lynedoch [q.v.1) left that harbour by sea, and joining with Spanish troops near Tarifa, advanced by fand against Victor's blockading force, a Spanish general, La Pelin, being in chief command. As they neared Barrosa, Victor attacked them, the Allies numbering in the battle about $\mathbf{1 3 , 0 0 0}$ with 24 guns, 4000 being British; the French 9000, actualiy engaged, with 14 guns; but with 5000 more a few miles off and others in the French lines. Hard fighting, chiefly between the French and British, now ensued, and at one time the Barrosa ridge, the key of the position teft by La Peha's orders, practically undefeaded, Betre of Amport marcia th1. fell into the Prench hands: but Graham by a resolute counter-attack regained it, and Vietor was in the end driven back. La Pefia, who had in the battle itself failed to give proper support to Graham, would not pursuc, and Graham declining to carry on further operations with him, re-entered Cadiz. The French afterwards resumed the blockade, to that although Barrosa was an allied victory, its object was not attained. The British loss was about 1200; the French 2000, 6 guns and an cagle.

On the day of the above battle Masstna, having deatroyed what guns he could not horse, and skilfully gained time by a feint against Abrantes, begen his retreat from before the lines, through Coimbra and Espinhal. His Massiate army was in serious distress; he was in want of food and supplies; most of his borses were dead, and his men were deserting. Wellington followed, directing the Portuguese to remove all boats from the Mondego and Douro, and to break up roads north of the former river. Beresford was detached to succour Badnjoz, but was soon recalled, as it had fallen to Sout, Ney, commanding Massena's rearguard, conducted the retreat with great ability. In the pursuit, Wellington adhered to his policy of husbanding his troops for fut ure offensive operations, and let sickness and hunger do the work of the sword. This they effectually did. Nothing could well exceed the borrors of Massena's retreat. Rearguard actions were fought at Pombal (March 10), Redinha (March 12) and Condeixa (March 13). Here Ney was directed to make a firm stand; but, ascertaining that the Portuguese were at Coimbra and the bridge there hroken, and fearing to be cut off also from Murcella, he burnt Condeixa, and marched to Cazal Nova. An action took place here (March 14) and at Foz d'Arouce (March 15). Wellington now sent off Beresford with a force to retake Badajoz; and MassEna, sacrificing much of his baggage and ammunition, reached Celorico and Guarda (March 21). Here he was attacked by Wellington (March 29) and, after a further engagement at Sabugal (April 3, 1811), he fell back through Ciudad to Salamanca, having lost in Portugal nearly 30,000 men, chiefly from want and disease, and 6000 in the retreat alone.

The key to the remaining operations of 18 rr lies in the importance attached by both Allies and French to the possession of the fortresses which guarded the two great roads from Portugad into Spain-Almcida and Ciudad Rodrigo on the northern, and Badajoz and Elvas on the southern road; all these except Elvas were in French hands. Wellington, on the gth of April $18 \mathrm{Ir}_{1}$ directed General Spencer to invest Almeida; he then set off himself to join Beresford before Badajoz, but after reconnoitring the fortress with his lieutenant he had at once to return north of the news that Massena was moving to relieve Almeida. On the 3rd of May Loison attacked him at Fuentes d'Onor near Almeida, and Massena coming up himself made a more serious attack on the 5th of May. The Allies numbered autho of about 33,000 , with 42 guns; the French 45,000 with Prowtea 30 guns. The battle is chiefly notable for the steadi- - momer ness with which the alled right, covered by the Light mef, mill. Division in equares, changed position in presence of the French

PENINSULAR WAR

cavalry; and for the extraordinary feat of arms of Captain Norman Ramsay, R.II.A., in charging through the French cavalry with his guns. Masstna failed to dislodge the Allies, and on the 8th of May withdrew to Salamanra, Almeids falling to Wellington on the 1ith of May 181x. The allied loss in the fighting on both days at Fuentes d'Onor was about xg00: the French 3000.

In the meantime Soult (with 23,000 men and 50 guns), advancing to relieve Badajoz, compelled Beresford to suspend antrb of the siege, and to take up a position with about 30,000 Atmors. men (of whom 7000 were British) and 38 guns May 16, behind the river Albuhera (or Albuera). Here E1HII. Soult attacked him on the 16 th of May. An unusually bloody battle ensued, in which the French efforts were chiefly directed against the allied right, hekd by the Spaniards. At one time the right appeared to bo broken, and 6 guns were iost, when a gallant advance of Sir Lowry Cole's division restored the day, Soult then falling back towards Seville. The allied loss was about 7000 (including about half the British foree); the French about 8000 .

After this Wellington from Almeida rejoined Beresford and the siege of Badajoz was continued: but now Marshal Marmont, having succeeded Massena, was marching southwards to join Soult, and, two allied assaults of Badajoz having failed, Wellington withdrew. Subsequently, leaving Hill in the Alemtejo, he returned towards Almeida, and with 40,000 men commenced a blockado of Ciudad Rodrigo, his headquarters being at Fuente Guinaldo. Soult and Marmont now fell back, the former to Seville, the latter to the valley of the Tagus, south of the pass of Batios.

In September, Marmont joined with the army of the north under General Dorsenne, coming from Salamanca-their total force being 60,000, with 100 guns-and succeeded (Sepl. 25) in introducing a convoy of provisions Into Ciudad Rodrigo. Before so superior a force, Wellington had not attempted to maintain the blockade; but on Marmont afterwards advancing towards bim, he fought a rearguand action with him at El Bodon (Sept. 25), notable, as was Euentes d'Onor, for the coolness with which the allied squares retired amidst the enemy's horsemen; and again at Fuente Guinaldo (Sept. 25 and 26) he maintained for 30 hours, with 15,000 men, a bold front against Marmont's army of 60,000 , in order to save the Light Division from being cut off. At Aldea de Ponte there was a further sharp engagement (Sept. 27), but Wellingtco taking up 2 strong position near Sabugal, Marmont and Dorsenne withdrew once more to the valley of the Tagus and Salamanca respectively, and Wellington again blockaded Ciudad Rodrigo.

Thus terminated the main operations of this year. On the 28th of October 1811 , Hill, by a very skilful surprise, captured Arroyo de los Molinos (between Badajoz and Trujillo), almost annihilating a French corps under Gérard; and in December 181 I the French were repulsed in their efforts to capture Tarifa near Cadiz. In the east of Spain Suchet took Tortosa (Jan. 1, I8ı1); Tarragonn (Junc 28); and Murviedro (Oct. 26), defeating Blake's relieving force, which then took refuge in Valencia. Macdonald also retook Eigueras which the Spaniarls had taken on the gth of April 181 I (Aug. 29). Portugal had now been freed from the French, but they still held Ciudad Rodrigo and Badajoz, the two main gates into Spain.

Campaign in Spain, 1812 .-The campaign of 8812 marks an important stage in the war. Napoleon, with the Russian War in prospect, had early in the year withdrawn 30,000 men from Spain; and Wellington had begun to carry on what be termed a war of "magazines." Based on rivers (the navigation of which greatly improved) and the sea, he formed dépots or magazines of provisions at many points, which enabled bim always to tale and leep the field. The Erench, on the other hand, had great difficulty in establishing any such reserves of food, owing to their practice of depending for sustenance entirely upon the country in which they werc quartered. Wellington assumed the offensive, and by various movements and feints, aided the guerrilla bands hy forcing the French corps to assemble in their
districts, which not only ereatly harassed them but also materially hinclered the combination of their corps for concerted action Having secretly got a battering train into Almeida and directed Hill, as a blind, to engage Soult by threatening Badajas, he suddenly (Jan. 8, 18x2) besieged Ciudad Rodrigo.
The French, still numbering nearly 200,000, now held the followiag positions: the Army of the North-Dorsenne (48,000) was about the Pisuerga, in the Asturias, and along the northern coast; the Army of Portugal-Marmont (50,000)-mainly in the valley of the Tagus, but ordered to Salamanca; the Army of the South-Soult $(55,000)$-in Andalusis; the Army of the Centre -Joseph ($\mathbf{x}, 000$)-sbout Madrid.
The siage of Ciudad Rodrigo was calculeted in the ordinary course to require twenty-four days: but on it becoming known that Marmont was moving northward, the ascault was delivered after twelve days only (Jan. 19). Tho gloded gallantry of the troops made it successful, though with Rodrkor the loss of Generals Craufurd and McKianon, and 1300 deataery ${ }^{5}$ men, and Marmont's battering train of iso guns here 5, fits. fell into the allied hands. Then, after a feint of passing on int Spain, Wellington rapidly marched south and, with 22,000 men, leid siege to Badajoz (March 17, 1812), Hill with 30,000 covering the siege near Merida. Wellington was hampered by want of tima, and had to assault prematurely. Soult and Mermont having begun to move to relieve the garrison, the assault was delivered on the night of the 7th of April, and snefeof though the assailants failed at the breaches, the aedahas. carnage at which was terrible, a very daring escalade merb ${ }^{\circ} I$ to of one of the bestions and of the castle succeeded, Aonit, and Badajoz fell, Soult's pontoon train being taken in it. After the assault, some deplorable excesses were committed by the victorious troops. The alliod loss was 3600 in the assault alovie and 5000 in the entire siege.

The Allies had now got possession of the two great gates into Spain: and Hill, by an enterprise moas akilfully carried out. destroyed (May 19) the Tagus bridge at Almaras, by which Soult to the south of the river chiefly communicated with Miarmont to the north. Wellington then, astentatiously making preparations to enter Spain by the Badajoz line, once more turned northward, crossed the Tormes (June 17, 1812), and advanced to the Douro, behind which the French were drawn up. Marmont had erected at Salamanca some strong forts, the reduction of which occupiod Wellington ten days, and cost him 600 men. The Allies and French now faced each other along the Douro to the Pisuerga. The river was high, and Wellington hoped that want of supplies would compel Marmont to retire, but in this he was disappointed.

On the isth of July 1812, Marmont, after a feint against Wellington's left, suddenly, by a forced march, turned his right, and made rapidly towards the fords of Huerta and Alba on the Tormes. Some interesting mancuvres now took place, Wellington moving parallel and close to Marmont, but more to the north, making for the fords of Alder Lengua and Santa Marta on the Tormes nearer to Salamanca, and being under the belief that the Spaniards beld the castle and ford at Alba on thast river. But Marmont's manocuvring and marching power had been underestimated, and on the 21st of July while Wellington's position covered Salamanca, and bul indirectly his line of communications through Ciudad Rodrigo, Marmont had reached a point from which he hoped to interpose between Wellington and Portugal, on the Ciudad Rodrigo road. This he endeavoured to do on the 22nd of July 1812, which brought on the important battle of Salamanca (g.v.) in which on the important battle of Salamanca (q.v.) in which Antto ef
Wellington gained a decisive victory, the French Sememean folling back to Valladolid and thence to Burgos. dutre 23. Wellington entered Valladolid (July 30), and thence 1 ane marched against Joseph, who (July 21) had reached Blasco Sancho with reinforcements for Marmont. Joseph retired before him, and Wellington entered Madrid (Aug. 12, 1852), where, in the Retiro, 1700 men, 180 cannon, two eagles, and a quantity of stores were captured. Soult now raised the siege of Cadiz (Aug. 26), and evacuating Andalusia joined Sucbel
with some 55,000 meen. Wellingtor then brought up Hill to Madrid.
On the ist of September 1812, the French armies having begun once more to collect together, Wellington marched against the serge eftre Army of the North, now under General Clausel, and cares of
angen
saptis is act. 11 . laid siege to the castle of Burgos (Sept. 19) to secure the road towards Sentander on the coast. But the strength of the castie had been underrated; Wellington had insufficient siege equipment and transport for heavy guns; five assaults failed, and Soult (baving left Suchet in Valencia) and also the Army of Portugal were both approaching, so Wellingtom withdrew on the night of the anove arst of October, and, directing the evacuation of Bren Benus Madrid, commenced the "Retreat from Burgos." In this retreat, although military operations were stilfully conducted, the Allies lost 7000 men , and discipline, ns in that to Corunna, became much relaxod.

By November 18 riz, Hill having joined him at Salamanca, Wellington once more had gone into cantonments near Ciudad Rodrigo, and the French armies had again scattered for convenience of supply. In spite of the failure before Burgos, the successes of the campaign had been brilliant. In addition to the decisive victory of Salamanca, Madrid had been occupled, the siege of Cadiz raised, Andalusia freed, and Ciuded Rodrigo and Badajoz stormod. Early in January also the French had abandoned the siege of Tarifa, though Valencia had surrendered to them (Jan. 9). One important result of the campaign was that the Spanish Cortes nominated Wellington (Sept. 22, 1812) to the unfettered command of the Spanish armica. For the operations of this campaign Wellington was created earr, and subsequently marquess of Wellington; duke of Cludad Rodrigo by Spain, and marquis of Torres Vedras by Portugal.

Campaign in Spain and the South of Franct, 1813.-At the opening of 1813 , Suchet, with 63,000 men, had been left to hoid Velencia, Aragon and Cataionia; and the semainder of the Freach (about 137,000) occupied Leon, the central prowinces and Biscay, guarding ako the communications with France. Of these about 60,000 under Joieph were more immediately opposed to Wellington, and posted, in scattered detachments, from Toledo and Madpid behind the Tormes to the Douro, and aloag that river to the Esla. Wellington had further brganized the Spanish forces-Castafos (40,000), with the guerrila bands of Mina, Longe and others, was in Galicia, the Asturias and mothern Spain; Copons (10000) in Catalonia; Elio (20,000) in Murcia; Del Parque ($\mathrm{z} 2 ; 000$) in the Sierra Morena, and O'Donell (13000) in Andalusiz More Portuguese troopa had been mised, and reinforcements received from England, so that the Allies, without the Spaniards above alluded to, now numbered some 75,000 men, and from near the Coa watched the Douso and Tormes, their line strotching from their left near Lamego to the pass of Banos, Hill being on the right. The district of the Tras-oo-Montea, north of the Douror about the Tamega, Tua and Sabor, was so rugged that Wellington wes convinced that Joseph would expect him to advance by the aonth of the river. He therefore, moving by the south bank himself with Hill, to coofirm Joaeph in this expectation, crossed the Tormos near and above Salatnanca, haviag previously-which was to be the decisive movement-detached Grahas, with 40,000 mes, to make his way, through the difficule district above mentioned, towards Braganza, and then, joining whit the Spaniarda, to turn Joseph's right. Grahash, cromaing the Downo near Lamego, carsied out bis laborious march with great energy, and Joneph retired precipitately from the Douro, behind the Pisuerga. The allied army, mised by the junction of the Spanish troops in Galicia to 90,000, now concentrated near Toro, and moved towards the Pisserga, when Joseph, blowing ap the castle of Burgos, fell back behind the Ebro. Once mare Wellington turned his right, by a sweeping movetrent through Rocamuade and Puente Arenas near the source of the Ehre, when he retreated behind the Zedorra ncar the town of Vitoria.

Santander was now evacuated by the French, and the allied line of communications was changed to thit port. On the aoth
of June Wellington encamped along the river Bayas, and the next day attacked Joseph. For a description of the decisive battie of Vitoria (June 21, 18ı3), see Viroria. In it King Joseph met with a crusbing defeat, and, after it, the wreck of his army, cut off from the VitoriaBayoone road, escaped towarda Pampeluna. Within Bethe af Vmaris, droes 31 , 1018. a few days Madrid was evacuated, and all the French forces, with the exception of the garrisons of San Sebastian (3000), Pampehuna (3000), Santona (1500), and the troops under Suchet holding posts in Catalonia and Valencis, had retired across the Pyrenees into France. The Spanish peninsula was, to all intents and purposes, free from foreign domivation, elthough the wat was yet far from conduded. The French struggled gallantly to the close: but now a long succission of their leaders -Junot, Soult, Victor, Massina, Marmont, Joseph-had been in turn forced to recoil before Wellington; and while their troops fought henceforward under the depressing memory of many defeats, the Allies did so under tbe inspiriting influence of great successes, and with that absolute confidence in their chief which doubled their fighting power.

For this decisive camprign, Wellington mas made a field marsial in the British army, and created duke of Victory ${ }^{\prime}$ by the Portuguesc govemment in Brazil. He now, with aboul 8o,000 men, took up a position with his left (the Spanisrds) on the Bidasson near San Sebastian. Thence his line stretched along the Pyrenees by the passes of Vera, Echallar, Maya and Roncesvalles, to Altobiscar; his immediate object now being to reduce the fortresses of San Sebastian and Pampełuna. Not having sufficient suatiried for two sieges, he laid siege to San Sebastian only, and blockaded Pampeluna. Sir Thomes Graham commenced the active siege of San Sebastian on the roth of July 1813, but an Soult was approaching to its relief, the wesault was ordered for daylight on the 24th. Uniortunately sioversoe a conflagration breaking ont near the breachea sebeation, caused it to be postponed until nightfall, when, the dely no-24\% breaches in the interval having been strengthened, JIIJ. it was delivered unsuccespully and with heavy loss. Wellington then suspended the sigge in order to meet Soult, who endeavoured (July 25) to turn the allied right, and reach Pampeluna: Attacking the passes of Maya and Roncervallea, he obliged their defenders to retire, after sharp fighting, to a position mertor of close to Sorauren, which, with 25,000 men, he the poms attempted to carry (July 28). By this time Welling- aovaduby 25 tor had reached it from the allied left; reinforcements 0 A Angurta, wert pressing up on both sides, and about 51,000 allied 1 IIIs. troops faced the. French. A struggle, described by Wellington as "hludgeon work," now ensued, but all efforts to dislodge the Allies having failed, Soult, withdrawing, mancruvred to his right towards San Sebastinn. Wellington now assumed the offensive, and, in a saries of engagements, drove the French back (Aug. 2) beyond the Pyrenees. These included Roncesvallea and Maya (July 25); Sormuren (July 28 and 30); Yanai (Aug. 1); and Echallar and Iventelly (Aug. 2), the total losses in them being about-Allies under 7000, French 10,000. After this, Wellington renewing the siege of San Sebastian carried the place, excepting the castle, after a heavy expenditure of life (Aug. 31). Upon the day of its fall Soult attempted to relieve it, but stemention in the combats of Vera and St Marcial was repulsed. Sebacians The castle surrendered on the oth of September, Avenetil. the losses in the entire sicge having leen about- 1812 Allies 4000 , French $\mathbf{2 0 0 0}$. Wellington next determined to throw his left across the river Bidasson to strengthen his own pocition, and secure the port of Fuentertabia.

Now commenced a series of celebrated river passages, which had to be effected prior to the further invasion of France. At daylight on the 7th of October 1813 he crossed the Bidassoa in seven columns, and attacked the entire French position, which stretched in two heavily entrenched lines from north
${ }^{1}$ Duqua da Victoria, often incorrectly duke of Vitoria. The coincidence of the title with the place-name of the bnttle which had not yet been fought when the titie was conferced, is curious, bist accidental.
of the Irun-Bayome road, along mountain spurs to the Grest Rhune, 2800 ft . high. The decisive movecnent was a pasage in

Revango

of flo
guracea,
Ocdabert,
Clle right in time to retrieve the day. His works fell in succession aiter hard fighting, and he withdrew towards the river Nivelle. The loss was about-Allies, 1600; French, 1400 . The passage of the Bidassoa "was a general's not a soldiars' battle" (Napitx).

On the 3rst of October Pampeluna surrendered, and Wellington was now anxious to drive Suchet from Catalonia before further invading France. The British government, however, in the intercsts of the continental powers, urged an immediate advance, 50 on the night of the gth of November 1813 he brought up his right from the Pyonezan pasges to the northward of Maytand towards the Nivelle. Soult's army (about 79,000), in three entrenched lines, stretched from the sea in front of St Jean de Luz along commanding ground to Amotz and thence, Behind the river, to Mont Mondarin near the Nive. Each axmy had with it about 100 guns; and, during a heavy cannomsde, Wellington on the roth of November 1813 attacked this extended pureage of position of 16 m . in five columns, them being od two Nmolt, directed that after carrying Souit's advanced works Nov. 10. a mass of about 50,000 men converged towards the 1014 French centre aear Amotz, where, after hard fighting, it awept away the 18,000 of the second line there opposed to it, cutting Soult's army in two. The French right then fell hack to St Jean de Luz, the left towards points on the Nive. It was now late and the Allies, after moving a few miles down both banks of the Nivelle, hivouacked, while Soult, taking advantage of the respite, withdrew in the night to Bayonne. The allied loss was aboul 2700; that of the French 4000, 51 guns, and all their magazines. The next day Wellington closed in upon Bayonme from the sea to the left bank of the Nive.

After this there was a period of comparative inaction, though during it the French were driven from the bridges at Urdains and Cambo. The weather had become bad, and the Nive unfordable; but there were additional and serious causes of delay. The Portuguese and Spanish authorities were neglecting the payment and supply of their troopa. Welligtom had also difficultics of a slmilar kind with his own governmont, and also the Spanish soldiers, in revenge for many French outrages, had become guilty of grave excesses in France, so that Wellington took the extreme step of sending 25,000 of them back to Spain and resigning the command of their army, though his resignation was subsequently withdrawn. So great was the tension at this crisis that a rupture with Spain seemed possible. These mitters, however, having been at length adjusted, Wellington, who in his cramped position between the gea and the Nive could not use his cavalry or artillery effectively, or interfere with the French supplies coming through St Jean Pied de Port, determined to occupy the right as well as the left bank of the Nive. He could not pass to that bank with his whole force while Soull held Bayonne, without exponing bis.own commanications through Irun. Therefore, on the gth of Detember 1813 , after making a demonstration elewhore, he effected the passage with parsace of a portion of his force only under Hill and Beresford, dueNros near Ustaritz and Cambo, his loss being slight, and Dos \%, thence puehed down the river towards Villefranque, 1813. where Soult barred his way across the road to Bayonne. The allied army was now divided into two portions by the Nive; and Soult from Bayonne at once took advantage of his central positlon to attack it with all his available force, first on the left bank and then on the right. On the morning of the roth of December he fell, with 60,000 men and 40 guns, upon Hope, who with 30,000 men and 24 guns held a position from the sea, 3 m . south of Biarritz on a ridge behind two lakes (or tanks) through Arcangues towards the Nive. Deaperate fighting now ensued, but fortunately, owirg to the internected
ground, Soult was compelled to adivance alowly, and in the end, Wellington coming up with Beresford from the right hank, the French retired baffied. On the 11th and 22 th of Bextiss December there were engagements of a less severe before character, and finally on the 13 th of December Soult Anvaace, or with 35,000 men made a vehement attack up the zanom right hank of the Nive againat Hill, who with about Docs $10-15$, 14,000 men occupied some heights from Villefranque sose
past St Pierre (Lostenia) to Vieux Moguerre. The conflict about St Pierre (Lostania) was one of the most bloody of the war; hut for hours Hill maintained his ground, and fioally repulsed the French before Wallington, delayed by his pontcoat bridge over the Nive having been swept away, arrived to his aid. The lowean in the four days' fighting in the battles before Bayonne (or battles of the Nive) werc-Allies about 5000 , French about 7000 . Both the British and Portuguese artillery, as well as infantry, greatly distinguished themselves in theso batties.

In eastern Spain Suchet (April 11, 1813) had defeated Ello's Murcians at Yecla and Villena, but was subsequently routed by Sir John Murray ${ }^{1}$ near Castalla (April 13), who then benieged Tarragona. The siege was abandoned after a time, but was later on renewed hy Lord W. Bentinck. Suchet, aiter the battle of Vitoria, evacuated Tarragona (Aug. 17) but defeated Bentinck in the combat of Ordal (Sept. 83).

Campaign in the Soulh of France, 1814.-When operations recommenced in Fehruary 18is the Freinch line extended from Bayonne up the north bank of the Adour to the Pan, thence hending south along the Bidoure to St Palais, with advanced posts on the Joyeuse and at St Jean Pied de Port. Wellington's Left, under Hope, watched Bayonme, while Beresford, with Hill, observed the Adour and the Joyeuse, the right trending back till it reached Urcuray on the St Jean Pied de Port road. Excluslve of the garrison of Bayonne and other places, the available field force of Soult numbered about 41,000 , while that of the Allies, deducting Hope's force observing Bayonne, was of muxh the same strength. It had now become Wellington's object to draw Soult away from Bayonne, in order that the allied army might, with less loss, cross the Adour and lay siege to the place on both banks of the river.

At lta mouth the Adour was about 500 yds. wide, and its entrance from the sea by mall vessels, except in the frest weather, was a perilous undertaking, owing to the shifting sands and a dangerous bas. On the ather band, the deep sandy soil near itte banks made the trensport of bridging maleried by land laborfous, and almost certain of discovery. Wellington, convinced that no effort to hridge below Bayomse would be expected, decided to attempt it there, and collected at St Jean Pied de Port and Pasages a large number of country veaceis (termed chafs-marters). Then, leaving Hope with 30,000 men to watch Bayonne, he began an enveloping movement roumd Soslt's left. Hill on the 14th and 25 th of February, after a combat at Garris, drove the French posts beyond the Joyeuse; and Wellington then pressed these troope back over the Bidoure and Gave ${ }^{2}$ de Mauleon to the Gave d'Olerom. Wellington's object in this was at once attained, for Soult, leaving only 10,000 men in Bayonne, came out and concentrated at Orthes on the Pau. Then Wellington (Feb. 19) proceeded to St Jean de Lus to superintend the despasch of bonts to the Adour. Uniavourahle weather, however, compelled him to leave this, to Sir John Hope and Admirnl Penrose, so returning to the Gave d'Oleron he ctossed it, and faced Soult on the Pan. (Feh. 25). Hope in the meantime, after feints higher up the Adour, stacceeded (Feb. 22 and 23) in passing 600 men across the river in boats. The nature of the grownd, and there being no suapicton of an attempt at this point, led to the French coming out very tardily to

Parato of

 ano Actore And 28: 2x, 3 ClH oppose them; and when they did, some Congreve rockets (then a novelty) threw them Into comfasion, so that the right bank was held until, on the morning of the 24th, the flatille of${ }^{1}$ Commnoder of a British expedition from the Mediterrancan islands.
2 "Give" in the Pyrences means a mountain mpram or torneath
chasse-morbes appeared from St Jean de Iure, preceded by metr of-war boats. Several men and vessels were lost in crossing the bar; but by noon on the 26 th of February the bridge of 26 vessels had been thrown and secured; batteries and a boom placed to protect it, 8000 troops pussed over, and the enemy's gunboats driven up the river. Bayonne was then invested on both banks as a preliminary to the siege.

On the 27th of February Wellington, having with little loss effected 'the passage of the Pau below Orthes, attacked Soult. In this battle the Allies and Franch were of about equal strength (37,000): the former having 48 guns, the latter 40 . Soult held Butch of a strong position behind Orthes on heights commandOrrbes, ing the roads to Dax and St Sever. Beresford was Pra 3F. directed to turn his right, if possible cutting bim off 414. from Dar, and Mill his left towards the St Sever road. Beresford's attack, after hard fighting over difficult ground, was repulsed, when Wellington, perceiving that the pursuing French had left a central part of the beights unoccupied, thrust up the Light Division into it, between Soult's nght and centre. At the same time Fill, having found a ford above Orthes, was turning the French left, when Soult retreated just in time to save being cut off, withdrawing towards St Sever, which be reached on the 28th of February. The allied loss was about 2000; the French 4000 and 6 guns.

From St Sever Soult tumed eastwards to Aire, where he covered the roads to Bordeaux and Tonlouse. Beresford, with 12,000 men, was now sent to Bordeaux, which opened its gates as promised to the Allies. Driven by Hill from Aive on the and of March $\mathbf{1 8 r}$, Soult retired by Vic Bigorre, where there was a combat (March r9), and Tarbes, where there was a severe action (Msirch 20), to Toulouse behind the Garonne. He endeavoured also to rouse the Franch peasantry against the Allies, but in vain, for Wellington's justice and moderation afforded them no grievances. Wellington wished to pass the Garonne above Toulouse in ender to attack the city from the south-its weakest wide-and interpose between Soult and Suchet. But finding it imipracticable to operate In that direction, he left Hill on the wrest side and crossed at Grenade below Toulouse (April 3). When Beresford, who had now rejoined Wellington, had passed over, the bridge was swept apay, which left him isolated on the sight bank. But Soult did not attack; the bridge (April 8) was restored; Wellington crossed the Garome and the Ers, and attacked Soult on the roth of Aprii. In the battie of Tonlouse the French numbered about 40,000 (exclusive of the local Natiomal Guards) with 80 guns; the Alliss under 52,000 with 64 Eetsen of guns. Soult's position to the north and east of the Taptices city was exceedingly strong, consiating of the canal Lepllice of Languedoe, some fortified cuburbs, and (to the extreme east) the commanding ridge of Mont Rave, crowned with redoubts and earthworks. Werington's columns, under Beresford, were now called upon to make a flank march of some two milles, under artllery, and occasionally musketry, fire, being threatened also by cavairy, and then, while the Spanish troops assaulted the north of the ridge, to wheel up, mount the eastern slope, and carry the works. The Spaniards were repulsed, but Beresford gallantly took Mont Rave and Soult fell back behind the canal. On the rath of Aptil Wellington advanced to invest Toulouse from the south, but Soult on the night of the isth had retreated towards Villefranique, and Wellington then entered the city. The allied loss was about 5000; the French 3000. Thus; in the last great battle of the wrar, the courage and resolution of the soldiers of the Penifisular army were conspicuously illust rated.

On the 13th of April 1814 officers arrived with the announcement to both armies of the capture of Parls, the abdication of Napoleon, and the practical conclusion of peace; and on the 18th a convention, which inciurded Suchet's force, was entered into between Wellington and Soult. Unfortunately, after Toulouse had fallen, the Allies and French, in a sortie from Bayonne on the 34th of April, each lost about 1000 men: 30 that some $\mathbf{2 0 , 0 0 0}$ men fell after peace had virtuaily been made.

In the east, during this year ($x 8 \mathrm{z4}$), Sir W. Chinton had, on
the 16th of January, attacked Suchet at Molins de Rey and blockaded Barcelona (Feb. 7); the French posts of Lerida, Mequinenza and Monzon had also been yiclded up, and Suchet, on the and of March, had crossed the Pyrences into France Figueras surrendered to Cuesta before the end of May; and peace was formally signed at Paris on the 3oth of May.

Thus terminated the long and sanguinary struggle of the Peninsular War. The British troops were partly sent to England, and partly emharked at Bordeaux for America, with which country war had broken out (see Anerican War or 18y2-15): the Portugucse and Spanish recrossed the Pyrenees: the French army was dispersed throughout France: Louis XVIII was restored to the French thronc: and Napoleon was permitted to reside In the island of Elba, the sovereignty of which had been conceded to him by the allied powers. For the operations of this campaign Wellington was created marquess of Dours and duke of Wellington, and peerages were conferted upon Beresford, Graham and Hill.
The events of the Peninsular War, especially as narrated in the Wellington Despatches, are replete with instruction not only for the soldier, but also for the civil administrator. Even in a brief summary of the war one salient fact is noticeable, that all Wellington's reverses were in conncxion with bis sieges, for which his means were never adequate. In his many batten he was always victorious, his strategy eminently successful, his organixing and administrative power exceptionally great, his practical resource unlimited, his soldiers most courageous; but he never had an army fully complete in its departments and warlike equipment. He had no adequate corps of sappers and miners, or transport train. In 1812 toois and material of war for his sieges were often insufficient. In $\mathbf{8 1 1 3}$, when he was hefore San Sebastian, the ammunition ran short; a battering train, long demanded, reached him not only some time after it was needed, but even then with only one day's provision of shot and shell. For the siege of Burgos heavy guns were avait able in store on the coast; but he neither had, nor could procure, the transport to bring them up. By resource and dogged determination Wellington rose superior to almost every difficulty, but he could not overcome all; and the main teaching of the Peninsular War tums upon the value of an army that is completely organized in its various branches before hostilities break out.
(c. W. R.)

AvTmonrytes.-The Wentinglon Daspatether, ed. Gurwood (London, 1834-1839) : Supplamentary Wellington Desprathes (London, 18g8' 1861 and 1867-187a) ; Sir W, Napier, History of War in the Penimisula and South of France (London, 1828-1840); C. W. C. Oman, Fistory of the Peninsuiar War (London, 1902): Sir J. Jones, Journals and Sieges in Spain, $1811-12$ (london, 1814); and Aecount of the War 4, Spadn, Poringel and Somth of Framce, I8ob-I4 (London, I8j1); Sir J. F. Maurice, Dioey of Sir Johm Meort (London, 1gou); Commandant Balagny, Camparwe de I'Empercur Napollon en Espggar, $18 \alpha^{8}$ 2809 (Paris, 1902); Major-General C. W. Robinson, Wellington's Campaigns (London, 1go7); Sir A. Alison, Hisiory of Europe, I785 I815 (London, 1835-1842); T. Choumare, Considdrations midiainas sur les nemoires du Mordehat Swehet as swr la bataille de Tomlonve (Paris 1838); Commandant Clerc, Compague du Mardchal Souls dami les Pypendes accidentales en 1813-14 (Paris. 1894); Memorives du Baron Marbot (Paris 1891; Eng. trans. by A. J. Butler, London, r902): H. R. Clinton, The War in ite Powinsila, Ge. (London, 186s); Marthal Suchet's Mimoires (Paris, 1826; London, 1829); Csptain L. Butler, Wellington's Operations in the Peteinsula, 1808-14 (Londen. 1904); Batty, Camporgn of the Lefi Wing of the Allied Army in the Western Pyrentes and Sowth of France, 1813-14 (London, 1823); Foy, IIistoire de la gucrre de la Peminsule, Ere., sous Napoleon 〈Paris and London, 1827); Lord Londonderry, Narrative of the Penipmiar War, s808-13 (London, 18a9); R. Southey, History of the Pesinswlar War (London. 1823-1832) ; Major A. Grifihs, Wedington and Water. 100 (illustrated; London. I898); Thiers, Histoive du consulat et de Eempire (Paris, 1845-1847; and translated by D. F. Campbell. London, 1845); Captain A. H. Marindin, The Salowance Campaipt (London, 1906); Marmont's MEnoires (Paris, 5857); Colonel Sir A.S. Frazer, Letters during the Pexinswlar and Walerioo Campaterss (ed. by Major-General E Sabine, London, 18s9); Lieut.-Colonci W. Hifl.James, Ballles roumd Biarris, Nivelle and the Nive (Londot 1896); Ballles rowna Biourits, Garvas and the Bridge of Baats (Edip bungh, 1897); H. B. Robinson, Memeirs of Lienienash-General Sir T. Pictom (London. 1835): G. C. Moore-Smith, A ulobriography of Lieutenont-General Sir Marry Smilh (London, 1901); Life of John Coblborne (F.-M. Lerd Seaton) (Iondon, 1903); Rev. A. H. Craturd.

General Craufurd and his Light Division (London, 1891); Sir George Larpeat, Privale Journal of F. S. Larpent during ihe Poninsular War (London, 1853): Major-Generai H. D. Hutchinson, Operatioss in the Perinuula, ${ }^{2808-9}$ (London 1905); The Dicksom MSS., benng Journalls of Major-General Sir Alexander Dichson dwring the Penvasular War (Woolwich, 1907).

PENISCOLA, a town of eastern Spain, in the province of Castellon de la Plana, and on the Mediterranean Sea, 5 m . by road S. of Benicarl6. Pop. (1900), 3142. Pefiscola, often called the Gibraltar of Valencia, is a fortified scaport, with a lighthouse, huilt on a rocky beadland about 220 ft . bigh, and only joined to the mainland by a narrow strip of sand. Originally a Moorish stronghold, it was captured in 1233 by James 1. of Aragon, who entrusted it to the Knights Templar. In the 14th century it was garrisoned by the knights of Montesa, and in 1420 it reverted to the Crown. From 1415 it was the home of the schismatic pope Benedict XIII. (Pedro de Luna), whose name is commemorated in the Bufador de Papa Luna, a curious cavern with a landward entrance through which the sea-water escapes in clouds of spray.
PENITENTXAL (Lat. poenilentiale, libellus poenitentichs, \&c.), a manual used by priests of the Catholic Cburch for guldance in assigning the penance due to sins. Such manuals played a large role in the early middle ages, particularly in Ireland, England and Frankland, and their influence in the moral education of the barbarian races has not received sufficient attention from historians. They were mainly composed of canons drawn from various councils and of dicla from writings of some of the fathers. Disciplinary regulations in Christian communities are referred to from the very borders of the apost olic age, and a system of careful oversigbt of those admitted to the mysteries developed steadily as the membership grew and dangers of contamination with the outside world increased. These were the elaborate precautions of the catochumenate, and -as a bulwark against the persecutions-the rigid system known as the Discipline of the Secret (diciplina arcani). The treatment of the lapsed, which produced the Novatian heresy, was also responsible for what has frequently been referred to as the first penitential. This is the libellus in whicb, according to Cyprian ($E_{p}, 51$), the decrees of the African synods of 251 and 255 were embodied for the guidance of the clergy in dealing with tbeir repentant and returning flocks. This manual, which has been lost, was evidently not like the code-like compilations of the 8tb century, and it is somewhat misleading to speak of it as a penitential. Jurisdiction in pénance was salll too closely limited to the upper ranks of the clergy to call forth such literature. Besides the bishop an official well versed in the penitential regulations of the Church, called the poenisentiarius, assigned due penalies for sins. For their guidance there was considerable conciliar legislatlon (e.g. Ancyra, Nicaca, Neocaesarea, \&c.), and certain patristic letters which had acquired almost the force of deeretals. Of the latcer the most important were the three lettess of St Basil of Caesaren (d. 379) to Bishop Amphilochus of Iconium containing over eighty beadings.

Three things tended to develop these rules into something like a system of penitential law. These were the development of auricular confession and privato penance; the extensioa of the penitential jurisdiction among the clergy owing to the growth of a parochial priesthood; and the necessity of adapting the penance to the primitive ideas of law prevailing among the pewly converted barbarians, especially the idea of compensation by the wergitd. In Ireland in the middle of the gth century appeared the "canons of St Patrick." In the first half of the next century these were followed by others, notably those of St Finian (d. 552). At the same time the Celtic British Church produced the penitentials of St David of Menevia (d. 544) and of Gildas (d. 583) in addition to synodal legislation. These furnished the material to Columban (d. 615) for his Liber de poomicentis and his monastic rule, which had a great influence upon the continent of Europe. The Anglo-Saxon Church was later tban the Irish, but under Theodore of Tarsus (d. 600), archbighop of Canterhury, the practice then in torce was made
the basis of the most important of all penitentials. The Poexitontale Theodors became the authority in the Church's treatment of sinacrs for the next four centuries, both in England and elsewhere in Europe. The original text, as prepared by a disciple of Theodore, and embodying his decisions, is given in Haddan and Stubbs's Counti's and Ecclesiastical Documents relating to Great Britain and Ireland (iii. 173 seq.). A Penitentiale Commeoni (St Cumian), dating apparently from the early 8th century, was the third main source of Frankish penitentials. The extent and variety of this literature led the Gallican Church to exencise a sort of censorship in order to secure uniformity. After numerous synods, Bishop Haltigar of Cambrai was commissioned hy Ebo of Reims in 829 to prepare a definitive edition. Haltigar used, among his other materials, a so-called poenitentiale romonum, whicb was really of Frankish origin. The canons printed by David Wilkins in his Cancilia (1737) as being by Ecgbert of York (d. 767) arc largely a transiation into Anglo-Saxon of three books of Haltigar's penitentials. In $84 x$ Hrabanus Maurus undertook a new Liber poenitcnium and wrote a long detter on tine subject to Heribald of Auxerre about 853. Thea followed the treatise of Reginon of Prum in 906, and finally the collection made by Burchard, bishop of Worms, between rois and 1023. The codification of the canon law by Gratian and the change in tbe sacramental position of penance in the ath century closed the history of penitentials,

Much controversy has arisen over the question whecher thare was an official papal penitential. It is claimed that (quite apart from Haltigar's poenitentiale romanmma) such a set of canons existed early in Rome, and the attempt has been made by H. J. Schmitz in his learned treatise on penitentials (Buszbilcher und das kanonische Bussacrfalie en, 2883 and 1898) to establish their pontifical character. The matter is still in dispute, Schmitz's thesis not having met with universal acceptance.

In additinn to the works mentioned above the one inaportant work on the penitentials was L. W. H. Wamerichleben's epoch-making study and collection of texts, Dia Buszordnumzer der abendlandisches Kirche nebst evner rechisgeschuchulichen Einletung (Halle, 1851). Sce articles in Wetwer nond Welte's Kirchenlexikon, Hauck's Reai:encyhlopdditie, and Haddan and Stubbsis Cowncils. See also Seemax in Zortrcheiff für Kirchengruchuchts, xyiii. 58. On the canons of St Patrick see the Life of S ℓ Patrick by J. B. Bury (pp. 233-275).

PENITENTLARY (med. Lal. poenitenharius, from pacmitontia, penance, poens, punishment, a term used both as adjective and substantive, referring either to the means of repentance or that of punishment. In its ecclesiasticel use the word is used as the equivalent both of the Latin poenicemtiarius, "penitentiary priest," and poemilentiaria, the dignity or office of a posmiventiarius By an extension of the latter senso the name is applied to the department of the Roman Curia known as the apostolic penitentiary (sacra poemilentiario apostolica), presided over by the cardinal grand penitentiary (major poamilantiarims, Ilal. penilensiere maggiore) and having jurisdiction more particularly in all questions in foro interno reserved for the Holy See (see Curia Rosuasa). In general, the poenilemtiarius, or penitentiary priest, is in each diocose what tbe grand penitentiary is at Rome, i.e. he is appointed to deal with all cases of conscience reserved for the bishop. In the Eastern Church there are very early notices of such appointments; so far as the West is concerned, Hinschius (Kirchenrochl, i. 428, note a) quates from the chronicle of Bermold, the monk of St Blase (c. 1054-1100), as the earliest record of such appointment, that made by the papal legate Odo of Ostia in 1054. In 1215 the fourth Lateran Council, by its 1oth canon, ordered suitable men to be ordained in all cathodral and conventual churches, to act as coadjutors and assistants to the bishops in hearing confessions and imposing penances. The rule was not immediately nor universally obeyed, the bishous being slow to delegate their special powers. Finally, however, the council of Trent (Seas. xxiv. cap. viii. de reform.) ordered that, "wherever it could convenieratly be done." the bishop should appoint in his cathedral a pocnitentiarixs, who should be a doctor or licentiate in theology or canon law and at least forty years of age.

See P. Hinechius, Kinchowrecht, i. 477,,4c. (Berlin. 1869); Du Cange. Glossarixm s.v. "Poenitentiariun'":Herzog-Hauck, Realencyllopodie (ed. 1904), s.v. "Ponitentiarius."

PEQRKRIDGE, a town in the western parliamentary division of Stafiordshire, England; 134 m . N.W. from London by the London Ax North-Western railway, on the small river Penk. Pop. (1901), 2347. . Trade is chiefly agricultural and there are stone-quarries in the vicinity. The church of St Michatel and AD Angels, formerly collegiate and dedicated to St Mary, is a fine building principally Perpendicular, but with earlier portions. The Roman Watling Street passes from east to west 3 m . south of Penkridge. In the neighbourhood is Pillaton Hall, retaining a picturesque chapel of the 1 th century.

PRILEY, WILLIAM 8YDYEY (185z
). English actor, was born at Broadstairs, and educated in London, where his father had a school. He first made his mark as a comedian by his exceedingly amusing performance as the curate in The Pribate Secretary, a part in which he succeeded Beerbohin Tree; but he is even more associated with the title role in Brandon Thomas's Charley's Aunt (r89z), a farce which had an unprecedentedly long run and was acted all over the wordd. .
PEMIARC'H, a village of western France in the department of Finistere, 18 m . S.W. of Quimper hy road. Pop. (1906), of the village, 3^{87}; of the commune, 5702. On the extremity of the penipsula on which it is situated are fortified remains of a lown which was of considerable importance from the 14th to the r6th centuries and included, besides Penmare'h, St GuEnole and Kerity. It owed its prosperity to its cod-banks, the disappearance of which together with the discovery of the Newfoondiand cod-banks and the pillage of the place by the bandit La Fontenelle in 1595 contributed to its decadence. The church of St Nouna, a Gothic building of the early 16 th century at Penmarc ' k, and the church of St Guenole, an unfinished tower of the $15^{\text {th }}$ century and the church of Kerity (15th century) are of interest. The coast is very dangerous. On the Point de Penmarc 'h stands the Phare d'Eckmuhl, with a light visible for 60 miles. There are pimetous megalithic monaments in the vicinity.

PRIM, WILLAM (1621-1670), British admiral, was the mon of Ciles Penn, merchant and seaman of Bristol. He served his apprenticeship at sen with his fathor. In the first Civil Wat he fought on the side of the parliament, and was in commased of a ship in the squadron maintained against the king in the Irish seas. The service was arduous and called for both emergy and good seamanship. In 1648 he was arrested and sent to London, but was soon released, and sent back as rear admiral in the "Assurance" (32). The exact cause of the arest is unknown, but it may be presumed to have been that be was suspected of being in correspondence with the king's supporters. It is highly probable that be was, for until the Restoration he was regulariy in communication with the Royalits, while aerving the parliament, or Cromwell, so long as their service was profitable, and making no scruple of applying for grante of the confiscated lands of the king's Irish friends. The character of "mean fellow" given him by Pepys is borne out by much that is otherwise known of him. But it is no less certain that he was an excellent scaman and a good fighter. After 1650 be was employed in the Ocean, and in the Mediterrapean in pursuit of the Royalists under Prince Rupert. He Whs so active on this sorvice that when he returned home on the 8 th of March $165 z$ be could boest that he had not put foot on shore for more than a year. When the first Dutch War broke out Penn was appointed vice-admiral to Blake, and was present at the battle of the 28 th of September off the Kentish Kisock. In the three days' battle off Portland, February 1653, he commanded the Blue squadron, and be also served with distinction in the final battles of the war in Jume and July. In December he was included in the commisaion of admirals and generals at sea, who exercised the military command of the fleet, as well as "one of the commissioners for ordering and managiog the affairs of the admiralty and navy." In 1654 he offered to earry the fleat over to the king, but in October of
the same.year he had no scruple in accepting the naval command in the expedition to the West Indies sent out by Cromwelh, which conqwered Jamaica. He was not responsible for the shameful repulse at San Domingo, which was due to a panic among the troops. On their return he and his military colleague Venablea were sent to the Tower. He made humble submission, and whem released retired to the estate he had received from confiscated land in Ireland. He continued in communication with the Royalists, and in 1660 had a rather obscure share in the Restoration. He was reappointed commisaioner of the navy by the king, and in the second Dutch War served as "great captain commander" or captain of the fleet, with the duke of York (afterwards King James II.) at the battle of Lowestoft (Jume 3, 1665). When the duke withdrew from the command, Penn's active service ceased. He continued however to be a commissioner of the navy. His death occurred on the 16 th of September 1670, and he was huried in the church of St Mary Redeliffe, Bristol. His portrait by Lely is in the Painted Hall at Greenwich. By his wife Margaret Jasper, he was the father of Wiliam Penn, the founder of Penasylvania. Though Sir William Penn was not a high-mindod man, he is a figure of considerable importance in British naval history. As admiral and general for the parliament he heiped in 1658 to draw up the-first code of tactics provided for the navy. It was the base of the "Duke of York's Sailing and Fighting Instructions," which continued for long to supply the orthodoz tactical creed of the navy.
Ser the Memorials of the Profassiomal Life and Times of SirWillian Pana, by Grasville Pean.
(D, H.)
PENH, WILLIA (1644-1718), English Quaker and founder of Pennsylvania, son of Admiral Sir Wiltiam Penn (1621 -1670) and Margaret Jasper, a Dutch lady, was born at Tower Hill, London, on the 14th of October 1644. During hill father's absence at sea be lived at Wanstead in Essex, and went to school at Chigwell close by, in which places be was brought under strong Puritan influences. Like many children of sensitive temperament, he had times of spiritual excitement; when about twelve be was "suddenly surprised with an inward comfort, and, as he thought, an external glory in the room, which gava rise to religious emotions, during which be had the strongest conviction of the being of a God, and that the soul of man was capeble of enjoying communication with Him." Upon the death of Cromwell, Penn's father, who had served the Protector because there was no other career open, remained with his family on the Irish estates which Cromwell had given him, of the value of $\{300$ a year. On the resignation of Richard Cromwell he at once declared for the king and went to the court in Holland, where he was received into favour and knighted; and at the elections for the convention parliament he was returned for Weymouth. Meanwhile young Penn studied under a private tutor on Tower Hill until, in October 1660, he was entered as a gentleman commoner at Christ Church. He appears in the same year to bave contributed to the Thremodia, a collection of elegies on the death of the young duke of. Gloucester.

The rigour with which the Anglican statutes were revived, and the Puritan heads of colleges supplanted, roused the spirit of resistance at Oxford to the uttermost. With this spirit Penn, who was on familiar terms with John Owen (1616-1683), and who had silready fallen onder the influence of Thomas Ioe the Quaker, then at Oxford, actively sympathized. He and others refused to attend chapel and church service, and were fined in consequence. How far his leaving the university resulted from this cannot be clearly ascertained. Anthoay Wood has nothing regarding the cause of his leaving, but says that he stayed at Oxford for two years, and that he was noted for proficiency in manly sports. There is 30 douht that in January 1662 his father was ancious to remove him to Cambridge, and consulted Pepys on the subject; and in later years he speaks of being " banished " the college, and of being whipped, beaten and turned out of doors on bis return to hie father, in the anger of the latter at his avowed Quakerism. A reconciliation, however, was effected; and Penn was sent to France to forget this
folly. The plen was for a tixic successful." Penn appears to have entered more or less into the gaieties of the court of Louis XIV., and while there to have become acquainted with Robert Spencer, afterwards eati of Sunderland, and with Dorothy, sister to Algernion Sidney. What, however, is more certain is that he somewhat later placed himself under the tuition of Moses Amyraut, the celebrated president of the Protestant college of Saumur, and at that time the exponent of liberal Cavinism, from whom be gained the patristic knowledge which is so prominent in his controversial writinga. He afterwards travelled in Italy, returning to England in August 1664, with "a great deal, if not too much, of the vanity of the French garb and affected manner of speech and gait." ${ }^{1}$

Until the outbreak of the plague Peun was a student of Lincoln's Inn. For a few days also he served on the staff of his father-pow great captaln commander-and was by him sent back in April 1665 to Charles with despatches. Returning after the naval victory off Lowestoft in June, Admiral Penn found that his son had again become settied in seriousness and Quakerism. To bring him once more to views of life not inconsistent with court preferment, the admiral sent him in February 1666 with introductions to Ormonde's pure but brilliant court in Ircland, and to manage his estate in Cork round Shannansarry Castle, his title to which was cisputed. Penn appears also later in the year to have been "clerk of the cheque" at Kinsale, of the castle and fort of which his father had the command. When the mutiny hroke out in Carrickfergus Penn volunteered for service, and acted under Arran so as to gain considerable reputation. The result was that in May 1666 Ormonde offerted him his father's company of foot, but, for some unexplained reason, the admiral demurred to this arrangement. It was at this time that the well-known purtrait was painted of the greal Quaker in a suit of armour; and it was at this time, too, that the conversion, begun when he was a boy by Thomas Loe in Ireland, was completed at the same place hy the same agency.
On the srd of September 1667 Penn attended a meeting of Quakers in Cork, at wbich he assisted to expel a sondier who had disturbed the meeting. He was in consequence, with others preseat, sent to prison by the magistrates. From prison he wrote to Lord Orrery, the president of Munster, a letter, in which he first publicly makes a claim for perfect freedom of conscience. He was immediatcly released, and at oace returned to his father in London, with the distinctive marks of Quakerism strong upon him. Penn now became a minister of the denomination, and at once entered upon controversy and authorship. His first book, Truth Eralted, was violent and aggressive in the extreme. The same offensive personality is shown in The Guide Mistoken, a tract written in answer to Jobn Clapham's Guide to the True Religion. It was at this time, too, that he appealed, not unsuccessfully, to Buckingham, who on Clarendon's fall was posing as the protector of the Dissenters, to use his efforts to procure parlismentary toleration.
Penn's frat puhlic discussion was with Thomas Vincent, a London Presbyterian minister, who had refected on the "damnable" doctrines of the Quakers. The discussion, which had turned chiefly upon the doctrine of the Trinity, ended uselessly, and Penn at once published The Sandy Fousudation Shaken, a tract of ahility sufficient to excite Pepys's astonishment, in which orthodox views were so offensively attacked that Pean was placed in the Tower, where be remained for nearly nine months. The imputations upon his oplnions and good citizenship, made as well by Dissenters as by the Church, he repelled in Innocency urih. her Open Face, in which he asserts his full belief in tbe divinity of Christ, the atonement, and justification through faith, though insisting on the necessity of good works. It was now, too, that he published the most important of his books, No Cross, No Crown, which contained an able defeace of the Quaker doctrines and practices, and a scathing attack on the loose and unchristian lives of the clergy.

1 Pepys. August 30, 1664.

- Webty, The Petics and Pewninglene (1867), p- 874

While completely refusing to recant Pean addressed a letter to Arlington in July 1669, in which, on grounds of religious freedom, he asked him to interfere. It is noteworthy, as showing the views then predominant, that he was almost at once set at liberty.
An informal reconciliation now took place with his father, who had been impeached through the jealoury of Rupert and Monk (in Apnil I668), and whose conduct in the operations of 1665 he had publicly vindicated; and Penn was again sent om family business to Ireland. At the desire of his tather, whoee bealth was fast failing, Pemn returned to Landon in 8670 Having found the usual place of meeting in Gracechurch Strea closed by soldiers, Penn, as a protest, preached to the people in the open street. With William Mead he was at once arrested and indicted at the Oid Bailey on the 1st of September for preaching to an unlawful, seditious and riotous assemhly, which had met together with force and arma. The Conventicle Act not touching their case, the trial which followed, and which may be read at length in Pcan's People's Ancient and Just Liberlies Asserted, was a notable one in the history of trisl by jury. With extreme courage and skill Penn exposed the illegality of the prosecution, while the jury, for the firtt time, asserted the right of juriss to decide in opposition to the ruting of the court. They brought in a verdict decharing Penn and Mend "guilty of speaking in Gracechurch Street," but refused to add "to an unlawful assembly"; then, as the pressure apon them increased, they first acquitued Mead, while returning their original verdict upon Penn, and then, when that verdict was not admitted, returned their final answer "not gaify" for both. The court fined the jorymen 40 marke each for their contumacy, and, in default of payment, imprisoned them, whereupon they vindicated and estahlished for ever the right they had claimed in an action (knowa as Bushell's case from the name of one of the jurymen) before the court: of common pleas, when all twelve judges unanimously deciared their imprisomment illegal.

Pens himself had been fined for not removing his hat in court, had been imprisoned on his refusal to pay, and had earnestly requested his family not to pay for him. The fine, howeyer, was settled anonymously, and he was released in time to be present at his father's death on the 16 th of September 1670, at the early age of forty-nfue. Penn now found himsolf in possession of a fortune of $f 1500$ a year, and a chim on the Crown for $\{16,000$, lent to Charles III. by his father. Upon his release Penn at once phunged into controversy, challengitg a Baptist minister named Jeremiab Ives, at High Wycombe, to a public dispute and, according to the Quaker accoant, easily defeating him No account is forthooming from the other side. Hearing at Oxford that atudents who attended Frieads' meeting were rigorously used, he wrote a vehement and abuaive remonstrance to the vice-chancellor in defence of religious freedom. This found still more remarkable exprevion th the Seasomable Caveat against Popery (Jan. 1671).
In the beginning of 1671 Penn was again arrested for preaching in Whecter Street mecting-house by Sir J. Robinson, the lieutenant of the Tower, formerly lord mayor, and known as a brutal and higoted eburchman. Legal proof being wanting of any breach of the Conventicle Act, and the Oxford or Five Mile Act also proving inapplicablo, Rohinson, who had some specinl cause of enmity against Penn, urged upon him the oath of allegiance. This, of course, the Quaker would not take, and consequently was imprisoned for six months. During this imprisonment Penn wrote several works, the most important being The Great Case of Liberty of Conscience (Feb. 1671), a noble defence of complete toleration. Upon his relcare he started upon a missionary journey through Holland and Germany; at Emden he founded a Quaker rociety, and estahlished an intimate friendship with the princess palatine Elizabeth.

Upon his return home th the spring of 1672 Penm married Gulielma Springett, daughter of Mary Pennington by her first trobend, Sir Wititian Spriagett; she appeans to huve been
equally remarkable for beauty, devotion to her husband, and firmness to the religious principles which she had adopted when little more than 2 child. ${ }^{1}$ He now settled at Rickmansworth in Hertfordshire, and gave himself up to controversial writing. To this year, 1672, belong the Treatise on Oatks and England's Present Interest Considered. In the year 1673 Penn was still more active. He secured the relcase of George Fox, addressed the Quakers in Holland and Germany, carried on public controversies with Thomas Hicks, a Baptist, and John Faldo, an Independent, and published his treatise on the Christian Quaker and his Divine Testimony Viadicated, the Discourse of the General Rule of Faith and Practice. Reasons against Railing (in answer to Hicks), Cownterfeil Christianily Delected, and a Just Rebxke to One-and-twenty Learnod Divines (an answer to Faldo and to Quakerisw no Christianity). His last public controversy was in 1675 with Richard Baxter, in which, of course, each party claimed the victory.
At this point Penn's connexion with Aracrica begins. The province of New Jersoy, comprising the country between the Hudson and Delaware rivers on the east and west, had been granted in March 1663-1664 by Charles II to his brother; James in turn had in Jure of the same year leased it to Lord Berkeley and Sir G. Carteret in equal shares. By a deed, dated 18 th of March 1673-1074, Jahn Fenwick, a Quaker, bought one of the shares, that of Lord Berkeley (Stoughton erroneously says Carteret's) in trust for Edward Byllinge, also a Friend, for f_{1000}. This sale was confirmed by James, after the second Dutch War, on the 6th of August 1680 . Disputes having ansen between Fenwick and Byllinge, Penn acted as arbitrator; and then, Byllinge being in money difficulties, and being compelled to sell his interest in order to satisfy his creditors, Penn was added, at their request, to two of themselves, as trustee. The disputes were settled by Fenwick receiving ten out of the hundred parts into which the province was divided,' with a considerable sum of money, the remsining ninety parts being afterwards put up for sale. Fenwick sold his ten parts to two other Friends, Eldridge and Warncr, who thus, with Penn and the other two, became masters of West Jerscy, West New Jersey, or New West Jersey, as it was indifferently called. ${ }^{4}$ The five proprietors appointed three commissioners, with instructions dated from London the Gth of August 1676, to setule disputes with Fenwick (wbo had bought fresh land from the Indians, upon which Salem was built, Penn being himsclf one of the settlers there) and to parchase new territories, and to build a town-New Beverley, or Burlington, baing the result. For the pew colony Penn drew up a constitution, under the title of "Concessions." The greatest care is taken to make this constitution "as near as may be conveniently to the primitive, ancient and fundamental laws of the pation of England." But a democratic element is introdaced, and the new principle of perfect religious freedom stands in the first place (ch. zvi.). With regard to the liberty of the subject, no one might be condemned in life, liberty or estate, except by a jury of twalve, and the right of challenging was granted to the uttermost (ch, xvii.). Imprisonment for debe was not abolished (as Dixon states), but was reduced to a minimum (ch. xviii), while theft was punished by twofold restitution either in value or in labour to that amount (ch. xnviii.). The provisions of ch. xix. deserve special notice. All causes were to go before three justices, with a jury. "They, the said justices, shall propounce such judgment as they shail receive from, and be directed hy the said twelve men, in whom only the judgment resides, and not otherwise. And in case of their neglect and refusal, that then one of the twelve, by consent of the rest, pronounce their own judgment as the justices should have done." The justices and constables, moreover, were
I For a very charming account of ber, and the whole Pennington connexion, sce Maria Webb's The Penns and Pcnningtons.
${ }^{1}$ See on this Stoughton's Pern, p. 113.
${ }^{2}$ The deed by which Fenwick and Byllinge conveyed West New jersey to Pcon, Lawry and Nicholas Lucas is dated the roth of February 1674 i 1675.
-The line of partition was "from the east side of Little Egg Harbour, straight north, through the country, to the utmost branch *) Delaware Riven"
elected by the people, the former for two years only (ch. xili) Suitors might plead in person, and the courts were public (ch. xiii.). Questions between Indians and settiers were to be arranged by a mixed jury (ch. xxv.). An assembly was 10 meet yeanly, consisting of a hundred persons, thosen by the tnhabitants, frecholders and proprictors, one for each division of the province. The election. was to be by ballot, and each member was to receive a shilling a day from his division, "that thereby be may be known to be the servant of the people." The exceutive power was to be in the hands of ten commissioners' chosen by the assembly. Such a constitution seon altracted large numbers of Quatiers to West Jersey.

It was shorty before these occurrencet that Penn inherited through his wife the estate of Wormunghurse in Sussex, whithet he removed from Rickmansworth. He now (July 25. 1671) undertook a second missiomary journey to the conunent along with Coorge Fox, Robert Barclay and George Keith. He visted particularly Rotterdam and all the Holland towns, renewed his intimacy with tbe princess Elizabeth at Herwerden, and, under considerable privations, travelled through Hanover, Germany, the lower Rhine and the electorate of Brandenburg, returning by Bremen and the Hague It is worthy of reeollection that the Germantown (Pbiladelphia) settlers from Kirchheim, one of the places which responded in an especial degree to Ponn's teaching, are noted as the first who declared it wrong for Christians to hold slaves. Penn reached England again on the 24 th of October. He tried to gain the insertion in the bill for the relief of Protestant Dissenters of a cla use enabling Friends to affirm instead of taking the oath, and twice addressed the House of Commons' committee with considerable eloquence and effect. The bill, however, fell to the ground at the sudden prorogation.

In $\mathbf{1 6 7 8}$ the popish terror came to a head, and to calm and guide Friends in the prevailing excitement Penn wrote his Epistle to the Childress of Light in this Gemeration. A far more important publication was An Address to Protestonts of all. Perswasions, hy William Penn, Protestant, in 1679; a powerlut exposition of the doctrine of pure tolerance and a protest against the enforcement of opinions as articies of faith. This was succeeded, at the general election which followed the dissolution of the pensionary parliament, by an importans political manifeste, England's Greal Interest in the Choice of this New Porliament, in which he insisted on the following points: the discovery and punishment of the plot, the impeachment of corrupt ministers and councillors, the punishment of "pensioners," the enactment of frequent parliaments, security from popery and slavery, ahd ease for Protestant Dissenters. Next came One Project for the Good of England, perhaps the most pungent of all his political writinge. But he was not merely active with his pen. He was at this time in close intimacy with Algernon Sidney, who stood successively for Guildford and Bramber. In each case, owing in a great degree to Pemn's eager advocacy, Sldney was elected, only to have his elections annulled by court influence. Toleration for Dissenters seemed as far off as ever. Encouraged by his success in the West Jersey province, Penn again turned his thoughts to America. In repayment of the debt mentioned above be now asked from the Crown, at a council held on the a4th of June 1680, for " a tract of land in America north of Maryland, bounded on the east by the Delaware, on the west limited as Maryland [i.e. by New Jerseyl, northward as far as plantable"; this latter limit Penn explained to be "three degrees northwards." This formed a tract of 300 m . by i60, of extreme fertility, mineral wealth and richness of all kinds. Disputes with James, duke of York, and with Lord Baltimore, who had rights over Marylnad, delayed the matter until the 14th of March 168 r , when the grant received the royal signature, and Penn was made master of the province of Pennsylvania. His own account of the name is that he suggested "Sylvanis," that the king added the ".Penn" in honour of his tather, and that, although he

- Penn's letter of the 26th of August 1676 says twelve, and Clarkson has followed this; but the Concessions, which were not assented to by the inhabitants until the 3rd of March 1676-1677, say ten.
strenuously objected and even tried to bribe the secretaries, he could not get the name altered. It should be added that carly in 1682 Carteret, grandson of the original proprietor, transferred his rights in East Jersey to Penn and eleven associates, who soon afterwards conveyed one-half of their interest to the earl of Perth and eleven others. It is uncertain to what extent Penn retajned his interest in West and East Jersey, and when it ceased. The two provinces were united under one governor in 1699, and Penn was a proprictor in 1700 . In 1702 the government of New Jersey was surrendered to the Crown.

By the charter for Pennsylvania Penn was made proprietary of the province. He was supreme governor; he had the power of making laws with the advice, assent and approhation of the freemen, of appointing officers, and of granting pardons. The laws were to contain nothing contrary to English law, with a snving to the Crown and the privy council in the case of appeals. Parliament was to be supreme in all questions of trade and commerce; the right to levy taxes and customs was reserved to England; an agent to represent Penn was to reside in London; neglect on the part of Penn was to lead to the passing of the government to the Crown (which event sctually took place in 1692); no correspondence might be carried on with countrics at war with Great Britain. The fmportunity of the bishop of London extorted the right to appoint Anglican ministers, should twenty members of the colony desire it, thus securing the very thing which Pena was anxious to avoid-the recognition of the principle of an establishment.

Having appointed Colonel (Sir William) Markham, his cousin, as deputy, and having in October sent out three commissioners to manage his affairs until his arrival, Penn proceeded to draw up proposals to adventuters, with an account of the resources of the colony. He negotiated, too, with James and Lord Baltimore with the view, ultimately successful, of freeing the mouth of the Delaware, wrote to the Indians in conciliatory terrns, and encouraged the formation of companies to work the infant coiony both in England and Germany, especially the "Free Society of Traders in Pennsylvania," to whom he sold 20,000 meres, absoluteiy refusing, however, to grant any monopolies. In July he drew up a body of "conditions and concessions." This constitution, sevouring strongiy of Harrington's Oceana, was Iramed, it is said, in consultation with Sidney, but the statement is doubtfui. Until the council of seventy-two (chosen by universal suffrage every thrce years, twenty-four retiring each year), and the assembly (chosen annually) were duly elected, a body of provisional la ws was added.

It was in the midst of this extreme activity that Penn was made a Fcllow of the Royal Society. Leaving his family behind him, Penn sailed with a hundred comrades from Deal in the "Welcome" on the ist of September 1682. His Last Farcucll to England and his letter to his wife and children contain a beautiful expression of his pious and manly nature. He landed at New Castie on the Delaware on the 27th of October, his company having lost one-third of their number by small-pox during the voyage. After receiving formal possession, and having visited New York, Penn ascended the Delaware to the Swedish settlement of Upland, to which he gave the name of Chester. The assembly at once met, and on the 7 th of December passed the "Great Law of Pennsylvania." The idea which informs this law is that Pennsylvania was to be a Christian state on a Quaker model. Philadelphin was now founded, and within two years contained 300 houses and a population of 2500 . At the same time an act was passed, uniting under the same government the territories which had been granted by feoffment by James in 1682. Realistic and entirely imaginative accounts (cl. Dixon, p. 270), inspired chiefly by Benjamin West's picture, have been given of the treaty which there scems no doubt Penn actually made in November 1683 with the Indians. His connerion with them was one of the most succossful parts of his management, and he gained at once and retained through lifo their intense affection.

Penn now wrote an account of Pennsylvania from his own observation for the "Free Society of Traders," in which he
shows considerable power of artistic description. Tales of violent persecution of the Quakers, and the necessity of settling disputes, which had arisen with Lord Baltimore, his neighbour in Maryland, brought Penn back to England (Oct. 2, 1684) after an absence of two years. In the spning of 1683 he had modified the original charter at the desire of the assembly, hut without at all altering its democratic character. He was, in reference to this alteration, charged with selfish and deceitiul dealing by the assembly. Within five months after his arrival in England Charles II. died, and Penn found himself at once in a position of great influence. Penn now took up his abode at Kensington in Holland House, so as to be near the court His intluence there was great enough to secure the pardon of John Locke, who had been dismissed from Oxford by Charlcs, and of 1200 Quakers who were in prison. At this time, too, he was husy with his pen once more, writing a further account of Pennsylvania, a pamphlet in defence of Buckingham's essay in favour of toleration, in which he is supposed to have had some share, and his Persuasive to Moderation to Dissenting Chrishans, very similar in tone to the One Project for the Good of Englond. When Monmouth's rebellion was suppressed he appears to have done his best to mitigate the horrors of the western commission, opposing Jeffreys to the uttermost.? Macaulay has accused Penn of being concerned in some of the worst actions of the court at this time. His complete refutation hy Forster, Paget. Dixon and others renders it unnecessary to do more than allude to the cases of the Maids of Taunton, Alderman Kifin, and Magdalen College (Oxforl).

In 1686, when making a third missionary journey to Holland and Germany, Penn was charged by James with an informal mission to the prince of Orange to endeavour to gain his assent to the removal of religious tests. Here he met Burnet, from whom, as from the prince, he gained no satisfaction, and who greatly disliked him. On his return he went on a preaching mission through England. His position with James was undouhtedly a compromising one, and it is not strange that, wishing to tolerate Papists, he should, in the prevailing temper of England, be once more accused of being a Jesuit, while he was in constant antagonism to their body. Even Tillotson took up this view strongly, though he at once accepted Penn's vehement disavowal. In 1687 James puhlished the Declatation of Indulgence, and Penn probably drew up the address of thanks on the part of the Quakers. It fully reflects his views, which are further ably put in the pamphlet Good Advice to the Church of England, Roman Catholics, and Protestant Dissenters, in which be showed the wisdom and duty of repealing the Test Acts and Penal Laws. At the Revolution he behaved with courage. He was one of the few friends of the king who remained in London, and, when twice summoned before the council. spoke boidly in his behalf. He admitted that James had asked him to come to him in France; but at the same time he asserted his perfect loyalty. During the absence of William in 1690 he was prochamed hy Mary as a dangerous person, hut no evidence of treason was fortheoming. It was now that he lost by death two of his dearest friends, Robert Barclay and George Fox. It was at the funcral of the latter that, upon the information of the notorious informer William Fuller (1670-1717?), an altempt was made to arrest him, but he had just left the ground; the fact that no further steps were then taken shows how little the government believed in his guilt. He now lived in retirement in London, though his address was perfectly well known to his friends in the council. In 169t, again on Fuller's evidence, a proclamation was issued for the arrest of Penn and two others as being concerned in Preston's plot. In 1692 he began to write again, both on questions of Quaker discipline and in defence of the sect. Just Mfeasures in an Epistle of Peace and Love, The New Athenians (in reply to the attacks of the Athenion Mercury). and A Key opening the Way to every Capacity are the principal publications of this year.

Meantime matters had been going badly in Pennsyivania.
1 Dixon, P. 376.
${ }^{2}$ Burnet, iii. 66; Dalrymple, L. 282.

Penn had, in 1686, been obliged to make changea in the composition of the executive body, though in 1689 it reverted to the original constitution; the legislative bodics had quarrelled; and Penn could not gain his rents The chief diffeulty in Pennsylvania was the dispute between the province-i.e. the country given to Penn by the charter-and the "territories," or the lands granted to him hy the duke of York by feoffment in August 1682, which were under the same government but had differing interests. The difficulties which Quaker principles phaced in the way of arming the colony-a matter of grave importance in the cxisting European complications-fought most hardly against Penn's power. On the 21st of October 1692 an order of council was issued depriving Penn of the governorship of Pennsylvania and giving it to Colonel Benjamin Fletcher, the governor of New York. To this blow were added the illness of his wife and a fresh accusation of treasonable correspondence with James. In bis enforced retirement he wrote the most devotional and most charming of his worksthe collection of maxims of conduct and religion entitled The Fraits of Solitude. In December, thanks to the efforts of his friends at court, among whom were Buckingham, Somers, Rochester, and Henry Sidney, he received an intimation that no further steps would be taken against him. The accusation, however, had boen public, and he insisted on the withdrawal being equally puhlic. He was therefore heard in full council before the king, and honourably acquitted of all charges of treason. It was now that he wrote an Essay towards the Present and Fufure. Peace of Europe, in which he puts forth the idea of a great court of arbitration, $\%$ principle which he had already carried out in Pennsylvania.

In 1694 (Feb. 23) his wife Guliclm 2 died, leaving iwo sons, Springett and William, and a daughter Letitia, afterwards married to Willian Aubrey. Two other daughters, Mary and Hannah, died in inlancy. He consoled himself by writing his Account of the Rise and Progress of the People called Quakers. The coldness and suspicion with which he had been regarded by his own denomination had now ceased, and he was once more regarded by the Quaker body as their leader. About the same time (Aug. 20) he was restored to the governorship of Pennsylvania; and be promised to supply money and men for the defence of the frontiers. In 1695 be went on another preaching mission in the west, and in March 1696 he formed a second marriage, with Hannah Callowhill, his son Springett dying five wecks later. In this year he wrote his work On Primeitive Christionity, in which he argues that the faith and practice of the Friends were those of tlac early Chusch. In 1697 Penn removed to Bristol, and during the greater part of 1698 was preaching with great success against oppression in Ireland, whither he had gone to look after the property at Shannangarry.

In 1699 he was back in Pennsylvania, landing near Chester on the zoth of November, where the success of Colond Robert Quary, judge of the admiraley in Pennsylvania-who was in the interests of those who wished to make the province an imperial colony-and the high-handed action of the deputy Markham in opposition to the Crown, were causing great dificulties. Penn carried with him particular instructions to put down piracy, which the objections of the Quakers to the use of force had rendered audacious and concerning which Quary had made strong representations to the home government, while Markhain and the inhabitants apparently encouraged it. Pena and Quary, however came at once to a satisfactory understanding on this malter, and the illegal traffic was vigorously and successfully attacked. In 1606 the Philadelphian Yearly Meeting had passed a resolution declaring slavery contrary to the first principles of the gospel. Penn, however, did not venture upon emancipation; but he insisted on the instruction of negroes, permission for them to marry, repression of polygamy and adultery, and proposed regulations for their trial and punishment. The assembly, however, a very mixed body of all nations, now refused to accept any of these proposals except the last-named. His great success was with the Indians; by their treaty with him in 1700 they promised not to help any enemy of England,
to traffic only with those approved by the governor, and to sell furs or skins to none but inhabitants of the province. At the same time he showed his capacity for legislation by the share he took with Lord Bellomont at New York in the consolidation of the laws in use in the various parts of America.

Affairs now again demanded his presence in England. The king had in 1701 written to urge upon the Pennsylvania government a union with other private colonies for defence, and had asked for money for fortifications. The dift culty felt hy the Crown in this matter was a natural one. A bill was brought into the lords to convert private into Crown colonies. Penn's son appeared before the committee of the house and managed to delay the matter until his father's return. On the 15 th of September Penn called the assembly together, in which the differences between the province and the territories again broke out. He succeeded, however, in calroing them, appointed a council of ten to manage the province in his absence, and gave a horough charter to Philadelphia. In May 1700, experience having shown that alterations in the charter were advisable, the assembly had, almost unanimously, requested Penn to revise it. On the 28th of October 1701 he handed it back to them in the form in which it afterwards remained. An assembly was to be chosen yearly, of four persons from each county, with all the self-governing privileges of the English House of Commons. Two-thirds were to form a quorum. The nomination of sheriffs, coroners, and magistrates for each county was given to the governor, who was to select from names handed in by the freemen. Moreover, the council was no longer elected by the people, but nominated by the governor, who was thus practically ieft single in the executive. The assembly, however, who, by the first charter, had not the right to propound laws, but might only amend or reject them, now acquired that privilege. In other respects the original charter remained, and the inviolability of conscience was again emphatically asserted. Penn reached England in December 1701. He once more assumed the position of leader of the Dissenters and himself read the address of thanks for the promise from the Throne to maintain the Act of Toleration. He now took up his abode again at Kensington, and published while here his More Fruits of Solitude.

In 1703 he went to Knightshridge, where he remained until 1706, when be removed to Brentford, his Gnal residence being taken up in 1710 at Field Ruscombe, near Twyford. In i/04 he wrote his Life of Bulstrode Whitelecke. He had now much trouble from America. The territorialists were openly rejecting his authority, and doing their best to obstruct all business in the assembly; and matters were further embarrassed by the injudicious conduct of Governor John Evans in 1706. Morcover, pecuniary troubles came hcavily upon him, while the conduct of his son William, who became the ringlender of all the dissolute characters in Philadelphin, was another and still more aevere trinl. This son was married, and had a son and daughter, bett appears to have been left entircly out of account in the settlement of Penn's proprictary rights on his death.

Whatever were Penn's great qualities, be was deficient in judgment of character. This was especially shown in the choice of his steward Ford, from whom he had borrowed money, and who, by dexterous swindling, had managed, at the time of his death, to establish, and hand down to bis widow and son, a chaim for $£ 14,000$ against Pean. Penn, however, refused to pay, and spent nine months in the Fleet rather than give way. He was released at length by his friends, who paid $f 7500$ in composition of all claims. Difficulties witb his government of Pennsylvania continued to harass him. Fresh disputes took place with Lord Balimore, the owner of Maryland, and Penn also felt decply what seemed to him the ungrateful treatment which he met with at the hands of the assembly. He therefore in 1710 wrote, in earnes and affectionate language, an address to his " old friends," setting forth his wrongs. So great was the effect which this produced that the assembly which met in October of that year was entirely in his interests; revenues were properly paid; tbe disaffected were silenced and complaints
were huahed; while an advance in moral sense was shown by the fact that a bid was passed prohibiting the importation of negroes. This, however, when submitted to the British parlisment, whs cancelled. Penn now, in February 1712, being in failing health, proposed to surrender his powers to the Crown. The commission of plantations recommended that Penn should receive $\{12,000$ in four years from the time of arrrender, Penn stipulating oniy that the queen should take the Quakers under her protection; and froco was given him in part payment. Before, however, the matter could go further he was seized with apoplectic fits, whicb shattered his undersanding and memory. A second attack occurred in 1713. He died on the 30th of May 1778, keaving three sons by his second wife, John, Thomas and Richard, and was buried along with his first and second wives at Jourdans meeting-house, near Chalfont St Giles in Buckinghamshire. In 1790 the proprietary rights of Penn's descendants were bought up for a pension of $f 1000$ a year to the eldest male descendant by his second wife, and this pension was comamuted in 8884 for the sum of $\{67,000$.
Penn's Liff was written by Joseph Besse, and prefixed to the collected edition of Penn's Horks (1726); see also the bibliogrephical note to the article in Dict. Nat. Brog. W. Hepworth Dison's biography, refuting Macaulay's charges, appeared in 1851. In 1907 Mrs Colquhoun Grant, one of Penn's descendants, brought out a book, Quaher and Courtier: the Life and Work of William Penn.

PRNMANS, THOMAS ($1726-5798$), British naturalist and antiquary, was descended from an old Welsh family, for many generations resident at Downing, Flintahire, where he was born on the 14th of June 1726. He received his early education at Wrexham, and afterwards entered Queen's College, Oxford, but did not take a degrec. At twelve years of age be was inspired with 2 passion for natural history through being presented with Francis Willughby's Ormithology; and a tour in Cornwall in 1746-1747 awakened his strong interest in minerals and fossils. In 1750 his account of an earthquake at Downing was inserted in the Philosophical Tramsactions, where there also appeared in 1756 a paper on several coralloid bodies be had collected at Coalbrookdale, Shropshire. In the following year, at the instance of Linnacus, be was elected a member of the Royal Society of Upsala. In 1766 be published the first part of his Britush Zoology, a work meritorious rather as a laborious compilation than as an original contribution to science. During its progress be visited the continent of Europe and made the acquaintance of Buffon, Voltaire, Haller and Pallas. In 1767 be was elected F.R.S. In 1772 was published his Symopsis - Quadrupads, afterwards extended into a History of Quadrupeds. As the end of the same year he published A Tour in Scolland in y769, which proving remarkably popular was followed in 1774 hy an account of another fourney in Scolland, in two volumes. These works have proved invaluable as preserving the record of impertant antiquarian relics which have now perished. In 177^{8} be brought out a similar Tour in Waler, which was followed by a Joxrncy to Snowdon (pt. i. 1781; pt. ii. 1783), afterwards forming the second volume of the Town. In 1782 he published a Jowrney from Choster to London. He brought out Araic Zoology in 1785-1787. $\mathrm{In}_{\mathrm{n}} 1790$ appeared his Accowxt of London, which went through a large number of editions, and three years later he published the Litevary Life of the lake T. Pensanv, written by himself. In his later years he was engaged on a work entitled Oultines of the Globe, vols. i. and ii. of which appeared in 1798 , and vols. iii. and iv., edited by his son David Pensant, in 1800 . He was also the author of a number of minor works, some of which were published posthumously. He died at Downing on the 16th of December 1798 .
PEIMAAB, or PENNEE, iwe rivers of sonthern India, distinguished as North and South. The native name is Pinakini. Both rise near the hill of Nandidrug in Mysore state, and flow eastwhtd into the Bay of Bengal. The northern is the more important and has a total length of 355 m ., that of the southern being 245 m . This latter bears the alternative name of the Ponniar. The Pennar (northem) river canal system comprises zrore than 30 m . of canals, irrigating $\mathrm{r} 55,500$ acres

PEant, a town and epincopal wee of Italy, in the proviace of Teramo, 26 m . S.E. of Teramo, and 16 m . inland from the Adriatic, 1437 ft above sea-level. Pop. (1901), ro, 394 . The cathedral has been much altered; in its treasury is some fine ${ }^{13 \text { th }}$ (?) century silversmiths' work; the cturch of S. Giovarai has a fine cross by Nicola di Guardiagrele, and that of S. Maria in Colleromano, outside the town, a Romaneaque portal. Many of the houses have fine terra-ootta friezes. It occupies the site of the ancient Pinna, the chief city of the Vestini, who entered into alliance with Rome in 30+ B.C. and remained failhful to her through the Haanibalic wars and even during the revolt of the Italian allies in 90 B.c. No remains of the Roman period exist, even the city walls being entirely medieval.

See G. Colnsanti, Pinna (Rome, 1907); V. Bindi, Monsmenti degli Abruczi (Naples, 1889, pp. $565 \mathrm{kg9}$).
PEBNTELL, JOSEPH (1860 -), American artist and author, was born in Philadelphia on the 4th of July 1860, and firs' studied there, but lite his compatriot and friend, J. M. Whistler, he afterwards went to Europe and made his bome in London. He produced numerous books (many of them in collaboration with his wife, Elizabeth Robins Peanell), hut his chief distinction is as an original etcher and lithographer, and notably as an illustrator. Their close acqueintance with Whistier led to Mr and Mrs Pensell undertaking a biography of that artist in 1906, and, after some litigation with bis executriz on the right to use his letters, the book was published in 1908.

PEBMI. OIANFRANCESCO ($1488-1528$), Italian painter, surnamed "Il Fattore," from the relation in which he stood to Raphael, whose favourite disciple be was after Giabio Romano, was a native of Florence, but spent the lattet years of his life in Naples. He painted in oil as well as in fresco, but is chielly known for his work in the Loggie of the Vatican.
PENNDNE CHADN, an extensive system of hills in the north of England. The name is probably derived from the Celicic pen, high, appearing in the Apennines of Italy and the Pennine Alps. The English system is comprised within the following physical boundaries. On the N. a well-marked depression, falling below 500 ft . in height, between the upper valleys of the Irthing and the south Tyne, from which it is known as the Tyne Gap, separates the Pennines from the system of the Cheviots. On the N.E., in Northumberland, the foothills estend to the North Sea. On the N.W. the Eden valley farms part of the boundary between the Peanines and the hills of the Lake District, and the division is continued by the upper valley of the Lume. For the rest the physical boundaries consist of extensive lowlandon the E . the vale of York, on the W . the coastal belt of Lancashire and the plain of Cheshire, and on the S. and S.E. the valley of the river Trent. The Pennines thus cover parts of Cumberland, Westmorland and Northumberkod, Lancashise and Yorkshire, Cheshire and Derbyshise, while the southern foothills extend into Staffordshire and Nottinghamshire.

The Pennine system in bardly a range, but the hills are in effect broken up into pumerous short ranges hy valleys cut back into them in every direction, for the Pennines form a notth and south watershed which determines the course of ah the harger rivers in the north of England. The chain is divided into two sections by a gap formed by the river Aire flowing east, a member of the Humber basin, and the Ribble flowing west and entering the Irish Sen through a wide estuary south of Morecambe Bay.

The northern eection of the Pennine system is broader and generally higher than the southern. Its western slope is generally short and steep, the eastern long and gradual; this distinction applying to the system at large. In the north-west a sherp excerpment overiooks tho Eden valley. This is the nearest apposach to a true mountain range in the Pennipe syotem and indeed in England. It is known as the Cross Fell Edge from its bighest point, Cross Fell (2930 ft .), to the south-east of which a height of 2780 ft . is reached in Milburn Forest, and of 2591 ft . In Mickle Fell. This range is marked off eostward by the upper valleys of the south Tyne and the Tees, and, from the divide between theme two, branch ranges spring east ward, seperated by the valley of the Wear, at the head of which are Burnhope Seat (2452 ft) and Dead Stones (2326 ft .). In the northern range the highest point is Middtehope Moor (2206 ft), and in the southers, Chapel Fell Top (as94 ft.). It is thut seen that the
hipher elevations, like the ateeper alopea, Be tramards the west. Crosa Fell Edge terminates southward at a high pess (about 1400 ft .) between the head of the Belah, a tributary of the Eden. and the Greta, a tributary of the Tees. This pass is followed-by the Tebay and Barnard Caste line of the North Eastern railway. The hills betweem the Lune valley on the west and the headatream of the Eden and the Ribble on the east are broken into masees by the dalea of tributaries to the first-aamed river-here the chief elevations are Wild Boar Fell (2323 ft .), Whernside (241 f It .), and Ingleborough (2373 ft .). The Ribbie and Eden valleys afford a route for the main tioe of the Midland railway. Well-marked eastward ranges occur bere between Swaiedale and the river Ure, which traverses the celebrated Wensleydale (q.v.), and between the Ure and Wharfe. la the first the higheat points are High Seat (2328 (t.) and Greac Shunner Fell (2301 ft.); and in the recond Bucioden Pike (2302 ft.) and Great Wheraside (2310 ft .). There is then a general southerly slope to the Aire gap.
The southern saction of the system ealls for less detailed notice. Heights exceeding 2000 ft . are rare. The centre of the asction is the well-known Peak (q.v.) of Derbyshire. Both here and through out the system the summits of the hills are high uplands, rounded or nearly flat, consisting of heathery peaty moorland or hill pasture. The profile of the Penninea in thus not striking as a rule, but much Gine scenery is louad in the narrow daies throughout; Wensleydale, Wharfedale and other Yorkshire dales being no leas lamous than the dales of Derbyshire. In the parts about Settle below Ingleborough, in Derbyshire, and elsewhere, remarkable caverns and subterranean watercourses in the limestone bave been explored to great depthe. In Ingieborough iteelf are the Ingleborough cave. near Clapham; the chasm of Gaping Ghyil, over 350 ft . deep; Helln or Heilan Pot, a vast swailow-hole 359 It. deep, only exceeded by Rowten Pot (365 ft .) near Whernaide; and many others. Malham Tam. near the head of the Aire, is drained by a stream which quickly disappears below ground, and the Aire itself is fed by a brook gushing forth in fufl stream at the foot of the cliffs of Malham Cove. A notable example in Derbydhire is the diseppearance of the Wye into Plunge Hole, after which it traverses Poole's Cave, clowe to Buxton. There may also be noted the remarkable series of caverns near Castleton (g.e.). Lakes are few and small in the Pennine district, but in eorme of the upland valleys, auch as those of the Nidd and the Etherow, reservoirs have been formed for tbe supply of the populous manufacturing districts of Lancashire and the West Riding of Yookthire. which bie on either flank of the system between the Aire gap and the Peak. (For geology ace England and articles on the everal counties.)

PENA8FLDAMA, a North Atlantic state of the United States of America and one of the original thirteen, lying for the most part between latitudes $39^{\circ} 43^{\circ} 36 \cdot 3^{\circ}$ and $42^{\circ} \mathrm{N}$. and between longitudes $74^{\circ} 40^{\prime}$ and $80^{\circ} 31^{\prime} 36^{\circ} \mathrm{W}$. The state is in the form of a rectangle, except in the north-west where a triangular projection, extending to $42^{\circ} 15^{\prime} \mathrm{N}$. lat., gives it a shoreline of almost 40 m . on Lake Erie, on the east where the Delaware river with two large bends separates it from New York and New Jersey, and in the south-east where the arc of a circle which was described with a $12-\mathrm{m}$. radius from New Castle. Delaware. forms the boundary between it and Delaware. The forty-second parallel of N. latitude forms the bonndary between it and New York on the N.; Mason and Dixon's line is the border bet ween it and Maryland and West Virginia on the south and a north and wouth line marks the boundary between it and West Virginia and Ohio on the west. The total area is $45,126 \mathrm{sq}$. m . and of this 294 sq. m. are water surface.

Physical Fealures.-Pennsylvania akirts the coastal plain in the south-east below Philadelphia, is traversed from north-cast to south-west by the three divisions of the Appalachian provincePiedmont or older Appalachian belt, younger Appalachian ridges and valleys and Alleghany plateau- and in the north-west corner in a mmall part of the Erie plain. The entire surface has a mean elevation of about 1100 ft . above the sea. It rises from 20 ft . or lews on the bank of the Delaware between Philadelphia and Chester to $2000-3000 \mathrm{ft}$. on the higher ridgen in the middle section (3136 ft . on Blue Knob in Bedford county), and falls again to $900-1000 \mathrm{ft}$. on the Ohio border and to 750 ft . or less on the Erie plain; in the south-east is an area of about $6100 \mathrm{mq} . \mathrm{m}$. that is less than 500 ft . above the sea, while on the ridges in the middle of the state is an aggregate area of about $2000 \mathrm{sq} . \mathrm{m}$. that everywhere oxceeds 2000 it. in elevation. The area below 500 ft. is moatly in the Triassic lowland of the Piedmont region, or, as the Pennsylvania portion of it is called. the south-eatt province. This is an undulating plain which has been produced by the wearing away of weak sandstones, atc. On the north and weat borders of this plain are two parts of a chain of semi-detached and usuaily rounded hills, known as the South Mountain. Tho north-east part is a wonth-wentward arm of the New England uplapds, is knowa an the Reading Prong, and extends from New Jeney through Eation to

Reading. The wouth-wese part is a north-eartern prolongation of the Virginia Piedmont, is nown as the Cumberland Prong, and extends N.N.E. through the south part of Cumberland county. In the Reading Prong most of the hills rive $900-1000 \mathrm{ft}$. above the tea and about one-half that height above the surrounding country; in the Cumberland Prong their height increases to the southward until, on ibe Maryland border, they rise $\mathbf{2 1 0 0}$ ft. above the see and 1400 ft. above the adjoining plain. Another range of hills, known as the Trenton Prong, extends from the northern suburbs of Philadelphia both westward and southward through Chestes. Delaware, Lancaster and York counties, but these riseronly 400-600 ft. above the sea and have few ateep slopes. Both of these ranget of hills are composed of hard crystalline rocks, and between them lies the lowland eroded on the reaker sandstoncs and sedimente. In Bucke and Montgomery counties is a large sandstone area traversing Chester county is the narrow Chester Valley with a Ilmestone bottom, and in Lancaster county is the mont extensive llmestone phain. The Pennsylvania portion of the younger Appalachian ridges and valieys, known as the central province of the state, embraces the region between the South Mountains, on the south-east, and the crest of the Alleghany plateas or Alleghany Front, on the north-west. It extends from south-west to nerthcast about 230 m . and has a nearly uniform width of 50 m . except that it narrows rapidly as it approaches the north-east corner of the state. The ridges and intervening valleys, long parts of which have an approximately parallel trend from south-west to notth-east. were formed by the erosion of folded sediments of varying hardnese, the weak belts of rock being etched out to form valleys and the hard belts remaining as mountain ridges. After the lolding the whole region was worn down nearly to sea-level, forming a low plain which bevelled across the geological structure of the entire state, including the Piedmont area to the south-east and the plateau area to the north-west. Then came a broad uplift followed by the erosion which carved out the valleys, leaving hard rocks as mountain ridges which rise about to the level of the old erosion plain. In Befford county and elsewtere the ridges rise to 2400 ft . or more above the sea, but their more usual height is 1400 to 2000 ft. above the sea and 500 to 1000 ft. above the intervening valleys. Their crest lines are often of nearly uniform height for milea and generally are little broken except by an occasional V-shaped wind gap, a narrow water gap or a rounded knob. The valleye rarely exceed more than a few miles in width, are usually steep-sided. and frequently are traversed by longitudinal ranges of hills and cross ridges; but the Pennsylvania portion of the Appalachian or Great Valley, which forms a distinet division of the central province and lies between the South Mountains and the long rampart of Blue Mountain, is about 10 m . in wideb on the Marydand border and to the north-east its width increases to 20 m . The north-west part of it is a slate belt that has been much disseeted by eroding streams, but the south-east part is a gently rolling belt of limestone to which oceasionally a steep hill descends from the slate belt. The Pocono plateau, into which the central province merges at its northeast extremity, ia a continuation of the Catakill plateau southward from New York and covers Wayne, Pike and Monroe counties and the east zortion of Carbon county. Its surface is underlaid by a hard sandstone and conglomerate which erode slowly, and the general upland level, which is $1400-1800 \mathrm{ft}$. above the sea, is' litte broken except hy shallow valleys and occasional knobs. The Alleghany plateau, which extends from the crest of the Alleghany Front to and beyond the west and north borders of Pennsylvania and covers more than one-hall of the state, is much more dissected. In Tioga and Potter counties on the north middle border, it risea $2400-2500$ ft. above the sea, but from this height the general upland level falls gradually to $1200-1300 \mathrm{ft}$ in the south-west and $900-$ 1000 ft . along the Ohio border, and in Eric county there is a sudden fall of about 200 ft . to the Erie plain. In the northern, middle and south-west portions of this plateau province the upland is cut by an intricate network of narrow valleys and ravines that are commonly $300-600 \mathrm{ft}$. deep and occasionally $800-1000 \mathrm{ft}$. deep. but west of the Allegheny river, where harder rocks have resisted suck deep dissection and glacial drift has filled depressions or smoothed rough surfaces, the uplands are broader and the valleys wider and shallower. Most of the Pennsylvania shore of Lake Erie is lined with a wall of and and clay $50-100 \mathrm{ft}$. in height and along the foot of this is only a narrow beach, but in front of the city of Erie the shore currents have formed a spit, known as Presque Ista, which affords a good harbour.

The Pocono plateau, nearly all of the central and south-east provinces and the north-east portion of the Alleghany plateay are drained by the Susquehanna and Delaware river-systems into the Chemapeake and Delaware Bays; the greater part of the Alleghany plateau in drained by the Allegheny and Monongahela rivers into the Ohio river; the extreme southern portion of the centra! province and the extreme western portion of the south-east province art draiped by tributaries of the Potomac; the Eric plain is drained by whort sereams into Lake Erie; and a very small section of the Alleghany plateau, in the northern part of Potter county, is drained by the Cenesee river into Lake Ontario. The Susyuehama drains about $21,000 \mathrm{mq}$. m. of theatate: the Ohio, Allegheny and Manongabela
\$4.747. 84. te; and the Delaware 6443. 84. m. The Susquehanna ls a wide and shallow stream with a gigzag courme and numerous islands, but both the Susquehanna and the Delaware, together with their principal tributariea, flow for the most part transverse to the geological structure, and in the gorges and water-gapa through which they pass ridges in the mountain region, it mome of the most pictursaque ecenery in the state; a number of these gorges, too, have been of great economic importance as passages for railwaym. The lower portion of the Delaware river has beea entered by the aea as the remult of the depresoion of the land, giving a harbour, at the bead of which developed the city of Philadelphia. The preaent course of the Upper Allegheny river is the result of the glacior which blocked the northward drainaze of the region through which it flows and turned it southward. The Monongahela is an older stream, but like the Allegheny, it meanders much, and both river flow in deeply intrenched valleys. The few small lakes of the atate are mostly on the Pocono plateay, where they were formed by glaciation; here, too, are some streame with picturesque cascadea.

Fauma.--Under the protection of a game commission which was creared in 1895, of some game preserves, which have been established by this commission, and of various la wr affecting wild animals and birds, the numbery of Virginia deer. black bear, rabbits, ruffed grouse, quail and wild turkeys have increased until in some of the widder soctions they are quite plentiful, while the numbers of weasels, minks, lynx and foxes have been diminished. Squirrels, racoons, woodchucks and skunks are common, and musk-rats, porcupines and oposoums are found in eome sections. T'wo species of venomous stakes-the rattlosnake and the copper-head-occur in the sparmely settled regions. The avifauna include-among the birds of prey-the red-shouldered hawk, red-tailed hawk marsh hawk, Cooper's hawk, sharp-shinned hawk and sparrow hawk, the great horned owl, the bara owl and the screech owl; and bald eagles害e not uncommon in the mouatainous regions a long the larger rivers. The "turkey-buzzard" - turkey-vulture- (very valuable as a ecavenger) is secn occasionally, especially in the south and south-west. The game birds include the ruffed grouse, quail and English pheasant (which have increased rapidly under protection). besides woodcock, snipe, many species of ducks and a few Canada geese. The song and insectivorous birds-thrushes, flycatchers, vireos and woodpeckersof this latitude, are well represented, and the high plateaus (particularly the Pocono platcau) have especial oraithological interest as the tarrying-places, during the migratory scasons, of many species of birds whose natural breeding ground is much farther north. Perch, sunfich, trout, bass, pike and pickercl abound in many of the st reams. Yellow perch are especially plentiful in the lakes on the Pocono plateau. Pike-perch and a fes blue pike are taken in the Susquehanna, where athad are no longer plentiful since work was begun on McCall's Ferry dam, and in 1908 the entire catch for the river was valued at about $\$ 20,000$, but in the Delaware there are valuable shad and herring fisheries The blue pike, whitefish and herring. obtained on Lake Erie are of considerable commercia! Importance. In 1908 the total catch on Lake Eric was valued at 8200,869 , the principal items being herring (890,108), blue pike (813,657) and whitefiah (31,580). The catch of herring was twice as much io 1908 as in 1907 and that of whitefish nearly four times as much in 1908 as in $\mathbf{1 9 0 7}$; this increase was attrihuted to the work of the atate hatcheries. There were eight hatcherics in 1910 and the number of fish distributed from these duting 1908 was about $662,000,000$; they consisted chiefly of pickerel, yellow perch, walleyed pike, white fish, herring, blue pike, trout and shad.

Flora.-Except on some portions of the Pocono plateau, Pennsylvania was originally well forested, and, although most of the merchantable timber has been cut, about voe-half of the state is still woodland. On the higher elevations the trees are mostly white pine, yellow pine and hemlock, but in the valleys and lower levels are oaks, hickories, maples, elme, birches, locusts, willows, spruces, gume, buckeyes, the chestnut, black wainut, butternut, cedar, ash. Inden, poplar, buttonwood, hornbeam, holiy, catalpa, magnolia, tulip-tree, Kentucky coffeetree, sassafras, wild cherry, pawpawy crab-apple and other species. The flora is most varied in the Susquehanna Valley below Harrisburg, and on Presque Itle are some plants peculiar to the Lake region. The state has lorest rewerves (918,000 acres In 1910) In 26 counties, the largest areas being in Potter, Clinton, Center, Cameron, Lycoming, Huntingdon, Union and Miffitn counties; and there is an cfficient department of forestry under a state commisuiloner of lorestry. A state forest academy (the anly one in the. United States) is at Mont Alto, where there is one of the three state nurweries; ita first class graduated in 1906 . In 1909 the state legislature passed an act authorizing any city, borough or township of the first class to acquire, subject to the approval of the commissioner of forestry, a municipal forest; and it authorized the distribution of seedling forest treet, at cost, to those, who would plant and protect then, for growin; private fureta.

Climate-The temperature is quite mild and equable In the wouth-east province where the ocean influences it and where the mountains bounding it on the north and north-west are some protection from the colder winds. The crests of the higher ridges in the central province are delightfulty cool in summer, but the
adjacent valleys ase cubject to espeacive hent in summer adi eovera cold in winter. The metan annual teraperature decreases to the north-westward on the Alfeghany, plateau, but on the Erie plaim, in the extreme north-west, Lake Eric exerts its moderating induence, the mean temperature rises, and extremes horten. The mean annual termperature in the south-ent province in about 59° F.: it decreases to 50° in the central province and to 4° or last in tome of the north-weat countiea of the Alleghany plateau, but nises to 49° on the short of Lake Eric. At Phindelphis the mean temperature in winter (December, January and February) is 34°, the mean temperature in aummer (June, July and August) 74°. and the range of extremes here for a long period of yeart ending with 1907 was within 103° and 6°. At Huntingdon, Huniingdon county, ia the Juniata Valley, the winter mean is 30°, the summer mean 77°. and within the period from 1888 to 1907 extremes ranted from 104° to 23°. The gummer maxima on the mountaims are veraily 8° to 10° less than in the valleys directly below them; Saemeritown, Crawford county, is mearly 30 m. south of Erite, on Lake Erie, and yet the winter mean is 28° at Erie and only 35° at Sacrerstown, and the lowest temperature on record for Erio is -16° while for Seggerstown it is -27°. During the period from 1875 to 1908 inclusive, extremes within the state ranged from 107° at York, York county, in July 1901, to -42° at Smithport, MeKean county, in January 1904. July is the warmest month in all parts of chie state. Junuary is the coldest in some and February in cehers. The average annual rainfall is 44 in . It is 50 in , or more in some regions along the south-cat border of the mountain diekrict or farther mouth-eagt where the rains are occasionally heavy, and it is less than 40 in . in some of the north-east and south-wcat counties The anount of rainfall during the summer is about 3 in. more than that during either autumn of winter and 2 in . more than that during spring. Ia the mountain resion and in the vicinity of Lake Erie there is often a fall of several inches of snow during the winter months and the rapid melting of this produces floods on the Delsware, Susquehanna and Ohio rivers and some of their tributaries The prevailing winde are westerly, but they are frequently interrupted by warm breezes from the south, or moisture-bearing currente irom the east.

Soils.-The most productive woil is that in the south-enst section of the Great Valley and In Chester Valky where it it derived largely from limestone. There is wome of the same formation as well as that derived from red elat les on the sandstone hills in the south-east province and in many of the middle and western valley, but often a belt of inferior alate soil adjoins a limestone belt, and many of the ridges are covered with a still more sterile woil derived from white and grey sandssoncs. The north-west and north-etast eections contain some glacial drift but the soil in these parts is not suitable for cultivation except in the larger valleys in the north-west where it is drained by glacial gravel or there is some sandy loam mixed with clay.

Agriculture.-Pennaylvania is noted for its mineral wealth and manulactures rather than for ins agricultural resourcra, but in 1900 about two-1hirds of its land was included in farms, a. little more than two-thirds of lis farm-land was lmproved, and in everal crops the ceate has long ranked high. The number of farms increased from 127.577 in 1850 to 224248 in 1900 , the increast resulting in part from a reduction of their size but more largely from the appropriation of new lands for farming purposes. The average size in 1900 was 86.4 acres. Nearly 60% of them contained less than 100 acres and only about 2.7% continined 260 acres or more. More ihan seven-tenths (160,105) were worked by owners or part owners, and only 34,529 by share tenants, and 23.737 by cash tenants. Hay, Indian corm, whest, oats, potatoes, frutts, vegetables and tobacco are the principal crope. Of the total crop acreage in 1899 nearly two-fifthe was devoted to hay and forage, and the value of the hay crop in 1909^{1} (when the crop was $3.742,000$ tons, valued at $\$ 54,633,000$) was greater than that of any other state in the Union except New York. Hay is grown in largest quantities in the north, and in the section south-east of Blue Mountain. More than one-half of the crop acreage in 1899 was devoted to cercals, and of the total cercal acreage 32% mas of wheat, 31.2% was of Indian com, 24.8% was of oats, 6.5% was of rye, and 5.3% was of buckwheat. The product of Indinn corm was $48,800,000$ bushels in 1909 ; of wheat $26,265.000$ bushels; of oats 25,948,000 bushels; of batiey 196,000 bushels; of rye 5.508,000 bushels; and of buckwheat $5,665,000$ bushels.

Indlan com, wheat and rye, are cultlyated most extersively In the month-cast countiea. Some of the larger oat-producing countics also are in the woutheast. but most of the buckwheat, barley and oats are yrown in the north and wett connties. The dairy business, for which much of the hay crop is needed, has grown with the growth af the urban population as is shown in part by teady increase in the number of dairy cows from 530,224 In 1850 to $1,140,000$ in 1910; the value of the dairy products in 1 eg9 ($535,860,110$) was exceeded only in New York. The number of other cattle has fluctuated comewhat, but there were 987,000 in 1910 as agains1 623.722 in 1850 . Honses increased in number
${ }^{1}$ Statitico for rgas and 1910 are from the Yeor Bank of tbe United States Department of Agricolture.

from 350,398 in 1850 to 819,000 tn 5910 . The number of mules increaied steadily from 2359 in 1850 to 43,000 in 1910 . The raising of sheep and swine was of considerably leas relative importance in 1910 than in 1850, there being $1,882,357$ aheep and $1,040,366$ awine in 1850 and $1,112,000$ sheep and 931,000 swine in 1910 the dairy businces is largent in the regions around Philadelphia and Pittiburg, and In Erie and Bradiord countias. Cattle ocher than dairy cows as well as hones and sheep are mont numerous in the western counties, in Bredfoed county on the north border, and in some of the countien of the southetact. Swine are mont numerous in the south-east and south-wert countios. The state ranks bigh in the production of potatoes, cabbages, bettuce and turaipa, and It produces large cropi of tweet Indian cocn, tomatoes, cucumbers musk-melons, asparagus and celery. The totel value of all vegetebies produced in 1899 was $\$ 5.832,904$, an ampunt exceeding that of any other state except New York A large portion of the vegetables are grown in tbe vicinity of Philadelphia or in the vicidity of Pittoburg. The culture of tobacco, which was introduced a early *e 1689, was a mall industry until the midule of the Igth century. hut it then developed rapidly except during a brief interruption caused by the Mexican Wat. In 1909 the crop was $30,732,000$ ib. More than two-thirds of the state's crop of 1899 was produced in Lancaster county, which is one of the largeat tobaceo-producing counties in the United Stares, and mosk of the other third wais produced in York, Tioge, Bradford and Climon counties Apples, cherries and pears are the principal orchard iruits. Grupee, peaches, plums and pruncs, apricotes arawberries, raspberrie and loganberries, blackiberries and dewberries, curraats and goomeberries are also grown. Orchard fruits are most abundent mouth-eant of Blue Mountain, and mall fruits near the larger cities but about two-thirds of the grapes are grown in Erie county. Floriculture is an important industry in Philadelphia and ite vicinity. The sale of nursery products, more than one-half of which were grown in Chester and Montgomery counties, amouated in 1899 to 8541,03a, and although this was less than onethird thet of New York it was excceded in only three other states.
Minerals.-Pennsylvania is by far the mont important conl. producing state in the Union, and as much of the iroa ore of the Lake Superior region is brought to ite great bituminous coal-fiald lor rendering into pig-iron, the value of tha seate's mineral products constituten a large fraction of the total value for the entire country; in 1907 , when the value of the mineral products of the state was $\$ 57,783.345$, or nearly one-thind that of all the United Statem, and in 1908 when the total for the state wha $\$ 473,083,212$, or mont than one-furth that of the whole United States, mose than fourfifths of it was reprevented by coal and pig-irom. With the ex. ception of two small areas in Colorado and New Merico, Pentcylvania contsins the only anthracte-coal refion to the cousatry. This is in the east of the state, and although it has a total area of about 3300 sq. m. its workable meabures are montly in Leckawanna, Luzerne, Carbon, Schuylkill and Northumberimend counties in an area of leve than 500 sq . m. Thia coal was discovered as early as 1762 near the site of the present city of Wilker-Baref and during the War of Indepandence it wat ured at Carliale in the menufacture of war materials, but it was of fittle commercial importance until early in the next century. In 2815 the output was reported as only 50 tons, but it stcadily rowe to $74,347,102$ tons (valued at 158, 178,849) in 1908. Besides havint practically all the anthracite, Penasyivania has the thickent biifuminous coal-menourea, and mont of the coal obtained from these is of the best quality. They form the northern ext remity of the great Appalachion coal-held and undern te an area of $25,000 \mathrm{sq}$. m . ofr more in the west of the atate. The Pittsburg district, comprising the counties of Alleybeny, Weahiagton, Fayette and Wentmoreland, is exceptionally productive, and the coal in Allegheny and Wa,hington counties is noted for its pas-producing qualities, while in Fayeite and Weotmorcland coumties is obtained the famous Connellsville coking coel. The bituminoue coal was first used at nearty the mane time as the anthracite and it was first shipped from Pittsburg in 1803. Ia 1840 the state's output was 464,826 tons. It increased to $1,000,000$ tone in 1850, to $11,760,000$ tons in 1875, to $79,842,326$ tons in 1900, to $150,143,177$ cons in 1907; and was 117,179,527 tons in 1908, when it was $35 \cdot 2 \%$ of that of the entire country and was valued at $8128,816,303$. In 1880 the output of coal (anthracite and bituminous) in Penna ayivania was 66% of that of the entire country; in 1908 it wat A 8.2%; but in the latter year the Pennsyivania mines produced more coal than the combined production of all the countrics of the world excepting Great Britain, Germany and Austria-Hungary, and it was nearly four timen as much as the toral mined in Amerin, searly five times as much as that mined in France, and seven timee as much as the output of Ruciti in that year. Extending from the soutb-wenk corner of the utate through Greene, Washinctoa, Allepheny, Beaver, Butler, Venango, Clarion, Foreat. Elk, Warrea, Hekean and Tioga counties is the Pennsylvantia eection of the Appalachian oil-feild which. with the amail mattion in New York, furnished nearly all of the country's suppiy of petroleum for somse years following the dincovery of its value for illuminating purposes. The miegtal was mede knowa to white men by the Indiamp, who cold is, under the mame of Seneca oil, as a cure for various ills, end bursed it al mane of their cercmomien. The enty suthers in
wat Panaylvanit aifo found that ane unknown people had dut pits several feet in depth around the of eprings appereatly for tho purpone of collecting the oil. But it way not until the middle of the 1gth century thet its value as an illuminating oil beeame known, and not yatil $18 g^{2}$ was the firit petroleum well drilled. Thif Ent the Drake well, on the fiats of Oil Creek at Titusvile; it yat about 70 ft in depth, and when 25 barreis were permped from it in a day its production was considered enormous. By the cloye of 1861 Wells had been drilled from which 2000 to 3000 berrela fowed in a day without pumping, and the statele yearly outpeat continued to increase entil I891, when it amounted to 3 Ify24,206 barrels Since then, however, wells have been going dry, and when, in 1295, the cutput fell to 19,1443990 barrels it was erceeded by that of Olice lt went down quite meadlly to 9414325 in 1906. and in that year Penopylvanim wae out-ranked se an ad-producing state by Olalahoma, Calformia, Illinois, Texas and Onio. In drilling for some of the first of well gas encaped, and in a few instances this was uned as a fuel for genemang stedm in the boilers of the drillipg-engines. In some inatances, too, wells which were drilled for oi produced only gat A little later, about 1868, succesdud experimente were made vith fers as a manufacturing fuel, and in 1872 the eas Industry was fatrly well establinhed near Titusville by dritions and and pipins the pes for connumption both an fuel and light. The value of the trates output Increased from approximitely 85,000 in 1882 to approximately $\$ 19,282,000$ in 1888 , and the cotal value of its output durint these and che intervenint years was more than $\$ 0 \%$ that of all the United States. The industry then became of greater inportance in several other states and declined in Pennsylvanim until in 1896 the value of Peanm sylvania's product amounted to only $\$ 5.398,610$ or 42.5% of that of the United States. This temporary decline was, however Gollowed by a rather steady rice and in igod the output was valued at \$19.304944, which was still far in exceth of that of any other ctate and nearty 35% of that of the entire country. The gas region has an area of sbout 85,000 eq. nt, and embraces about alh of the Pennsylvaria aection of the Alleghany plateau except a narrow belt along ite east and southeast border. There are depoeits of various kinds of iron ore in the costern, wouth-eastern middle and some of the western counties, and from the middle of the isth ceatury until pear the clowe of the 19th Pennryivania ranlod high among the iron-oreproducing tates, As late at 1880 it ranked firet, with a product amounting to $1,951,496$ long toos But the state's iron foundries moved repidly wetward after the firt enocereful experiments ia making pig-iron with bituminous coal, in 1845, and the diseovery, a lew yemm later, that rich ore conld be obtained there at leat cost from the Lake Superior region tesuited is a decline of iron-mining within the state until, in igos. the product amounted to only 822.932 lone tons, 72.2% of which was magnetite ore from the Cornwall mines in Lebanon coanty which have been among the largeit producer of this kind of ore dace the erection of the Cornwall furnace in 1742. In 1908 the entire iron-ore product of the state, amountlag to $443.16 t$ lone tons, wae not $2-3 \%$ nf thet of the United Staten, but the groduction of the magnetite-ore alone ($343,99^{8}$ iond tons) was more than onefith that of all the United Stateb. In the manufacture of pig-iron Pennglvania is easity frat among the etates, with a product value in 190% of $\$ 1$ II, 885,000 , mearly 43.8% of that of the entire country Pendrylvania has extensive areas of limetone rock suitable for making cement, and is Northspopton and Lehigh counties enormous guantities of it tax uned in this industry. Natural-rock cement wat bent made lo the otinte soca after the dicoovery, in 1831, of deposite of cement rock near Williamsport, Lycoming county, and the induetry wal creatly premoted in 1830 when the vat deponita in the lower Lehigh Valley were ditcoverted aad brye guantitien of cement were required in the rebuilding of the Lehigh Canal. Competition produced in Lehigh county the first mocesolul Portland cemant plant 加 the United States in 1870. The output of the natural- reck cement continued grester than thet of the Portland until 1896, but for the aucceeding ten yeare the enormous development of the certent induetry whe almont entinely in the Portland branch. ita prodaction in the atate increasing from 825,054 barrels in 1896 to $8,770,454$ barrels in 1902 , and to $\mathbf{2 8 , 2 5 4 , 8 0 6 \text { barrels (valued at }}$ $313,899,807$) in 1908 , when it was more then 30% of that of the United Stites. The production of metural-ruck cement was 608,000 herrels in 1896 and only 352,479 barrels (valued tit 887,192) in 1908. Limentones and dolomited suitsble for buidding purpopen art obteined chiefly in Montgomery, Cheterand lancanger eountles, and even thea are eanerally reincted for ormamental work on account of their colourr, which is unally bluish, grey or mottled. However ontil increased faclities of transport browght more dedrahle tuone into cnrapetition they were used extensively in Philadelphia and with them the main bodding of Girard College and the United States Naval Anylym were erected and the long rome of red-brict reaciences wers trimued. There are limestone quandea in natily two-thirds of the countien and great quantities of the atome an used for flux in the iron furmaces for maning quicllime, for sailwhy beblest and for toad makins. The zotal value of the limentore output in 1 gos amounted to $\$ 4,057,47$, and the total vaiue of and

apecially in Philadelphia, for the erection of the cocalled brown stoge fronts. On the Rocono plateau is a large deposil of a finegrained dark-blue atone of the Devonian formation which is known as the Wyoming Valley atnoe, and, like the New York " blueszone," which it clonely resembles, is much used for window and door trimmings, atepe and fiagring. Several of the weatern councies contain Carboniferous or sub-Carboniferous sandatoses that are used locally for building and for various other purposes. In 1908 the value of Pennsylvania sandstone and bluestone was $\$ 1,368,784$. Northampton, Lehigh and York counties contain the moat productive taie guarriea in the country, and in 1908 the value of their output was $\$ 3,902,958$; the Northampton and Lebigh slate is the only kind in the United States used for mehool blackbourde. There : an extensive area in the south-east pert of the state containing shale clay of a superior quality for making cormmon brick. Ksolin abounds in Chester and Delaware countiea, and fire-clay in several of the wealern countices In 1908 the state ranked first in the value of its output of brick and rile $(\$ 18,981,743)$, which was 14.74% of the entire product of the United States, and was mecond only to Obio in the total value of its clay products ($\$ 14,842,982$), which was 11.14% of that for the entire country. Gians mand abounds both in the eastern and in the wemtern rections and for many year Penasyivaria has used this more extensively in the manufacture of glasa than any other state. Deposity of erystalline errephite are found in Chester and Berkes counties. In Chester county, aleo, is one of the most productive deposita of feldspar, mecond in importance only to thome of Mrine. Soapatone is quarried in Montgomery and Northampton counties, phosphate rock, in Juniate county; rocks from which mineral paints are made, in meveral counties, and chere is some garnet in Dolaware county.
Mamufactures.-The state ranks sucond to New York in the value of ith manufactures, which increased from $\$ 155,944,910$ in $\mathbf{1 8 5 0}$ to $\$ 1,955,551,332$ (factory products alone) in 1905, a growth which has been promoted by an abundance of fuel, by a good port on the Atlantic seaboard, by a network of canala which in the early yeara was of much importance in connecting the port with the Misaimippi river syatem, by ith frontage on Lake Erie which makea the orea of the Lalee Superior region easily acceasible, and by a great railway oystem which has been built to meet the demands ariang from the natural resourcea, By far the mont important induntry is the production of iroa and steel. The manufacture of iron was established on a commercial basis in 1716-1718, when a furnace was built on Manatawney Creek above Pottutown, and before the clone of the colonial era Pennsyivania bad risen to first rank among the yon-producing colonies, a position which it has always held among the states of the Union. So long as charcoal only west used in the furnaces (until about IB4o) and during the brief period in which this was replaced larsely by anthracite, the industry was of chiel importance in the eastern section, but with the gradual increase in the use of bituminous coal, or of coke made from it, the industry moved westward, where, especially in the Pitesburg district, ft received a new impetus by the introduction of iron ore from the Lake Superior region. The value of the output of iron and steel increased from $\$ 264,571,624$ in 1890 to $\$ 471,228,844$ in 1905, and the state furnished 46.5% of the pig-iron and 54% of the steel and malleable iron produced in the entire country. The manu. facture of great quantities of coloe has resulted from the demand for this product in the iron and ateel induatry and from the abundance of colcing coal; the manufacture of glas hae been promoted by the aupply of glass eand and natural gas in the went of the state; the manufacture of leather by the abandance of hembock bark; the manufacture of pottery, terre-cotta and fire-clay products by the abundance of rnw material; the manufacture of wilk and wilk goods by the large number of women and girls who came into the state in families of which the men and boys were employed in mining and picking anthracite coal; and in each of these industries as well as in a few others the state has for many years produced a large portion of the country's product.
In igos the twelve leading manufactures, with the value of each, were: steel and malieable iron, $\$ 363.373 .577$; foaqdry and mactinechop products, consiating moti largely of eteam locomotives, metalworking machinery and pumping machinery, \$199,650,913; pigjron, $\$ 107,455,267$; leather, $\$ 69,427,052$; railvay cars and repairs hy steam railway companies, $861,021,374$; refined petroleum, 647,459.502; silk and silk goods, 839,333 .590; tobacoo, cigare and cigarettes, \$39,079,122; Bour and grist-mill products, \$38,518,702: reinned zugar and molemen, \$37,182.504; worated goods, 335,683,015: ind malk fiquors, $\$ 34,863,823$. The mott maried advancee from 1900 to 1905 were in worsted goods (61.4%) structural iron-worts (60%), and rin and terne-plate (54.4%). Philadelphia is the great manufacturing centre. Within its limita, in 1905. all the cugar and molasses were raanufactured and much of the petroleum whe refined, mearly all of the ifon and steel hips and steam locomotiven weme built, and 93% of the carpeta and ruge were mande, and the total value of the manufacturce of this city in that year was nearly ans-thind of that for the entire state. Nearly 20% of the iron and steel was produced by Pittsbury together with Allo. sheny, with which it has since been consolidated, and the production Of these is the leading indurtry of New Castle, Johnstowa, Duquemef
the atate and of Reading, Harrisburg, Steelton, South Bethlehem Portstown, Lebanon, Phoenixvilte and Danville in the east part The silk and cement industries are confined largely to the eastert clties and boroughs; the colee, tin and terne-plate, and picklit. 3 industries to the western; and the construction and repair of rifiway cars to Altoona, Meadville, Dunmore, and repalr of railmay cars to Altoona, Meadville, Dunmore, Chambersburg, Butler and Philadelphia.

Trasuport and Commerce.-The new road cut through the Juniata region in the march of the anmy of Brigadier-General John Forbes againat Fort Duquespe in 1758, wes a result of the influence of Penmolvanla, for it was considered even then a matter of great imporiance to the furure prosperity of the province that its meaport. Philadejphia, be connected with mavigation on the Ohio by the onsiest line of communication that could be had wholly within its limits. At early as 1762 David Ritrenhouse and others made a survey for a canal to connect the Sehuyikill and the Susquehanrs river, and in 1791 a committee of the state legislature reported in favour of a project for extablishing communication by cands and river improvement from Philaderphia to Lake Erie by nay of the Susquehanna river. Before anything was done, the need of improved means of transportation between Philadelphla sand the antbracite coal-fields became the more pressing. The Schuyilkill Canal Company, chartered in 1815, began the construction of a canal along the Schuylkill river from Philadelphia to Mount Carton, Schuylkill county, in 1816, and completed it in 1826. In 1818 ibe Lebigh Navigation Compeny was formed to improve the navige. tion of the Lehigh river from its confluence with the Delaware to Conlport, and two years later coai wes nuccessfully carried dowa the Lehigh and Delaware rivers to Philadelphia in "arks" or rectangular boxes, two or more of which were joined together and steered by a long oar. So prosperous was the business that in 1827-1829 the company built a number of locks which made the Lehigh navigable in either direction, and in $1827-183^{2}$ the state did the same for the Delawnre between the mouth of the Lehigh and Bristol. The Union Canal Company, incorporated in 18 ni, completed a canal from Middietown on the Susquehanna to Reading on the Schuylkill in 1827. In 1824 the state legislature authorized the appointment of a commisaion to explore routes from the Schuylkill to Pitteburg, and from the Weti Branch of the Susquehanna to the Allegheny, and in the three or four succeeding years the state committed itsels to a very extensive system of interal improvements. Work was begun on the system in 1826 and was continued without interruption until 1840, when the completed or nearly completed portions embraced a railway from Philadelphia to Columbia on the susquehanna, a canal op the Susquehanna and the Juniata from Columbia to Hollidaysburg, a porage railway from Hollidayburg through Blair's Gap in the Alleghany Front to Johnstown on the Conemaugh river, a canal down the Conemaurh, Kiskiminetas, and Allegheny rivert to Pittobure, a canal up the Sulguehanas and its west branch from the mouth of the Juniata to Ferrandsville, in Clinton county, a canal up the Susquehanma and its north branch from Nortbumberland nearly to the New Yort border, and a canal up the Deleware river from Bristol tn the mouth of the Lehigh; conuiderable work had also been done on two canale to connect the Ohio river with Lake Erie. Work was stopped, in 1840, before the syatem was completed because of the intense popular discontent arising from the burden of debt which had been assumed and because the success of compreting raifrays was then fully ampred. In 1845 the state began to sell its canals and railway to private corporations and the sale was completed in 1859. The western division of the syatem wal abandoned by the new owners in 1865 and the worked portion of the east division gradually decreased until it, too, was wholly abandoned in 1904. with the exception of the Deleware Division Canal, which since 1866 han been worked by the Lehigh Coal a Navigation Company in connexion with tbe Lehigh Canal. In its natural condition there were bars in the Delaware ifver below Philadelphia which obstructed the gavigation of vessels drawing more than 17-20 ft. of walet. but in 1899 the Federnl govermment adopted a project for obtnining a channel having a minimum depth of 30 ft . The Federal govern ment has much improved the navigation of the Monongahela and Alegheny rivers and is committed to a project for slack-water navipatlon on the Ohio which is expected to give Pituburs communication with the sen by vemels drawing 9 ft. of wher.
The first railway in the atate wes that buit in 1827 by the Lehigh Conl a Navigation Company from Mauch Chunk to its mines, 9 m . distant; but this wat only a gravity road down which cars loaded with coal detcended by their own gravity and up which the empty cars were drawn by mules. In 1823 a compary was incorporeted to build a railway from Philadelphia to Columbia, bet nothing forther was done until 1898, when the utate canal commissioners were directed to build this road and the Allegheny Portage railway from Hollidayaburg to Johnatown. The latter was built with ten inclined planes, five on, each side of the oummit at Blair's Gap and care were drawn up these by gtatiomary enginee. Both the Philadelphia \& Columbia and the Alkgheny Portare railways wete completed in i834. From these and other begto mings the state's ratilway milenge gradualily increased to 1240 m .

the end of 1908, when it was evocectod by only two states in the Union, Texat and illinois. The principal railways are the tione operated by the Pennsylvania Raifroed Company from New Yorik to Wasbington through Pliladelphia; Irom Philadelphis to Cincinnati, Cleveland, Chicazo and St Louis through Harrisbors, and Pittsburt f from Baltinoore, Maryand to Sodas Point on Lake Ontario (Northera Central) through Harrisburg and Williamsport; from Williamsport to Buffalo and to Erie and from Pittaburg to Buffalo; the Philadeiphia \& Reading: the Lehigh Valley: the Erie; the Delaware, Lackawanna \& Wentern; the Beltimore \& Ohio; and the Buffalo, Rochester \& Pittsburg.
The state has one port of entry along the Alliatic coast, one on the Ohio river, and one on the Great Lakeen Philadetp bia, the Atlantic port, exports chiefly petroleurn, coal, grain and four, and imports chiefty iron ore, surgar, drugi and chemicats, manufactured iroo, hemp, jute and finx In 1909 the velue of ite exports. s80,650.274. was greacer than that of any other Atlantie port ercept New York, and the value of its imports, $379,003 \uparrow$.64, was greater than that of any except New York and Boston. Pittsburg ranks high among the interior portes of the country in foreign commerce and frost amomg the cities of the United Scates in the tonnage of its domertic commerce. Erie is quite unimportant among the lake ports in forcign commerce, but has a large domestic tade in irom ore, copper, wheat and flour.
Popolation.-The population of Pennsyivania was 434,373 in 1790; 602,365 in 1800; 810,091 in 1810; $1,049,458$ in 1820; $1,348,233$ in $1830 ; 1,724,033$ in $1840 ; 2,311,786$ in $1850 ; 2,906,275$ in 1880; 3,521,951 in 1870; 4,282,891 in 1880; 5,258,014. In 1890; $6,302,115$ in 1900; $7,665,111$ in 1910 . Of the total in 1900, 985,250 , or $15 \% \%$, were forcign-born, 156,845 were negroes, 1639 were Indians, 1927 were Chinese and 40 were Japanese. Nearly 95% of the forcign-born was composed of natives of
 Poland (76,358), Austria (67,492), Italy (66,655), Russia (50,959), Hungary (47,393) and $\operatorname{Swoden}(24,130)$. Of the native population ($5,316,865$) $90 \cdot 7 \%$ were born within the state and a litte more than two-fifths of the remainder were natives of New York, Maryland, Ohio, New Jerseg, Virginia, New England, Dedsware and West Virginin. Almost two-thirds of the Indians were in Cumborland county where, at Carilsle, is a United States Indian Industrial School. In 1,906 the total number of communicants of different religious denominations in the state was $2,977,022$, of whom 1,737 , 037 were Protestants and $\mathrm{x}, \mathbf{2 1 4 , 7 3 4}$ were Roman Catholics. There is a large number of the smaller religious sects in the state; the principal denominations, with the number of communicants of each in 1906, are: Methodist (363,443), Lutheran (335,643), Presbyterian (322,342), Reformed Church (177,270), Baptist ($\mathbf{4 1}, 694$), Protestant Episcopalian ($09,02 t$), United Brethren (55,574), United Evangelical Church (45,480), Disciples of Christ (86,458), German Baptist Bret hren (23,176), Eastern Orthodiox Churches (22,123), Mennonites (16,527), Congregational (34,8 I1), Evangelical Association (13,294), Friends (12,457), Church of God or "Winnebrennerians " (11,157), and Moravian (5322).
Of the total popalation in $1900,3,233,337$, or $51-8 \%$ were urban (i.e. in places having a pepulation of 4000 or more), 762,846 , or 12.15%, were semi-urban (ie, in incorporsted places having'a populetion lesis than 4000) and 2.3 35.932 , of 36.75%, were rural (is.. outbide of the incorporated places). From rogo to 1900 the urban population increased 854.730 , or 36% and the memi-utban 134,077, or $18-4 \%$, bat the rural macreared only 55,195 , or 2.4% The poppulationt of the principal cities in 1900 were an Yottows: Philadelphia, $1,293,697$; Pittebsrig, 321,$616 ;$ Allegheny, 129,896 (subsequently annexed to Pittsburg); Scranton, 100,076; Reading, 78,961; Erie, 52,733: Wilken-Barre, 51,721 ; Harrinbarg, 50,1671 Lancauter, 41,459 ; Altocas, 38,973 ; Johastown, 35,936; Allentown, 35,416; MeKeesport. 34.227: Cheiter, 33,988; Yof 1, 33.708; Willismpport, 28.757; New Caste, 28,339; Easton, 25,238; Norriecown, 22,265; Shenandoah, 20,321 ; Shamolin (berough), 18,202; Debanon, 17,686 .

Administration.-Pennsylvania' has been governed under constitutions of 1776,1790 and 1838 ; the present government is under the constitution of the 164 th of Decamber 1873 with amendments adopted on the sth of November rgor. An amendment to the constitution to be adopted must be approved by a majority of the members elocted to each house of the zeneral assembly in two successive leagishatures and then, at keast three months after the second approval of the geveral assembly, by a majority of the popular vote cast on the adoption of the amendment. All male citizans over al years of age,

Who have been cititens of the United States for one month, residents of the state for one year and of the clection district for two months immediately preceding the election; have the right of suffrage, provided they heve paid within two years a atate or county tax, which shall have been assessed at least two months and paid at least one month before the election. The Australian or "Massachusetts" ballot, adopted in 1891 under a law which fails to require personal registration, by a provision like that in Nebraska makes it easy to vote a straight ticket; party names are arranged on the ballot according to the number of votes secured by each party at the last preceding election.

Execulive.-The office of governor, superseded in 1776 by 2 president and council of twelve, was restored in 1790 . Under the present constitution the governor serves for four years and is ineligible for the next succeeding term. The governor and lieutenant-governor must be at least 30 yeart old, citizens of the United States, and inhabitants of the state for seven years last preceding election; no member of Congress or person holding any offise under the United States or Pennsylvania may be governor or lieutenantgoverior. The governor controle a large amount of patronage: appointing, subject to the advice and consent of two-thirds of the senate, a secretary of the commonwealth and an attorney-general during pleasure, and a superintendent of public instruction for four years, and may fill vacancies in various offices which occur during the rocess of the senate. He has a right of veto, extending to items in appropriation bills, which may be overridden by a two-thirda vote in each house. His power of pardon is limited, being subject to the recommendation of three members of a board which consiste of the lieutenant-governor, secretary of the commonwealth, attorneygeneral and secretary of internal affairs. The other executive officials are the lieutenant-governor and the secretary of internal affairs, elected for four years, the auditor-general, elected for three years, the treasurer, elected for two years, and (aii appointed by the governor) the secretary of the commonwealsh, the attorney-gemeral and a auperintendent of public instruction. All those chosen by election are ineligible for a second consecutive term except the secretary of internal affairs. The department of internal affaira consists of six bureaus: the land office, vital statistics, weather service, assessments, industrial statistics, and railroads, canals, telegrapha and telephones. There are also many atatutory administrative officials and boards, such as the adjutant-gencra, insurance commissioner board of health, board of agriculture, board of public grounds and buildings, cormissioness of hsheries, and factory and mining inspectors.
Legitsoturr.-During the colonial period and the early yeare of statehood the legislature was composed of one house, but the bicameral system was adopted in the constitution of 1790 . There are fifty senators, elected lor four years, and approximately two hundred representatives, elected for two years. Senators munt be at least 25 years old, citizens and inhabitants of the state for four years next before election and inhabitants of the sena torial diatricts from which each is elected for one year next before election: representatives must be at least 21 years old and must have lived in the state three years and in the district from which elected one year next before election. To avoid the possibility of metropolitan domination provision is mado that no city or county shall be entitled to more than one-sixth of the total number of senators. Sessions are biennial. The powers of the two houses are the same except that the senate exercises the usual right of confirming appointments and of sitting as a court of impeachment, while the House of Representatives inttiates money hils and impeachment cases.
ftadiciary.-The supreme court consists of seven judges elected by the voters of the state at large. Minority representation is secured by the provision that each elector chail vote lor one less than the number of fudges to be chosen at each election. The state is divided into three supreme judicial districts, the eastern, the middic and the western. This court was formerly very much overworked but it was relieved by an act of the 24th of June 1895 establishing a superior court (now of sevep judges) with appellate jurisdiction There were in 1910 fifty-six district courts of common pleas, one for each county of forty thousand inhabitants and not more than four counties in a district. The judges of the common picas are also judges of the courts of oyer and terminer, quarter sessions of the peace and general gaol delivery, and the orphans' courts, althougb there are separate orphans' courts in the counties (ten in 1909) having a population of more than one hundred and filty thousand. Justicss of the peace are elected in wards, districts, boroughs and townships. In the colonial period all judges were appointed by the governor during good behaviour. The constitution of 1776 provided For terms of seven years, that of 1790 restored the life term, and that of 1838 fixed the terms for judgen of the common pleas at tea year and judges of the supreme court at fifteen. A constitutional amend ment of 1850 provided that all judges should be clected by the people.
${ }^{1}$ The constitution of 1873 made prosision for minority repremere tation an followa: "Wherever two pudges of the eupreme court are

At present supeme court judge aurve for twenty-one years and are ineligible for re-election. Superior court and common pleas judqea serve for ten years, and justices of the peace for five. Judges may be inpeached for midericanour in office or they unay be removed by the governor, with the comeent of two-thirds of each houte of the general asmembly, for any reasonable cause which chall not be sufficient ground for impeachment.

Local Cowernment-The local govermment is a combination of the county system of the South and the townahip eytem of New England. The couaty offoers are sherifs, coroners, prothonoterivs, registers of vills, recorders of deeds, commimioners, treamurens, urveyors, auditors or comptrollers, clerks of the courts, and district attorneys, elected for three ycars. The three commissioners and the three auditore in each county are choeen by the anme timited wote procese as the supreme-court judpes, thus allowing a reprementation to the minority party. Pennsyivanin has suffered more perhapa than any other tate ia the Union from legishative interference in local affairs. Under an act of the general ansembly passed in 1870 the people of Philadelphia were forced to coatribute more than $\$ 20,000,000$ for the congtruction of city-hall. To guard against such encroachments in the future the constitution of 1823 imposed the most detailed limitations upon apecial legislation. The object of the provisioa, however, has been In a larpe measure nullifed by the eystem of city clasification, under which Philadelphia is the only city of the first class. The passage of the "Ripper Bill " of 1901 chows that the citics of the second class are by no means secure. The apparent object of the meature was to deprive the people of Pittsbur temporarily of the privileges of elf-government by empowering the governor to appoint a recorder (in 1903 the title of mayor was again assumed) to exercise (until 1903, when the municipal executive should be again chosen by the people) the functions of the mayor, thus removed by the governor under this statute; and this act applied to the other cities of tie second class, Alicgheny ad Scranton, although they had not offended the party managers.
Miscellancous Laws.-A woman's right to hold, manage and ecquire property ia her own right is aot affected by marriage, but for a married woman to mortgage or convey her real eatate the joint action of herself and her busband is necessary. The rights of dower and courtery both obtain. When a husband dies intestate leaving a widow and issuc, the widow has the use of onc-third of his real estate for life and onethird of his personal cstate absolutely; if be leavee no issue but there be collateral heirs or other cindred, the widow has the real or personal estate or both to the value of $\$ 5000$, the use of one-hall the remaining real estate for life, and one-half the remaining permonal estate absolutely; if the husband leavee a will the widow has the choice betweea her dower right and the terms of the will. When a wife dien intestate leaving husband and iswe the bueband has the une of all her real eatate for life, and the permonal eetate in divided among the husband and childrea share and chare alike; If there be no issue the husband has the use of all her real estate for life and all her personal estate pbeolutely; if the wife jeaves a will the husband has the choice between its terms and his right by courtesy. Whenever there is neither issue nor kindred the surviving husband or wife has all the estate. The principal grounds for an absolute divorce are impotency, adultery, wifful or malicious desertion, cruel and barbarous treatment, personal abuse and conviction of any such crime as arson, burglary, embezalement, forgery, kidnapping, larceny, murder, perjury or assault with iatent to kill. Before filing a petition for a divorce the plaintiff must have resided within the ptate at least one year. A puit for a divorce on the ground of desertion may be commenced when the defendnnt has been absent gix moaths, but the divorce may not he granted until the desertion has continned two yeara. The party convicted of adultery is forbidden to marry the co-respondent during the lifetime of the other party. A marriage of first cousins or a bigamous marriage may be declared void. Pennsylvania has no bomestead law, but the property of a debtor amounting to $\$ 300$ in value, exclusive of the wearing apparel of himsell and lacnity and of ait Bibles and echool-books in use, is exempt from levy and gaie on execution or by distress for rent; and the exemption extends to the widow and children unless there is a lien on the property for purchase money. The child-labour law of 1909 forbids the employment of children under eighteen years of age in blast furnaces, tanncries, quarries, in managing elevator lifta or hoisting machincs, in oiling dangerous machinery while in motion, at switch tending, as brakesmen, firemen, engineers, motormen and in other positions of similar character. The ame law prescribes conditions under which children between fourteen and eighteen years of age may he cmployed in the manulacture of white-lead, red-lead. paints, phosphorus, poisonous acids, tobacco or cigars, in mercantile establishments, stores, hoteln, offices or in other placen requiring protection to their health or eafety; and it forbids the employment of boys nuder sixteen years of age or of girls under eighteen years of age in such factorics or establishments more than ten hours a day (unless it he to prepare for a short day) or for more than fifty-eight bours
to be chosen for the same term of aervice each voter thatl vote for one only, and when three are to be chosen he shall vote for no more than two: candidates higheat in vote shall be declared clectod."
a wek, or their employment there between nime ociocis in the evening and six o'clock In the morming, except that in the factorios requining continuoua night and day employment boys not ander fourteen yeare of age may be employed partly by day and partly by night not exceeding nine bours in reny twenty-four. The employment of children under fourteen yeare of age in coal-mines is forfidden, th in alo the enployment of children under fourteen years of age in aay cotton, woallen, silk, paper, bagging or flax lactory, or in any lauodry, or the employnseat of children under twelve yeare of age in any mill or factory whatever within the cornmonwealth.

Prisent and Charities-Penal and charitable institutions are under the aupervision of a board of public charities of ten membern, estabtiahed in 8869 , and a committee in lunacy, compoeed of Give membere of thi board, appointed under an act of 1883 . An agita. tion begun by the Philadelphia society for atsisting distreased prisoners in 1776, checked for a time by the War of ladependence. led uitimately to the passage of a statute in 1818 for the establishment of the Wertern Penitentiary at Allegheny (opened 1836) and another of 1831 for the eatablishment of the Eatcrm Peaitentiary in Philadelphia (opened 8829). Ia the former penitentiary prisonert are congnggated; in the latter they are bept in colitary confinement. An set of 187^{8} provided for a thind penitentiary in the middle district, but through the efforts of Governor Heary M. Hoyt the plans were changed and instead the Industrial Reformatory was ertablahed at Huntingdon (opened 1889). The House of Refuge of meatern Pennsylvania, located in Alieghery in 1854 (act of 1850), hecame the Penarylvania Reform School in.1872, and ont removed to Morganza, Washington county, in 1876. Few tates have done so much as Pennsylvania for the humane and scientific treatment of its dependent and defective clases. Largely as a result of the efforts of Dorothea Lynde Dix (q.5.), a hospital for the intane was established at Harrisburg ia 185I (act of 1845). A econd hospital was opened at Pitteburg in is 53 (act of 1848), but the location was ruined by Pennsylvania milway improvements, and in 1862 it was removed to 2 new site about 7 m . from the city. which was called Dixmont in honour of Miss Dix; the hospital is not a state inatitution, but the state provides for the maintenance there of patiente committed by the courts or the poor authorities in the thirtecn counties forming the western district. For three other districte three tate institutions have been established-at Danville, 1872 (act of 1868), Warren, 1880 (act of 1873), and Norristown, 1880 (act of 1876). An act of 1901 establiahed a homoeopathic hospital for the ingane at Allentown A distinction is made betwees hospitals and asylums. The asylum for the chronic insane is at South Mountain, 1894 (act of 1891). A tate institution for feebleminded of western Pennsylvania it Polk, Venango county, was opened in 1897 (act of 1893), and the eastern Pennsylvanis state institution for fecble-minded and cpileptic at Spring City, Chester county, was opened in 1908 (act of 1903) There are institutes for the hlind at Overbrook and Plttsburg, and for the deaf and dumb at Philadelphis and Edfewood Perk. an oral mehool for the deaf at Scranton, a home for the training of deaf children at Philadelphia, a soldiers' and sailors' home at Erie (1886), a soldiers' orphans' industrial school (1895) at Scotland, Fraoklin county, the Thaddcus Stevens Indpustrial school (190s) at Lancaster, hospitals for the treatment of persons Injured In, the mines, at Ashland (1879), Hazleton (2597) and Shamokin (igoy), and cottage hoepitals at Blowburg, Conocilsville, Mercer and Pbilipsbure (all 1887). In addition to the institutions under state control a large number of Iocal charities receive ald from the public treasury. In 19071908, \$14,222,440 was appropriated for institutions: \$7,479,732 for state institutions, $\$ 1,240,108$ for remi-state institutions, $\$ 4,757,100$ for peneral hospitals, $\$ 149.500$ for hoapitals for conmimptives, and 8745,900 for homes, asylums, ace. The rystem of juvenile courts, created under a statute of 1901, bas done mach to ameliorate the oondition of dependent end delinquent children.

Edacation.-During the colonial period there were many sectarian and neighbourhood subscription achools in which the poor sould receive a free education, but public *hoole in the modern American eense were unknown. The famous Fricads' public school, founded in Philadelphia in 1689 and chartered in 1607, still cairts as the William Penn charter achool. An agitation begun soon after the War of Independence serulted in the creation of a achool fund in 1831 and the final establishment of the present system of public whools in 1834. The attempt to repeal the law in 1835 was defeated largely throuti the efforts of Thaddeus Stevems, who whet then a member of the state house of representatives. During the ycars 1852-1857 the educational department became a separate branch of the state gowerument, the office of county schooi superintenicne Was cremted, the tate feachers' enociation (known suce 1900 as the Pennsylvanis educational associntion) was organited, apd a law was enacted for the establishment of normal schools. Since 1893 the state has furnished textbooks and other neccesary supplies free of chatre, and since 1895 edecation has been compulsory for all chidrea between the ages of eight and thirteen. Schools must he kept open mot less than seven and not more thon tea monihs in the year. Out of a total expenditure of $830,021,774$ for the fiscal year $1909,87,875.083$ was for educational purposes, of which ffisiogot wet for comon schods, being appropriations to the
comaties. There is a biemnial sthool appropriation of $\$ 8,000,000$. In addition the district directors levy local rates which must not be greater than the state and county taxes combined. The Pennsylvania state college at State College, Center county, wat establinted in 1855 as the farmers' high school of Pennaytvania, in 1862 became the Acricultural College of Pennaylvania, and received its preseot namo in 1874 after the income from the national land grant had been appropriated to the use of the institutions; in 1909-1910 it had 147 instructors, 1400 students and a library of 37,000 volumes. Other Institutions for higher education aro the University of Pennylvania, at Philadelphia (1749), an endomed institution which receiven very little support from the state; the University of Pittsburgh (18 19), at Pitssurg (g.v.); Dickinson College (Methodist Episcopal, if ${ }^{3} 3$), at Cartisle: Havertord College (Society of Friends, 1833), at Haverord; Fraratin and Marshel! (German Reformed, 1853), at Lancater; Washington and Jeffermai (Preabyterian, t802), at Waahington; Lalayette (Preabyterian, 1832), at Easton; Bucknel! University (Baptist. 1846), at Lewisburg: Waynesburg (Cumberland Presbyterian, 1851), at Waynesburg; Urinus (German Reformed. 1870), at Collegeville; Alegheny Coilege (Methodist Episcopal, 1815), at Meadvolie: Suacthmore (Socioty of Friende (Hickeites), 1866), at Swarthpore: Mubleabers (Lutheran. 1867), at Allentown; Lehigh University (non-sectarian 1867). at Bethlehem; and for women Bryn Mawr College (Socisty of Friends, 1805), at Bryn Mawr; the Allentown College (Cermin Reformed, 1867), at Allentown; Wilion College (Prembeterian, 1870). and the Peaneylvania College for womep (1869) c. at Pittsburg. There are theological seminaries at Pittsburg the Allegheny Seminary (United Presbyterian, 1825), Reformed Presbyterian (1856), and Western Theological Seminary (Presbyterian. 1827); at Laneaster (Germin Reformed, 1827); at Meadville (Unitarian 1844); at Bethlehem (Moravian, 1800); at Chester, the Crowet Theological Seminary (Baptist. 1868); at Gettybburg (Lutheran, 1826); and in Philadelphia several schools, notably the Protestant Episcopal Church divinity school (1862) and a Lutheran seminary (1864), at Mount Airy. There are many technical and special schools, tuch as Girard Colloge, Drexel ingtitute and Franklin institute at Philadelphia, the Carnegie institute pt Pittsburg and the United States Indian school at Carlisle (18gr).

Finamce.-The revenues of the state are derived primarily from corporation taxes, businese ficences, and a 5% rate on collateral inheritance. Taxes on real extate have been abolished and thome on personal property are being seduced, although the heavy expenditures on the new capitol at Harrisburg checked the movement temporarily- The total receipts lor the year cnding on the 30 th or November 1909 were $828.943,210$, and the expenditure was $\$ 30,021,774$ - During the provinrial period Penneyfvania, in common with the other colonics, mas affected with the paper money crave. From 1723 to 1775 it issued $41,094,650$ and from 1775 to 1785 [1,172,000 plus $\$ 1,550,000$. Acts wcre passed in 1781, 1792, 1793 and 1794 to facilitate redemption at depreclated rates, and the last bills mere called in oa the ist of Jamuary 1806. The tate was also carried along by the movement which began about 1825 for the expenditure of pub)ic funds oa internal improvements. On turnpikes, bridges, canals and railways $\mathbf{\$ 5 3 , 3 5 2 , 6 4 9}$ was spent between 1826 and 1843, the public debt in the katter year reaching the high-water mark of $842,188,434$. An agitation was then begun for retrenchment, the public works were put up for alo, and werc Gnally disposed of in 1858 (when the debe was $\$ 39,488,244$) to the Pennsylvania Railroad Company for $\$ 7.500,000$. Under authority of a constitutional amendment of 1857 a sinking fund commission was establishod in 1858 . Aside from a temporary increase during the Civil War (1861-65) the debt bas been rapidly reduced. The constitution of 1873 and subsequent legislation have continued the commission, but the sources of revenue have been very much curtailed, being restricted to the interest on the deposits of the fund and interest on certain Allegheny Railroad bonds. The total debt on the 30 ch of November 1909 was $82,643,987$, of whicl the greater part were 31 and 4% bonds, maturing on the ist of February 1912. The sinking fund at the same date amounted to $82,652,035$. leaving a net surplus in the sinking fand of 88118 . The sinking furd was formerly divided among certain favoured banks in such manner as would best advance the political intereats of the organiantion which controlled the state; but just after the relorm victory in the election of 1905 the sinking fund commision instituted the policy of buying bonds at the market price, and the debt is now being reduced by that method. The financina intstitutions of Pennsyivaiaia other than national banks are crepted by atate charters limited to twenty yeara and are subject to the cupervision of a commissioner of banking.

History.-The chief features of Pennsylvania history in colonial days were the predominance of Quaker influence, the beterogencous chamater of the population, liberality in matters of religion, and the fact that it was the largest and the most successiul of proprietary provinces. The earliest Buropean setllements within the present limits of the state were some small trading posts established by the Swedes and the Dutch in the
lower valley of the Delaware River in ronj-ri8n. Between 1650 and 1660 George Foz and a few other ppominent members of the Society of Friends had begun to urge the establishment of a colony in America to serve as a refuge for Quakers who were suffering persecution under the "Clarendon Code." William Penn ($q .0$) became interested in the plan at least as early as 1666. For his charters of 1680-1683 and the growth of the colony under him see Pasm, Walliny

During Penn's life the colony was involved in serious boundary disputes with Marylend, Virginia and New York. A decroe of Lord Chancellor Hardwicke, in 1750, settled the MarylandDelarare disputce and led to the survey in 1763-1767 of the boundary between Pennsylyania and Maryland (lat. 39° 43 $^{\prime}$ $26.3^{\prime \prime}$ N.), callod the Mason and Dixon line in honour of the surveyors; it acquired considerable importance. later as separating the free and the slave states. In 1784 Virginia agreed to the extension of the line and to the establishment of the western limit (the present boundary between Pennsylvania and Ohio) as the mexdian from a point on the Mason and Dison line five degrees of longtude weat of the Delaware river. The 42 nd parallel was finally selected as the porthern boundary in 1789, in 1792 the Federal movernment sold to Pennsylvania the scoall triangular atrip of territory north of it on Lake Erie. A territorial dispute with Connecticut over the Wyoming Valley was settled in favour of Pennsylvania in 1782 by a court of arbitration appointed hy the Continental Congress.

Upon William' Pemn's death, his widow became proprietary. Sir William Keith, her deputy, was hostile to the council, which be practically abolished, and was popular with the assembly, which he assidnounly courted, but was discharged by Mrs Pena after he had quarrelled with James Logan, secretary of the ptoviace. His suctessors, Patrick Gordon and George Thomas, undet the proprietorship of John, Thomas and Richard Penn, continued Keith's papular policy of issuing a plentiful paper currency; but with Thomas the assembly remewed its old struggie, refusing to grant him a salary or supplies because of his efforts to force the colony into supporting the Spanish War. Again, during the Seven Years' War the assembly withstood the governor, Robert Hunter Morris, in the matter of grants for military expenses. But the assembly did its part in assisting General Braddock to eutfit; and after Braddock's defeat all westera Pennsyivania sufiered terribly from Indian attacks. After the proprietors subscribed $£ 5000$ for the protection of the colony the assembly momentarily gave up its contest for a tax on the proprietary estates and consented to pass a money bill, without this provision, for the expenses of the war. But in 1760 the ateembly, with the help of Benjamin Frabklin as agent in England, won the great victory of forcing the proprietors to pay a tax (6566) to the colony; and thereafter the assembly had little to coatest for, and the degree of civil liberty attained in the province was very high. But the growing power of the Scotch-Lrish, the resentment of the Quakers against the proprictos for having gone back to the Church of England and many other dircumstances strengthened the anti-proprietary power, and the assembly strove to abolish the proprietorship and establish a royal province; John Dickinson was the able leader of the party which defended the proprictors; and Joseph Galloway and Benjamin Franklin were the leaders of the anti-proprietary party, which was greatly weakened at home by the absence after Deceraber $\mathbf{3 7 6 4}$ of Franklin in England as ilts agent. The question lost importance as independence becamp the isaue.

In 1553 a volunteer militia had been created and was led with great success by Benjamin Franklin; and in 1756 a line of forts was begun to hold the Indians in check. In the same year a force of pioneers under John Armstrong of Carlisle surprised and destroyed the Indian village of Kittanning (or Atique) on the Allegheay river. But the frontier was disturbed by Indian attacks until the suppression of Pontiac's conspiracy. In December 1763 six Christian Indians, Conestogas, were messecred by the "Paxton boys" from Paxton near the present Harrisburgi the Indians who had escaped were taken
co Lancaster for afe keeplag but were sazed and killed hy the "Paxton boys," who with other backwoodsmen marched upon Philadelphis eariy in 1764, but Quakers and Germans gathered quickly to protect it and civil war was averted, largely by the diplomacy of Franklin. The Parton mangerce marked the clove of Quater supremacy and the beginning of the predominance of the Scotch-Irith pioneers.

Owing to its central position, its liberal goverament, and its pelicy of teligious toleration, Pennsylvania had become during the r8th century a refuge for European immigrants, eapecially persecuted sectaries. In no other coloay were so many different races and religions represented. There were Dutch, Swedes, English, Gérmans, Welsh, Irish and Scotch-Irish; Quakers, Preshyterians, Episcopalians, Catholics, Lutherans (Reformed), Mennonites, Dunkers, Schwenkfelders, and Moraviens: Mort of these clements have now become merged in the general type, hut there are still many communities in which the popular language is a corrupt German dialect, largely Rheno-Franconian in its origin, known as "Pennsylvania Dutch." Before the Seven Years" War the Quakers dominated the government, hut from that time until the failure of the Whisky Insurrection (1794) the more belligerent Scotch-Irish (mostiy Presbyterians) were usually in the ascendancy, the reasons being the growing nomerical strength of the Scotch-Irish and the increasing dissatisfaction with Quaker neglect of means of defending the province.
As the centril colony, Pennsyivania's attitude in the struggle with the mother country was of vast importance. The British party was strong because of the loyalty of the large Church of England element, the neutrality of many Quakers, Dunkers, and Mennonites, and a general satisfaction with the liberal and free government of the province, which had been won gradually and had not suffered such catastrophic reverses as had em. bittered the people of Massachusetts, for instance. But the Whig party under the lead of John Dickinson, Thomas Miffin and Joseph Reed was successiul in the state, and Pennsylvania contributed greatly to the success of the War of Independence, by the important services rendered by her statesmen, by providing troops and by the financial aid given by Robert Morris (q.v.). The two Continental Congresses (1774, and 1775-178i) met in Philadelphia, except for the months when Philadelphia was occupied by the British army and Congress met in Lancaster and York, Pennsylvania, and then In Prince. ton, New Jersey. In Philadelphia the second Congress adopted the Declaration of Independence, which the Pennsylvania delegation, excepting Franklin, thought premature at the time, but which was weli supported by Pennsylvania afterwards. During the War of Independence battles were fought at Brandywine (1777), Paoli (1777), Fort Miffin (1777) and Germantown (x777), and Washington's army spent the winter of 2777-1778 at Valley Forge; and Philadelphia was occupied by the British from the 26 th of September 1777 to the 18 th of June $\mathbf{2 7 7 8}$. The Penns lost their govemmental righte in 1776, and three years later their territorial intereets were vested in the commonwealth in return for a grant of $£ 220,000$ and the guarantee of titles to private estates held in severalty. They still own considerable property in and around Wilkea-Barte, in Luzerne county, and in Pbiladelphia. The first atate constitution of September 1776 was the work of the Radical party. It deprived the Quakers of their part in the control of the government and forced many Conservativea into the Loyalist party. This first state constitution was never submitted to popular vote. It continned the unicameral legislative system, abolished the office of governor, and provided for an erecutive council of twelve members. It also created a curious body, known as the council of censors, whose duty it was to assemble once in seven yeats to decide whether there had been any iniringements of the fundamental law. The party which had carried this constitution through attacked its opponents by withdrawing the charter of the college of Philadelphia (now the university of Pennsylvania) because its trustees were antl-Constitutionalists and creating in its place a university of the state of Pennsyl-
vania. The Constitutional party in $1 \dot{7} 85$ secured the annuiment by the state assembly of the charter of the Bank of North America, which still retained a congressional charter; and the cause of this action also seems to have heen party feeling against the anti-Constitutionalists, among whom Robert Morris of the hank was a leader, and who, especially Morris, had opposed the paper money policy of the Constitutionalists. These actions of the state assembly against the college and the bank probably were fmmediate causes for the insertion in the Federal Constitution (dopted by the convention in Philadelphia in 1787) of the clauso (proposed by James Wilson of Pennsylvania, a friend of the college and of the bank) forbidding any state to pass a law impairing the obligation of contracts. The state retified the Federal Comstitution, in spite of a powerful opposition-largely the old (state) Constitutional party-on the 22nd of December 1787, and three years later revised its own canstitution to make it conform to that document. Under the constitution of 1790 the office of governor was restored, the executive councll and the council of censors were abolished, and the bicameral legislative system was adopted. Philadelphia was the seat of the Federal government, except for a hrief period in $8789-1790$, until the removal to Washington in 1800 . The state capital was removed from Philedelphia to Lancaster in 1799 and from Lancaster to Harrisburg in 88 za .

The atate was the acene of the Seotch-Irish revolt of 1794 against the Federal excise tax, known as the Whisky Insurrection (q.v.) and of the German protest (1799) against the house tax, known as the Fries Rebellion from its leader John Fries (q.v.). In 1838 as the result of a disputed eiection to the state house of representatives two houses were ogenaized, one Whig and the other Democratic, and there was open violence in Harrishurg. The conflict has been called the "Buckshot War." The Whig House of Representatives gradually hroke up, many members going over to the Democratic house, which had possession of the records and the chamber and was recognized by the state Senate. Pennsylvania was usually Democratic hefore the Civil War owing to the democratic character of its country population and to the close commericial relations between Philadelphia and the South. The growth of the protectionist movement and the development of antislavery sentiment, however, drew it in the opposite direction, and it voted the Whig national ticket in 1840 and in 1848, and the Republican ticket for Lincoln in 1860. A split among the Democrats in 1835, dute to the opposition of the Germans to internal improvements and to the establishment of a public school system, resulted in the election as governor of Joseph Ritner, the antiMasonic candidate. The anti-Masonic exeitement subsided as quickly as it had risen, and under the leadership of Thaddeus Stevens the party scon became merged with the Whigs. During the Civil War (186I-65) the atate gave to the Union 336,000 soldiers; and Generals McClellan, Hancock, Meade and Reynolds and Admirals Porter and Dahigren were natives of the state. Its nearness to the field of war made its position dangerous. Chambersburg was burned in 1862; and the battle of Gettyshurg (July 1863), a defeat of Lee's attempt to invade the North in force was a turning point in the war.

The development of the material resources of the state since 1865 has been accompanied hy several serious industrial disturhances. The railway riots of 1897 , which centred at Pit tsburg and Reading, resulted in the destruction of about two thousand freight cars and a considerable amount of other property. An organized association, known as the Molly Maguires (q.v.), terrorized the mining regions for many years, but was finally suppressed through the courageous efforts of President Franklin Benjamin Cowen (1863-1889) of the Philadelphia \& Reading railroad with the assistance of Allan Pinkerton and his detectives. There have heen mining strikes at Scranton (1871); in the Lehigh and Schuylkill regions (3875), at Hazleton (1897), and one in the anthracite fields (1902) which was settled by a board of arbitrators appointed by President Roosevelt; and there were street railway strikes at Chester in 1908 and in Philadelphia in 1910 The calling in of Pinkerton detectives from Chicago and New

York to setule a strike in the Carnegie stecl works at Homeatend in 1892 precipitated a scrious riot, in which about twenty percons were killed. It was necessary to call out two brigades of the state militia before the disorder was finally suppreseed. The labour uniops took advantage of this trouble to force Pennsylvania, Indiana, 1 llinois, Minnesota, Colorado and several ol her states to pass anti-Pinkerton statutes making it illegal to import irresponsible armed men from a distance to quell local disturbances. On the political side the chief featurea in the history of the state since 186 s have heen the adoption of the constitution of 1873, the growth of the Cameron-Quay-Pearose political machine, and the alterapts of the reformera to overthrow its domination. The conatitution of 1838 ,' which superseded that of 1790 , extended the functions of the legisiature, limited the governor's power of appointment, and deprived negroes of the right of suffrage. The provision last mentioned was nullified by the fourteenth and fifteent h amendments to the constitution of the United States. The chief object of the present state constitution (1873) was to prohibit local and special legislation. It increased the number of senatore and represenLatives, created the office of lieutenant-governor, substituted biennial for annual sessions of the legislature, introduced minority representation in the choice of the bigher judiciary and of the county commissioners and auditors and provided (as bad an amendment adopted in 1850) for the clection of all judges hy popular vote. The political orgenization founded by Simon Cameron (q.v.) and strengthened by his son, James Donald Cameron, Matthew Stanley Quay and Boics Penrose (b. 2860), is based upon the control of patronage, the distribution of state funds among favoured banks, the support of the Pennsylvania railway and other great corporations, and upon the ahility of the leaders to persuade the electors that it is necessary to vote the straight Republican ticket to save the protective system. Robert E. Pattison (1850-1904), a Democrat, was elected governor in 1883 and again in 189I, but he was handicapped hy Republican legislatures. In 1905 a Democratic state treasurer was elected.

Pennsylvanta Governors.

 Under Dutch Rule (1624-1664):Cornelis Jacobsen Mey .
William yan Hulst
Pcter Minuit
David Pieterzen de Vrie: : . . Govcrnor . . 1626-1632
Wouter van Twiller \quad. : $1633-1638$
William Kicft
Peter Stuyvesant
Under Swodish Rule (1638 -1655).
Peter Minuit
Peter Hollender
John Printz
Ohn Pappegoya
John Claude Rysingh
Under the Duke of York (1664-1673).
Richand Nicolls
Robert Carr
Robert Ncedham
Froncis Lovelaco
John Carr
$\vdots:$

Commander on the Delaware
Commander on the Delaware Under Dutch Rule (1673-1674).
Anthony Colve
Peter Alrichs
Deputy on the Delaware
Under the Duke of York (1674-1681).
Sir Edmund Andros
Under the Proprictora (168i-1693).
William Markham
Deputy Governor .
1691-168a
1682-1684
William Penn
President of the Councit 1684-1686
Thomas Lloyd
Rabert Turner
Arthur Cook
Executive Commiscioners 1686-1688
John Simcock
Ohn Eckley
John Blackwelt
Deputy-Governor : 1688-1690

[^10]Thomas Lloyd

- Prebident of the Council $1690-1691$

Deputy-Governor
1691-1693
William Markham ${ }^{2}$
1692-1693
Under the Crowa (1693-1695).
Benjamin Fletcher
William Markham
Deputy-Governor
Under the Proprietors (1695-1776).
William Markham
Witliam Pcnn
Deputy-Governor . 1695-1699
Andrew Hamilton
Edward Shippen
John Evans
Chartes Gookin
Sir Willian Keith
Patrick Gordon
James Logan
Gcorge Thomas
Anthony Palmer
James Hamilton
Robert H. Morris
William Denny
James Hamilton
John Penn
James Hamitton
Kichard Penn
John Penn

1699-1701 Deputy-Governor : 1701-1703
President of the Council 1703-1704
Licutenant-Govemor 1704-1709

2709-1717
1717-1726
1726-1736
1693-1695
1693-1695

Period of Statehood (1776-).
Benjamin Franklun, Chairman of the Committee of Safety 1776-1777
Thomas Whaston, Jr. . . . President of the Council ${ }^{2777-1778}$
Gcorge Bryan 1.. Acting President of the Council 177%
Joseph Reed : : . . President of the Council 1778 1781
Willam Moore
John Dickinson
Benjamin Franklin
Thomas Mifflin
Thomas Miffin
Thomas Mckican
Simon Snyder
William Finley
Joseph Heister
John A. Shulze
George Wolf
Joseph Ritner
D. R. Porter
F. R. Shunk
W. F. Johnston ${ }^{\text {B }}$

William Bigler
James Pollock
W. F. Packer
A. G. Curtin

John W. Geary
John F. Hartranit
Henry M. Hoyt
1781-1782
President of the Council $1736-1738$
Deputy-Governor 1738-1747
 Deputy-Governor $\begin{array}{r}1754-1756 \\ 1756-1759\end{array}$
President of "the Council $\begin{array}{r}1759-1763 \\ 1763-1771 \\ 1771\end{array}$
Lieutenant-Governor 1771-1773
1773-1776).

Robert E. Pattison
James A. Beaver
Robert E. Pattison
Daniel H. Hastings
William A. Stone
Samucl W. Pennypacker
Edwin S. Stuart.
John K. Tener
Braliocrapux- ${ }^{\circ}$. - $1911-$
2.-F or the physiography of Pennsylvania, see W.S. Tower's "Regionat and Econonic Cocography of Pennsylvania," in the Bulletins of the Gcographical Socicty of Philadelphia, vols. iv.v. and vi. (Philadelphia, 1904-1908); J. P. Lasley, A Summary Description of she Gcology of Pennsyloqnia (Ilarrisburg, 1892-1895); C. B. Trego, A. Gcogrophy of Penmsytrania (Philadelphia, 1843): and Topggraphic and Gcologic Survey of Pennsyirania, 1906-1008 (Harrisbure, 1909). For industrial statistics see reports of tho Iwelfth United States Census, the Special Reports on Manufactures in 1905 , by the United States Census Burcau, the annual report on the Mineral Resources of the Uniled Slakes, by the United States Geological Survey, and the Year Book of the Unitud Stakes Departa ment of Agriculture.
For the administration of the state sec: The Consfitution of tha Commonweallk of Pennsyteania, adopted December 16, 1873, amended November 5. 1901 (Harrisburg, 1902); S. Gcorge et ol: (editors), Laws of Pennsylvasia, $1682-1700$, proceded by the Duko of York's Laws, 1076-1082 (Harnisburg, 1879); A. J. Dallas (editor). Laws of Pennsylpazio, 1700-1801 (Philadelphia and Lancaster, 1797-1801); Laws of the General Assembly of Pennsylamia
${ }^{2}$ Lloyd was deputy-governor of the province, the present statd of Pennsylvania; Maskham of the lower counties, the present stat of Delaware.
The state was governed by a supreme executive council in 1790.
W. F. Johaston, presidenie of the otate senate.
(Philadelphia, I801 sqq. and Harrisburg, 1802 sqq.): and The Stalulas at Large of Pennsyltanio (Philadclphia, 1896 sq9.), publislied under an act of 1887. Some valuable information is to be found in B. A. and M. L. Hinsdale, Hislory and Civil Government of Pennsydunia ... (Chicago, 1899): and in the various editions of Smull's Legisfotive Handbook and Manual. For the history of penal and charitable institutions, see the Annual Reports of the Board of Commissioners of Public Charilies (Harrisburg, $18715 \mathrm{~S}_{\mathrm{y}} \mathrm{i}$.); the Ansual Reports of the Commillce on Lunacy (liarrisburg, itB3 sqq-): and Amos H. Mylin Penal and Charatable dnslitutions of Pennsyduenia (2 vols., Harrisburg, 1897), an official publicat:-n. well written and handsomely ilustrated. For educationa! history, see N. C. Schacfer, The Common School Laws of Pennsytronio (Harrisburg, 1904); B. A. Hinsdale, Docunkents Iltustralitie of American Educational History (Washington, 1895); and J. P. Wickersham, History of Education in Pennsyluanie (Lapcaster, 1886), one of the best state histories of education. For finmude and banking, see the annual reports of the state treasurer, auditurgeneral, sinking fund commissioners, and the commissioner of banking, all published at Harrisburg; An Historical Sketch of the Poper Money of Pennsylvania, by a member of the Numismanic Socicty of Philadelphia (Philadelphia, 1862); and B. M. Meud, A Brief Review of the Financial Hislory of Pennsybania... \boldsymbol{L}^{2} the Present Time (r682-188i) (Harrisburg, 1881).

The only complete history of the entire period is Howard M. Jenkins, at al., Penssghonia, Colonial and Federal (3 vols., Phike delphia, 1903). This is especially valuable for the detailed historice ol gubernatorial administrations from 1790 to 1903. The third volume contains uscful chapters on education, the judiciary, the medical profession, journalism, military affairs, internal improvements, \&ec. S. G. Fisher, Pennsyranig, Colony and Commonucrith (Philadelphia, 1897) contains the best short account of the colonial and revolutionary history, but it gives only a very brief summary of the period since 1783 . W. R. Shepherd, Misfory of Proprietary Goervment in Pennsylvania (New York, 1896), a detailed study of the proprietary from the political, governmental and territorial points of view, is scholarly, and gives a good account of the boundary disputes with Maryland, Virginia, New York and Connecticut. Among the older standand works are Sumual Hazard, Anals of Pennsywanic from the Disconery of the Delatoere, 1600-1682 (Philadelphia, 1850), an elaborate account of the carly Dutch and Swedish sectlements on the Delaware river and bay; and Robert Proud, History of the Penhsyhania from 1081 until after the year 1742 (2 vols, Philadelphia, 1797-1798). written from the Quaker standpoint. For early literary history, see M. K. Jacksron; Oulline of the Laterary History of Colonial Pennsyloania (New York, 1go8). W. H. Egle, IHustrated History of the Commontoealth of Pennsyluania (Harris burg, 1877), contains trustworthy histories of individual counties by various writers. J. B. McMaster and F. D. Stone, Pennsylvanio and the Federal Constitution, $1787-1788$ (Philadelphia, 3888), is a useful work. For the anti-Masonic movement, see Charles McCarthy, The Anti-Masonic Parly (Washington, 1903). S. G. Fisher, The Making of Pennsylvanio (Philadelphia, 1896), intió ductory to the same author's Colony and Commonwealth, is an interesting study of the various nationalities and religions represented among the settlers of the state. For the period of Quat ier predominance (1681-1756), see Isaac Sharpless, History of Qu:ter Governmens in Pennsyhonio (2 vols., Philadelphia, 1898-18y, , See also J. Taylor Hamilton's "History of the Moravian Church" (Nazareth, Pa., 1900), vol. vi. of the Transactions of the Morasian Ilistorical Society; Proceedings and Addresses of the Pennsylecnio German Sociely, vols. vii. and viit. (Reading, 1897-1898); J. F. Sach ve, German Pielists of Provincial Pennsylvania, 1604-1708 (Phila: delphia, 1805), and German Sectarians of Pennsthanic, 1708-1:300 (2 vols, Philadelphia, 1899-1901). The chicf sources are the Penusylvania Archives (first series, 12 vols. Philadelphia, 18, $2 \mathbf{2}$ 1856; second series, 19 vols. Harrisburg, 1874-1893; and third series, 4 vols., Harrisburg, 1894-1895); Coloniol Records, 16831790 (16 vols., Philadelphia, 1852) ; and Samuel Hazand, Register of Pennsyituania (16 vols., Philadelphia, 182S-1836). The Pennsylvania Historical Socicty, organized in Philadelphia in 1825, has published 14 vols, of Memoirs (1826-1895), a Bublichin of 13 numbers ($1845-1847$), one volume of Collections (1853), and the Pennsylvanio Magazine of History and Biography, a Quarterty (1877 sqq.). There is a good account of the public archives, both printed and manuscript, in the first report of the Public Archives Commission of the American Historical Association, published in vol. ii. of the annual report of the association for the year rgoo (Washington, rgoi).

PBNHSYLVANIA, UNIVERSIIY OE, an American institution of higher learning, in Philadelphia, occupying about 60 acres, near the west bank of the Schuylkill river, north-cast of the Philadelphia Hospital, east of 39th Street, south-east of Woodland Avanue, and south of Chestnut Street. In this irregular area are all the buildings except the Flower Astronomical Ohservatory (1896), which is 2 m . beyond the cify limits on the Weat Chester Pike. The nortbernmost
of these building is the law school, between chestnet and Sansom Streets, on 34th Strect. In a great triangular block bounded by Woodland Avenue, Spnuce Street, and 34th Street are: the university lihrary, which had in 1909 about 275,000 bound volumes and 50,000 paraphlets, including the Biddle Memorial law lihrary (1886) of 40,000 volumes, the Colwell and Henry C. Carcy collections in finance and oconomics, the Francis C. Macauley library of Italian, Spaniah and Portuguese authors, with an excellent Dante collection, the classical library of Ernst von Leutsch of Gottingen, the philological Lihrary of F. A. Pott of Halle, the Germanic library of R. Bechstein of Rostock, the Semitic lihrary of C. P. Caspari of Copenhagen, the (Hebrew and Rabhinical) Marcus Jastrow Memorial library, the ethnological library of D. G. Brinton, and several special medical collections; College Hall, with the university offices; Howard Houston Hall (1896) the students' club; Logan Hall; the Rohert Hare chemical laboratory; and (across 36th Sireet) the Wistar institute of anatomy and biology. Immediately east of this triangular block are: Bennett House; the Randal Morgan laboratory of physics; the engineering huilding (1906); the laboratory of bygiene (1892); dental hall; and the John Harrison laboratory of chemistry. Farther east are the gymnesium, training quarters and Franklin (athletic) field, with brick grand-stands. South of Spruce Stroet are: the free museum of science and art (1899), the north-western part of a projected group, with particularly valuable American, Egyptian, Semitic and Cretan collections, the last two being the results in part of university excavations at Nippur (r889-r902) and at Gournia (sgor-iga4); between 34th and 36th Streets the large and well-equipped university hospttal (1874); large dormitories, consisting in 1909, of 29 distinct but connected houses; medical laboratories; a biological hall and-vivarium; and across Woodland Avenue, a veterinary ball and hoepital,

The university contains various departments, including the college (giving degrees in arts, science, biology, miusic, anchitecture, \&c.), the graduate school (5882), a department of law (founded in 5790 and re-estahlished in 5850) and a depertment of medicine (first professor, 1756 ; first degrees granted, 1768), the oldest and probahly the most famous medical school in America. Graduatlon from the school of arts in the college is dependent on the successful completion of 60 units of work (the unit is one hour's work a week for a year in lectures or recitations or two hours' work a week for a year in laboratory courses); this may be done in three, four or five years; of the 60 counts: 22 must be required in studies (chemistry, 2 units; English, 6; foreign langunges, 6 ; history, logic and ethics, mathematics, and phytics, 2 each); 88 must be equally distributed in two or three "groups "-the I9 groups includc astronomy; botany, chemistry, economics, English, fine arts, French, geology, German, Greek, history, Latin, mathematics, philosophy, phyajes, political science, psychology, sociology and roology; and in the remainins 20 units the student's election is practically free. Special work in the senior year of the college counts 8 units for the first year's work in the department of medicine. College scholer. ships are largely local, two being in the gift of the governor of the state, fifty being for graduates of the poblic schools of the city of Philadelphia, and five being for graduntes of Pennsyl. vania puhlic schools outside Philadelphia; in 1909 there were twenty-eight scholarships in the college not local. In the graduate school there are five fellowships for research, each with an annual stipend of $\$ 800$, twenty-one fellowships valued at $\$ 500$ each, for men only, and five fellowships for women, besides special fellowships and 39 scholarships.

The corporation of the university is composed of board of twenty-four trustees, of which the governor of Pennsylvanis is ax-eficio president. The directing beed of the university, and the head of the university faculty and of tha faculty of each department is the provost- titic rarely used in American universities; the provost is president pro tempore of the board of trustees.

In 1908-5 909 the university had 454 officers of instruction, of whom 220 were in the college and 157 in the depariment
of medicine, and an earohment of 4570 studeats, of whomi 2989 were in the college (412 in the school of aits; 987 in the Towne scientific school; 472 in the Whaton school, and 253 in the evening achool of accounts and finance; 384 in courses for teachers; and 481 in the summer achool), 353 in the graduate school, 327 in the department of law, 559 in the department of medicine, 385 in the department of dentistry, and 150 in the department of veterinary medicine.

In Augurt 1907 the exceas of the university'e aspets over its liabilitice was $813,239,408$ and the donations for the year were \$305,814. A very large proportion of the university'a investments is in real estate, especially in Philadelphia. In 1907 the total value of real eastate (including the university buildings) was 86,829,154; and libraries, muscums, apparatos and furniture were valued at $\$ 2,025,357$. Students' tuition fees vary from $\$ 150$ to $\$ 200$ a year in the college; and dre $\$ 160$ in the department of law, $\$ 200$ in the department of medicine, $\$ 150$ in the departnent of dentistry and $\$ 100$ in the department of veterinary cience. The income from tuition fees in 1906-1907 was 8458,396 ; the payments for "educational maries" amounted to 8433,31 , and for "administration salaries" to $\$ 135.314$
The university publishes the fulowing sarias: A Ironomical Series (r 899 eq9.); Comiributions from thic Butanical Laboratory (1892 s9q.); Coutributions frow the Laboratory of II ygiene (1898 899.); Concributions frown ine Zoological L L boraloy (1893 sqq.): Serics in Bistory (1901 eq9.); Serics in Mathematics (1897 sq9) : Series in Philology and Litcralure (1891 sq9.); Series in Romanic Langmages and Lideratures (1907 sqq.) S Series in Philosophy (1800 sq9.); Series in Political Economy and Public Law (1885 sqq) : ? ${ }^{2}$ American Low Resister (1852 cqg .); The Uxinersity of Ponnsy, ic Medical Bulletins (8888 eqq.); Trassactions of the Depariment of Archocelogy (1goq sqq.) ; the Jourmal of Morphology (1888 snq.) ; and Trasacactions and Proceedings of the Bolanical Society of Pennsylania (1897 sq9.). There are also cocacional publications by institutes and departments connected with the university. Student publications include: a daily, The Pamastosmian (1885); the weekly, OW Peen (1902); a comic monthly, the Punch Boed; a litcrary monthly. The Red and Blue; a quarterly of the department of dentistry, The Peme Dental Jowrnal; an annual, The Record; and The Alumni Register (1896), a monthly.

Benjamin Franklin in 1749 published a pamphlet; entitled Proposals Redating to the Education of Youth in Pensiloania, which led to the formation of a board of twenty-four trustees, mineteen of whom, on the 13 th of November 1749, met for organization and to promote "the Publick Academy in the City of Philadelphia," and elected Benjamin Franklin president of the board, an office which be beld until 1756 . So closely was Franklin identified with the plan that Matthew Arnold called the institution "the University of Franklin." On the rst of February 1750 there was conveyed to this board of trustees the "New Building" on Fourth Street, near Arch, which had been erected in 1740 for a charity school-a use to which it had not been put-and as a " bouse of Publick Worship," in which George Whitefield had preached in November 1740 ; the original trustees (including Franklin) of the "New Building" and of its projected charity school date from 1740, and therefore the university attaches to its seal the words "founded 1740." In the "New Building" the academy was opened on the 7th of January 1751, the city having voted $f 200$ in the preceding August for the completion of the building. On the 16th of September 1751 \& charitable school "for the instruction of poor Children gratis in Reading, Writing, and Arilhmelick" was opened in the "New Building." The proprietaries, Thomas and Richard Penn, incorporated "The Trustecs of the Academy and Charitable School in the Province of Pennsylvania" in 1753; and in 1755 issued a confirmatory charter, changing the corporate name to "'The Trustees of the College, Academy and Charitable School," \&c., whereupon William Smith (1727-1803) of the university of Aberdeen, who had become rector of the meademy in 1752 and had taken orders in the Chureh of England in 1753, became provost of the collcge. In 1756 Dr Smith established a complete and liberal curriculum which was adopted by Bishop James Madison in 1777 when he became president of the College of William and Mary. In 1757 the first college dass graduated. Under Smith's control the Latin school grew in importance at the expense of the English school, to the great andoyance of Franklin. In 1762-1764 Dr Smith collected for
the college in England about 46900 and in $\mathbf{i} 764$ his influence had become so strong that it was feered that the colloge would become sectarian. The . Penns and others deprecated .this and the trustees bound themselves (1764) to "use their utmost endervours that.
(the otiginal plan) be not narrowed, nor the members of the Cburch of England, nor those dissenting from them be put on any worse footing in this seminary than they were at the time of receiving the royal brief." From September 1777 to June 1778 college exercises were not held because Philadelphia was occupied by British troope: In 1779 the state legislature, on the ground that the trustees' declaration in 3764 was a " narrowing of the foundation," ${ }^{1}$ confiscated the rigits and property of the college and chartered a new corporation "the Trustees of the University of the State of Pennsylvania "; in 1789 the college was restored to its rights and property and Smith again lecame its provost; in rygr the college and the university of the State of Pennsylvania were' united under the title, "the University of Pennsylvania," whose trustees were elected from their own members by the board of trustees of the college and that of the university. In 1802 the university purchased new grounds on Ninth Street, between Market and Chestnut, where the post office building now is; there until 1829 the university occupied the building erected for the administrative mansion of the president of the United States; there new buildings were erected after 1329; and from these the university removed to its present site in 1872.

The provosts have been: in 1755-5779 and in 1789-1803, William Smith; in 1779-1791, of the university of the state of Pennsylvania, John Ewing (1732-1802); in 1807-1810, John McDowell (1750-1820); in 1810-1813, John Andrews (1746-1813); in 1853-1828, Frederick Beasley (1777-1845); in 1828-1833, William Heatheote De Lancey (1797-1865); in 1834-1853. John Ludlow (1793-1857); in 1854-1859, Henry Vethake (1792-1866); in 1860-1868, Danicl Raynes Goodwin (18 11-1890); in 1868-1880, Chartes Janeway Stille (1819-1899); in 188 1-1894. Willam Pepper (1843 -1898); in 1894-1910, Charles Custis Harrison (b. 1844), and in 19 II sqq. Edgar Fahs Smith (b. 1856).
See T. H. Montgomery, A History of the Unipersily of Pewnsyhamia from its Foundotion to A.D. I770 (Philadelphia, 1go0); George B. Wood. Earty History of the Unipersity of Pennsylvania (3rd ed., ibid. iteg6): J. B. MeMaster, The Uminersity of Pemusyimania (ibid. 1897); G. E. Nitzsche, Ofloial Gwide to lhe Unizer sity of Pexiosyboania (ibid: 1906); and Edward P. Cheyney, "University of Pennsylvania, ${ }^{\text {a }}$ in vol i. of Universities and their Soms (Boston, 1901).

PEiNTY (Mid. Eng. peni or peny, from O. Eng. form pewis, earlier pemming and pending; the word appears in Ger. Pfennig and Du. penning; it has been consected with Du. pand, Ger. Pfond, and Eng. "pawn," the word meaning a little pledge or token, or with Ger. Pfanne, a pan), an English coin, equal in value to the one-tweifth of a shilling. It is one of the oldest of English coins, superseding the sceatta or sceat (see Nugasnatics; and Britain: Ango Saxon, § "Coins"). It was introduced into England by Ofia, king of Mercia, who took as a medel a coin first struck by Pippin, father of Charkmagne, about 735, which pras known in Europe as novus denerius. Offa's penny was made of silver and weighed $22 \frac{1}{2}$ grans, 240 pennies weighing one Saxon pound (or Tower pound, as it was afterbiards called), hence the term pennyweight (dwt.). In 1527 the Tower pound of 5400 grains was abolished, and the pound of 5760 grains adopted instead. The penny remained, with same few exceptions, the only coin issucd in England until the introduction of the gold florin by Edward III. in i342. It was not until the reiga of Edward I. that halipence and farthings became a regular part of the coinage, it having been usual to subdivide the penny for trade purposes by cufting it into balves and quarters, a practice said to have originated in the reign of IEtheired II. In 1257 , in the reign of Henry III., n gold penny,
${ }^{1}$ Probably the actual reason was that the mssembly, dorainated hy the advocates of the radical constitution of 1776, watattempting : ta purigh the truptees: of the collage, who were almost all "anticonstitutionalists."
of the value of tweaty silver pence, was struck. The weight and value of the silver penny steadily declined from 1300 onwands, as will be seen from the following table:- *

Reign.	Weight.	Value in sitver 925 fine, at 58. 6d. per az.
William I., 1066	Graina	$\begin{aligned} & \text { Penny. } \\ & 3.09 \end{aligned}$
Edward I ${ }_{\text {it }} 1300$	22	3.02
" III., $1344{ }^{\text {\% }}$: \quad :	201	2.78 2.75
") IIII., 1346\% :	18	2.75 2.47
Henry IV, 14:	15	$2 \cdot 06$
Edward IV:' 1464	12	1.65
Henry VIII, ${ }^{\text {I } 527}$	101	1.44 1.37
Edward VII., 1552	${ }^{10}$	$1 \cdot 37$ $1 \cdot 10$
Elizabeth, 1601 . . .	71	1-06

The last coinage of silver pence for general circulation was in the reign of Charles II. (1661 -1662), since which time they have only heen coined for issue as royal alms on Maundy Thursdays. Copper halfpence were first issued in Charles II.'s reign,' hut it was not until 1797, in the reign of George III., that copper pence were struck. This copper penny weighed 1 oz. avoirdupois. In the same year copper twopences were issued weighing 2 oz., but they were found too cumbersome and were discontinued. In 1860 bronze was substituted for the copper coinage, the alloy containing 95 parts of copper, 4 of tin, and x of zinc. The weight was also reduced, it of bronze being coined into 4^{8} pennics, as against 24 pennies into which 1 ib of copper was coined.

PENY TAN, a village and the county-seat of Yates county, New York; U.S.A., situated N. of Keuka Lake, on the outlet exteriding to Lake Scneca; about 170 m . W. of Albany, and about 95 m. E. by S. of Bulfalo. Pop. (1905), 4504; (1910) 4597. It is served by the New York Central \& Hudson River and the Northern Central railways and by electric railway to Branchport; and bas stcamboat connexions wilb Hammondsport at the bead of Kcuka Lake. The lake, one of the most beautiful of the so-called "finger lakes" of central New York, abounds in lake and rainbow trout, black bass, pickerel and pike, and there are many summer cottages along its shores. At Keuka Park, on the west shore of the lake, is Keukn College (1800), and at Eggleston's Point is held a summer " natural science camp" for boys. The village is the seat of the Penn Yan Academy (1859). The lake furnishes water-power, and among the manufactures are paper, lumber, carriages, shoes, \&c. Much ice is shipped from the village. Penn Yan is an important shipping point in the apple and grape-growing region of central New York, and winemaking is an important industry. The first frame dwelling at Pean Yan was bullt in 1799; the village became the county-seat in 1823, when Yates county was created; and was incorporated in 1833. The first settlers were chiefly followers of Jemima Wilkinson (r753-1819), a religious enthusiast, born in Cumberland township, Providence county. Rhode Island, who asserted that she had received a divine commission. She presched in Rhode Island, Connecticut, Massachusetts and Pennsylvania. Ohtaining a large tract (which was called Jerusalem in 1789) in the present Yates ceanty, she founded in 1788 the village of Hopeton on the outlet of Keuka Lake about a mile from Seneca Lake. Many followers settled there, and she herself lived there after 1790 . Some of ber followers left ber before 1800, and then the community gradually broke up. The name of the village is said to have been derived from the first sylables of "Penpsylvania" and "Yankee," as most-of the early settlers were Pennsylvanians athd New Englanders.
${ }^{2}$ The Ggure of Britannia first appeared on this issue of copper coins. The original of Britannia is said to have been Frances Stewart, afterwards duchess of Richmond (Pepys, Diary, Feb. 25. 1667). It was in Charles II.'s reign, too, that the practioe was established of placing the wovereign's' bust in a direction contraty to that of his predecessor.

See Lewis C. Aldrich, Fitifory of Yoles County, New Yorl (Syracuse, 189a).
PENNYBOYAL in botany, a herb formerly much used in medicine, the name being a corruption of the old herhalist's name "Pulioll-royall," Pulcginm regium. It is a member of the mint genus, and has been known to botanists since the time of Linnaeus as Mentha puleginm. It is a perennial herb with a slender branched stem, square in section, up to a foot in leggth and nooting at the lower nodes, small opposite stalked oval leaves about half-inch long, and dense clusters of small reddish-purple flowers in the leaf axils, forming almost globular whorls. It grows in damp gravelly places, especially near poola, on heaths and commons. It has a strong smell somewhat like that of spearmint, due to a volatile oil which is readily obtained by distillation with water, and is known in pharmacy as Olexm pulcgii. The specific name recalls its supposed property of driving away fleas (pulices). Like the other mints it has carminative and stimulant properties.
PENOBSCOT, a tribe of North American Indians of Algonquian stock. Their old range was the country around the river Penobscot in Maine. They sided with the French in the colonial wars, hut made a tresty of peace with the English in 1749. They fought against the Engtish in the War of Independence, and were subsequently settled on an island in the Penobscot river, near Oldtown.
PBNOLOGY (Lat. poena, punishment), the modern name given to penitentiary science, that concerned with the processes devised and adopted for the repression and prevention of crime. (See Crnce; Cridinology; Prison; Juvenue Ofyenders; Reciorvisy, sec.)
PBNRHYN, GEORGE SHOLTO GORDON DOUGLAS-PEN: NAMT, 2nd Baron (1836 -1907), was the son of Colonel Edward Gordon Douglas ($1800-1886$), brother of the 19th earl of Morton, who, through his wife, Juliana, elder daughter and coheir of George Hay Dawkins-Pennant, of Penrhyn Castle, Camarvon, had large estates in Wales and elsewhere, and was created Baron Penrhyn in 1866. Dawkins had inherited tbe estates from Richard Penryn, who was created Baron Penryn in 1763 , the title becoming extinct on his death in 1808 .
Gcorge Douglas-Pennant was conservative M.P. for Carnarvonshire in 1866-1868 and 1874-1880, and succeeded his father in the title in 1886. A keen sportsman, a benevolent landlord, a kind and considerate employer, Lord Penrhyn came of a proad race, and was himself of an imperious disposition. He came prominently before the public $\ln 1897$ and subsequent years in connexion with the famous strike at his Welsh slatequarries. During his father's lifetime the management of the Penrhyn quarty had been left practically to an elective committee of the operatives, and it was on the verge of bankruptcy when in 1885 he took matters in hand; he abolished the committee, and with the helpi of Mr E. A. Young, whom he brought in from London as manager, he so reorganized the husiness that this slate-quarry yielded a profit of something like $£ 150,000$ a year. The new men and new methods were, however, not to the taste of the trade unionist leaders of the quarrymen, and in 1897, when the "new unionism" was rampant in labour questions throughout England, a strike was deliberately fomented. Lord Penrhyn refused to recognize the union or its officials, though he was willing to consider any grievances from individual quarrymen, and a protracted struggie ensued, in which his determination was invincible. He became the object of the bitterest political hostility, and trade unionism exerted itself to the utmost, but vainly, to bring about some form of government intervention. Perrhyn strikers perambulated the country, singing and collecting contríbutions to their funds. But in spite of every pressure Lord Penrhyn insisted on being master of his own property, and by degrecs the agitation collapsed. His death on the Ioth of March rg07 evoked general and genuine tegret. Lord Penrhyn was twice married, and had fifteen surviving children. He was sicceeded in the title by his eidest son, Edward Sholto (b. 1864), who was Unionlst M.P. for South Norchamptonshire from 1895 to 1900 .

PEMRITH, a municipality of Cumberland county, New South Wales, Australia, on the Nepean River, 34 m . by rail W. by N. of Sydney. Pearith and the adjoining township of St Mary's are chiefly remarkable for their connerion with the railway. The iron tubular bridge which carries the line over the Nepean is the best of its kind in the colony, while the viaduct over Knapasck Gulley is the most remarkable arection of its kind in Australia. There are large engineering worke and railway Gitting shops at Penrith, which is also the junction for all the western goods traffic. The inhabitants of both lowns are mainky railway eaployts. Pop. (1gox), of Penrith 3539, of S. Mary\% 1840.

PRNRITH, a market town in the Penrith pariamentary division of Cumberiand, England, in a valley mear the rixer Eamont, on the Cockermonth, Keswick \& Penrith, Londoa 4 North Western and North Eastern cailways Pop, of urbaa district (1901), g182. It contains some interealing brasses A 14 th-century grammar school was refounded by Queen Elizabeth: and chere are two mansions dating from the same reign, which have been converted into inns. Though there are breweries, tanneries and saw-milla, the town depends mainly on agriculture. There are some ruins of a castle erected as a protection against the Scots. Near Pentith on the south, above the precipitous bank of the Eamont, stands a small but beautiful old castellated house; Yanwath Hall. To the north-east of the town is Eden Hall, rebuilt in 1824 . Among many fine paintings, it contains portraits hy Hoppner, Kneller, Lely, Opie and Reynolds. The "Lack of Eden Hall," which has been celebrated in a ballad by the duke of Wharton, and in a second ballad written by Uhland; the German poet, and transinted by Longfcliow, is an enamelled goblet, kept in a leathern case dating from the timea of Henry IV: or Henry V.. It was long supposed to be Venetian, but has been identified as of rare Oriental workmanship. The legend tells how a sencschal of Eden Hall one day came upon a company of fairiea dancing at St Cuthbert's Well in the park. These flew away, leaving theis cap at the water's edge, and singing "If that glass either break or fall, Farewell to the luck of Eden Hall." Its true history is unknown.
Penrith, otherwise Penreth, Perith, Perath; was \{ounded by the Cambro-Celts, hut on a site farther north than the present town. In 1222 Henry Ill. granted a yearly fair extending from the eve of Whitsun to the Monday aftcr Trinity and a weekly masket on Wedncsday, but some time before 1787 the market day was changed to Tuesday. The mamor in 1242 was handed over to the Scottish king who beld it till 1295, when Edward I. seized iL. In 1397 Richard II. granted is to Ralph Neville, first earl of Westmoriand; it then passed to Warwick the kingmaker and on his deatb to the crown. In 1694 William III. granted the honour of Penrith to the eari of Portland, by whose descendant it was sold in 1787 to the duke of Devonshire. A court leet and view of frankpledge have been held here from time immemorial. Inthe 18 th and early part of the igth contury Penrith manufactured checks, linen cloth and ginghams, but the introduction of machincry put an end to this industry, only the making of rag carpets surviving. Clock and watch-making seems to have been an important trade here hn the asch century. The town suffered much from the incarsions of the Soots, and Ralph, earl of Westmorland, who died r426, buitt the castle, bor a tower called the Bishop's Tower had been previously erected on the same-site. In 1597-1598-a terrible visitation of plague attacked the town, in which, enctording to an old inscription on the church, 2x6o persons perished in Penrith, by whichi perhaps is meant the rural deanery. During the Civil War the castle was dismantled by the Royalist commandant. In 1745 Prince Chardes Edward twice marched through Penrith, and a skirmish book phacs at Cliftom The church of St Andrei is of unknown foumdition, but the list of vicars ist:complete from 1223.
PFant, 30RT (3559-1593), Welsh Puritan, was bom in Broctenochshire in iss9; tradition points to Cein Brith, a farno

Peterbouse, Cambridge, in December 1580 , being then almont certainly a: Roman Catholic; but soon became a convinced Protestant, with strong Puriten leanings. Having graduated B.A., he migrated to St Alban's Hall, Oxford, and proceeded M.A. in July 1586. He did not seek episcopal ordination, but was licensed as University Preacher. The tradition of his preaching tours in Wales is slenderly supported; they could only have been made during a few months of $\mathbf{x} 56$ or the autumn of 1587. At this time ignorance and immorality abounded in Wales. In 1562 an act of parliament had made provision for tranalating the Bible into Wekh, and the New Testament was insued in 1567 ; but the number printed would barely supply a copy for each parish charch. Indignant at this negligence, Penry published, early in 1587, Tho fiquity of on Humble SupWication-in the behalf of the coundry of Wates, that some onder may be taken for the preaching of the Cospel among those people. Archbishop Whitgift, angry at the implied rebuke; caused him to be brought before the High Commission and imprisoned for about a month. On his release Penry married a lady of Northampton, which town was his home for some years. Wilh the assistance of Sir Richard Knightley and others, he set up a printing press, which for nearly a ycar from Michaelmas 1588 was in active operation. It was successively located at East Moulsey (Surrey), Fawsley (Northampton); Coventry and other places in Warwickahire, and fimally at Manchester, where it was seized in August 1589 . On it were printed Penry's Exhorlation to the governours and people of Wales, and View of suct pablike wants and disorders as are in the servise of God . . . in Walar; as well as the celebriated Martin Mayprelote tracts. In Jenuary 1590 his house at Northampton whe searched and his papers scized, but he suceeeded in escaping to Scotland. There he.published several tracts, as well as a translation of a learned thealogical work known as Theser Genorenser. Returning to Eugland in September 1592 , he johed the Separatist Church In London, in whick he'declined to take offiee, though after the arrest of the ministers, Francis Johnson and John Greenwood, he seemas to have been the regular preacher. He was arrested in March s593, and efforts were made to find some pretext for a capital charge. Failing this a charge of sedition was based on the rough draft of a petition to the queen that had been found among his private papern; the language of which was indeed harsh and offensive, but had been neither presented nor published. He was convicted by the Queen's Bench on the 21 st of May 1593, and hanged on the 2gthat the unusual hour of 4 p.m., the signature of his old enemy Whitgift being the first of those affixed to the martent.

See the Life, by John Waddington (1854).

PBEMYM, a market town and port, and municipal and contributary parliamentary borough of Comwell, England, 2 m . N.W. of Falmouth, on a branch of the Great Western railway. Pop. (rgar), 3190. It lies at the head of the estuaty of the Pentyn River, which opens from the main estaty of the Fal at Falmouth. Granite, which is extensively quarried in the neighbourhood, is dressed and polished at Penryn, and there are also chemical and bone manure works, engincering, iron and gunpowder works, timber-yards, brewing, tanning and paper-making. The harbour dries at low tide, but at high tide has from 9 to $12{ }^{4}$ fti 0 if water. Area, 2gy acres.

Ptaryn owed its development to the fostering care of the bishops of Exeter within whose dertesne lands it stood. These lands appear in Domesday Book under the name of Trelivel: In ragb Dishop Briwere granted to his biutgesses' of Periryt that they should hold their burgages freely at a yearly rent of 12d. by the acre for all service. Bishop Walter de Stapelion secured a marliet on Thersdays and a fair at the Fitst of St Thomas. The return to the bishop in ruoy was f7, 13s. afd. from the borough and $\{26,7 \mathrm{~s} .5 \mathrm{sd}$. from the forum. In inti Bishop Stapeldon procured a 'thtte days' lair at' the Feast of St Vitalis Philip and Mary gava the parlimmentary franchise to the burgesses in 1553 . James I. sranted and rumemed the charier of incorporation, providing'e mayer, tlevet
aldermen and twelve councillors, markets on Wednesdays and Saturdays, and faiss on the rst of May, the yth of July and the 21st of December. The charter having been surrendered, James IL. by a new charter infer alia confined the parliamentary franchise to members of the corporation. This proviso however was soon disregarded, the framehise being froely exercised by all the inhabitants paying scot aud lot. An attempt to deprive the borough of its members, owing to corrupt practices, was defeated by the House of Londs in 1827. The act of $\mathbf{1 8 3 2}$ extended the franchise to Falmouth in spite of the rivalry existing between tho two boroughs, which one of the sitting memhers aserted was no great that no Penryn man was ever known to marry a Falmothth woman. In 188s the united borough was deprived of one of its members. The corporation of Penryn was remodelled in 1835 , the aldermen being reduced to Lour. Its foreim trade, which dates from the 14th century, is considerable. The extra-parochial collegiste church of Glasney, founded by Bishop Bronescombe in 1265, had a revenue the the of its suppression under the act of 1545 of $£ 221,1$ iss. 4d.
See Victeria Cownly History, Conwwall; T. C. Peter, Clasney Collegiats Church.
pransacola, a city, port of entry, aad the county-seat of Escambia county, Florida, U.S.A., in the N.W. part of the state, oa Pensacola Bay, sbout 6 ml (II m. hy channel) N. of the Gulf of Mexico. Pop. (1900) 17,747; (19to) 22,982. It ranks second in sire among the cities of Elorida. The city is served by the Louisville \& Nashville and the Pessacola, Alabama \& Tennessee railways, and by steamers to West Indian, European and United Suates ports. The harbour ${ }^{1}$ is the most important deep-water harbour south of Hampton Roads. The narrow entrance is easily navigable and is defended by Fort Pickens on the west end of Santa Rosa Lsland, with a great sea.wail on the Gulf side (completed in 1909), Fort McRee on a small penissuk directly oppositos, and Fort Barrancas on the mainland inamediately north-east of Fort McRer. On the mainland 1 m . anat of Fort Barrancas are a United States Naval Station, consisting of a yard (84 acres enclosed) with shops, a steed floating diry dock and marine barracks; and a reservation (8800 acres) on which are a naval hospital, a navel magasine, two timber ponds, a national cemetery, and the two villages of Warrington and Woolsey, with a population of about 1500 , mostly employis of the yand. The city's priacipal public buildiape are the state armoury, the Fedoral building, and the city hall. The mean annual temperature is about $73^{\circ} F$., and breeses from the Gulf temper the heat. Pensacola is a shipping point for iumber, naval stores, tobacco, phosphate rock, fish, cotton and cotton-seed oil, meal and cake, and is one of the principal markets in the United States for naval stores. In 1895 the foreign exports were valued at $\$ 3,196,009$, in 1897 at $\$ 8,436,679$, and in 1909 at $\$ 20,971,670$; the imports in 1909 were valued at $\$ 1,479,017$. The important factor in this vast dovelopment has been the Louisville \& Nashville railway, which after 1895 built extensive warehouses and docks at Pensacole. There are excellent coaling docks-good coal is brought hither from Alabaras-and a grain elevator. Among the minufactures are sashes, doors and blinds, whiting, fertilizers, rosin and turpentine; and drugs.

Pepsacola Bay may have been visited by Ponce de Leon in j 513 and by Panfilo de Narvaes in 1 528. In 1540 Maldonado, the commander of the fleet that brousht De Soto to the Floride coust, entered the harbour, which be named Puerta d'Auchusi, and on his recommendation De Soto designated it as a besis of supplies for his expedition into the interior. In 1559 a pertastaent sotlement was attempted by Tristan de Lana, who renamed the harbour Santa Maria, but two years later this setllement was abandoned. In $\mathbf{1 6 9 6}$ another settlemert was made by Don Andres d'Arriola, who buils Fort San Carlos near the site of the present Fort Barrancas, and seems to have named tha place Pensacola In i719, Spain and France, being at war, Pensacola was captured by Sicur de Bienville, the French
${ }^{1}$ In resp the United Seates government began to improve the Marbour by dredginge, and ia June $t 909$ the depth of the channel, Cor a minimute width of about 300 ft . whe 30 ft , at mean tow mater.
governor of Loumiana. Later in the same year it was successivaly re-taken by a Spanish force from Hevana and recaptured by Blenville, who burned the town and destroyed the fort. In 1723, three years after the close of hostilities, Bienville reliaquished posseasion. The Spanish then tranaferred their setrlemeat to the west and of Sabia Rosa Island, but efter a destructive hurricune in 1754 they returned to the matinland. In 1363, when the Floridas were ceded to Great Britain, Pensacola became the seat of idministration for West Floride and most of the Spanish inhabitants removed to Mexico and CubaDuring the War of American Independence the town was a place of refuge for many Loyalists from the northern colonies. On the gth of May 178i it wes captured by Don Bernardo de Galves, the Spanish governor at New Oricans. Most of the English inhabitants left, but trade remained in the hands of Engtish merchants. During the War of 1812 the British made Pensacola the centre of expeditions against the Americans, and is 3814 a British. fleet entered the harbour to take formal possession. In retaliation General Andrew Jackson attacked the town, driving back the British. In 1818, on the ground that the Spanish encouraged the Seminole Indians in their attacks upon the American settlements in the vicinity, fteckson again captured Penssools, and in 1821 Florida was finally transferred to the United States. On the tath of January 1861 the Navy Yard wal seized by order of the state government, but Fort Pickens, defended ficst by an insignificant force under Lieut. Adam J. Slemmer (1828-68) and afterwards by a larger force under Lieut. Colonel Harvey Brown (1796-1874), remained in the hands of the Union forces, and on the 8th of May 1862 the Confedcrates abandoned Pensteola. Persacola was chartered as a city in i895.

PEGBHERST; a village in the sorth-western parliamentary division of Kent, England, at the confluence of the Eden and Medway, 41 m . S.W. of Tonpridge. Pop. (1901), 1678. The village is remarkable for some old housen, including a timbered house of the 15 th century, and for a aoted factory of cricket implements. The church; chicfly late Perpendicular, contains a large number of monumonts of the Sidney family and an effigy of Sir Stephen de Penchester, Warden of the Cinque Ports in the time of Edward I. Penshurst Place is celebrated as the home of the Sidney family. Anciently the residence of Sir Stephen de Penchester, Penshurst was granted to Henry VIIl.'s chamberlain, Sir William Sidncy, whose grandson, Sir Philip Sidncy, was born bere in 1554 . It passed to Sir Philip's younger brother Robert, who in 1618 was crealed earl of Leicester. On the death of the seventh ear in 1743 the estates devolved upon his nioce Elizabeth, whose only child married Sir Bysshe Shelley of Castle Goring. Their son was created a baronet in 1818 as Sir Johm Sheller-Sidney, and his son was created Barma de L'Isle and Dudley in 1835. The mansion is quadrangular, and has a fine court, chapel and hall (c. 1341) with opan timber noof and a minatrets' gallery. The various rooms contain an interesting collection of portraits, armour and other family relica. The praises of the park and the house have boen sung in Sir Philip Sldncy's Arcadia, and by Bee Jonson, Edmurd Waller and Robert Southey.

PRNGICN (Lat pansio, a payment, from pembers, to weigh, to pay), a regular or periodical payment made by private employers, corporations or governments, in consideration efther of past services or of the abolition of a post or office. Such a pension takes effect on retirement or when the period of service is over. The word is also used in the sense of the payment by members of a society in respect of dues.

Uniled Kingdom.

Im the United Kingdom the majority of persons in the empioy of the government are entitled to pensions an reaching a certain age and after having served the tate for a certain minimam number of years. That such is the case, and moreover that it is usval to defime such pensions as being givem in consideration of past servites, has led to the puting forward very generally the argument that pensions, whethet given by a government or
by private employers, are in the nature of deferred pay, and that holders of posts which carry pensions must therefore be rewarded by a remuneration less than the Iull market rate, by the difference of the value of the pension. This view is hardly correct, for the object of attaching a pension to a post is not merely to reward past services, but to attract continuity of scrvice by the bolder as well as to enable the employer to dispense with the services of the employe withont hardship to him should age or infirmity render him less efficient. Dissatisfaction had been expressed from time to time by members of the English civil service with the system in lorce, vir. that the bencfit of loag service was confined only to survivors, and that no advantage accirued to the representatives of those who died in service. This was altered by an act of 1909 . See Rayal Commission on Superannualion in the Civil Service: Report and Ebidence (3903). For the general pensions given by the state to the aged poor see Ois Aos Pensions.

Civil Servict--In the English civil service the grant of pensions on superannuation is regulated by statute, the lour principal acts being the Superammation Acts of 1834, 1859, 1887 and 1909 . To quality for a pension it is necessary \} it that a civit servant should have been admitted to the service with a certificate from the civil service commissioners, or hold an office specially exempted from this requirement; (2) that he should give his whole time to the public service; (3) that he should draw the emoluments of his office from publie funds exclusively; (4) that he should have served for not less than ten years; (5) that if under the age of 60 years he should be certified to be permanemly incapable, from infirmity of body or mind, of discharging his official duties, or have been cemoved from his office on the ground of his ingbility to discharge his duties efficiently. On retirement on these conditions a civil servant is qualified for a pension calculated at one-eighticth of his retiring salary (or, in certain cases, of his average salary for the last three years) for each complete year of service, subject to a maximum of forty-eightieths. Civil servants retiring on the ground of it health after less than ten years' service qualify for a gratuity of one month's pay for each year of service Previous to the Superannuation Act of 1909 the pension was calculated at the rate of one-suxtieth of the retiring salary for cact completed year of service, subject to a maximum of forty-sixtieths. This is still the rate for those who entered the service previous to the passing of the act (Septernber 20, 1909) unless they availed themsclves of the permission in the act to tale advantage of its provisions, Which were more than a compensation for the lowering of the ratc. The act gave power to the treasury to grant by way of additional allowance to a civil servant who retired after not less than two years' service, in addition to his superannuation, a lump sum equal to one-thirtieth of his annual salary and cmoluments multiplied by the number of completed years he has served, so however that such lump sum does not exeecd one and a hall times his salary, while if be retires after nttaining she age of sixty-five years, there must be deducted from that lump sum one-twentieth for every completed year that be has served after attaining that age. In the case of those who entered the service before the passing of the act, and take advantage of the act, this additional allowance is increased by one-half per cent. for each completed year served at the passing of the act. The act also provided that where a civil servant died alter serving five years or upwards, a gratuity equal to his annual salary and emoluments might be granted to his legal personal representatives. Where the civil servant attains the age of sixty-five this gratuity is reduced by one-twentieth for each completed year beyond that age. On the other hand, where the civil servant has retired from the service and all the sums received by him at his death on account of superannuation are less than bis annual salary his representatives may receive the difficrence as a gratuity. Provision was also made in ibe act for granting coropensation on abolition of office, provided that such compensation does not exceed what the recipient might be granted or be entuled to If he retired on the ground of ill health. Pensions are also sonnetimes awamed in excess of the scate as a reward for special services, as compematlon for injury in cortain cases, of to holdera of profesaional offices, appointed at an age excetding that at which publie serviec ondinarily betins. In the tratimates for civil eervices for the year 1909-t910, there was proviled lor non-effective and charitable services las pensions and gratuitien in lieu of piensions are known as) the sum of $\{9,625,920$; this, howtere, Included an item of 88.750 .000 for old-age pensions. leavint a sum of 8875 , 220. There was charged on the Consolidated Fund. on accounf of pensons and compensation atlowance for civil. Judicial and other services, a sum of (142.j67, while the lohlowing sums far civil pensions were provided in the cstimates of the several departments: War Office,
 Inland Revenue, fit 6,096 : Post Office. (649,000 ; Royal. Frsh Constabulary. (4i6,500i Dublín Metropotitan Police, 433,646 tmaking a total of $2,2,29,167$, or a growe total for civil penaions of
 fret of the various pensions.

Perpetmai or Hareditary Pensions.-Perpetual pensions were freely granted either to favourites of as a reward for political services from the time of Charies 11 . onwards. Such pensions were very frequently at tached as "salaries "to places' which were sinecures, or, just as olfen, posts which were reafly necescary were trossly overpaid, while the dutics were discharged by a deputy at a small salary. Prior to the reign of Queen Anne such pensions and annuities were charged on the hereditary revenues of the sovercign and were held to be binding on the sovereign"s successors (The Bankers' Case, 1691 ; Stole Trials, xiv. 3-43) By 1 Anne c. 7 it was provided that no portion of the hereditary mevenues could be charged wish pensions beyond the life of the reigning sovereign. This act did not affect the hereditary revenues al Ireland and Scotland, and many persons were quartered, as they had been before the act, on the lrish and Scottish revenues who could not be provided for in England-lor eximple, the duke of St Albans, illegitimate son of Charles il. had an lriah pension of f800 a yoar; Catherine Sedley, mistrese of James Il., had an Irish pension of (5000 a year; the duchess of Kendall and the countess of Darlington, mistresses of George I., had pensions of the united annual value of 5000 , while Madame de Waimoden, a mistress of Gcorye ll., had a pension of f3000 (Lecky Ifislory of Ircland in the Eighteenth Cenfury). These pensions had been granted in every conceivable form-during the pleasure of the Crown, for the life of the sovereign, for terms of years, for the life of the grantee, and for several lives in being or in reversion (Erskine May, Conshitulional Iistory of Enpland). On the accession of George III, and his surrender of the hereditary revenues in return for a fixed civil list, this civil list became the source from which the pensions were paid. The pabsequent history of the civil list will be found under that heading (Civil LISr), but it may be here mentioned that the threc pension lists of England. Scothnd and Ireland were consolidated in 1830 , and the civil pension list reduced to 175,000 , the remainder of the pensions being charged on the Comealidated Fund.

In 1887, Charles Bratlaugh, M.P., protested strongly against the payment of perpetual pensions, and as a resuft. a Committee of the House of Commons inquired into the subject (Reporl of Select Commillet os Perpelual Pensions, 248, 1887). An appendix to the Reporl contains a detniled list of all hereditary pensions, payments and allowances in existence in 1881, with an explanation of the origin in each case and the ground of the original grant: there are also shown the pensions, \&c., rodeemed from tione to time, and the terms upon which the redempion rook place. The nature of some of these pensions may be.gathered from the foliowing examples: To the duke of Marlborough and his heire in perpetuity, 4000 per annum; this annuity was redeemed in August 1884 for a sum of $\{107.780$, by the creation of a ten years' annuity of fir2.796, 178 . per annum. By an act of 1806 an annuity of 55000 per annum was conferred on Lord Nelson and his heirs in perpetuity, In 1793 an annuity of $\{2000$ was conferred on Lord Rodncy and his heirs. All these pensions were for services rendered, and although justifiable from that puint of view, preferable poliey is pursued In the 2oth century, by parliament voting a lump sum, as in the cases of Lord Kixchener in 1902 (550,000) and Lord Cromer in 1907 (so,000). Charlos II, granted the office of teceiver-general and controller of the scals of the court of king's bench and common pleas to the dulce of Gralion. This, was purchased in 1825 from the duke for an annuity of 6843 , which in turn was commuted in 2883 lor a sum of $622.714,12,8 d$. To the mame duke was given the office of the pipe or remembrancer of Girst-fruits and tenths of the clergy. This office was sold by the duke in 1765 , and after passiog through various hands was purchased by are R. Harrison in 1798. In 1835 an the loss of ccrtain fees the holder was compensated by a perpetual pension of $662,9 \mathrm{~s}$. 8d. The duke of Grafton also possessed an annuity of 26870 in respect of the commutation of the dues of butlerage and prisage. To the duke of St Albans was granted in 1684 the office of master of the hawks. The sums granted by the orikinal patent were: master ol hawks, salary, 4391, 1s. 5d.; lour falconers at f 50 per annum each, 6200 ; provision of hawks, 6600 ; provision of pigeons. hens and other meats, [182, 10s.; total, $\{1373$, 112 gd . This mmount was reduced by office fees and ot her deductions to 6965 , at which amount it stood, antil commuted in 1891 for $\{18,335$. To the duke of Richmond and his heirs was granted in 1676 a duty of one abiliting per ton on all coala exported from the Iyne for consumption in England. This was redeemed in 1799 for an annuity of L 19,000 (chargeable on the consolidated fund\}, which was afterwards redeemed for $\{633.333$. The duke of Hamition, as hereditary keeper of the palace, Holyrood House, received a perpetual pension of 145,103 and the descendants of the heritable usher of Scotland drsw a salary of $\{242,10 s$. The conclusions of the committee were that pensions, alowances and payments should not in future be granted in perpetuity, on the ground that such grants should be limised to the persons actually tendering the ecrvices, and that such rewards thould be deirayed by the generation bencited: that offices with salarics and withont duties, or rith merely mominal duties, oustht
to te abolished; that all-exiating perpetual pensions and payments and all hereditary offices should be abolished: that where no service or merely nominal ecrvice is rendered by the holder of an hereditary office or the original grantee of a pension. the pension or payment should in no case continue beyond the life of the present holder and that in all cases the method of commutation ought to ensure a real and substantial saving to the nation (the existing ratc, about 27 years' purchasc, being considered by the committee to be too high). These recommendations of the commirtce were adopted by the government and outstanding hereditary pensions were pradually commuted, the only ones kelt outstanding being those to Lord Rodncy (f2000) and to Earl Nelson ($\mathbf{f 5 0 0 0}^{\text {), both chargeable }}$ on the consolidated fund.

Political Pensions.-By the Political Officts Pension Act 1869, pensions were institured for those who had held political office. For the purposes of the act political offices were divided into three classes: (1) those with a yearly salary of not less than (5000: (2) those with a salary of less than Esoon and not less than 72000 ; (3) those with a salary of less than $f 2000$ and more than 71000 . For service ia these otnces there may be awarded pensions for life in the following meale: (1) a first class pension not exceeding f2000 a year, in respect of not less than four years' service or its equivalent. In an office of the first class; (2) a sccond class pension not excceding t 1200 , in respect of service of not lese than six years or its equivalent, In an office of the second class: (3) a third class pension not exceedfog $\$ 800$ a year, in reapoct of service of not less than ten years in an office of the third class. The service need not be continuous, and the act makes provision for counting service in lower classes as a qualification for pension in b bigher class. These pensiona are limited in number to twelve, but a holder must not receive any other pension out of the public revenue, if 50 , he must inform the treasury and surrender it if it exceeds his political pension, or if under he must deduct the amount. He may, however, hold office white a pensioner, but the pension is not payable during the time he holds office. To obtain a political pension, the applicant must fike a declaration stating the grounds upon which he claims it and that his income from other sources is not sufficient to maintain his station in life.

Civil List Penrions.-These are pensions granted by the dovereign from the clivil list upon the recommendation of the first lord of the treasury. By 182 Vict. c. 2 they are to be granted to "such persons onfy as have just claims on the royal bencficence or who by their personal services to the Crown, or by the performance of duties to the public, or by their uscful discoveries in science end attainments in literature and the arts, bave merited the gracious consideration of their sovercign and the gratitude of their country." A sum of fizoo is allotted each year from the civil list, in addition to the pensions already in force From a Return issucd in 1908 the total of civil list pensions payable in that year amounted to (24.665.

Judicial, Municipal, \&c.-There are certain offices of the executive whose pensions are regulated by particularacts of pirliament. Judges of the Supreme Court, on completing fifteen years'scrvice or becoming permanently incapacitated for duty, whatever their ength of service, may be granted a pension equal to two-thirds of their salary (Judicature Act r873). The lord chancellor of England however short a time he may have heid office, reccives a pension of f5000, but he usually continues to sit as a law lord in the House of Tords $-\infty$ also does the lord chancellor of Ircland, who receives a pension of $\mathbf{~ 3 , 6 9 2} 65$. Id. A considerable number of local authoratics have obtained special parliamentary powers for the purpose of superannuating their officinls and workmen who have reached the age of $60-65$. Poor law officers receive superannuttion allowances uader the Poor Law Officers Superannuation Acts 1864-1897.

Ecctesiastical Pessions.-Bishops, deans, canons or Incumbents who are incapacitared by age or infirmity from the discharge of their ecclesiastical duties may receive pensions which are a charge upon the revenues of the see or cure vacated.

Nery pensions were Eirst instituted ty Whliam III. in 1693 and regularfy established by an order in council of Queen Anne in 1700. Since then the rate of pensions has undergone various modifications and alterations; the full regulations concerning pensions to all ranks will be found in the quarterly Novy Lisf, published by the authority of the Admirality. In addition to the prdinary pensions shere are also good-service pensions, Greenwich Hospital pension and persions for wounds. An officer is entitled to a pension when he is retired at the age of 45 , or il he retires between the ages of 40 and 45 at his own request, othervise he receives only half pay. The amount of his pension depends upon his rank, length of service and age. The maximum retired pay of an admiral is 8850 per annum, for which 30 years' service or its equivalent in half-pay time is nectssary; he may, in addition, hold a good service pension of f300 per annum. The maximum retired pay of a vice-admiral. with 29 years" service is 6725 ; of rear-admimals with 27 years service 6600 per annum. Pentions of captains who retire sit the age of 55, commanders, who retire at 50, and lieutenants who refire at 45. range from 6200 per annum for 17 years' service to $i 325$ for 24 years' service. The pensions of other officers are calculated in the ame way, according to age and kength of service. The
good-mervice pensions consint of ten peacions of s300, per annum for llag-officers, two of which may be held by vice-admirals and two by rear-admirals; twelve of $£ 150$ for captains; two of $\$ 200$ a year and iwo of $\$ 150$ a year for engineer officers; three of fico a year for medical officers of the nevy; six of $\mathbf{f 0 0 0}$ a year for general officers of the Royal Marines and two of figo y year for colonela and lieut.colonels of the same. Greenwich Hospital pensions range from fiso a year for flag officers to $\mathbf{x 2 5}$ a year for warrant oficers All ceamen and marince who have completed twenty-two years' service are entitied to pencions rangigg from lod. a day to a fanimum of 15. 2d. a day, according to the number of good-conduct badges, together with the good-conduct medal. possessed. Petty officers, In addition to the rates of pension allowed them as seamen. are allowed for each year's service in the capacity of superior petty officer, 154. 2d. a yoar, and in the capacity of inferior pecty officer 71.7d. a yeat. Men who are discharged the ecrvice on account of injuries and wounds or disability attributable to the service are pensioned with sums varying from 6d. a day to $2 s$ a day. Pensions are aho given to the widows of officers in certain circumstances and compassionate allowances made to tho chlldren of officera In the Navy cstimates for $1908-1909$ the amount required for half. pay and retired-pay was 1868,800 , and for pensions, gratuities and compassionnte allowances $\{1,3,4,600$, a total of $\{2,203,400$.

Army.-The system of pensions in the British Army is sormewhat intricate provision being made for dealing with almost every casc eeparately. As a gencral rule officers can retise alter eight cars service on a pension of $\{100$ per annum for ten years, provided that they take commissions in either the Imperial Yeomanry or Special Reserve and attend the annual trainings during that period. The other pensions are as follows: 2nd licutenante, licatenants, captains and majors after 15 years' service (or 12 years in the West India regiment), $L 120$, if 45 years of age [200; majors, alter 25 years' service, 6200. Royal artillery or royal engincers if commissioned, alter al yenrs of age, $\{300$, if 48 ycars of age, $£ 300$; licutenani-colonels, after 3 years as such, with 15 ycars' service. $£ 250$, with 27 yeare' service. 7300, with 30 years' service, $\mathbf{6} 365$, atter term of employment as lieu-tenant-colonel commanding a unit, or staff appointment as licutenantcolonel, or after 5 years as lieutenant colonel cavalry and infantry, 4420. Royal artilery, royal engineers and army service corps, 7450; Colonels, alter 5 years as colonel, cavalry and infantry, f $_{2} 20$. Royal artillery, royal engineers and army service corps, 4450 , alter completing the term of command of a regimental district or a regiment of foot-guards, or employed in any orher capacity for three years, $£ 450-1500$ according to age; Brevet-colonels, with the substantive rank of lieutenant colonel, receive, cavalry or infantry. (420 ; royal artillery, royal engineers and army service corps, $\{450$. Major-gencrals retire at the ye of 62 with a pension of 1700 : Jeutenant-generals at 67 with [850; generals at 67 with $L 1000$.

Officers whose first permanent commission bears date prior to the ist of January, t887, retire with a grazuity in heu of pension.

Officers of the departmental corps retire either with pensions ranging from fit25 ycarly to 10 s daily, or with gratuitics ranging from fas00 to ftoco.

Warrant officers with 5 years service as such, and 20 ycars total ervice, receive 35 . 6d. per diem if discharged from the service on account of disability, reduction of establishment or age On discharge for any reasons (except misconduct or incficiency) they receive from 3s. 6d. to 53 . per diem, according to length of service and corps. If they have less than 5 years service as warrant officers, but not less than 21 years' total bervice, they receive at least 35 , per diem; and if discharged at their own request after 18 years' total service, 2s. 7ld.

Additional pensions are given at the rate of 6 d . per diem for gallant eonduct, and 1 jd , to is . per diem for re-employed pensioners on completing their second term of employment, with 3 d . per diem extre if promoted while so serving. Special pensions are also granted in exceptional cases.

For the purposes of pensions, non-commissioned officers are divided into four classes, corresponding roughly to quartermaster. sergeants, colour-scrgeants, sergeants and corporals.

With not more than 21 years total service, and with the following continuous service in one of the above clarses, the rates of peosions (per diem) are:-

Class.	12 years Service.	$\begin{aligned} & 9 \text { years' } \\ & \text { Service. } \end{aligned}$	6 years ${ }^{2}$ Service.	3 years' Setvice.
II.	$\begin{array}{ll}3 & d . \\ 2 & 9 \\ 2 & 6 \\ 2 & 3 \\ 1 & 8\end{array}$	$\begin{array}{ll}1 . & d . \\ 2 & 6 \\ 2 & 3 \\ 3 & 0 \\ 1 & 6\end{array}$	$\begin{array}{ll}2 & d . \\ 3 & 3 \\ 2 & 0 \\ 1 & 9 \\ 1 & \end{array}$	$\begin{array}{ll}2 & d \\ 1 & 0 \\ 1 & 9 \\ 1 & 6 \\ 1 & 0\end{array}$

Privates (Class V.) receive the following penaions:

21 years Service.	20 years' Service.	18 years' Service.	18 years' Service.	14 to 18 years Service:
1s id.	1s. od.	IId. .	rod.	8d. co rod.

For aervice in exoten of 21 yearm, the following ecomete added Do the pensions enumerated above:-

| | For each complete year it excess of 21 years. |
| :--- | :--- | :--- |
| Clames I. to III. | Id. per diem to gd. per diem. |
| Clasees IV. and V. | Id. per diem to $5 d$. per diem. |

A man promoted to higher rank within one year of tis cothpheting 21 yeara' service. receives, on his discharge in the higher rank, an extra 3 d. per diern, providod that he has completed 35 years service in all. An additional pension of 6d. per diem is awarded for gallant conduct, as in the case of warrant officers.
N.C.O.'s and men disabled through mititary arvice are granted the following pensions:-

If partially capable of earning a Fivelihood	Per diem.
	18. 10 30. 9d. to 2x 6d. to Lse 6d.
If totalily incapabte of earning a livelihood	Per dietn.
	2s. 6d. to 3a. 6d. 23. od. to 3s. od. is. 6d. to 2s. 6d.

Pemiones may alo be granted to N.C.O.'rand men who atedinabled by causes other than military service, accerding to circutmotnose.

United Stales.

In the ordinary sense of the word, pensions in the United States are confined to federaljudges and officers of the army and navy, but the United States "Pension Fund " is so singular a feature of the national budget, that it is desírable togive an account of the different classes of allowances which are granted. In the United States allowances for services in wars prior to the 4th of March 1861 are called " old war "pensions, and may be divided into three classes, viz.,(i) invalid pensions, based upon wounds or injuries received, or disease contracted in the course of duty, (2) "service "pensions, and (3) land bounties, both granted for service irrespective of injuries.

The firux provision made by Congreas for pensionas was a redolution' pessed on the 26th of Ausutt 1776, promising invalid pentiono to officers aod men of the army or navy who lost a limb or were otherwise disabled in the War of Independence, at a rate equal to hall of their monthly pay as officers or soldiers during life or continuance of the diabibility, thooe not totalty diasbled to teceive an adequate monthly petsion not, to exoeed half of their pey. Then followed various Acts of Congress enlarging the provisiona for invalid penaions and extending them to those who had been in the war of 1812 , and to the widows and chitidren of thoee who died in the war or from andouds received in the war. The act of the and of May 1846. provided for the prosecution of the war with Mexico and for pensios. ing those volunteers wounded or otherwise disabied in service: Other acts were subsequeptly passed making further provision for pension on mocount of service in the Mexical wrer. The fist general Ea granting "service" penaions whes not passed until the r8th of March 1818, thirty-five years after the termination of the War of Independence. Its beneficiaries were required to be in Indigent cincumstances and ta need of assistance from their country. Iwo years later Congrems berame alarmid by reanon of the latre ammber of claims filed (about 8000), and enteted what we known an the "Alarm Act," requiring each applicant for pention and each pensioner on the rolls to furnish a schedule of his whole estate and meome. clothing and beddlag excepted. Many pensioners were dropped who were possessed of as much as $\$ 130$ worth of property. Nomerous acts were, however, passed from time to time liberalizing the laver dealing more generotusly with the survivors of the Revolution. Service pensions were not granted to widows of the soldiers of this war until 1836 , and then only for a period of five years and on condition that the marriage of the coldier was prior to his last service, and that the eoldier's service was not lesa than six montha. In 1853 , seventy years after the close of the war, the limivation as to the time of marriage was removed. The rolls in 1901 contained nine and in igog two pensions baved upgn service in the War of Independence. The tast survivor was Dahiel F. Bakeman, who died on the 5 th of April 1869, aged 109 years and 6 months.

The first law granting service pensions on account of the war of 1812 was passed in 1871, fifty-six years after the close of the war. This act required slxty days service. Widows were not pensionable unkes the marriage to the soldier tad taken place prior to the treaty of peace of 1 Sth February 1815. On 9th March 1878, sixty-three years after the war, an act was passed reducing the sequisite period of service to fourteen days and removing the Finfations as to date of marriage. In igos the pention folle
contained the manes of 47 t widows of this war, the last male anrvivor having died in 1905, at the age of tog yearn. Servioe pensiona were provided for thoee who earved in the Black Hawk war. Creeh war, Cherolvee dimmanocta and she Seminote wer (i832 to 1842), on the 27th of July 1892, fifty year alter the period emabtaced in the act; they were granted to thoee who had eerved for thirty daye and were monourably dimcharged, and to their widow. In 1908 there werv 1880 morivon and-3018 widows penainomess of the Indian math Service pensiog were greated to the curvivort of the war with Mexico by al act paieed on the sgich of january 1887, thirty-nine yeare after the Curadeloupe-Hildigo treaty. The peraions wert granted too those who were honourably discharged and to the oidons, for eervice of dicty days, If sityy-iwo yeart of
 actis of the sth df Janumy 1893, 23nd of Apsil 1900, 6th of February 1907, and 19th of Apri 1903, Incraseint the pension to 875 for thope who have metached the age of weventy yeart, and to $\$ 100$ fow thame deveney-five years and aver. In rgos the penion rolh conselned the names of 2932 aurvivers and 6914 widows on account of eervice in the Mexican war. To give title to bounty land, ecrvice mupt have been for at tespt fourteen days or in a battle prior to 3 rd March 185s; and if in the mavy or regular army, must have been in moot whin which the United States was engeged. Bounty latsd wersants dre isuoed for 160 meres, asd over $70,000,000$ acred have been granted under the differint Bounty Land Acta
For servies rendered in the Civil War (1861-65) in the army or navy of she United Staces, or in their various branshes, the law provided two distinct byberms of pencioning-(1) the general lewes grancing pensione for mounds or injuries rocived, or disente contracted in eervice in the line of duty, the pongiop ranging from \$ to $\$ 100$ per month; and (a) the so-called Dependent Pension Act and amonding acte, granting pensions for permanent dimabilities regnedlea of the time and manter of thetr ortsin. grovided they wise not the result of viciout habita, the pelanoms raging frovis
 abilities sicurred in sorvice and in the course of duty was contlituted in the act of the 14th of July 2863, as amended by the act of the 3rd of March 1873. Under ite provimions the following clasaes of permone sre entitled to bepefit, vis any officer of the army, havy or marine corps, or any enlisted man in the milltary or mavir mervide of the United States, whether regulariy muotered or not; any mastey or any pilot, engineer, atilor or other person not regularly mustered; -aerving upon any guaboat of whrmemel of the United Statea; any acting awinant or contract enct won; any provent-barahal, deputy provoot-marthal or enrotion oficer; eusjeet to the several condition in each particular case preecribed in the law. This law aloo embraces in ite provtione the followias clamea, each clase being eubject to oertain specified canditions, vis. widown, chifdren under shicen yoars of age, dependent paremta, and orothers and tisters. This act hat been the oubject of numerous anmendmente along more hiberal lines. As an illutrution a case may be cited where a soldier lont both handa in the wervice in the conarie of dutys and was diecharged in 1860 . He ls emitied to pension of 5 per moath fromp the date of his discharge. Under futbequent acts he de entitled to s2s per month from 4 th July 1864; $31+2 s$ from ths Jone 187a; Foo from th June 1874; 872 from 17th June 1878 and $\$ 100$ from 1 12th February 1889.

Under the gemeral in a widow or dependent miative conld not be pensioned unitem the cause of the coidier's death originated in eervice in the line of diry; If it were so shown, widow miste be pensioned whether she were rich or poor. Upon the death of remarriage of the widow the minor children of the moldier under the
 died of causes due to his aervice, and left no widow or minor ohildren. his other rebatives become entitied, if dependent, in the following order, vis; firist, the mother; secondly, the father: thirdly, orphan sintars and. brothen under aisteen yeart of age, who shall bo pensiongd jointly. In 1998 tha nomber of invalids penemoed mader the geperal lnw was 142,044 and the number of widows and dependent relatives was 81,168.

The so-called Dependent Pemsion Act was based upon an Act of Congres approved 27th Junc 18go, which was apmerided ot 9th May 1900 . Properly apenleing, it mithe be called " deppondent " only as regards widows and parents. The main conditions as to the soldier or sailor were, ninety days service, an honourable discharge, and a permanent disability from disease or otherwise, not the reant of his own vicioce hablit, to atach in etatent as to render him unable to mafintifin himelf by mamal labour. The rates of pension under this act were $\$ 6, \$ 8, \$ 10$ and $\$ 12$ per month. Widows became entitled under this law if they married the soldier or eailor prior to 27th June 1890, provided they were without motas of sapport other that their daily labours add men actual net incopte not empedints tago per year, and had not remariied. Claims of children under sixteen ycars of age were governed by the. same conditions as applied to claims of whdows, except that their dependence was prestrmed, and need not be shown by evidetice. If a minor child was ingane, idiotic or otherwise phytically or mentally belpless, the pertalon continued dusing the life of maid child. or during the period of disability. Furtheracts mede more liberal, provitions. That of the 6th of February 1907, granted penaione
to perans who had served friaty days or more in the military er maval earvice in the civil war, or sixty days in the Momican var, and were bonourwbly diachwryed, no other condicions beiag attacbed. The rate of pension was fued at 812 per month when sixty-two yeart of age, 815 per month when seventy years of age and 820 per moath when seventy-ive yeare of age. The act of April 1908, fixed the rate of pension for widows, minor children under the age of sixteen and helplese miners on the soll or afterwards to be placed on it at 312 per month, and granted penaions at the asme rite to the widows of persons who terved niaety diys or more during the civil wer, without regand to their pecuniary condition. In 1908 there were 140,600 invalids on the coll and 4294 minor and beipleas children. In the same year under the act of 1907 there were 338,341 dependants, while under the act of 1908 , 188.445 vidows were put on the roll. All women employed by competent authority as nurwe during the Civil War for six months or more. Who are unable to earn a support, are granted a pension of $\$ 12$ per month by an act of the gth of August 1892. In 1908 the peasion rolls contained the games of 3110 pensioners under thif ect.

There were on the coll.in 1908 on account of the Spanish war. 11.786 invalids and 3723 dependante.' The total emoust paid in pentions in 1908 on cocouat of that war end the insurrection in the Pbilippine islands was $\mathbf{3 . 6 3 4 , 1 2 2}$. The grand tofal of pensioners on the roll for all wars was in 1908. 951,687.

In addition to pensions, the United State government grants the following gratuitios: Firis- If a moldier lost a limb in the ervice, or an a result of his service in line of duty, he is furninhed with an artificial limb free of cost every three years, or commutation therefor, and transportation to and from a place where he chall salect the artificial limb. Second: An bonourably discharged aldier or axilor is given prelerence for appointment to places of trust and profit, and proference for retention in all civil aspice positions. Thard: There are ten National Soldiers' Homes situated at convenient and healthy polnts in different parts of the country, where comfortable quarters, clothing, medical attendatice, ibrary and amumements of diferent kinds are provided free of all expense; government providing the coldiers free trangportation to the home, continuing paymenti of pension while they are membera of the home, and increasing the mame as disahilities increase Fourth: There are thirty home maintained by the diferent efates, which are timilar in their purpose to the National Homes, the sum of \$100 per year being puid by the general government for each inmate. Many of these otate homes aloo provide for the wiven and childrem of che inmater, $s 0$ that they need not be eeperated while they are members of much home. Fifis: Schoole are eatebfiphed by the difierent stater for the maintenanca and education of solliers' orphans until they attaio the age of sixteen years.

From the clowe of the Civil War in 1865 to 1908, the goverament of the United States paid to its pensioners for that war the cum of \$3.533.593,025. The payments on account of all ware for the facel year eqded on the 30th of Jone 1908 wert $8153,093,086$. Over $37,000,000$ has been pald to eurgeons for raking medical examinatians of pensioners and applicants for pensions. The total diabursement for pencions from 1790 to 1908 anounted to 83,751, ig 8,809. No other pation or government in till time hat dealt to liberally with its defenders.

The money sppropriated by Congress for the payment of pensions Is disbursed by eighteen pension agente entablished in differtnt parta of the country. Pensions are paid quarterly, and the agenciee are divided into three clasies, oae of which pays on the sth of every month.

Prasionaty a name given to the leading functonary and Eegal adviser of the principal town corporations of Holland, beceuse they received a malary, or pension. At first this official was known by the name of "clerls" or "advocate." The office originated in Flanders. The earliest "pensionaries" in Hotiand were those of Dort (1468) and of Faarlern (1478). The pensionary conducted the legal husiness of the town, and was the secretary of the town council and its representative and tpokeman at the meetinge of the Provincial States. The post of pensionary wan permanent and his influerce was great.

In the States of the province of Holland pensionary of the order of nobles (Ridisrtchat) was the foremost official. of that assembly and he was named-until the death of Oldenhameveldt In 16ro-the land's advocate, or more shortly, the advociate. The importance of the advocate was much increased after the outbreak of the revolt in 1572 , and atill more so during the long period $\mathbf{1 5 8 6 - 1 6 1 9}$ when John van Oldenbarneveld beld the office. The advocate drew up and introduced all resolutions; concluded debates and counted the votes in the Proviacial Assembly. When it was not in mession be ras a permanent member of the college of deptated corncillors who emrried on the adminislration. He was minister of justice and of finance.

All corropoodence: paned thtough his Bands, and he was the head and the spokesman of the deputation, who represented the province in the States General. The conduct of foreign affiry in particular was entrusted almost entirely to him.

After the downfall of Oldenharneveldt the office of tands. advocate was abolished, and a new post, tenable for five years only, was erected in its place with the title of Racd-Prusionoris. or Pemsionary of the Council, naually called by English writes Grand Pensionary. The first holder of this office was Anthory Duyck. Jacoh Cats and Adrian Pauw, in the days of the stadtholders Frederick Henry and William of Orange II. hed to be content with lessened powers, but in the stadtholderles: rigime t650-1672 the grand pensionary became evea more infuential than Oldenbarneveldt himself, since there was no prince of Orange filling the offices of stadtholder, and of admiral and captain-general of the Union. From 1653-1672 John de Witt, re-elected twice, made the name of grand pensionary of Holland for ever famous during the tirae of the wans with England. The beat known of his succesans was Anthony Heinsius, who held the office from 1688 to his death in 1720 . He whe the intimate friend of William III., and atter the decease of the king continued. to carry out his policy during the stadtholderiest period that followed. The office was ebolished atter the conquert of Holland by the French in 1795.
See Robert Fruin, Geschichemis der Slacts-Irastellingen th Neder. latad, The Hague, 1901, G W. Vreede, Inleiding bot eame Gesch. dar Foderondiche Diptomalic (Utrecht, 1858).
(G. E.)

Prixalimish, the name given to the second and shorter line of the classical elegaic verse. It is composed of five (x ($\mathrm{y} \boldsymbol{\mathrm { r }}$) feet or measures (ulrpa), and is divided inta two equal parts of two and a half feet each: the second of these parts must be dactylic, and the frst mey be either dactylic or spondaic. The first part must never overlap into the second, hut there wust be a break between them. Thus:

In tha beat Letin poets, the first foot of each part of the pentsmeter is a dactyi. The pentameter scarcely exista except in conjunction with the hexameter, to which it always succeeds in elegaic verse. The invention of the rigidly dactylic form was attributed by the Greeks to Archilochus. Schiller described the sound and method of the alegaic couplet in two very shilinil verses, which have heen copied in many languages:

Im Herameter steigt dea Spriagquells filssige Sinule,
The pentameter was always considered to add a melancholy air to verse, and it was especially beloved by the Greeks in those recitations (daputeirai) to the sound of the flute, which formed the earilest melodic performancea at Delphi and elsewhere.

PENTASTOA1DA, or Lircoatulina, vermiform entoparasitic animals, of which the exact zoological position is unknown, alchough they are utuaily regarded as highly modified degenerate Arachnida of the order Acari.

The body is sub-cylindrical or somewhat convex above, Gatter bclow, broad and oval in front and narrowed and elongate behind. Its integument is marked by a large number of transverse grooven simulating the segmentation of Annelids, and near the anterior extremity close to the mouth are two pairs of recurved chitinous hooks. The alimentary canal is a simple tube traverging the body from end to end, the anus opening at the extremity of its narrowed tail-like termination. The nervous system in represented by an 'oesophageal collar and a suboesophageal ganglion, whence paired nerves pan outwards to ionervate the anterior extremity and hackwards towards its posterior end. No respiratory or circulatory organs ane known. The eexes are distinct but dissimilar in size, the female being usually much larger than the male. The generative ongans occupy a large part of tho body cavity. In the fernale the ovary is a large unpaired organ from the anterior end of which arise two oviducts, and connected with the latter are a pair of large so-called copulatory pouches, which perhape act as receptacula eeminis. These and the oviducts lie on the anterior balf of the body; hut the oviducts themselves soon unite to form a dingle lube of great length, which runs baclownids to its posterior extremity, terminating in the genital orifice cloee to the eans.

In tbe reale. on the craprary, the onfict in uitumed in the ancurior half of the body, not far behind the moorth. The acifico leeds into a large pouch lodging a pair of very long penea, which are coiled up when not in use. The two tensictes, which extend far back jnto the posterior pert of the body, efe long and zubular. Aoteriorly their vina deferentis usom unite into a common duct, which opeas into the pouch concainiog the peries Abso commmunicatiog with thil poucch is a pair of long alender fagellifiorm tubee, of which the function is unknown.
The atructure of the adutt Lixgworiula or Pompastommin, above deescribed, doee mot supply convinctigg evidence of retarionthip with the Acari. At the mone timpe some Acari, bike Erioploves (Phytogtens) and Demoders, have the body clongated and annulated, but in theese groups the elongation of the body is caudal or post-anal, as is artested by the position of the anus far forwarda on its ventral zuriace. Again, the sdult Pamarsomum showe mo trice of apposedager, salem the two privs of chisinouo hooks aro to be regarded as the veaiges of jawn or ambulatory limbe. In the eribryo, however, what have been regarded as remnants of limba may be een.

In the mature stage Pentastomida live in the respiratory passages of mammalia, principally in the nasal cavittcs. The remarkable lile-history of one species, Linguatula tacnioddes, has been worked out in detail and presects a close analogy to that of some Cestodes. The adults live in the nose of dogs, where they have been known to survive over fifteen months. Each female lays a vast number of eggs, about 500,000 being the estimated amount. These are expelled along with mucus by the sneezing of the host. If they fall on pasture land or fodder of any kfod and are eaten by any herbivorous animal, such as a hare, rabbit, horse, sheep or ox, the active embryos or larvae ane set free in the alimentary canal of the new host.

Fia. 1-LLingraswa samiotdas, Rud edult.

Fia. 2.-The meme, inthe firt larval stase: under side. 4... a, Leg-like proceswer.

Theme larvae are minute oval creatures with a comparatively thore apicalty frimged caudal prolongztion and fumished with two pairs of nhorit twoclewed processes, which may represent the linibs of anthropods and posembly the two pairs of lezs foged in Acart of the family Eriophyidae. The larva is also armed anteriorty with a median plercing probe and a pair of sharp hooks by means of which 3t perforates the walls of the alimentary tract and makes its way into the body cavity, humge or liver. Here it becomet encysted. and losing its boring apparatus and claw-bearing procesea remains for a time quiescent. After a mories of moults it payces into the mecond larval stage, somewhat fike the parent but didering in having each integumental ring armed with a fringe of backwardly directed whort bristlea. This sexually immature stage, rexarded at one time as repromenting a diatinet epperies and named Lingwdeda doxticulata, is reachod in about six or aeven montha and measures from 6 to 8 mm . in length. In the event of the host escaping being killed and eaten it is befieved that some of theme larvac wander about or uhtimately male their way to the exterion, poosibly through the bronchi; meverthelasis it meens to be certain that they: can ouly weach manal maturity in the masal paspages of sonve carnivoroms animal, and the chance of attaining this environment is afforded Then the viscers of the hoat are devoured by some flesh-eating maminal.
The adnte female of L. mamiondas mensures abont 4 in . long and the emale berely ona-fourth of that. The adult and immature oteges are, however, by no means confined respectively to carivivorous and herbivorous species of mammals. The adutt stage, for example, bee been found in the nasal pessages of sheep, goats,
bornep and evin of man, atd the larvif ange in the ploural and peritoneal cavities of dogs and cate.
(R. L. P.)

Primatious, the name fonnd as carly as in Tertullian and Origen corratpoeding to the Jewlah mean worr nuas (the five-fifths of the Torah, or Law), and applied to the first five books of the Old Testament (Cenesis, Erodus, Leviticus, Numberm, Deuteronomy). The meveral books were named by the Jews from their initial porde, though ai least Leviticus, Numbess, and Deuteronomy had also tithes resembling those
 in Eua, H. R VI. e5), and ny nuro. The Pentateuch, tegether with Jouhma, Judges and Ruth, with which it is usually anited in Greek MSS., makes up the Octateuch; the Pentateach and Joulra together have recently been namod the Hexateuch. On the critical questions arising from the Pentateuch or Hexitevch, see Brase and the articles on the several books.

Fentracolyt, a feast of the Jews, in ite original meaning a "harvest feest," as consiating of tho first-fruits of human toll (Evod vodii 20), axtending over the seven weeks which fairly corteapod with the duration of the Canaanite harvest. Hence it was the clocing feast of the harvest gladness.
The agricuhural character of this fetst clearis reveals its Canmentte erigin (see Hzenaw Rewion). It does aot, however, rank equal in importance whth the other two agricolfural festivals of pro-esilian Israci, vis. the Maspuh or feast of unleavened cakes (which marked the beginning of the corn-harvest), and the Astph ("mgathering," later called suctilh, "booths ") which marked the close of all the year's ingathering of vegetable prodects. This is ciear in the ideal scheme of Eackiel (xlv. is seq.) in which according to the original text, Pentecost is omitted (see Conillt revised text and his aote od loc.). It is a later hand that has inecribed a reference to the "feast of weeks" which © found in oor.Mmenotic Fiebrew text: Nevertheless occasional Alludions to this feast, though mecondary, are to be found in Hebrew licerature, e.g. Lee. it. 3 (a Heb.) and Ps. Iv. 7 (8 Heb .).
In both the early codes, vis, in Exod. ydii. 16 (E) and in Exod 3xsiv 22 (J, in which the harveat featival is called "fenst of wecks") we have only a bare stateroent that the harvert festhfal took phace some weels after the opeoing spring festival celled Mossouh. It is to Deut. zvi. 9 that we and it explictlly stated that men weeks elipsed between the beginning of the corn-harveat ("when thou puttest the waide to the corn ") and the celebration of the harven festival (figt). We also note the same generous inclusion of the howsebold slaves and of the resident alien as well as the fatherless and widow that characterises the autumnal fentival of "Boolis."

But when we pass to the post-exibian legislation (Lev. cinif. $10-21$; ch. Num. xrviil. 26 seq.) we enter vpon a far more detailed and specific series of ritual instructions. (2) A spechal ceremonial is described ma taking place on " the morrow after the Sabbath," i.e. in the week of unlenvened cakes. The first-fruits of the harvert here take the form of a sheaf which is waved by the priest before Yabweh. (2) There is the offering of a male lamb of the first year without blemich and also a meal offering of fine floar and oil mixed in defined proportions as well as a drink-offaring of wine of a certain measure. After thls " morrow after the Sabbath ${ }^{n}$ geven weeks are to be reckoned, and when we reach the morrow after the seventh Sabbath fifty days have been enmuerated. Here we must bear in mind that Hebrew numeration always includes the day which is the terminuta a quo us well as that which is term. ad gwem. On this fiftieth day two wave-doaves made from the produce of the fields occupied by the worshipper ("youtr habitations ") are offered together with ecven unblemiahed lambs of the first year as well es one youns ballock and tow rams as a burtt offering. We have furthel precise details respecting the sin-ofiering and the peaceofferings which were alse presented.t This elaborate ceremonial connected with the wave-ofleriag (developed in the post-exile period) toak-place on the morrow of the reventh Sabbath called
${ }^{1}$ On the critical quertions involund to there stual detalle of Lev. xxili. 18 as compared with Num. xxviii. $27-30$ of Driver and White in S. B. O, F., note on Lev. xalii. 18.
" day of tholy convecation" on whech no gervile work was to be done. It was called a "fifticth-day feast." Pentecost or "Fiftieth" day is only a Greek equivalent of the latit hame (rerqueori) in the Apocrypha and New Testament. The orthqdox . Later Jews reckoned the fifty days from the 16 th of Nisan, but on this there has been considerable controversy among Jews themselves. The orthodox later Jews ascumed that the Sabbath in Lev. uxiil, if, 15 is the igth Nisan, or the first day of the fenst of Maspoth. Hitrig maintained that in the Hebrew calendar 14 th and 2 zst Nisan were always Sabbatha, and that ist Nisan was always a Sundey, which was the opening day of the yeer. "The morrow after the Sabbath" meana, eccording to Hitaig, the day after the weekly Sahbath, viz. and Nisan. Knobel (Comment. on Leviticus) and Kurta agree with Hitzig's premises but differ from his identification of the Sabbath. They identify it with the 14 th Nisan. Accordipgly the "day after" falls on the 1 gth. (See.Purves's article, "Pente'cost,'in Hiastinga's Dict. of the Bible, and also Giasburg's article in Kitio's Cyclapaedia). Like the other great feasts, it came to be celebrated by fixed special sacrifices. The amount of these is diferently expressed ia the earlier and later priestly lave (Lev. xxiii. 28 seq.; Num, xuviil. 26 seq.); the discrepancy was met by adding the two lists. The later Jews also extended the one day of the feast to two. Further, in accordance with the tendency to substitute historical for economic explenations of the great feasts, Pentecost came to be regarded as the feast comomemorative of the Sinaitic legsislation.

To the Christian Church Pentecost acquired a new aignificance through the outpouring of the Spirit (Acts ii.). (See Werisunday.)
\mid It is not easy to find definite parallels to this festivalin ocher ancient religious cults. The Ahitu festival to Marduk was a apring festival the beginning of the Babylonian year (Niamn). It therefore comes near in time to the feast of unleavened cakes rather than to the later harvest festival in tho month Sivan called "freast of weeks." Zimmern indeed connects the Akitu festival with that of Purim on the 15 th Adar (March); see K.A.T.3 P. 514 seq. Also the Roman Cerealia of April ratbsith rather correspond to Mafsoth than to Kdisr. (O. C. W.)
1 PRNTELICUS (Bonnvatis, or IIerrenudy spos from the dem Merikp; mod. Mendeli), a mountain to the N.E. of the Athenian plain, height 3640 ft . Its quarries of white marble were not regulady worked until after the Persian wars; of this material all the chief buildings of Athens were constructed, as .well as the sculpture with which they were ornamented. The ancient quarries are mostly on the south side of the mountain. The beat modem quarries are on the north side. The top of Pentelicus commands a view over the plain of Marathon, and from it the Athenian traitors gave the signal to the Persians by a flashing ehield on the day of the battle. There was a statue of Athena on the monntain.
PRYTHERDS, in Greck legend, successor of Cadmus as king of Thebes. When Dionysus, with his band of fremaied women (Maenads) arrived at Thebes (his native place and the first city visited by him in Greece), Pentheus denied his divinity and violently opposed the introduction of his rites. His mother Agive having joined the revellers on Mount Citheeron, Penthevs followed and climbed a lofty pine to watch the proceedings. Being discovered he was torm to pieces by Agave and othern, who mistook him for some wild beast. His head was carried back to Thabes in triumph by his mother. Labdacus and Lycurgus, who offered a similar resistance, met with a line fearful end. Some identify Pentheus wilh Dionysus himself in his character as the god of the vine, torn to piecea by the violence of winter. The fate of Pentheus was the subject of lost tragedies by Thespis and Pacuvius.
I See Euripidea, Bacchee, passim; Ovid, Melam. 7il. 511 ; Theocritus rexi; Apollodorus iii. 5 , ${ }^{2}$ i Nonnus, Dionysiace, xliv-xivi; on representadions in art mee O . J ahn, Pruhious mind die Maimoden (1841).
PatiMIlURE, COUnts OP. In the irth and rath centuries the countship of Penthidvre in Brittany (dep. of Cotea-du-Nord)
belonged to a branch of the ooveraign bouse of Britteny. Henry d'Avaugour, heir of this dynasty, was dispossessed of the countship in 1235 by the duke of Brittany, Pierre Mauclerc, who gave it as dowry to his daughter, Yolande, on het marriage in 1238 to Hugh of Lusignan, count of La Marche. Duke John I. of Brittany, Yolande's brother, seized the countshlp on her death in 1272. In 1337 Joan of Brittany brought Penthievre to her husband, Charles de Chatillon-Blois. In 1437 Nicole de Blois, a descendant of this family, married Jean de Broase, and was deprived of Penthievre by the duke of Brittany, Francia 1I., in 1465 . The countship, which was sestored to Sebastian of Luxemburg, heir of the Brosses through bis mother, was erected for him into a duchy in the peerage of France (ducht-pairic) in 1569, and was afterwards held by the duchess of Mercour, daughter of the first duke of Penthilevre, and then by her daughter, the duchess of Vendome. The duchess of Vendome's grandion. Louis Joseph, inherited Penthievre in 1669, but it was taken from him by decree in 1687 and adjudged to Anne Marie de Bourbon, princess of Conti. In 1696 it was sold to the count of Toulouse, whose son bore the title of duke of Penthièvre, This title passed by inheritance to the house of Orleans.

PENTHOUSE, a sloping roof attached to a building either to serve as a porch or a covering for an arcade, or, if supported by walls, as a shed, a "lean-to." In the history of siegecraft, the word is particularly applied to the fixed or movable constructions used to protect the besiegers when mining, working batter-ing-rams, catapults, \&c., and is thus used to translate Lat. vineo and pluteus, and also testudo, the shelter of locked shields of the Romans. The Mid. Eng. form of the word is pextis, an adaptation of O. Fr. apentis, Med. Lat. appenditix, or apperdicium, a small structure attached to, or dependent on, another building, from appendere, to hang on to. The form "penthouse " is due to a sapposed connerion with "house " and Fr. pente, sloping roof. The more correct form "peatice" is now frequently used.

PESTETEEAON, in botany, a genus of plants (mit. order Scrophulariaceae), chiefly natives of North America, with showy. open-tubular flowers. The pentstemon of the florist has, however, sprung from P. Harrvegii and P. Cobcea, and possihly some others. The plants endure English winters unharmed in favoured situations. They are freely multiplied hy cuttings, selected from the young side shoots, planted early in September, and kept in a close cold frame till rooted. They winter safely in cold frames, protected by mats or litter during frost. They produce seed freely, new kinds being obtained by that means. When special variecies are not required true from cuttinga, the simplest way to raise pentstemons is to sow seed in heat (65° F.) early in Fehruary, afterwards pricking the seedlings out and bardening them of, so as to be ready for the open air by the end of May. Plants formerly known under the name of Chelone (c.g. C. barbata, C. campanulata) are now classed with the pentstemons.

PENUMBRA (Lat paenc, almost, wimbra, a shadow), in astionomy, the partial shadow of a heavenly body as cast by the sun. It is defined by the region in which the light of the sun is partially but not whally cut of through the interception of a dark body. (See Eclupse.)

PEHZA, a govemment of eastern Russia, bounded N. by the government of Nizhniy-Novgorod, E. by Simbirsk, and S. and W. by Saratov and Tambov; area 14,992 sq. m.; pop. (est. 1906) $1,699,000$. The surface is urdulating, with deep valleys and ravines, but does not exceed 900 ft . above sea-level. It is princlpally made up of Cretaceous sandstones, sands, marls and chalk, covered in the east by Eocene deposits. Chalk, potter's clay, peat and iron are the chief mineral producis in the north. The soil is a hlack earth, more or less mixed with clay and sand; marshes occur in the Krasnoslobodsk district; and expanses of sand in the river valleys. There are extensive forests in the north, but the south exhibits the characteristic features of a steppeland. The govemment is drained by the Moksha, the Sura (both navigable), and the Khoper, belonging to the Oka, Volga and. Don zystemas. Timber is floated dow
severad samaller it reams, while the Muhabe and Sure are Important means of conveyanct. The climate is harsh, the average temperature at the city of Penza being ooly 38°. The population consiats principally of Russinos, togetber with Mordvinians, Meshcheryaks and Talars. The Russians profens the Orthodoa Greek faith, and very many, eapecinlly in the north, are Raskolniks or Nonconformists. The chief occupation is agrieulture. The principal crops are rye, oats, buck wheat, hemp, potaloes and beetroot. Grain and flour are cansiderable exports. The local authorities have entablished depots for the sale of modern agricultural machinery: There are several agricultural and borticulteural achools, and two model dairyfarms. Cattle breeding and eapecially horse-breeding are comparalively flourishing. Market-gardening is succestully carried on^{2}, and improved varietices of fruit-trees have been inurodused through the imperial botanical garden at Penza and a private school of gandening in the Gorodichche diutrict. Sheep-breeding is especially developed in Chembar and Insar. The Mordvinians devote much attention to beokeeping. The foress (22% of she total area) mre a considernble source of wealth, enpecially in Kruenostobodsk and Corodisbche. The manufactures are few. Ditilierice come first, foliowed by beet sugar and oil mills, witb woollen cioth and paper milh, tamneriss, soap, glass, macbinery and iron-works. Trade is limited to the export of corn, spirits, timber, hempseed-oil, tallow, hides, honey, wax, woollen cloth, potash and cattle, the chicf contres for trade being Penza, Nizbni-Lomov, Mokshany, Saransk and Kramnoulobodak.
The government is divided into ten districts, the chief towns of which are Penas,Gorodishche, Insar, IEerensk, X rasnoslobodkk, Moksbany, Nerovchat, Niahni-Lomov, Saransk and Cbembar. The preseot govermmeat of Penza was formetly inhabited by Mordvinians, who had the Meccheryaks on the W. and ahe Bulgan on the N. In the s3th century these popolnaions fell uader the dominion of the Tatara, with whom they fought againat Moccow. The Russians founded tho town of Mokshany to 1535. Penza was founded in the beginning of the 17 th century, the permanent Russian settlement dating as far back ass 1666 . In 1776 it was taken by the rebel Pugashev. The town was almost totally destroyod hy conflagrations in 1836,1839 and 1858 ,

Paniza, a town of Ruscia, capital of the government of the came name, 498 m . by rail S.E. from Moccow. It stands on a plateau 507 St. above the rea, at the confuence of the Penza wilt the navigable Sura. Pop. (1897), 61,85 I. The older parts of the town are conatructed of wood, but the newer parts are well buile. The catbedral was erected in $\mathbf{8 8 3 0} \mathrm{i} 82 \mathrm{x}$. Penza has techoical schools, public libraries, a museum of antiquities, and a theasse which has plyyed some part in the history of the Russian stage. The builk of the inhabitants support themselvas by agriculuture or fishing in the Sura. An imperial botanical garden is situeted within two miles of the town. Apart from paper-mills and steam flour-mills, the manufacturing establiahments are anall. There is a tracke in corn, oill, tallow, timber and spitita, and two hain where cattle and horsea are sold.
MMZANCR a municipal borough, martet town and eeaport in the St Ives pariiamentary division of Cornwall, England, the terminus of the Great Western rallway, $325 \% \mathrm{~m}$. W.S.W. of London. Pop. (1gor), 13,136. It is finely shuated on the western shore of Moumt's Bay, opposite St Michsel's Mouns. being the wexternmost port in Eagland. The wite of the ofd town slopes sharply upward from the hrarbour, to the west of which there entends an esplanade and modern reaidential quarter; for Penprinco, with its mild climate, is in considerablo favour ase a peaith resort. The town has mo buildings of great antiguity, but the public bridings (1867), in Itallan st yle, are mandeome. By the market house ts a atatue of Sir Humplry Davy, who was borm hdre in 1978 . Among fastitations there are a speciafly fine pablic library, museums of geology and natural history and antiquities, mining and science ectoole, the West Coruwall Infirmary end a meteorological station. The harbour; enclosed wichin a break witer, has an area of 24 acres, with 23 to 16 ft . depth of water, cad floating and graving docis. There is a
large export trude in fath, theckeding that of pilchards to Itaily. Other exports are tin and copper, granite, serpentine, vegetables and china clay. Imports are prindpally coal, iron and timber. Great quanities of carly potatoes and vegetables, together with flowers and fish, are sent to London and alsewhere. The borough in under a mayor, 6 aldermen and 18 councillors. Aren, 355 acres.
Neariy two miles mland to the north:west is Mndson (an urben district with a population of 3486). The church of St Maddern is principally Perpendicular, with earlier portions and a Norman front. Near the village a "wishing well " of ancient fame is seen, and close to th the ruins of a baptistery of extreme aatiquity. Monoliths and cromlechs are not uncommon in the neighbourhood. Three milies north-east is the urban district of Ludovan (pop. 2274), and to the south is Pafl (6332), which includes the village of Newlyn (g.e.).

Penzance (Pensans) was not recognized as a port until the thys of the Todors, but its importmoce as a fishing village dates from the 14 thi century. In 1327 thirty burgesses in Penzance and thisteen boats paying 133. yeariy are found among the possessions of the lords of Alverton, of which manor it formed a portion of the demesme lands. The year 1512 marks the beginalng of a new era. Unti then St Michae's Mount had been regarded as the port of Mounts Bay; but in that year Henry ViII. granted the tenants of Penzance whatever profits might ecerue from the "ankerage, kylage and busselage" of ships resorting thither, so logg as they should repair and maintain the quay and buimarks for the safeguand of the ships and town. Nevertheieses thirty years later it is described by Lelind as the weternmote merket town in Cornwall " with no socur for Botes or shippes but a forsed Pere or Key." During the war with Spain the town was devastated in 1595. The charter of incorporation granted in $\mathbf{x} 54$ states that by the invasion of the Spanlards it had been treacherously spoiled and bornt bat that its atrengtit, prosperity and usefulness for navigation, and the zeceptable and lasdable services of the inhabitants in rebuilding and fortifying it, and their enterprise in erecting a pier, have moved the king to grant the petition for its incorporation. This charter provides for a mayor, eight aldermen and twelve assistants to constitute the common council, the mayor to be chosen by the coumcil from the aldermen, the aldermen to be chosen from the assistants, and the assistants from the most sufficient and discreet of the inhabitants. It also ratified Henry's grant of anchorage, keelage and busselage. In 1663 Penzance was constitued a coinage town for tin. It has never enjoyed indopendent parliamentary representation. In 1332 a marke: on Wednesdays and a fair at the Feast of St Peter ad Vincula were granted to Alice de Lisle and in 1405 this market was ratified and three addtional fairs added, vix. at the feasts of St Peter in Cathedra and the Conception and Nativity of the Blessed Virgin. The charter of 1654 substituted markets on Tuesdays and Thursdays for the Wednesday market and added two fairs one at Corpus Christi and the other on the Thuraday before St Andrew. Of the fairs only Corpus Christl remains; markets are now held on Tuesday, Thursday and Saturday. Apart from fishing and shipping, Penzance has never been an mindustrial centre.
PSOMIAOE (Span. peon; M. Lat. pedo (pes), primarlly a footsoldier, then a day-laboarer), a system of agricaltural servitude common in Spanish America, particularly in Mexico. In the early day's the Spanish government, with the iden of protecting the Indiens, exempted them from compulsory military sectice, the paymiert of tithes and other taxes, and regulated the system of labour; but left them practically at the mercy of the Spanish governors. The peons, as the Indian labourers were called, were of two kinds: (t) the agricultural warkman who was free to contract himseff, and (2) the criminul labourers who, often for slight offences, or more usually for debt, were condemned to practical alavery. Though legally peonage is abolished, the unlortunate peon is often lured into debt by his employer and then kept a slave, the law permitting his forcible detention till be hes paid his debt to his master.

PEAPLE, a collective cerm for persons in general, especially as forming the body of persons in a community or nation, the " folk" (the O.E. and Teut. word, ci, Ger. V αk). The carlier forms of the word were pepte, poeple, puple, \&oc.; the present form is found as early as the 15 th century, but was not established till the begianing of the 16th. Old French, from which it wat adapted, had many of these forms as well as the mod. Fr. prounc. The Lat. poputus is generally taken to be a reduplication from the root ple,-fill, seen in plenus, full; plebs, the commors;

PEORIA, a city, port of entry, and the county-ecat of Peoria county, Illinois, U.S.A., in the north central part of the state, on the lowes end of Lake Peoria, an expansion of the Illinois river, and about 150 m . S.W. of Chicago. Pop. (1900) 56,500; (1910) 66,950 . It is served by 13 railways, of which the most important are the Chicago, Burlington \& Quincy, the Chicago, Rock Isiand \& Pacific, the Cbicago \& Alton, the Illinois Central, the Cleveland, Cincinnati, Chicago \& St Louis, and the Chicago \& North. Western. The Illinois river is navigable to its mouth, and at La Salle, above Peoria, connects with the Illinois \& Michipan Canal extending to Chicago. The river is spanoed at Psoria by two railway bridges and a wagon bridge. The residential portion of the city is situated on bluffs overlooking Lake Peoria, and the busineas atreets lie on the plain between these elevations and the water front. The park system includes more than 400 acres; Bradley Park (i40 acres), the largest, was given to the city by Mrs Lydia Moss Bradiay (18r6-1908) and was named in her honour. On a bluff northeast of the city is Glen Oak Park (103 acres), modelled after Forest Park, St Louis, Miseouri; in the soutb-western part of the city is Madizon Dark (88 acres); and in the lower part of the city is South Park (so acres). In the Court House Square there are two monuments in honour of the Federal soldiers and sailors of Peariz county who perisbed in tbe Civil War; in Spriagdale Cemetery there are two cimilar memorials, one of which (a large granite boulder) is in memory of the unknown dead; and in the same cemetery there in a monument erected by the state (zgo6) to mark the grave of Thomas Ford (d. 1852), governor of Illinois in $\mathbf{z 8 4 2 - 1 8 4 6 .}$ Among the principal public buildings and institutions are the Peoria Public Library lounded in 8855 , the City Hall, the Court House, the Federal buiiding, St Mary's Cathedral, the Bradley Polytechnic Institute (affiliated with the univeraity of Chicago), founded in 1896 by Mrs Lydia Moss Bradiey, who gave it an endowment of $\$ 2,000,000$; Spalding Institute, founded through the efforts of John L. Spalding (b. 1840), who was Bishop of the Roman Catholic diocese of Peoria in $\mathbf{4 8 7 7 - 1 9 0 8 ;}$ an Evangelical Lutheran Orphans' Home (1902), an Industrial School for girls (1892), Cottage Hospital (1876), St Francis Hospital (1875), a Florence Crittenton Home (1902), a Home for the Friendless (2876), and a House of the Good Shepherd (189x), and the Guyer Memorial (1889), St Joseph's (1892), and John C. Proctor homea for the aged and infirm (1907). At Bartonville, a buburb, there is a state boapital for the incurable insane.

In 1900 and in 1905 Peoria ranked second among the cities of Hinois in the value of its manufactures. The invested capitai amounted in 1905 to $\$ 22,243,82 x$, and the factory products were valued at $\$ 60,920,411$. The principal industry is the manufacture of distilled liquors, which were valued in 1905 at $\$ 42,170,815$. Other important manufactures are agricultural implementa ($\mathbf{3}, 309,962$), slaughter-house and meat-packing products ($\$ 1,480,398$), glucose, cooperage ($\$ 1,287,742$), malt liquora (3887,570), loundry and machine-shop products, strawboard, automobiles, brick and stone, and four and grist mill products. Peoria is also an important shipping point for grain and ooal.

Peoria was named from one of the five tribes of the Illinois Iodians. In 1680 La Salle, the explores, huilt Fort Crivecoeur, on the lake shore blufis, opposite the present city; this fort, bowever, was destroyed and deserted in the same year by La Salle's followers after he had set out to return to Fort Frantenac. There is evidence that a Frencb mission was eatablished on or near the site of Peoria as early as 1711 ; and certalinly hy 1725 a settlement, known as Pcoria, and composed of French and
"breed" traders, trappens and farmers, had been entabinhed about 1 I m. above the foot of the lake, on its west shore. This village was practically deaerted during the later years (17811783) of the War of Independence, and when its inhablants returned after the peacs they settled in a village which had been established about 1778 , on the present site of Peoria, by Jean Beptiste Mailiet (d. 1801), and was at frot called la Ville de Maillet. It in probable that Jean Baptiate Puint de Sajble, believed to have been a Santo Domingan negro, and jocularly spoken of "as the first white settler in Chicage", Hived in the "old village" of Peoria as early as 1773-or six yean before be settled on the present site of Chicago-and again about 1783. In November 1832 aboit half of the town was burned by a company of Illinois militia who had been sent thither to build a fort, and whose captain aserted that his boats had been fired upon at night by the villagers. In the following year a fort. named Fort Clark in honour of George Rogers Clark, was efected on the site af the old vilage; it was evacuated in 1818, and soon afterwards was bumed by the Indians. After the town was burned there was no seriovs attempt to rebuild until isig. Pcorian was incorporated as a town in 1835 and was chartered as a city in 1845 - In 1900 North Peoria was annexed.

See David MrCulloch, Farly Days of Pcoria and Chicato, an addrean mond before the Chicago Historical Society in 1904, and pablished by that society, (n.d.), and "Old Peoria," by the seme author, in publication No. 6 of the Illinois State Historical Society Transachons (Springfield, IH. 1901): also Historical Encyclopaedic of luiwois (Chicago, 1goo), ed. by Newton Bateman and Paul Selty: History of Peoria County. 'Iu. (Chicago, 1880); and C. Ballanes, Hislory of Peoria (Peoria, 1870).

PEPE GDGLBLIO ($1783-1855$), Neapolitan general, was born at Squillace in Calabria. He entered the army at an early ege, hut in 1799 be took part in the repablican movement at Naples impired by the French Revolution; he fought againat the Bourbon troops ander Cardinal Rufio, whs captured and exiled to France. He entered Napoleon's army and served with distinction in several campaigns, including those in the Nespolitan kingdom, first under Joeeph Bomaparte and inter under Joachim Murat. After commanding a Neapotitan brigade in the Peninsular campaign, Pepe returned to Italy in 8813 , with the rank of general, to belp to reorganize the Neapolitan army. When the news of the fall of Napoleon (1814) reached Italy Pepe and several other generals tried without succese to force Mural to grant a constitution as the only means of saving the kingdora from foreign invasion and the retum of the Bourbons. On Napoleon's cacape from Elba (i8is) Murat, after come heritation, placed himself on the emperor's side and waged war againat the Austrians, with Pepe on his staff. After several engagements the Neapolitans were forced to retire, and eventually agteed to the treaty oi Casalanza by which Murat was to abandon the kingdom; but the Neapolitan officers retained their rank under Ferdinand IV, who now regained the throne of Naples. Wbile engaged in auppressing brigandage in the Capitanata, Pepe organized the carbonari (q.v.) into a national militia, and was preparing to use them for political porposes. He had hoped that the king would end by granting a constitution, but when that hope failed he meditated seixing Ferdinand, the emperor of Auatria, and Metternich, who were expected at Avelhno, aad thus compelling them to liberate Italy (1819). The scheme broke down through an accident, but in the following year a milleary rising broke out, the mutineers cheering for the king and the constitution. Pepe himself was sent against them, but whike be was hesitating as to what course he ahould follow Ferdiand promised a constitution (July 1890). A revolt in Sicily baving been represeed, Pepe was appointed inapector-general of the army. In the meanwhile the king, who had no intentiom of reapecting the constitution, went to Leibach to confer with the aovereigas of the boly alliance aspembled there, leaving his son as regent. He obtained the loan of an Austrian army with whlch to restore absoiute power, while the regent dallied with the Liberals Pepe, who in partiament had declared to saverer of deposing the king, now took command of the army and marehed against the Austrians. He attacked them at Ried (March y_{1}

38an), but his raw leviea werd repuited. The army thas gradualiy dishanded, and Pepe spent several years in Eagland, France and other countries, publishing a number of books and pamphlets of a political character and keeping up his conncrion vith the Carbonari. When in 1848 revolution and war hroke out all over Italy, Pepe returned to Naples, where a constitution had again been proclaimed. He was given command of the Neapolitan army which was to co-operate with Piedmont againat the Austrians, but when he reached Bologna the king, who had already changed his mind, recallod him and his troops.. Pope, after besitating between his desire to fight for Italy, and his oath to the kinc, resigned his commission in the Neapolitanservice and crosed the Po with $\mathbf{3 0 0 0}$ volunteers to take part is the campaign. After a good deal of fighting in Venetia, he joined Manin in Venice and took command of the defending army. When the city was forced by hunger to surrender to the Austrians, Pepe and Manin were among those axcluded from the amnesty; be again vent into exile and died in Turin in 1855.

The atory of Pepe's life down to 1846 Is told in his own intenecting Memeria (Lugano, ${ }^{1847}$), and his Narrative of lle Evends:, af Naples is 1820 and 1821 (London, 1821); for the later period of his ifie see the general histories of the Risorgimento and the biographical shetch in vol. iin. of LC Carpi's Risorgmemto (Milan, re86).

PEPERINO, an Italian name applied to brown or grey volcanic tuf, containing fragments of basalt and limestone, with disseminated crystals of augite, mica, magnetite, leucite, \&c. The typical peperino occurs in the Alban Hills, near Rome, and was used by the ancients, under the name of lapis albanus, as a building stone and for the basins of fountains. Other tufls and conglomerates in Auvergne and elsewhere are also called peperino. The name originally referred to the dark coloured inclusions, sugestive of pepper-corns. In English the word has sometimes been written peperine.

PEPFIR, WILHAY (1843-1898), American physician, was born in Philedelphia, on the 2 Ist of August 1843. He was educated at the university of Pennsylvania, graduating from the academic department in 1862 and from the medical department in 1864. In $\mathbf{8} 868$ he became lecturer on morhid anatomy in the same institution, and in 1870 lecturer on clinical medicine. From 1876 to 1887 he was professor of clinical medicine, and in 1887 succeeded Dr Alired Stillé as profeseor of theory and practice of medicine. He was elected provost of the university in 1881, resigniog thet position in 1894. For his services as medical direcior of the Centennial Exhibition in $\mathbf{~} 876$ he was made knight commander of St Olaf by the king of Sweden. He founded the Philodelphic. Kedical Times, and was editor of that journal ia $1870-1871$. He was known particularly for his contributions on the subject of the theory and practice of medicine, and the Systeme of Medicine wbich he edited in 1885-1886 became one of the standard textbooks in America. Among his contributions to the medical and scientific journals of the day, were ${ }^{4}$ Trephining in Cerebral Disease" (1871); "Local Treatment in Pulmonary Cavities" (1874); "Catarrhal Irrigation" (1881); "Epilepsy" (1883); and "Higher Medical Edacation: the True Interest of the Public and the Profession." He died on the 28th of July 1898 at Pleasanton, California.
FESPPEA, a name applied to several pungent spices known respectively as black, white, long, red, or cayenne, Ashanti, Jamaica, and melegueta pepper, but derived from at least tirree different natural orders of plants.

Bhech fepper is the dried fruit of piper migrum, a perennial cimbing shrub indigenous to the forests of Travancore and Malabar, from whence it has been introduced Into Java, Sumatra, Borneo, the Malay Peninsula, Siam, the Philippines, and the Weat Jories. It climbs on treetrunks by roots in the same way. as ivy, and from its climbiog habit is known as the pepper vine. It is one of the earliest spices known to minkiod, and for many ages formed a staple article of commerce between India and Europe. Tribute has been levied in pepper; one of the artictes demanded in 408 by Alaric as part of the ransom of Rome was 3000 it of pepper. Its exorbitant price dariag the middie ages was one of the inducements which iled the Portugueac toseck:
sen-route to Profis. The discovery of the pasange fibund the Cape of Good Hope led (1498) to a considerable fall in the price, and about the same time the cultivation of the plant was extended to the western islands of the Malay Archipelago. Pepper, however, remained a monopaly of the Portuguese crown as late as the 181h century. In Great Britain it was formerly taxed very beavily, the impost in 1623 amounting to $5 s$, and as late as 1823 to 2s. 6d. 1b.

The largest quantlifes of pepper are produced in Penang, the ishand of Rioaw, and Johore near Singapore-Penang affording on an average about half of the entire crep. Singapore is the great emporium for this spice in the East, the largest proportion being ahlpped thence to Great Britain. The varieties of hlack pepper met with in commerce are known as Malabar, Aleppy or Tellicherry, Cochin, Penang, Singapore and Siam.

Piper nigrum.
c_{3} Twig with triut (about inat, aize); b_{1} longitudinal rection of fower much enlarged; c, section of Iruit.
It onea ite purgency to a recia, and ite gavour to a volatile oil, of which it yields trom 1.6 to 2.2%. The oil atreet with ail of turpentine in componition as well as in apecific gravity and boiling point. In polarized light it devistes the ray, in a columa 50 mm . loung. in $2^{\prime \prime}$ to 34° to the left. Poppor almo conptaias a yellow crystal time alkaloid. called piperine, to the extent of a to 8% This substance has the same empirical formula as morphise, C_{4} Hin NOw but differa in coristitution and properties. It is insoluble io water when pure, is devoid of colour, flavour and odour, and may be

 of pepper mode ammonin, and yielde crymallizable mita A fatty oif :is found'the the pecicarp of pepper, and the biries yiodd on zacimeratida from 41 to 5.7 of eah. The only use of black pepper. is zo a condiment, ibet it guly be given therapeiticnty fin dowes of 5 to 20 grainas. It has. che phammeological wetiona of a valatile oil
In the south-west of India, where the pepper-plant grows wild, it ia found in rich, moist, leafy soil, in marron valleys, propageting iteoff by ranning' along the ground and giving off roots into the wil. The only mechod of cultivetion adopred by the mativen is 00 tie up che end of the vines to the neighbouring treen af dwances of at leato 6 ft . expecially to thope having a rough bark, ta order that the roots may emily zatach thempelves to the surface. The underwood is then clomped awny, learving only muffichent trees to
 with a beap of lenves, and the shoots are trained twioe a year. In localities where the pepper does not grow wild, ground in selected which permity of free dratnage, but which is not too dry nor tiable to inugdation, and cutcinge aro planted-at about a foot from tho trees either in the rainy meason in Juse or in the dry seasop im February. Sometimes several cuttings. about 18. in. lang are placed In a basket and buricd at the root of the tree, the curtings being made to wope towwrds the trunk. In October or November the younc placts are mapured with a mirture of kenves and cowdung. On dry soils the young plants require watering every other. day during the dry season for the first three years. The planta bear fin the fodrth or iftti year; and iI raised from cuttings are
fruitful for seven years, if from seed for fourteea yeara. The pepper from plants raised from cuttings is said to be superior in quantity and quality, and this method is in consequence moat frequently adopted. Where there are no trees the ground is made into terraces and euclowed by a mud wall, and branches of Eryitrina imdice aro put into the ground in the rainy meaton and in the course of a year are capable of supporting the young pepper plants. In the meantime mango trees are planted, these being preferred as oupports, sinoc their rruit is not injured by the pepper plant, while the Erythrina is kiiled by it in fourteen or fifteen years.
In Sumatra the ground is cloared, ploughed, and sown with pice, and cuttings of the vine are plapted in September, 5 ft . apart each way, together with a sapling of quick growth and rough bark. The plants are now beft for iwelve or eighteen months and then entirely buried, except a small piece of bemt stem, whence new shoots arino, three or four of which are allowed to climb the tree near which they are planted. These shoots generally yield flowers and Iraits the next year. Two crope are collected every year, the principal one being In December and January and the other in July and August, the latter yielding pepper of inferior quality and in lesa quantity.

Two or three varieties are met with in cultivation; that yielding the beat kinds has broadly ovate leaves, five to seven in number, nerved and stalked. The flower-spikes are opposite the leaves, stalked and from 3 to 6 in . long; the fruits are sessile and fleshy. A single stem will bear from twenty to thirty of these spikes. The harvent begins as soon as one or two berries at the base of the apikes begin to turn red, and before the fruit is mature, but when fuligrown and still hard; if allowed to ripen, the berries lose pungency, and ultimately fall off and are lost. The spikes are collected in bags or baskets and dried in the sun. When dry the pepper is put into bage containing from 64 to 128 db . In Sumatra the yield is eatimated at about is th per phant per annum. In Malabar each vine gives 2 ib a year up to the fifteenth or twenticth year, or about 24 Ib from each tree, a single tree somecimes supporting eight or twelve vines; an acre is calculated to bear 2500 plants, to cost about 64 in outlay to bring it into bearing, and to yield a produce of EBO when in its best condition.

While pepper differs only in being prepared from the ripe fruits. These, after collection 4 are kept in the house three days and then bruised and wached in a basket with the hand until the stalks and pulpy matter are removed, after which the seeds are dried. It is, however, sometimes prepared from the dried black pepper by removing the dark outer layer. It is less pungent than the black but possesses a finer flavour. It is chiefly prepared at the island of Riourw, but the finest comes from Tellicherry.

White pepper affords on an average not more than 1.9% of conntial cili : bit, eccording to Caseneuve, as much as 9% of plperine, and of ach not more than I-r $\%$.

Lows pepper is the fruit-rpike of Piper oploinerume and P. Longxm, gathered shortly before it reaches maturity and dried. The former is a native of the Indian Archipelago, and has oblongovate, acuminate leaves, which are pinately veined. The latter in Indigenoua in the hoter provinces of India, Ceylon, Malacea and the Malay Isiands; it is distinguished from P. offrinarum by the leaves being cordate at the base and five-veined.
Long pepper appears to have been known to the ancient Greeks and Romana under the name of atraph moxpori and in the 10th century mention is made of long pepper, or macropiper, in conjunction with black and white peppers. The apice consists of a dense spike of minute baccate fruits cloeely packed around the centril axis, the apike being about $1 \frac{1}{2} \mathrm{in}$. long and $\frac{1}{4} \mathrm{in}$. thick: as met with in comonerse they have the appearance of having been limed. In Bengal the plants are cultivated by suckers, which are planted about 5 ft . apart on dry rich soli oa bigh ground. An English acre will yield about 3 maunds (80 ll) the farst year, 12 the recond, and 18 the third year; after this time the yield decreases, and the roots are therefore grobbed up and sold as popli mal, under which mame they are much used as a medicine in India. After the fruit is collocted, which is usualiy in January, the stem and beaves die dawn to the ground. Long pepper contains piperiae, resin and volatile oil and yields about 8% of ash. Penang and Singapore are the principal centres in the East for its male.

Ashanti or West African pepper is the dried fruit of Piper Clusii, a plant widely distributed in tropical Africa, occurring most abundantly in the country of the Niam-niam. It differs from black pepper in being rather smaller, less wrinkled, and in being at tenuat ed into a stalk, like cubebs (the dried unripe fruits of P. Cubeba), to which it bears considerable resemblance externally. The taste, however, is pungent, exactly like that of pepper, and the fruit contains piperine. It was imported from the Grain Coast by the merchants of Rouen and Dieppe as early
at 1364 and was exported from Benin by the Portuguere is 1485; but, according to Clusius, its importation was forbidden by the king of Portugal for fear it should depreciate the ralue of the pepper from India. In tropical Africa it is extensively used as a condiment, and it could easily be collected in large quantities if a demand for it should arise.

Jamaica papper is the fruit of Pimenta officinalis, an evergreen trie of the Myrite family. It is more correctly terined "pimento" or "allspice," as it is not 2 true pepper.

Mclegycta pepper, knowa also as "Guinea grains," "graims of peradise" (g:p.) or "alligator pepper," is the seed of Amamum Mrelegueta, a plant of the ginger tamily; the seeds are exceedingly pungent, and are used as a spice throughout central and northern Africa.

For Cayenne pepper, mee that article.
PRPPER-CORN, the fruit or seed of the pepper plant; bence anything very small or insignificant. Pepper-corn rent is a merely nominal rent, reserved for the purpose of having the tenancy acknowledged by the tenant. Buiding leases frequently reserve a popper-com as rent for the first few years. See Rent.

PRPPERMINT, an indigenous perennial herb of the natural order Lahiatae, and genus Menika (see Mint), the specific name being Mentha piperita, is distinguisherd from other species of the genus by its stalked leaves and obfong-ohtuse spike-like heads of flowers. It is met with, near streams and in wet places, in several parts of England and on the European continent, and is also extensively cultivated for the sake of its essential oil in England,' in several parts of contineatal Europe, and in the

Fic. 1, Mentha priperita.
a, Flowering branch (about it nat. size) : b, flower showing form of calyx teeth (calarged).

United States. Yet it was only recognized as a distinct species late in the $17^{\text {th }}$ century, when Dr Eales discovered it in Hertfordshire and pointed it nut to Ray, who publushed it in the second edition of his Symopsis stirpium britonnicarmm (1696). The medicinal properties of the plant were speedily recognized and it was admitted into the London Pharmacepoaia in 1721, under the name of Mentha piperitis sapore.

Two varieties are recognized by growers, the white and the black mint. The former has purplish and the latter green stems; the leaves are more coarsely serrated in the white. The black is more generally cultivated, probably because it is found to yield more oild but that of the white variety is considered to have a more delicate odour, and obtains a higher prico. The white is the lind chiefly dried for berbalists. The favour varies to a slight extent even with particular plots of land, badly drained ground being known to give unfavourable results both as to the quantity and quality of the oil. That of the Japanese

1 Neir Mitcham in Surrey, Wisboeh in Cambridgechire, Market Deeping in Liacolachifo and Hitchio in Hertfordshire.
 distinguimhable by experts. In. Americh the nil is liable to be injured in flavour by aromatio weeds which grow froely atnong the crop, the most tronblesome of thesse being Erigeron canodense, and Erachukite kieracijatia. When pure the oil is nearly colourlem and has ani agreeable odour and powerful aromatic caste, followed by a sensation of cold when air is drawn into the mouth. It has a apecific gravity of 0.84 to 0.92 , and boila at $365^{\circ} \mathrm{F}$. Mitcrham oil, when exraminod by polarizod light in a coluson 50 mm . long, deviates from 14:9 ${ }^{\circ}$ to so 7° to the ieft, the American F.3 3°. When oil of peppermint is cooled to. $4^{\circ} \mathrm{C}$. it nametimes deposits colouriess hexagonal prisms of ménthot, $\mathrm{C}_{10} \mathrm{H}_{2} \mathrm{O}$, which are soluble in alcohol and cherer, almost intoluble in water, and furible at $9 g^{\circ} \mathrm{F}$. The oil oonsists chiqfly of menthol anda trepene called menthene, $\mathrm{C}_{10} \mathrm{H}_{10}$ Oil of peppermint is offoen adulterated with a third part of rectified spinit, which may bo.detected by the milkiness produced. whou the oil is agitated with unter. Oil of rosermary and rectified oil of turpentine are sometimes used for the satre porpose. If the oil condeins turpentine it will explode with iodine. If quite pure it dissolves in its own weight

Fig. 2.-Meniha arowsit. var. piperasces.
a. Flowering branch reduced); b, calyx showing form of teeth (enlarged).
of rectified spitits of wine. Pcppermint oil is largely distilled at Cantion, a considerable quantity being sent to Bombay, aloo a large quantity of menthol. The species cultivated in the neighbourhood of Canton, is Menika arocansis, var. glabrals. Peppermint is chiefly cultivaled in the province of Klang-si; and according to native statements as much as 40 piculs of oil of peppermint are sent annually to ports on the coask. In Japan also the distillation of oil of peppermint forms a considerable industry, the plant cultivated being M. aroensis, var. piperascens. The oil, under the narme of hakka no abwra, to exported from Hioga and Onaks, but is said to be frequently adulterated. The menthel is obtained by subjecting the oil to a low temperature, when it crystallizes out and is separated. The two varietics of M. anvensis jast anmed yield much more menthol than M. piperita. It is remarkable, however, that the M. arvensis, var. jasamica, growing in Ceylon, has not the flavour of peppermint but that of garder mint, while typical form of 18 . anoensis. grown in Great Brilain has an odour so different from peppermint that it has to be carefully removed from the field lest it should spoil the fiavour of the peppermint oil when the herb is distilled. M. imcanc, cultivated near Bombay as a herb,- also possenses the flavour of peppermint. In the form in which menthol is imported it bears some resernblance to Epsom satis, with which in is sometimes adulterated.

The volatile oil of Mentha piperita is a valuable and widely used dryg. Its chief constituents are menthol and menthene, which is a biquid terpene. The British pharmacopocia contains two preparations of this oit, the Aqua menthoe piperize and the Spirius moxituce piperitace. The oil has the characters of its class, with certain special features. Its local anaesthetic action is exceptionally utrong. It is also powerfully antiseptic. These two properties make it valuable in the relief of toothache and in the treatmem of carious cavities in the teeth. They aleo render the drug valuable in certain lorms of dyspepaia and in colic generally, "soda-ming lozenges" being a familiar form. The characteristic anti-spasmodic action of the volatile oils is perfiaps more marked in this than in eny other oil, and greatly adds to ics power of retleving peins arising in the alimentary canal. The vointile oil of spearrnint is sho official in Great Eritain and the United States, being qiven in the mede dones and for the same purposes as oil of peppermint. It is of kess value medicinally, not containing any apprectabte quantity of meatinol, the place of whith is ralcon in the olewm menchac wiridis-
the pharmacopanial napme-by cervove, $\mathrm{Cu}_{4} \mathrm{H}_{1} \mathrm{O}_{\mathbf{n}}$ Cound in caraury oil, and isomeric with thymol.

The following mode of cultivation of peppermint is adopted at Marizet Deeping. A rich friable soil, retentive of moisture, it aelected, and the ground is well tilled 8 to 10 in . deep. The plants are propagated in the spring, usuatly in April and May. When the young. shoots from the crop of the previous your tuave attained a height of about 4 in . they are pulled up and transplanted fito new soil. They grow vigorously the first year, and throw out numerous stolons on the surface of the ground. After the crop has been removed theae are allowed to harden or becone woody, and then farm-yard manure is cattered over the field and ploughed in. In this way the stolons are divided into numerous pieces, and covered with soil betore the frost sets in. If the autumn is wet shey are lisble to become sodiden, and rot, and the ment crop fails In the epring the fields are tuessed with Peruvian guano In new ground the peppermint requires hand-weeding two or three times, as the hoe cannat be used without injury to the plants. Moist beavy weather In August is apt to cause the foliage to drop off arid leave the stems almost bare. In these circumstances rust (Precimia menather) also is liable to attack the plants. This is prevented to a certain extent by a rope being drawn acroet the plants, by two men walking in the furrows, so as to remove excessive moisture. The average yield of peppermint is about 165 cwt . per acre. The first year's crop is always cut with the eickle to prevent injury to the stolons. The herh of the mecond and third yoar is cut with scythes, and then raked by wnmen into loose heape ready for carting. The field is then gleaned by boys, who add what they collect to the heaps. The plants rarely yield a lourth crop on the sarne land. The harvest usually commences in the beginalios or middle of August, or as spon as the plants begia to flower, and laste for six weeks, the stills being kept going night and day. The berb is carted direct from the field to the stills which are made of copper, and contain about 5 cwt of the herb. Before putting the peppermint into the still water is poured in to a depth of about 2 ft., at which height a false bottom is placed, and on this the berb ie thrown and trodden down by men. The lid, which fits into a water-joint, it then let down by pulleys and fastened by two barn, any excess of pressure or temperature being indicated by the water that is ejected at the joint. The distittation - conducted by the application of direct heat at the lowest pos ible temperature, and is continwed for about four and a halr houas. When this operation is completed, the lid is removed and a rope io attached to a hook on the fatie bottom, which, as well as the herb resting on it, is raised bodily by a windlass and the peppermint carriec away in the empty carts on their return journey to the feids, where it is placed in heape and allowed to rot, being subwequenty mixed with the manure applied in the autumn as above stated The usual yield of oil, if the scason be warm and dry, is said to be 1 oz from 5 it of the fresh flowering herb, but, if wet and unfavourble, the product in barely hall that quantity. The yield of a charge of tho stinl is eatimated at from in in on. to 5 H . The cil improvet in mellownets even fopt as long as tea or fourticen years. The green colour apmotimes prosent In the oif. is stated to. be due to. a guantity of water targor than nocesary having been used in the distillation; on the ocher hand, if the herb be left in the still from Sarurday to Monday, the oil assurnes a brown tint.

In France peppermint it cultivated on damp rich groumd at Sent, In the department of the Yonne. In Germany it is grown in the neighbousthood of Leipzig, where the little town of Collede producela annually as much as $40,000 \mathrm{cwt}$ of the herb. In the United Statem peppermini is cultivated on a most extensive scale, chivelly in southrese Michigen, tho west districts of New York state, and Ohio. The yiedd averiges from $t 0$ to 30 to per acre. In Michigan the plant was introduced in 1855 .
 was' botn in Kiftery, Maine, then $\%$ part of Massachusetts, on the 27th of June 1696 . He studied surveying and navigation. and joined his father in his ship-building, fishing and general tradint business, quickly becoming one of the wealehiest and most infuential meri in the province. He was commissioned captain (1717), major, lieutenant-colonei, and in 1726 colonel of militia. Pepperrell served in the Massichusetts general court (1726-1727), and in the governor's council (1727-1759), ti which for cighteen years he was president. Although not a trained lanyer, he was chicil justice of the court of common pleas from'r 730 untfl his death. In 1745 he was connatander-in-ehied of the Neve England force of sbout 4000 , wbich, with the assistiance of a Britimh aquadron Ender Commoddre Peter Werien, bosieged and captured the proweh fortries of Louisburgit the gamisph gmathdering on tho roth of June and Pepperrelh and Warsen takion pomesioin on the followints day. For:his auvices Pepperrell, in November 1746, was created a baponet sethe oufr New Enylinder whonoured. Ha west active in raing troope
during the "French and Indian War," and rescived the raok of lieutenant-general in February 1759. He died in Kittery, Maine, on the oth of July in the same year.

See Usher Parsona, Life of Sir William Pepperrell, Barl. (Cambridge, Mast, 1855), based on the family pepers.

PEPPER TRER, a tree which has no proper connexion with the true pepper (Piper), and is really a member of the natural order Anacardiaceae, being known botanically as Sckinus Molle, from the Peruvian name Mulli. It is a native of tropical South America and is grown in the open air in the south of Europe. It is a small tree with unequally pinnate leaves, the segments linear, entire or finely saw-toothed, the terminal one langer than the rest, and all gilled with volatile oil stored in large cells or cysts, which are visible to the naked eye and appear tike holes when the leaf is held up to the light. When the leaves are thrown upon the surface of water the resinous or oily fluid escapes with such force as violently to agitate them. The fowers are small, whitish, arranged in terminal clusters and polygamous or unisexual, with five sepals, as many petals, ten stamens (as large as the petals in the case of the male flower, very small in the female flower, but in both springing from a cushion-like disk surrounding the base of the three-celled ovary). The style is simple or threecleft, and the fruit a small, globose, pea-like drupe with a bony kernel enclosing a single seed. The fieshy portion of the fruit has a hot aromatic flavour from.the abundance of the resin it contains. The resin is used for medicinal purposes by the Pcruvians, and has similar properties to mastic. The Japan pepper tree is Xanthoxylum piperitum the iruits of which have also a hot taste. Along the Riviera the tree known as Melia Asedarach, or the "Pride of India," is also incorrectly called the pepper tree by visitors.

PRPSIN, an enzyme or ferment obtained by drying the mucous lining of the fresh and healthy stomach of a pig, sheep or call. As used in medicine it consists of a light yellow-brown or white powder or of pale yellow translucent grains or scales. It is only slightly soluble in water and alcohol. Pepsin is used to help gataric digestion in old people and in those in whom there is a deficieat secretion of the gestric juice. It is useful in chronic ctetartbal conditions of the stomach, the dyspepsia of alcoholism, and in gastric uleer and cancer of the stomach.

Pepsin digeste the albumens but is uelem in the digention of fate oc carbohydratea. It may amo be uned to predigest abbuminous foode. The following is a method of peptonizing beef. Take \ddagger to of minced raw lean beel, f pint of water contening 0.2% of hydrochloric acid. place ln a jar with 30 gran of pepsin, set in a warm place at $110^{\circ} \mathrm{F}$. for 3 hours. stirring otcnaionally. Then quickly boil it. It is usually unneccsary to otrain it, as the ment is reduced to a fint almost impalpoble powder which is readily assimilated. Many varieties of proprietary peptonizing tablets are on the market and are convenient for the preparation of peptonizod milk. The following is a method of preparing it. Take a chean glass quart botle, ponr in a pint of perfectly freah cold milk, then add a teacupful of cold water in whick a peptonizing tablet bas been dissolved. Submerge the bottle in a can of wator at $100^{\circ} \mathrm{F}$. for from $\$$ to 10 minutes, take out the bottle and place on ice to prevent the lurther action, of the pepsin. If no ice is convenient bring the milk to a boil for the same purpose. If the action of the pepaia be continued Ior a much longer period the milk becomes bitter to the taste from the development of excess of peptones. Predigested foods should not be used over a long period or the digestive functions of the tomach may atrophy from disuse.
Pancreatic solution, derived from the pancreas of a pig digested in akcohol, has the power of converting starch into sugar, and albumen and fibrin into peptones. It only acts in an alkaline medium and at a temperature under $140^{\circ} \mathrm{F}$. II used to peptonize milk sodlum bicarbonate should be added. Many commencial preparationt are on the market. Trypsin, the principal ferment of the pancress, also changes proteids into peptones

PEPUCCH, JOAN CHRISTOPHER (1667-175a), English muisician, of German parentage, was born in Berlin. He began his study of music at an early age, and about 1700 left Berlin and went to England, where be had various engagements, and where be went om with his tesearches into ancient music. He composed a number of charch sorvices and inslrumental pieces, hesides music for masques and plays, but he is best known in connerion with the founding in 1710 of the Academy of Ancient Muric. In 1713 be was made a Mus.D. of Oylord, and in 1746
F.R.S. In 1718 he marriod Margarita de I'fpine (d. 1746), whes as the first Italian to sing in England, was described in 169: in the London Gazelte simply as "the Italian womana." Pepuscti died in London on the roth of july 1732. His Trootise an Harmony (anonymous ist ed. 2730) is believed to have been an embodiment of his rules drafted by his pupil Viscount Paisley, afterwards carl of Abercorn.

PEPYS, SAMUEL ($1633^{-1703 \text {), English diarist, was born on }}$ the a3rd of February 1633. The place of his birth is not known. The name was pronounced in the ifth century, and has alwaya been pronounced by the family, "Peeper." The family can be traced in Cambridgeshire as far back as the reigh of Edvard 1. They rose by slow desprees from the class of amall copyholders and yeoman farmers to the position of gentry. In 1563 they had a recagnized right to use a coat of arms. John Pepya. Samuel's father, was a younger son, who, like olher sentlemen in this position in that age, went into trade. He was for a time established as a tailor in London, but in r66t he inberited a smal estate at Brampton near Huntingdon, where he lived during the last years of his life.

Samuel was fifth child and second son of a large lamily. all of whom he survived. His frat echool was in Huntingdon, but he was alterwards sent to St Paul's in London, where he remained till i6so. While at St Paul's he was an eye-witness of the execution of King Charles 1. On the 21st of June in that year his name was entered as a sizar on the books of Trinity Hall, Cambridge, but it was transferred to Magdalene on the 1st of October. On the sth of March he entered into residence, and he remained there till 1654 or 1655 . He obtained a Spendlufe scholarship a mooth after entering, and one on Dr John Smith's foundation on the 14th of October 1653. Nothing is known of his university career except that on the 21st of October 1633 be was publicly admonished with another undergraduate for having been "scandalously overserved with drink." At Cambridge he wrote a romance, Lose is a Cheal, which he afterwards deal royed. On the ist of December 1055 he was married at St Margaret's cburch, Westminster, to Elizabeth, daughter of Alezander Marchant, Sieur de St Michel, a French Huguenot exile from Anjou who had married an English lady named Kingsmill. Pepys had at this time no independent means, and probably relied on tis cousins, the Montagues, to provide for him. On the 36th of March 1058 be was cut for the stone, as event Wifch he always kept in memory by a solemn anniversary. In 1659 he went as secretary with his cousin, Edward Montagu, afterwards carl of Sandwich, on a voyage to the Sound. On his returo he was engaged as a clerk under Mr (afterwards Sir) Edward Downing, one of the four tellens of the exchequer. In 1600 he accompanied his cousin, who commanded the Geet which brought King Charles II. back Irom exile. In that year, by che interest of his cousin, he was named "clerk of the acts" in the navy offioc, but was compelled to buy off a competitor, one Barlow, by an annuity of (100.
Pepys was now fairly established in the official carear which led him to honour. On the 1st of Junuary 1660 he had begun his seciond and hidden life as a diarist. It is in that capacity thit he is of auch unique interest. But il his diary had never beea written, or had been lost, he would still be a notable man, as an able official, the author of valuable Memoirs of the Nary (1690), an amateur musician and protector of musicians, a gentleman who took an enlightened interest in science, and was elected president of the Royal Society. To his contemporary diarise, John Evelyn, he appeared as "a worthy, industrious and curious person." It is true that Andrew Marvel accused him of having accumulated a fortune of $\{40,000$ by "illegal wages." But this charge, made in a pamphlet called A List of the privcipol Labourers in the great design of Popery and Arbitrary Potcer, was attributed to political animosity. To the world he appeared as an honourable and religious man, and so he would seem to have been to us il he had not recorded in his diary all those weaknesses of character and sins of the flesh which other men are most careful to conceal.
His place of clerk to the Navy Board was equivalem to the
peat of permaneat under secretary in modom tianies. It made tim chief of the secretariat and 2 member of the administrating body of the navy. Though be was so ignorant of husiness that be did not even know the mulliplication table when he first took office, he soon mastered the needful mechanical det nits by working early and late. He had other poats and honours, which came to him either as consequential on him clerkhip or because be was a useful official. On the a3rd of July 1600 he was appointed one of the cierks of the privy seal, an office which returned mim f_{3} a day in fees. He was mades justice of the pence. In 1662 he was appointed a younger brother of the Trinity Hoose, and was named a commissioner for managing the affirs of Tangier, then occupled by an Engiish garrison. In 1664 be became a memher of the corporation of the Royal Fishery, to which body he was named treasurer when another official had brought the accounts into confusion. In that year he also joined the Royal Society. During the naval waz with Hollend (1664-67) be proved trimself an indefatigable worker. As surveyor of the victualling, the whole burder of a most important department was thrown on him in addition to his regular duties: He in fact organized the department. While the plague was reging in London in 1666 he remained at his pont when many of bis colieagues ran away, and he manfully avowed his readiness to take the risk of disease, as others of the king's servants faced the dangers of war. He had now gained the full confidence of the lord high admiral, the duke of York, afterwards King James II. When, on the termination of the war, the navy office was violently attacked in parliament, he was entrusted with its defence. The speech which he delivered at the bar of the House of Commons on the gith of March 1668 passed for a complete vindication. In sober fact the charges of mismanagement were well founded, hut the fauth was not in the officials of the navy office only, and Pepys, who was master of the detalls, had no diffculty in throwing dust in the eyes of the House of Commons, which was ignorant. Nobody indeed was better acquainted with the defects of the office, for in 1668 he drew up for the duke ol York two papers of inquiry and rebuke, "The Duke's Refiections on the severall Members of the Navy Board's Duty " and "The Duke's answer' $t 0$ their severall excuses" (Harieian MS. 6003). In 1669 he travelled abroad. His success in addressing parliament gave hity the ambition to become a member of the House of Commons. He stood lor Aldborough, but the death of his wife, on the roth of November 1669 , prevented him from conducting his canvass in person, and be was not elected. In 1673 he was returned for Castie Rising. The validity of his election was questioned by his opponent, Mr Ofley, and the committee of privilege decided against him, hut the prorogation of the house prevented further action. The no-popery agitation was now growing in strength. The duke of York was driven from office by the Test Act, and Pepys was accused of "popery," partly on the ground that he was said to keep a crucifix and altar in his bouse, partly hecause be was accused of having converted his wife to Roman Catholicism. The crucifix story hroke down on examination, but there is some reason to believe that Mrs Pepys did become a Roman Catholic. Pepys was transferred by the king from the navy office to the secretaryship of the admiralty in 1673. In 1679 he was member for Harwich, and in the height of the poplsh ploz mania he was accused, manifestly because be was a trusted servant of the duke of York, of betraying naval secrets to the French, hut the charges were finally dropped. Pepys was teleased on bail on the 12 th of February 1680 . In that year he accompanied the king to Newmarket, and took down the narrative of his escape after the battle of Worcester. A proposal to make him bead of King's College, Cambridge, in 1681, came to nothing. In 1682 be accompanied the duke of York to Scotland, where the uncleanly habits of the people caused him great offence. In 1683-168, he was engaged in arranging for the evacuation of Tangier. He visited the place and kept a diary of his voyage. In i684, he was elected president of the Royal Society. On the sccession of King James I1. in 168 g he retained his place as cecretary to the admiralty, to which he had been appointed by petent when Jemes resumed the lord high admiralship (June io,
4084), and Pepys whe in effict mhitster for the navy. The revolution of 1688 ended his official career. He was dismined on the gth of March 1689, and spent the rest of his life in retirvment, and, eacept for a briet imprisonmemt on the charge of Jacodite intrigue in 1690, in peace. He died at his house in Clapham on the 25th of May 1703. His last years were passed in correspondence with his friends, who igeluded Evelyn and Dryden, or in arranging his valuable lihrary. It was left on hif death to his nephew, John Jackson, son of his sister Pauline, and in 1724, by the terms of his will, was transferred to Magdalent College, Cambridge, where it is still preserved.

Such was the outward and visible life of Sameel Pepys, the public servant whose diligence was rewarded by suecess. THe other Pepys, whom Sir Walter Scolt called "that curious. fellow," was revealed in $\mathbf{1 8 2 5}$, when his secret diary was partly publishod. The first entry was made on the ist of January 1660, the last on the 31st of May 1669, when the increesing weakness of his eyes, which had given him trouble since 1664, compelled him to cease writing in the conditions be imposed upon himself: If chere is in all the fiterature of the worid a book which can be cabed "unique" with strict propriety it is this. Confessions; diaries, journath, autoblographies abound, but such a revelation of a man's self has nol yet been discovered. The diary in a thing apart by virtue of three qualities which are rarely found in perfection when separate and nowhere else in combination. It was secret; it was full; and it was honest. That Pepys meant il for his own eye alone is clear. He wrote it in Shelion's system of tacbygraphy pubtished in t6a1, which he complicated by using forcign languages or by variecies of his own invention whenever he had to record the parages least fit to be seen by his servants or hy " all the world." Relying on his cypher he put down whatever he saw, heard, felt or imagined, every motion of his mind, every action of his body. And he noted all this, not as he desired it to appear to others, but as it was to his seetng. The result is "a human document" of amasing vitality. The man whodisplayi himself to himself in the diary is often odions, greedy, cowandly, casuistical, hrutal. He tells how he kicked his cook, and blecked his wife's eye, and was annoyed when others saw what he had done. He notes bow he compelled the wives of unfortunate men who came to draw their husband's pay at the navy office to prostitute themselves; how he took "compliments," that is to say gifts, from all who had husiness to do with the navy offer; how he got tipsy and suffered from sick headache; how he repented, made vows of sobriety, and found casuistical excuses for breaking them. The style is as peculiar as the matter-colloquial, garrulous, racy from simplicily of language, and tull of the unconscious bumour which is never absent from a trothfui account of the workings of nature in the average senstal man: His position enabled him to see much. His complefe harmony with the animalism and vulgarity of the Restoration makes him a valuable witness for his time.' To his credit must be put the facts that he knew the animalism and vulgarity to be what they. were; that he had a real love of music and gave help to musicians; Cesare Morelli for instance; that though he made money out of his places he never allowed bad work to be done for the navy if he could help it; that he was a hard worker; and that he had a capacity for such acts of kindness and generosity as are com patible with a gross temperament and a pedestrian ambition.
The diary, written in a very small hand in six volumes. was included among his books at Magdalene. Ont the publication of Evelyn's diary in 1818, the then head of Magdalene, the Hon. and Rev. Gearge Neville, decided to publish Pepys's. Part of the MS. was deciphered by bis cousin Lord Grenvilte. The library contained both the short and the long-hand copies of Pepys's account of King Charles's adventures, but its books were so little known by the curators that this key wasovetloqked. The MS. was deciphered hy John Smith, afterwards rector of Baldock in Hertfordshire, between 1819 and 1822. The first and partial edition, edited by Richard Neville Griffin, 3rd Lord Braybrooke, appeared in 1825 in two volumes quarto (London). It aftracted great attention and was revitwed by Sir Waltet Scott in the Quarlerly for January i826. A second edition in two octavo
volamee followed in 1828 ((Lomdon). A thid and enlarged edition in five volumes octavo appeared in 2848-1849, and a fourth in four in 1854 (London). In $1875-1879$ Dr Minors Bright published 2 still fuller edition in six volumes octavo (London). Many portraits of Pepys are known to have been taken and reveral cas be traced. One was taken by Savill ($\mathbf{6 6 6 1}$), another by John Hales ($\mathbf{1 6 6 6}$), now in the National Portrait Gallery. A portraik hy Sir Peter Lely is in the Pepysian Library, Magdalene College, Cambridge. Three portraits were taken by Sir Godirey Kneller, of which one belongs to the Royal Society, and another is in the Hall of Magdalene. Pepys's only known publication in his life was the Memoirs of the Navy, but other writings have been atcributed to him.
Autrorifirs.-The standard edition of Pepys's Diory is that by H. B. Wheatey, in nine volumes octavo. with a supplementary volume of Pepysiana (Londön, 1893-1899). See also Whenlley's Sammel Pepys, and the wootd he lived in (London, 1880): The Life, Journals amd Correspondence of Pepys, by I: Smith (London. 1841); E. H. Moorhouse. Samud Pepys. Adminislealor, Observer, Gossip (rgog); and P. Lubbock, Samud Pcpys (1gog).
(D. H.)
pequot, an Algonquian tribe of North-American Indians, a branch of the Mohicans. They occupied the coast of Coanecticut from Niantic river to the Rhode Island boundary, Together with their kinsmen, the Mohegana, they formed a poweriul and warlike people, bitterly bostide to the early settleri. In 3637 the Pequats were surprised by the whites at their fort on the Mystic iver, and suffered socompletely a defeat that the tribe was broken up, and its remnants took refuge with neighbouring tribes. The Pequol country passed under the control of the Miohegans. At the beight of their power the Pequots numbered, it is estimated, some 3000.
PERCEPPT10N (from Lat. percipere, to perceive), in psychology, the term specially appliod to the mental procesa by which the mind becomes conscious of an external object; it is the menta! completion of a sensation, which would otherwise have nothing but a momentary cristence coextensive with the duration of the stimulus, and is intermediato betwoen sensation and the "ideal revivel," which can reinstate a perceplual consciousness when the object is no longer present. This parrow and precise usage of the term " perception" is due to Thomas Reid, whose view has been generally adopted in principle by modern psychologists. On the other hand some psychologists decline to accept the view that the three processes are delimited hy sharp lines of cleavage. It is held on the one hand that sensation is in fact impossible as a purely subjective state without cognition; on the other that seneation and perception differ only in degree, perception being the more complex. The former view admits, which the latuer practically denies, the distinction in principle. Among those who adopt the second view are E. B. Titchener and William James James (Principles of Psychdogy, ii. ${ }^{66}$) compares sensation and perception as "the barer and the richer consciousness," and suys that "beyond the first crude sensation all our consciousness is a matter of suggestion, and the various suggestions shade gradually into each other, heing one and all products of the same psychological machinery of association." Similarly Wundt and Titchener incline to ohliterate the distinction between perception and ideal revival. Prior to Reid, the word perception had a long hissory in the wider sense of cognition in general. Locke and Hume both use it in this sense, and regard thinking as that special kind of perception which implies deliberate attention. (See Psychology.)
percevall or Percyvelle (Ger. Partiod, Fr. Palesdous, Welsh, Pecedur), the hero of a comparatively small, but highly important, group of romances forming part of the Arthurian cycle. Originally, the story of Perceval was of the charater of a tolk-tale, and that one of remarkable importance and world-wide diflusion. He is represented as the son of a widow, "la dame veuve," his father having been slain in tourney, batlle or hy treachery, eitber immediately belore, or shortly after his bitth. The mother, fearful lest her.son should share his father's fate, fies to the woods, either alone with one altendant, or with a small body of faithful retainers, and there brings up her son in ignorance of his name, his parẹtage and all knighty accomplishments.

The youth grows up strong, swift-fopted and of axpat papoman beauty, but, naturally epqugh, of very limited intelligence. This last is one of the most characteristic traits of the Perceval story, connecting it alike with the Irisk Lay of the Great Food, and the Teutonic Diemonding tales. He spends bis days chasing the beasts of the forest, rynning them down by sheer speed, or killing them with darts (jevelots) or bow and arrows, the only weapons be knows

One day, however, he meets a party of knights in armour; he first adores the leader as Cod, and then takes them to be same new and wondrous kind of animal, anking the most naive questions as to their armour and equipment. Being told that they are knights be determines that he 100 will be one; and returns to his mother announcing his intention of at once setting forth into the world to seck for knightbood. Dresed as a peasant (or a fool), be departs (his mother, in some versions, dying of grief), and comes to the king's court. Of course in the romance it is the court of Arthur; probably in the original tale it was simply "the king." Here his uncouth behaviour and great persopal beauty altract general attention, and be is alike mocked by Kay, and his future distinction mysteriously foretold. Ho slays a foe of Arthur's, the Red Knight, who has insulted the king, and challenged the knights of the court, who, for, some mysterious reason, are unable to respond to the challenge. Dressing hirnself in the armour of the stain knight, which be has great difficulty in handling and eventually puts on over his peasant's garb, he sels out on a series of adventures which difier greatly in the various versions, but the outcome of which is that he becomes a skilful and valiant knight, and regains the beritage of his father.

This, the Perceval story proper, has been recognized by scholars as a variant of a widospread folk-tale theme, designated by J. C. von Hahn as the Aryan Expulsion and Return formule, which counts among its representatives such heroes as Perseus, Cyrus, Romulus and Remus, Siegiried, and, as Alfred Nutt has pointed out, Arthur himself. This particular variant appears to be of British-Celtic origin, and the most faithful representative of the original tale is now very generally held to be the Eoglish Syr Percyuelle of Golles, a poem preserved in the Thornton manuscript. Here the hero is nephew to Arthur on the mother's side, and his father, of the same name as himself, is a valiant knight of the court. A noticeable feature of the story is the uncertainty as to the hero's parentage; the mother is alway a lady of rank, a queen in her own right, or sister of kings (as a rule of the Grail kings); but the father's rank varies, be is never a king, more often merely a valiant knight, and in no instance does he appear to be of equal rank with his wife. This distinguishes the story from that of Lancelot, with which some modern scholars have been inclined to identify it; for Lancelot's parentage is never in doubt, he is fis $d u$ roi

The connexion of the story with Arthur and his court brought about a speedy and more important development, the precise steps of which are nol yet clear: Perceval became the hero of the Grail quest, in this ousting Gawain, to whom the adventure originally belonged, and the Perceval became merged in the Grail tradition. Of the Perceval-Grail romances the oldest from the point of view of manuscript preservation is the Perceval or Conte del Graal of Chrétien de Troyes. Two manuscripts, indeed, the British Museum and Mons texis, preserve a fragment relating the birth and infancy of the hero, which appears 10 represent the source at the root alike of Chrétien and of the German Parzival, but it is onfy a fragment, and so far no more of the porm has been discovered. Chrélien lefi his poem unfinished, and we do not know how he intended to complete the adventures of his hero; hut those writers who undertook the task, Wauchiet de Denain, Gerbert de Montreuil and Manessier, carried it out with such variely of detail, and such a bewildering indifierence to Chrétien's version, that it seems practically certaio that there must have been, previous to Chrétien's work, more than one poen dealing with the same theme. The German poet, Wolfram von Eschenbach, whose Porival in parts closcly agrees with the Pcricenal and who was long beld to be a mere Iranslator of Chrtciena
cifiers videly th the settiog of hisstory, He gives an introduction, in whici the edventures of the father, bere a prance of Anjou, are releted, a conclumon, in which the Swan-Knught, Labengrin, is made Pacaval's son, he represents the inhabitanis of the Gral caste as Templars (Templesen), and makes the Gral itself I stone Finally, he repnoiches Chretien with having told the story amus, whereas Kiot, the Provengla, whose version Woliram was followng hed toid it anght from beginoing to end. It is certain that Gerbert know, and used, an Peropall which, if not Kiot's poem, must have been clowely atun to u t, as he 100 makes the Swan-Knight a descendaat of the Grall hero. The probabahty seems to be that the earliest Perceval-Grail romance was composed at Fescamp, and was coincident with the trassformation, under the suffuance of the SaintSang legend, of the anginally Pagan tallsman known as the Grail into a Christian roluc, and that this romance was more or less at the root of all subsequent versions.
Besides the poerns, we have also two prose Perceval romances, the relative position of which has not yot been setisfactorily determined. The firts is found in two menuscripts only, the so-calied "Didot" (from its original posecsor. M, Firmin-D1dot), now in the Bihliothèqre Nationale, Paris, the other, and much superior text, in the Bihlioteca Estense, Modena. In both cases the romance follows the prose rendering of Borron'z Joseph of Arimathea and Merlim, and precedes a Mort Afturs, thus forming part of a complete cycle. The text shows a curious mingling of sources; the real primitive Parceval story, the Enfances, is omitted, be grows up in his fathor's house and goes to court at his wish. hater, bowever, storios which certainly derive from an early non-Grail tradition are introduced, and there are refarencea which imply a knowledse of the prose Lancelor and of Chxetien's poom. The romance is probably a somewhat late, and not very skilfu, compilation. The other prose romance, the Perlestanes, is decidedly superior in literary form, but here too we have a mingling of ald and new elements. The Enfances tory is omitted, and there are parallels with the German Parzinals with Wauchier de Denain and with Cerbert, while much is peculiar to the Porlesnous itself. It is not improbable that it represents ancee and individual working over of the original Fescamp version, and that in its later shape it wan intended to form, and did at one time form, the Quest section of the cyclic redaction of the Arthorian prose romances, being dislodged from this position by the Galahad Qutte. It is a curious fact that the printed editions always give it in conjunction with this hatter and that the two have also been preserved together in a Welsh manuscript translation. We also possess in one of the socalled Mabinogi a Welsh version of the tale, Pcredur, son of Earcue. This appears to be a free rendering of the adventures found-in Chrétien combinod with incidents draws from Welsh tradition. This was at one time chaimed as the original source of all the Perceval romances, but this theory camot be maintained in face of the fact that the writer gives in one.place what is practically a literal translation of Chrétien's text in a passage which there is strong reason to believe was bonowed by Chrtbien from an earlier poem. In order of time the Peredus probably ranks Latest in the series of Perceval romanper, which, however, does not detract from its interest as a possible representative of genuine Welsh traditions, unknown to other writers.
The value and interest of the Perceval romances stand very high, not slone for their intrinsic merit, though that is con-sidarable-Chrétien' Percenal, though not his best poem, is a tavourable specimen of his work, and von. Eschenbach's Parsival, though leas elegant in style, is by far the most humanly interesting, and at the same time, most deeply spiritual, of the Grail romances-but also for the interest of the subject matter. The Perceval story is an admirable folk-tale, the Grail problem is the most fascinating problem of medieval literature; the two combined form 2 romance of quite unique charm and interest. This bas been practically proved by the extraordinary success which has attended Richard Wagner's dramatic re-telling of the legend in his Parsifal. The immediate source of this
vergen is the poem of Woliram von Bechenbach. though :the Grall, of course, is represented in the form of the Christian relic, not as the jewel talsman of the Paraival, but the psychological reading of the bero's character, the distinctive nole of von Eschenbach's version, bas been adapted by Wagner with marvellous skill, and hus picture of the hero's mental anid spiritual development, from extreme simplicity to the wisdom. born of perfect charity, is most striking and impressive.

BebtroganpHy - There are early printed editions of the Perceal (1530) mend of the Perlesphus (1516 and 1523). The Percreal was edited from the Mons text by Potvin (6 vols., $1866-1881$) ; SyT Percyuelle of Galles, in The Thornion Remances, by Halliwell (1894) for the Camden Society. Parmal' exista in numerous editions: cntical texts have been edited by Lachmann (1891), Martin (1903) and Leitamann (1902-1903). For the gencral reader the most useful text is that of Bartech in Deulsche Classiker des Miltedallers, as it uncludes notes and a glossary. Modern Getman versiona are by Sumrock (very close to the original) and Herta (freer, but with excellent motes and appendices); Eng trana by J L. Weston (1894) The "Didot "Pcrcroal was published by Hucher in vol. i. of Le Sanul Greal (1875-1878); an edition of the Modena text has also been prepared. Peclescous was published by Potvin in vol. i. of his edition of Chréticn's poen. The Wclsh text, with translation, has been edrted by Canoo Wiliams. A fine translation by Dr Sebastian Evans is published in "The Temple Classics," under the title of The High History of the Holy Greil. Percdur will be found in Alfred Nutt's edition of the Mabrnogion (1902). For the critical treatment of the subject see The Lagend of Sur Ferouse (Grtume Library. vol xvii.); Perlewens by Nitmo (1902); Lespods of the Wagner Drame by J. L. Weston.
(J. L. W.)

PRRCEVAL SPENTCER ($1762+1812$), prime minister of England from 1809 to 1812 , second son of John, and earl of Egmont, Fas born in Audley Square, London, on the rat of Nowember 1762. He mas educated at Harrow and at Trinity Collegs Cambsidge, and was called to the bar at Lincoln's Ins.in 1786. A very abie speuch in connexion with a famous forgery case having drawn atteation to his talente, his succoss was from that time rapid, be was coon regarded as the leading pounsel on the Midland circuit, and in 1796 becama a K.C. Entering parliament for Northampion in April of that year, he distinguished himseli hy his speeches in support of the administration. of Pitt. In 2801, on the formation of the Addington administration, he was appointed solicitor-general, and in 1802 be became attorney: general. An ardent opponent of Catholic Emancipation, ha delivered in 1807 a speech on the subject which helped to give the deafblblow to the Grenvile administration, upon which be became chancellor of the exchequet under the duke of Portland, whom in $\mathbf{x} 80 \mathrm{~g}$ he succeeded in the premiership. Notwithmitapding that he had the assistance in the cabinet of no atatesman of the first rank, he succeeded in retaining office till be was shot by a man named Bellingham, a bankrupt with a grievance, who had vainly applied to him for redress, in the lobby of the House of Commons on the Irth of May 1812. - Bellingham was certainly insane, but the plea was set aside and he was hanged. Perceval was a vigorous debater, specially excelling in replies, in which his thoorogh mastery of all the details of his subject gave him a great advantage. He married in 1700 and had six tons and sir daughters; one of the latter married Spancer Horatio Walpole (d. r898), home pecretary, and their epn Sir Spopcer Walpolen the well-known historian, ppblighed an excellent hiograpiyy of Perceval in 1874
See also P. Treherne, Spencer Parceval (1909).
PERCE (through Fr. from Lat, perco, Gr. x Epmp; the last word is connected with reporbs, dark-coloured, spotted), a fresh-water fish (Perca fluciatilis), generally distributed over Euroje, northern Asia and North America, and so well known as to have been selected for the type of an entire family of apinyrayed fishes, the Porcidoe, which is represented in European fresh-waters by several other fishes such as the pope (Acering cernua) and the pike-perch (Lucioperca). It inhabits rivers as well as lakes, but thrives best in waters with a depth of not less than 3 ft.; in large deep lakes it frequently descends to depths of 50 fathoms and miore. It occurs in Scandinavia as far north as the 69th parallel, but does not extend to Iceland or any of the islands north of Europe." In the Alps it ascends to an alititude of 4000 ft .

Thie shape of its body is well proportioned, but many vana tuons occur, some specimens being singularly hagh-backed, others low and long-bodied, sometimes such varistions are local, and Agassez and other naturalists at one time thought it possible to distanguish two species of the common perch of Europe, there are not even sufficient grounds, however, for separating specifcally the North-American form, which in the majority of ichthyological works is described as Perca flovescens. The brilliant and striking colours of the perch render it easily recognizable even at a distance. A rich greenish-hrown with golden reflections covers the back and sides, which are ornamented with five or seven dark cross-bands. A large black spot occupies the

The Perch, Perca finviatilis.
membrane hetween the last spines of the dorsal fin; and the ventral, anal and lower part of the caudal are hright vermilion. In the large peaty lakes of north Germany a beautiful variety is not uncommon, in which the golden tinge prevails, as in 2 goldfish.

The perch is strictly carnivorous and most voracious; it wanders about in small shoals within a certain district, playing sad havoc among small fishes, and is therefore not to be tolerated in waters where valuable fry is cultivated. Perch of thrce pounds in weight are not infrequently caugbt in suitable localities; one of five would now be regarded as an extraordinarily large specimen, although in older works we read of individuals exceeding even that weigbt.

Perch are good, wholesome food, and highly esteemed in inland countries where marine fisb can he obtained only with difficulty. The nearly allied pike-perch is one of the best European foodfishes. The perch is exceedingly prolific; it begins to spawn when tbree years old, in April or in the first half of May, depositing the ova, whicb are united by a viscid matter in lengthened or net-shaped bands, on water plants.

PERCH (through Fr. perche from Lat pertica, a pole or rod used for measurement), a bar or rod used for varlous purposes, as e.g. for a navigation mark in shallow waters, for a support on which a bind may rest, or for a pole which joins the back with the fore part of a wagon or other four-wheeled vehicle. As a term of linear measurement, "perch," also "rod " or "pole," $=164 \mathrm{ft}$. , 5 y yds.; of superficial area, $=30 \frac{1}{2} \mathrm{sq}$. yds.; 160 perches - i acre. As a stonemason's measure, a "perch "m i linear perch in length by if ft . in breadth and I ft . in thickness.
PERCHE, a region of northern France extending over the departments of Orne, Eure, Eure-ct-Loir and Sarthe. Its boundaries are Normandy on the N. and W., Maine on the S.W., Vendomois and Dunois on the S., Beauce on the E. and Thimerais on the N.E. The greater part of the district is occupied by a semicircle of helghts (from 650 to 1000 ft . in height) stretcbing from Moulins-la-Marche on the north-west to Montmirail on the south; within the basin formed thereby the shape of which is defined by the Huisne, an affluent of the Sarthe, lie the chief towns-Mortagne, Nogent-le-Rotrou and Belleme. Stock-raising and dalry farming are flourishing in the Perche, whicb is famous for the production of a breed of large and powerful horses. Cider-apples and pears are grown throughout the district. In the middle ages the Perche constituted a countship of which Corbon, Mortagne and Nogent-le-Rotrou were auccessively the capitals. Under the ancien regime it formed, logether with Maine, a gouvernement of which Mortagne was the capital.

PERCIVALs JAIE GATE ($1795-1856$), Amecican poet, philologist and geologist, was born in Kensington parish, Berlim, Connecticut, on the 1 sth of September 1795 . He graduated
at Yale in $\mathbf{1 8 1 5}$, and in 1820 rook itre degree of M.D., and atarted practice in Berlin. He contribated verse to the Murroscoma a semi-weekly paper, founded 'at New Heven' in 1820. In this first appeared his best-known poem," "The Suicide," which reflects his chronic melancholy, due doubtlcses to ill-bealth; it was begun in 1816 and finished in 1850, alter he had sectually made two attempts on his own Ife. In 1823 Percival hecame an editor of the Cominclicul Herold at New Heven, and in r854 he was in turn an assistant-surgeon and lecturer on chemistry at West Ponnt, and an inspector of recruits at the Chatestown (Mass.) Navy Yard. Ho prepared (1896-1831) an English edition of Malte-Brun's Geography (published 1834), and in 1827-1829 read the manuscrpts and proof-sheets of Websters Dictionery. giving special attention to scientific words. In $1835-$ 1840, with Professor Charles U Shepard ($1804-1886$), be made a geological survey of Connecticat, his Report (1842) showed great learning and much patient research. In 1854 he became state geologist of Wisconsin, and in $\mathbf{1 8} 55$ prblished one volume of his Report, the second he had nearly completed at the time of bis death, on the 22nd of May 1856, at Kazel Green, Wisconsin.
See his Poetical Works (2 vols, Bostoin, r859), with a biographical sketch by L. W. Fitch, and Julins H. Ward, Life and Latiers of James Gates Perctival (Bomion, i866).

PERCY (Pamity). This family, whose deeds are so prominent in English history, was founded by Wiliam de Perci (c. 1030rog6), a follower of the Conqueror, who bestowed on him a great fief in Yorkshire and Lincolnshire. The register of Whithy Abbey, which he founded anew, and in later days the heralds, were reaponsible for the fabulous origin and pedigree of the family whicb are still current. By Emma, daughter of Hugh de Port, a great Hampshint baron, Wiliam was father of several sons, of whom Alan the eldest suoceeded bim. His grandion William was the last of the house in the direct line, and left two sisters and coheiresses, Maud countess of Warwick, who died childless, and Agnes. Agnes de Perci had married Josceline, styled "brother of the queen "" (i.e. Adelizs of Louvain, sacond wife of Henry I.), whose legitimacy has been questioned, and from this marriage descended the second house of Percy (which name it assumed), till its own extinction in the male line five centuries later (1670). By it was brought into the family the great Petworth estate in Sussex, which Joscelhne had obtained from his sister, who was holding Arundel and its fief. His son Richard (c. 1170-1244) and Richard's nephew William (c. z1851245) were among the barons who rose in arms against John, but the latter made his peace with Fenry III., and had his lands restored to him. Richard de Percy twas one of the twentyfive barons appointed to enforce the observance of Magna Carta.
The next important member of the family is William's grandson Henry de Percy (c. 1272-i315), whom Edwand I., after the depow: tion of John Baliol, appointed governor of Galioway, and who was one of his most active agents in the subfugation of Scolland till the success of Robert Bruce drove him out of Turnberry Castle, and made him withdraw into England. He was rewarded by Edward II. witb the barren title of earl of Carrick, declared to be forfeited hy the Scottish hero; and the same king appointed him governor of the castles of Bamburgh and Scarborough. But in $\$ 309$ he himself made his position strong in the north of England by purchasing lands from Anthony Bek, bishop of Durham, among which was the honour of Alnwick, tbe principal seat of the family ever since. The Percies had chiefly resided till then at Spofforth in Yorkshire, and their comexion with Northumberland dates from this acquisition. Henry's son, another Fienry (c. 1299-1352), took part in the league against Edward II.'s favourites the Despensers, was in favour with Edward III., and obtained from Edward Baliol as king of Scotland grants of Lochmaben, Annandale and Moffatdale. which he surrendered to the English king for tbe castle and constableship of Jedburgh, or Jedworth, with the forest of Jedworth and some neighbouring towns. A few ycars later, in fuller recompense of the unprofitable gift of Baliol, a grant of 500 marks a year was made to him out of the oft customs at Betwick:
and in 3346 he did splendid service to his sovereign by deieating and taking prisoner Dayid H., king of Scocland, at the batcle of Neville's Crow.
To him succceded another Henry Percy (1322-1368), a leudal baron like his predecessors, who fought at Crdcy during his father's lifotume and whose brother Thomas Percy (1333-1369) was bishop of Norwich from $1356-1369$. . The next bead of the Percys was Henry's son, another Henry, who was made carl of Northumberland at the coronation of Richard. IL, and whose younger brother Thomas (d. 1403) was created cavl of Worcostor in 1397. The ist earl of Northumberiand, father of the famous Hotspur, Sir Fenry Percy (q.s.), was killed at Bramhain Moor in $\mathbf{1 4 0 5}$, while in arms agaipst the king, and his tilk and estates were forfited. But, by an act no less gracious than politic, Henry V. restored them In 1414 to this ear's grandson, Henry (1394-1455), then a prisoner with the Scots, whone liboration be bad no dificulty in procuring from the duke of Albany during the time of James I.'s caplavity. From that day the loyalty of the family to the house of Lancaster was steadfast and undeviatiog. The and carl died fighting for Ilenry VI at the first battle of St Nibans in 1455; the 3rd, Henry (14352461), was slain on the hloody field of Towton; the 41 h , Henry (1446-i489), was killed in qualling an insurrection in the time of Herry VII. So steang was the Lancastrian feeling of the family that even Sir Ralph Percy ($1425-1 j_{1} f_{4}$), a brother of the carl who fell at Towton, though he had actually submitted once to Edward IV., turned again, and when be fell at Hedqley Moor in April 1464 consoled himself with the thought that be had, as he phrased it, "saved the bird in his bosom."

No wonder, then, that in Edward IV.'s days the titie and estates of the family were-for a time taken away and given to John Neville Lord Montagu, brother of Warwick the king-maker. But the north of England was so accustomed to the rile of the Percys that in a few years Edward saw the pecesaity of restoring them, and did so even at the cost of alicnating stid further the powerful family of the Nevilles, who were. then already on the point of rebellion.

A crisis occurred in the fortunes of the family in the reign of Heary VIII on the death of Hepry, the 6th earl (e. 3 soz8537), whose bsothers Sir Thomas and Sir Ingelram Percy, much against his will, had taken part in the great insurrection called the Pilgrimage of Crace. A thriftless man, of whom it is recorded that in his youth he pras smitten with the charms of Anne Boleyd, but was forced to give her up and marry a woman he did not love, he died childleas, alter selling many of the family estates and granting the others to tho king. The title was forfeited on has denth, and was granted by Edward VI. to the ambitious John Dudley, carl of Warwick, who was attainted in the succeeding reign. It was restored in the days of Queen Mary to Thomes Percy ($1528-1572$). nephew of the 6th earl, Who, being a stanch Roman Catholic, was one of the three earls who took the lead in the celcbrated rising of 1572 , and was beheaded at York. His brother Heary (a. 1532-1585), who succeeded him, was no less, whappy, Involved in Throgmorton's conspiracy, he was committed to the Tower of London. and was suppoaed to hava shot himsclf is bad with a pustol found beside him; hut there wore grave suspicions that it had been discbarged by another hand. His son, Henry ($1567-1632$) the naxt earl, sufared like his two predecessors for his attachment to the religion of his forefathers The Crown lawyers sought in vain to implicate him in the, Gunpowder Plot, but he was imprisoned for fiteen years in the Tower and compelled to pay a fine of 630,000. Algernon ($1602-1668$), the sorr who next succoeded, was a parliamentery general in the Civil War. As length, in 2679 , she male line of this illustrious fanily became extinct, at leant in the direct line, abous five buadred years after the marriage of Agnes de Perci with Josceline of Louvaia.
The representstion of the carlier Percys had paseed awry throurih the deughters of Earl Thomas, beheaded in 5572 , but hle carldom of Northumberland (created anew for him m is57) had pramedito his hrother Henry, under a special remainder, and appears ta hava becoppe extinct in 2670 , Lhough peristently
claimed by Jantes Pency; "the trunk-maker." The bast earfos daughter Elizabeth. a great heiress, was mother by Charlite Seymour, oth duke of Somerset, of Algernon, 7th duke, who was summoned (in error) as Lord Percy in 3722 and created earl of Northumberland in $\mathbf{x 7 4 9}$. On the duke's death in 1750 hils earidom of Northumberland passed under a special remainder, wnth the main inheritance of the Pencys, to Sir Hugh Smithorn, bart. (1715-1786), who had marricd his daughter and eventuad heiress in 1740, and was created duke of Northrmberland and Earl Percy in 1766. From this norriage descends the present ducal house, which bears the name of Percy in lieu of Smithsori, and owns vast estates in Northumberinad.

Alnwick Cualle, their chuef scat, where much state is stith kept up, has boen described by Mr Clark ais "probably the finust crtant example of a Norman castle of this type, having an open keep and a completc enociate." It had been hardly occupied and in docay for some two centuries when the present family succeeded to it, but was restored by them to its former aplendour between 1750 and 1786. "Princely Petworth," bowever, the soat of the later Percys, with their ancient Sursex estates and those in Yorkshire (Leconfield) and Cumbertand (Cockermouth), all passed away in 1750 with the carldom of Egremont and barony of Cockermouth to Charles Wyadham, nephew of the ftb duke of Somerset, and these estates are now held hy Lord Leconfield, The actual mepresentation in blood of the later Percys (i.e. from $\mathbf{2 5 7 3}$) passed in 1865, on the death of the 4th duke, to the dukea of Atholl, who in virtue of it are Lords Percy, under the writ of 1722 , the oldest of the family tilles now. remaiming. The ancient Loridon residence of the Percys, Northumberiand Hovee, Charing Cross, was removed to make way for Northumberland Avenve. Above it stood the Percy crest, a (blue) lion with atiflly extended tail; but the famous badge of the house was the white crescent or half moon-" the ERaff. Moone shining all goe faire" of "the Northern Rising "balladwith a pair of manacles. Thelr coat of arms was a blue lion rampart on a yellow ground-" Jaune o un bleu lyon rampart" of the Carinverock roll, stated, but wrongly, to have been darived from the dukes of Louvain and Brabant. With it they quartered the "Luces" coat of the Lucys of Cockermouth after succeading to their estates, whence the lines in The Baute of Oturbourne:-

The Lucetts and the Crtasaunts both.
 The Skotts fought them agayne."

See E. B. De Fonblanque, Amals of the Howne of Porgy (8887), and G. Brenan, Hislory of the House of Percy (edited by W. A. Lundsay, 1902), both somewhat adulatory and needing critical revision; Take, Bistory of Almoick ((1866); Hartehorne's paper on the Percys and treis Casfer in the Nempaule volume of the Archoon logreal Yustitutr (1852); E. A Freeman "The Percy Cantes " (1875) in Englash Tomens and Districts, G. T. Clark, Ifediepal Military Architeclure (1884); G. E. C(okayne), Complete Pcerage (1895), vol. vi.; Bishop Percy, Nonimmberland Howsehold Book. See alto the articto Nordhwinbertand, Earls and Dwhes of. (J. Ga.i J. H. R.)
 of Hemry, ist eard of Northumberland, was born on the zoth of March x364. He naw metive service when he wis fourteen at the siege of Berwick. Six yemen later he was associated with has father in the wardenship of the eastern march of Scotiand, and his zeal in boxder warfare won the name of Hotspur for ham.trom his opposients. In 1386 he was sent to Calais, and ruched French territory, but was shortly afterwarde recalled to defend England against a naval attack by France. In popular story and ballad he is known as one of the heroes of Otcerburn or Chevy Chase, which is the subject of one of tha most atirring recitals of Froiasart. In the sinmmer of 1388 the Scots invaded Fangland by way of Cerlisle, sending a small body unden the earls of Douglas, Mar and Morsy to invade Northume beriand. The earl of Northumberiand remained at Alowick, but sent his sons Sir Henry and Sir Ralph against the enemy. In band-to-hand fighting before the walls of Newcastle, Douglas is said ta have won Sir Henry's pennon, which be swore to fix upon the walls of Dalkeith. The Scots then retreated to Otterbum, where Percy, who was bent on recovering his pennon, attacked them on a five August cvening in 13\%8. Douglai was.
siain in the battle, though not; es is stated by Walsinghem, by Percy's hand: Henry Percy was captured by Sir John Montgomery, and his brother Ralph by Sir John Maxwell. Hotepur was seleased on the payment of a beavy ransom, to which Bichard II, contributed $£ 3000$, and in the autumn his term as warden of Carliske and the West March was ertended to five years. In 1399 together with his father he joined Heary of Lancastes. Henry IV. grave the charge of the West March to Northumberland, while Henry Percy received the eastles of Bamburgh, Roxburgh and Berwick, and the wardenship of the East March, with a salary of $\{3000$ in peace time and $\{12,000$ in war. During the first year of Henry's reign Hotspur further mas appointed justiciar of North Walcs and constable of the caslles of Chester, Flint, Convay, Denbigh and Carnarvon. Henry also gave him a grant of the iniand of Anglescy, with the castle of Beaumaris. Willimm and Rees ap Tudor captured Conwray Caotle on the 1st of April 140I, and Percy in company with the prince of Wales set ont to recover the place, Percy providing the funds. In May he reported to the king the pacification of Merioneth and Carnarvon, and before the end of the month Conway was surrendered to him. Meanwhile be wrote demanding arrears of pay, with the threat of resignation if the money were not forthcoming, but the king intimated that the loss of Conway had been tue to his negiigence, and only sent part of the raoney. He had the earbe difficulty in obtrining money for his northern charge that he had experienced in Weles. 1 Anglesey was taken from bim, and be was deprived of Roxburgh Casthe in favour of his rival, the ear of Westmorland. The Soots egain invaded England in the autumn of 1403 , headed by the earl of Douglas and Murdoch Stewart, son of the duke of Albany. Northumberiand and Hotspur barred their way at Millield, mear Wooler, and the Scots were compelled to fight at Humbledon, or Homildon Hill, on the 14th of September. The English archers were provided with a good target in the masses of the Scottish spearmen, and Hotspur was restrained from charging by his ally, George Dunbar, ead of March. The Scotcish army was almost destroyed, while the English loss is said to have been five men. Disputes with the king aroseover the dimposal of the Scottish prisoners, Percy insisting on his right to hold Douglas as his personal prisoner, and be was summoned to court to explain. It is related that when he arrived Hemry asked for Douglas, and Hotspur demanded in return that his brother-in-law, Edmund Mortimer, should be allowed to ransom himself from Owen Glendower, with whom he was a prisoner. High words followed, in the course ol which Henry called Percy a traitor, struck him on the face, and drew his emord on him. Percy is said to have answered this defiance with the words, "Not here, but on the field." This was late In I402, and in 1403 Hotspur issued a proclamation in Cheshire stating that Richard II. was alive, and summoning the inhabitants to his standard. He made common cause with his prisoner Douglas, and marched south to join forces with Glendower, who was mow reconciled with Mortimer. He was reinforced by his unete Thomas, earl of Worcester, who, although steward to the household of the prince of Wales, joined his family in rebellion. The mythical Richard II. was heand of no more, and Percy pasda himsetf the champion of the young earl of March. When be arrived at the Castle Foregate, Shrewsbury, early on the arst of Juty, and demanded provisions, he found the king's forces had arrived before him. He retired in the direction of Whitchutch, and awaited the enemy about $3 \frac{\mathrm{~m}}{\mathrm{~m}}$. from Shrewshary. Aitec a long partey, in which a truce of two days was even said to have been agreed on, tho Scottish earl of March, fighting on the royal side, forced on the battic in the afternoon, the royal right being commanded hy the ptince of
${ }^{1}$ The disentisfaction of the Percys seeme to have been chicfly due to the money question. Sir J. H. Ramsay (Lewcaster end York) estimates that in the four years from 1399 to 1403 they had received from the king the sum of $\mathbf{1 4 1 , 7 5 0 \text { . Which represented a }}$ very large capital in the 14 th century, and they had also received considerable gramts of land. King. Henry IV was about $t 0$ manch morth hiruself to look into the real relations between the Percys and the Scots, whea on the 6th of July 1403 Heary Percy was in opea rebellion.

Wales. Hotupur was killed, the eerle of Bougins had Worcenter. Sir Richard Vensbles of Kinderton, and Sir Richand Vemom were captured, and the rebel army dispersed. Worcenter, Venables and Vernon were esecuted the nert day. Pency's body was buried at Whitchureb, but was disfaterred two days latur to be exhibited in Shrewsbury. The head was ent ofr, and fixed on one of the gates of York.

See Northumberland, Eakls and Duges or; and Pbect: (Pamily). Aso Chrowique de la trolson ef movt ic Richanil II.
 Richard II., ed. Joko Webb, in Archaelogia (xx, 182A)I and Adam of Usk's Chronicon, ${ }^{1377-1404}$ ed. E. M. Thompeon (1876); the authorities are cited In detad in J. H. Wylie's Eneland under Ifenry IV. (1884-1890), and Sir J. H. Ramsey's Lomeastot and Yoth (Oxford, I892): Holinshed's Chrowick wee the chief source of Shaicespearo's accoust of Hoteppur in Hawry IV.

FSRCY, THOMAS (c. 1560-1605), one of the Cimpowder Plot conspirators, was a son of Edward Percy of Beverley, who was grandson of Henry Percy, 4th ear of Northumberland. Though brought up a Protestant, he early became well-affected to the Roman Catholics and finally an adherent. He entered the service of his cousin, Henry Percy, gth earl of Northumberland, and was appointed by him constable of Alnwick Castle and agent for his northern estates, in which capacity be showed himself tyrannical and extortionate. In 1602 he was sent by Northumberland to James in Scotland to secure toleration for the Roman Catholics and returned announcing favourable promises from the king, the extent of which he probably greatly exaggerated; and when James, after his succession to the English throne, did not immediately abrogate the penal laws, Percy, although he had accepted the court appointment of gentleman pensioner, professed himself highly indignant and indulged himself in thoughts of revenge. Some time in May 1603 Percy angrily declared his intention to Catesby of killing the king, and in April 1604 he met Catesby with John Wright, Thomas Winter and Guy Fawkes, and was then initiated into Catesby's gunpowier plot, which met with his zealous approval and support. To Percy was allotted the special duty after the explosion of seizing the infant prince Charies and riding off with him on his saddle to Warwickshire. All the preparations being complete, Percy went to Alnwick in October and collected f 3000 of the earl of Nort humberiand's rents which he intended using in furtherance of the plot, retturning to London on the ist of November. Meanwhile the plot had been revealed through the letter to Lord Monteagle on the 26th of Oclober, and it was Percy's insistence at the last meeting of the conspirators on the 3rd that decided them not to fy but to hazard the attempt. On the news of Guy Fawkes's arrest, Percy with the rest of the conspirators, except Tresham, fied on horseback, taking refuge ultimately at Holbeche, near Stourbridge', in Staffordshire, where on the 8 th of November, during the attack of the sheriff's men upon the house, he was struck down hy a bullet, fighting back to back with Catesby, and died two days tater. Percy married a sister of the conspirator John Wright and lelt a son Robert and two daughters, one of whom is said to have married Robert, the son of Catesby.

PTERCY, THOTIAS ($\mathrm{Y}^{299-1811 \text {), bishop of Dromore, editor }}$ of the Parcy Reliques, was born at Bridgnorth on the 1 tht of April 1729. His father, Arthur Lowe Percy, a grocer, was of sufficient means to send his son to Christ Church, Oriord, in 1746. He graduated in 1750 and proceeded M.A. In 1753. In the latter year he was appointed te the vicarage of Easton Maudit, Northamptonshire, and three years later was instituted to the rectory of Wilby in the same county, benefices which he retained until 1782. In 1759 he married Anne, daughter of Barton Gutterridge. At Easton 'Mandit most of the literary work for which he is now remembered-including the Reliques-was completed. When his name became famous he was made domestic chaplain to the duke and duchess of Northumberiand, and was tertipted into the belief that he belonged to the illustriovs house of Percy. Through his patron's influence he became dean of Carliske in i 778 and bishop of Dromore in Ireland in $17 \mathbf{B}_{2}$. His wifd dled before hifi in 1806; the good bishop, Blind but otherwise in
acond beally, Iived until the zoth of September 38ir. Both were buried in the transept which Percy added to Dromoro Cathedral.
Dr Percy's first work was a transiation from a Portoguese manuscript of a Chinese story, published in 1761. Two years later he published Five Pieces of Rumic Poetry, trandeled from the falandic. In 1763 he edited the earl of Surrey's pocms with an easay on eariy blank verse, tranatated the Song of Solomon, and published a key to the New Testament. His Northern Antiquities (1770) is a translation from the French of Paul Heari Mallet. His reprint at The Houschold Book of the Earl of Northmonberlond in $15 r^{2}$ is of the greatest value for the illustrations of domestic life in England at that period. But these works ase of little estimation when compared with the Redigues of Ancient English Poefry (if65). This was based on ans old manuscript collection of poetry, reacued by Percy in Humphrey Pitt's house at Shínal, Shropehira, from the hands of the bousemaid who was about to light the fire with it. The manuscript was edited in its complete form by J. W. Hales and F. J. Furnivall in 2867-1868.

See A. C. C. Gammen, Pency: Prolats and Poat (1908). The Reliques has been edited by yarious hands, notably by H. B. Wheatley (1876). The fourth edition was by Percy's nephew. Thomas Percy ($1768-1800$), himself a writer of verse.
PERDICCAS, the name of three kings of Macedonia, who reigned respectively c. 700 B.c., c. 454-413 B.C., and $364-359$ B.C., and of one of Alexander the Great's generals, son of Orontes, a descendan:t of the independent princes of the province of Orestis. The last named distinguished himself at the conquest of Thebes (J3S 8.C.), and held an important command in the Indian campaigns of Alexander. In the settlement made after Alexander's death (323) it was finally agreed that Philip Arrhidaeus, an insane son of the great Philip, and Roxana's unborn child (if a son) should be recognized as joint kings, Perdiccas being appointed, according to one account, guardian and regent according to another, chiliarch under Craterus. He soon showed bimself intolerant of any rivals, and acting in the name of the two kings (for Roxana gave hirth to a son, Alexander IV.) sought to hold the empire together under his own hand. His most loyal supporter was Eumenes, governor of Cappadocin and Paphlagonia. These provinces had not yet been conquered by the Macedonians, and Anligonus (governor of Phrygia, Lycia and Pamphylia) refused to undertake the task at the command of Perdiccas. Having been summoned to the royal presence to stand his trial for disobedience, Ancigonus fled to Europe and entered into alliance with Antipater, Craterus and Ptolemy, the son of Lagus. Perdiccas, leaving the war in Asia Minor to Eumenes, marched to attack Ptolemy in Egypt. He reached Pelusium, hut failed to cross the Nile. A mutiny broke out amongst the troops, disheartened by failure and exasperated by his severity, and Perdiccas was assassinated by some of his officers (321).
(E, R.B.)
See Mactidontan Emping,
PEREDA, JOSE MARIA DE ($1833-1000$), one of the most distinguished of modern Spanish novelists, was borm at Polanco near Santander on the 6th of February 1833. He was educated at the Instituto Cintabro of Sentander, whence he went in 1852 to Madrid, where he atudied with the vague purpose of entering the artillery corps. Abandoning this devigp after three years' trial, he returned home and began his piterary carear by contributing articles to a local journal, Lo Abcja moneaiteso in $\mathrm{I}_{5} \mathrm{~s}_{\mathrm{g}}$. He also wrote much in a weekly paper, El Tto Cayetin, and in 1864 he collected his powerful realistic sketches of local life and manners under the tille of Esconas moniaflesas. Pereda fought against the revolution of 1868 in El Tio Coyelan, writing the nowspaper almost single-handed. In 1872 he was elected as the Carlist deputy for Cabneraiga. In this same year he published a second series of Escenar monlathesas under the titie of Tipas y paisajes; and in 8876 appeared Bocelas al temple, three tules, in one of which the author describes his disencbanting political experiences. The Tipos trashumantes belongs to the year 2877, as does EV Bmy smello, which was intended as a reply.
to the thesis of Balzac's work, Les Pctices mastres de do via comjugelf. More and more pescimistic as to the political futuro of his country, Pereda took occasion in Don Conzalo Gomedles da la Gonealera (1879) to ridicule the Revolotion as he had seen It at work, and to pour scork upon the mouseavx richcs wha exploited Liberalism for their personal ends. Two novels by his Iriend Pérez Gald6b, Dofs Pepfecto and Gloria, drew fram Pereds a reply, Do Tal pado tal astifla (1880), in which he endesvours to show that tolecance in religious matters is disastrous alike to nations and to individuals. The Esbocas y raspufios (1881) is of lighter material, and is less attractive than El Sabor, de la Tierruca (1882), a striking piece of landscape which woa. immediate appreciation. New ground was broken in Pedro Senches (1883), where Pereda leaves his native province to portray the disillusion of a sincere enthusiast who bas plunged into the political life of the capital Pereda's masterpiece is Sovilena (1884), a vigorous rendering of marine life by an artist who perceives and admires the daily heroisms of his fisher-folk It has often been alleged against the author that he confines himself to provincial life, to lowly personages and to unrefined. subjects, and no doubt an anxiety to clear himself from this absurd repronch led him to attempt a description of society at the capital in La Momalioss (1888), which is certainly the least inleresting of his performances. In La Puchera (2889) he returned to the marine subjects which he koew and loved best. Agein, in Peinas arriba (i89s), the loye of comatry life is manifested in the masterly contrast between the healt by, moral labour of the felds and the corrupt, squalid life of cities. Pereda's fame was now established; the statutes of the Spanish Academy, which require members to reside at Bladrid, were suspended in his favour (1806). But his literary carcer was over. The tragic.death of his eldast son, the disastrous campaign in Cuba and the Philippines, darkened his closing years, and his heath failed lang before his death at Polanco on the 1st of March 1906.

Pereds belongs to the native realistic school of Spain, which. founded by the unknown author of Lazarillo de Tormes, was continued by Metoo Alemán, Cervantes, Quevedo, Castillo. Solorzano and many others. With the single exception of Gervantes, bowever, the picaresque writers are almost entirely wanting in the spint of generous sympathy and tenderness which eomstitutet a great part of Peroda's charm. His realism is purely Spanish, as remote from Zola's moroseness as from the graceful seatimentality of Pierre Loti. Few. ngth-century writen possessed the virile temperament of Pareds, and, with the aingle exception of Tolstoy, pone kept a pooral end more stadily in view. This didactic tendeary unquestionably injures his effects. Moreover, his grim catire occasionally degenerates into somewhat truculent caricature, and the excessive upe of dialect and technical terms (which caused him to supply Sotileas with a brief vocabulary) is a grave artistic blemish. But he saw, knew, understood character; he created not onaly types, but tiving personages, such as Andrés, Cleto and Muergo in Sotilata, Pedro Juan and Pilara in Lo Packenc; and he personified the tumult and calm of the sea. with more power than Victor Hugo displayed in Les Trasailleiurs de la mer. His descriptive powers were of the highest order, and his atyle, pure of all affectations and ambellishments, is of aimgular force and suppleness. With all his limitations, be was as original a genius as Spain produced during the sgth centary.

> (I.F.K.)

PRRE DAVID'S DEERn the mi-lou of the Chinese, an aberrant and strangely mula-like deer (q o.), the first evidence of whose existence was made known is Europe by the Abbé (then Père) David, who in 1865 obtsined the skin of a specimen from the. herd kept at that time in the imperial park at Pekip. This skin, with the akull and antlers, was sent to 「aris, where it was described in 1866 by Professor Milne-Edwards. In lacking a hrowtine, and dividing in a resular fork-like manner some distance above the burr, the lerge and cylindrical antlers of this species conform to the general structural type characteristic of the, American deer. The crant prong of the main fork, howevere
curves somewhat forward and agnin divides at least once; while the hind prong is of great length undivided, and directed back. wards in a maner found in no other deer. As regards general form, the most distinctive feature is the great relative length of the tail, which reaches the hocks, and is donkey-like rather than deer-like in form. The head is long and narrow, with a prominent ridge for the support of the antlers, moderate-sized ears, and a narrow and pointed muzale. A giand and tuft are present on the skin of the outer side of the upper part of the hind cannon-bone; but, unlike American deer, there is no gland on the inner side of the hock. Another leature by which this species differs Irom the American deer is the conformation of the bones of the lower part of the fore-leg, which have the same structure as in the red deer group. The coat is of moderate length, but the hair on the neck and throat of the old stags is clongated to form a mane and fringe. Although new-born fawns are spolted, the adults are in the main uniformily coloured; the general tint of the cont al all seasons being reddish tawny with a more or less marked tendency to grey. It has been noticed at Woburn Abbey that the antlers are shed and replaced twice a year.

The true home of this deer has never been ascertained, and probably never will be; all the few known specimens now living being kept in confinement-the great majority in the duke of Bediord's park at Wobum, Bediordshire.
(R. L.")

PEREGRINUS PROTEUS (2nd cent. a.d.), Cynic philosopher, of Parium in Mysia. At an early age he was suspected of parricide, and was obliged to leave his native place. During his wanderings he reached Palestine, where he ingratiated himself with the Christian community, and became its virtual head. His faratical seal and craving for notoriety led to his imprisonment, but the governor of Syria let him go free, to prevent his posing as a martyr. He then returned to Parium to clamm his paternal inheritance, but finding that the circumstances of bis father's death were not yet forgoticn, he publicly surrendered all claims to the property in favour of the municipality. He resumed his wandering life, at first assisted by the Chnstiens, but having been detected profaning the rites of the Church, be was excommunicated. During a visit to Egypl he made the acquaintance of the famous Cymic Agathohulus and jomed the seet. Meeting with little encouragement, he made his way to Rome, whence he was expelied for insulting the emperor Antorinus Pius. Crossing to Greece, he finally took up his abode at Athens. Here he devoted himself to the study and teaching of philosophy, and obtained a considerable number of pupils, amongst them Aulus Gcllius, who speaks of him in very favourabe terms. But, having given offence by his attacks on Herodes Acticus aad 6nding his popularity diminishing, he determined to create a sensation. He announced his intention of immolating Himself on a functal pyre at the celebration of the Olympian games in 165 , and actually carried it out. Lucian, who was present, has given a lull description of the event.
C. M. Wieland's Geltrume Geschuckte des Phulasophen Pereqrinus Protews (Eng. trans, 1796) is an attempt to rehabilitate his character. See also Lucian. De merte Percgrins, Aulus Gellius xii. 11: Ammianus hlarcelfinus xxix., Philostratus, Vit. Soph. ii. 1. 33 : J. Bernays, Lucian und due Kymuker (1875). E. Zeller, "i Alexander und Peregrinus," in his Vortrage und Abhamdlungen, ii. (1877).
pereire [Pereirn], alacobeo rodriguez (17ys1780), one of the inventors of deaf-mute language, a member of a Spamish-Jewish famly, was born at Estremadura, Span, on the with of April 1715 . At the age of eighteen he entered a business at Bordeaux. Here he fell in love with a young girl who had been dumb from birth, and henceforth devoted humself to discover a method of imparting speecb to deaf-mutes. His first subject was Aaron Baumann, a co-religionist, whom he caught to cnunciate the letters of the alphabet, and to articulate certain ordinary phrases. He next devised a sign alphabet for the use of one band only, and in $\mathbf{1 4 4}$ he brought his second pupil before the Paris Academy of Sciences, the members of which were astonished at the results be had accomplashed. In 1759 Pereire was made a member of the Royal Society of Iondon. He died at Paris on the isth of September 1780.

FEREROP, a town of Russta, in the government of Taundr; 60 m. S.E. of Kherson, on the ist hrnus which connects the Crimed with the Continent, and commanding the once defensive ditch and dike which cross Irom the Black Sen to the Sivash (putrid) lagoon. Pop. about 5000. It was formeny an important place, with a great transit tride in salt, obtained from sale lakes in the immediate nerghborrhood. Since the opening of the railway' route from Kharkov to Sumferopol: in the Crime Perekop has greatly decined. In ameient times the isthmus was crossed (about $1 \frac{1}{2} \mathrm{~m}$. south of the present town) by a ditch which gave the name of Taphros to a Greek setulement. This line of defence having fallen into decay, a fort waserected and a new ditch and dike constracted in the 1 sth century by the Tatar khan of the Crimen, Mengli Ghirai, and by his son and successor Sahib Chirai. The fort, known as Kapu or Or-Kapu, became the nucleus of the town. In the middie ages Perelop was known as Tualh. In 1736 tt was eaptured by the Russians under Mitmnich, and again in 1938 ander Lascy (Licy), who blew up the for and destroyed a great part' of the dike. In 1754 the fort was rebuilt by Krim Ghrei; but the Greek and Armenian Inhiabitants of Perekop formed a new settlement at Armyanskiy Bazar (Armenian Market), 3 m. Garther south Captured by the Russians in 177t, the town passed into Russian posscssion with the rest of the Crimea in 1783.
PEREMPTORY, an adjective adapted from the Roman law term percmptorium edictum, peremplotia execplio, a decree or plea which put an end to or quashed (Lat. perimere, to destroy) an action, hence decisive, final. A similar use is found in English lav in "peremptory challenge." a challenge to a Jury allowed to a prisoner without cause shown, or "peremptory mandamus," an absolute command. The matural repugnance to a fnal order has given this word in its ordinary wage a sense of objectionable and intoterant emphasis.
PEREYASLAVL a town of Russia, in the government of Poltava, 26 m . S.E. of the city of Ktev, at the confluence of the Trubezh and the Alta, which reach the Dnieper 5 m . lower down at the town's port, the village of Andrushi. Pop. 14,609. Besides the town proper there are three conslderahle suburbs. Though founded in 993 by Vladimir the Great of Bfoscow in memory of his signal success over the Turkish Pechenegs, Percyashal has now few remains of antiquity. The town has a trade in grain, silt, cattle and horses, and some manufactures -tallow, wax, tobacco, candles and sboes.
From rost Percyaslavl was the chief eown of a separate. principality. As a southern outpost it often figures in the 11 th, tith and 13 th centurtes, and was plundered by the Mtongols in 1239. In laser times it was one of the centres of the Cossack movement; and in 1628 the neighbourhood of the town was the scene of the extermination of the Polish farces known as "Tara's Night." It was by the Treaty of Pertyaslavi that in 1654 the Cossack chieftain Bogtan Chmielnicki acknowiedged the supremacy of Tsar Alexas of Russia.

PRREYASLAVL (called Zalyeskiy, or "Beyond the Forest," to distinguish it from the older town in Poltave after which it was named), one of the oldest and most inferesting cities in middle Russia, situated in the governmert of Vladimir, 45 m . N.E. of Moscow on the road to Yaroskavl, and on both banks of the Trubech neart its entrance into Lake Pleshchteva. Pop. 8662. Pereyaslavl was formerly remarkable for the number and importance of its ecelesiastical foundations. Amons those still standing are the 12 th-century cathedral, with ancient rall-paintings and the graves of Demetrius, son of Alexandet Nevsky, and otber princes, and a church founded by Eudoria (Euphrosyne), wife of Demetrius Donskoi, in the close of the 14 th century. It is by its extensive coition manufactures that Pereyashal is now best known. The fisheries in the lake (20 m .89 . in extent and 275 ft . deep) hiave long been of great valuc.
Founded in irga by Yuryi Dolgoruki. prince of Suadal, Pereyaslavt soon began to play a considerable part in the history of the country. From rios im r 302 it had princest of fis oma; and the princes of Moscow, to whom it was at the hatier dote
 in the 14t t century) as paft of their patrimony throughout the 15 th and 16 h centuries. Lake Pleabchbevo was the scene of Peter the Gratis firs attempte (1691) at creatiog a fleet.
PERRER, AMTONIO (c. ISco-26is), for some years the favourite minister of Philip ILL of Spain add afterwands for many more the object of his umretenciang bostility, was by birth an Aragonesa His reputed father, Gonzado Penes, an ecclesiastic, has some place in history as having beean secretary bocts to Chades Vi and to Philip II., add in liventure as auzhor of a Spanish translation of the Odyssy (Lo Ulyyee de Homero, Antwerp, 1556). Antonio Peres, who was legitimated by an imperial diploma iscued at Valadolid in Ista, was, bowever, believed by many to be in reality the won of Philip's miniteter, Ruy Gomez de Silva, priace of Eboli, wo whom, on the complecion of a liberal education at home and abroad, he appean at least to have owed his arst introduction to a diplomatic career. In ig6y be bocame one of the cecretaries of state, rocating also about the sume time the locrative appotatement of proconotary of Sicily, and in 1573 the death of Ruy Cornes himself made room for Peres's promotion to be heed of the "despacho universal," or private bureau, from which Philip attempied to govern by assiduous correppondence the affairs of his vast dominions. Another of the king's secretaries at this.time, though in a less confidential relation, was a friend and contemporary of Pares, mimmod Jean de Escovedo, who, however, after the fill of Tunis in 1574, whs sent off to supersede Juni de Soto as secretary and adviser of Don John of Austris, thus leavtng Pares without a rival. Some time after Don John's appointment to the governorship of the Nethertands Perezs accidentaly becune cogosisumt of his inconveniently embitious "empresa de Ingiaterra," in which he was to rescue Mary Queen of Scots; marry her, and so moend the throne of England. The next step night evea be againat Spain itself. This secret scheme the faithfol secsutary at osce crinied to Philip, who characteristically resolvod to meet it by quicely removing his brother's sider and abettor. With the king's full cognisance, secordingly, Peres, ster several unsuccemsuil attempts to poison Escovode, surceoded in procuriag his assasination in a street of Madrld oo the 313t of Miarch 1578. The immediate effect was to raise Peres htgher than ever in the royal confidence and favour, but, wary though the socretary bad been, be had not succeeded in obliterating all trace of his connexion with the crime, and very soon a prosecution was set on foos by the representatives of the murdered man. For a time Philip was botb willing and able to protect his mocomplice, but utimately he appears to have listened to those who, whecher truly or falsely, were continually sugserting that Perea had had motives of his own, arising out of his relations wilh the priacese of Eboll, for compassing the essessination of Don John's secrestary; be this as it may, from trying to screen Pester the hing came to be the secret finstigator of thost who songht his rain. The process, as such mateers ofton have boon in Spain, was a slow one, and it was not until 1 g89 that Peroz, sfter move than one arrest and imprisonment ou a varity of chargen, seemed on the eve of being convietod and condemined as the murderer of Escovedo. At this juneture he snocoeded in making his escape from prison in Cestile into Aragon, wbere, under the ancieat "fueros" of the kingdom be could ciaim a puhbic trial in open court, and so bring into requishion the docminentary evidence be possessed of the king's complidty in the deed. This did not suit Phillp, who, although he instituted a process in tho mupreme tribumal of Aragon, spectily abandoned it and caused Peres to be attacked from another side, the charge of heresy being now preferred, arising out of certain rechless and even blasphe${ }^{1}$ On the other hand it is megested that this story of his being the sun of Gomet was ouly circulaud by Ray Gomeris wife, Aas de Mendora, af a refutation of the possibility of a supposed amour between ber and Perez. It is contended by Mignet that this Intrigue between het and Perez was known to Escovedo, and that this accounts for the part played by Peraxi in Excovedo's murder, because Ana hed aliso been Philipit miatoen, and Eecovedo might have made mischief between Philip. and Peres. Major Hume sppears to combine the latter theory with Philip's. political objection zo Escovedo.
thous expremions Peres had used in commecion witb his troubles in Cestile. But all atempts to remove the accused from the civil prison in Saragossa to that of the Inquisition tassed popular tumults, which in the end led to Perez's escape across the Pyrenees, but urfortunately also furnished Philup with a pretext for sending an army into Asagon and suppressing the ancient "fuesos" allogether (1591). From the court of Catherine de Bourbon, at Pau, where he was well received, Perez pasped to that of Heory IV. of France, and both there and in England his talents and diplomatic experience, as well as his well-grounded enoity to Philip, secured him much popularity. While in England he became the "intimate coach-companion and bedcompanion " of Francis Bacon, and was also much in the society of the earl of Essex. The peace of Vervins in 1598 greatly reduced hia apparent importance abroad, and Perea now tricd to obtain the pardon of Philip [1I., that he might return to his native country. His effoct, bowever, proved vain, and he died in comparative obscurity in Paris on the srd of November 16 c 1.
Perer'i earliest publication was a small quarto. dedicated to the earl of Escex, writsen and apparently printed in England about 1594. entitled Pedaros de hisloria, and professedly published at Leon. A Dutch translation appeared in 1594. and in is98 he published his Relecwomes, including the Memortal did hecho de se caksa, drawn up ia 1590. and ranay of has leeters. Nluch has bern donep by Mignet (Antorio Perez,et Philippe 11 . 1845 ; th ed.. 1874) and by Froude ("An Unsolved Historical Riddle:" Ninelicenth Cent.: 1883) among others. towards the elucidation of various difficult points in Perez's somewhat perplexing story. For the murder of Escovedo, ere Aadrew Lane's discusion of it in his Hislorisal Mysteries (1904); and the Esparioles in ingleses (1903) of Mlajur Martin Hume, who had access to various newly discovered MSS.

PCREY CALDOS, BENTTO ($1845-\therefore$), was borm at Las Palmas, in the Canary Islands, on the 1oth of May 1845. In 1863 he was sent to Madrid to study law, drifted into literature, and was speedily secognized as one of the most promising recruits on the Liberal side. Sbortly after the Revolution of 8868 he abandoned joumalisma, and employed fiction as the vehisle for propagatins advanced opinions His fist novel, La Foutana de ano, was printed in 1811, and later in the same year appeared EI Awdas. The reseption given to these eariy essays encouraged the witier to adopt novel-writing as a profession. He had already determined upon the scheme of his Episodios nocienales, a series which might compare with the Comedic humainc. Old charters, old letters, old newspapers were collected by him with the minutenees of a German archivist; no novelist was ever more thoroughly equipped es regards the details of his period. Trafaiker, the first volume of the Episodias naciowales, appeared in 1879; the remalning books of this furst series aro entitled La Cert de Cardas IV., El 19 de mang y at a de mavo, Bailem; Napoleter en Commarlin, Zarajasa, Ceroma, Codis, Jmar Marlis al Emaprecinda and La Botalla de Arpiles. As the tithes suffice to show, the author's aim was to write the national qpic of the xoth century in prose; and he so completely succeeded that, long before the first series ended in 1881, he took rank among the foremost novelists of his time. A second series of Episediar macionales, beginning with El Eqmijaje del rey Jost and ending with a tenth ivolume, U_{1} Facciaso maky y elgumas frailos menos, was brougbt to a close in 1883, and was, like its predecessor, a momument of industry and eract knowledge, of realism and romantic conception; and he carried on the Episedior macienales into a fourth meries, raising the total of volumes to forty. In fecundity and in the power of creating characters; Ptres Galdos vies with Balzac. Parallel with his immense achievement in historical fiction, Peres. Galdos published a collection of romances. dealing witb contemporary lifs, ins social problems and religious difficulties, Of thene the best known, and perhaps the best, are Dola 'Perfecta (1876); Gloris (1877); Lo Ramilia de Ledo Roch (1878); Marianela (1878); Pornumale 5 Jacima (1887); and Aeged Gmerra (1891). Nor does this exbaust his prodigions activity. Besides adapting seternl of his novels for stage purposes, he mrote original dramas such es La Loca de to casa (I 893), Sen Quindim (i894), Eledre (g 900) and Meriuche (sgon); bul his difisso ermberant gemius
was scarcely accommolated to the convention of theatrical form. Péres Galdós became a member of the Spanish Academy, and was also elected to the Cortes; bat it is solely as a romancer that his name is familiar wherever Spanich is spokea, as a national noveliat of fertile talent, and a most happy humorist who in bis eccentrics and oddities is hardly inferior to Dickens.
(J. F.-K.)

PERFUMERY (Lat. per, through, end fumare, to smoke), the preparation of perfumes, or substances which are pleasing to the sense of smell. Perfumes may be divided into two classes, the first of which includes all primitive or simpleodoriferous bodies derived from the animal or vegetable kingdom, as well as the definite chemical compounds specially manufactured, while the second comprises the various "bonquets" or "melanges" made by bleading two or more of the foregoing in varying proportions-toilet powders, dentifrices, sachets, de. To the former class belong (i) the animal products, ambergris, castor, civet, musk; (2) the essential oils (also called attars), mostly procured by the distillation of the stems, leaves, flowers and other parts of plants; (3) the philicome butters or oils, which are cither solid or liquid fats charged with odours by the processes of inflowering or maceration, (4) the odorifcrous gum-resins or balsams which exude naturally or from wounds in the trunks of various trees and shrubs, such as benzoin, opoponax, Peru, Tolu, storax, myrth; (5) the large number of synthetic perfumes which simulate the odour of the natural scents. The secand ciass contains the endless combination of tinctures sold under fancy names which may or may not afford a clue to their composition, such as "comédie françalse," "eau de senteur," "eau de Cologne," "lavendre ambrée," "blumengcist." In general, they are mixtures of a number of perfurmes dissolved in alcohol. Strictly speaking, most of the perfumes on the market belong to the second class, since, in most cases, they are prepared by blending various natural or artificial odorous principles.

Natural. Perfumes.-The animal perfumes are extremedy Emited in number. Ambergris (q.v.), one of the most important, is secreted by the sperm whale; musk (q.o.), the best known scent of this class, is secreted by the male musk-deer and ot her animals-musk-ox, musk-pat, \&ic.; civet (q r.) in a musky scent named from the animal which secretes it; and castor or castoreum is a somewhat similar secretion of the beaver (g.v.). More important are the scents yielded by flowering plants. As a general rule fragrant flowers flousish in hot climales, but the more deticate perfumes are yieldet by plants having a colder habitat; It must be remembered, however, that some costly periumes are obtained from the plants of Ceylon, the East Indies, Mexico and Peru. In Europe, Grasse, Cannes and Nice are the centres of the natural perfume industry. Cannes is fanous for its rose, acacia, jasmine and neroli oil; Nimes for its thyme, rosemary and lavender; and Nice for ite violets. Citron and orange oil come from Sicily; iris and bergamot from Italy; and roses ane extensively cultivated in Bulgaria, and in European Turkey. England fs unsurpatsed for its lavender and peppermint, which gourish at Mitcham and Hitchin.

The natural sources of the attars or essential oils are the different parts of the plants which yield them-the wood (lign, aloe, santal, cedar), the bark (cinnamon, cascarilla), the leaves (patchouli, hay, thyme), the flowers (rose, lavender, orangeblossom), the fruit (nutmeg, citron), or the seeds (caraway, yimond). Some plants ydeld more than ouc, such as lemon and bergamot. - They are mostly obtained hy distilling that part of the plant in which they are contained with water, or with highpressure or superheated steam; but some lew, as those from the rind of berghmot (from Citrws bergamia), lemon (citron zeste, from C: Limonym), lime (C. Limelfa), by "expression." The outer layer of tho cortex is rasped off from the unripe fruits, the respings placed in a canvas bag, and squeezed in a screw or hydrautic press. The attars so obtained are separated from the admized water by a tap-funnel, and are then filtered. Certain flowers, such as jasmine, iuberose, violet, cassia, aither do not yield their atters by distillation at all, or do it so sparingly es not to edmit of its colloction for commercial purposes; and
sometimes the attir, as in the case of orange (neroli), has at odoar quite different from that of the fresh blossoms. In these cases the odours are secared by the processes of inflowering (enfeurage) or by macertion. Both depend upon the remarkable property which fats and oits posess of abooching odours. Enfleurage consists in laying the leaves or Bowers on plates covered with a hyer of fat. The fowers are renewed evary moming, and when tho fat has safficient odour it is scraped of, melted and strained. Maceration consists in aonking the fowers in heated fat; in due time they are straised off and repleced by Iresh ones, as in the enfleurage proces. The whole of the necessary maltings and beatings of tho perfumed greases are efiected by means of water-baths, whereby the cemperature is kept from rising too high. For the manufacture of perfumes for the handkerchief the greases now known as pomades, butters or philocomes are treated with rectified spirit of wine 60° overproof, i.e. containing as much as 95% of abeolute alcohol by volume, which practically completely abatracts the odour.

The gum-resins and resins have boen employed as perfumes from the earliest times. The more important ane inconse, frankincense and myrit (9.0.). They are largely used in the manufacture of perfumes, both for burning as pastilles, ribbon of Bruges, inceraes, fec., and in tinctunes, to which they impart their characteristic odours, affording, at the same time, a certain frity to other perfumes of a more fleeting nature when mixed with them.
Syalletic Perfmmas.-Under this beading axe included all perfumes in which artificial subatances are odionous ingredients. Although the eardiest perfumes of this class ware introduced in about the middic of the rgth century, the important industry which now prevails is to be reganded as dating from the 'seveaties and 'eighties. Three main lioes of devalopment may be distinguished. (1) the chance discovery of substances which have odours similar to natural perfumen; (a) the elucidation of the composition of the astural acenta, and the chemical constitution of their ingredients, followed by the synthetic preparation of the substances 00 determined; and (3), which may be regarded as connected with (2), the extraction and separation of the essential oils yieded by less valumble plants, and their reblanding to form marketable perfumas.

The first aypthetic parfums was the "eanence of Mirbane" introduced by Collas in about 18so; this substance was the nitro-bensene discovered by E. Mischerlich in 1834- Soon afterwards many esters of the fatty acids simulating the odours of fruits were inlooduced; and in 1888 Baur discovered the " artifical musks," which are derivatives of s-Linitrobenzene. The abova are instances of the first line of progress. The secand line has for early examples the cases of artificial oil of wintergreen which followed Cahour's discovery that the natural oil owed its odour, in the main, to methyl salicylate, and of artificial ail of bitter almonds which followed the preparation of benzaldehyde from benzal chloride in 2868. The synthesis of coumarin, tho odorous principle of hay and woodruff, by Sir W. H. Perkin in 1868; of vanillin, the odonous principle of vanilla, by F. Tiemana and W. Haarmann in 1875; and of ionone, almost identical with the natural irone, the adorous principle of violets, by Tiemann and P. Kruger in 1898, are to be regarded as of the highest importanoe Equally important are the immense strides made in the clucidation of the constitution and synthesen of the terpenes (q, v), a group of compounds which are exceptionally abundast as odocous principles in. the essential oils.

The present state of our knowledge does not permit. 2 strict correlation of odour and chemical constitution. One theory regards odour as due to "osmophores," or odour-producing groups, in much the same way as oolour is amsociated with chromophores. Such osmophores are bydroxyl (OHE), aldehyde (CHO), ketone (CO), ether (.O.), nitrile (CN), nitro (NO_{2}), \& \&c.; we may also notice the isonitrile group (.NG) associated with an unpleasant odour, and the iso-hiocyanate group (-NCS) to which the mustard oils owe their characteristic smell. The samo group, however, is not invariably associated with the same odour, or even any odour at all, as, for instance, in such closely related
comporand as" the members" of 'a "homologous seriea. For example, the lower fatty aldehydes have unpleasant odours, those with ten carbon atoms (and also double linkages, which is itsell may aflect odour) form some of tho most deticete scents, white the higher mombers ere odourtesa. The abounce of odour in the higher members may be possibly associated with the low volatility exhibited by compounds of high molecular weight. Certain osmophores have practically equal effects; for exmmpic, benzaldehyde, nitrobenzene, benvonitrife, and phenyl asoimide have practically identical odours, and among the "artificial musks," a nitro group may be replaced by the azoimido group without the odour being modified. As a general rule, homologues have similar odours, but many axceptions are known. For example the methyl and ethyl etbers of β-naphthal have the odour of neroli; on the other hand, of the esters of anthranilic acid, the methyl has the odour of orange blomoms, the ethyl has a slight odour, and the isobutyl is odourless. The introduc. tion of a methyl group into the benzene ring generally involves litue or no change in odour; but when it (and more especially higher alkyl radicals) is introduced into side chains the odour may be entirely changed. . For example, benzene and its homologues have similar odours; phthalide is odourless, but the isopropyl and butyl phthalides, in which substitution occurs in the side chain, smell of celery. Especially characteristir are the derivatives of phenylacetylene. This hydrocarbon is distinctly unpleasant; on the other hand, para-ethyl and paramethyl phenylacetylene smell of anise. While the triply-linked carboe system is fenerally associated with strong and unpleanant odoars, the doubly linked system gives pleasant ones. Thus the unplessant phenylacetylene, $\mathrm{C}_{4} \mathrm{H}_{5} \cdot \mathrm{C}: \mathrm{CH}$, is contrasted with styrolere, $\mathrm{C}_{\mathbf{3}} \mathrm{H}_{5} \mathrm{CH}: \mathrm{CH}_{5}$, which occurs in storax, and phenylpropiolic aldchyde with cinnamic aldehyde, $\mathrm{C}_{3} \mathrm{H}_{5}-\mathrm{CH}: \mathrm{CH} \cdot \mathrm{CHO}$, which occuss to caccia and cinmamon. The reduction of a double to a single linkage may not destroy odour. Thus bydrocinnamic aldehyde, the reduction product. of cinnamic aldehyde, amells of jasmine and lilac, and melilotin, which occurs in yellow macilot (Melitotus afficinalis), has the same odour (woodruff) as its oxidation product commatio. The orientation of the substituent groups in the benzene nucleus also affects odour. In general, the meta compounds are odourless, while the ortho and para may bave odour. Thus p-methoxyacetophenone has a pleasant odour, the meta compound is odourless, o-aminoacetophenone, o-aminobenzaldehyde, and a-nitrophenol have strong colours, while the meta and para bodies are odourless. Of the three tripitrobenzencs only the symmetrical form gives origin to perfumes.

The concentration and even the solvent has considerablo effect on the odour of a substance Many of the artificial principles-vanillip, heliatnopine, ionone, de-have very different odours in strong and in dilute solution; phenyl acetic acid and β-naphthylamine are odourless when solid, but have disagreeable odours when dissolved. Traces of impurities often have the effect of making odourless or pleasant-smeliing compounds quite intolerable. Acetylene as generated from calcium carbide, and carbon disulphide prepared from its elements are quite intolerable, though when pure they arc, at least, not unpleasent; artificial benzaldehyde must be very carefully purified before it can be used in the preparation of the more delicale scents. In all cases the natural scents are complex mixtures of many ingredients, and a variation in the amount of any one may completely alter the scent. Such mixtures would be dificulb to reproduce ecosomically; the perfomer invmatent with a product baxing practically an identical odour, with or without the natural substance which it is deaigned to competa with.

We now give an account of the artificial scents, principally arranged according to their chemical relations. The folty esters are interesting as providing many of the fruit esserices; in fact, by appropriate blending, any fruit odoor can be reproduced. Their mee, however, is inhibited by the fact that they irritete the reupiratary orpans, producing coughimg and headaches. lyobutyl carbinol acety ester (amyl acetate). (CHH $)_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OC}_{2} \mathrm{CH}_{2}$ forms when in difute alcoholic solution the artificial pear ail: a

-Octyl acetare, $\mathrm{C}_{3} \mathrm{H}_{3}-\mathrm{O}_{2} \mathrm{C}-\mathrm{CH}_{3}$, has the odour of oranien Imomyl propionate, $\mathrm{C}_{4} \mathrm{H}_{11} \cdot \mathrm{O}_{4} \mathrm{C} \cdot \mathrm{C}_{3} \mathrm{H}_{4}$, and echyl-n-butyrate, $\mathrm{C}_{1} \mathrm{H}_{1} \mathrm{O}_{3} \mathrm{C} \cdot \mathrm{C}_{2} \mathrm{H}_{4}$ have the odour of pincapple, the latter constituting the artificial pineapple oil of conmerce. Isoamyl isovalerate, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{C} \cdot \mathrm{C}_{4} \mathrm{H}_{5}$ is the artificial apple oil. Of the farty ketones, methyl nonyl ketone. $\mathrm{CH}_{3}-\mathrm{CO}_{3} \cdot \mathrm{C}_{\mathrm{s}}$, which in the scent of oil of rue, and methylethyl acetone, $\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)$, which has the odour of peppermint, receive commercial application. Of exceptional importance in the chemistry of perfumes are the unsaturated open chain compounds containing at least eight esrbion atoms. These are chemically considered, along with the related cyelic compounds, in the article TERPENEs; here we notice their odourn and occurrence in perfumes. Of the alcotols, A-hinalol occurs in oil of lavender, bergamot, limet and origanum; d-linalol in coriander; citronellol and geraniol in rose, geranium and pelargonium oila. Of the aldehydes, citral or geranial has the odour of lemons; citronellal is the chief constituent of citronella oil. By condensing citrel with acetone and treating the product with dilute sulphuric acid, the valuable violet substitute ionone results. This substance is a hydroaromatic ketone, and closely resembles the natural principle irone. By successive treatment with actic anhydride (to form isopulecol), oxidation to isopulegone, and treatment with baryta citronellal yields the cyclic compoand pulegone. the chief constituent of oil of pennyroyal. The olefinic terpenes are generally convertible into methylheptenone. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}$, which has been synthesized from sodium acetonylacetone and amylene dibromide; this ketone occurs in several essential oils, and has the odour of rue. For the occurrence of cyclic terpenes in the essential oils reference should be made to the table below, which contains the names, sourtes and chief ingredients of the more important essemtial oils. ${ }^{1}$ The terpenes are printed in italics, the aliphatic and benzenold compounds in ordinary type

${ }^{1}$ See J. B. Coben, Organic Chemistry, p. 532 ;or J. Parry, Chemitry of Rurghimes (Igo8),

The chief bensemoid compounds und as perfumes are aldehydea, oxyaldehydes, phenals and phenol ethers. Benzaldehyde has the odour of almonds, cinnamic aldehyde of cinnamon, and cumin aldchyde gives the ndour to cumin oil. Of axyaldehydes alicylaldehyde gives the odour to spiraea oil, and vanillin is the active ingredieot of vanilla (g.s.). Anisaldehyde smells like hawthorm, and is extensively used under the name aubepine for scenting soaps and extracts. Carvacrol and thymol are isomeric methyl propyl phenols; both have the odour of thyme. Of phenol ethers eugenol (allyl guaiacol) has the odour of cloves, and anethole (allyl phenyl methyl ether) is the chiof constituent of anise oil, being chiefly used In the manufacture of liqueurs. Several piperonyl corppounds are of commercial importance. The aldehyde, $\mathrm{CH}_{2} \mathrm{OH}_{2}: \mathrm{C}_{4} \mathrm{H}_{2} \cdot \mathrm{CHO}(1,2,4)$, piperonal, has the odour of helotrope; an allyl derivative, sairole $\mathrm{CH}_{2} \mathrm{KO}_{2}: \mathrm{C}_{4} \mathrm{H}_{2}-\mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{I}, 2,4)$, cccurs in sasealras, while apiole or dimethoxy sairole has the odour of pardey oil. Of other syorthetie perfumes amyl salicylate is used under the names of orchidde or trefol as the basis of many perfumes, in particular of clover scents; methyl anthranilate occurs in the natural neroli and other oils, and hat come into considerable use in the preparation of artiGicial bergamot, neroli, jasmine and other perfumes (the Trolene, Marceol and Amanthol of the Aclien Gesellschafl fir Andin Fabrihelion have this substance as a base); the "artificial musks" are derivatives of s-trinitrobenzene; coumarin is the principle of woodruff; and A-naphthol methyl ether is used for the preparation of artificial neroli.
The Odophone.-The most important element in the perfumer's art is the blending of the odorous principles to form a mixture which gratifies the sense of smell. Experience is the only guide. It is impossible to foretel! the odour of a mixture from the odourn of its components. Septimus Pieste endeavoured to show that a certain scale or gamut existed amongst odours as amongst sounds, taking the sharp smelis to correspond with high notes and the heavy emells with low. He illustrated the idea by classifying some fifty pdours in this manner, making each to correspond with a certain note, one-hal(in each clef, and extending above and below the lines. For example, treble clef note E (4th space) corresponds with Portugal (orange), note D (1st space below clef) with violet note F (4th space above clef) with ambergris. It is readily noticed In practice that ambergris is much sharper in smell (higher) than violet, while Portugal is intermediate. He asserted that properly to constitute bouquet the odours to be taker should correspond in the gamut like the noted of a musical chord-one false note pront the odour as among the music destroying the harmony. Thus on his odophone, antal, geranium, acacia, orange-fower, camphor, corresponding with C (bass and line below), C (bass and space). E (freble 10t line), G (treble and fine), C (treble 3 rd space), constitute the bouquet of chord C.

Other Browches of Perfomery.-As a natural outcome of the development of the perfume industry. scented articles for toilet and other uses are now manufactured in large quantitiea. Soeps. toilet powders, tooth powders, hair-washes, cosmetics generally. and note-paper have provided material on which the perfumer works. For the preparation of seented socps two methods are in use; both start with a besis cither of fine yellow soap (which owes fits odour and colour to the presence of resin), of of curd soap (which is hard, white and odourless, and is prepared without resin). In one process the soap is melted by mperheated stcam, and while still hot and serni-ftuid mixed by means of a stirrer of wood with Iron cross-bar, technically called a "cruteh." with the attars and colouring matter. It is then remeved from the melting pan to a rectangular iron mould or box, the sides of which can be removed by unacrewing the tie-rods which hold them in position; when cold the mass is cut into slabs and bars with a thin brass wire. In the other or cold process the soap is firat cut into chips or shavings by a plane or "chipping machine," then the colouring matters are hdded and thoroughly incorporated by passing the soap between rollers; the tinted soap emerges in a continurus sheet bat litcle thicher than paper. The perfumes are then added, and after standing for about twelve hours the soap is agrain sent through the rolling machine. It is mext transfersed to a bar-forming machine, from which it etnerges as a coitinuous bar almost as hard as wood. Soap thus worked contains less than 10% of water; that prepared by melting contains 20 and even 30% The amount of perfume added depends upen its natare, and amouats usually to about 7 or 8% The fincst soaps are always manufactured by the cold process.

Toilet Pouders are of various sorts. They comsist of rice-starch or wheat-atarch, with powdered orris-root in varying proportions, and with or without the addition of zine oxide, bismuth ooode or French chalk. The constituent powders, after the addition of the perfume, are thoroughty incorporated and mixed by sifting through a fine sieve. Viblet powdes for the nursery thould consist entirely of powdened violet root (Iris florentiva), from the odour of which the powder is named. It is of a yellowish tint, soft and pleasant to the teuch. The white common mo-called "violet powders "consibt of starch scented with bergamot, and are in every sense inferior.

Tooth Powders consist for the most part of mixtures of powdered prio-nopt with procipitated chalk, and some ofther constituent destined to particularise it te to properties os favour, ench as
 The perfume of the contained orris-root is modified. if required, by the addition of a little of some perfume. Toolh Pastes are formed of the came constituents at the powders, and are worked into a paste by the addition of a little boney or slucoes syrup. which aubotances are uaually believed ultimately to heve an injurione - ect on the teeth.

Perfume Sachets consist either of a powder composed of a mixture of vanilla, musk, Tonqua beans, \&c.., one or other predominating as required, contained in an ornamental silk sat; or of some of the formgoing subatances apread upon card or chastoia leather or fianned after being made into a paste with muciluge and a little glyceris When dry the card 80 prepared is daintily covered with variouts partl-coloured silks for sale. Where the ingredients employed in their manufacture are of good guality thete cards, known as ${ }^{10}$ pean d'Espagne" sachets, retain their odour mimpaired for years.

Adulterations,-There is, at ruight be expected, considerable scope for the adulteration of the "matieres premieres "employed in perfumery. Thus, in the case of musk, the "pods" are frequently found to be partially emptied of the grain, which has beem replaced by bide or skin, while the weight hat been increased by the introduction of lead, Ac. Ia other instances the fraud consists in the admixture of refuse grain, from which the odour has been exhausted with spirit, with dried blood, and similar substances, whilst pangency is secured by the addition of aramonium carborate. Attar of rose is diluted with attar of Palmes rasa, vactiety of geranium of only a quarter or a fifth of the value. The main adulterant of all the natural essential oils, however, is castor oil. This is a bland neutral body, practically odourless, and completely moluble in abohol; it therelore prewents all the requitites for the purpose.

Blpliogzaphy.-See generally, J. C. Sawyer, Odonographie, vol. i (t892), vol.it. (1894); G. W. Askinson, Perfumes (Eng. trans. by Isidot Fturst, 1892): S. Piesse, Att of Perfumery (1891); Paul Hubert, Planles a parfances (1909); M. Otto, L'Industric des parfwant (1909). Synthetic perfumes are trented in detait in C. Deite, Mammad of Toike Soap-mahisg (Eng trans by S. L. King 1gos), and in E. J. Parry, Chemistry of the Essential Oils and Arificial Pafumes (and ed., 1908). Reference may also be made to T. Koller, Cosmelics (1902). The standard worke on the etaential oils are given in the article Oals. G. Cohn Die Rinahstoff (1904), treats the chernistry, and Zwanrdemaker, Physiologic des Carnehs (I895), the physiolegy of perfumes. See also the reports and bulletins of Schimmel \& Ca and Rouse Bertrand et Fite.

PBRan (mod. Murlana), an ancient city of Pamphylia, sit wated about 8 m . inland, at the junction of a smah stream (Sari Su) with the Cestrus. It was a centre of native inftuences as contrasted with the Greek, which were predominant in Attalia, and it was a great seat of the worship of "Queen ", Artemis, here represented as a human-headed cone and a purely: Anatolian nature gordess. There Paul and Barnabas began their first mission in Asia Minor (Acts ix. I3). A much frequented route into Phrygia and the Maeander valley began at Perga, and Alexander made it the starting-point of his invasion of inner Asia Minor. Long the metropolis of Pamphylia Secunds, It was superseded in Byzantine times by its port, At talia, which became a metropolis in 1084. The extensive rulns all lie in the plain south of the Acropolis. The walls are well preserved,' but of late Roman or Byzantine reconstruction. The lines of intersecting streets can be easily made out, and there are ruins of two sets of baths, two basilicas and a lorum. But the most notable monument is the theatre, which lies outside the walls on the south-west, near the stadium. This is as perfect as those of Myra and Patara, but larger than either, and yields the palm only to those of Aspendus and Side. Modern Murtana is a large village, long under the dominion of the Dere Bevs of the Telize Oglu family.
See C. Lanckoronsk, Pitles de la Panphytie at de Is Pisidie: vol. i. (18go); Sir W. M. Ramsay. Cherat if the Remen Eimpor (1893).
(D. G. H.)

Pinicalinitoot (Lat. porgamewe, perchment), t technical term used of anything of the texture of perchment, as in zoology of the wing-covers of insects.

PERRANUT, or Pergayus (mod. Bergama), an ancient city. of Teuthrania, a district in Mysia. It is usually named IIfpyupow hy Greck writers, but Ptolemy has the form IIfoyapos. The name, which is related to the German burg, is appropriate to the situation on a lofty ssolated hill in a broad fertile valley, lese than 15 m . from the mouth of the Calcus. According to the belicf of its inhabitants, the town was founded by Arcadian coloniats, led by Telcphus, son of Heracles. Auge, mother af

Telephas, wat prientess of Achens Alea at Tegen, and duustreter of Alews; fleeling from Tegea, she became the wise of Tealibras, the eponymous king of Touthrania, and her eon Teleptron uncceeded him. Atbena Potias was the patrou-goddess of Pergamum, and the legend combines the ethnological record of the cornearion claitned bet ween Arcadia and Pergamum with the usual belief that the bero of the city was son of its guardian deity, or at least of har priestess. Nothing more is recorded of the city till the time of Xenopbon, when it was a small fortified town on the summit of the bill; but it had been striking colmas since 420 n.c. at latest. Its importance began under Lysimachas, Who deposited his treasures; 9000 talents, in this strong fortress under the charge of a eunuch, Philetaerus of Tium. In 183 8.c. Philecserus rebelled, Lysimachus died without being able to put down the revolt, and Pergamum became the capital of a little principality. Partly by clever dipiomacy, partly through elhe eroubles caused by the Gaulish invasion and by the dimensions among the rival kings, Philetaerus contrived to keep on sood terms with his neighbours on all sides ($283-263$ B.C.). His mephew Eumenes (265 -a4x) succeeded him, increased his power, and even delested Antlochus II. of Syria in a pitched battie pear Sardis. His successor Attalus I. (24 -197) won 2 great battle over the Gauls, and ansumed the tithe of king. The otber Greek kings who aimed at power in Asia Minor were his natural enemies, and about 222 reduced Pergamenian power to a very low ebb. On the otber hand, the influence of the Romans was boginning to make itself falt in the East. Attalus prudently connected himseli with them and shared in their contunuous success. Pergamum thus became the capital of a considerable territory and a centre of art and regal magnificence. The wealih of the atate and the king's desire to celebrate his victories by monuments of art led to the rise of the "Pergamesian school" in scupture. The splendour of Pergamum was at. its height under Eumenes II. (197-5 59) He continued true to the Romans during therr wers with Antiochus and Perseus, and his kingdom spread over the greater part of western Asia Minor, including Mysia, Lydia, great part of Phrygis, Ionia and Caria. To celebrate the great achievement of his reign, the defeat of the bafbarian Gauls, be built in the agora a vast alear to Zeus Soter (wee below). He left an infant con, Attajus (III.), and a brother, Attalus II. (Philadelphus), who ruled 150-138, and was succeeded by his nephew, Attalus III. (Philometor). The latter died in $\mathbf{2 3 3}$, and bequeathed his kingdom to tbe Romans, who erected part of it (excluding Great Phrygia, which they gave to Mithradates of Pontus) into a province under the name of Asia. Pergamum continued to rank for two centuries as the capital, and subsequently, with Ephesus and Smyrna, as one of the three great cities of the province; and the devotion of its former kir zas to the Roman cause was continued by its citizens, who erectud on the Acropolis a magnificent temple to Augustus. It was the seat of a conventus, including the cities of the Calcus valley and some of those in the northern part of the Hermus valley. Under the Roman Empire Pergamum was one of the chief seats of the worship of Asclepius "the Saviour "; invalids came from distant parts of the country to ask advice from the god and his priests. The temple and the curative establishment of the god were situated outside the city. Pergamum was the chief centre of the imperial cult under the early empire, and, in W. M. Ramsay's opinion, was for that reason referred to in Rev. ii. 13 at the place of "Satan's throne." It was also an early meal of Christianity, and one of the Seven Churches. The place, re-fortifed by the Byzantines, and still retaining its mame at Bergama, passed into Moslem hands carly in the s4th century. The lower town was rebuilt, and in the 17 th and $\mathbf{2 8 c h}$ centuries became a chief seat of the great Dere Bey family of Kara Osman Oglu (see Manisa), which did not resign it to direct Ottoman control until about 8825 . It is atill an edministrative and commercial centre of importance, baving some 20,000 inhabitants.
Excouctions.-The site of the ancient city has been the acene of extendive excivations promoted by the Betlin museum wince says, and difected first by K. Humann and A Conte. and
arterwinds by W. Dorpield The finst impute to them was gtven in 8873 by the recepcion in Bertin of certain reliefs, extzacted by Humann from the walle of Bergama. These were recognized as probably parts of the Great Altar of Zeus erected by Eumenes II. in 580 s.c. and decorated with a combat of gods and giants, symbolic of the strugeje betwreen the Pergamene Greeks and the Gaulish barbarims. Exceavation at the mouth end of the Acropolis lod to the discovery of the Altar itself and the rest of its surviving reliefs, which, now restoned and mounted in Berlin, form one of the glories of that city. In very high relief and representing furious action, these sculptures are the finest which survive from the Pergamene school, which replaced the repore and breadth of earier schools by excess of emphasis and detail The rummit of the Acropolis is crowded with pubic buildinge, between the market place, which lies at the southern point, and the Roynt Gardens on the north. In the interval are the Zeus altar; the great hexastyle Doric temple of Athena flanked by the palace on the east, by the theatre and its iong terrace on the west, and by a vibrary on the north; and a large Corinthian temple of Trujan. The residentina part of the Greek, and practically all the Roman city lay below the Acropolis on ground now mostly occupped by modern Bergama; but west of the rives Selinus, on riaing ground facing the Acropolis, are to be seen notable remains of a Roman theatre, an amphitheatre and a circus.
See, beside general authorities for Asia Minor, J. Dallaway, Conslaktinophe, \&c. (1797); W. M. Rammay, Letters io the Sevot Churcher (1904); and especially the publication by the Royal Museum of Berlin, Alherhilimer pon Prygamon (1885s sqq.) "Operations a" Pergamon 1906-1907," in Atheyische AILHeil. (roo8), xxxiil. 4 G. Leroux, 'La Pretendue basilique de Pergame in Bull. Corr. Hall. (1909), pp. 238894
(D. G. H.)

PERGOLA (Lat. perguda, a projecting roof, ahed, from perserr, to reach forward, project), a term adopted from the ltalian for an arbour of trellis-work over which are trained creeping plants, vines, \&ci, and especially for a trelli-work covering a path, walk or balcony in a garden.
PERgolesi (or PERcolesz), giovanni battista (ayio 1736), Italian musical composer, was born at Jesi near Ancona on the 3rd of January 1710 , and after atudying music undes local masters until he was sixteen was sent hy a noble patrom to complete his education at Naples, where he became a pupa of Greco, Durante and Feo for composition and of Domenico de Matteis for the violin. His earliest known composition was a sacred drama, La Conversione di S. Guglielmo d'Aqwilania, between the acts of which was given the comic intermezzo n Maestro di musica. These works were performed in 1733, probably by fellow pupils, at the monastery of St Agmello Maggiore. Through the infuence of the prince of Stigliano and other patrons, including the duke of Maddaloni, Pergolesi was commissioned to write an opera for the court theatre, and in the winter of $x 731$ successfully produced La Sallustia, followed in 2732 by Recimero, which was a failure. Both operas had comic intermezzi, but in neither case were they successful. After this disappointment he abandoned the theatre for a time and wrote thirty sonatas for two violins and bass for the prince of Stigliano. He was also invited to compose a mass on the occasion of the earthquake of 173r, and a second mass, also for two choirs and orchestra, is said to have been praised by Leo. In September 1732 he returned to the stage with a comic opera in Neapolitan dialect, Lo Prate inammoralo, which was well received; and in 1733 he produced a serious opera, Il Prigionier, to which the celebrated Serva padrona furnished the intermezzi. There seems, however, no ground for supposing that this work mada any noticeable difference to the composer's already established reputation as a writer of comic opera. About this time (17331734) Pergolesi entered the service of the duke of Maddaloni, and accompanied him to Rome, where he conducted a mass for five voices and orchestra in the church of St Lorenzo in Lucina (May 1734). There is no foundation for the statement that he was appointed maestro di cappella at the Holy House of Loreto; he was; in fact, organist of the royal chapel at Naples in 1735 : The complete failtre of L'Olimpriade at Rome in Janaary 1735

Is aid to have boplon his health, and determined him to abandon the theatre for tho Church; this statement in, however, incompatible with the fact that bis comic opers 16 Flaminio was produced in Naples in September of the mame year with undoubted succeas. His ill health was more probably due to his notorious profigacy. In 1736 he was sent by the duke of Maddalonit to tho Capuchin monettory st Partuoh, the air of the place being onnsidered beneficial to cnses of consumption. Here he is commonly supposed to heve writien the celeheated Slabat Maser; Paisiello; however, stated that this wonk was written soon after he left the Comsersuthrio doi poweri di Gesi Cristo in $\mathbf{1 7 3 9}$. We may at any zate safely, attribute to this period the Scherso fatto as Cappuccivi di Poasudi, a munical jest of a somewhat indecent nature. He died on the 17th of Manch 2736, and was buried in the cathedral of Poezooli.

Pergolesi's posthumous reputation has been eregserated beyond all reason. This was due partly to his carly death, and lergely to the success of Lo Serva padrona when performed by the Bonffors Ilalions at Paris in 1752. Chaming as this litile piece undoubtedly is, it is inferior both for music and for humour to Pergolesi's three act comic operas in dialect, which are remembered now only by the air "Orni pens piu epietate" from L_{0} Frate inammerato. As a composer of sacred music Pergoleai it effective, but eaentially commonplace and superficial, und the frivolous style of the Stabat Matar was rightly censured by Paisicllo and Padre Martini. His best quality is a certain sentimental charm, which is very conspicuous in the cantata L'Orfeo and in the genuinely beautiful duets "Se cerca, se dice" and "Ne' giomi tuoi felici" of the serious opera L'Olimpiode; the latter number was transierred unaltered from his early sacrad drama S. Gugliclmo, and we can thas sce that his matural talent underwent hardly any. development during the five yesm of his musical activity. On the whole, however, Pergolesi is in no way superior to his contemporaries of the same echool, and it is purely accidental that a later age should have regarded him as its greatest representative.

Bibliog a friy.-The most complete life of Pergoien is that by E. Faustini Fasini (Gaszetta musicale di Milano 31 st of August 1899, \&ec., published by Ricordi in book (orm, 1900); G. Annibaldi's If Pergolesi in Posewol, vila intima (Jesi, 1890) gives tome interesting additionad detrils derived from documents at jesi, but is catet in the form of a goupantic novel. H. M. Schletterer's lecture in the Sommlung masikolischer Vortrăze, edited by Count P, von Waldertee. is generally insccurate and uncritical, but gives a good account of inter performances of Perzolesi's works In italy and elsewhere. Varions portraits are reproduced in the Garr. Wets. di Milano for the 14th of December 1899 , and in Musica e musicisti, December 190s. Complcte lists of his compositions are given in Eitner's Quelfen-Lexicon and in Grove's Dicfiomary (new ed.). (E.J.D.)

PERCOLESI, HICHABL. ANGELO, an r8th-century Italian decorative artist, who worked chiefly in England. Biographical details are almost entirely lacking, but like Ciprioni he was brought, or attracted, to Eugland by Robert Adam after his famous continental tour. He worked so extemsively for the Adams, and his designs are so closcly typical of much upon which their reputatiop rests, that it is impossible to doubt his influence upon their style. His range, like theirs, was catholic. He designed furniture, mantelpieces, ceilinge, chondeliers, doors and mural ormament with equal felicity, and as an artist in plaster work in low relief he was unapproached in his day. He delightod in urns and sphinxes and interlaced gryphons, in amorini with bows and torches, in trophies of musical instruments and martial wreapons, and in flowering arabesques which were always graccful if sometimes rather thin. The centre panels of his walls and ceilings were often occupied hy classical and pastoral aubjects painted by Cipriani, Angelica Kauffannn, Antonio Zucchi, her husband, and sometimes by himself. These nymphs and amorini, with their disengaged and riant air and classic grace, were not infrequently used as copies for painting upon that satinwood furniture of the last quarter of the $\mathbf{5} 8 \mathrm{th}$ century which has never been surpassed for dainty elegance, and for the popularity of which Pergolesi was in large measuro responsible; they were even reproduced in marquetry. Some of this painted work was, apparently, executed by his own band; mort of the
 tagte and technical skill. His eatin-wood. tablempos, chins cabinets and side-tables are the last pord in a drintinees which here and there perhapa is mere ptettineas Peppoleat likewite deafgned silver plate, and many, of his patterns ese alonot instinctively attributed to the bnothers Adam by the maked and purchasers of modern reproductions. Dhess is moreover, seman to belleve that he aided the Adan firm in paraly archis tectural wort In later life Porgosi quents ifte Antelioti Sanfimann, to heve netumed to Italy.

Our chicef cource of informetion upon his worlas is his orra perbif cation, Designs for Various Ornantents os Seventy Plabes, a verien of tolio sheets, without text, publinged between 1777 and 1801.

PERI, JACOPO ($1561-16$ 3), Italim manton oompenes, was born at Florence. on the 20th of Augunt $156 \mathrm{r}_{3}$ of a noble family. After atudying under Cristoforo Malversi of Iucen, be became maestro di cappelin, first to Ferdinand; duke of Tuscany, and later to Cosmo IL. He was an important member of the literary and artistic circle which frequented the honse of Giovandi Bardi, conte :de Vernio, whese the mevival of, Greek tragedy with its appropriate musical declamation wasa favortice subject of discussion. With this end in view the peet Ontivio Rinuccini supplled a drama with the title of Dafme, to which Peri coraposed music, and this firt attempt at epers was petformed privately in 1597 in the Palareo Corsi at Flocence. This work wes st much admired that in $\mathbf{z 6 0 0}$ Rinuccini and Peri were commisaioned to produce an opers on the occasion of the marriage of Henry IV. of France with Manis di' Medici This work (L'Ewidice) ettracted a seat deal of attention, and the type once' publicly esteblished, the musical drama was eet on the roed to success by the effarts of other composers and the patronage of other courts. Peri bimself eeems sover to heve followed up bis sucoess with other operas; bo becaps meestan di cappella to the duke of Ferrara in IGor, but after the publioncion of his Varic musicice awa, due e ine nooi at Elasence is 1609, nothing more is known of hin.

Peri's Dafne (which has entirely disappeazed) and Ewridica (printed at Florence 1600; reprinted Venice 1608 and Florence 1863) are of the greatest importance not only as beine the earliest atcmpts at opara, but as representing the new mosodic and declamatory style which is the basis of modern music as opposed to the contrapuntal methods of Pelestrina and his contemporaries, Peri's worts is of course primitive in the oxtreme, but it is by no means without beauty, and there are many scenes in Ewridice which show a conaiderable dramnic power.

PBRIANDER (Gr. IIepiawpos), the second tyrant of Corinth ($625-585$ B.c.). In contrast with his facher Cypselus, the founder of the dynasty, be is generally represented as a cruel despot, of at any rate as having used all possible devices for keeping his city in suhjection. Among numerous anecdotes the following is characteristic. Periander, on being consulted by the tyrant Thrasybulus of Miletus 96 to the best device for maintaining himself in power, by way of reply led the messenger through cornfield, and as he walked struck off the tallest, and best-grown ears (a legend applied to Roman circumstances in Livy. i. 54). It scems, bowever, that the prevalent Greek tradition concerning him was derived from the versions of the Corinthian aristecracy, who had good reasons for giving a prejudiced account, and the conflicting character of the various legends further thow that their historical value is slight. A careful sifting of the available evidence would rather tend to represent Periander as a ruler of unupual probily apd insight, and the erceptional frmpess and activily of his government is beyond dispute. His bome administration was 80 sucoessful that he was athe to dispente with direct tapation. He foctered wealth by the steady encouragement of industry and by drastic legishation agalnat idlemess, luxury and vice; and the higbest prosperity of the Cocinthian handicrafts mayebe assigned to the period of hid rule feee Coninta). At the same time be sought to check excesaive accumulation of wealth in individual hand and restricted the influx of pepulation into the town. Employment was fored

The North Wing, West and South Sides.

The South Wing, West and South Sides.

The Great Altar of Zeus, from the North-west, as set up in the Kaiser Friedrich Museum, Berlin.

North, South, East, and West Sides of the Great Altar of Zeus.

Sor the peoletariat in the erection of temples and of public works. Periznder further appears as a patron of literature, for it was by his invization that the poet Arion came to Corinth to organize the dithyramb. He devoted no less attention to the increase α.Corinthian commerce, which in his days plied busily on both esactern and western seas. With this end fn view be eatablished colonies at Potidzea and Apollonia in Macedonia, it Anactorium and Leucess in north-westem Greece, and he is suid to have projected a canal through the Isthmus, In Greece proper he conquered Epidaurus, and with the help of his fleet of triremes broughe the important trading centre of Corcyra under bis control, while his interest in the Otympian festival is perhaps attered by a dedication which may bo ascribed to him-the famous "chest of Cypselus." He cultivated friendly relations with the tyrants of Miletus and Myilene, and maintained a connexion with the kings of Lydia, of Egypt and, possibly, of Phrygia. In spite of theso varied achlevements Periander never entirely conciliated his subjecta, for he could not trust bimself without a bodyguard. Moreover his family life, according to all accounts, was unfortunate. His sons all died or were estranged from him, and the murder of his last remaining child Lycophron, the governor of Corcyra, is said to have broken his spirit and bastened on his death.
Periander was reckoned one of the seven sages of Greece, and was the reputed author of a collection of mexims ("Troopinace) in 2000 verses. The letters ascribed to him by Diogenes LaEfritus are undoubtedly sparious.
Hendotus if. 48-53. v. 92; Aristatio, Politos, v. 6, 10-12;
 Nicolaus Darasccenus, ibic., iti. 393; Diogenes Lairtius. De vitis claforkm philosophorum, i. ch. 7 .
(M.O. B. C.)

PEBICLES ($490-429$ B.C.), Athenlan statesman, was born about 400 B.c., the son of Xanthippos and Agariste. His father took a prominent part in Athenian politics, and in 479 held high command in the Greek squadron which annihilated the remnants of Xerxes' fleet at Myeale; through his mother, the niece of Cleist henes, he was connected with the former tyrants of Sicyon and the family of the Alemaeonidae. His early training was committed to the ablest and most advanced teachers of the day: Damon instructed him in music, Zeno the Eleatic revealed to him the powers of dialectic; the philosopher Anaxagoras, who lived in close friendship with Pericles, had great influence on his cast of thought and was commorily held responsible for that calm and undaunted attitude of mind which he preserved in the midst of the severest trials.
The first important recorded act of Pericles falls $\ln 463$, when he belped to prosecute Cimon on a charge of bribery, after the latter's Thasian campaign; but as the accusation could hardly have been meant seriously Pericles was perhaps put forward only as a lay-figure. Undue prominence has commonly been assigned to him in the attack upon the Areopagus in 462 or 46 I (see Axporscos, Cryon). The Aristotelian Constiution of Athens shows conclusively that Pericles was not the leader of this campaign, for it exprescly attributes the bulk of the reforms to Ephialtes (ch. 25), and mentions Ephialtes and Archestratus as the authors of the laws which the reactionaries of 404 sought to repeal (ch. 35): moreover, it was Ephialtes, ${ }^{2}$ not Pericles, on whom the Conservatives took revenge as the author of their discomfiture. To Ephialtes likewise we must ascribe the renunciation of the Spartan alliance and the new league with Argos and Thessaly (461).

Not long after, however, when Ephialtes fell by the dagger, Pericles undoubtedly assumed the leading position in the state.
${ }^{2}$ He must have been born before 485-484, in which yeani his Gether was oftracived. On the other hard, Plutarch deacribet him as tes tor, ien mot yet 30 , in 463 .

- The later eminence of Periclea has probably misled historians into txaggerating hif influence at this time. Even the Const. Ath. (ch. 27) waye that Pericles took "some" pretogatives from the Areapagues this looks libe a conjectrore basd on Ariat. Pof. ii. 9
 2 passare which really provet nothing. Piutarch, who is clearly bliaded by Pericles' eubsequent brillisnce, makes him seddenly burst mo promineace and hold the highest phace for to years (i.e. from 469); be degrador Ephintres inter a tool of Peridek.

The beginning of his socendancy is marked by an amprecodented outward expanasion of Athenian power: In comtinuance of Cimon's policy, 200 ships were sent to support the Egyptian insorgents ageinst Perniz (459), ${ }^{3}$ while detachments operated against Cyprus and Phoenicia. At the same time Athens embarked on several wars in Greece Proper. An alliance with the Megarians; who were being hard pressed by thefr neighbours of Corinth, led to enmity with this latter power, and before long Epidaurus and Aegina were drawn into the struggle. On sea the Athenians, after two ninor engagements, gained a decirive victery which enabled them to blockade Aegina. On land their general Myronides beat of two Corinthian attacks on Megara, which had been further secured by long walls drawn between the capital and its port Nisaea, nearly a mile distant. In 457 the Athenians and their allics ventured to intercept a Spartan force which was returning home from central Greece. At Tanagra in Boeotia a pitched battle was fought, in which both Pericies and the partisans of Cimor distinguished themrelves. The Spartans were successful but did not pursue their advantage, and soon afterwards the Atherians, seizing thetr opportunity, sallied forth again, and, after a victory under Myronides at Oenophyta, ohtained the submission of all Boeotia, save Thebes, and of Phocis and Locris. In 455 Tolmides ravaged Laconia and secured Naupactus on the Corinthian gulf; in 454° Pericies himself defeated the Sicyonians, and made a descent upon Oeniadae at the mouth of the gulf, and in 453 conducted a cleruchy to the Thraciar Chersomese. These years mark the zenith of Athenian greatness. Yet the drain on the country's strength was severe, and when news artived in 453 that the whole of the Egyptian armament, together with a reserve fleet, had been destroyed by the Persians, a reaction set in, and Cimon, who was recalled on Pericles' motion (but see Crron), was empowered to mate peace with Sparta on the basis of the stafus quo. For a while the old anti-Persian policy again found favour in Athens, and Cimon led a great expedition against Cyprus; but on Cimon's death hostilities were suspended, and a lasting arrangement with Petsia was hrought about.' It was prohably in order to mark the definite conclusion of the Persian War and to obtain recognition for Athens' work in punishing the Mede that Periclean now ${ }^{1}$ proposed a pan-Hellenic congress at Athens to consuit about the rehullding of the ruined temples and the policing of the seas; bat owing to the refusal of Sparta the project fell through.
Pericles may now have hoped to resume his aggresaive policy in Greece Proper, but the events of the following years completely disillusioned him. In 447 an Athenian army, which had marched into Boeotia to quell an insurrection, had to surrender in a body at Coronea, and the price of their ransom was the evacuation of Boeotia. Upon news of this disaster Phocis, Locris and Euboea revolted, and the Megarians massacred their Athenian garrison, whlle a Spartan army penetrated into Attica as far ms Eleusis. In this crisis Pericies induced the Spartan leaders to retreat, apparently hy means of a bribe, and hastened to reconquer Euboea; but the other land possessions could not he recovered, and in a thirty years' trace which was arranged in 445 Athens definitely renounced her predominance in Greece Proper. Pericles' foreign policy henceforward underwent a profound change-to consolidate the naval supremacy, or to extend it by a cautious advanee, remained his only ambition.
${ }^{3}$ The chronology of these years down to 449 is not quite certain.
${ }^{4}$ An abortive expedition to reinatate a Thessalian prince probably also belongs to this year; there is also evidence that Athens interfered in a war between Sclinus and Segesta in Sicily about this time.
"The "peace of Callias" is perraps a fiction of the 4th century oratore. All the earlier evidence goes to show that only an informal underotanding was arrived at, based on the de facto inability of either power to cripple the other (see Cruow).

- 448 seems the most likely date. Before 460 Pericier' infuence was as yet too smalli. $460-451$ were years of war. After 445 Atheng was hardly in a position to summon such a congress, and would not have sent 10 envoys out of 20 to northern and central Greece, where the hed just lost ail her Influence: nor is it tikely that the bullding of the Partheson (begun not later than 447) wat entered oa before the congrem.

While scouting the projects of the extreme Radicats for interfering in distant countries, he occasionally made a display of Athens' power abroad, as in his expedition to the Black Sea, and in the colonization of Thusi, ${ }^{2}$ which marks the resumption of a Western policy.

The peaceful development of Athenian power was interrupted by the revolt of Samos in 440 . Pericles himself led out a flect against the seceders and, after wianing a first engagement, unwisely divided his armament and allowed one squadron to be roated. In a suhsequent battle he retrieved this disaster, and after a long blockade reduced the town itself. A demand for help which the Samians sent to Sparta was rejected at the instance of the Corinthians.
Turning to Pericles' policy towards the members of the Delian League, we find that he frankly endeavoured to turn the allies into suhjects (see Delian Lenaue). A special feature of his ruie was the sending out of numerous cleruchies (p.0.), which served the double purpose of securing strategic points to Athens and converting the needy proletariate of the capital into owners of real property. The land was acquired either hy confiscation from disaffected states or in exchange for a lowering of tribute. The chief cleruchies of Pericles are: Thracian Chersonese (453-452), Lemnos and Imbros, Andros, Namss and Eretria (before 447); ${ }^{2}$ Brea in Thrace (446); Oreus (445); Amisus and Astacus in the Black Sea (after 440); Aegina (431).

In his home policy Pericles carried out more fully Ephialtes' project of making the Athenian people truly sell-governing. His chief innovation was the introduction of payonent from the public treasury for state service. Chief of all, be provided a remuneration of 1 to 2 obols a day for the jurymen, probahly in 45 s .4 Similarly he created a"theoricon" fund which ennbled poor citizens to attend the dramatic representations of the Dionysia. To him we may also attribute the 3 obols pay which the soldiers received during the Peloponnesian War in addition to the old-established provision-money. The archons and members of the boult, who certainly received remuneration in 411, and also some minor magistrates, were perhaps paid for the first time by Pericles, In conncxion with this system of salaries should be mentloned a somewhat reactionary low carried by Pericles in 45x, by which an Athenian parentage on both sides was made an express condition of retaining the franchise and with it the right of sitting on paid juries. The mensure by which the archonship was opened to the third and (practically) to the fourth class of citisens (the Zeugitae and Thetes) may also be due to Pericies; the date is now known to be 457 (Consl. Alh. 26; and see Axchon).

The last years of his life were troubled hy a new period of storm and stress which called for his highest powers of calculation and self-control. A conflict between Corcyra and Corinth, the second and third naval powers of Greece, led to the simultancous appearance in Athens of an embassy from either combatant (433). Pericles had, as it seems, resumed of late a plan of Western expansion by forming alliances with Rhegium and Lcontini, and the favourable position of Corcyra on the traderoute so Sicily and Italy, as well as its powerful fleet, $n 0$ doubt belped to induce him to secure an alliance with that inland, and so to commit an unfriendly act towards a leading representative of the Peloponnesian League. Pcricies now seemed to have made up his mind that war with Sparta, the head of that

[^11]Letague, had becopa lneyitahle in the following epeing he fastened a quarrel upon' Potidnea, a town in Chakidice, which was allached by ancient bands to Corinth, and in the cmmpaign which followed Athenian and Coriathian troops ctme to hlows A further casms belli was provided by a decree forbidding the Importation of Megarian goods into the Atbenian Empire, ${ }^{3}$ preaumably in order to punish Megara for her alliance with Corinth (spring 432). The comhined complaints of the injured parties led Sparta to summon a Peloponnesian congress which decided on war against. Athens, failing a concession to Megara and Corinth (autumn 432). In this crisis Pericles persuaded the wavering assembly that compromise was useless, because Sparta was resolved to precipitate a war in any case. A further embassy calling upon the Athenians to expel the accursed fatmily of the Alcmaconidae, ciearly aimed at Pericles himself as its chief representative, was left unheeded, and early in 435 hostilities began between Athens and Sparta and their respective allies (see Peloponneslan Wir).
At the ame time, Pericles was being sorely hampered by his adversaries at home. The orthodox Conservatives and sorme democrats who were jealous of his influence, while efraid to beard the great statesman himself, combined to sasail his nearest friends. The sculptor Pheidias (q.m.) was prosecuted on two vexatious charges (probably in 433), and before be could disprove the second he died under arrest. Anaxagoras was threatened with a law against atheists, and felt compelled to leave Athens. A scandalous charge against his mistress Aspasia, which he defeated by his personal intercession before the court, was taken very much to heart by Pericles. His position at bome scarcely improved during the war. His policy of abandoning the land defence was unpopular with the land-owning section of the people, who from the walls of Athens could see their own property destroyed by the invaders. At the end of the first year of war (early in 430) Pericles made a great appeal to the pride of his countrymen in his well-known funeral speech. But in the ensuing summer, after a terrible outbreak of plague had ravaged the crowded city, the people became thoroughly demoralized. Pcricles led a large squadron to harry the coasts of the Peloponnese, but met with little success. On his return the Athenians" sued for pence, though without success, and a speech by Pericles had litle effect on their spirits. Late in 430 they deposed him from his magistracy. In addition to this they prosecuted him on a charge of embezzlement, and imposed a fine of so talents. A revulsion of feeling soon led to his reinstaternent, apparently with extraordinary powers. But the plague, which had carried off two of his sons and a sister, had left its mark also on Pericles himself. In the autumn of 429 he died ${ }^{4}$ and was buried near the Academia, where Pausanias (150° A.D.) saw his tomb. A slightly idealized portrait of Pericles as strategus is preserved to us in the British Museum bust, No. 549, which is a good copy of the well-known hronze original by Cresilas.

If we now endcavour to give a general estimate of Pericles' character and achicvements, it will be well to consider the many departments of his activity one by one. In his foreign policy Pericles differs from those statesmen of previous generations who sought above all the welfare of Greece as a whole. His standpoint was at all times purely Athenian. Nor did he combine great statesmanlike quailies with exceptional ability in the field. We may cleariy distinguish two periods in his administration of foreign affairs. At first, joining to Cimon's antiPcrsian ambitions and Themistocles' schemes of Western expansion a new policy of aggression on the mainland, he endeavoured to push forward Athenian power in every direction, and engaged himself alike in Greece Proper, In the Levant and in Sieily. After Cimon's death he renounced the war against Eersia, and the collapse of $447-445$ had the effect of completing his change

- The general impression in Greece was that this decree was the proximuate cause of the war. The ecurrilous motiven which Arimophanes suggents for this measure can be entirely disregarded.
-His dying boast, that "no Athenian had put on mourning through his doing," perhaps relers to his forbearanoe tomasds his political rivals, whom be nelused to ruin by proeecution
of atcitinde. Fiencoforvard he repremed int projects of steklens enterpise, and confined himself to the gradual expension and consolidation of the empire. It is not quite easy to see why he abandoned this successful policy in order to hasten on a war with Sparta, and neither the Corcyteen allinace nor the Megarian decree seems justified by the facts as known to us, though commercial motives may have played a part which we cannot now gauge. In his adoption of a purely defensive policy at the beginning of the Peloponnesian War, he misculculated the temper of the Athenians, whose morale would have been better sastained by a greater abow of activity. But in the main his policy in 431-429 was sound, and the disasters of the war cannot fairiy be liid to his charge. Tho foundatio of cleruchies was an admirable device, which in mainy ways asticipated the colonial system of the Romans.

In his attitude towands the members of the Delian League Pericles likewise maintained a purtly Athenian point of view. But be could hardly be said seriously to beve oppressed the subject citles, and technically all the League money was spent on League business, for Athena, to whom the chief monuments in Athens were reared, was the patron goddess of the League. Under Pericles Athens also attained ber greatest measure of commercial prosperity, and the activity of her traders all over the Levant, the Black Sea and the West, is attested not only by literary authority, but also by numarous Attic coins, vases, \&e.

Pericies' home policy has been much dehated since ancient times, His chicf enactments relate to the payment of citizens for State service. These measures bave been interpreted as an appeal to the baser instincts of the mob, but this assumption is entirely out of keeping with all we know of Pericles' general attitude towards the people, over whom Thucydides says he practically ruled as a king. We must, then, admit that Pericles sincerely contemplated the good of his fellow-countrymen, and we may believe that he endearoured to realire that ideal Athens which Thucydides sketches in the Foneral Speech-an Athens where free and intelligent obedience is rendered to an equitable code of laws, where merit finds its way to the front, where military efficiency is found along with a free development in other directions and strangles neither commerce nor aft. In accordance with this scheme Pericles sought to educate the whole community to political wisdom by giving to all an nctive share in the government, and to train their acsthetic tastes by making accessible the beat drama and music. It was most unfortunate that the Peloponnesian Wer ruined this great project by diverting the large supplies of money which were essential to it, and confronting the remodelled Athenian democracy, before it could dispense with his tuteiage, with a series of intricate questions of forcign policy which, in view of its inexperience; it could hardly have been expected to grapple witb succesofully.

Pericles also incurred unpopalarity because of his rationalism in religious matters; yet Athens in his time was becoming ripe lor the new culture, and would have done better to receive it from men of his circte-Anaragoras, Zeno, Protagoras and Meton -than from the more lrresponsible sophists. The infirence of Aspasia on Athenian thought, though denounced unspariagly by most critics, may indeed have been beneficial, inasmuch as it tended towards the emancipetion of the Attic moman from the over-strict tutclage in which abe was kept. As a patron of art Pericles was a still greater force. His policy in epcouraging the drama has already been mentloned: among his friends be could count three of the greateint Greet writers-the poet Sophocles and the histoxians Herodotus and Thucydides Pericles likewise is responible for the epoch-making splendour of Attic art in his time, for had he not so fuily appreciated and given wuch free scope to the genins of Pheidias, Athens wouk hardly have witnessed the raising of the Parthenon and other plorious atructures, and Attic art could not have boasted a legion of first-rate sculptors of whom Alcamenes, Agoracritus and Paeonlus are oaly the chief names. (Set also Garex Arr.)

OI Perides' persopal charactonistica we have a peculiarly fult
and interestiris recomd. He was chmmonly companed to Olympian Zeus, partly because of his serene and dignified bearing, partly by reason of the majestic roll of the thundering doquence, whth its bold poetical imagery, with which he held friend and foe spellbound. The same dignity appeared in the grave beauty of his features, though the abnoumal height of his cranium afforded an opportunity for ridicule of which the comediana made full ase. In spite of an unusually lage crop of scandala abont him wo cannot hut believe that he bore an honourable character, and his integrity is vouched fors by Thucydides in such strong terms as to exclucte all further doust on the question.
Ancient Authoritues-Our chief source mum always remaia Thucydides (i. and ii. 1-65), whose insight into the character and ideals of Periclea places him far above all other authorities. The speeches which he puts into his mouth are of apecial value in dis clowing to us Pericles' inmont thoughts and aspirations (1. 140-144; ii. 35 -46; ii, 60-64). Thucydides alope chows gympathy with Periclen though, as). B. Bury poiats out (Asciow Greok Historiamt 1909, pp. 133 peq.), he was by no means a blind admirer. of other 5th-entury sources, Aristophanes is obviously a caricaturist. pseudo-Xenophon (de rapublicu λ ilhenientixm) a mefe party parno phleteer. Plato, while edmirisy Pericles' intellect, zceunes bim of pandering to the suob; Aristote in his Politics and eapecially in the Constitution of Athens, which is valuable in that it gives the dates of Pericles' enactments as derived from an official document, accepts the same view. Plutarch (Periclas) gives many interesting detaik as to Rericles' personal bearing, home life, and patromapo of art, literature and philosophy, derived in part from the old comic pocts, Aristophapes, Cratinus, Eupolis, Hermippus, Plato and Teleclides; in part from the contemporary memoirs of Stesimbrotue and lon of Chios. At the same time he reproduces theit ccandalous anecdotes in a quite uncritical spirit; and accepts unquentioningly the 4 th-century tradition. He quotes Aristotle, Aeraclides Ponticus, Aeschines Socraticus, Idomeneus of Lampsacus and Duris of Samos, and is also indebted through some Alexandrine intermediary to Ephorus and Theopompus. Diodorus (xi. and cii.), who copied Ephorus, contains cothing of value.

Modern Wonra-Hintorians are agreed that Pericles was one of the most powerful personalities of ancient times and generally allow him to have been a man of problty. J. Beloch, Griech. Gesch vols. i. and ii. (Strassburg and Bonn, 1893-1896), and Die allesche Polisii seit Poritles (Leipzig, ${ }^{88}$) takes the mot disparaging viewl E. Abbott, Greeh Hith, vol. ii (London, 1892), nad M. Duacker, Gesch 2. Allertumb, vole viii., ix. (Leipzig, 1884-1886), are oa the whole unfavourable; Addil Schmidt, Das Perikteische Zeivatles (Jena, 1877), Y. Duruy, History of Gretce (Eng. trans., London, I89z), G. Busole, Grien. Gasch., vol. Iit, (Gotha, 1t97, 1904), and E. Meyer. Gesch. d.
 1899 ; London, 1902). apportioa praise and blame more equally: F. B. Bury and E. Curtius, Fist. of Greece (Eng, trans, vola ii. andiil., Lond on, 1869, 1870), A. Holm, Hist. of Greece (Eng, trans., vol. ii. London, 1895), W. Lloyd, The Aye of Perides (London, 1875), and especially G. Grote, Hist. of Greech, vols, iv, and v. (see almoadditional noter in the edition by J. M. Mitcheli and M. Caspari, 1907) take a favourable view. For Pericles' buildinge, mee C. Wachsmuth, Gesch. d. Slad Achen, i. 516-560 (Leipzig, 1874); E. A. Gardner, Ancient Athena (London, 1902), for his atrategy, H. Delbrack, Die Stralay. d. Perikles (Berlin, 1890). See ATHENs: Histery; Grexce : Axcient History; and Grekr Art.
(M. O. B. C.)

PRRIDOT, sometimea written peridote, a name applied by jewelers to "nobic olivine," or that kind of olivine which can be used at a gem-stone (see OLivine). The word peridot is an old trade-term, of unknown origin, used by French jewelers and introduced into science by J. R. Hady. Peridot is practically the same atore as chrymolite (q.o.), though it is convenient to restrict that term to trausparent olivine of paie yellowish green colour, and to apply the term peridot to those kinds whicb are darker and decidedly green: the colour, which is due to the presence of lerrous iron, is never vivid, like that of emerald, but is usually some shade of olive-, pistachio- or leek-green. Although the stone is sometimes cut en cabochon, and in roseform, the cutting best adapted to display the colour is that of a table or a step-cut stone. Unfortunatcly the hardness of peridot is only about 6.5 , or but little above that of glass, so that the polished stone readily soffers abrasion by wear. In polishing peridot the final touch is given on a copper wheel moistened with sulphuric acid.

Although olivine has a fairly wide distribution in nature, tha varieties used as gem-stones are of very himited occurrences. Much mystery for a long time surrounded the locality whict
yields most of the pestdot of commerce bat it is now Hentified with the island of St John, or Isle Zeboiget, in the Red Sea, where it occurs, as shown by M. J. Couryat, in an altered dunite, or olivine rock (Bull soc. franc. winn., rgo8). This is probebly the Topax Iale, roatticos Ploos, of the ancients. It is generally held that the mineral now called topar was unknown to ancient and mediseval writers, and that their rorbficw was our peridot. Such was probably the Fiebret piddak, translated topaz in the Old Testament. Dr G. F. Kuns has suggested that the peridots of modetn trade are largely derived from old jewelry. The famous shrine of the Three Xings in Cologne Cathedral contains a large peridot, which has commonly been regarded as an emerald. It is notable that pebbles of transparent olivine, fit for cutting, are found in the United States in Montana, Arizona and New Mexico; in consequence of their shape and curiously pitted surface they are known as "Job's tears."
(F. W. R*)

PRRIDOTITR, a plutonic holo-crystalline rocis composed in large part of olivine, and almost or entirely free from feldspar. The rocks are the most basic, or least siliceous plutonic rocks, and contain much iron oxide and magnesia. Hence they have dark colours and a high specific gravity (3.0 and over). They weather readily and are changed to serpentine, in which process water is absorbed and enters into chemical combination with the silicates of magnesia and iron. In some peridotites, such as the dunites, olivine greatly preponderates over all other minerals. It is always in small, rather rounded crystals without good crystalline form, and pale green in colour. Most of the rocks of this group, however, contain other silicatcs such as augite, hornblende, biotite or shombic pyraxene, and oflen two or three of these are present. By the various mineral combinations different species are produced, e.e. mica-peridotite, hornblende-peridotite, enstatite-peridotite. Of the accessory minerals the commonest are iron oxides and chromite or picotite. In some peridotites these form segregations or trregular masses which are of importance as sources of the ores of chromium. Corundum occurs in small crystals in many North American peridotites and platinum and the nickel-iron compound awaruite are found in rocks of this class in New Zealand. Red garmet (pyrope) characterizes the peridotites of Bohemia. The diamond mines of South Africa are situated in pipes or voleanic necks occupied by a peridotite breccia. which has been called kimberlite.: In this rock in addition to diamond the following minerals are found, hypersthene, garnct, biotite, pyrazene (chromediopside), ilmenite, sircon. \&c.

Some peridotitea have a granular stracture, e.g. the dunites, all the crystal grains being of rounded shape and nearly equal size; a few are porphyritic with large individuals of diallage, augite or hypersthene. Some are banded with parallel bands of dissimilar composition, the result probably of fluxion in a magma which was not quite homogoneous. The great majority of the rocks of this group are poikilitic, that is to say, they contain olivine in small rounded crystals embedded in large irregular masses of pyroxene or homblende. The structure is not unfike that known as ophitic in the dolerites, and arises from the olivine having first separated out of the liquid magma while the pyrozene or amphibole succeeded it and crught up its crystals. In hand specimens of the rocks the smooth and shining cleavage surfaces of homblende and augite are dotted over with dull blackish green spots of olivine; to this appearance the name " lustre-motuling" has been given.
Mica-peridotites are not of frequent occurrence. A well-known rock from Kaltes. Thal, Haraburg, contains much biotite. deep brown in thin section. Other examples are found in Indis and in Arkancas. Poikilitic structure is rarcly well developed in this group. The "blue-ground" of Kimberley which contains the diamonds is a brecciform biotite-hypersthene-peridotite with augite. In the north of Scotland. in several places in Sutherland and Ross, there are peridotites with silvery yellow green bionite and lange plates of pale green hornblende: these have been called scyelites. In the hornblende-peridotites lustre-motting is often very striking. The amphibole may be colourless tremolite in small prisms, as in some verieties of serpentine from the Lixard (Cornwall); or pale green hornblempe as in scyelite. In both these cases there is mome probability that the horrblerde has developed, partly at least from olivine or augite. Ia sheared peridotires tremofite and
actinolite are very fasquat. Othir rocks contiin durk brown hornblende, with much olivines there may aleo be augite which is often intergrown perthitically with the hornblende. Examplea of this type occur in North Wales, Anglesey, Cornwall, Cortland, New York, and many other localitiea, A well-known peridotite from Schrieaheimer Tal in the Odan wald bay pale browninh yreen amphibole in lange crytstals filled with small grains of ollwiof which are poonly serpeatinized. Very often primary browa hornblende in rocks of this type is surrounded by fringes and outgrowths of colourless tremolite which has formed as a econdary mineral after olivine. Complete pseudomorphs after olivine componed of a matrix of scaly talc and chlorite crossed by a network of itrmolite needicen are also very common in some peridotites, especially those which have undergone pressure or shearing: these aggregates are known as pilite.
The peridotites which contain monoclinic pyroment may bu divided into tivo claspest those rich ia diallage and thome in which there is much augite. The diallage-peridotites bave been called wehrlites; often they show excellent lustre-mottling. Brown or green hornblende may surround the diallage, and hypersthene may occur abso In lamollat intergrowth with ft. Some of these rocka contain biotite, while a hittlo feldapar (oftom kausmuritic) may often be seen in the sections. Rocke of this kind are known in Hungary, in the Odenwald and in Silesia. In Skye the pyroxenebearing peridotites usually contain green chrome-diopside (a variety of augite distinguished by its pale colour and the presence of a mall amount of chroanium). The angite-peridotites are grouped by German petrographers under the picrites, but this term has a slightly different signification in the English nomenclature (see Pictites).
The enstatite-peridotites are an important group represented in many parts of the world. Their rhombic pyroxene is often very pale coloured but may then be filled with platy eaclonures which give it a metallic or bronzy lustre. These rocks have been called saxonites or harzburgites. When weathered the enstatite passes into platy masses of bastite. Picotite and chromhe are eommon accesory minernis and diallige or hornblende may also be prement. Meny of the eerpentine rocke of the Lizard (Comwall) Ayrahire and north-weatern Scouland are of this type. Examples are known also from Baste near Harzhurg, New York and Maryland, Norway Finland, New Zealand, \&e. Often the enstatite cryotale are of large size and are very conspicuous in the hand specimoms. They may pe porphyritic, or may form a coarpely crystaline matris enclosing innumerable olivine grains, and then hustre-mottling in as a rule very well shown.
The lherzolites are rocks, first described from Lherz in the Pyrenese, conslating of olivine, chrome-diopside and enoratite. and accemeory picotite or chromite. They are fine-grained, bright green in colour, often very fresh, and may be somewhat granulitic. The dunites are peridotites, similar to the rock of Dun Mountain, New Zealand, composed essentinily of olivine in a finely granular condition Many examples of this type are known in differeat paris of the world, usually as local facies of other kinda of peridofite. la olivine-basalts of Tertiary age in the Rhinc district small nodules of green olivine occur frequently. They are of rounded shapes and may be a foot in diameter. The otructure is granular and in addition to olivine they may concain chromite, apinel and magnetite, enstatite and chrome-diopaide. Somee geologiata believe these to be fragments of dunite detached from matses of that reck not exposed at the surface; others consider that they are aggregations of the early minerals of the basalt magma, which were already crystallized before the liquid rock was emited.
The great majority of stony or lithoidal meteoriten (aecolites) are rich in olivine and present many analogies to the terrestrial peridotites. Among their minerals arehypersthene (enstatite) augite and chrome-diopside, chromite, pyrite and troilite, nückeliferous iron and basic plagioclase feldepar. The structure of thene meteorites is deacribed as "chondritic"; their miwerals often oocur as small rounded grains arranged in radiate clusters; this has very rarely been observed in ordinary peridotites.
Although many peridotites are known in which the constituent minerals are exceflently preserved, the majority show more or lest advanced decomposition. The olivine is especially unstable and io altered to serpentine, while augite, horahtende and biotite are in large measure fresh. In other cases the whole rock is changed to an aggregate of eccondary products. Most serpentines (g.v.) arise in this way.
U.S. F.)

PRAIEA, CASIMIR PIERRE (17777^{-1832}), Fronch statesinan, was born at Grenoble on the Irth of October 1777, the fourth son of a rich banker and manufacturer, Claudo Perier (174218or), in whose house the estates of Dauphiny met in 1788. Claude Périer was one of the first directors of the Bank of Frnnce; of his eight sons, Augustin (1773-1833), Artoine Scipion (17761825), Casimis Pierre and Camille (1781-1844), all distinguished themselves in industry and in politics. The family removed to Paris after the revolution of Thermidor, and Casimir joined the army of Italy in 1798. On his fatheres death he left the
army and with his brother Scipion founded-a Menk in Paris, the speculations of which he directed while Scipion occupied himsclf with its administration. He opposed the rainous coethods by which the duc do Richelieu cought to raise the war indemnity demanded by the Allies, in a pamphlet Refextions sur ic projel d'cmpruns (1817), followed in the same year by Dernicircs refferions. . . in answer to an inspired article in the Monicur. In the same year he entered the chamber of depulies for Paris, taking his seat in the Left Centre with the moderate opposition, and making his first speech in defence of the freedom of the press. Re-elected for Paris in 1893 and 1824, and in 1827 for Paris and for Troyes, he elected to represent Troyes, and sat for that constituency until his denth. Petrier's violence in debate was not associated with any disloyalty to the monarchy. and he beld resolutely aloof from the republican conspiracies and intrigues which prepared the way for the revolution of 183a Under the Martignac miniatry there wat some prospect of s reconciliation with the court, and in January 1829 he was mominated a candidate for the presidency of the chamber; bex in August with the elevation to power of Poligaac the truce cesaed, and on the 1 gth of March 1830 he was one of the 221 deputies who repudiated the pretensions put forward by Charks X. Averse by instinct and by interest to popalar revolution he nevertheless sat on the provisory commistion of give at the hơtel-de-ville during the days of July, but he refused to sign the declaration of Charles X.'s dethropemeat. Ptrier reluctantly recognized in the government of Louis Philippe the only atternative to the continuance of the Revolution; but be was no favourite with the new king, whom he scorned for his truciling to the mob. He became president of the chamber of depaties, and ant for a few monthe in the cabinet, though without a portiotio. On the fall of the weak and disctedited ministry of Laffite, Casimir Perier, who had drifted more and more to the Right, was summoned to power (March 13, 1831), and in the short space of a year he restored civic order in France and re-established ber credit in Europe. Paris was in a constant state of discurbance from March to September, and was only held in check by the premier's determination; the workmen's revolt at Lyous was suppressed after hard fighting; and at Grenoble, in face of the quarrels between the military and the inhabltants, Perier declined to make any concession to the townsfolk. The minister refused to be dragged into armed batervention in favour of the tevolutionary government of Warsam, but his policy of peace did not exchude energotic demonstrations in support of French interests. He comatituted France the protector of Belgivm by the prompt eapedition of the army of the north against the Dutch in August 1831; Frencl influesce in Italy was asacted by the audaciove occupation of Apeons (Peo. 23, 2832); and the refusal of compensation for injuries to French renidents by the Portuguese government was followed by a naval demonstration at lishon. Perier had undertaken the premiesahlp with many forcbodings, and overwork and tantiaty prepared the way for disense. In the epring of 1832 duting the cholera outbreak in Paris, he visited the hoespitals in company with the duke of Orleans. He fell ill the mext day of a violent lever, and died sis weeks later, on the 16th of May 1832.

His Opiniens et discownt were edited by A. Lealeur (2 vols., 1898); C. Nicoullaud pablisbed in 18 g4 the firse part (Casimir-Ption ¿<putt de l'opposition, 1877-1830) of a atudy of his life and policy; and his ministry is exhaustively treated by Thureau-Dangin in role in and ii. (1884) of his Histoire de la monarchte de juillet.

His elder son, Augustr Victor Laupent Casmar Perder ($181: 18$ 1876), the father of President Casimir-Périer (see CasminPeisies), entered the diplomatic service, being attached suctessively to the London, Brussels and St Petersburg embasaies, and in 1843 became minister plenipotentiary at Hanover. In 1846 be resigned from the service to enter the legislature as deputy for the department of Seine, a constituency which be exchanged for Aube after the Revolution of 8848 . On the establishment of the Sccond Empire be retired temporarily from public life, and devoled himself to economic queations on تhich he published a series of works, notably les Finances at la
palifipus (1863), dealing with the interaction of political institutions and finance. He contested Grenoble unsaccessfully in 1863 geainst the imperial candidate, Casimir Royer; and failed again for Aube in 1869. In 1871 he was returned by thuce departonents to the National Assembly, and clected to sit for Aube. He was minister of the interior for a few months in 187:-1872, and bis retirement deprived Thiers of one of the strongest elements in his cabinet. He also joined the shortlived ministry of May 1873. He consistently opposed all efforts in the direction of a moanchical restoration, but on the defmite constitution of the republic became a life senator, declining MacMahon's invitation to form the first cabinet under the new constitution. He died in Paris on the 6th of June 1876.

For the fapuily in general me E. Chomiet, Li Femille Casimir. Pdraer (Grenoble, ${ }^{8094}$).

PERIJISE (Gr. mepl, near, rip, the carth), in astronomy that point of the moon's orbit or of the sun's apparent orbir at which tho moon or cun approach nearest to the earth. The sur's perigee and the earth's perihelion are so related that they differ 180° in longitude, the finat being on the line from the earth towaid the sun, and the second from the sun toward the earth. The longitade of the solar perigee is now 101°, that of the carth's peribetion 281°.

Phaland, one of the old provinces of Frince, formed part of the military government of Guienne and Gascony, and was bounded on the N. by Angoumois, on the E. by-Limousin and Quercy, on the S. by Agemais and Baradais, and on the W. by Bordelais and Saintonge. It is now represented by the departments of Dordogne and pert of Lot-et-Garonne. Périgord was in two divisions: Perigord blanc (cap. Périgueax) and Perigord noir (cap. Sarlat). In the time of Cacear it formed the caivitas Petrocoviormen, with Vesunne (Perigueax) as its capital. It became later pert of Aquilamia stesmeda and formed the pagus petragonicurs, afterwarda the diocese of Perigueux. Since the 8th century it had its own counts (ase the Histoire stuealogique of \mathbf{P}. Anelme, tome iii.), who wene feudatories of the dukes of Aquitaine and in the i3 th century were the vaseals of the king of England. In the 15 th century the county pesed into the hands of the dukes of Orieans, and in the 16th came to the family of d'Albret, becoming Crown land again on the accession of Henry IV.

See Demalles, Histoire dy PGigond (1888), the Bulletin of the Seciest listorique th archtolosigus ds Perisord (t874 eeq.). CI Imerntaich sommaire de ta "Collection os Peripord" in the Biblintheque natigmale (I874): the Dictionnaire topographigue du departement de la Dordogne by the Vicomte de Courgues (I673).
PERIGUEDX, a town of couth-western France, formerily capital of the old province of Perigord, now chief town of the department of Dordogne, 79 mm E.N.E of Bordeaux, on the railway between that city and Limoges. Pop. (1906), 28, 199 The town, situated on an eminence on the right bank of the Isle, is divided into three parts. On the slope of the hill is the soodieval town, bordered south-east by the river and on the other three sides by esplanades and promensdes; to the west is the modern town, which stretches to the station; to the south of the modern town is the old Roman town or cilc, now traversed by the railway.

Three bridges connect Perigueux with the left bank of the Isle, where stood Vesunna, the capital of the Petrocorii. Hardly a trace of this old Gallic town remains, but not far off, on the Plateau de la Boissidre, the rampart of the old Roman camp can atill be traced. On the right bank of the Isle, in the Roman city, there have been discovered some baths of the ist or and century, supplied.by an aqueduct four miles long, which spanned the Isle. Á circular huilding, called the "Tower of Vesunna," 68 ft . in diameter and 89 ft . in height, stands at what was formerly the centre of the city, where all the chief streets met. It is belicved to have been originally the cella or main part of a temple, probably dedicated to the tutelary deities of Vesunna. Of the amphitheatre therc still remain huge fragments of wall and vaulting. The building had a diameter of 1312 ft., that of the arens being 879 ft ; and, judging from its construction,
must be as old as the 3 rd or even the and century. The counts of Petrigueux used it for their chateau, and lived in it from the rath to the end of the 14th century. In 1644 it was given over by the town to the Order of the Visitation, and the sisters took from it the stones required for the construction of thek nunnery. The most remarkable, bowever, of the ruins of the citt is the Chateau Barriere, an example of the fortified houset formerly common there. Two of its towers date from the 3 rd or 4 th ceatury, and formed part of the fortified enceinte; the highest tower is of the 1oth century; and the part now inbahited is of the 1rth or 12th century, and was formeris osed as a hurial chapel. The hulk of the chateau is of the 13th, and some of the windows of the 16 th century.

The chief medieval building in the cilk is the chusch of St Etienne, once the cathedral. It dates from the irth and rath centuries, hat suffered much injury at the hands of the Protestants in the religious wars when the tower and two of the three cupolas were destroyed. The choir and lis cupola; were skilfully restored in the 17th century. A fine carved wooden reredos of the rith ceatury and a tomb of a bishop of the 12th century are to be seen in the interior. In the medioval town, known as Le Puy-St-Front, the mont remarkable building is the cathedral of St Front, which, till its restoration, or rather rebuilding, in the latter hall of the igth centary when the old features were to a great extent iost, was of unique architectural value It bears a striking resemblance to the Byzantine churches and to St Mark's at Venice, and according to one theory was huilt from 984 to ra47, contemporaneousiy with the latter (977-1085). It consists of five great cupolas, arranged in the form of a Greek cross, and conepicuous from the outside. The arms of the cross are 69 ft . in width, and the whole is 184 ft . long. These cupolas, 89 ft . high from the keystone to the ground, are supported on a vaulted roof with pointed atches after the manner characteristic of Byzantine architecture. The pointed arches imitated from it prepared tbe way for the introduction of the Gothic style. Adjaining St Front on the west ara the remains of an old basilica of the 6th century, above which rises the belfry, the only one in the Byzantine style now oxtant. It dates from the rith century, and is composed of two massive cubes, placed the one above the other in retreat, with a circular colonnade surmounted hy a dome. To the south-west of St Front, the huildings of an old abbey (rith to 36th century) surround a cloister dating chiefly from the 13th century. Of the fortifications of Puy St Front, the chief relic is the Tour Mataguerre (14 th century).

Perigueux is seat of a hishop, prefect and court of assizes, and has tribunals of first instance and of commerce, a chamber of commerce and a branch of the Bank of France. Its educational estahlishments include a lycte for boys, tralning colleges for both sexes and a school of drawing. The trade of the town is in pigs, truffies, flow, brandy, poultry and pies known as patis de Perigord.

Vesunna was the capital of the Petroconi, allies of Vercingetorix when Caesar invaded Gaul. The country was afterwards occupied hy the Romans, who built a second city of Vesunna on the right bank of the Isle opposite the site of the Gallic town. The barharian invasion hrought this prosperity to a close. St Froat preached Christianity bere in the 4th century and over his tomh there whas raised a monastery, which became the centre of the new town called Le Puy St Front. The cill was pillaged hy the Saracens about 131, and in 844 tbe Normans devastated both quarters. The new town soon began to rival the old city in importance, and it was not until 1240 that the attempts of the counts of Perigord and the hishops to infringe on their municipal privileges hrought about a treaty of union. During the Hundred Years' War, Perigueux was twice attacked hy the English, who took the cile in 1356; and the whole town was ceded to them hy the Treaty of Bretigny, hut returned to the French Crown in the reign of Charies V. The county passed by marriage into the hands of Anthony of Bourbon, father of Henry IV., and was converted hy the latter futo royai domain. During the Huguemot wass Perigueur was frequently
a atronghold of the Caluhists, who in 1535 did great deatruction there, and it also suffered during the troables of the Fronde.
 point of nearest approach of a body to the sun. (See Onsirr.)

PBRIM, a British ishand in the strait of Bab-el-Mandeb, at the entrance to the Red Sez, and 96 m. W. by S. of Adea. Perim is 2 m . from the Arahinn shore, is about $3 \frac{1}{\frac{1}{2} \mathrm{~m}}$. Jong with an average breadth of over a mile and covers some 739 . m . There is a good harbour with easy entrance on the south side with a depth of water from 25 to 30 ft . It is largely usod by mercantlle vessels as a coaling-station and for taking in stores, including fresh water and ice. Perim, the Diodoros island of the Periflus, was, in consequence of the French occupation of Egypt, garrisoned from 1799 to 1801 by a British force. In view of the construction of the Sues Canal and the increasing importance of the Red Sen route to India the island was annexed to Great Britain in 185%, fortified and placed under the charge of the Aden readency. In 186 x a lighthouse was huilt at its eastern end. Submarise cables connect the island with Aden, Egypt and Zanzibar. Population, including a garison of so repoys, about 100.
PERINO DEL VAEA ($1500-1547$), a painter of the Roman school, whose true name was Pkinio (or Piero) Buonacconst. He was born near Florence on the 28th of Junc 1500 . Flis father ruined himself by gamhling, and became a soidier in the invading anmy of Charles VIII. His mother dying when he Was but two months old, he was suckled by a she-gont; hut shortiy afterwards he was taken up by his father's second wife. Perimo was first apprenticed to a druggist, hut soon passed iato the hands of a mediocre painter, Andrea da Ceri, and, when eleven years of age, of Ridolfo Ghirlandajo. Permo rapidly surpassed his fellow-pupils, applying himself especially to the study of Michelangelo's great cartoon. Another mediocre palnter, Vaga from Toscanella, uadertook to settle the boy in Rome, hut first set him to wort in Toscanella. Perino, when he at last reached Rome, was utterly poor, and with no clear prospect beyond journey-work for trading decorators. He, however, studied with great saverity and spirit from Michelangelo and the antique, and was eventually entrusted with some of the subordinate work undertaken hy Raphael in the Vatican. He assisted Giovanni da Udine in the stueco and a rabesque decorations of the loggic of the Vatican, and executed some of those small but finely composed scriptural suhjects which go by the name of "Raphael's Bible "- Raphael timself furnishing the designs. Perino's examples are: "Abraham about to ascrifice Isaac," "Jacob wrestling with the Angel," "Joseph and his Brethren," the "Hehrews crowsing the Jordan," the "Fall and Capture of Jericho," "Joshua commanding the Sun to stand still," the "Birth of Christ," "His Baptian " and the "Last Supper." Some of these are in hronze-tint, while others are in full colour. He also painted, after Raphael's drawings, the figures of the planets in the great hall of the Appartamenti Borgia. Perino exhihited very uncommon faculty In these works and was soon regarded as second only to Giulio Romano among the great painter's assistants. To Rapheet himself he was always erceedingly respectiul and attentive, and the master loved him almost as a son. He ekecuted many other works about Rome, always displaying a certain mixture of the Florentine with the Roman style.

After Raphael's death in 1520 a trouhlous period ensued for Perino, with a plague which ravaged Rome in 1523, and again with the sack of that city in r527. Then he accepted an invitation to Genoa, where be was employed in decorating the Doris. Palace, and rapidly founded a quasi-Roman school of art in the Ligurian city. He ormamented the palace in a style similar to that of Giulio Romano in the Mantuan Palazzo del Tt, and frescoed historical and mythological suhjects in the apartments, fanciful and gracefol arabesque work, sculptural and architectural details-in short, whatever came to hand. Among the principal works are: the "War bet ween the Gods and Giants," "Horatius Cocles defending the Bridge," and the "Fortitude
of Mintios Scaevola." The most impoitant work of all, ${ }^{\text {1 }}$ the "Shipwreck of Acneas," is no longer extant. From Genoa Perino twice visited Pisa, and began some painting in the cathedral. Finally he returned to Rome, where Paul III. allowed him a regular salary till the painter's death. He retorched many of the works of. Raphael, and laboured hard on his own account, undertaking all sorts of jobs, important or trivial. Working for any price, he made lagge gains, bat fell into mechanical negligence. Perino was engaged in the general decoration of the Sala Reale, begun by Paul III., when his health, undermined by constant work and as constant irregularities, gave way, and be fell down dead on the 19th of October 1547 . He is buried in the Pantheon.
Perino produced some excellent portraits, and his maller oil pictures combine with the manner of Raphael something of that of Adrea dei Sarto. Many of his works were engraved, even in bis own lifetime. Dahiele Ricciarelli, Girolamo Siciolante da Scrmoneta Luzio Romano and Maroello Venusti (Mantovano) were among his priscipal ascistants.
(W. M. R.)

PRRinthios (Turk. Erhi Ercell, old Heraclea), an ancient town of Thrace, on the Propontle; 22 m . W. of Selymbria, strongly situated on a small peninsula on the bay of that name. It is said to have been a Samian colony, founded about 599 B.c. According to Tretzen, its original name was Mygdonia; later 1 was called Heraclea (Heraclea Thraciae, Heraclea Perinthus). It is famous' chiefly for its stubborn and successful resistance to Philip II. of Macedon in 340; at that time it seems to have been more important than Bymantium itself.
PERIOD (Gr. Treploios, a going or way round, circuit, repl, round, and 88bs, way, road), a circuit or course of time, a cycle; particularly the duration of time in which a planet revolven round its sua, or a satellite round its primary, a definite oy indefinite recurring interval of time marked by some special or peculiar character, e.f. in history, literature, art, Itc.; it is $s 0$ used of a division of geological time. Particular uses of the word are for the various phases through which a diserse passes, the termination or conclusion of any course of events, the pause at the end of a completed sentence, and the mark (.) used to rignify the same (see Punctuation).
PIRIODICAIS, a general term for literary publicutions which appear in numbers or parts at regular intervals of timeas a rule, weekly, monthly or quarterly. The term strictly includes "newspapers" (g.o.), but in the narrower sense usually intended it is distinguished as a convenient expression for periodical poblications which differ from newspapers in not being primarily for the circulation of news or information of ephemeral interent, and in heing issued at longer intervals. In modern times the weekly journal hes become so much of the sature of a newspaper that it seldom can be called a periodical in this sense. The present article chiefly deals with publications devoted to general literature, literary and critical reviews and maguzines for the supply of miscellanoous reading. In the article Socrstres (giv.) an account is separately given of the transactions and procectings of learned and scientific bodies. Year-books, almanacs, directories and other annuals belong to a diatinct type of publication, and are not referred to here.

Bertise

The first literary periodical in English was the Mercmius hiorarius, - a Faithylu Account of oll Books and Pamphlets (1680), a mere catalogue, published weekly or fortnightly in London, followed by Weehly Wemorials for the Intenious Uan. 16, 1681-1682 to Jan. 15. 1683). which was more of the type of the Joumal des Sayasis (eer under Faaxce below), whence it borrowed many contribations. Of the Histery of Learwing. (1691)-another with the same titho ctame out in 1694 -only a few numbers appeared, so the conductor, De la Crose, started the monthly Wovis of the Learnod (Alus: 169 g to April 1692). devoted. principally to contipental scholarahip. The monthly Comenet Libnary (y tra to 16 g 4) mas a venture of Johr Duaton; the monthly Mompiry for the Ingtomions (r693), edited by I. de in Crove. ran for 12 monthe, and another with the same title appeared is the following year, only to enioy a briefer cancer. The 6ite periodical of merit and influence was the Hixetary of the WVorks of the Learmal ($1699-1713$), lergely consisting of dearriptions of foncign books The Komoirs ef Luvrounre, the firn Eaglish review cpanting, entinety of original matter. pablisbed in London from 710 to 17 . 4 . Mad for editor Michel de it Rorbe, a Freneh Procengent
rofagee, who also edited at Aranterdam the fivioninive onglois ($1717+1719$), and subrequently Ximoires dilltraives do 1 la Grande erotogne (1720-1724). Returning to England in 1725, he recommenced his New Memoirs of Literofure (1725-1728), a monthly, and in 1730 a Liferary Jowrnch. Dr Samuel Jebb otarted Bibfipothece atcoriria (1722-1724), to appear every two months, which dealt with medals and antiquities as well as with literatare, but only ten nombers eppeared. The Present Slate of the Reprublich of Letters Whe commenced by Andrew Reid in Janiuary 1728, and completed tat December 1736. It contained not onfy excellent reviews of Engtinh books but papers from the works of foreigners. Two volumen came out ethch year. It was succesoful, as also was the Eisistoris heneraia (1730-3734) of Archibald Bower. ${ }^{\text {S }}$ The Bee, or. Uniorsal Weahly Pomphlet (r7374735) of the unfortunate Eustace Budgell, and the Lithary Sigesine (1735-1736), with which Ephraim Chambers had much to do, were short-lived. The last named was continued in 1737 as the Fistory of the Works of the Learmed, and was carried on without intermission until 1743, when its place was taken by A Lilerary Journal (Dublin. 1744-1749), the first review published in lreland. The Museum (1746) of R. Dodsley unired the character of a review of books with that of a literary magaxine. It came out fortnightly to the 12th of September 1747. Although England can show nothing like the Journal des sucants, which has flourished almost withourt a break for two and a half centuries, a nearly complete series of reviewa of English literature may be made up from 1681 to the present day.
Aiter the close of the first quarter of the r8th century the literary periodical began to assume more of the style of the modern seview, and in 1749 the title and the chief features were united in the Monthi? Reviev, established by Ralph Griffiths,' who conducted it until 1803, whence it was edited by his son down to 1825 . It came to an end in 1845. From its commencement the Recicy dealt with science and literature, as well as with literary criticism. It wat Whig in politics and Nonconformist in theology. The first series ran from 1749 to Deecmber 1789, Br vols.; the second from 1790 to 1815,108 vots. the third or new series from 1816 to 1830 ; 15 vole, and the fourth from 1831 to 1843,45 vols., when the magazine stopped. There is a general index $(1749-1789) 3$ volz, and another (1790-1816), 2 vols.
The Tory party and the established church were defended in the Critical Revicy (1756-1817), founded by Archibald Hamilton and supported by Smollett, Dr Johnson and Robertson. Johnson contributed to fifteen numbers of the Literary Magaxime (1756-1758). The reviews rapidly increased in number towards the end of the century. Among the principal were the Landon Review (1775-1780), A New Repicw ($1782=1786$), the English Reaiew (1783 -1796), incorpor. ated in 1797 with the Analytical Revicew (1788-1799), the AnsiJacobin Repicw and Magasine (1798-1821), and the Britisk Critic (1793-1843), the organ of the High Church party, apd firat edited by Archdeacon Nares and Beloe.
These periodicals bad now become extrenrely numerous, and many of the leading London publishers found it convenient to maintain their own particular organs. It is aot a matter of surprise, therefore, that the authon'ty of pertorline the reviews should have falico somewhat in public estimation. The tirne was ripe for one which should be quite independent of the booksellers, and which should also aim at a hisher standard of excellence. As far back as 1755 Adam Smith, Blair and othere had produced an Edinburgh Reviets which only ran to two numbers, and in 1773 Gilbert Stuart and William Stnellie ismued during three years an Edinburgh Masasime and Recicw. To Edinburgh is alvo due the first high-class critical journal, the Edinburgh' Review, extablished in October 1802 by Jeffrey. Scott, Horner, Broughata and Sydney Smith. It created a new era in periodical criticism, and assumed from the commencement a wider range and more elevated tone than any of its predecestors. The first editor was Sydney Smith, then Jeffrey for many years and later editors were Macvey Napier, William Empson, Sir G. C. Lewis, Henry Reeve and the Hon. Arthur Elliot. Its buff andhlue cover was adopted from the colours of the Whig party whose political principles it advocated. Among its more famous cont ributors were Lord Brougham, SIr Walter Scott, Carlyle, Hazlitt and Macaulay. Scott, being dissatisfied with the new review, persuaded John Murray, his London publisher, to start its brilliant fory competitor, the Outrerly Reviez (Feb. 1809), first edited by Wiliam Gifford. then by Sir I. T. Coleridge, and subsequently by I. G. Lockhart Rev. Whitweli Elwin. W. M. Mecpherson. Sir Wm. Smlith, Rowland Prothero and G. W. Prothero. Among the contributors in successive years were Canning, Scott (who reviewed bimselh, Robert Southey,

1 Archibald Bower (1686-1766) was educated at Douai, and became a fesuit. He subsequently profesised himself a convert to the Anglican Chnrch, and published a number of worke, but was more esteened for hie sbility than for his moral chasacter,

The biographers of Goldemith have mode us familiar with the name of Grifiths ($1720-1803$), the promperous pulblisher, with his diplome of L. D. Yranted hy an American moivenity, and with the quarrele between him and the poet.

Sir John Barrow, J. Wilson Croker, Isaac. Disraeli, A. W, Kinglaki (1824), eatablished by the followers of Jeremy Bentham, advocat 1 radical reforms in church, state and legislation. in 1836 it wht joined to the London Review (1829), founded by Sir William Moles morth, and then bore the name of the London and Westminstep Review till 1851, when it returned to the original title. Other quarteriy reviews worth mentioning are the Eclectic Rericw (18051868), edited down to 1834 by Josiah Conder (1789-1855) and supported by the Diseenters; the British Review (1811-1825; the Chistias Remembroncer (1819-1868); the Relrospective Revict (1820-1826, 1828, 1853-1854), for old books; the Foreign Quarteriy Reviay (1827-1846), afterwards incorporated with the Wesiminster; the Foreign Review (1828-1829); the Dublin Review (1836), a Roman Catholic organ; the Forcign and Colonial Qwarterly Revicw (1843* 1847); the Prospective Reviert (1845-1855). given up to theology and litersture, previously the Christion Teacher (1835-1844) : the North Brifish Review (1844-1871); the Briwish Qwarlerly Review (1845), succemor to the Brifish and Forcign Revicw (1835-1844); the New Quarterly Review (1852-1861), the Scoltish Review (1853-1862), published at Glasgow; the Wesleyan London Quarterly Review (1853-) ; the National Reviets $(1855-1864)$ i the Diplomalic Repan (1855-1881); the Trish Quarterly Revion (1851-1859), brought out in Dublin; the Home end Foreign Revicw (I862-1864); the Fine Arts Quarterly Rericw ($1863-1865$); the New Quarteriy. Magasine (1873-1880); the Catholic Union Review (1863-1874); the Anglican Church Quarterly Review (1875); Mind (1876), dealing with mental philosophy; the Modern Review (1880-1884); the Scoltish Revicw (1882); the A siatic Quarlenly Revirw (1886; since I891 the Imperial and A siatic Quarterly Revicw); and the Jewish Quarterly Revies.

The monthly reviews include the Christian Obsenver (1802-1857), oonducted by membera of the established church upon evangelical principles, with Zachary Macaulay as the first editor; and the Monthly Repository (1806-1837), originally purely theological, but after coming into the hands of the Rey. purely theological, but after comang into the hands of the Rey; Review (1865), edited successively by G. H. Lewes, John Morley, T. H. S. Escott, Frank Harris, Oswald Crawfurd and W. L. Courtney. was intended as a kind of English Revse des deus mondes. Since 1866 it has appeared monthly. The Contemporary Resicw (1866), long edited by Sir Percy Bunting, and the Nincleewih Century (1877), founded and edited by Sir James Knowles (q.v.), and renamed Nimeleenth Century and Afler in 1900 , are similar in character, consisting of signed articles by men of mark of all opinions upon questions of the day. The National Reviez (1883), edited succes. quely by Alfred Austin, W. Earl llodgson, and L. I. Maxse, is alone in taking editorially a pronounced party line in politics as a Conser. vative organ. Modern Thought (1879-1884), for the free discussion of political, religious and social subjects, and the Modern Review (1898-1894) may also be mentioned. Other monthlies are the Yrdian Magazine (1871); the Irish Monthly (Dublin, 1873); the Gaclie Jowrnal (Dublin, 1882); the African Reoiew (1892) and the Empire Reviaw (1900). The Monthly Review (1900-1908), edited till 1904 by Henry Newbolt, was for some years a notable addition to the high class fiterary monthlies

The weckly reviews dealing generally with literature, science and art are the Literary Gazelte (1817-1862), first edited by Willian Wontere. Buckingham, but successfully established by C. W. Dilke, and long cdited in later years by Norman MacColi (1843-1904), and afterwards by Mr Vernon Rendall; and the Academy (1869). Among those which also include political and social topics, and are more particularly dealt with under Newspapers, may be mentioned, the Eraminer (1808-1881), the Spectator (1828), the Saturday Revics (1855), the Scots or National Observer (1888-1899), Owllook (1898), Pilot (1900-1903), and Speaker (1890), which became the Nation.
Soon after the introduction of the literary journal in England, one of a more familiar tone was started by the eccentric John Dunton in the Alhenian Gazeut, or Caswistical Mercury, resolving all the most Nice and Curious Questions (1689-1690 to 1695-1696), afterwards calied The Atherion Mercury, a kind of fonerunner of Notes and Queries, being a penny weekly sheet, with a quarterly critical eupplement. In the last part the publisher announces that it will. be continued "as soon as ever the glut of news is a little over." Dunton was assisted by Richard Sault and Samuel Wesley. Defoe's Reviety (1704-1713) dealt chielly with politics and commerce, but the introduction in it of what its editor fittingly termed the "scandalous club" was another step nearer the papers of Steele and the periodical essiyists, the first attempts to create an organized popular opinion. in matters of taste and manners. These little papers, rapidly thrown off for a temporary purpose, were destined to form a very important

1 The centenary of the Edinburgh Review was celehrated in an article in October 1902, and that of the Quarterly Revicw in two articles Apri! and July igo9. See also On the Authorship of the First Hundred Numbers of the Edinburgh Rcvicu (1895), by IV. A. Copinger, and The First Ediubwigh Revicwers in Lilerary Siudies (1879), vol. and The First Edint
part of the literature of the Ithe century, and in come respecto the mopt mariced feeture. Athough the frequenters of the clabe and coffee-houses were the persons for whom the easay-papers wers mainly written, a proof of the increasing refinement of the age is to be found in the fact that now for the firt time were women specially addresed as part of the reading public. , The
Tatter was commenced by Richard Steele in 1709, and Tzeter, As issued thrice a week until 1711. The iden was at once extremely popular, and a doten similar papers were started within the year, at least one hall bearing colowrable inteations of the titho Addison contributed to the Taller, end together with Steely established and carried on the Spertatior ($1710-1714$), and subsequently the Guardice (1713). The sewspaper tax enlorced in 1712 dealt a hand blow at these. Before this time the daily issue of the Spectator had reached 3000 copies; it then fell to 1600; the prioe was rained from a penny to twopence, but the paper came to an and in 1714 Dr Drake (Essays illuslr. of the Rombler, Ace, it 490) drew up an to Johnson's Rambler, during a period of fortyone years, 106 papern of this description were published. Dr Drake continued the tirt down to 1809 , and described altogether 221 which had appeared within a hundred years. The following is a list of the mont considerable, with their dates, founders and chief contributors:-

Tailer (April 12, 1709 to Jan. 2, 1710-1711), Stecle, Addinon, Swift, Hughen \&e, Spactator (March 1, 1710-1711 to Dec. 20, 1714). Addison, Steele, Budgell, Hughes, Grove, Pope, Parneli, Swift, ac.; Guardian (March 12, 1713 to Oct. 1, 1713), Steeie, Addison, Berkeley, Pope, Ticikell, Budgelt, dec, Rambler (March 20, 1750 to March 14, 1752), Johneon; Adentwrer (Nov. 7, 1752 to March 9, 1754). Ha wivei worth, Johnson, Bathurt, Warton, Chapone: World Oan $4=1753$ to Dec $3^{0}, 1756$). E. Moore, earl of Chesterfield, R. O. Cambridge, earl of Orford, Soame Jenyns, \&c. Commoissewr. Uan. 3I, 1754 to Septe 30, 1756), Colman, Thornton, Warton, ear of Cork, ace. 7 fller (April 15,1758 to April 5, 1760). Johnoon, Sir J. Reynolde and Beanet Langton; Bes (Oct. 6, 1759 to Nov. 34, 1759), O. Goldsmich; MSTror (Jan. 23, 1779 to May 27, 1780), Mackenzie, Craig, Abercromby. Fome, Bannatyne, \&c; Lownecr (Feb. 5, 1785 to Jan. 6, 1787) Mactenaic, Cralg, Abercromby, Tytler; Obsefier (i785 to t790\%, Cumberland; Lookermon (March 10, 1792 to Feb. 1, 1794). W. Roberts, Bereaford, Chalmern.

As from the "pamphiet of news" arone the weelly paper wholly devoted to the circulation of news, so from the general newspaper was apecialized the weekly or monthly review of literature, antiquities and science, which, when it lncluded Modens esay-papers, made up the magazine or miscellaneous magarame repository of matter for information and amusement. Several monthly publications had come into existence aince 1681; but perhape the first germ of the magaine is to be found in the Genllements, Jownad ($1691-1694$) of Peter Mocteux, which, becidee the new of the month, contained mincellaneous proce and poetry. Dr Samele Jebb included antiquarian notices as well as literary reviews in his Babliothece lilteraria (1722-1724), previously mentioned, but the Gentloman's Magasine, founded in 1731, tully established, through the tact and energy of the publisher Edwand Cave (q.v), the typo of the magasine, from that time oo marked a feature of Englich periodical literature. The first idea is due to Motteux, from whom the ticke, motto and general plan were borrowed. The chiel feat ure in the new yenture at first consisted of the analysis of the journala, which Cave undertook pernomally. Prises wete aftered for poetry: In April 1732 the leading mecropolitan publiskert, joalows of the interloper Cave, started the London Magazine, of Gezilleman's Monthly Irtelligencer (1732-1784), which had a long and prosperout career. The new magaine closely copied Cave's title, plan and aspect, and bitter mar was long waged between the two. The tivairy was not without bencfit to the fiterary public, so the conductor of each used every effort to improve their own review. Cave intro. duced the practice of giving engravings, maps and portraits, but his greetest saccess was the addition of Samuel Johnson (q-v.) to the regular ataff. This took place in 1738, when the lattor wrote the preface to the volume for that yetr, observing that the magazine had "given rise to aimost twenty imitations of it. which are either all dead or very little regarded." The plan was also imitated in Denmark, Sweden and Germany. The Gentleman's Magasine was continued by Cave's brother-in-law, David Henry, alterwards by John Nichols and his son.' Cave appears to have been the first
${ }^{2}$ The firt series of the Genileman's Magasine or Trader's Moubllyz Intellizemcer, extended from January 173 I to Decenaber 1735,5 volsh; the Centlemon's Magasime and Hastoriced Chronide from January 1736 to December 1807, vols. 6-77; new earios, January 1808 to December 1833, volk, 78-103; new eeries, $1834-1856$, 45 vols.; new (third) series, 1856-1865, 19 vole; new (fourth) ecries, 1866 1868, 5 vols. A generd index to the firte twenty nole appeared in 1753. S. Ayscough brought ont an Inder to the frot fifcy-ax vols. $1731-1786$ (1789), 2 vols. End one by J. Nichole, $1787-1818$ (182 I), 2 vola. A complete list of the plates and woodeuts (1731-1813) was publinhod in 1814, and another liot (i73t-1818), if 1821 . The Cemileman's Magomine Library, boine se clastivint callection of the chiof contets of the Genlleman's Magatime, from 1731 to 1868 , it now

 Fierature The epecialy antiquarian, biozraphical and hidorical feateren, which male this magexine moumble a storobouse for informintion for the period it covert, were dcopped in 1868, when an "entimly vew serpen" midcellay of light liferature was execessively adited by Gowing, Joseph. Hatton ead Joweph Knitht.

Mary other magasinee mere produced in connequemoe of the buecone of there two. It will be sufficat to mantion the lollownt The Scols Mogatine ($1739-1817$) wan the first poblished in Scothedi feen 1817 to 1826 it wis styled the Pdindweg Magatims. The Uneared
 Yagative lounded by Jame Perry in 1782, lated down to Ian6. Of mofe importancs than thete, or than the Royill ICpasine (1759 1771) wes the Monkhly Magasine (1796-1843), with which Prienley ghd Godein were or ginally connected. Duding thirty yeare the Mowthly was condacted by Sir Rlchard Phillipe, under whom bt became more statistical and scientific than literary, Clas maganiney were repreventer by the Edinburgh Rormit's Magasier (1800-1825) and the Philasophical Magasine (1798), establighed in London by Alemander Tilloch; the latter at fin coneisted chiefly of tramationit of eientific articles from the Freach. The following perlodiall, all of which date from the 18th ceatury, are still publiahed: the Gespot Marasime (1766. with which is incorporated the Erilish Proterftim), the Westrpan Ifethodiof Mogasins (1778), Curtis's Batonical Magutine
 Sritish Mittimary), the Philosognical Mapasina (1798), now known as the Lowdon, Edinbwigh ard budin Phiosophicd r aganime.

The increaced influence of thls clase of periodical upon public
 founded in 18 IT by the publisher of that mame, and carried to a high degree of excellence by the contributions of Stott, Locketert, Hogs, Magian, Syme and Joha Wiloon ("Christopher North" ${ }^{\text {" }}$, John Galt and Samuel Warren It hat always remained Liberal in literature and Conservative in politica. The Now Mondaly Magaine is somewhat earlier in dete It was founced in 1814 by the London publioher, Colborn, and was edited in turn by Canpbell, Tbeodore Hook, Bulwer-Lytton and Ainsworth. Many of Curlyte's and Thackeray's pieces first appeared in Praser's Magetine (1830), loog famons for its perwonalities and it gallery of literary portraits. The Mefropditam Megative was started In opposition to Fraser, and was first edited by Campbell. who had left fos ival. It mubnequently came Into the hand of Captain Marryatt, who printed in it many of his nea-tales. The Broish Magarime (18321849) included religious and ecclesiastical information. From Ireland came the DuNin Unieersily Magemine (i833). The regular price of theep magazinet was hall a crown; the frot of the cheaper ones was Teif s Dimbargh Magoim (1832-1861) at a shiling. It mas Radical In politice, and had Rochuck as one of ita founders. Pewlleys Mincollony ($8837-1868$) was exclugively devoted to noveis, light literature and travels. Several of Aiasworth's romances, ifluatrated by Crullahank, firut gaw the light in Beniky. The Nastiont. Metande (5832) was addrewed specially to miloren and Colbatris Umions Sereice fowryal (t 4 ag) to both ervices. The Ariatic Jownal (i8!6) deale with Ortentsi subjects

From 1815 to 1820 number of low-priced and unwholesome periodicals ilourished. The Mirror (1823-1849), a two-penny Chasp Bing the Miluted magaine, berun by john Limbird, and mallane the Machanizs Maparion (18z3) were steps In a better popplar demand and a mpply of cheap and healthy eerial for the readias multitede commenced with Chanbers's Journal (I832), the Pawny Kagatiot ($1832-1845$) of Charies Knight, and the Satherdiny Magonian (18y-184), besun by the Society for Promoting Christian Knowiedie. The frre was published nt id. And the last two at id. Koltht eveured the best authorm and artiste of the day to write for and thimetrate his maysine, whieh, though at first a commercial anceess, nay have had the reagon of its eubrequent dincontinuance if its litompy excelletice. At the end of 1832 if had reached a male of 200,000 in weicly numbers and monthly parta it came to nn end in 1045 and was mucoeeded by Kinighs Penwy Magasine (1845), which wateroppedafter dementhly parts. These periodicals were tliowed hy a number of penny weeldies of a lowir tone, such
 Yircellewy. In 1800 the tale of the first of them wat placed at $\mathbf{1 7 5 , 0 0 0}$ coptes, tho eecopd at 170,000, and Lloge's at 95,000. In 1.46 foerteen pentry end three hilh-penay maguaines, twelve eccial journalep and chity woven book-werinls were produced every week In London A further and petmanent improvement in chesp weciciet for home retins may be traced from the foundation of Howir's Jownal (1847-1849), and more especinlly Housthold Words (1850), conducted by Charles Dieltens, Ah fo Year Roynd (i8s9), by the mame editor, ond tferwards by his mont, Once A Weet \}r859; and the Loisure ETow (1852). The phan of Nplos and Qwevies (1849). for the puypose of inter-eommunication among those intereted in apectid pointa of literaty and antiquarian character, has led to the

[^12]adoption of cismilar dopartimets In a tert anmber of newrpapen and periwdicala, and, betldes everal finitutors in England, there tes now paralled jouraila in Holland, France, and lymis.
Shilling monthities beyas with Macmilla* ($18 y 0$), the Cornhis (1860), firt edited by Thatwerty, and Tonsile Eor (1860). Si James's Mapreine (1861), Belrasia (1866), St Pau's (1867-1874). London Socity (1860), and Tiender's (1867) were deveoed chiefy to bovels and ingt reading. Stupenay illuterated magatione compmanced with Coos Words (r 86) and the Q wivo (1861), both rell givus in teadracy. In 1882 Presw changed ite mane to Lemgman's Mopasion and was popriarined and reduced to tapence. The Corminill fothowed the eame erample in re83, teduefing fite price to sixperoe and devotiog its pages to light reading. The Eugher Illungrated Masastan (1883) wat brought out in competition with the Amariean Horgw's and Cembery. The Pall Mall Mapaine followed in 1893 . Of the artistic periodical: we may signalite the Ant Joweral (1849), Perifolio (1870), Mgeatite of An (1878-1904), Sudio (1893), Cpmodosew (1901), and Bulinttots (1903). The Boolmes (i8d , for a combination of popalar and literary quiltien, and the Bedenflew (1895), for sport, aloo deverve mention. One of the motat chartateristic dovelopments of later journalisun wat the entablimment in Itgo of the Revien of Revlees by W. T. Stead. Meenwhile the number of cheap periodicals incremed enormonsly, mach as the weeldy Tit-bits (1881), and Ameors (1888), and prolusely Mustrated my minee appered, Hise the Strasd (IC91), Peorson's (1896), or Winder (1895). Profentions apd trades now have not only their general chatperiodical, but a special review or magaxine for eptry sections. In IgIo the ragetaines and rwiows publinhed it the United Kingiom nuwbered 8795 . Religjous periodicals wert 668; 33^{8} wero dovoted to trade; 361 to eport; 691 repretented the profcoional ciasest 51 Agriculture; and 218 were juvenile periodicald The Lohdon monthlies were 797 and the quarterlies 155 .

Findaest to Esplisi Poriodicalen A larse number of periodicals do not preserva ifterary matter of permanent value, but the blegclate reviow and the archseological, antistic and acientific magatine contain a great mase of valuable facts, so that general and special inderem heve become pocesuary to all literary workers. Lista of the reparate indeases to particular verica are given in H. B. Wheatley's What is an Inder P (1879), W. P. Courthey's Repieder of Nationet Bialiography (rgos, vols), and the Eied of Boeks formion the Reforenei Zurary in the reading room of the Britimh Mureum (4th ed. 1910, a vals).

 Periodiagte in ite Bodl, Lib.; pt. 1., "English Periodicals 14 (18ya); Cah of the Hope Collerion of Eanly Naworencra and Escayists in the Bodl, Lib. (r80); Scudder, Cat. of Scienkite Strals (1879); Andrewn Hish of Bria Jourmatiom (IOsp); Cucheval Clarigny, Hut de la Preste. at, Andeterve of anse flats Uwis (1857) ; Madden, Aftid. of Intoh Poriod. Lie (186y) ; J. Grant, The Grani B/HopaHs, ti 229-3e7; "Periodical Enanys of the Are of Amng" in N. Americas Rew. vol. wivl. ; Drake,
 Addsom ("Eny. Men of Lettern" 1884); "Porgotten Periodical Pubtications" in Notas and Quriay, 3nd merlea, vol. ix. P. 334 "A Alootat of Periodical Litimary Joarnaty from 168r to I744," Dy
 and Quariay, 1st verien, woi. vi. pp. 327 435; "Lat Century Mapanines" in Prase's Mag. Sept. (1376), p. 325 ; "Periodlent during $1712-1732$." in Noter and Ouries, 3rd maries, vol. is. p. 78.
 "Earty Roman Catholite Magasifies" iba, 6th atiten, vol, it, P \& \&en. IV. ali; Timperley, Bercy. of Kif. Anee (1842); C. Knigit, The Oid Printe and al Moden Prats (1854) and Pasnegas of

 Beolethly (Pebruary 1867, Jupe and Joly I868, Auguet Yo74, Juls 1879): "On the Unstamped Prese", Moies and Quepits, 4th erife
 7xi-726i" Contribution Toward an Index of Serial Storiea. ${ }^{11}$ by W. L. Hetcher, Ziboory Jowimal (r8BI). vi. 49, $166 ;$ wywaye of Periodical Literature." Walford'e Anng. Mag. (5887), xi, r79-186,

 Nleolh, Eoomat (ikgs), vol. i. : "The Periodical Prem, is6p-18gs" by T. H. S. Encott, Etachood (1894). 2p. 156, 532; "Bibliography of Periodical Liternture," by F. Campben, The Itiray (IEOS), vith $491^{\text {" Bibliography of the Eritheh Periodical Preas," by D. Williams }}$
 Revirwe" by A. Wargh, Critc, vol. 40; "Rucurnes on Perlodical Critician," Saintabury, Zivtery of Crithairn (1909), iti. 402498. As reatrds the treatment of periodieals in thraties cee whelpe
 [raphy (1897); "Co-operitive lista of periotionts," Lidropy Jominal, (ityo), daiv. 29-32. "Union Lite of Periogicale in Chichgo Libreries" Pucric Libvaries, Chivago (y900), y, 60; "Care of Periodicals In a Library," by F. R. Jachaon, Pubic Libravier, Chicago (1906), vol. xi. Complete fists of eumint Ditian priodical are inctudet in Mitchell's Newspaper Prass Direclory, Streat's Niwspapar Diractory, and Whiting'a Press Gmid, and a mect lite and otiver mormation tre Svin is th Linnery Yee Bubl

United States
The two earlient American miscellanies were produced almot simultaneoualy．Spurred by the nuoces of the Gendeman＇s Meqarines in Enaland Benjamin Franklin founded the Gemeral Magasine （1741）at Philadelphia，but it expired after aix moothly numbers had appeared．Franklin＇s rival，Andrew Bradford，foremalled him by three days with the Amorican Magaine（174i）edited by John Webbe，which rea only to two number．Further attempes at Philedelphia in 1757 and 1769 to revive periodicale with the seme pame werse both fruitlems．The other pre－revolutionary magarinea vere the Bonton Americam Magasing（1743－1747），in imitrtion of the Lomdom Magasine；the Bosion Weady Magaine（174））；the Christian History（1743－574））the New York Indopendont Eyfator （1752－1754）；the Boaton New England Magaine（1758－1760），a collection of fugitive picoes；the Bonton Royel Americas ilagarime （172－1775）；and the Pannotoamia，Majasine（1775－1776），Founded by Robert Aitken，with the help of Thomas Paine．The Calumbien Yagasine（ 1786 －1790）wan continued as the Universal Asydum （ $1790-1792$ ）．Matthew Carey brought out the Americas Mrsewem in 1787，and it lated until 1792．Among the other magarines which ran out a brief existence before the end of the century was the Philadelphia Political Cressor or Moublly Review（1796－1797）edited by William Coboctt．One of the most suocesaful was the Former＇s Weekly Museum（1790－1799），supported by perhape the moot brilliant staff of writers American periodical literature had yet been able to show，and edited by Joweph Dennie，who in IsoI began the publication of the Pertfolio，carried on to 1827 at Philydelphis For five years it was a weekly miscellany in quarto，and aftorvarda an octavo monthly；it was the first American serial which could bonst of so long an existence．Charles Brockeden Brown entablished the New York Monthly Magasine（1790），which，changing its title to The Americas Review，was continued to 1802 ．Brown founded at Philadelphia the Literary Magasine（1805－1808）；he and Dennie may be conaidered as having been the first American profescional men of letters．The Anthology Club was established at Bonton in 1803 by Phlneas Adams for the cultivation of literature and the discumsion of philowophy．Ticknor．Everett and Bigelow were among the members，and were contributors to the organ of the club． the monthly Antholosy and Boston Retiew（1803－1811），the fore－ runner of the North A merican Reviecr．In the year 1810 Thomas （Princing in America，i．292）informs us that 27 periodicala were insued in the United States．The first serious rival of the Portfolio was the Amalectic Mafasine（1813－1820），founded at Philade（phin by Moses Thomas，with the literary assistance of W．Irving（for come time the editor），Paulding，and the ornithologiat Wiloon．In epite of a large subscription litat it came to an end on account of the costly style of its production．The firtitsouthern werial was the Komilly Register（Igos）of Charleston．New York pomemed 20 periodical worthy of the city until 1824，when the Allomic Mapasime appeared，which changed its name shortly afterwards to the Neto Yark Momlity Retiow，and was eupported by R．C．Sends and W．C．Bryant．N．P．Winlis what one of tbe editore of the Nee York Mirror（1823－1842）．Between 1840 and 1850 Graham＇s Lagasine was the leading popular miscellany in the country，reaching at one time a circulation of abouk 35,000 copies．The firat western periodical was the Illinois Mouthly Marasine（1830－1832），published， owned，edited and almont entirely written by James Halu，who followed with his Western Monthly Magasine（1833－1836），produced in a similar manner．In 1833 the novelist C，F．Hofman founded at New York the K zickerbocker（1833－1860），which $800 n$ passed nnder the controd of Timothy Flint and became extremely succesefui， moat of the leading native writers of the next twenty yoars having been contributorn．Equaily popular was Putwam＇s Mondity Magasine （1853－1857，1867－1869）．It wasrevivedin 1906－1910．The Dial（I840－ 184），Boston，the organ of the transcendentaists，was firsk edited by Margaret Fuller，and subsequently by R．W．Emerson and G． Ripley．Other magaxines were the American Monthly Magasina （ 1833 －1838），the Southern Literary Messenger（1834）．Richmond，the Genileman＇s Magacine（ ${ }^{1837-1840 \text { ），and the International Magaxine }}$ （1850－1852），edited by R W．Gnswold．The Yale Liverary Maganine dited from 1836．The Merchandr＇Magamime was united in 1871 with the Commercial and Financial Chronida．First in order of date among the current monthly mitorines comes the New York Fiarper＇s New il onthly Moga aine（1850），thes arliest existing illustrated Amorican serial，then the Boston Allantit Monthly（1857），with which was incorporated the Galaxy（ 1866 ）in $\mathbf{8 7 8}$ ，fa mous for its editors Lowell， Howells and T．B．Aldrich，ant its contributors O．W．Holmes， Longletlow，Whittier and other Next came Lippincott＇s Mapwina （i868）（rom Philadelphia，and tho Carmopolitam（i886）and Scribner＇s Yonfily（ 1870 ，known as the condury Mustratod Magazime since 1881）from New York．These we followed by Scribner＇s Magasine （1887），the New England Magasile（1889），the Mustraled Review of Rerimes（ 1890 ），MeClure＇s Magui so（I893），the Bookman（1895），the Woild＇s Work（igoz），the Amerizan Magalae（1go6）moceeding Frink Lealic＇s Mopmor Mondily，and M（mneng＇s Magasine（1889）． All are illustrated，and three in particular，the Century Scritont＇s and Farper＇s，carried the art of wood－engraving to a high standard of excelience．
The first attempt to carry on an Amerioan review was made by Robert Walsh in 8811 at Philadelphis with the guarterly impicen
 Scill more briel way the eximence of the Genaral Reposicis Roviow（i812）．brought oun at Cambridge by Aurreve Norton with the belp of the professors of the univerity，bot of which saly lour numbers appeared．Niles＇s Woeky Reguep（5811－1848）was political，historical and literary．The North Amervass Rowinas，the oldest and rnose famons of all che American revieme dates from ists and was founded by Willism Tudor，a mpember of the previonaly mentioned＇Anthology Club．After two years＇conruol Tudor handod over the review to the club，then styled the North Ameriean Club phowe mon sctive menbers were E．T Channag．R．H．Depa and Jared Sparka．in 1819 E：Everect became the edicor；has brocher Nexander acquired the property in 1899 ．The roll of contributors nurabere almoet every Ameriean writer of nove．Since 1299 it hat been publishod monthly（except in Sept．1906－Sept．c90n，mien in ap－ peared semi－monthly）．The Americas Qwartery y inace（r897－1837）． atablished at Philedelphia by Robert Walsh，came to an end on his departure Cor Europe．The Southern Qmarterly Remion（1828－ 1833），conducted by H．Legare，S．Elliot and C．W．Simms in defe⿴囗十力 of the politice and finanoe of the South，enjoyed a shorter career， It was resuscitated in 1942，and lived anocher shirteen yearn．These two were followed by the Domocratic Reaien（ $183^{8}-10 \leqslant 2$ ），the A merican Review（1845－1849），afterwards the American Whet Revire（ 1850 1852），the Lastach Msells Quartery R Rewiew（1847－1890），aad I fe more． The Neve Englander（1843－1892），the Biblical Repertory aad Princelen Revinw（1825），the Nehional（martarly Retriew（1860）ind the New York Inkernational Revicw（ $1874-1883$ ），may also be mengioned． The critical weekliee of the past include the New York Letepary Ganelle（1834－1835，1839）．De Bow＇s Review（1846），the Litarar Wond（1847－1853），the Criterion（1855－1856），the Romad Tablo （1863－1864），the Citisen（1864－1873），and Applalos＇s Journal（1869）． The leading current monthies include the New York Formm（i886）， Arema（1890），Current Lileralure（1888），and Bookman，sthe Chicago Dial（1880），and the Greenwich，Connecticut，Literary Collaction． Foremont among the weeklies comes the New York Nation（1865）．
Religious periodicals bave been extremely aumerow in the United States．The earlicst was the Theological Magaine（1796－1798）． The Christuam Exominer date from 1824 and lanted down to 1870 The Pamoplist（1805）changed its name to the Mistiomery Henald representing the American Board of Mistions．The Melindist Nagazine dates from 1818 and the Chricliam Divaple from 1813 The American Biblical Resparitory（183i－1850），a quartenty wa united with the Andover Bibliohhocs Secra（184，3）and with the Theological Extectic（1865）．Brownson＇s Owarterly Review began as the Boston Quarterly Revicw in 1838，and did much to introdice to American readers the works of the modern French philosophical echool．Other merials of this clase are the Protestamb Epricopal Quarlerly Revicw（ 1854 ）．the Presbyterion Magavine（ $1851-1800$ ）， the Catholic World（ 1865 ），the Sowethern Reole（2867），the Now Jerusalem Magasine（1827），American Baplift Magamine（1817），the Cherch Reviaw（1848），the Christian Review（1836），the Umintsalist ouarterly（1844）．Current religious quarertics are the Chicago American Journal of Theolepy and the Oberlin Dibliokence Sacra． The Chicago Biblical World in published moathly．
Among historical periodicals may be numbered the Amaricem Register（ $1806-1811$ ），Seryker＇s Americas Regisler（ $1844^{4}-18 \mathrm{~S}_{3}$ ）， Edwarda＇s Americas Onarkerly Register（1889－1843），the New， England Historical and Genealogical Register（1847），Folsom＇s Historical Magasine（1857），the New York Genoalogical Record （1869），and the Magasise of American Bistory（1877）．There is alsa the Lancaster，Pennsyivania，Americar HisLoricel Reviow，imued quarterly．

Many serial publications have been almont entirely made up of extracti from English sources．Perhaps the cartiest ecrample is to be found in Select Vierus of Literalurs（1811－1812）．The Edectif Magarine（1844）and Littll＇s Living Agc（1844）may be mentioned．
In 1817 America poserssed only one acientific periodical，the Journal of Mincralopy．Professor Siliman established the journal known by his name in 1818 ．Since that time the American Journed of Science has enjoyed unceasing favour．The special periodicaio of the day are very numeroun Anong the mont representative are：the Popular Saience Monilly，New York；the morthly Bonion Journal of Education；the quarterly，A merican Jomenas of Molthe matics，Baltimore；the monthly Cassier＇s Magasine（1801），New York： the monthly American Engincer（1893），New York；the moathly House and Carden，Philadelphia；the monthly A strophysical Jomertal． commenoed a Sidereal Lessenger（2892）．Chicagol the visorthly Americas Chemical Jouruah Baltimore；the monthly Anericail Naturalise，Boston；the monthly American Jowmal of in Yadical Saiences，Philadelphia；the monthly Omink．New York the metly Americas Agriculdwrist New York；the quartedy Medophyticel Magazine（1895）New York；the bi－monthly Americam Journal of Sociology，Chicago；the bi－monthly Americem Lew Revien，St Louio： the monthly Banhr＇s Mapasime，New York；the quartedy Americuat Journal of Philology（ 1880 ），Baltimore；the monthly Library Jownel （1876），New York；the monthly Pubtic Liverics，Chicago：the weekly Seientific American，New York；the quarterty Ambricas Jourmal of Archoenolecy（1885）．New Yort

The number of periodicals devoted to light literature and to fermah readers has been，and atill rempering to ligtt literature and to lenale

In the fatter chase was the Lady's Meposine (179a) of Philadelphin. The Lewell Ofering (1841), was written by factory sirls of Lowell (gan), Maen Godey's Lody's Book was long pepular, and the Ladies Home Jommal (1883) and the Woman's Home Compawion (1893) are mow current Children's matgaxines oritinated with the Youns Micmes Magavine (1806) of Brooldyn; the New York Sl Nicholes (moathly) and the Boaton Youlh's Compawion (weeldy) are promiment juveailea
The total of American periodicals mentioned in the Gxitis by H. a. Severance and C. H. Walsh (1909, Ann Arbor), is 5136 for the year 1908.
Authonitiss. -The eighth volume of the Tenth Report of ide United Slates Connms (1884) contains a statistical report on the zewspaper and periodical press of America by S. N. D. North. See also Cucheval Clarigny, Histoive de ba presse en Angleterve a amx blaby Uwis (1857); H. Stevent, Catologue of Americon Books ine Library of the British Musewm (1866), and American Books with Taids to emin (1873); 1. Thomas, Hislory of Priating in America (Albany, 1874); J. Nichol, A merican Literature (1882);"Check List of American Magazines," in Librory Journ., xiv. 373i G. P. Rowell \& Ca's Americam Newspaper Directory (New York); A. R. Spofford, Beak for all Readers (1900); F. W. Faxon's Chect list of American and Enplisk Periodicals (Boston, 1go8). Many American Kibraries co-operate in issuing fofint or union fists of periodicals. See list of these as well as lists of special indexes in A. B. Kroeger's Guide 6 Refarence Beohs (2nd ed., Boston, 1908).
Inderes to Perioilicals.-The contents of English and American periodicals of the last 100 years are indexed in the following publications: W. F. Poole's Index to Periodical Literature (1802-1881, revicod ed., Boston, 1891); rst supplement, 1882-1887, by W. F. Poole and W I Fletcher, 1888; 2nd supplement, 1887-1892, by W. I. Fletcher, 8893 ; 3rd supplement, $\mathbf{r 8 9 2 - 1 8 9 6 , \text { by W. I. Fletcher }}$ and F.O. Poole, $1898 ; 4$ th supplement, 1897-1902, 1902 ; 5th supple. ment, 1900-1907, 1908; Poole's Index, abridged edition, by W. I. Fletcher and M. Poole (Boston, 1901); 1 st supplement, $1900-1904$ (Boston, 190j): Thy Co-operative Index to Periodicals (1885-1894, ed, W. 1. Fleteber, 1886-1894); The Anxual Literary Index, including Periodicels, ed. by W. 1. Fetcher and R. R. Bowker (New York 10 vols. 1892-1907); "Index of Periodicals for 1890," \&c. (Review of Resicus), by Misi Hetherington (13 vols., $1891-1002$); 0. P. Indexes; Cotgreave's Contonts Sutject Index io General and Periodical Literamure (1900): Cummalation Index so a Selected list of Periodicals, begun in the Cleveland Public Library in 1896 and 1897 by W. H. Brett, merged 1903 with the Reader's Guide to Periodical Literature (8 vols, 1901-1908, ed. by A. I. Guthrie, Minnea polis. U.S.): Magarime Subject fondex. by F.W. Faxon (Boston, Igo8), continued quarterly in Bullelin of Buldiggophy, which in 1907 began a magazine subject index: Edectic Librory Calalogue (Minneapolis, 1908), issued quarterly.

Canada

Canadian periodicals have reached a bigher standard than in eny other British self.governing colany. Like that of South Arica, the press is bi-lingual. The firat Canadian review, the Quebec Mafazine (1791-1793), was published quarterly in French and English. It was followed by the British American Register (Quebec, 1803), L'Abeill camadienme (Montrealy 1818), edited by H. Mexiere, the Canadiam Magasime (Montreal, 1823-1825), the Conadian Review (Montreal, 1824-1826), La Biblionhique conadienme (Montreal, 1825-1830), continued as L^{\prime} Obsersateup (1830-1831), and the Magasin om Bas-Canads (Montreal 1832). The three latter were edited by Michel Bibaud. The Literary Gurhund (Montreal, 1838-1850), edited by John Gibson, was for some time the only English' magazine published in Canada. Later magazines were L'Echo du cabinet du leclure paroissial (Montreal 1859), 15 vols; Le Foyer camadies (Quebec, 1863-1866), one of the most interesting French-Canadian reviews; La Revue cenadimne, which was etarted at Montreal in 1864, and contained the best writiogs of contemporary French-Canadian littérateurs; La Reoue de Montroal ($1877-1881$), edited by the abbe T. A. Chandonnet; the Conadian Journal (Toronto), comrnenced in 1852 under Henry Youle. Hind and continued by Daniel Wilson; L 'Abeille (Quebec, 1848-1881), and the Casiadian A(quithty (Toronto, 1872-1882). The Syslander (Toronto, 1880-1883), was edited by Goldwin Smith. Le Camada frameais (Quebec, 1888-1891), edited by the staff of the Laval University, and Caticdiana ($8889-1890$), were important historical and literary reviewa Contemporary magazines are the Canodiam Macorine (1893), the Westminster, both produced at Toronto. La Noupello- Framce (Ouebec), the Canada Mosthly (London, Ontario), apd the Usiversily I Iogasize, edited by Professor Macphail, of the MeGill University.

See H. J. Morgan, Bibliothece camadensis (1867), "Canadian

 Maparinea, ${ }^{\text {W }}$ by G. Stewart, Canedias Monthly, vol xvii: "Periodicai Literature in Canada," by J. M. Oxley, North Am. Rev. (1888); P. Gagnon, Essai de brbiograplic comadienve (1895), and S. E. Dawson, Prose Writers of Camada (1901).South Africa
The eartiest magazine was the South.Africicn Journal, issued by the poet Pringle and John Fairbairn in 1824 . It was followed by the Soun Afrucon Quarterly Joumal (1820-1831). the Cape of Good
Hopo Literary Gasettr ($1830-1833$), edited by A. J. Jardint, the Cape
of Good Hape Lilerory Mapatine (1847-1848), edited by I. L. Fitspatrick, and the Easiern Province Monilhy, Magasine, published at Grahametown in 1857-1858. A Dutch periodical called Elpis, algmoew tijdschriff eoar Zuid Afrika (1857-1861) appealed to the farming community. The Eastern Province Magasine was issued at Port Elizabeth in 186r-1862, and the South African Magazine appeared in 1867-1868. The Orange Fren Stato Magazine, the only English magazine published at Blocmfnntein, was isaued in 1877-1878; and the E. P. Magezine was published at Grahamstown in 18921897. The Cape Monthly Mrescrine, the most important of the periodicals, was issued from 1857 to 1862, and was again continued under the editorship of Professin Noble from 1870 to 1881. The Cape Illustrated Magasine (180) -1899) was edited by Professor J. Gill. In Durban the Presen! Centwry was started in 1903, and the Natal. Magazime was issued it Pietermaritzburg in 1877. The Weekly Now Era (1904-1905) wil succeeded by the South Africas Magazine (1906-1007); both we edited by C. H. Crane. The African Monihly (Grahamstown, 1907) and the Slate of South Africa (Cape Town, Igo9) are monthly reviews, while the South African Reilway Magazine (1907) is of wiler interest than ita name denotes. See S. Mendelssohn, South A/ican Bibliagraphy (2 vola, 1910); and P. E. Lewin, Calaloguc of lie Port Elisabeth Library (2 vola, 1906).

Australia and Nbw Zpaland

New South Wales.-The Anstralian Magazine was published monthly at Sydney in 1821-1822. This was followed by the South Asian Register (1827), tbe Anstraliam Ouarlerly Journal (1828), edited by the Rev. P. N. Wilton, the New South Wales Mogasine (1833), the New Souph Wales Literary, Polifical and Commercial Adwrtiser (1835), edited by the eccentric Dr Lhotsky, Trg's Monflly Magaaine (1836), the Australian Magazine (1838), the New South Wales Magasine (1843), the Australian Penny Journal (1848) and many others. The Sydney Umiversily Magasine (1855), again published in 1878-1879, and continued as the Sydicy $\mathrm{Vmi}^{\mathrm{m}}$: wersity Rovice, it the finst magazine of a high literary standard. The Syducy 1 (asosine of Science and Arr (1857) and the Month (1857) were short-lived. Of later magazines the Australian (18781881), Aurora axutralis (1868), and the Sydmey Magazine (1878), were the most noteworthy. Of contemporary magazines Dajgely's Revirs is mainly agricultural, the Australian Magasine (1909) and the Lons Hand (1907) are popalar, and the Science of Man is an anthropological review.
See Australasion Bibliography (Sydney, 1893); G. B. Barton, Likrabure of N. S. W. (1866); E. A. Petherick, Calalogue of Books Relating to A ustralasia (1899).

Vicloria.-The Port Phillip Magasine (1843) must be regarded as the frst literary vemare in Victoria. This was followed by the Auslialia Felix Magazine (1849) and the Australasian Owarterly Reprint ($1850-185$!) both published at Geelong, the Illmstrated Australias Magasine ($1850-1852$), the Awstratien Gold-Diger's Momitly Magasine (1852-1853), edited by James Boawick, and the Helbowrne 2 onthly Magatine ($8855-1856$). The Jowrnal of Austrat asia (1856-1858), the Australian Monihly Magaxime ($1865-1867$), which contained contributions from Marcus Clarke and was continued as the Colonial Monihly (1867-1869), the Malbourme Revicw (1896-1885) and the Victorian.Review (1879-1886) may also be mentioned. The Imperial Repicw, apparently the work of one pen, has been publisthed since 1879: the Pastoralisto' Revicso appealo more especialiy to the egricultural community. A Library Record of Awfralasic was published in 1901-1902. An Australian edition of the Revicw of Revicwes is published at Melbourne.

See "Some Magazines ol Early Victoris,' in the Library Recoord of Axulyalasia, Nos $2-4$ (1901).

Soulh Axctradia. -The Sonth Australian Magasine was izeued monthly in 1841-1843, the Adelaide Marasime (1845), the Adeloite Miscellany (1848-1849), and the Wanderer in 1853. The Sowth Australian Tuopensy Magasime was published at Plymouth, England, in 1839, and the Sond Aastralias Miscollamy and Now zealand Review at London in the same year.
Soe T. Gill, Bibliogrophy of South Australic (1886).
Tasmania.-The first magazine was Murray's Austral-Asiatic Review, publighed at Hobart in 1828. The Hobard Town Mgasin! appeared in 1885-1834, and the Van Diamon's Land Momelt Magatime in $\mathbf{8 8 3 5}$.
Now Zoalend.-The New Zeadand Magarins, a querterly, was puibished at Wellington in 1830. In 1857 appeared the New Eaviland Qwarterly Revieso, of irtile local interest, followed by Chape man'a Now Zecilond Momily Magaine (1862), the Southerm Konilhly Magasime (1863), the Delphic Onacis (1866-1870), the Sthic (1871). the Dunedin Reqiete (1885), the Ziterary Magasime (1885), the lour fatter being written by J. G. S. Grant, an eccentric genius, the Mowny Reoiev (1888-1890), the. New Zaaland Illustrated Megazion (r8g9-1905), chiefly devoted to the light linerature of New Zealand nubjects, the Maori Record (1905-1907), and the Red Fanach, pube liaked since 1905.

See T. M. Hocken, Bibliography of New Zealand (1909),
West Indies and Beitish Crown Colonies
In Jamaica the Columbian Magasire was founded at Kingstoa in 8796 and ceased publication in 1800 . Two volumes wert
published of a Now Jamaica Marasime which was etarted about 1798. The Jamaica Mapasine (1812-1813), the Jamaica Monthly Magamend (1844-1848), and the Vicloria Quartarly ($1889-1892$), which contained many valuable articles on the West Indies, were other magasines. The West Imdian Quarterly was published at Georgetown, British Guiana, from 1885 to 1888 . At Georgetown was also published the well-known Timehri (1882-1898) which contained many important historical articles. In Trinidad the Trinidad Monithly Mafasine was started in 1871, and the Union Magasine is 1892.
Malts had a Malla Penny Maqasine in 1839-184\%, and the Reoue historique al lilltrairg was founded in Mauntius in 1887 . Many magaznes dealing with the colonies have been publithed in England, such as the Colonial Magasine (1840-1843).
See F. Cundall, Bibliographia Jamaicensis (1900-1909).

India and Ceylon

Calculta.-The first Indian periodical was the Asiatich Miscallony (Calcutta, ${ }^{17} 7^{85} 17^{89}$), probably edited by F. Gladwin. The Coleutla Monthly Register was published in 1790, and the Cal. cutco Monthly Journal from 1798 to 1841 . Among other early Calcutta magazines were the Asiatic Obserser (1823-1824), the Ouarlerly Oriental Magaxime ($1824-1827$), and the Royal Sporting Mafarine ($1833-1838$). The Calcutte Luepary Gasethe was published in $1830-1834$, and the Calculla Review, atill the most important serial of the Indian Empire, first appeared in 1846 under the editorship of Sir J. W. Kaye.

Bombay.-The Bombay Mogasine was started in 18 n and lasted but a short time. The Bombay Quarterly Magasine (1851-1853) gave place to the Bombay Qwarkerly Review, issued in 1855.
Modras.-Madras had a Journal of Literalure and Science and the Oriewal Magasime and Indian Hurkurs (1819). The Indian Antiguary was started at Bombay in 187^{2} and still continues. Of other contemporary magaxincs the Hinduston Reviewo (Allahabad), the Modern Review (Calcut (a), the Indian Rusiew (Madras), the Ladras Review, a quarterly first published in IS95, and the Calcults University Magaxine (1894), are important.
Ceylon-In Ceylon the Religions ar. Thenogical Magasine was started at Colombo in 1833, the Cutimbo Magasine in 1839 , the Coyion Magazind in 1840, and the Investigalup at Kandy In 1841: of contemporary magazines the Tropical sigrinulturis! was started in 1881, the Ceylon Literary Register (1856.1 196), afterwards the Mondily Lilerary Register and the 4 givit Nabiond R'miow in 1893 . In Burma the quarterly Buddhism appeared in 1904. Singapore had a Journal of the Indian Archipelago from 1847 to 1859 , and the Chinese Reposilory (883-1851) was eclited at Carton by Morrison.
See "Periodical Literaturo in India," in Darh Biwe (1872-1873).

France

We owe the literary journal to France, where it soon attained to a degree of importance unapproached in any other country; The first idea may be traced in the Bureas d'adrasse ($1633-1642$) of Theophraste Renaudot, giving the proceedinge of bis conferencet upon literary and acientific matters. About the year 1663 Méseray obtalned a privilege for a regular literary periodical, which came to nothing, and it was left to Denis de Sallo, counselior of the parliament of Paris and a man of rare merit and learning, to actually carry the project into effect. The first number of the Journal des savants appeared on the sth of January 1665 , under the assumed name of the sieur d'Hedouville. The prospectua promised to give an account of the chief booke published throushout Europe, obituary notices, a review of the progress of acience, besides legal and ecclesiastical information and other matters of interest to cultivated persons. The criticisms, however, wounded alike aulhors and the clergy, and the journal was supprewed after a career of three montlum. Colbert. seeing the publlc utility of such a periodical, ordered the abbe Gallois, a contributor of De Sallo's, to rc-cstablish it, an cvent which took place on the 4th of January 1606. It lingered nine years under the new editor, who was replaced in 1675 by the abbe de la Rnque, and the latter in his turn by the president Cousin, in 1686. From 1701 commenced a new era for the Joarnal, which was then acquired by the chancellor de Ponschartrain for the state and placed usder the direction of a commission of learns men. Just before the Revolution it doveloped fresh activi多, but the troubles of 1792 caused it to be discontinued until $1: 76$, wheh it again failed to appear after twelve numbers had been isued. In IBis it was definitely re-entablished and replaced under government patronape, remaining subject to tho chancellor or 2 n rie-des-screux until $\mathbf{1 8} 57$, when it was transcerred to to contral of the minister of public instraction. Since 1903 the orgaaiztion of the publication has changed. The atate aubsidy having been withdrawn, the Institure voted a yearly subscription of 10,000 franca and nominated a commission of five momblen, one for each section, who managed the Jownal. Since 1909. however, the various sections have left tn the Academie des Inscriptinna et Belles Lettres the entire direction of the Joupmal, while still paying the annual subsidy. It now restricts itself to publishing contributions relating to antiquities and the middle

Louis Auquate ie Bourbon overtisn prinot of Dombes, havin transferred his parliament to Trivour set op a printing prews, and was persuaded by two Jenuits. Michel le Tellier and Philippe Lalleman, to entablish the (emoiver pour servir a l'a istoive des scionows at des arts (2701-1767), more familiarly known as the Jonmal des Trfaome, long the bestinformed and best-written joarnal in France. Ore feature of ths career was ite conatant appeel for the literary assistance of outsiders. It was continued in a more popular style as Journal des sciences at dos beoyx-arnt ($1769-1775$) by the abbe Aubert and by the brothera Castilhon ($1776-1778$), and as Jowrnel de lilutrature, des sciences, at des arts (1779-1782) by the abbe Grosier.
The first legal periodical was the Journal du pelais (1672) of Clagde Blondeau and Gabriel Gutret, and the first devoted to medicine the Noupolles dicoxportes dans concers les parties de la tmblocive (1679) of Nicolas de Blegny, frequently spoken of as a charlatan a term which sometimes means simply a man of many idens. Religiona periodicals date from 1680, and the Jownnal accldriastigue of the abbe de la Roque, to whom is aloo due the first medical fournal (1683). The prototype of the historico-literary periodical may be discovered in La Clef du cabinet des princes de l 'Ewrope (1704-1706), familiarty knowa as Journal de Verlum, and carried on under various tizks down to 1794

Literary criticism was no more free than political discuasion, and no person was allowed to trespase either upon the dorman of the Journal des savonts or that of the Mercure de France (eee Newspapers) without the payment of heary subsidies. This was the origin of the clandestine press of Holland, and it was that country which for the next hundred years supplied the ablent periocical criticism from the pens of French Protestant refugees. During that period -thirty-one journals of the first class proceded from theme sources. From its commencement the Jowrnal des samands was pirated in Holland, and for ten years a kind of joint isove made up with the Journal des Trivoux appeared at Amsterdam. From 1764 to 1775 miscellaneous articles from difierent French and Engiah reviews were added to this reprint. Bayle, a born journalist and the most able critic of the day, conceived the plan of the Nonaclles do lo république des lellires (i684-1718), which at once became entirely succeseful and obtaincd for him during the three years of his control the dictatorship of the world of letters. He wras succeeded as editor by La Roque, Barrin, Bernard and Leclerc. Bayle's method was followed in an equally meritorious periodical, the Hisfoire des ouvrages des Savonts (1687-1704) of H. Basnage de Beauval. Another continuator of Bayle was Jean Lcclerc, one of the mast learned and acute critlcs of the 18th century, who conried on tar ae reviews-the Bibliothequs uniderselle af kisiorique (168616;3). the Bibliotheque choisie (1703-1713), and the Bibliodherme avciciue et moderne (174-1727). They form one meries, and brsides valuable estimatea of new books, include original disserta. tinas. urticles and biographies like our modern learned magazines. The Journal liftiraire (1713-1722, 1729-1736) was founded by a society of young men, who made it a rule to discuss their coatributions in common. Specially devoted to English liserature were the Bibliohioque anglaise (1716-1728), the Memoires litugraires de la Grande Brelagne ($1720-1724$). The Bibliotheque brilanniqus (1733-1734), and the Journal brilanniqua (1750-1757) of Maty, who took for his principle, "pour penser avec liberte il faut penser *ul." One of these Dutch-printed reviews was L'Europe savawle (1 1720), founded chiefly by Themiseul de Saint-Hyacinthe. with ine Intention of placing each separate department under the care of a specialist. The Bibliothique germanique ($1720-1740$) was established by Jacques Lenfant to do for northern Europe What the Bibliotheque britannique did for England. It was follomed by the Nowpelle bibliotheque germanique (1746-1759). The Biblioondque raisomnts des ountages des savants (1728-1758) was supplementary to Lecierc, and was succeeded by the Bibliothiguc des scivicas et des beaur-arts ($1754^{-1} 7^{80}$). Nearly all of the preceding were produced either at Amsterdam or Rotterdam, and althougs out of place in a precise geographical arrangement, really belong to France by the close ties of language and of blood.

Taking up the exact chronolosical order again, we find the sucecss of the English essay-papers ied to their prompt introduction to the Continent. An incomplete translation of the Spoctator was publiched at Amsterdam in 1714, and many volumes of extracts From the Taller, Spectator and Guardian were issucd in France early In the 18th century. Marivaux brought out a Spectoleur Frangais (1722), which was coldly received; it was lollowed by fourteen or fifteen others, under the titles of La Spedatrice (1728 1730), Lo Radotour (1775), Io Babillard (1778-1779), \&c O a similar character was L_{e} Pour el le confre (1723-1740) of the abbe Prevoet, which contained anetdotes and criticism, with special reference to Great Britain. Throughout the 18th century, in France as in England, a lavourite literary method was to write of social subjecte tuder the astumed character of a forcigner, generally an
${ }^{1}$ Matthew Maty, M.D. born in Holland. 1718, died principol thbrarian of the British Museum, 1776. He settled in England in 1740, published several books, and wrote the prefact to Gibbon's Girst work, Dlude de ta litheretyra.
 productions were ubually issued in periodical form, and, besides an inumense amount of worthlese tittle-tatile, contain some valuable matter.
Durine the first half of the century France has little of importance to abow in periodical literature. The Nousellas acclisiastigmes (1728-1803) were first printed and circulated secretly by the Janeninte ja opponition to the Constitution suigenitur. The Jewuita realiated with the Supplement des morpelles ecclesiastigues (17341748). The promising title may have had something to do with the ternporary succiens of the N (mmoives secrels de la rtapbligue des letres (1744^{-1748}) of the marquie d'Argens. In the Observations 50 les dcriss modernes ($1735-1743$) Descontaines held the gates of Philistia for eight years against the Encyclopaedists, and even the redoabtable Voltaire himelf. It was continued by the Jugements ser gudaues onorages monveams (1744-1745). The name of Frtron. perhape the most vigorous enemy Voltaire ever encountered, was long connected with Letires swr quelgues tcribs do as layps (1740 1754), followed by L'Annio lilliraire (1754-1790). Among the contributors of Freron was another manulacturer of criticiem, the abbe de la Porte, who having quarrelled with his confrare, founded Obsernotions sup la jiltirature inoderne (1749-1752) and L'Observalew livefaire (1758-1761).
A number of special organs carse into existence about this period. The first, treatiog of agriculture and domestic economy, was the Journal \&conomiqua (1751-1772); a Journal de commerce was lounded in 1759; periodical biography may be first seen in the Nerologe des kommes cellabres de France (1764-1782); the political ecomombets established the Ephemerides du ciloyen in i765; the first Journal d'ducatios was lounded in 1768, and the Courrier de la mode in the same year: the theatre had its first organ in the Journal des chbitres (1770): in the same year were produced a Journal de unsiowe and the Encyclopddie miliouire; the sister service wat aupplied with a Jourval de marine in 1778 . We have already totion several joumals specially devoted to one or other foreign literature It was left to Freron, Grimm, Prtvost and others in 1754 to extend the iden to all forcign productions, and the Journal tranger (1754-1762) was founded for this purpose. The Gazetle lilltraive (i764-1766), which had Voltaire, Diderot and SaintLambert amoog its editors, was intended to swamp the small fry by criticism; the Journal das dames (1759-1778) was of a light magarine class; a nd the Journal de monsteur (1776-1783) had three phases of existence, and died after extending to thirty volumes. The Wémoirss secrels pow seroir a likistoire de la retpubliqua des littes ($1762-1787$), better known as LXtuoiras de Backaussont, from the name of their founder, furnish a minute account of the rocial add literary history for a period of twenty-aix yeara. Of a similar character was the Correspondance litterciere secride (1774-1793), to
Lhich Metra was the chiel contributor.
L'Espris Thich Metra was the chiel contributor. L'Esprii des Jourmaux (17p2-1818) forms an important literary and historical coliection, -sich is sarely to be found complete.
The movement of ideas at the cloee of the century may beat be traced in the Ammales politiques, civilet, at litteraires (i777-1792) of Linguct. The Dicade philosophique (year V., or 1796/1797), lounded by Ginguene. is the first periodical of the magaiine clace which appeaned after the storms of the Revolution. It was a lind of rescurrection of good taste; under the empire it formed the sole refuge of the oppouition. By n decree of the 17th of January 1800 the comenlate reduced the number of Parisian journala to thirteen, of which the Dicade was one; all the others, with the exception α thove dealing solely with ecience, art, commerce and adverticements, were muppresed. A report addremed to Bonaparte by Fifvet in the year XI. (I803/1803) furniches a list of fifty-one of these periodicals. In the year XIII. (I8od/i805) only seven nonpolitical serials were permitted to appear.
Between 1815 and 1819 there was a constant struggle between freedom of thought on the one hand and the censure, the police and the law officers on the other. This opprestion led to the device of " emi-periodical" publications, of which to Minerve ifenceise ($1818-1820$) is an instance. It was the Salire Mewippte of the kentoration, and wat brought out four times a year at irrerular interval. Of the came class was the Bibliothdque kislorigw (1818s830), another anti-roy cilist ongan. The cencure was reestablished in 1800 and aboliched in 1878 with the monopoly. It has alway meensed impoesible to carry on auccessfuily in France a review upon the lines of thote, which have become so numerous and important in Egalaod. Tho Repue britahenique ($1835-$-ryoI) had, however, a long career. The thort-lived Revwe frangaise (1828-1830), fourded by Guizot, Remumat, De Broglie, and the doclrinaires, was an atternpt in this direction. The wall-known Reywe des dexx momdes was estabThised in 3899 ty Sfgur-Dupeyron and Mauroy, but it ceased to appear at the end of the year, and its actual existence dates from itas acquinition in 1831 by Frangois Bulon,' a masterful editor,
${ }^{3}$ The novelist and pubticist Joseph Fitvte (1767-1839), known tor fifs relations with Napoleon I., has been made the subject for - study by Sainte-Beuve (Canseries, \boldsymbol{v}_{1} I 7).
${ }^{1}$ This remarkabla man (1804-1877) besan. fife as a shepherd.
Educated through the charity of M. Naville, he came to Paris as
under whome ettergetic management it acoo achieved a world-wids reputation. The most distinguished names in Freach literature have been among its conntributors, for whom it has been atyled the "4estibule of the Academy." It was preceded by a few monthe by the Rever de Paris (1829-t845), founded by Veron, who introduced the novel to perindical literature. In 1834 this was purchared by Bulos, and brought out concurrently with his other Revic. While the former wat exclusively literary and artistic, the latter dealt more with philosophy. The Revme independante (I84t1848) was founded by Pierre Leroux, George Sand and Viardot for the deruncracy. The times of the consulate and the empire were the subjects dealt with by the Revue de 'enapire $^{\text {(1842-1848). In }}$ Le Correspondant (1843), established by Montalembert and De Falloux. the Catholics and Legitimiste had aluable supporter. The Reoue contemporaine (1852), foutsded by the comte de Belval as a toyplist argan, had joined to it in 1856 the Aheroeum frangais. The Revue germonique (1858) exchanged its exclusive name and character in 186's to the Revne moderne. The Revne europtonne (1859) was at first mubventioned like the Revic contemporaine, from which it soon withdrew government favour. The Rerwa mationale (1860) appeared quarterly, and aucceeded to the Magasio de librairic (1858).

The number of French periodicals, reviews and magazines has enormously increased, not only in Paris but in the provinces. In Paris the number of periodicals published in 1883 , was 1379; at the end of 1908 there were more than 3500 of all kinds. The chiel current periodicals may be mentioned in the following order. The list includes a few no longer published.

Archaeology.-Revue archiologique (1860), bi-monthly; Ami des monumbents (1887); Bulletin de numismalique (1891): Reowe biblique (1892); L'Anrée epitraphique (1880)-a sort of supplement to the Corgus iascriptionum latinarun; Celtica (1903)-common to France and England; Gaselle numismatique francaise (1897); Revue sdnaitique d'epigraphic af d'histoire axcienne (1893); Bulletin mowemental, bi-monthly; L'Intermediaire, weekly, the French "Note* and Queries," devoted to titerary and antiquarian questions.

Astronomy.-Annuaire aslronomique ef mettorologigne (1901): Bulletin astronomique (1884), formerly published under the title Bulletin des sciencas nalhómatigues et astromamiques.

Bibliography.-A nuales de Zribliogaphic thelogiqué (1888); Le bibliographe moderne (1897): Bibliographie anatomigue (1893); Bibliographie scientifque frasuaise (1902); Butletin des bibliolteques et des archives (1884); Bulletin des hivres relalifs d I'Amerique (1899); Courrier des bibliolheques (ig10); R\&pertoire melthodigue de lhisloirs moderne et contemporaine de la France (1898); Reperloire molhodigue dx moyen age français (1894); Revue bibliographique ef cridique des langues et lituratures romones (1889): Revue des bibliotheques (1891): Polybiblion: nevus bibliographique mniverselle, monthly; Revus gencrale de bibliographis francoise, bi-monthly.

Children's Magaeines.-L'Ams de la jewnesse; Le Jewdi de la jeznesse, weekly.

Fashions,-La Mode illustree; Les Modes, monthly.
Fine Arts.-Les Arfs (1902); Gacette des beaur-arls (1859); monthly, with Chronigue dos arts; Revue de Jart ancien ef moderne (1897) mont hly; L 'Aridecoralif, monthly, Ariet decorafion, monthly: L'Art pour lows, monthiy; La Decovalion, manthly; L'Archilecturejournal of the Soc. centrale des Architectes frangais, weekly; L'Art (1875) is no longer published.

Geopraphy and Colonies.-Bulletin de cographle historigne; Amrales de gegraphie (t891), with useful quartery bibliography: Norvelles geopraptiques-supplement to the Towr dumponde (1891); La Vie colontale (1902); La Geographie, monthly, publighed by the Soc. de Gégraphic (1900); Rerue de geogrophie, monthly; Reve stographique intertationale, monthly.

Bistory.-For long the chief organs for hiotory and archseology were the Bibliotheque de recole des charles (1835), appearing every two months and dealing with the middle ages, nind the Cabind Historique (185s), a monthly devoted to MSS. and unprinted documents. The Reve hishorique (1876) appears bi-monthly; there is aliso the Revue d'hisloire moderne ef contemporative.

Law and furisprudence.-Armales de dreis comnnercial (viy7); Repue digerienne ef twnisienre de ligistanion et de jurispradenct (1885) ; Revue du droif public of de la stimer polifique (1894); Rewo generale du droit infernational public (1894).

Lilerary Reviews.-The Revus des deux mondes and the Correspondan! have already been mentioned. One of the first of European weekly reviews is the Revme crinique (1866). The Revue politigwe of litterain, moopenor to the Rewwe des cours timboires (1863) and known the Revoe blewe, aleo appears weekly, Others of interest are: Antion, repue wensuclle de lillirature (1904); L'Art et le vie (1892); Cosmopolis (18g6); L'Ermifage (1890); L; Ícrever de France, Eerie moderne (1890). a magaxine greatly valued in literary circles: La Revue de Paris, fortnightly (I894), and the Nomelle Revue (1879)a compontor, and by translating from the English earned sufficient to purchase the moribund Rave des deux monder, which acquired its subsequent position in epite of the tyrannical editorial behaviout of the proprietor. Buloz is aid to have eventually erjoyed an income of 365,000 france from the Regea

Both serious rivals of the Revue des deart mondes; Revue francaise ©Edimbour (1897); Revus germanique (1905); Le Liors (1880), dealing with bibtography and literary history, and Le Revue latine (1902), no longer published; La Resue, monthly.

Malhemasics.-Intermediaire des mathematiciens (1894): Bulletim des sciences mathtmatiques (1896); Revue de mathémaliques spécioles (18go); Journal de maihémaliques pures el appliquies, quarterly.

Medicire.-Revue de medecine (1881); Annales de CELole de plein exercise de medicine el de pharmacie de Marsellle (1891); La Chron+que medecale (1893); Revne de gynecologie, bi-monthly; La Semaine meldicale, weekly; Journal d'hygione, monthly.

Military.-Revere des troupas colomiales, monthly; La Revere dinfantrie, monthly.

Music.-Musica (1902); Revue d'kistoire al de crilique musicale (igor); A nrales de la musique; Le Ménestral, weekly.

Philology.-L'Annte linguistique (1901-1902); Brilletin de la sociète des parfers de France (1893); Bulletin des humanitts francais (1894); Bulletin hispanique (1899); Bulletin ilatien (1go1); Lou-Cai-Sabi. Antoulangio prousencalo (190s); Le Mattre phonttique (1886); Le Moyen Ale (i888); Revare de la renaissance (1901); Reoue de métrique et de sursification (1894-1895); Repue des études gracques (1888); Revue des études rabelaisiennes (1903); Revú des parfers populaires (1902); Revue des palois (1887); Revue hispanique (1894); Revue cellique, quarterly: Reoue de philologie frangaise ed de litterature.

Pkilosophy and Psycholozy. - Revuc philosephique (1876), monthly; Annales des sciences psyehiques (i891); L'Annes philosophique ($\mathbf{1 8 9 0}$), critical and analytical review of all philosophical works appearing during the ycar; L'Annke psychologique (i894); Journal de prychologie normale et pathodogie (1004); Balletin de l'instilut zenkral de psychologic (1903); Revue de Fhypmotisme et de la psychologie physiologique (1900); Repue de metaphysique et de morale (1893); Reowe de philosophie (ig00); Revue de psychialrie (1897).

Physies and Chemistry.-Budetin des sciences physiques (1888); L'Eclairage Electrique (1894); Le Radium (1904); Revue gentrale des sciences pures et appliques (1890); Revue pratique de l^{\prime} tiedricild (1892).

Popular and Family Reviews.-A travers le monde (1898); Femina (1901); Je sais tout (1905); La Ledure moderne (1gor): Le Revue hebdomadaire (1892); Les Lectures poup tous (1898); Mon bonheur (1902); La Vie heureuse (1902).

Science (General).-Le Nalure, weekly; Revue scientifique (1863), weekiy: La Science francaise, monthly.-Science (Applied): Les inventions illystrtes, weekly; Reome indxstrielle, weckly.-Science (Natural): Archives de biologie, Journal de botanique (1887); L'A nnfe, Biologique (1895): Revue des sciences nalurelles de louest (1891); Repue gtntrate de botanique (1889); La Pisciculture pratique (1895). -Science (Political, Sociological and Statistical): Annales Économiques ((lounded as La France commerciale in 1885); L'Annfe sociologique (1896-1897); Bulletin de l'affice du travail (i894); Bullectin de I'ofice eniernational du travail (1902): Le Mowvement socialiste-international bi-monthly (1899); Notices el comptes rendus de l'ofice du travail (1892); L'Orient at labeille du Bosphore (1889); Revue politique at parrementaire (1894); Revue international de sociologie, monthly.

Sports.- L Atrophile (1893); $L^{\prime} A$ tronautique (1902); L^{\prime} ' A 'rosiation (1904): Le Vie au grand air (1898); La.Vie aulomobile (1901); Revue de l'alronautique (1888).
Authosiriss. -The subject of French periodicals has been exhaustively treated in the valuable works of Eugene HatinHistoire de la prasse ex France (8 vola, $1859-1861$), Les Gaselles de Hollande et la presse dandestine aux 17^{+}et r8e siedes (1865), and Bibliographie de la prasse ptriodique frangaise (i866). See aiso Catalogut de Chisioire do France (II vols., 1855-1879), V. Cébé, Caialozue des jotruasur, fic., publís à Paris (1879); Brunct, Marwel du libraires avee supplement (8 vols, 1860-1880); F. Mége, Les Journoux et Ecrils periodiques de la Basse A unergne (1869): Bullelin des sommaires des jownanx (1888); D. Jordell, Réperloire bibliographique des principales rewes frangaises (3 vols., $1897-1899$. 1898-1900), indexes about 350 periodicals: Annuaire de la presse frangaise ai du mondr politipue (1909-1910): Le Soudier, Annuaire das journeux, resues el pmblications periodiques parus à Paris jucqu'ea roop (1910). For lists of general indexes consult Stein, Mamed da bibiographic générale (1897). pp. 637-710.

Gerpant

The earliest tface of the Fiterary journal in Germany is to be found in the Erbausiche Moxatsurierredwngen (1663) of the poet Joham Rist and in the Miscellanea curiosa medico-physica (16701704) of the Academia naturae curiosorum Leopoldina-Carolinn, the first scientific annual, uniting the features of the Journal des scuants and of the Philosophical Transactions. D. G. Mortof, the author of the well-known Palyhistor, conceived the idea of a monthly serial to be devoted to the history of modern books and learning, which came to nothing. While professor of morals at Leiprig, Otto Mencke planned the Acta eruditorums, with a view to make known, by means of analyses, extracts and reviews, the new, works produced throughout Europe. In 1680 he travelled in Enaland and Holland is order to obtain literary assistance, and
the first number appeared in 1682, ander the fite of Acis cormik. torum lipsicmsixm, and, tike its succesoors, was written in Latin. Among the cont ributors to subeequent mumbers were Leitnitz, Seckendorf and Cellarius. A voluroe came out each year, with supplements. After editing about thirty volumea Mencke died, laving the publication to his soa, and the Acts remaimed in the possession of the family down to 1745 , when they extended to 117 volumes, which form an extremely valuable history of the learning of the period. A seiection of the dissertations and articles was pubTished at Venice in 7 vols, 4 to (1740). The Acla woon bad imitatorn The Ephemerides litterarice (1686) came out at Hamburg in Latia and French. Tbe Nova lilleraria maris Ballhici a Seplentriowis (1698-1708) was more especially devoted to north Gemmany and the universities of Kiel, Rostock nate Dorpat. Supplementay to the preceding was the Nood litteraria Gerwanioe collala foomburi (1703-1709), which from 1707 widened its field of view to the whote of Europe. At Leipzig was produced the Teulsche acta erwililorum (1712), an excellent periodical, edited by J. G. Rabener and C. G. jocher, and continued from 1740 to 1758 as 2 merldsfige Nethrichicm. It included portraits.
The brilliant and enterprising Christian Thomadius brought out periodically, in dialogue form, his Momatsesprdche (1688-1690), written by himself in the vernacular to delend his novel theories against the alarmed pedantry of Germany, and. together with Strahl. Buddeus and others, Observationes adectas ad rem lillerariam spectantes (17^{00}), written in Latin. W. E. Tenzel also published Monalliche Unierredumen ($1689-1698$), continued from 1704 an Curieuse Bibliothek, and treating varous subjects in dialorve form. After the death of Tenzel the Bibliothek was carried on under differ. ent titkes by C. Woitereck, J, G. Krause and others, down to 1721 . Of much greater importance than these was the Momallicher A wsimg (I701), supported by J. G. Eccard and Leibnitz Another periodical on Thomasius's plan was Newe Unterredixngen (1703), edited by N. H. Gundling. The Cumdinglona of the latter person, published at Halle (1715-1732), and writca partly in Latin and partly in German by the editor, contained a miscellaneous collection of juridical, historical and theological observations and dissertations
Nearly all departments of fearning possessed their several special periodical organs about the close of the 17 th or the begiming of the 18 th century. The Anni franciscanormm (i680) was edited by the Jesuit Stilier: and J. S. Adami published, between 1690 and 1713 certain theological repertories under the name of Delicioes Historical journalism was first represented by Eletla juris ptribici (1709), philology by Newe acerra philolotica (1715-1723), philosophy by the Acta philosophorum (1715-1727), medicine by Dep patriotische Iredikus (1725), music by Der musikalische Palriol (1725), and edu. cation by Dic Metrone (1728). Reference has already been made to the Miscellamea cwriosa medico-physica ($1670-17^{04}$); the Monallicite Eirtahiungen (1689) was also devoted to natural science.

Down to the early part of the 18th century Halle and Leipajg were the headquarters of literary journalism in Gernany. Other centres beyan to fect the need of sumilar organs of opinion. Hamburg had its Niedersdcksische newe Zeilwnken, styled from 173: Nieder: sïchsische Nachrichlen, which came to an end in 1736, and Meckdertburg owned in 1710 its Newer Vorroth, bebides of hers brought out at kostock. Prussia owes the foundation of its literary periodicals to G. P. Schulze and M. Lilienthal, the former of whom pegan with Gelehries Prexssen (1722), continued under different tithes down to 1729 ; the hatter helped with the Erlautertes Preussen (Ira4), and was the sofe editor of the Acte borussica (1730-1732). Pomerania and Silesia also had their special periodicals in the first quarter of the 18th century. Franconia commenced with Nowa lillomarid, and Hesse with ehe Kwree Historic, both in 17as. 75. In south Germany appeared the Wizrtembergische Nebenstixnden (1718) and the Part wassus boicus, first published at Munich in 1722. The Prankforiter geleirte Zeflungen was founded in 1736 by S. T. Hocker, and existed down to 1790. Austria owned Das merfurirdige Wien.
In 175 the Newe Zeifnogen son gelchplen Sachen was founded by 1. G. Krause at Leipalg and carried on by various editora down to 1797. It was the first attempt to apply the form of the weekly political journal to learned subjects, and was imitated iti the Ver. mischte Bibliothek (1718-1720) and the Bibliophece novissime ($1718-$ 172 I), both founded by J. G. Francke in Halle. Shortly after the foundation of the university of Gottingen appeared Zefweren pow gelehrite Sachsen (1739). still famouas as the Gottingisete gelehitte Anzeigen, which during its long and influential careet hos been conducted by professors of that university, and among others by Haller, Heyne and Eichhorn.
Infuenced by a close study of English, writers, the two Swiss, Bodmer and Breitinger, established Die Discwrse der Mrater (17iF); and by paying more attention to the matter of works reviewed than to their manner, commenced a critical method new to Germanyi The system was attacked by Gottsched, who, educated in the French school, erred in the opposite direction. The struggle between the two parties gave fresh life to the literature of the country but German criticism of the higher sort can only be' said really to begin with Lesting. The Bertin publisher Nicolai founded the Bibliothek der scifinem Wissewsckeflen, and afterwards handed it over to C. F. Weisse in order to give his whole energy to ihe Briffo dia neweste Liknatwr butreffand (1759-1765), carried on by the belp
 wider feld and soon becmate extrumely Infuential. Herder founded the Fritische Wdider in 1766. Der doutrels Meyher (1773-1789, nvivad s $290-1810$) of Wieland was the whitary repeecmitive of the Dreber achool of criticiem. A new ext in Certanan periodical Lerature began when Bertuch browht oot at Jean in 1785 the
 boastry vare contributore On beitg tran ferred to Halle in 1804
 by Fichetide. Both reviews enjoyed e prosperous career down to tive year 348.
At the beginning of the spth century we fiad the Brlanger Lictrabur. arive (1799-1810), which had repiacnd a Geldrote Zoluge (1746); the Lefreve Lilcraturnitmef (1800-1834); the Heidesergitis

 (1818-1848), both of which secotved sovernaient eupport and tuenabled the Englial Quarierly Ravicio it their conservative politics and high Monary tome. Eternes, founded ot Leipxig in 2819 b) W. T. Krug was ditinguished fer its errdition, and came out down to 183 . One of the most remartatile priodicals of this clase wis the Jalrbicher für wissensthaforiche Kritik (1827-1846). frit published by Catte. The Hallische Jahrbicher (1898-1842) Fas lounded by Ruge and Echtermeyer, and supported by the sovernment. The Repertoriman der sesamintes dentectren Elieratui. established by Gersdorf in 1834 , and known alter 1843 as the
 exigted to 1860. Buchner founded the Liferaricke Zeifumg at Berlin is Isey- It wat continued by Brandes down to 1849. The political trouble of 1848 and 1849 were most disastrous to the welfare of the Fiternty and miscellaneous periodicals Gersdorf's Reperlorium, the Gefirle Aneefew of Cottingen and of Munich, and the HeidetErgisthe fahrbicher were the sole aurvivors. The Abzencine Menatichrift fir Liveralur (1890), conducted after 1851 by Droysen, Nituch and others, continued only down to 1854; the Lilerarisches Corochlate (1850) is atill publiched. The Blater fir literarische Unterhaftyms sprane out of the Eiterarisches Wochewbiats (1818), founded by Kotzebue: after 1865 it was edited by R. Goteschall vith considerable success. Many of the literary journal did not disdain to occupy themselves with the lashions, but the first periodical of any merit specially devoted to the bubject was the Dester (1855). The first to popularize acience was Natar (1852). The Frambifutict (1855), a bi-monthly magazine was extremcly Euccessful. The Salos (1868) followed more closcly the type of the English magazine. About this period arose a great number of weekly serial for popular reading. known as "Sonntagsblatter," of which the Garlemlaule (1858) and Daheim (1864) are surviving eramples.
in course of time a large number of similar publications were isulued, eome illustrated. for instance: $7 I_{\text {ustrierte Zcitwn (Leipzig, }}$ 1843). Berlinct IHuslricrte Zelluns (1892), Die Woch (1899) the late the most widely circulated of the Eind, 500,000 being printed.

At a somewhat earlier date commenced a long eeries of weekly and monthy periodicals of a more wolid character, of which the following list indicates the more important in chronological order: Die Crinebofin (i862), weckly, the Denisches Musesm (1851-1857), of Prute and Freazel: Berliner Reque (1855-1873): Westermanns Motalshefte (1856), monthly; Unsere Zeit (1857-1891), beginning is a kind of supplement to Brockhaus's Conversalionstexikon; Preussitche Johrbiicher (1858), monthly; Deutsches Magaris (18611863): Die Cegenwat (1873), weekly: Xonservation Monatsschrif (8873). preceded by the Volksblall firy Slads wnd Land (i843); Dculteche Randschau (1874), fortnightly. conducted upon the method of the Rowe des dema monder: Dewische Rcoue (1876), monthly; Hord mad Sud (1877). monthiy; Das Echo (1882), weekly; Dis Zuhnofi (1882), weekly; Die wewe Zcii (1883), weekly: Recloms Universwim (1884), weekly; Velkagen stid Klasings Monaisheffe (1809). puonthly: Die detuche Rundschow (1890), mpathly; Die Watricis (i897-1897); Kritio (1894-1902): Die Umschan (i897), weekly: Das Zterafische Echo (i898), fortnighty: Kymast (18981899), Kaown later as Dewische Zeischrift (1899-1903) and Idroms (rgo3-1906) : Der Timerer (i8g8), monthly; Die Warte (igoo), weekly; Dexlicthand (1902-1907): Deutsche Monatsschriff (1902-1907): Hochlard (1903), monthly; Charon (1904), monthly; Siddeutsche Honatshefle (1904): Der Deutsche (igo5-1908): Dewische Kultw (t905-1908) : A7cwa (1906), monthy; Das Blaubuch (1906), weekly: Eckert (1906), monthly; Die Slamdarie (1906), weekly; Mars (1907), Iortnighty: Morgen (1907). weekly: Wewe Reoue (1907), weekly; Jndernabiomale Wochenschrifi firr Wissenschaft, Kews?, und Technih (Igo7). veeldy aupplement to the Minchener allgeweins Zeiturg; Hisses (1907). weekly; Uxsere Zaif (1907), monthly; Hyperion (1908), bi-monthly; Xeticen (1908), monthly: Dat newe Jadiamderi (Igo9). monthly; Dif Taf (ig09), monthly.

Periodicals have been spectatived in Germany to an extent perhape unequalled in any ofber country. No subject of human miterest is now without one or indeed several organs. Full details of these werials are supplined by a special class of periodical with

 Which sive egch year a fuif acoount of tho litertare of the subject with wich they are concerned. The chief of these are:-

Bibliography and Librarianship: Bibliographie des Buch- and Bibliothehroesens (1905): Cherniatry: Jahwesberich inber die Fopt *herithe der Chemie $\left(1 \&_{p 7}\right)$; Classicat Archneology and Philology: Jahrexherich sher die Forlectivile dar dlassiechen Allerhwnowissern mhaft (1873); Education: Jahrbuci der pdiagogischen Literatw (IgoI): Gecyraphy: Geographischers Jaluphch (1874): Biblionhecs grogrephica (18g1): History: Jahresberiche de Getchichtrwissenchaft (1878); Fine Arta: Melernationale Bibliognplicic der Xmas eiscenchafl (190a): Law and Palitical Economy: Uoborsicht dar gesamlen stoats- wimd rechtswissenschefllichen Lilaratw (1868): Jurispradenlia Germaniae (1905); Bibliographir des birgerlichen Rechls (1888); Bibliographie der Sorialwissenschaflen (1905); Bibliographie fir Sozial wnd Wirlschafteseschichte (1903); Bibliographic
 and Langragen: Bibhiogophie der wergleichenden Literalurpusehichtr (1903): Johresberichte fit weware deulsche Literaturgeschiches (1890): Jahreshericht mber die Erscheinusion euf dem Gebiote der gernamishen Philologic (1879); Uebersicht whe die alf dem Gehiets dar endisches
 Kriticher Jahresbericht abor dic Pontscivitte der pomanischen Phils logit (1875): Bioliographis for romasuische Philologiomosiph zur Zeilschr. F. rowne. Plilologie (1875); Orientalische Bibliographit
 (1869); Medicine and Surgery: Jahresbericht aber die Leistruren and Portschritte der gesamices I (ediaim (1866); Jalnesbericht ulber sis Leitannem owf dem Gebiets der Veterindrmediain (Iges); Military: Johresborictht aber Verdnderwingem and Fortichriles in Yidildrivsin

 novilates (1879), Iortnikhtly; Bibliographis der deutsehex malup wissemshefthichen Literatur (1901); Bibliographia modogice (1896): Zoologischer Jahrasberiche (1879); Juats botomischer Jahnesberich (1873) ; Dic Portschritte der Physik (1847); Technicology! Repertoritim dep lechnischew Journallileratur (1874): Theology: Theologischer Jahrefbericht (888) ; Bibliographic der Kirchengencticinaichew Lerouter (1877).

Austria

The moot notable periodicals of a getreral character have beet the Wienth Jakrbüher ler Literatar (1818-1848) and the Oanhen reichische Reve (1863-1867). Among current examples the follow. ing may be mentioned: Heimgartem (1877), monthly; OesterreichischUngarische Revue (1886), monthly; Allgemeines Likeraturbatt (1892), fortnightly: Dis Kulfwr (r8g9), quarterly; Dewdeche Arbeif (1900); monthly; Oesterneichische Rwadschas (1904). fortnightly; Dis Karpalhen (tgop): fortnightly.
There were in Autria 22 literary and 41 opecial periodicals in 1848, and 110 literary and 413 special periodicals in 1873 (oee the statistical inquiry of Dr Johann Winckler, Die perioh. Presse Oenter: reichs, 1873). In igos the total number had increased to 806, of which 504 were pubhished in Vienna.

According to the Deukscher Zeitschofles-Katalog (I87i4), 2219 periodicals were published in Austria, Germany and Switseriand in 1874 in the German language. In 1905 the number of periodicals In German-speaking countriee whe 5066, of which 4019 appeared in Germany (in Berlin alone 1107) 806 in Austia and 218 in Swituenland (Bÿr senblan für dew lewischen Bucharndel, 1909. No. 124).

Authonities.-C. Juncker, Schediasme de ephenerilisus armit
 (Leipzty, 1852): R. Prutz, Geschiches des dewtechen Journaininns (1845) rol. i.,-unfortunateiy it does not go beyond 1713); H. Wuttke, Die deubschen Zeitschriftex (1875); P. E. Richter, Veracichnots der

 sitats- wid Stindiembibliothehen hrse. mom F. Grassamer (Vienind, t898) : Konigliche Bibliothele zu Berlin, Alphebelisches Varacichanis der lawfendew Zailschrifien (1908); Systematisches Werpaichmis der Lewfew-

 (Minchen, rgog); Ktirschner, Jahonel der Presw (igon); Spering; Zeilschriflem Adressiuch (Stuttgart, 1910); Bibliographisches Reper torium, Berfin: Walsel-houbet, Zeltschriflem der Romendil (rgou); Houben, Zeflschrijlem des jenten Dewsentonds (bgos); Lack, Dis dewische Fachpresse (Tabingen, 1908). The Dinlopaphif de deudschen Zeischrifteniticrafisf, edicet by F. Dieterich, wich has gppeared ennually since 1896 , describes about 1300 periodicals (mostly scientific) by subjects and tinles; from Igoo it has been supplemented by Bibliographit der dewkehem Reconsiomes, which indexes notices and review in over 1000 werials ewch year, chiefy scientific and technical.

Sviremelavd
The Nond Fimeneric Benctice $(1703-1715)$ of Zarich 14 the eantiont literary periodical which Switserland can chow. Prom 1728 to 1714 B Bidiohlaywe thaliges, and towards the end of the century the
 literature, and science, in three weparate maries, were pobthobed et Cencve The letter min followed th the funding poriodical
of French-epeaking Switzerland, the BanMohtique wimerselle (1816), which has also had a scientific and a literiary series The Reve syisse (1838) was produced at Neuchltel. These two have been amalgamated and appear as the Bibliohboqua miserselle of reve smirse. La Suisse romends (1885) only fanted twelve monthe Thelojic et philosoptic (1868-4872), an account of forsign literature on thoee aubjects, was continued as Revie de theologic at de philoso\$hie (1873) at Laumanne. Among current seriala may be mentioned Archures de psycholegie de la Suisse romande (igot) edited by Flournoy
 schriflan (1897 -1898); Untersuchsingew mp neweren Sprach- wind Lileraturgeschichte (1903); Zroingiama: Mineilumgen swr Geschicht Zwingli amd der Reformalion (1897).

ITALY

Prompted by M. A. Ricci, Francesco Namrari, the future cardinal, established in 1668 the Giornale de' ledterati upon the plan of the French Jomenal des samants. His collaborateurn each agreed to undertake the criticism of a separate literature while Naszari retained the general editorship and the analysis of the French books. The journal was continued to 1675, and another series was carried on to 1769. Bacehini brought ont at Parma (1688-1690) and at Modena (1692-1697) a periodical with a similar title. A much better known Giormale was that of Apcotolo Zeno, founded with the help of Maffeiand Muratori (1710), continued after 1718 by Pietro Zeno, and after 1728 by Mastrica and Paitoni. Another Glornale, to which Fabroni contributed, was published at Pisa from 1771 onwarda The Galleria di 2 (inerpan was'irst published at Venice in 16g6. One of the many merite of the antiquary Lami was his connexion with the Nowelle letheraric ($1740-1770$), Iounded by him, and after the first two years almost entirely written by him. Its learning and impartislity gave it much authority. The Prusta lettoraria (1763765) was brought out at Venice by Giuseppe Baretti under the pseudonym of Aristarco Scanmabue. The next that deserve mention are the Giornale enciclopedico (1806) of Naplets followed by the Progresso delle scirntes (1833-1848) and the Musee di aciente e letferatura of the same city, and the Giormale arcadico (1819) of Rome. Among the contributors to the Poligrafo (1811) of Milan were Monti, Perticari, and some of the first names in Italian literature. The Biblioleca ilahoma ($1816-1840$) wat founded at Milan by the tavour of the Austrian government, and the editorshio was ofiered to and declined by Ugo Foscolo. It rendered sarvice to Italian liternture by its oppoaition to the Della-Crumcan tyranny Another Milnese serial was the Conciliatore (1818-1820), which ithough it only lived two years, will be remembered for the endenvours made by Silvio Pellico, Camillo Ugoni and its other contributors to introduce a more dignified and courageous method of criticism. After its suppression and the falling off in interest of the Bioviolecs walnane the next of any merit to appear was the Antologio, a monthly periodical brought out at Florence in 1820 by Gino Capponi and Giampetro Vicusscux, but suppressed in 1833 on account of an epigram of Tommaseo, a principal writer. Some striking papers were contributed by Giuseppe Mazzini. Naples had in 1832 Il Progresse of Carto Troya, helped by Tommaseo and Centofanti, and Palerme owned the Giormale di statstica (1834). uppresed eight years later. The Afchivio storico, consisting of eprints of documents with historical dissertations, dates from 1842 and was fonsded by Vienowux and Gino Capponi. The Civilu cattolico (1850), fortnighely, is still the orsan of the Jesuits. The Rivisla comlanpromen (1852) was founded at Turin in emulation of the French Reme des deut mondes, which bas been the type collowed by 80 many continental periodicals. The Politecraco (1839) of Milan was suppressed in 1844 and revived in 1859 . The Nuena aulologit (1866) son acquired a vell-deserved reputation as A high-ciase review and magazine; its rival, the Ripista ewroped being the special organ of the Florentine men of letters. The Rassegne sethimamale was a weekly political and fiterary review, which after eight years of existence gave place to a daily newspaper. the Rassegua The Archipio frentivo (1882) was the argan of "Italia Irredenta." The Raseeng nationale, conducted by the marchese Maniredo di Passano, a chief of the moderate clerical perty, the Nuom rivislo of Turia, the Fanfulla delle Domewica, and the Cametta letheraria may also be mentioned
Some of the following are still puhlished: Annali di mafemotica (1867): Anmario. di giwrisprudenise (1883); Archivio di slafisfice (1876): Archivio siorico lombardo (1874): Archipio aeneto (1871); Archivio ter to studio delle traditioni papolari; Archivio per la soolegia; Il Biblofild: Il Filamgieri (1876); La Natura (1884); Nuopo eiornale bolanico (1869); Grorrate degh aruditi (1883); Giornale di filologia romanes; Nmoro rivisla Intarmasionale (1879); La Rassegna Itabiana-(t881); Revis entornationale (1883). In more recent ycars a great expansion has been witnessed. Local reviews have largely increased, as well as those devoted to hiatory, science and university undertalings. Amons representative eerings are the followingArchaeology: Museo faliano di andichiva classica (1885) with atlas in folio; Oriens christiatus (1901); Nuopo bollettino ds archeologia Cristiame, quarterly at Rome (1895). Bibliography: Riwith delle trillionecle degli archioi (t888), published monthly at Rome and Flonence, the oficial ongan of librarians and arctivists; Giormale

 (1898); La Zuzliofilig (i899), Florence, monthly; Raccolua Vimeiane (1904). Philology: Bollethe di filalode clarsica (1894); Gibrnala lualiano di filalogis a timgiotios darrice (1886): Slads di flalogis romanca (1885); Studi ilatiani di filologis shersica (1893); Bassarione bi-monthly. No clag has developed more usefully than the his torical, mong them being: Bollettind delr sumatuto sharico inaliame (1886) ; Nnote archixio venelo (1890) ; Rivishe dis storis antice e scienio aflai (t895); Rivisha storica tratiena (1884). New literary and cientific neviewr are: L'Alighieri, reinta do case danlasche (i889); Giormale danteste (1894): Gornate storico della letteratmes thalions
 L'Aroadia, periodion menvile di wesemes, lellere, od arti (1889): Periodice de malenatica per Finseguamento secondario (i88j); Ripista di madematices (1891); Rivicle philasefica (1899); Rivis/a ditalia, monthly at Rome. Fine Arts: W'Ayta, monthly; Arte ivaliass, monthhy ; Ressegne derle, monthly.
 (Milan, 1875); Raccotba dei periodici prestmals ell esposisjores in
 (1871-1883), Patis, 1883.

Belgeus

The Journal encyclopdique (1756 -1793) founded by P. Rouscau, made Liege a propagandist centre for the philosophical party. In the same city was also first established L'Esprit des fournaus ($1772-1818$), styled by Sainte-Beuve " cette considesrable et excellente collection," but "journal voleur et compilateur." The Journal hitlorique ef lilltraire (1788-1790) was founded at Luxemburg by the Jesuit De Feller; having been suppresoed there, it was tranderred to Liege, and subsequently to Maestricht. It is one of the most curious of the Belgian periodicals of the 18 th century, and contains most precious materials for the mational history. A complete set is very rare and much sought after. The Rave belge ($1835-\mathbf{1 8 4 3}$), in spite of the support of the best writersol the kingdomi as well as its succeseor the Reoue de Liege ($1844-1847$), the Tresor national (1842-1843), published at Brussels, and the Repue de Belgigut (1846-1851) were all short-lived. The Reoue de Brucrelles (1837-1848), supported by the nobility and the clergy, had a longer carcer, The Revue notionale was the champion of Liberalism, and came to an end in 1847. The Messager des sciences hisforiques (1833), at Ghent, was in repute on account of its historical and antiquarian charactcr. The Revwe catholique, the organ of the profespors of the university of Louvain, began in 1846 a controversy with the Journal historique et litteraire of Kergten (1834) upon the origit of human knowledge, which lasted for many years and excited great attention. The Anmales des trasasx prublics (1843), the Bulletin de (industrie (1842), the Journal des beasx-arts (i858); and the Catholic Precis historiques (1852), the Protestant Clwetien belge (r850), are other examples. The Revue trimestrielle wat lounded at Brussels by Van Bemmel in 2854. The Anenaenn belge (1868) did not last long.

Among current periodicals in French are the following-Bibliography: Bullelin bibliographique el pedagogizuly dy muse belpe (1897); La Revue des bibliotheques ef archives to Belgigut (1903): Le Clancur lithéraire, musical el bibliographic (1901); Archưper dat arts at 2e la bibliographic de Belgique (Tables $1833-1853$ and 18751894). Philosophy and coclesiastical history: Revive meo-scholestique prubibie par la socifié philosophigue de Lownain (1894): Rava dhistore cecleticstique (1900), the organ of the Catbolic university of Louvain; Revue benédictine (1884); Anolecles powr servir à lhistoive ecelbiastique de la Belgique, $2^{\prime \prime}$ scric (1881-1904) and 3° efrie 1905): with an Annexe for Cartularies. Science: Archites iniernchionales de physiologic (1902), published by Leon Frederiag; Ia Cellule, recucil de cyrologie ef d"hisfologie gencrale (1884); Le M(usten (1882); Le Movvement geographique (1884): Le Muste betfe (1897): Reve chinurgicale belge ef du nord de la France (1901). Anmales des mines belziques appcars quarterly, and $L^{\prime} A r t$ moderme weeldy at Brussels.
Among Flemish serials may be mentioned the Nederdwitectis Letleroefeningen (1834); the Belgisch Musewm (1836-1846), edited by Willems; the Broederhond, which did not appear after 1846; tho Tadoerbund of Antwerp; the Kynst-en Letterfud ($1840-1843$); and the Voemsche Rederyker (1844). Current Flemish periodicals include: Onse kanst gellustreed madndschrif soor beeldende lunst (1900); Averbode's mekblod Godsdiensl hnisgeain moedertacl (1907): De Raadselbode tolk eas den diamschen raadselliaflebber (1901): Recitshundig fijdschrifl woor damsch Belgie (1901).

It has been calculated that in 1860 there were 51 periodicals, published in Belgium. In 1884 the number had increased to 412 , and in 1908 to 1701.

See U. Capitaine, Recherches swr les jowrmawr of les carits priodiquet lisgeois (1850); Releve de lous les terils periodiques gud se publicili dans le royamive de Belgique (1875): Catalogue des jomernamx, revies, at publicalions périodigues de la Belgique (tgro); Rewue Cibliagraphique belge.

The first asial written in Dutch was the Bockeoll agn Ewrope (16g2-8708, and $1725-1248$) which had eeveral changea of mame
during its long hife- The nerre of any note was the Rapublift dop Gelecrden (i7ro-1748). The English Spectator was imitated by J. van Effen in his Misanihrope (1711-1712), written in French, and in the Hollandsche Spectajor (1731-1735), in Dutch. An' important serial was the long-lived Vaderlawdsche Letteroffeningen (1761). The Alpemeene Kunst en Letlerbode (1788) was long the leading review of Holland; in 1860 it was joined to the Nederlondsch Spectator (1855). Of those lounded in the igth century may be mentioned the Recensent (1803), and Niestice Recensent: the Nederlandsh Mwsewn (1835); the Tijdstraom (185j); the Tijdspicged, literary journal of Protestant tendency; the Theologisch Tijdschrift (1867). the organ of the Leiden school of theology; and the Dietsche Warande, a Roman Catholic review dewoted to the national amtiquities. Colonial interests have been cared for by the Tijdschrift raor mederlandsch 7ndie (1848). Current purnodicals are Hollandsoke nerue, monthly; De Gids (1837), monthly: De mievee Gids (1886), monthly: De Architect, bi-monthly: Caecilic (for music): Tijdschrifi coor Strafrecht; Museum, for philology (1 N03), monthly; Tifdsehrif noor nederlandsche caal en letierkunde: Nederlandseh Archievenblad: De Palcogranf; Elseviers geillmstreerd Maundsckrift, monthly; Groet Nederland, monthly.

Demmarie

Easly in the 18th century Denmark had the Nye Tidender (1720). concinued down to 1836 under the name of Dabskliteratmptidende: The A finerpa (1785) ol Rabbek wat carried on to 1819 and the Skandinadish Mifuscum ($1798-1803$) was revived by the Lilleratur. Selskabs Shrifter (i805). These were followed by the Laerde Eflcrretninger ($\mathrm{r} 799-18 \mathrm{IO}$), afterwards styled Litteralur. Tidende (isit1836). the Athene (1813-1817), and Historisk Tidistrift ($18+0$). In more modern times appeared Jidsskrift for Litheratur og Kritio ($183^{2}-18+2$, ${ }^{8} 43$); Macnedsskrif! for Lilleralur ($1829-1838$); Nord of Syd (1848-1849) of Coldschmidr, succecded by Ude og Hjemme. and the Dansk Maanedsskrifl (1858) of Steenstrup, with signed bisterical and literary articles. One of the most noteworthy Scandinavian periodicals has been the Nordisk Umioersilets Tidsifrift (1854-1864), a bond of union between the universitics of Christiania, Upsala, Lund and Copenhagen. Current periodicala are: Studier fra Sproz- og Oldidsforskning (1891), quarteryy: Danske Kugesin, yearly: Nyi Tidsskrift or Mathemotik, monthly: Theologisk Tidsakift, moothly; Nationalokonamish Tidsskrift, bi-monthly: Donsk bog fortegnelisc, bi-monthly for bibliography: ALheraemm finsk; Tilskueren, monthly; Aarboger for Nordish Oddkyndighed (archacotogy) quarterly
Iceland has had the Islenak Saquabisd (1817-1826), Ny Fieiagrvit (1841-1873), and Gefn (1870-1873). Shirnir (1831), which alsorbed in igos Timaril kins isterike Bokmeniafiags (1880-1904). is still published.

Norway

The first trace of the serial form of publication to be found in Korway is in the Ugenulige korte Afhandinger ($1760-1761$), "Weckly short Ireatics," of Bishop Fr. Nannestad, consisting of moral and theological essays. The Maanedite Aftandlinger (1762). "Monthly Treatises," was supported by several writers and devoted chicfly to rural economy. These two were followed by Politik of Hislorie (1807-1810); Saga (1816-1820). a quarterly review edited by J. S. Sunch; Den norske Tilskuef (1817-1821), a miscellany brought out at Bergen; Hermoder (1821-1827), a weekly aesthetic journal; Idann, (i822-1823), of the same kind but of less value; Vidar (1832-1834), a setily scientific and literary review; Nor (1840-1846), of the same sepe; Nersk Tidsskift far Vidensksh of Lilleralur (1847-1855); Masfreref Nyhedsblad (i851-1866). "1lfustrated News"; Norsk Heanedsskrifi ($1856-\mathrm{t} 860$), "Monthly Review Ior Norway." devoled so history and philology; and Norden (1866), a literary and scientific review. Popular sernals date fram the Skilling Magazin (as35). which first introduced wood-engraving. Representative current periodicals are: Samlfden, monthly; Elektrokeknisk tidsskrift: nordisk mesik-rave, fortnightly; Naturen: Norsk haselidende. noonthly: Unif Narregia.

Seeden

The Serensia Argws (1735-1734) of Otof Dalin is the first contribution of Sweden fo periodical biterature. The next were the Tidmiager of don Lardas Arbeter (1742) and the Larda Tiduiagur. The paıriotic journalist C. C. Gjörwell established about twenty literary periodicals of which the most importint was the Swenska Mfercurius (1755-1789). Acterbom and some fellow-students founded about isto a society for the deliverance of the country from Fircnch pedartry, which with this end carried on a periodical entitled Phesphoros (1810-18i3), to propagate the opiaions of Schlegcl and Scheling. The Srensk Literatur-Tidning (181,3-1825) of Palmblad and the Polyfem (1810-1812) had the same objects. Among later periodicak we may mention Skandia (1833-1837); Lilleralurbludel ($1838-1840$): Stallninfar och Forhellanden (1838) of Cruscmstolpe, a monthly revicw of Scandinavian history; Tidskevift for Lillcratay (isfo): Norsk Tidsskriff (1852), weekly, Forr och Nu; and the Revue indoise (1858) of Kramer, written in French. Amons the monthlies which now appear are the following: Social Tidskrif, Nordith Tidshijit and Ord ach Bild.

Spain owes her imtellectual emancipation to the monk' Benito Feyjod, who in 1726 produced a volume of dissertations momewhat alter the fashion of the Spectator, but on graver subjects, entitled Tcalro critico, which was continued down to 1739. His Cartas eruditas (1742-1760) were also issued periodically. The carliest critical serial, the Diario de los literatos (1737-1742), kept up at the expense of Philip V., did not long survive coutt favour: Other periodicals which appeared in the 18th century were Maner's Mercurid (1738); the Diario noticioso (1758-1781); Et Pensador ($17^{652-1767)}$ of Joseph Clavijo y Fajardo; El Belionis literario (1765), satirical in character: the Sema nario erudito (1778-1791), a clumsy collection of documats; El Cotreo hiterario de ke Europa (1781-1782): E
 Correo: literarí ($1786-1791$), devoted to literature and science: and the special organs EL Correo mercantil (1792-1798) and EL Somamario de agricilitivo (1997-1805). In the 19th cemtury were Variedades el riencias, liberafura, y artes (1803-1805), a mong whose contriburows bave been the distingaished mames of Quintara, Morafint and Antillon; Miscelanea de comercio (1819): and Diorio generad de las ciencias medicas. The Spanish relugees in London published Ocios do espafolos refygiodos (1823-1826) and Misceldnea hispanoencricama (1824-1828), and at Paris Misceldned escojida americana (1826). The Croxics cieneffica y litertria ($\mathbf{8 1 8 1 7 - 1 8 2 0 \text {) was afterwards }}$ transformed into a deily newspaper. Subsequently to the extinc. tion of EU.Censor (8820-1823) there was nothing of any value until the Carbas esparldas (i832), since known as the Revista espafiolo (1832-1836) and as the Rerista do Madrid (1838). Upon the death or Ferdinand VII. periodicals had a new opening; in 836 there were publisbed siztoen journals devered to science and art. The fashion of illustrated scrials was introduced in the Semunario pistoresce espefith (1836-1857), noticeable for its biographics and descriptions of Spanish momuments. El Panorama (1839-184t) was anothet literary periodical with engravings. Of fater date have been the Recrista iberica ($1861 \rightarrow 1863$), conducted by Sanz del Rio: La A mericy ($1857-187^{\circ}$). specially devoted to American subjects aad edited by the brothert Asquerino; Revista de Catalkina, publithed at Barcelona; Revista de Espatia; Revista conbempond ner: Espara moderme (1889), and Revista critica (1809). Current special periodixals are: Easkel-erria, reoisa bascomgada (1880,' San Sebastian): Hanxmenta historice socitatis Jesu (i894); EiS Progneso matematico. afterwands Revisfa de matematicas puras y apticodes (1891): Revisto de bibliografia Catolamo (Caralanya, Beloaros, Rosseld, Valencia, 1901); La Naturatera, fortnightly; La Energia eldelrica, fortnightly; Resize mimera, weekly; Revisla de medírine, weekly; Bibliografie espažola. fortnightly; La Lecixra; Espafle y Americc, monthly.
See E. Hartzenbusch, Periodicos de Madrid (1876); Lapeyro, Catalogatarifos de los periodicas, revistas, y ilnstracionas on Espafa
 la premitere meibid du XIX. sitcte (Paris, 1909).

Portugal

Portugal could long boast of only one review, the Jornal encictopedico (1779-1806), which had many interruptions: then came the Jornal de Coimbra (18i2-1820); the Peworama (1836-1857), founded by Herculano; the Revisia nmiversal lisbonense (1841-1853), established by Castiiha; the Instifuto (i853) of Coimbra: the Archime pilloresco (1857) of Liston; and the Jormal do sociedade dos amigos dos bettenes. In 1868 a revicw called Vox femenima, and conducted by wormen, was established at iisbon. Current periodicals include: O Archeodogo portuguès (1895); Jornot de sciencios mathemolicas a astranomicas (1877); Revisla lusilana, Archico de esfudos phifologicos e eth mologicos relativos 6 Portigal (1887); Ta-ssi-Yanf Kwo. Archioos e annoes de exiromo orienis portuguez (i899); Portagat arlistico, fortnightly; Repista militar; Arte musical, fortnightly Boletime do atricullor, monthly; Archioo kistorico porlugues, moathly.

Greecb

The' periodicad literature of modern. Greece commences with O Abyer 'Epuhts. brought out at Vierina in 1811 by Anthimos Gazi and contimed to 182 I . In Aegina the Airurata appeared in 183I, edited by Mustoxidis; and at Corfu, in Greck, Italian and English. the 'Avoloyla (1834). After the return of King Otho in 1833 a literary review called 'Iprs was commenced. Le Spectaleur de POricht, in Frerreh, pleaded the national cause before Europe for three years from 8853 . A military journal was published at Athens in 1855, and twa yonrs heer the archaeological periodical conducred by Pittakis and Rangabes. For many years Mavbipa (1850-1872), edited by Rangabes and Paparrigopoulos, was the leading serial. \$uos dealt with natural science, the rearoousd with

 and ' 10 man ($\mathrm{I} \mathrm{g} g$) quarterly.
See A. R. Rangabe Hist. litulraire de la Gide moderne (Parts, 1879); R. Nicolai, Gesctichte der neugriechisequer Literalur (1876).

Russia

The historian Gethard Friedrich Mufler made the first attempt to establich periodical literature in Rassia in his Yijem'yasyalchowith

Solchinemive (1755-1764), or "Monthly Works" In 1759 Sumartkov lounded the Trudelyubivays Picheld, or "Industrous Bee." giving translations from the Spectator, and, for the first time, critical essnys. Karamsin brought out in 1802 the V'yestmik Esropi, an important review with Liberal tendencies. The Conecrvative Russkoi V'yestnit (1808) was revived at Moscow in 18g6 by Katikov. The two last namod are still published each month. The pomantic school was supported by Sin Otelcheston (1812). "Son of the Fatherland," united in 1825 to the Severnoi Arbhis (1822), which dwisdled and came to an end soon after 1839. One of the most succeseful Ruscian reviews has been the Bibloteta di'y Tcherrio (1834) or "Library of Reading." The Russhay Miss, "Rugsian Thought," published in Moscow, represented the Slavophil perty, Tho following are come representative pericdicals of the day: Zmand ministerspa narodrago prospescenija, manthly; Balische Monefsciurif' (1860), monthly; V'yestrik sospilawis (Ior education); Mir ishastigs (or fine art): Russhoie bogetsto (for literature); Russhi wokhe (archives): Mir Baji, monihly; Istorichashy o'yeumit (history): kusskaia slarina (archacology). In Finland Smans (1841), writien in Swedish, is still publishod.

Othrar Countanes
Bohemia has the Casopis musea krailovitol Beshetho (1827), quarterly, founded by Palacky; Nase doba, monthly; Cechische Revime (1907) quarterly. Hungary can show the Uegarisches Magasin ($5781-1787$, 1791). published at Pressburg, and the Magyap Musem (1788). The Tudományos eyüjet́cmény (1817-1841) and the Figyelmesd ($18,37-1843$) deserve mention. Uf Maeyar (fusenm was a seientific magazine, and the Budapasti Sremie (i857) of a more gencral character. Among current Hungarian periodicals are: Yagyar Kdnywsemile (1876), and Magyer N yomediseat. Belore the revolation of 1830 Poland had the Pamialnd Warseawsti of Lach Seyrma. Amoog other Polish reviews may be mentioned the Dsicumin Liter. acki of Lemberg: the Billioleke Wersramosha (1841), monthly: Pracglad Palsti (i866), monithly Pracuodmit mankowy i dicracki (1873), monthly: Pramodaik bibliogroficiny (1878), monthly; Pracplad pewzechisy (r884), monthly. Rumanis commenced with the Magasinal istorica pentrm Daria (1845) containing valuable bisturical documents; and Moldavia with Dacia Lithraria (1840) and Archind Romamesca (1841). Rumania now has the Coneorbiri hicerare (1868), monthly, and Romanel, ravistic lilerard illustrales seplemanald. The beak literary review Servis has had was the Wila, edited by Novalcovic.

Japan now poscessen native periodicals of the Europenn type, of which the following are represcntative exmmples: Fudsoku-Getho Gnative customs); The Kohbe (art) ; Toyo-Gakugei-Zasshe (science); Jogaky-Zaschi (domestic eoonomy); Tetsugaky-Zesshi (philowophy); Keizaj-Zasshi (political coonomy); Taiyo. (literatore).
General Indexes to Peniodicals.-The most complete colloction of periodicals in all languages ever brought towether is that preserved in the British Muscum, and the excerpt from the prinecd catalogue of the library, entitled Periodecal Publicalions (London, 1899-1900, and ed. 6 parts folio, with index), includes journals, roview,s, magaxincs and other worke itsued periodicelly, with the exception of transactions and proceodings of learned socictics and of Eritigh and Colonial newspapers later than 1700. The sitke of these periodicals, which number about 23,000, are antanged under the town of place of their publication
The Edimburgh and Quarlerly Revictor, the Revue des deux mondes, the Revue historigue, Demische Rumdschan and others isane from time to time gencral indexes of their contents, while the periodical literature of special departmente of study and rescarch are poted in the various Jahresberichte published in Germany, and indexed monthly in such English and American magezines as the Engineering Magasine, the Ceogaplical Jomrnal, Exglish Hisforical Rewico, American Hislorical Repicin, Econowié Jowrnal (forpoliticil cconomy), Zibrary Jowrwal and Library Association Recerd (for bihhography) and the Educational Review. The Cal. of Scientific Papers (18001900) of the Royal Society (1957-1908), and the Repertorium der lechn. Jourt. Lileralur ($1879-1899$) of the Cerman Patent Oince, are specimens of indexes of epecial periodicals. There are also annual indexes such as those in the Zoological Recond and Ameales de geographic. Complete lists are given by A. B. Krocger (Gwide to Refarence Books, 1908) and Stein (Mannel de bibliographic gontrale. 1897). See also Bublography of Books revieroed in American Periodicalf, by G. F. Danlorth (rgoz-1903): Book Review Digest (igo6), \&c. H. C. Bolton's Cat. of Scientuic and Techmical Periodi-. cals $1605-1805$, Smithsonian Inst. (2nd ed., 1897); Harrison's Int. Cat. af Scientfic Lit. (1903-1904): S.H. Scudder's Cal. of Scientific Serials, 1633-1876 (Camb. (Harvard Univ.) 1876); Cat. of Periodicals (English and Foreign) in Bod. Lib., 1878-1d80; Bibliotheque Nationale, Liste des periodigmes etrargers (i896). A usoful belect list, including all languages, is J. D. Erown's Classifiod List of Cwrrent Periodicals (1g04).
(H. R. T.)

PRRIORAI (reploutor, those who dwell around, in the neighbourhood), in ancient Iaconif the class intermediate between the Spartan citivens and the serfs or belots (q.t.). Ephorus tays (Strabo viii. 364 seq.) that they were the original Achacan inhabitants of the conntry, that for thefith peneration after
the Dorian invasion they thared in the franchise of the invaders, but that this was afterwards taken from them and they were reduced to a suhject condition and forced to pay tribute. The term, however, came to denote not a nationality bet a political status, and though the main body of the periocci may have been Achaean in origin, yet they afterwards included Arcadians on the northern frontier of Laconia, Dorians, especially in Cythern and in Messenia, and Eomians in Cynuria. They inhahited a large number of settlements, varying in size from important towns like Gythium to insignificant hamets (Iso crates xii 479); the names of these, so far as they are known, heve heen collected by Clinton (Fasti hellorici, and ed. i. 401 8q9.). They posectsed personal freedom and some measure of communal independence, hut were apparently under the immediate super. vision of Spartan harmosts (governors) and suhject to the general control of the ephors, though Inocrates is probably going too far in saying (xii. 181) that the ephors might put to death without trial as many of the perioeci as they pleased, Certain it is that they were excluded not merely from all Spartan offices of stale, hut even from the assembly, that they were absolutely subject to Spartan orders, and that, owing to the absence of any legal right of marriage (izivaía) the gulf between the two classes was impassablc. They were also obliged to pay the "royal trihute," perhaps a rent for domain-land which they occupied, and to render military service. This last burden grew heavier.as time vent on; 5000 Spartiates and 5000 perioec hoplites fought at Phataca in 479 E.C., hut the steady decrease in the number of the Spartiates necessitated the increasing employment of the perioeci. Petioeci might serve as petty officers or even rise to divisional commands, especially in the fiect; hut seemingly they were never set over Spartiates. Yet except at the beginning of the 4 th century the perioeci were, so far as we can judge, fairly contented, and onty two of their cities joined the insurgent belots in 464 s.c. (Thuc. i. 101). The reason of this was that, though the land which they cultivated was very umproductive, yet the prohibition which shut out every Spurtinte from manufacture and commerce left the industry and trade of Laconia entirely in the hands of the perioed. Unlike the Spartiates they might, and did, possess gold and silver and the jron and steel wares from the mines on Mt Taygetus, the shoes and woollen stuffs of Amychac, and the import and export trade of Laconia and Mersenia prohably enahled some at least of them to live in an ease and comiort unknown to their Spartan lords.

See G. Grote, Mifstory of Geecce, pt. ii., ch. 6; C. O. Mutjer, Doriass (Eng. trans.), bk. iii. Ch. 2; A. H. J. Greenidge, Greek Comstitulional History, p. 78 sq9.; G. Gilbest, Greeh Constilutional Ambiquilies (Eng. trans.) p. 35 sq9.; G. F. Schomann. Antiquilies of Greece (Eng. trang) p. 201 sq9.; G. Busolt, Die eriech. Staats. sud Rechtsalleylimer, 8 84: Griech. Geschichte, i. 528 scq . (2nd edi): V. Thumser, Lehrbweh der gricch. Slaalsalicrtüncr (6th od.). 19; B. Niese, Nachrichecn porm Zer woissenschaftiches Ceselfschaft zw Gottingen. Phin.-Hict. Klaspe. (1906). 101 sq9.
(M. N. T.)
peripatailcs (from Gr. Tepmerity, to walk about), the name given in antiquity to the followers of Aristotle (q.च.), either from his habit of walking up and down as he lectured to his pupils, or from the mepiratcs (covered waik) of the Lycenm.

Aristolle's immediate successors, ${ }^{\text {t }}$ Theophrastus and Eudemus of Bhodes, were diligent scholars raiher than original thinkers. They made no innovations upon the main docteines of their master, and their industry is chiefly directed to supplementing his works in minor particulars. Thus they amplified T mon the Aristotelian logic by the theory of the hypo- plorestes thetical and disjunctive syllogism, and added to the firat figure of the categorical syllogism the five moods out of which the fourth figure was afterwards constructed. The impulse towards natural science and the systematizing of empirical detaits which distinguished Aristote from Plato was shared by Theophrastre (q.t.). The same Iutn for delail is observahle in his ethics, where, to judge from the imperfect evidence of the Characlers, be claboralod still farther Axistotle's portraiture of the virtues
${ }^{1}$ Ser Cotilios, Noct. AlW. xibi. 5. for the etory of bow Aristotia chose Theophrastus as his succentor.
and their relative vices．In bit doctrine of virtue the distinctive Peripatetic position regarding the importance of exterual goods was delended by him with emphasis againgt the asenulis of the Stoics．He appears to have laid even more atress on this point than Aristotle bimseif，being doubtless led to do so， partly by the heat of controversy and partly by the furportance which leisure and freedom from harasing cares naturally assumed to a man of his studious cemperament．The meta－ physical droplas of Theophrastus whlch have come down to us show that be was fully alive to the difficulifes that beset many of the Aristotelian definitions．But we are ignorant bow he proposed to meet his own criticisma；and they do not appear to have sugested to him an actual departure from his master＇s doctrine，much less any．radical transformation of it．In the dificulties which be raises we may perhaps detect a leaning towards a naturalistic interpretation．The tendency of Eudemus， Entines of Rhedes． on the other hand，is more towards the theological Ruch Exdemian Elkics（which，with the possible exception of the three books common to this treatisc and the Nicomarhoan Ebitics，there need be no hesitation in ascribing to Eudemus） expressly identijy Aristotle＇s ultimate ethical ideal of ecopia with the knowledge and contemplation of God．And this supplich Eudemus with a standard lor the determinalion of the mean by reason，which Aristotle demanded，but himself teft vague．Whatever furthers is in our progress towards a knowledge of Cod is good；every hindrance is evil．The same spirit may be traced in the author of the chapters which appear as an appendix to book i ．of Aristotle＇s Melaphysics．They have been attributed to Pasicies，the nephew of Eudemus． For the rest，Eudemus shows even less philosophical indepen－ dence than Theophrastus．Among the Peripatolics of the first generation who had been personal disciples of Aristotie，the ot her chief names are those of Aristoxenus（q．v．）of Tarentum and Dicaearchus（q．8．）of Messene．Aristoxenus，who had formerly belonged to the Pythagorean school，majotained the position，already combated by Plato in the Phoedo，that the soul is to be regarded as nothing more than the harmony of the body．Dichearchus agreed with his friend in this naturalistic rendering of the Aristotelian entelechy，and is recorded to have argued formally against the immortality of the soul．

The naturalistic tendency of the sehool reached its fill expression in Strato of Lampsacus，the most independent，and stateof probably the ablest，of the carlier Peripatelics．＇FFis
Eangmerat system is based upon the formal denial of a trans－ cendent deity．Cicero slitributiss to him the saying． that he did not require the aid of the gods in the construction of the universe；in other words；he reduced the formation of the world to the operation of natural forces．We have evidence that he did not substitute an immanent world soul for Aristote＇s extra－mundane deily；be secognized nothing beyond nalural necersity．He was at issue，however，with the atomisic materialisen of Democritus in regard to its twin assumplions of absolute atoms and infinite space．His owa speculations led him rather to lay stress on the quatitative aspect of the world． The true explanation of things was to be found，according to Strato，in the forces which produced their attributes，and he foliowed Aristolle in deducing all phenomena irom the funda－ mental attrihutes or elements of heat and cold．His psycho－ logical doctrine explained all the functons of the soul as modes of motion，and denicd any separation of the reason from the faculties of sense－perception．He appealed in this conncxion to the statement of Aristotle that we are unable to think without a sense－image．
The successors of Strato in the beadship of the Lyceum were Iyco，Aristo of Ceos，Critolaus（q．v．），Diodorus of Tyre，and Erymneus，who briags the philosophic succession down to about 100 日．c．．Other Periputeties belonging to this period are Hiero－ nymus of Rhodes，Prytanis and Phormio of Ephesus，the delirus senex who attempled to instruct Hennibal in the art of war（Cic．De orol．fi．18）．Sotion，Hermippus and Sityrus were bistorians rather than philosophers．Hertclides Lembos，

Agntharchices and Antiabemes of Rhodes are names to us and pothing more．The fact in that，after Strato，the Peripatetle school has mo thinker of any＇note for about 200 years．

Earty fin the 1 at century 8．c．all the philowophic schoole begas to be invaded by aspint of eciecticism．This wes parly due to the influence of the practical Roman spirit．This in－ fluence is illustrated by the proconsul Lucius Gellius Publicola （about 7o s．c．），who proponad to the representalives of the schools in Athens that be should help them to settle their differences （Cic．Detef．4．50）．This atmothplese of Indiblernce imper－ ceptibly infuenced the attiude of the contending sehools to one another，and we find vations movements towards unity in the viows of Beethas the Steic，Pupnetius and Antiochus of Ascaion． tounder of the so－alled＂firth Acndemy．＂．Meanwhile the Peripetetic achool may wald to have faten a new departure and a new．Mase of life．The impulee was due to Andronicus of Rhodes．His critical edition of Aristolle indicated to the latier Peripatetics the direction in which they could prefikably work，and the school dewoted itelf hence－Andrakana forth annost exclusively to the writing of commentaries on Ariatotle，e．g．these of Bocthus of Sidon，Aristo of Alexandria； Staseks，Cratippus，and Nicolaus of Damascus．The most batesctting Periptitetic work of the period is the treatise De mande，which ls a good example within the Peripetetic echoof of the ecloctic tendency which was then in the air．The adminture of Stoic clementa as great that some critics have altributed the work to Stoic author；but the writer＇s Poripateticism scems to be the more fundamental constituent of his doctrine．

Out knowledge of the Peripatetic school during the first two entaries of the Chritifan era is very fragmentary；but those of tie representatives of whom anything is known con－ fined themseives entirely to commenting upon the different treatises of Aristotle．Thus Alexander of Acgae，the teacher of Nero，commented on the Calegories and the De cado．． In the and century Aspasius（g．v．）and Adrastus of Aphro－ disias wrote numerous commentarles．The latter also treated of the order of the Aristotclian writings in a separate work．Somewhat later，Herminus，Fichaicus and Sosigenes commented on the logical treatises．Aristocies of Messene， the teacher of Alczander of Aphrodisias，was the author of a complete critical history of Creek philosophy．This second phase of the activity of the school cloess with the comprehensive mbours of Alesander of Aphrodisios（Scholarch，C．300），the exegete par excellence，called sometimes the second Aristolie． Alexander＇s interpretation proceeds throughout upon tbe natur－ alistic lines which have already become familiar to
us．Aristotle had maintained that the individual Apmagoter of alone is real，and had nevertheless asserted that the universal is the proper ohject of knowledge．Alexander seeks consistency by holding to the first position alone．The individual is prior to the universal，he says，not only＂for us，＂but also in itself，and universals are abstractions which have merely a subjective existence in the intelligence which abstracts them． Even the deity must be brought under the conception of individual substance．Such an interpretation enabies us to understand how it was possible，at a later date，for Aristotle to be regarded as the father of Nominalism．Form；Alexander proceeds，is everywhere indivisihie from matter．Hence the soul is inseparable from the body whose soul or form it is．Reason or inteilect is bound up with the other laculties．Alcxander＇s commentaries formed the foumdation of the Arablan and Scholastle study of Ariatote．Soon after Alexander＇s death． the Peripatetic school was merged，like all others，in Neo－ platonism（q．⿻日．）．

PRRIPATUS，a genus of animals belonging to the air－breathine division of the phylum Arthropoda．It differs，however，from all other Arthropoda in such important respects that a special class，equivalent in rank to the old－established Arthropod classes， had been created for its sole occupancy．This class has beem named the Prototracheata or Onychophorn（see Anttropoon）， and may be most appropriately placed in the system in the
mieighbourhood of the Myrifipöda, though it most not be forgotten that it differs from the Myriapoda more than the Myriapoda differ from other Arthropoda, and that in some respecta it presents features which recall the segmented worms (Annelida). The genus has a wide distribution (see below), but it has not been found in Europe or in North America. There is hut litthe variety of atracture in the genus, and the species are limited in number. They live beneath the bark of troes, in the crevices of rock and of rotten stumps of trees, and beneath stones. They require a moist atmosphere, and are exccedingly susceptible to drought. They ayoid light, and are therefore rarely seen. They move slowly, picking their course by means of their antennae. When irritated they eject with considerable force the contents of their slime reservoirs by means of the sudden contraction of the muscutar body-wall. The slime, which appears to be harm ${ }^{+}$ less, is extremely sticky, but it easily comes away from the skin of the anjmal itself. Locomotion is cflected by means of the legs, with the body fully extended. Hutton describes his specimens as sucking the juicts of flies, which they had stuck down with their slime, and they have been observed in captivity to devour the entrails which have been removed from their fellows, and to eat raw sheep's liver. They move their mouths in a suctorial manner, tearing the food with their jaws. They have the power of extruding their jaws from the mouth, and of working them alternately backwards and forwards. They are viviparous; the young are fully formed at birth, and difter from the adult only in size and colour. The mother does not appear to pay any apecial attemtion to ber offepring, which wander away and get their own living. It has lately been stated that some of the Australian species are normally oviparous, but this has not been fully proved. Sexual differences are not strongly marked, and are sometimes absent. There does not appear to be any true copulation. In some species the male deposits small oval spermatophores indiscriminately on any part of the body of the fernale. It: seems probable that in such cases the spermatozoa make their way from the adherent spermatophore thraugh the body-wall into the body, and so by traversing the tissues reach the ovary, In other species which possess receplacula seminis it is probable that fertilization is effected once only in early life before any ova pass into the uterus.

External Fealures.- The antecior part of the body may be calted the head, though it is not sharply marked off from the rest of the body (fig, 1). The head carries three pairs of appendages, a pair of simple eyes, and a ventrally placed mouth. The body is elongated and vermiform: it bears a number of paired appendages, each terminating in a pair of claws, and all very much alike. The number varies in the different species. The anus is always at the
called the buecal caviny, and is murrounded by ae anmular temid lip, raised into papilliform ridges and bearing a few apines (fy. 2). Within the buccal cavity are the two jaws. They are short, stumplike, muscular structores, armed at their free extremities by a pair of cutting blades or claws. and are placed one on each side of the mouth. In the median line of the buccal cavity in front is placed a thick muscular protuberance, which may be called the tongue. though attached to the dorsal instead of to the ventral wall of the mouth (fig. 2). The tonguc bears a row of small, chitinous teith. The jaw-claws (figs. 3 and 4), which resemble In all essential points the claws borne by the feet. and like these, are thickenings of the cuticle, are sickle-shaped. They have their convex edge directed forwards, and their concave, or cutting edge, turned backwards. The inner cutting plate (6 g .3) usuaily bears a number of cutting tecth. The oral papillae are placed at the sides of the head (fig. 2). The dacts of the slime-glands open at their free end. They possess two main rings of projecting tissuc, and their extrenilies bear papillae irregularly arranged. The ambulatory appendages vary in number. There are seventeen pairs in P.topensis and cighteen in P. balfouri, while in P. jamaicenses the number varies

Fic. 2.-Ventral view of the head of P. capensis.
ant, Antennae; or.p. Oral papilac: F., , Firty leg; T, Tongue.
from wenty-nine co fort y-three. They consist of two matn divisions, which we may call the leg and the foot (fg. 5). The leg (l) has the form of a truncated cone, the broad end of which is attached to

(Alter Pellour.)
Fig. 3--linner jaw-ciav of P. capensis.

(Aiter Ballour.)
F1G. 4.--Outer jaw-claw of
the ventro-tateral wall of the body, of which it is a protongation. It is marked by a number of rings of papillae placed trameversely to its lone axis, the dorsal of which are pigmented like the doren surface of the body; and the ventral like the ventral surface. At the macrow diatal end of the kg there are on the ventral surlace three or four (rarely five) spinilerous pads, each of which is continued dorsally into a row of papillae. The loot is attached to the distal end of the leg. It is slightly narrower at its attached. extremity than at its rree end. it bears two slekle-shaped claws, and at its distal end three (carely four) papillac. The part of the loot which carries the claws is especially retractile. and is generally found more or less selescoped into the
posterior end of the body, and the generative opening is on the ventral surface, just in front of the anus; it may be between the legs of the penultinate pair, or between the legs of the lase pair, or it may be subterminal. The colour varies considerably in the different species, and even in different individuals of the same specics. The skin has a velvety appeararice, and is thrown into a number of transverse ridges, along which wart-like papillae aro placed. These papillae, which are found everywhere, are the primary papillae; they are covered with amall, scale-like projections called secondary papiliae, and are specially developed on the dorsal surface. less so on the ventral. Each papilla cariies at its extremity a well-marked spine. Among the primary papillae maller accessory papiliae are sometimes present.

The appendages of the head are the antennac, the jaws and the oral papilac. The mouth is at the hinder end of a depression
proximal part. The legs of the fourth and fifth pairs differ from the others in the fact that the third pad (counting from the distal end of the leg) carries the opening of the enlarged nephriclia of these segments. In some apecies certain of the legs bear on their ventral ides furrows with tumid lips and nides furrows with tumid lips f, Foot:l, ke; p, spiniferand lined by smooth non-tuberculate ous pads. The white papilla epithclium: they are called coxal of the proximat part of this organs, and it appears that they can leg is characteristic of the be everted. The males are gencrally male of this species rather smaller and lem numerous
than the females. In those specics in which the number of legs varies the male has a smaller number of legs than the female.

Enveliaf-iAs altrondy atated, Peripulus is viviparous. The Australionan apocies come nearest to laying egra, inasmuch as the eqga are large. fuli of yolk, and enclosed in a sheli; but development normally takes place in the uterus, thnugh abnormally, incompletely developed eggs are extruded. The uterus always contains evereral young, which are umally at different stagea of development and are bom at different times of the year. In most of the Airican specics, however, the embryos of the uterus are almosk of the came age asd are born at a definite seaton. The young of P. capensis are born in April and May. They are almoet colourien at birth. excepting the antennae, which are green. and thein length is 10 to 15 mm . A large femaie will produce thirty to forty young in one year. The period of gestation is thirteen montha, that ia to tey, the ova pass into the oviducts about one month before the young of the preceding year are born.
Anafomy.-The alimentary canal (fig. 6). The buocal cavity. as explained above, is a mecondary formation around the trie

(After Baltour.)
Fig. 6.-Peripatus capensis dipmected 10 as to show the alimentary canal, slime glands and alivary glands. The dissection is viewed from the ventral side, and the lipe (L) have been cut through in the middla line behind and pulled outwards to as to expose the jaws (j). which have boen tursed outwarda, and the tongue (1) bearing a median row of chitinous teeth, which branches behind into two. The muscular pharynx, extending back lnto the space between the first and second pairs of lega, is followed by a short tubular oesophagus. The latter opens into the large stomach with plicated walls, extending almost to the hind end of the animal. The stomach at its point of junction with the rectum presenta an 8 -shaped ven-tro-dorsal curve.
A. Anus; at, antenna; F.s, F.2, first and second leet; j, jaws; $\mathcal{L}_{\text {, }}$ lipe; oe oesophagus; or.p. oral papilla; ph. pharynx; R, rectum: s.d, salivary duct; s.e. anlivary gland; s/d, alime reservoir; Shep portion of cubules of slime gland; st, stomach; T, tongue in roof of miouth. mouth, which is at its donal posterior end. it contains the tongue and the jaws, which have already been described, and into the hind end of it there open ventrally by a median opening the salivary glands. The mouth leade into a muscular pharynx, which is connected by a short oesophagus with the stomach The stamach forma hy far the lergent part of the alimentary camal. It is a dilated soft-walled tube, and leads behind into the chort narrow rectum, which opens at the anus. There ere no glands opening lato the alimentary canal. The central nervous system, the anterior part of which is shown in Gg. 7 , is of the "t rope-ladder " type, and the ventral cordn meet over the rectum. The cuticle is a thin layer, of which the spines, jaws and claws are apeclal developments. Its surface is not, however, smooth, but is everywhere, with the exception of the periaral region, raised into minute cecondary

co
(Aher Bellow.)
Fic. 7.-Brain and anterior part of the ventral nerve-cords of Peripatus copensis enlarged and viewed from the ventral surface.
afn, Aatennary nerves; co, commiasures between ventral cords: d, ventral appendages of brain; E, eye; en, nerves passing outwards from ventral cord; F.E.I, ganglionic enlargements from which nerves to leet pass off ; $j n$, nerves to jaws; org. ganglionic enlargement from which nerves to oral papillae pase off; orn, nerves to oral papillae; pe, posterior lobe of brain; pn, ncrves to feet: sy, sympethetic nerves.
papilisa which in mort ingtance bear at their free entremity a sonewhat prominent spine. The epidermis, placed immedintely within the cuticle, is componed of a single row of cells. The pigment which glves the characteristic colnur to the skin is deposited in the protoplasm of the outer ends of the cells in the form of small granules. Beneath the epidermis is a thin cutis, which is followed by the muscular layers (external circular and internal longitudinal). The muscular fibres of the jaws are transversely striated, the other muscles are unstriated.

The apertures of the tracheal system are placed in the depressions between the papillae or ridges of the akin. Each of them leads into a tube, which may be called the tracheal pit (fig. 8); the walls

(Alter Baliour.)
Fic. 8.-Gection through a tracheal pit and diverging bundici of tracheal tubes taken transversely to the long axis of the body.
tr. Tracheae. showing rudimentary spiral fibre ; tr.c, Cells resembling those lining the tracheal pits, which oceur at intervals along the course of the tracheae; tr.o, Tracheal stigma ; tr.p. Trachenl pit of this are formed of epithellal cells, bounded towarde the lumen of the pit by a very delicate cuticular membrane continuous with the cuticie covering the surface of the body. Internally it expands in the transverse plane, and from the expanded portion the tracheal tubes arise in diverging bundles. The tracheae are minute tubes exhibiting a laint transverse striation which is probably the indication of a spiral fibre. They appear to branch, but only exceptionally, The tracheal apertures are diffused over the surface of the body, but are especially developed in certain regions.

The vascular system consists of a dorsal tubular heart with paired ostia leading into it from the pericardium, of the peri: cardium, and the various other divisions of the perivisceral cavity (fig. 12. D). As in all Arthropoda, the periviaceral cavity is a haemocoele, i.e. contains blood, and forms part of the vascular system. It is divided by septa into chambers (fig. 12, D), of which the most important are the central chamber containing the alimentary canal and the dorsal chamber or pericardium. Nephridia ere present in all the lega. In all of them (except the first three) the following parts may be recognized (fig. 9): (1) a vesicular portion

Fig. 9.-Nephridium from the ninth pair of liege of P. cepensis.
o.s, Externalopening of segmen. s.c.f, s.c.2, s.c.3. s.c.4, Succoseive tal organ.
p.f. Internal opening af nephrid. regions of coiled portion of nephridium. (lateral compartment).
5. Vesicle of egrmental organ. 1. Third portion of nephridium broken of at $p . f$ from the internal vesicle, which is not shown.
($)$ opening to the exterior on the ventral surface of the legs by a garrow pesagge ($5 . d$); (2) a coiled portion, which ia again subdivided into several sections (s-c) ; (3) a section with closely-packud nuclei ending by a somewhat enlarged opening ($p .0$): ($($) che terminal portion, which consists of a thin-walled vesicle. The nephridia of the first three pairs of legt are smaller than the rest, considiag only of a vesicle and duct. The fourth and fitth pairy are larger than those behind, and are in other respects peculiar; for instance, they open on the third ped (counting from the distal end of the
leg), and the ecternal veolcular portion in not diataid: The edermal oppening of the other nephridia is placed st the outer exd of a tranvere groove at the bape of the lego. The malivary glacde are the modified nephridia of the eeqment of the oral papilise.
The mate generative organs (gg. 10) consint of a pair of teates
 sory giandular tubules ($($). All the above perts tie in the central

(Atter Entlous.)
Fio. ra.-Mele Generative Organs of Peripahus caponsis. Dorsal view.
e.\&, Enlarged crural glands of tast pair of legs.
F. 10, 17. Lest pair of legs.
f. Sruall accessory glandular tubes.
compartment of the body cavity.. The ovaries consist of a pair of tubes closely applied together, and continued posteriorly into the oviducts. Each oviduct, after a short course, becomes dilated Into the uterus. The two uteri join hehipd and open to the exterior by a median opening. The ovaries always contain espermatozoa, some of which project through the ovarian wall into the body cavity. Spermatozoa are not found in the uterus and oviducts, and it appears probable, as we have said, that they reach the ovary directly by boring through the skin and traversing the body cavity. In ail the species except the Arican species there is a clobular receptaculum seminis opening by two short ducts close togetber into the oviduct and in the neotropical species there is in addition a small receptaculurn oworum, with extremely thin walls, opening into the oviduct by a short duct just in froas of the receptaculum seminis. The epithelium of the latter stracture is clothed with actively moving cilia. There appear to be present in moot, if oot all, of the legs some accessory plandular structures opening just erternafly to the nephridia. they are called the crural glanda.
Develotement.-Pcripalus is found in Africa, in Anstralasia, in South America and the West Indies, in New Britain, and in the Malay Peninsulz and Sumatra. The species found in these various localities are closely similar in their anatomical characters, the principal differences relating to the structure of the female generative organs and to the number of the legs. They, however, differ in the most striking manner in the structure of the ovum and the early development. In all the Australasian species the egs is large and heavily charged with foodyolk, and is surrounded by a tough membrane. In the Cape species the eggs are smaller, though still of considerable size; the yolk is mach less developed, and the egg membrane is thinner though dense. In the New Britain species the egs is still smaller ($: 1 \mathrm{~mm}$.), and there is a large trophic vesicle. In the neotropical species the egg is minute, and almost entirely devoid of yoll. The unsegmented uterine ovum of P. novce sealandiace measures 1.5 mm . in length by .8 mm . in breadth; that of P. capensis is .56 mm . in length: and that of P. frinidadensis 04 mm . in diameter. In correspondence with these differences in the ovam there are differences fo the earty development, though the later stages are closely sionilar.
 species the following dameription refers. The semmentation is peculiar, and leadia to the formation of a molid geatruth, comsiating of a cortex of ectoderm machei surrounding a central endedermal mass, which is exposed at one point-the blatiopore. The enteron arises an a space is the endoderm, and an opecity-the primitivo erreak-appears at the hind end of the blastopore (fiy. II. B). The eloggation of the enabryo is acoompanied by an clongation of the biastopore, which scon becomex dumb-bch shaped ($\mathrm{ig} .11, \mathrm{C}$). At the tanse time the mesoblastic sonitee (embryonic segments of mesoderm) make their appearance in pairs at the hind end, and gradmally travel forwards on aech cide of the blestopore to the front end, where the somites of the znterior pair soon meet in front of the blastopore (fig, iI, D). Mesnwhile the narrow middlice part of the blastopore has closed by a funion of its lipe, 00 that the blastopote in tepresented by two openings, the future mouth and anus. A primitive groove maken its appearance betiind the blantopore (fige 11, D). At this stape the hind end of the body becomes curved ventrally into aspiraf (6g. II, E), and at the game time the appendage appear as hollow processee of the body-wall, a meroblastic momite being prolonged into each of them. The first to appaar are the antennac, into which the praeoral comitea are prolonged. The remainder sppeur from before backwarde in regular onder, viz jaw, oral papilme, fege i-17. The full number of soxnites and theis appendages is not, however, completod until a laver stage. The nervous syotern is formed as an annular thichening of ectoderm peaceing in front of the mouth and behind the anus, and lyige on each ede of the blattopore along the lines of the comites. The pracoral part of this thickeaing, which given rise to the cerrebral panglia, becomes pitted inwards on each side, (fis. 11, F, C.g.). These pits are eventually clomed, and form the hollow ventral eppeodagea of the suprapharynseal ganglia of the adult (Gg. 7,d). The lipe are focmed an folds of the side wall of the body, extending from the pracoral lobes to just behind the jaw (fig. $11, F, L$). They enclose the jaws ($)$, mouth (M), and opening of the asilivary glands (o.s), and so give cise to the buocal cavity. The embryo has now hoer its spiral curvature, and becomes completely doubled upon itself, the hind end being in contact with the mouth (fig. 11, G). It remains ia this position until birth. The just-born young are from 10 et 15 mm . in length, and have green antennae. Gut the rest of the body is either quite white or of a reddish colour. This red colour differs from the colour of the adult in being coluble in spinit. The mesoblastic somites are paired sacs formed from the anterior lateral portions of the primitive streak (6g. If, C). As they are formed they become placed in pairs pa cach side of tho

Fic. 11.-A Series of Embryoe of P. capensis. The hind end of embryos B. C, D is uppermost in the figures, the primitive streak is the white patch behind the blastopore.

A, Gastrula stage, ventral view. showing blastopore.
B, Older gastrula stage, ventral view, ghowing elongated blastopore and primitive streak.
C. Ventral view of embryo with three pairs of mesoblastic tomites, dumb-bell shaped blastopore and primitive etreak.
D. Ventrai view of embryu, in which the blastopore has completely coosed in its middle portion. The anterior pair
of comites have moved to the front end of the body.
E, side view of later enabryo. Ah, Antenna; d donal projection; p.s., praeoral somise. F. Ventral view of head of embryo intermediate between E and G. Ai, Antennac: c.s, cerebral groove: j, jaws ; j.s. awelling at bane of jaws; L, lips; M, mouth; or. p_{1} oral papillae; o.s, opening of walivary pland.
G, side view of older embryo. blastopore. The momites of the first pair eventually obtain a position entirely in front of the blastopore (Fig. If, D). They form the somites of the praeoral lobes. The full complement of momites is acquired at about the stage of fig. II. E. The relations of the mesoblastic momites are chown in 1 g. 12, A, which representa a transverse wection taken between the mouth and anus of an embryo of the stage of fig. 1I, D. The history of these comites is an exccedingly interesting one. and may be described shortly as follows: They divide into tro parts-a ventral part which extends into the appendage, and a dorsal part (fig. 12, B). Each of the ventral parts acquirea an opering to the exterior, just ourside the nerve-cond,
 $\mathrm{D}, \mathbf{2}^{2}$). The dontal part ditife darnalwards and dimministee reter tively in dize (Gigi 33 , C). Ino fate differs in the diffectent parts of the body. In uhe anterior comives it dwindles and dieappeans, but in the posterior part it uniten with the dxral divicions of cons. thenons comites of the amme side, and forms a tube-che generative tube (fig. 12, D, 2). The last section of this tube retains itt coar zexion with the veneral portion of the zomite, and so equires an externul opening, which if at first hateral, but mon shifts to the suiddle line, and fasee with its fellow, to form the wingle generative opening. The pracoral momire develope the rudiment of a nephriduum, but eventually entirely diepppeara. The jaw somite also d́soppenra; the oral papilia comite forms veneraly the alivary glanda, which are thut pertally homologous with oephride. The various divisions of the periviscratalcavity develop as a eries of
though not characterintic of all the classes of the Arthropods, are found nowhere outside that group, and constitute a very important, additional reason for uniting Paripatus with it. Perifafus, though lockubitably an Arthropod, differs In such important respects from all the oldesstablished Artbropod classes, that a special class, equivalent in rank to the others, and called Prototracheita or Onychophora, has had, as we heve seen, to. be created lor ith sote oceapancy. Thls unlikeness to other Arthropoda is mainly due to the Annclidan affinities which it presents, but in part to the presence of the following peculiar features: (t) the number and diffusion of the tracheal aperturesp (3) the restriction of the fivm to a single pair; (3) the disposition of the generative organs; (4) the texture of the gkin; and (5) the simplicity and similarity of all the segments of the body behind the head. The Annelidan affiadies are superficially indicated to so marked a manner by the thinness of the cuticie, the dermomuscular body-wall, the hollow appendages, that, as already stated, many of the carlier zoologists who examined Peripolus placed it among the segmented. worms; and the discovery that there is some solid morphological basis for this determination constitutes one of the most interesting points of the recent work on the genus. The Annelidan features are: (1) the paired nephridia in every segment of the body behind the first two (Saeager, Balfour); (2) the presence of cilia in the geberativa tracts (Gaffron). It is true that neitber of these features is absolutely distinctive of the Annelida, but when taken in conjunction with the Annclidan disposition of the chief syatems of organs, vis. the central nervous syitem, and the main vascular trunk or heart, they may be considered is indicatiog affinites in that diroction.

Synopsis of Species.

Peripatus (Guilding).-Soft-bodied vermiform animala, with one pair of ringed antennac, one pair of jawn, one pair of oral papillse, and a varying number of clawbearing ambulatory legs. Dorsal surface arched and more darkly pigmented than the flat ventral zurface. Skin transversely ridged and beset by wart-like epiniferous papillae. Mouthanteriar, ventral; anus posterior, terminal. Generative opening single, median, vantral and posterior: One pair of simple eyes. Braia large, with two ventral hollow appeodages; ventral cords widely divaricated, without distiact ganglia. Alimentary canal aimple, uncoiled. Segmentally arranged paired nephridia are prement. Body cavity is continuoua with the vascular system, and does not communicato with tho paired nephridia. Heart tubular, with paired ostia. Respiration by means of tracheac. Dioccious; males smaller and generaily leas numerous than iemales. Generative glands tubular, continuous with the ducts Viviparous, Young born cully developed. Distribution: Arrica (Cape Colony, Natal, and the Gaboon), New Zealand, Australia and Tatmania, New ritain, South and Central Arverica and the Weat Indies, the Malay Pcninsula (and in Sumatra ?).

The genus Perspalus, so lar as adult conformation is concerped, Is a very homogeneous one. It is true, as was pointed out by Sedgwick, that the species from the same part of the world retemule ope another more closely than they do species from other regions, but nocent researches have shown that the line between them cannot be to sharply drawn as was at first supposed, and it is certainly not desirable in the prewent state of our knowledge to divide them into generic or subgeneric groups, as has been done by some zoologists. (The following gencra have been proposed: Periputus for the neotropical spocics, Paripaloides for the Australasian. Peripalopsis and Opilihopalus for the Arican, Peraperipalys for the New Britain, Eoporipalus for the Malayan species, and Ooperiparies for the supponed oviparous apecies of Auscralin and New Zealand.) The colour is bighly variable in species from all regionts it is perhapa more conataot in the species from the neotropical region than in those from elsewhere. The number of less tends to be variable whenever it exceeda 19 prasgenital pairs; when the number is iess than that it is uasully, though not always, constant. More constant pointe of difiemence are the form of the jaws, the position of the geaerative orifice, the presence of a recepesculum etminis and a receptaculum ovorum. the arrangement of the primary papiltie on the distal end of the feet, and above all the early development.
Semild Africely Spesien-With three spisoun pads ae the leghi
and feet with two primary papilite on the anterior side and one on the posterior aide; outer jaw with one minor tooth at the bese of the main tooth, inner jaw with no interval between the large cooth and the series of amill ones; lant fully developed leg of the male with enlarged crural giand oponing on barg papilli piaced on its ventral surface; coxal organs abeent; the nephridial openings of the $4^{\text {th }}$ and $5^{\text {th }}$ pairs of legn are placed in the proximal epinous pad. Genital opening eubterninal, behind the last pair of fully developed kess; oviduct without receptacula eminis or receptacula ovorum ; the terminal unpaired portion of vas deferest short. Ova of considerable size, but with only a small guantity of yolic. The embryos in the uterus are all pearly of the same are, except for a month or two before birth, when two broods overlap.
The following epecies art aberrapt in respect of thene charatters: Peripalus (Opisinopolus) cimctipes, Purcell (Cipe Colony and Natal), presents a few Australasian features; there is a small receptaculum deminis on each oviduct, mone of the legs are provided with welldeveloped cosal organs, the feet have one anterior, one posterior and one doral papilla, and the euccemive difference in the ages of the embryo in the uterus, though nothing like that fousd in the neotropical species, is slightly greater than that found in othe investigated African epecies. Several pairs of leg in the middle region of the body ase provided with entarged erural elands which open on a lare papilla. Male with four mocemory slands, opening on each side of and behind the genital aperture. P. Hallomi, Bouvier, (Equatorial West Africa [Gaboon]), shows some neotropical features; there are 24 to 25 pairs of legs, the genital opening is between the penuhimate less, and though there ane only thrte spinous pads the nephridial apenings of the 4th and sth lese are proximal to the 3rd pad. coxal organs are present, and the jawe are of the neotropical type; the oviducts have receptacula seminis. The Iollowing South A(rican opecies mary be mentionsd: P, caponsis (Grube), with 17 (rarely 18) pairs of claw-bearing legs; P balfouri (Sedgw.) with 18 (earely 19) pairs; P. mataleys (Wood-M.), with 20 to 24 pairs.
Asstralasian Species.-With 14, 15 or 16 pairs of claw-bearing ambulatory legs, with three spinous pads on the lege, and nephridial opening of the $4^{\text {th }}$ and stle legs on the proximal pad; feet with one anterior, one poaterior and one dormal primary papila; inner jaw without diastema, outer with or without a minor tooth. Last leg of the male with or without a large white papilla on fts rentral surface for the opening of a gland, and marked papillae for the crural glands are sometimes present on other legs of the male: well-developed coxal glands absent. Genital opening between the lege of the last pair; oviducts with receptacula seminis, without receptacula ovorum; the terminal portion of the vas deferens long and complieated; the accessory male glands open bet ween the genital aperture and the anus, near the iatter. Ova large and heavily charged weth yolk, and provided with a stoutish shell. The uterus appears to contain entbryoe of diferent ages. . Specimena are fecorded from. West Australia, Queemiland, New. South Wales, Victoria and New Zealand. The Australasian ppecies are in some confusion. The number of claw-bearing legs varies from 14 to 16 pairs, but the number most- often found is 15 . Whether the number varies in the ame species is not clear. There appears to be evidence that tome species are occasionally or normally oviparous, and in the supposed oviparous epecies the oviduct opens at the end of a papilla called from its supposed function an ovipositor, but the oviparity has not yet been certainly proved as a normal occurrence. Amonty the species described may be mentioned P. leuckipas (Saenfer), P. insignis (Dendy), P. oviperus (Dendy), P. viridjmacyDetrs (Dendy), P. nowac zealandice (Hutton), but it is by no means certain that inture restarch will maintain these. Mr J. J. Fletcher indeed, is of opinion that the Australian forms are all varieties of one species, P. lewckarti.

Freotropical Species.-With three to five spincus pads on the legs, nephridial opening of the 4 th and 5 th legs usually proximad to the 3nd pad, and feet either with two primary papillae on the anterior side and one on the posterior, or with two on the zuterior and two on the posterior; outer juw with small minor tooth or teeth at the base of the main tooth, inner jaw with diatema. A variable number of posterior legs of the males entenor to the genital opening with one or two large papiliat carrying the openings of the crural giands; well-developed caval organs present on most of the legs. The primary papillae usually divided lnto two portions. Genital apening between the legs of the penultimate patir: oviduct provided with receptacula eemintis and ovorum; unpaired part of vas deferens long and complicated; accessory ongams of rale opening at the sidea of the anus. Ove minute, whith little food-yolk; embryos in the uterus at very difierent stages of development. The number of legs usmality if not alweys variable in the same species: the usual number 28 to 32 pairs, but in come epecies 40 to 43 peire are found. The' neotropical apecies appear to fall into two groups: (1) the co-crilled Andean epecies, vie those which inhabit the high plateaus or Pacific slope of the Andes; in these there are 4 (sometimes 5) pedal papiliae, and the nephridial openinge of the 4 th and gth legt are on the third pad; and (2) the Caribbean apecies, viz the remainiay weotropical epecies, in which there are 3 papints on the foot and cho aepinidini cpantryg of the

4th and 5 th lege are betmen the gid and 4 th pade. The Andean speniea are P. ciscmii (Wh.), P. tuberculatws (Eourv.), P. taxhestori (Bonv.), P. quilowsis (Schm,), P. corradi (Cam.), P. cameramol (Bouv.) and P. baloswi (Cam.). Of the remaining specien, which are the majority, may be mentioned P. atwordoui (Blanch), P.
 (Keg.), P. inn tharrai (Scl.).

Now Brilais Peripatus,-With 22 to 24 pairs of clav-benvin legs, with three spinous pada on the lege, and sephridial operingse leyt 4 and 5 (cometime of 6 aloo) oo the procinal ped; feet with one primary papills on the anterior, one on the posterior aide and one oo the dornal side (median or mubmedina); outer jaw with a minor tooth, inner jow without disetema; crural fland abwent well-developed cotal orpans abvent. Cenital opening mabverminal behind the last pair of legs; oviduct with receptaculuma seminin without receptaculum ovorum; unpaired part of vat deferens very short; accessory glands two, opening medianly and dormally. Ova small, in mm. in diameter, with little yolk, ind the embryou provided with large trophic veaicles (Willey). Embryos in the uterus of very different aget, and probably born all the year cound. One species only known, P. momac brianmiac (Wulley).

Smaratras Peripatms.-Pcripatus with 24 pairs of ambulatory lege, and four spinous pads on the legs. The primary pepillee of the neotropical character with conical bages Generative opening between the lege of the penultimate pair. Feet with only two papillac. Single gpecies. P. sumatranms (Sedgw.). The existenat of this species is doubtful.

Peripatus from the Meloy Peminsula,-With 23 to 25 pairs of clawr-bearing legs, four spinoun pads on the legs, and nephridial openinge of legs 4 and 5 in the middie of the proximal pad or on its proximal bide; fect with two primary papilfte, one anterior and one posterior ; outer jaw with two, inner jaw with two or three minor teeth at the base oi the main tooth, eeperated by a diastema from che row of small teeth; crural glands presemt in the male only, in the two pairs of legs preceding the generative opening; coxal glanda present. Genital opening between the penultimate lege; oviduct with receptacula seminis and ovorum ; unpaired part of vas deferems long; male accestory clands two, opening medianiy between the legs of the last pair. Ova large, with much yoik and thick membrane, like those of Australasian species; embryos with slit-like blastopore and of very different ages in the same uterus, probably born all the year round. The species are P. eeldoni (Evans), P. horsti (Evans) and P. butleri (Evans). It will thus be seen that the Malay epecies, while nesemblins the weotropieal epecies in the generative organs, differ from theae in many features of the legs and iset, in the important characters furnished by the sige and structure of the ovum, and by their early development.

AuThoritigs.-F. M. Balfour, "The Anatomy and Development of P. copensis," posthumous mempir edited by H. N. Moseley and A. Sedgwick, Quart. Jourm, Mic. Sci vol. xxiii. (1883); E. L. Bouvier. "Sur l'organication da Peripaths thollont, Bouy.:" Comples readus, cocvi. 1358-1 ${ }^{261}$ (18g8); "Contributiond a l'histaire des Peripates Americains, ${ }^{n}$ A wing de la secíle enlomologique de France, Ixvill $385-450$ (1899): "Quelques obervations sur lee oaycho phores du muée britannique," Quarh Journ. Mic. Sci, xiii. 367 (1900): A. Dendy, "On the Oviparous Species of Onychophorea," Quart. Jowrw. Mic. Sci. alv. 362 (1902); R. Evana, "On Onychophora from the. Siamcee Malay States," Quart. Jourw. Mic. Sct div. 473 (1901), and "On the Development of Ooperipatus." ibid. xiv. I (1901): I. J. Fletcher, "On the Specific Identity of the Australien Peripaios, usualiy supposed to be P. Leuckari, Saenger, "Prqc. Lism. Sac. Neve Sowh Wales, x. 172 (i89s); E. Gafiron, "Beitrage z. Anat. u. Physiol. v. Peripatus," Th. I and 2, Zool, Beifdge (Schneider). i. 33, 145: L. Guilding. "MolFasce coribbesme: an mocount of a new. genus of Mollasen," Zool. Jowrr. in 4 , ph. 14 (1826): reprinted in Isis xoi. 158, pl. it. (1828); H. N. Moseley, "On the Structure and Development of Peripatwr capenstis" Phij. Trams. (1874); R. I. Pocock, "Contributions to our Knowiedse of the Arthropod Fauma of the West Indies" pt. 2, Malacopoda, \&c.! Jowrn. Limm. Soc. xuiv. 518; W.E. Purcell, "On the South African Species of Peripatus," \&c. Asmals of the Soulh Africas Musew in, i. 331 (1898-1899): and "Anatomy of Opisthopatus cinclipes," ibid. vol. if. (igoo); W. L. Sclater. "On the Early Stages of the Developntent of a South American Species of Periputer," Quarh. Jowrn. of Mic. Sci. xxyiti. 343-361 (is88): A. Sedgwick, " \boldsymbol{A} Monograph of the Development of Peripalas cofensis" (originally published in various papers in the Quart. Journ. Mic. Sci., 1885-1888); Siudies from the Morpholoyical Lab. of the Universily of Cambridge, iv. I-1g6 (1889); "A Monograph of the Specics 'and Distribution of 1 Ge Genus Peripatws, Guilding." Quarh Jowrw. Mic. Sai. zxviii. 431-494 (1888): L. Sheldon, "On the Development of Peripatus movac tealandice," pts, 1 and 2. Quarh, Jowrn. Mfic. Sci. xxvik. and xxix. (I888 and 1889). The memoirs quoted by Sclater, Sedgwick and Sheldon are aff reprinted in vol. iv. of the Sladies from the Morpholegical Lab. of the Unimertily of Cambridere. voi. iv. (Cambridge University Prese, 1889). I. Steel. "Obeervations on Peripatus," Proc Linn. Soc. New Soudh Wales p. 94 (1896); A. Willey,"The Anatomy and Development of P. movare bribamniac," Zoological

prarrenal (Gr. meph, round, and mrator, a vidg); in architecture, the term applied to a temple or other structure where the columns of the front portico are returned along its sides as wings at the distance of one or two intercolumaiations from the walls of the nas or cells. Almost all the Greek temples were peripteral, whether Doric, Ionic, or Corinthian (see TEMPLE)

PBRISSODACTYLA (i.e. odd-toed), the name proposed by Sir R. Owen for that division of ungulate mammals in which the toe corresponding to the middle (third) digit of the human hand and foot is symmetrical in itself, and larger than those on either side (when such are present). The Perissodactyla have been brigaded with the Artiodactyla ($q . v$.) to form the typical group of the ungulates, under the name of Diplarthra, or Ungulata Vera, and the festures distinguishing the combined group from the less specialized mernbers of the order Ungulata will be found under the heading of that order.

The following are the leading characteristics by means of which the sub-order Perissodactyla is distinguished from the Artiodactyla. The cheek-teeth (premolars and molars) form a

Fic. 1.-Bones of Right Fore-Foot of existing Periseodectyla. A. Tapir (Tapirus indicus).

B, Rhinocero (Rhinoceros smmatrensis).
C) Horse (Equus caballus).
U. ulna; R. radius: \quad, cuneiform ; \boldsymbol{V}, lunar; s, acaphoid; m, unciform; m, magnum; ℓ, trapezoid; fm , trapezium.
continuous series, with massive, quadrate, innnsversely ridged or complex crowns-the posterior premolars usually resembling the molars in structure. Crown of the last lower molar commonly bilobed. Dorso-lumbas vertebrae never fewer than twentytwo, usually twenty-three in the existing species, Nasal boates expanded posteriorty. An alisphenoid canal. Femur with a third trochanter. The middle or third digit on both fore and hind feet larger than any of the others, and symmetrical in itself, the free border of the terminal phalanx being evenly rounded (see fig. 1). This may be the only functional toe, or the second and fourth may be subequally developed on each side.- In the tapirs and many extinct forms the fifth toe also remains on the fore-limb, but its presence docs not interfere with the symmetrical arrangement of the remainder of the foot on each side of the median line of the third or middle digit. The astragalus has a pulley-like surface above for articulation into the tibia, but its lower surface is flattened and unites to a much greater extent with the navicular than with the cuboid, which bone is of comparatively less importance than in the Artiodactyles. In existing forms the calcancum does, not articulate with the lower ead of the fibula. The stomach is simple, the caecum large and capacious, the placenta diffused, and the teats inguinal;

The Perissodactyla may be divided into the four following ecetions, namely the extinct Titanotheroidea, the Hippoidea, represented by the horse tribe and their ancestors, the Tapiroidea,
typified by the tapls, and the Rhinocerotoldea, which includea the modern rbinoceroses and their forerunners.
x. Tilanotheres. In the Titanotheroidea the dentition may be expressed by the formula if:ision, 4, post mi. There is uoually a short gap between the canioe and first premolar; the uppor molars are ahort-crowned and transitional between the bunodost (tubercular) and melonodont (cresceatic) types, with two outser concave tubercles and two inner conical ores; while the lower molars are crescentic, with three lobet in the last of the seriea. The skull is clongated, with the orbit not acparated from the temporal fossa alld the nasall, which may or may not carry horns, reaching at least as far forwards as the union of the premaxillon. The post-glenoid, post-tympasic and paroccipital processea of the ckull are large, and there is an alisphenoid canal There sere fown lunctional toes in front and three behind; while the calconeoma, unlike that of the other three groups, articulates with the fibuln. The group is represented by the lamilies Palacosyopidos and Tismotherivdae in the Tertiary deposits of North America. Both famitise are doccribed under the heading Tit Anotmernibae.
2. Horse Group.-In the Hippoidea there is generally the full series of 44 teeth, but the first premolar, which is slways small, is often deciduous or even absent in the kower or in boik jaws. The incisors are chisel-hhaped, and the canises tend to become isolated, so as in the more specialized forms to oceupy a more or less midway position in a longer or shorter eap between the incieors and premolars. In the upper molars the two outer columns or tubercles of the primitive tubercular molar coalesce to form an outer wall, from which proceed two crescentic transverse crexte, the connexion between the creats and the wall being alight of imperfect, and the crest themselves sometimes tubercular. Each of the lower molars carries two crescentic ridgen. In the earlier forms the cheek-teeth are low-crowned, but in the higher typea they become high-ccowned. The number of front toes ranges from four to one, and of hind ones from three to ope. The ponglenoid, post-tympanic and paroccipital processes of the skull are large; the second of these being alway= distinct. Nasals long. normally without treces of horns.
The rection is divisible into the families Equidae and PalacoCheriidae, of which the latter in extinct.

In the Equidaa the premolars are gencrally $\{$ or I. In the earlier short-crowned forms these teeth are unlike the molarg and the firat of the seties is separated by a gap from the second. In the high-crowned typea, an well as in some of the intermediate onef, they become molar-like, and roota are not developed in the whole cheek-scries till late. Orbit in higher forms closed by bone; and ridges of lower check-tecth terminating in large loops. Front toes 4.3 or 1 , hind: 3 or 1. (See Equidaz and Horse.)
In the Polacoliorisdae the premolars may be or 1 , and are generally molar-like, while the first (when present) is alway clowe to the second; all the check-teeth short-crowned and rooted, with or without cement. Outer wallo of upper cheek-teeth W-ebaped, and transverse creats oblique. Orbit open behind; and ridses of bower cheek-teeth generally terminatiog in small loopa. Feet always 3 -loed. (See Palabotherium.)
3. Tapir Group-In the Tapiroidea the dentition may be either the full 44, or lack the firse premolar in the lower or in both jaws. The incisors are chisel-ahaped; and (ualike the earty Hippoides) there is no eap between the fist premolar, when prowent., and the second. The upper cheek-teeth are short-crowned and without centent, and show distinct traces of the prinitive tubercles; the two ouber columns form a more or less complete extermal wall, connected with the laner ones by a pair of nearly straight transverse creata; and the premolars are originally simpler than the molars. Lower cheek-teeth with two straight transverse ridgen Namals long in early, but shorter In later forms, hornless; orbit open behind. Froat toes, 4 : hind toes. 3 .

This group is also divided into two families, the Tapiridaa and Lephiodentidae, the latter extinct.

In the Tapinidas the dentition may be reduced below the typical 44 by the loss of the first lower premolar. Hinder premolars either simple or molar-like. Outer columns of upper molara similar, the hinder ones not fattened; ridge of kower molers oblique or directly trameverie. a third ridge to the last molar is the earliet Corms. The Loptiodonlilae, which date frome the Eocene, oome very cloge to Hyrecotheriwn in the horte-line; and it is molely on the authority of American palaecontologists that the diviaion of theee early forma into equoida and tapicoide is attempted. In North Armerica the earliest reprewntative of the group is Systemolow of the Lower Eocene, in which all the upper premolare are quitt aimple; while the molars are of a type which would readily develon Into that of the modern tapirs, both outer columas being cotical and of equal size. The abrence of a gap between the lower chaine and first premolar and between the hatter and the following tooth is regarded as an escentially tapir-like feature. Lophiodochoerus apparently pepresents this stage in the European Lowver Eoctre: Issclolophus, of the American Middle Eocenc, represents a distinct edvance, the last upper premolar becoming molar-tike, thile a second species from the Upper Eocenc is acill more advapeed; the thind lobe in, however, retained in the lest lower moler. Ia the

Ofirpeene of both bemispheres appenre Prolapirxs, which rangea well into the Miocene, and is essentially 3 tapir, baving loat the thind tobe of the last lower molar, and being in process of moguiring molar-fike upper premolars, although none of these teeth have two coneplete inner columne Findly, Topirws itelf, in which the last chree upper premolars, makes its appeerance is the Upper Miocene, end continues till the present day. The characters of the genus may be expresed as follows in a more detailed manser.
 the firte and second are nearly equal, with thort, broad crowns, the third is iarge and conical, considerably lerger than the canine, which is meparated from it by an interval. Lower incisors diminishing in tize fron the first to the thind: the caninc, which is in contact with the third incisor, large and comical, working against (and behind) the canine-like third upper incisor. In both jaws there is a long space between the canines and the commencement of the testh of the check-series, which are all ln contact. Firse upper premolar with a triangular crown marrow in front owing to the absence of the anterior inner column. The other upper premolars and molars all formed on the same plan and of neariy the same siae, with four roots and quadrate crowne, rather wider transversely than from before backwards, each having four columns, connected by a pair of transverse ridgen, anterior and posterior. The first lower premolar compressed in front; the others composed of a single pair of trangverse crestes, with a small anterior and posterior basal ridge. Skull elevated and comprewed; with the orbit and temporal fore widely continuous, there being no true post-orbital procew (rom the, frontal bone. Naeal apertures very large. and extending high on the face between the osbits; nanal bowes short, elevated, trangular and pointed in front. Vertebre: cervical, 7: dormel, 18: lumbar, 5; steral, 6; caudal about 12. Limbs short and stout. Forefeet with four toce, having ditrinct hoofs: the first toe being absent, the third the loagest, the sceond and fourth nearty cqual, and the fifth the ghortest and mascoly resching the ground in the ordinary standing poition. Hind-leet with the typieal perissodactyle arrangement of three toes-the middle one being the fargete, the two others nearly equal. Nose and upper lip elongated into a flexible, mobile anout or chort proboscis, near the end of which the noterls are situated. Eyes mother amall. Ears of moderate sixe, ovato, ersct. Tail very short. Skin thick and but ecantily covered with hair. Tapirs are common to the Malay countries and tropical America; two epecies from the latter area differ from the rext in having a vertical bony partition to the nagal eeptum, and gre hence subgenerically or tencrically separated as Tapiralla (Elatmognalhus) (see 'TA PIR). Neariy related is the extinct family Lophiodontidoe (inclusive of the American Halalatidas), In which both the upper and lower firt premolar may be abment, while the upper molars present a more rhinocerot-like form, owing to the lateral comprestion and cotsequent lengthening of the outer columns, of which the hinder IS bent momewhat inwards and is more or lew concave externally, thus forming a more complete outer wall. In America the family is represented by Fioplodom, of the Middle Eocene, which difien frod the early members of the tapir-nock in having a long gap between the lower canine and first premolar: the dentition is compite, and the upper premolara are simple. The next atnge is Relaletes, aloo of Middle Eocenc age, in which the first lower premolar has diappeared, and the last two upper premolars have become molar-like. Finally in the Oligocene Colodon the last three upper permolars are like the molars, and the first pair of Sower incisors is lant. In Europe the group is represemed by the long-known and typical genut Lophiodow with threc premolars in each jaw, of which the upper are simpler than the molars. The gemus is eapenilly characteristic of the Middle and Upper Socene, and some of the species attained the size of a rhlnoceros.
4. Rhimaceras Growp. The lact aection of the Perisodactyla is that of the Rhinocerotoidea, represented by the modern rhinocesones and their extinct alliet. In this group the incisors and canines are very variable in number and form; the lower canine being teperated by oaly ebort gep (rom the outer inciaor (when present), but by a long one from the first premolar, which is ta contact with the meond. The mecond and thind premolars, which are alwaye present, are large and molar-itice; the whole of these teeth being ementially of the lophodont type of Lophiodom, but the latet upper Eoters thame a more or lete triangufar form, with an oblique outer mall, and there are certain complicationt in the structuce of all thets teeth in the more epecialized types (fig. 2). The lower cheelsweeth have, zalike thone of the Tapiroidea, crescentic ridges, which have not the loops at their extremities characteristic of the advanced Hippoidea; the last lower molar hae no third lobe. The facial poction of the skull is generally shorter than the cranial; the orbit is teecty open behion; and the premavillac tend to be reduced and fused with the nasals. Front toes, 3 or 4 ; hind toes, 3 .

The mont primitive group in that of the American fiymacoulontide, reppetented in the Olisocene by Byrachyws, Fiyrocoden and Triplopers. With the exception of the firt lower premolar, the dentition 6 complete: the incisors being normal, but the canine rudimentary, and the tate upper molar distinctly triangular. The upper molare mave a crinta and a crochet (fig. 2). The skull is high, whit the ficial and cuatiat portion apporimatels equat, there
are only three front toek and the limbe are tong mad aliphel for running.

In the Amynodonidac, represented by the North American Middle Eocene Amynodon and Metomynodon, the premolars may be either 1 or 1 , making the total number of teeth cither 44 or 40 . The incisors tend to becomo lateral, the canines are entarged, and the latt upper molar is sub-guadmagular. The upper molars have a crista but no crochet (fig. 2). As in the last lamily, the post-glenoid process of the skull is broad: the wbole stull being deprened with a thorrened lacial portion. The fore-foot is five toed and spreading; indicating that the mambers of the family were swamp-dwelling animals.

Finally, we have the family Rhinocerotidoe, which includen the existing representatives of the group. In thls family the dentition has undergon considerable reduction, and may be represented

 antero-posteriofly slompated crown, but the second is small; wher fully developed, the lower canine is a large forstardly directed tusk-like tooth with sharp cutting-edgea, and bitise against the first upper incisor. The third upper molar is triangular, and most of the teeth of the upper cheek-series may have both crochet and crista (6g. 2). The post-flenoid procese is suall, and the facial and cranial portions of the leull are approximately of equal length. Usually there are three, but occasionally four froat toes: and the limb-bones are short.
A large number of representatives of the group are known from both the Old and the New World: pecialization displaying itselt in the later ones in the development of dermal horns over the nasal bones, either in laterally pisced pairs as in some of the early forms, or in the medisn fine, either single or double. In North Amverica rhinoctrotes became exfinct before the close of the Pliocene period: but in the Old World, althouth their geographical distribution has become greatly. retricted. at least hive well-marked species turvive. The group is unknown in South America.

As regads the dentition of the existing species, the cheef-series consists of the four premolars and three molars above and below. all in contret and closely rewembling each ocher, except the first, which is much amaller than the rest and often deciduous; the

Ftg. 2.-Grinding Surface of moderately worn Right Upper second Molars of Rhipoceros.

A, Rhinoceros maicomis.
 B, Phimoceres somdaicms.

6. Poetero-Internal pillar or column.
1, Anterior surface.
7. Posterior surface.
8. Internal aurface.
9. External surface (wall or dorsum).
10. Antero-internal pilar or column
11. Anterior valley.

8, Median valley.
9. Poaterior valley.
10. Acceswry valfey.

11, Crista.
12. Croehet.
others gradually increating in siste ap to the penultimate. The upper molar present a characteristic pattern of crown having a much-developed fat or more or lets siauous outer mall, and two transverse ridtes nunging obliquely inwards and backwards from it, terminating internally in conical eminences or columns, and encloting a deep valley between. The poterior valley is formed behiad the postecior traneverse tidgo, and is bounded externally by a backward coatinuation of the outer wall and behind by the cingulum. The anterior valley is formed in the same manner, but is much smaller. The middie valley is often intersected by verticai "crista " and "crochet" plates projecting into it from the anterior bufface of the posterior transrente ridge or from she wall, the development of which is a useful guide in discriminating species, especially thowe known only by teeth and bones. The depressions between the idges are not filled up with cement. As stated above, the lower molars have the crown lormed by a pair of creacents; the latr havins no third lobe.
The head is large, and the sirull elongeted, and elewated poeteriorly inco a transverse occipital crest. No post-artital processes or any separation between orbits and temporal fossac. Nasal bones large anid stouk, co-ossified, and standing out frety above the premastilite, from which they are eparated by a doep and wide fistive: the latter smath, generally not meeting in the middle line in front, often rudimentary. Tympanice sman, not forming a bulla. Brain-cavity small for the sive of the skull. Vertebrae:

Cimbe stout, and of modernat lench:' Them completely developeo coes, with distisct broad rounded hoofs on each fopt. Teats two, Enguinal. Eyes amall. Ears of moderate aize, oval, erect, promi nent, placed near the oceiput. Skin very thick, in many apeciea chrown into massive folds. Hairy covering seanty. One or two median horm on the face. When one is present it is cibuted over the conjoiged narl bonss; when two, the hinder ons is over the frontals. These horns, which are of a more or lesa conical form and usually recurved, and often grow to a-great length (three or even (our feet), are composed of a soind mass of hardented ppidermic cells growing frosm a dumer of long dermal papillas The eells formed of exch papilla congtitute a fiftimet horny fibres Hike a thick hair, and the whole is cemented together by an intermediate masa of cells which grow up lrom the interspacea between the papiliae. It results from this that the horn has the appearance of a mass of agglutinated bitirs, which, in the newly growing part it the bace, readuly iray out on destruction of the softer intetmediate substance; but the fbres differ from true hairt in growing from en free papilia of the derm, and not within a follicular irivalution of the came. Considerable dificrence of opinion existo with regand to the Dete clasification of the family, come authoritios heduding most of the specien in the typical senus Rhineceros, while other fecognize guite a number of sub-faraitiee and still more genera. Here the family is divided into two groups Rhinocerofinate and Elasmotherimat, the latter including only Elasmotherimm, and the Cormer all the rest. In the Lower Ollgocene of Eusope we have Ronwotheriumi and in that of America LAplacerolherimm (Trisonias) Which were primitive species with pernistent upper canines and thrce-toed lore-feet. Poasibly they belonged to the A mynodonidar, but they may have been related to the Upper Oligocene Dicerathertum, in which the nasal bones formed a transverse pair; this genus being common to Europe and North Americn. Cacmogys In an allied American type. Hornless rhinoceroses, with five fronttoes, ranging from the Oligocene to the Lower Pijocene in Europe, represent the genus Acerutherium, which may also occur in America, as it certalnly does in India. With the short-skulled, short-footed, three-toed and gentrally borated rhinocerowes ranging in. Europe and America from the Lower Miocene to the Lower Pliocene, typified by the European R. gold/fursi and R. brachypus, we may consider the genus Rhinoctros to commence; these species constituting the subgenum Teleoceras. The living R. (Dicerorhinus) symalrensis of coutheantern Asia indicates another subgenus, represented in the European Miocene by \mathcal{R}. samanicnsis and in the Indian Pliocene by $\mathcal{K}_{\text {. plotyrhinus, in whe wh two horos are combined with the }}$ prosence of upper jacisors and lower canines. Next we have the fiving Alrican species, representing the subyenus Diceros, in which there are two horna but no front teeth. To thirgtoup belongte the extinct European and Asiatic wwolly rhigoceros, Raineceror (Dicepes) anionatilatis, of Pleistocene age, of which the irozen bodies are sometiotes found in Sibcris, and R. (D.) pachygnalhus of the Lower Pliocene of Greece. Finally the Great Indian hinoceros R_{1} winicornis, the Javan R. semdaticas, and the. Lower Pliocent Indian R spalenais ind R palorimdicms, reprewent Rhinoceras proper, in which front teeth are present, but there is only one born. (See Rhinoceros.)

The aubfamily Elasmotheriinas is represented only by the huge E. sibincum of the Siberian Pletstocene, in which the premolast were reduced to : while front-teeth were probably wenting, and the cheek teeth developed tall crown, without roots, but with cement in the valleys, and the enamel of the central parte curiously crimped. A hump on the forehead probably indicates the existence of a large frontal hom.
LitzRatunt--J. L. Wortman and C. Earle, "Ancestore of the Tapir from the Lower Miocene of Dakota," Bull. A"Her: Mss, vol. V. irt. 11, (1893); H. F. Osborn, "Phylogeny of the Rhinoceroses of Europe," of. cti vol. xiit. art. 19 (1000) 10 . Thomas, "Notes on the Type Speclmen of Rhinoweras lasiotid, with Remarta on the Centere Peaition of the Living Epecies of Rhincceros" Proa Zoal Sac. (London, 2901).
(R. 1^{-9})

PERTHTYB (Gr, rept, round; and orohos, column), in architecture, a range of columans (whether rectangular or circular on plan) in one or two rows, enclosing the sanctuary of a temple; the term is also applied to the same feature when built round the court in which the temple is situated and in Roman bouses to the court in the rear, round which the private rooms of the family were arranged, which were entered from the covered colonnade round the court.

PERITONITIS, inflammation of the peritonerm-the serous membrane which lines the abdominal and pelvic cavities and gives a covering to their viscera. It may exist in an acute or a chronic form, and may be cither localized or diffused.

Acute peritonitis may be brought on, ike other infiammations, by exposure to wet or cold, or in conncxion with finjury to, or disease of, some abdominal organ, or with general feeblencss of health. It is an occasional result of pernia and of obetruction
of the bowels, of womits penetrating the abdomen, of the perfortthon of viscera, is in ulcer of the stomach, and of the intentine in typtiold fever, of the bursting of abeceses or cyits into the ablonainal cavity, and aloo of the extentions of inflammetory action from sonse abdosinal or pelvic organ, such as the appendis, the veras, or bladder. At fret localized, it may afterwards becomd general. The chayge effected in the peritoneum ase similar to thooe undergone by other semots membrases whan infinmed. Thus, there are congestion; exudation of bymph in stiver or has abunalunce, at tant greyiah and soft, thereaftes yellow, becoming tough and causing the folds of the fintestine $t o$ ithere together; efusion of finid, ctther clear, turbid, bloody or purulent. The tough, plastic lymph connecting adjacent folds of intestine is sometimes drawn out like spun-glass by the movernents of the intestines, forming bands and boaps through or beneath which a piece of bowed may become fatally anared.

The symplows of acute perifonitis usually begin by a shivering fit of rigor, together with vomiting, and with pain in the abdomen of a peculiarly severe and aickening character, accompanied with extrems teadernes, so that pretsure, even of the bed-clothes, caruses aggravation of atifering. The petient lies on the back with the knees drawn up 50 as to relax the abdominal muscies; the breathing becomes rapid and ahallow, and is performed by movements of the chest only, the sbominal muscles remaining quiescent-unlike what takes place in healthy respiration. The abdomen becomes swollen by flatuient distension of the intestines, which increases the distress. There is usually constipationi. The skin is hot, although there may be persplration; the puse is small, hard and wiry; the urine is ceanty and high coloured, and is pased with pain. The face is pinched and anxious. These symptoms may pasis of in a day or two; if they do not the case is apt to g o on to a fatal termination. In such event the abdomen becomes more distended; hiccough, and the vomiting of brown or blood-coloured metter occur; the temperature falls, the face becomes cold and clammy; the pulse is exceedingly rapid and feeble, and death takes place from collapse, the mental tactilties remaining ciear till the close. When the peritonitis is due to perforation-es may happen in the case of gastric ulcer or of ulcets of typhoid fever, ot in the giving way of a loop of strangulated bowel-the above-mertioned symptoms and the fatal collapse may all take place in from twelve to twenty.four hours. The puerperal form of this disease, which comes on within a day or two after childbirth, is often rapidly fatal. The actual cause of death is the absorpion of the poisonous inflammatory prodiacts which have been poured out into the peritoneal cavity, as well as of the toxic fuids which have remained stagmant in the paralysed bowel.

Perhaps the commonest cause of septic peritonitis is the escape of micro-organisms (bacillus coll) from the utcerated, mortified or infimed appendtz (see Aprenorcirts). A generation or so ago deaths from this cause were generally placed under the single heading of "peritonitis," but at the present time the primary disease is shown upon the certificate which too often runs thus: appendicitis flve days, acute peritonitis two days.

Cheonic peritonitis may occur as a result of the acute attact, or as a tuberculous disease. In the former case, the graveat symptoms having subsided, some abdominal pain contintes, and there is considerable swelling of the abdomen, correspondins to a thickening of the peritoneum, and to the presence of fivid in the peritoneal cavity. This kind of peritonitis may also develop slowly without there having been any preceding acute attack. There is a gradual loss of atrength and fiesh. The discase is essentially a chronic one; it is not usually fatal.

Tuberculows perifonilis occurs either alone or in association with tuberculous disease of a joint or of the lungs. The chief symptoms are abdominal discomfort, or pain, and distension of the bowels. The patient may suffer from either coastipation or diarrhoea, or each alternately. Along with these local mandfestations there may exist the usual phenomena of tuberculous disease, viz. high tever, with rapid emaciation and loss of strength. But some cabes of tuberculous peritonitis present symptoms which are not only obscure, but actually misleading.

There may be no abdominal distension, and no pain or tenderness. The patient may lie quietly in bed, flat on his beck, with the legs down straight, and he may have no marked elovation of temperature. There may be no vomiting and no. constipation or diarrhoes. In same cases, the neighbouring coils of intestine having been glued together, a colloction of scrous fivid takes its place in the midst of the mase, and, being walled in by the adhesions, forms a rounded tumour, dull on pertussion, but not tender or painful. Such cases, eapecially when occurring in women, are apt to be mistaken for cystic disease of the ovary.

As regarda the treatment of acute pariomitis, the firat thing that the surgeua has to do is to assure bimself, that the discase is not due to some cause which itself should be dealt with, to a septic disease of appendix or Fallopian tube, for instance, or to a toxic condition of the uterus, the result, perhaps, of a criminal or innocent abortion, or to a perforated ulcer of stomach or inteatine. In many obscure cases the safeat treatment is likely to be afforded by an exploratory abdomioal section. If the medical attendant has made up his mind that the question of exploration is not to be entertained-a decision which should be arrived at only after moot deliberate conoultation-the best thing will be to apply fomentations to the abdomen, and to administer amall and repeated doses of morphia by the skin-i or $\&$ grain-repeated every hour or $\$ 0$ untit the physiological effect is produced. As regards other drugs. it may be a question as to whether calomel or Epsom salts chould be given. As rezards food, the only thing that can be eafely recommended is a little hot water taken ing sipat A bed. cradle ghould be placed over the patient in order to kecp the weight of the bed-clothes from the abdomen.
(E. O. ${ }^{\dagger}$

PRRIZOMIU' (or Accinctus), the name of Jazob Voonbroez (1651-1715), Dutch classical scholar, who was born at Appingedam in Groningen on tbe 26tb of October 1651. He was the son of Anton Perizonius ($\mathrm{I}_{2} 66-1672$), the author of a once well. known treatise, De ratione studii theologici. Having studied at the university of Utrecht, he was appointed in 1682 to the cbair of eloquence and history at Franeker through the influence of J. G. Graevius and Nicolas Heinsius. In 1693 he was promoted to the corresponding chair at Leiden, where he died on the 6tb of April 1715. The numerous works of Perizonius entitle him to a very higb place among the scholars of his age. Special interest attaches to his edition of the Minerva of Francisco Sanchez or Sanctius of Salamanca (ist ed., 1587 ;ed. C. L. Bauer, 1793-1801), one of the last developments of tbe study of Latin grammar in its pre-scientific stage, when the phenomena of language were still regarded as for the most part disconnected, conventional or fortuitous. Mention should also be made of his Animadversiones hisloricae (1685), which may be said to bave laid tbe fqundations of historical criticism, and of his treatises on the Roman republic, alluded to by Niehuhr as marking the beginning of that new era of historical study witb which his own name is so closely associated.
The article on Perizonius in Van der Az's Biograpkisch Woordenboek der Nederlander contains full biographical and bibliographical particulars: see also F. A. Eckstein in Erach and Graber's Altje. meine Encyklopidie.
PBRJIRY (through the Anglo-Fr. perjuric, modern parjure, Lat. perjurism, a false oath, perjurare, to swear falsely), an assertion upon an oath duly administered in a judicial proceeding before a competent court of tbe truth of some matter of fact, material to the question depending in that proceeding, which assertion the assertor does not believe to be true when he makes it, or on which he knows himself to be ignorant (Stephen, Digest of the Criminal Low, art. 135). In the early stages of legal history perjury seems to have been regarded ratber as a sin than as a crime, and so subject only to supernatural penalties, The injury caused by a false oatb was supposed to be done not so much to society as to the Divine Being in wbose name the oath was taken (see OATH). In Roman law, even in the time of the empire, the perjurer fell simply under divine reprobation, and was not dealt with as a criminal, except where he had been bribed to withhold true or give false evidence, or where the oath was by the genius of the emperor. In the latter case punishment was no doubt inflicted more for the insult to the cmperor than for the perjury. False testimony leading to the conviction of a
person for a crime pumishable with death constituted the offenct of homicide rather than of perjury. In England, perjury, at being a sin, was originally a matter of ecclesiastical cognisance. At a later period, when it had become a crime, the jurisdiction of the spiritual courts became gradually confined to such perjury as was committed in ecclesiastical proceedings, and did not extend to perjury committed in a temporal court. The only perjury which was for a long time noticed at common law was thie perjury of jurors. Attaint of jurors (see Attannt, Wert on) who were originally rather in the position of witnesses than of judges of fact, incidentally subjected them to punishment for perjury. Criminal jurisdiction over perjury by persons other than jurors seems to have been first assumed by the Star Chambor, acting under the powers supposed to have been conferrod by an act of Henry VII. (1487). After the abolition of the Star Chamber hy the Long Parliament in 1641 and the gradual diminution of the authority of the spiritual courts, perjury (whetber in the strict sense of t be word or the taking of a falso oath in pon-judicial proceedings) practically fell entirely within the jurisdiction of the ordinary criminal tribunals. At common law only a false oath in judicial proceedings is perjury. But by statute the penalties of perjury have been extonded to extra-judicial matters e.g. false declarations made for the purpose of procuring marriage (The Marriage and Registration Act 1856), and false affidavits under tbe Bills of Sale Act 1878. False affirmation by a person permitted by law to affirm is perjury (The Evidence Further Ameadment Act 1869; The Evidence Amendment Act 1870).

In order to support an indictment for perjury the prosecution must prove tbe authority to administer the oath, the occasion of administering it, the taking of the oath, the substance of the oath, the materiality of the matter sworn, the falsity of the matter sworn, and tbe corrupt intention of tbe defendant. The indictment must allege that the perjury was wilful and corrupt, and must set out the false statement or statements on which perjury is assigned, subject to the provisions of the Prosecutions for Perjury Act 1749 (which also applies to subornation of perjury). By that act it is sufficient to set out the substance of the offence, without setting forth the bill, answer, \&c., or any part of the record and without setting forth the commission or authority of the court before whom the perjury was committed. The matter aworn to must be one of fact and not-of mere belief or opinion. It is not bomicide, as in Roman law, to procure the death of another by false evidence, but the Criminal Code, ss. 118, 164, proposed to make such an offence a substantive crime of greater gravity than ordinary perjury, and punishable by penal servitude for life. It is a rule of evidence, founded upon obvious reasons, that the testimony of a single witness is insufficient to convict on a charge of perjury. There must be corroboration of his evidence in some material particular. Perjury is a common law misdemeanour, not triable at quarter-seasions. Most pertons in a judicied position have the right of directing the prosecution of any witness, if it appearn to them that be has been guilty of perjury (The Criminal Procedure Act 1851). The provisions of the Vexatious Indictments Act 1859 extend to perjury and subornation of perjury. By that Act no indictment for either of sucb offences can be preferred unless the prosecutor or accused is bound by recognisance, or the accused is in custody, or the consent of a judge is obtained, or (in the case of perjury) a prosecution is directed under the act of 185 I .

Subornation of perjury is procuring a person to commit a perjury which he actually commits in consequence of such procurement. If the person attempted to be suborned do not take the oath, the person inciting him, though not guilty of subornation, is liable to fine and corporal punishment. Perjury and subornation of perjury are punishable at common law with fine and imprisonment. By the combined operation of the Perjury Act 1728 and later statutes, the punishment at present appears to be penal servitude for any term, or imprisonment with or without hard labour for a term not exceeding seven years (see Stephen, Digest, art. 148). The punishment at common law was whipping imprisonment, fine end pillory.

Perjury or prevarication committed before a committee of either House of Parliament may be dealt with as a contempt or breach of privilege as well as by prosecution. As to false oaths not perjury, it is a misdemeanor at common law, punishable by fine and imprisonment, to swear falsely before any person authorized to administer an outh upon a matter of common cancern, under such circumstances that the false swearing, if commited in judicial proceedings, would have amounted to perjury. There are some cases of making falso declarations which are punishable on summary conviction, e.R. certain declarations under the Registration of Births and Deaths Act 1874, and the Customs Consolidation Act 1876.
In Scotland the law, as a general rule, agrees with that of England. Perjury may be commited by a party on reference to oath at well as by a witness A witness making a falee effirmation ia guilty of perjury (The Afirmation (Scotland] Act, 1865), The acta of 1851 and 8859 do not extend to Scotiand. The triat, thaugh usually by the court of justiciary, may be by the court of seecion if the perjury is commitied in the course of an action before that court. The punishmeat is penal servitude or impriconment at the discretion of the court. Formerly a person convicted n(perjury was diazbied from giving evidence in future; thio disability was abolished by the Evidence (Scotland) Act 1852.

In the United States the common law has been extended by most states to embrace false a firmations and false evidence in proceedings not judicial. Perjury in a United Srates court is dealt with by on act of Congress of the 3 rd of March 1885, by which the maximum punishment for perjury or subornation of perjury is a fine of $\$ 2000$ or imprisonment for not more than five years. Jurisciction to punish perjury committed in the state courrs beiongs to the states, as the Federal Constitution did not glve it to the Federal government. Statutory provisions founded upon the English anct of 1749, have been adopted in some states. in the statea which have not, idopted such provisions, the indict ment must set out the offence with the paricularity necessary at common law.
On the continent of Europe perjery is also regarded as an offence of gravity punishable by imprisonment for varying periods In Cermany, as in England, it was at one time a matter for the rpiritual courts. In Austria it is treated as a lorm of fraud, and the puainhment is proportioned to the estimated amount of damage done to the party aggricved. In France the term perjury (parjure) is apecifically applied only to the making of tafory oaths by partics in a civil suit.

PRRKIN. SIR WILLIA MENRY (1838-1907), English chemist, was born in London on the 1 ath of March 1838 . From an carly age he determined to adopt chemistry as his profession, although his fatber, who was a builder, would have preferred him to be an architect. Attending the City of London School he devoted all bis spare time to chemistry, ind on lenving, in $\mathbf{t} 85$, entered the Royal. College of Chemistry, then under the direction of A. W. Hofmann, in whose own research laboratory he was in the coursc of a year or two promoted to be an assistant. Devoling his evenings to private investigations in a rough laboratory fitted up at his home, Perkin was fired by some remarks of Hofmann's to undertake the artificisl production of quinine. In this attempt he was unsuccesslul, but the observations be made in the course of his experiments induced him, early in 1856, to try the effect of treating anilinf sulphate with bichromate of potash. The result was a precipitate, aniline black, from which he obtained the colouring mater subsequently known es aniline blue or mauve. He lost no time in bringing this substance before the managers of Pullar's. dye-works, Perth, and they expressed a favqurable opinion of it, if only if should not prove too expensive in use. Thus epcpuraged, he took out, - patent for his process, and leaving the Coilege of Chemistry, a boy of cighteen, he proceeded, with the aid of his father and brother, to erect works at Greenford Green, near. Harrow, for the manufacture of the newly discovered colouring matter, and by the end of B_{57}. the works were in operation. That date may therefore be reckoned as that of the foundation of the coale tar colour industry, which has since attained such important dimensions-in Germany, however, rather than in England, the country where it originated. Perkin also had a lange, share ia the introduction of artificial alizarin (g.s.), the red dye of the madder root. C. Graebe and C. T. Liebermanan in 2868 prepared that substsnce synihetically fram anthrscenc, bui their process was not practicable on a large scale, and it was ieft to him to patent a method that was commerciplly valumble. This
he did in $\mathbf{5} 869$, thus secusing for the Greenford Greca' worter a monopoly of alizarin manulacture for several years. About the same time he also carried out a series of investigations into kindred substances, such ss anthrapurpurin. About 1874 he abapdoned the manufictura of cosigtar colours and devoted himself enclusively to rewarth in pure cbemistry, and smong the discoreries be made in this field was that of the reaction known by his names, depending on the condensation of aldehydes with fatty seide (nee Crownac Acid). Later atill be eageyed in the study of the relations between chetaical conalitution and rotation of the plane of polariattion in a magateic field, and enunciated a law expressing the variation of such zotation in bodies beloncing. to homatosous series. For this work be was in: 1889 awarded a Davy medal by the Royal Socioty, which ten years previously had beatowed- upon him an Broyal medal in recognition of his investigations in the conl-ter colours, The Chemical Socicty, of which he became secretary in a869 and president to 1883, presented him with its Lonestafi medal in 1889, and in 8890 be received the Albert medal of the Society of Arts. In 1006 an interational celcbration of the fiftioth. anniversary of his invention of mauve was held in Londom and in the same year he was made a kaight. He died men Harrow on the iatb of July rgo\%,

Lis aldest con, Wuliny Herry Perxin, who was horn at Sudbury, near Harrow, on the 17th of June 8860 , and was educated at the City of London School, the Royal. Colloge of Science, and tho universities of Worzburg and Mupich, becanpe profeseor of chemistry at the Heriot-Watt College, Edinburgh, in 1887, and professor of organic chemistry at Owens Colicge. Manchester, in $\mathbf{1 8 9 s}$. His chief reseerches deal with the polymethylene compounds, the alkaloids, in particular hydrastine and berberine, and the camphors and terpenes (q.v.). He received the Davy medal from the Royal Society in Igo4.

PRPKLIS GEARLES CALLAHAN (1823-2886), Americap artist and atthor, was born in Boston and educated at Harvard, subsequently tudying art in Rome and Paris. Returning to Bostori, he helped to found the Museum of Fine Arts, of which he wes hovorary director, and for many years be played a leading part in artistic circles as a cultured critic and writer. His chief publications were Tuscam Sculpors (1864) and Italia\%
 of Italiam Semplora-A Ph in Education (1870), and Sappickerat. Manementr is Ibaly (1885).
PERKIHG, JACOS ($1760-1849$), American inventor and physicist, was born at Newburyport, Masachusett, in 1766, and was apprenticed to a goldsmith. He soon made himself keovis by a varitry of useful mechanical inventions, and in 18.8 a anap over to England with-a plan for engraving bank-notes on gtool, which ultimately proved a signal success, and was carried out by Perkins in partnemhip with the Engtish engrayer: Heash, Elis chief coneribution to. phyaics lay in the experiments. by which be proved the compressibility of water and moasured it by a plezometer of bis own invention (seo Phil. Trans., 1820 . 1826). He retired in 3834 , and died in. London on, the 30th of July 1849

His second mon Angrim Marca Perking (17997-1881), also born at Newburyport, went to England is E8a7, and was the author of a aystem of warming buildings by manas of high prossure steam. Hip grandeon. Lortus Pmakins (2A34-189r), most of whose life was spent in England, experimented with the application to steam engines of steam at very high pressures, constructing in . $\mathbf{8 8 0}$ a y yacht, the "Anthracite," whose engines worked with a presgure of 500 lb to the aq . in.
PRRLibBERC, stown of Cermany, in the Prussian proviace of Brandepturg, on the Stepenita, 6 m . N.E. from Wittenberge by the railway to Neustrelitz. Pop. (1905), 9502. It contains a fire Cothic Evangelical church, Roman Catholic churcb, a synagogue and several schools, and has a town-hall, dating from the asth centory, and a Roland colemn, Ita chief manufacteres ars machinery, soap, blacking and clogs.
See Horpinis, Perleberger Reimchromik. Porlebeat oin. 2200 bì 1700 (Perlebery 1876).

PERLE J0snish (i835-1894), Jewtah rabbi, was born in Fungary in 1835, and died at Munich in 1894. He was one of the first rabbis trained at the new type of seminary (Brealau). Perles' most important essays were on folk-lore and custom, There is much that is striking and original In his history of marriage (Die judiscike Hachecil in nachbiblischer Zeif, 1860), and of mourning customs (Die Leichenfeiarlichkeiven im machbidifichent Judenthum, 1862), his contributions to the sources of the Arabian Nights (Zur rabbinischen Sproch.und Sagenkurde, 1873), and his notes on rabbinic eatiquities (Beirstge zur rabbindoctien Sprachund Altertmonshunde, $\mathbf{8 9 9}$). Perles' essiys are rich in sageestivenesc, and have been the starting.point of much fruitful research. He also wrote an essay on Nachmanides, and a biography and critical appreciation of Rashbia (1863).
(t. A.)

PERLTTE, or Pearlstone, a glassy volcanic rock which, when struck with a hammer, breaks up into small rounded masses that often have a pearly lustre. The reason for this peculiarity is obvious in microscopic sections of the rock, for many small cracks may be seen traversing the glassy substance. These mostly take a circular course, and often occur in groups, one within another. The circular cracks bound the little spheres tato which the rock falls when it is struck, and the concentric fissures are the cause of the pearly lustie, by the rellection of light from enclosed films of air. Longer straight cracks run across the sections separating areas in which the circular fissures preponderate. By decomposition the fissures may be occupied by deposits of limonite, which make them more obvious, of by other secondary minerals. The glass itself often undergoes change along the cracks by becoming finely crystaline or devitrified, dull in appearance and slightly opaque in section. In polarized light the perlitic glass is usualiy quite isotropic, but sometimes the internal part of some of the spheres has a slight double refraction which is apparently due to strain. The glass lound on the waste-heaps of glase-furnaces is sometimes very coarsely perlitic.

Perlitic structure is not confined $t 0$ glass, but may be seen also in that vaniety of opal which is called hyalite. This forms small transparent rounded masses like drops of gum, and in microscopic section exhibits concentric bystems of cracks. Hyalite, like peritic obsidian, is amorphous or non-crystalline. It is easy to imitate perlitic structure by taking a little Canada balsam and heating it on a slip of glass till most of the volatile matters are driven out; then drop it in a basin of cold water and typical perlitic structure will be produced. The reason is apparently the sudden contraction when the mass is chilled. In the glase on tiles and china rounded or polygonal systems of cracks may oflen be seen which somewhat resemble perlitic structure but are less perfect and regular. Many rocks which are cryptocrystalline or fetsitic, and not glessy, have periect perlitic strecture, and it seems probable that these were originally vitreous obsidians of pitchstones and have in process of time been changed to a finely crystalline state by devitritication. Occasionaliy in olivine and quartz rounded cracks not unlike perlitic structure may be observed.

Many perlitic rocks contain well-developed crystals of quarte, feldspar, augite or magnetite, \&c., usually more or less corroded or rounded, and in the fine glassy base minute crystallites ofter abound. Some of the rocks have the resinous lastre and the high percentages. of cotnbined water which distinguish the pitchstones; others are bright and fresh obsidiank, and-neariy all the older examples are dull, cryptocrybtaline- felsites. Acconding to their chemicil compoitions they range from very acid thyolites to trachytes and andesites, and the darik basaltic glasses or tachylytes are sometimes highly perlitic. It is probable that most perlites are of inttusive origin, and the general absente of steam cavities in these rocks would support this conclusion, but some perlitic Hungarian rhyolites are betieved to be lavas.

Very well known rockes of this kind are found in Meimet, Sanomy, as dikes of greenish and brownish pitchotonte. Other examples are (urnished by the Tertiary igneous rocks of Hupgary (Tokai, fic.), the Euganeen frins (lialy) and Ponza Island (in the Mediterranean). In mineralogical collections rounded nodule of brown glat
varying from the siae of a pea to that of an orame may often be seen labclifed Manehanile. They have long beep known to geologita and are found at Ockotsic, Siberia, in assoclation with a large mass of pertitic obsidian. These globutar bodies are, in lact, the more coshereax portions of a perfite; the rest of the rock falls down in a Gise powder sesting lree the slanys spberes. They are subject to considerable internal strain, as in shown by the fact that when struck with a hammer or sliced with a lapidary's saw they often burst into lragments. Their behaviour in this respeet closely resembles the balls of rapidly cooled, unannealed glass which are called Prince Rupert's drops. In their nateral condition the manekanite spheres are doubly refracting, but when they have been heated and very slowly cooled they lose this property and no fonger exhibit any tendency to sudden disintegration.
In Great Britain Tertiary vitreous rocks are not common, but the pitchatone which lorms the Scuir of Elgs in a dark andexitic porphyry with perlitic structure in its glasey matrix A better example, however, is provided by a perlitic dacitic pitchstone porphyry that octurs near the Tay Bridge in Fifewhire. The rachylytic basalt dikes of Mull are occasionally highly perlitic. At Sandy Braes in Antrim a perlitic obsidian has been found, and the Los Rock, near Wellington in Shropshire, is a devitrified obsidian which thows perlitic cracks and the remains of spherulites.
(J.S. F.)

PBAM, a govermanent of east Russia, bounded S. by the governments of Orenburg and Ufa, W. by Vyatka, N.W. by Vologda, and E. by Tobolak (Siberia). It has an ares of 128,173 sq. m. Though administratively it belongs entirely to Russia in Europe, its eastern part (about 57,000 sq. m.) is titusted in Siberia, in the basin of the Ob. The government is traversed from north to south by the Ural Mountains, 30 to 45 m . in width, thickly clothed with forests, and deeply excavated by rivers. The highest sumatrits do not rise above 3600 ft . in the northern section of the range (the Vogulian Ural); in the central portion, between 59° and $60^{\circ} 30^{\prime}$ N., they once or twice exceed 5000 It. (Deneshkin, 5360 ft .); but the chain soon sinks towands the south, where it barely attains an elevation of 3000 ft . Where the great Siberian road crosses it the highest point is $\mathbf{r} 400 \mathrm{ft}$.

The government is very well drained by rivers belonging to the Pechora, Tobol (affluent of the Ob) and Kama systeas. The Pechora itself rises in the northern corner of the government, and its tributary the Volosnitsa is separated by a distance of less than 3 m . from the navigable Vogulka, a tributary of the Kama, a circumstance of some commercial Importance. The chief river of Perm, is however, the Kama, whose navigable tributaries the Chusovaya, Sylva and Kolva are important channels for the export of heavy iron goods to Russia. The government is dotted with a great number of lakes of comparatively trifling size. their total area being 730 sq. m ., and with marshes, which are extensive in the hilly tracts of the noth. Granites, diorites, porphyries, setpentines and Laurentian gneisses and limestones, containing iron, copper and zinc ores, constitute the main axis of the Ural chain; their western slope is covered by a narrow strip of Huronian crystalline slates, which disappear in the east under the Post-Tertiary deposits of the Siberian lowiands, while on the West narrow strips of Silurian limestones, quartzites and slates, and separate islands of Devonian deposits, appear on the sarface. These in thefr turn are overlain with Carboniteroas clays and sandatones, containing Coal Measures in several isolated basins. The Perinian deposits extend as a regular strip, parallel to the main ridge, over these last, and are covered with the so-called " variegated marts," which are considered as Trinssic, and appear only in the western corner of tbe territory.

Perm is the chief mining region of Russia, owing to its wealth in iron, silver, platinum, copper, nickel, lead, chrome ore, manganese and auriferouis alluvial deposits. Miany rare metals, sucp as indium, osmium, rhodium and ruthenium, are found along with the above, as also a great variety of precious stones, such as diamonds, sapphires, jaspers, tourmalines, beryls, phenacites, cirysoberyls, emeralds, aquamarines, topazes, amethysts; jades, malachite. Salt-springs octur in the west; and the mineral waters, though stin litele known, are worthy of inention. No less than 70% of the total area is occupied with formst ; bat the forests are distributed very unequally, covering 05% of the area in the north and only $\mathbf{2 5 \%}$ in the south-east. Firs, the pine, cedar, larch, bircb, alder and lime are the most common; the ouk appears ofuly in the south-west. The flors of

Perm presents emixture of Sberian and Russian species, several of which have their north-eastern or south-western limits within the government. The climate is severe, the average temperature at different places being an follows:-

	Lat. N.	Altitude.	Yearly Average.	January	$\begin{gathered} \text { July } \\ \text { Average. } \end{gathered}$
Bogoslovak	59'* 45'	Fi. 630	F. ${ }_{29}$	$\underset{30}{ }{ }^{\text {F }}$	F. 6.6°
Usolye (Kama)	590 ${ }^{\circ}{ }^{15^{\prime}}$	300	$34.0{ }^{\circ}$	$4.5{ }^{\circ}$	${ }^{63.8}{ }^{\circ}{ }^{\circ}$
Nizhniy-Tagitsk Elaterinburg	57° 56° 45^{\prime} 8	8990	$33 \cdot 1{ }^{\circ}$ 3	2.0.	$64.9{ }^{\circ}$ 63.5

The estImated population in 1906 was $3,487,100$ and consists chiefly of Great Russians, besides Bashkirs (including Meshcheryaks and Teptyars), Permyaks or Permians, Tatars, Cheremisses, Syryenianm, Votyaks and Voguls. Agriculture is the general occupation; rye, oats, bariey and hemp are raised in all parts, and wheat, millet, huck wheat, potatoes and flax in thesouth. Cattlebreeding is specially developed in the south-east among the Bachiers, who bave large numbers of horses. Mining is developIng steadily though slowly. The ironworks employ nearly 200,000 hands (12,000 being in the Imperial ironworks), and their aggregate output reaches an estimated value oi $\{6,000,000$ ennually. The annual production of gold is valued at nearly half a million sterting, and of platinum at a pproximately a quarter of a million, the output of platinum being equal to 95% of the world's total output. Coal and coke to the extent of 300,000 to 500,000 tons, salt to 300,000 tons, asbestos and other minerals are also obtained. The first place among the manafincturing ladustries is taken hy tour-mills. The cutting of precious stones is extensively carried on throughout the villages on the eastern slope of the Ural Mountains, the chief market for them being at Ekaterinburg. An active trade, greatiy favoured by the ansy communication of the chief centres of the mining industry with the market of Nizhniy Novgorod on the one side and with the network of Siberian rivers on the othet, is carried on in metals and retal wares, minerals, timber and wooden wares, tallow, skins, eattle, furs, com and linseed. Large caravans descend the affuents of the Kama every spring, and reach the fairs of Laishev and Nizhniy Novgorod, or descend the Volge to Samara and Astrakhan; white Ekaterinburg is an important centre for the trade with Siberia. The folrs at Irbit, second in importance only to thal of Nizhniy Novgorod, and Ivanov (in the district of Shadrinkk) are centres for supplying Siberia with groceries and manufactured wares, as also for the purchase of tea, of furs for Russia, and of com and cattle for the mining districts. The chicf commercial centres are Etaterinburs, Irbit, Perm, Kamyshlov, Shadrinsk and Cherdyn.
Perm is more largely provided with educational institutions and primary schools than most of the governments of sentral Russia Besides the ecciesiastical seminary at Perm there is a mining school at Ekaterinburg. The Perm semstre or provincial council is one of the most active in Russia in promoting the spread of educmion and agricaltural knowledge among the peasants.
The government is intersected by a railway from Perm eastwards across the Urals, and thence southwards along their casterm slope to Ekaterinburg, Chelyabinak (main Siberian trunk line) and Tyumen; also by a railway from Perm to Kollas, at the bead of the Northern Drina.
Hislary.-Remains of palaeolithic man, evetywhere very scarce in Russia, have not yet been discovered in the upper basins of the Kama and Ob , with the exception, perhaps, of a sinele buman skull found in a cavern on the Chanve (basin of Rama), together with a skull of Ursus spelacur. Neolithic remains are met with in thmense quantities on both Ural slopes. Still Jarger quantities of implements belonging to an early Finnish, or rather Ugrian, civilisation are found everywhere in the basio of the Kama. Hicrodotus speaks of the richnese of this country inhabited by the Ugriass, who kept up a brisk traffic with the Greek colony of Olbia near the mouth of the Dnieper, and with the Bosporus by wey of the Set of Azov and the Volga. The precise period at which the Ugriens left the diserife for the southere steppes
of Russia (the Lebedic of Constantive Porphyrogentius) is not known. In the gth century, if not earliez, the Norsemen werg acquainted with the country as Bjarmeland, and Byantind anmaliats knew it as Permia. Nertor describes it as a territory of the Perm or Permians, a Finnish people.
The Russians penetrated into this region at an eady date. In the 21th century Novgorod levied tribute from the Finniab inhabitunte, and undertook the colonization of the country, which in the treaties of the zeth century is dealt with as a separate territory of Novgorod. In 1471 the Novgorod colonies in Perm were annexed to Moscow, which in the following year erected a fort to protect the Russian settlers and eradesmen against the Voguls, Ostiaks and Samoyedes. The mineral wealth of the country attracted the attention of the Moscow princes, and in the end of the isth century Ivan III: sent two Germans to search for ores; these they succeeded in finding south of the upper Pechora. The Stroganovs in the 16 th century founded the first salt- and ironworks, built forts, and colonized the Ural region. The rapidly-growing trade with Siberia gave a new impulse to the development of the country. This trade had its centres at Perm and Solikamsk, and Later at Irbit.
(P. A. K.; J. T. BE.)

PERM, a town of Russia, capital of the government of the same name, stands on the left bank of the Kama, on the gremo bighway to Siberia, $8 \times 30 \mathrm{~m}$. By rail and river N.E. from Moscow. Pop. (8879), 32,350; (1897), 45,403. During summer it has regular sfeam communication with Karan, 605 m . distant, and it is connected by rail (311 m .) with Ekaterinhurg on the east side of the Urals. The town is mostly built of wood, witb broad streets and wide squares, and has a somewhat poor aspeet, especially when compared with Ekaterinburg. It is the seat of a bishop of the Orthodox Greek Church, and has an eeclesiastical seminary and a military school, besides several scientific institutions (the Ural society of natural sciences, archives committee, technical society), and a scientific muscum. Its industries develop but slowly, the chief works being ship-building yards, tanneries, chemical works, saw-mills, brickfietds, coppen foundries, rachinery works, soap and candie factories and rope. works. The government bas a manufactory of steel gums and munitions of war in the immediate neighbourhood of the town.

The present site of Perm was occupied, as early as rg68, by a settiement mamed Brukhanovo, founded by one of the Stroganovs; this settiement seems to have received the name of Perm in the $17^{t h}$ century. A copperworks was founded in the irmmediate melehbourhood in 1723, and in 878 I it received officially the riame of Perm, and became an administrative centre both for the country and for the mining region.

PERMBAEILITY, MAOMETIC, the ratio of the magretic ioduction or fux-denstity in any mediam to the inductag magnetic force. In the C.G.S. electromagnetie tystem of oults the permeability is reganded.as a pare mamber, and its value in empty apace is taken as unity. The permability of a metal beionging to the ferromagnetic claso-iron, mickel, cobalt and some of their alloym-is a function of the magnetic forte, and also dependa upon the previous magovetic hintory of the specimen. As the force increases from zero the permeability of a given specimen tives to a maximum, which may amount to several thousands, and then gradually falls off, tending to become unity when the force is increased without limit. Every other substance bas a constant permeability, which differs from unfty only by a very small fraction; it the substance is paramagnetic, its permeability is a Little greater than r ; if diamagnetic, a litule lesa. The conception of permeebility (Lat. per, through, and meare, to wander), is due to Faraday, who spoke of it as "conductin power for magretism" (Experimental Researches, xxvi:), and the term now in use was inttoduced by W. Thomson (Lord Zelvin), in 1872, having been suggested by a bydrokinetic analogy (Reprint of Papers on Electrostatics and Maguetism, xadi, illi.). It is generally of importance that the iron employed in the construction of electrical machinery should possess hight permeability under the magretic force to which it is to be

PERMBAMETER, an instrument for rapidly meacuring the permeahility of a sample of iron or steed with sufficient accuracy for many comncrcial purposes. The name was first applied by S. P. Thompson to an apparatus devised by himself in 1890 , which indicates the mechanical force required to detach one end of the sample, arranged as the core of a straight electromagnet, from an iron yoke of special form; whep this force is known, the permesbility can be easily calculated. (See Macnerism.)

PERMIAN, in geology, the youngest and uppermost system of strata of the Palneozoic series, situated above the Carboniferous and below the Trias. The term "Permian" (decived from the

Russian province of Perm, where the rocks are extensively developed) was introduced in 1841 hy Sir Ri. I. Murchison. In England the series of red sandstones, conglomerates, breccias and marls which overlie the Coal Measures were at one time grouped together in one great formation as the "New Red Sandstone," in contradistinction to the Old Red Sandstone below the Carboniferous: they were likewise known as the Paihilitic series (from Gr. roxilhos, motuled) from their mottled or variegated colour. They are now divided into two systems or groups of formations; the lower.portion being included in the Palaeoscic series under the name Permien, the upper postion being relegated to the Mesozoic series and termed Triss. In Getmany the name Dyas was proposed hy J. Marcon for the tocks of this age on eccount of the twofold nature of the series in Thuringia, Saxony, \&c. The iotimale stratigraphical relationahip that exists in many quarters between the Bermian rocks and the Carboniferous beds, and the practical difficultics in the way of drawing a atisfactory base-line to the system, have led to the adoption of the term Pomo-carboniferous: in South :Africa, southern Asia, America, Australia and Russia, for strata upon this horivos: C. W. von Gümbel used "Post-carbon " in this sense. In a similar manner Parmo-driassic has been employed in cases where a stratigraphical passage from rocks with Permian fossils to others bearing a Triassic fauns is apparent.

The Permian system in England consists of the following sab-divisions:-
3. Upper ... $\left\{\begin{array}{l}\text { Red sandstonecs, clays, and } \\ \text { gypsum }\end{array}\right\}$
2. Middle.

Magnesian limestone :
Mart slate
Red and variegated sandstone
Red and variegated sandstone
Reddish-brown and purple

1. Lower ...

calcareous conglomerates
and breccias of volcaale rocks:
W. of Enghad: En of England.

600 ft . $5^{0}-800 \mathrm{ft}$. 10-30 " ' 600°

From the thickneases here given it is :evident thate the Permian recks have a very difierent development on the two sides of England. On the east side. from the coast of Northumberland southwards to the plains of the Trent. they consist chiefy of a great central mass of limettorte. But on the west side of the Pennime Chain. and extending couthrarde into the centrad conntiest the calicaroous
zone disappears, and we have a treat accusmulation of red, areasceona and gravelly rocks.

The lower subdivision attains its greatest development in the vale of the Eden, where it consists of brick-red sandstones, the Penrith sandstone series, with some beds of calcareous conglomerare or breccia, locally known at "brockraft," derived from the wasle of the Carboniferous Limetone. These red rocks extend across the Solway into the valleys of the Nith and Annan. in the south of Scotland, where they lie unconformably on the Lower Silurian rocks. Their breccias consist of fragments of the adjacent Silurian greywackes and shales, but near Dumfrics some calcareous breccias or "hrockrans " occur. These brecciated masses have evidently accurnulated in small lakes or narrow fiords. Much larther south, in Stafiordshire, and in the districts of the Clent and Abberley Hills, the brecciated conglomerates in the Permian series attain a thickness of 400 ft . They have been shown by Sir A. C. Ramsay to consim in large measure of volcanic zocks, grito, slates and limestones, which can be identified with rocks on the borders of Wales. Some of the stones are 3 ft . in diameter and show distinct striation. The same writer pointed out that these Permian drift-beda can not be distinguished by any essential character Irom modern glacial drifts; on the other hand, W. W. King and others have opposed this view.
The middle subdivision is the chief repository of lossils in the Permian system. Its strata are not red, but consist of a lower zone of hard brown shale with occanional thin limestone bands (Marl Slate) and an upper thick mass of dolomite (Magnesian Limestone). The latter is the chief feature in the Permian development of the east of England. It corresponds with the Zechstein of Germany, as the Marl Slate does with the Kkpfer-schiefer: it is a very variable rock in its lithological characters, being cometimet dull, earthy, fine-grained and fosaliferous, in other places quite crystalline, and composed of globular, reniform, botryoidal, or other irregular concretions of crystalline and frequently internally radiated dolomite. Though the Magneslan Limestone runs as a thick persistent zone down the east of England; it is represented on the Liancastire and Cheshire side hy bright red and variegated sandstone covered by a thin group of red marls, with numerous thin courses of limestone, containing Schisodus. Bakevellia and other characteristic lossils of the Magnesian Limestone.
Conceming the rocks classed as Permian in the central counties of England there exists some doukt. for recent work tends to show that the lower parts are clearly related to the Carboniferous rocks by their lossils; while there is lit tle evidence to warrant the exclusion of the higher beds Crom the Trias. Similarly in south Devon. where red sandstones and coarse lrectias are well exposed, it has been found difficult to say whether the geries should be regarded as Triassic or Permian, though the prevailing tendency is to retsin them in che latter system.

The "Dyas" type of the system is found in enormous masses of strata flanking the Harz Mountains, and alvo in the Rhine provinces Saxony. Thuringia, Bavaria and Bohemia. In general terms it may be said that in this region there is a lower tandy and conglomeratic subdivision with an upper one more caicareous: the former is known as the Rothliegende, the latter as the Zechsicin group. On the south side of the Harz Mountains the foliowing subdivisions are recognized:-

Anhydrite, gypsum, rock-salt, dolomite, marl, fetid shale and limestone. The amorphous gy pmum is the chiel member of this group; the limestone is sometimes full of bitumen.
Dolomite (Hawp-dolomil), crystelline granular (Rauchuacke), and fine powdery (${ }^{(\lambda s c h e)}$) winh gypawim at bottom.

Zechstein-limestone, an argillaceous, thin-bedded compact imestone is to $\$ 0 \mathrm{ft}$. thick.
Kupfer-schiefer, a black bitominous.
Lower Kupfer-schiefer, a black bitrominous copper. beariag but very constant.

Zechstein-conglomerate and calcarcous sandstone.

The name Rolhliegendé or Rothodlliegende (red-dead-fayer) was given hy the miners because their ores disappeured in the red rocles below the copper-beiring Kupfer-schicfer. The Kuplerschiefer, alehough so thin, hats been worked in the Mansfeld district for a long period it contains abundant remains of fish (Palaconiscus. Platy somps) and plants (Ullmannia). The beds of rock-sale in the German Zechstein are of the greatest importsnce: at Sperenberg near Berlin it has been penecrated to a depth of 4000 it. Amocinted, with the salf, geppum ind anhydrite are numerous
 and polyhalite，which are exploited at Standurt and are the only important potassium deposits known．Permian rocks of the Rothliegende sype are scattered over a wide arca in France， where the Iower beda are usually conformahle with the Coal Measures． In the upper bede occur the bituminovs or＂Boghead＂shale of Antun．In Rusaia atrata of this age cover an enormous area，in the Ural region，in the governments of Perm，Kasan，Kostroma， and in Armenia．The Russian Permian shows no sharp division into two eeries；the two types of deposit tend to be more mixed and inciude in addition some depoaits of the more open sca．The general tequence begins with the Artinsk beds，sandy and mariy or conglomeratic beds in close connexion with the Carboniferous， overlain by the Kungur limestones and dolomites；these are followed by red fresh－water sandstones，over which comes an important eries of copper－bearing andstores and conglomerates．Above this，in Kockroma，Vyetica and Kasan there is a calcarcous and dolomitic series，the so－called＂Russian Zechstein＂with marine fossils；the uppermost beds are red marls，with few Iresh－water fossils，the Tartarian beds．

The charmeter of the fossils－in the Permian of the Mediterranean and touth－atet Europe－well exemplified in the deposits of Sicily－ together with their more generally calcareous mature，indicate a more open sea and more stahle marine conditions than obtained farther north．This sea is traceable across south－enst Russia Into the middle of Asia，through Turkestan and Persia，into the Salt Range of India，where the Productus limestone may be taken as representative of the normal marine plan of Permian times． Southwards，however，of the Nerhudda River another and quite distinct continental assemblage of deposits hoids the ground， viz．the lower portion of the great fresh－water Condwana system． The coarse Talchir conglomenatar at the bave ase succeeded by the candstones and shales of the Karharbari growp，with numerous coal seams，and these in turn are followed by the Damuda series （upwards of $10,000 \mathrm{ft}$ ．）of similar rocks，with ironstones and very valuable coal seams．All these strata are characterized by the presence of the Gloseopteris flom．A similar succession of beds has been recorded in north－west Afghanistan．In close relationship with the lower members of the Indian Condwana series，both as regards lossil contents and lithological characters，are the lower Karoe beds of South Alrica（Dryla conglomerate，Ecca shales and mudstones，Beaufort beds and Kimberley shales），aiso the coal－ bearing beds of the Transvaal；the Permo－carboniferous rocks of Australis（including the sich coal measures of Newcastle，the Greta coal measures and marine beds，upper and lower，of New South Wales：those of Tasminia，the Bowen River beds of Queensland， and the Bacchus Marsh glacial beds of Victoria），and similar roclos in New Zealand（Maitai formation，south island；Dua Mountain lime－ stone and Rimutakn beds of the north ishand）and South America． In North America Permian rocks occur in the east in Pennsylvania， West Virjinia，Maryland and Ohio（＂Upper Barren Measures＇＂）， and in Prince Edward Ifiand，New Brunswick，where they succend the Carboniferous racke very regularly．West of the Missisaippi， in Texas（7000 ft．，includiag the Wichita beds，Clear Fork and Double Mountain beds），Kansas and Nebraska，the Permian is more extensive and op the whole is more readily separable from the Carboniferous．Here the lower beda are marine and contain many limestones and dolomites；the higher beds are mainly red and．
stones and marls with gypaum；in Texas it is of interat：to hote the occurrence of copper－scained strata．These upper＂Rod Beds＂ are of ten not clearly distinguisiable from the Trias．

Life of the Permion Period．－The records of the plants and animals of this period are comparatively meagre．The plants show that a gradual change from the Carboniferous types was in progress． Two floral regions are clearly indicated，a northern and a southern． In the latter，which may be regarded as conterminous with the continent of Condwana，the Lepidodendrons，Sigillarias，Calamites， \＆c．，of the Coal Mcasures gave place to a distinct flora，named from the prevalence of Clossopteris，the Glotwopteris（tongue－fern）flora． Traces of this southern llora have been lound in northern Russia． Gangamopleris，Callipteris，Taeniopteris，Schizppleris，Walehia， Volisia，Ulumannia，Saported，Baicra afe eharacteristic Permian genera．Among the larger animals amphihiana occupied a promi－ nent position，their foot prints being very common in the sandstones； they include numerous Labyrinthodonts，Archegosawrus，Sliret－ rachis，Branchiosawrus．At this time the true reptiles began to leave their remajns in the rocks；many highly interesting forms are known－Palacohalleria．Proterosawrus，Stercosternwm；ot hers having certain mammalian characteristics include Parciosaurus，Cywognálhws， Dicynodon．Among the fishes may be mentioned Platysomms， Palaconiscus，Amblypterus，Plescracanthus．Turning to the inverte－ brates，undoubtedly the most interesting feature is gradual intro－ duction into the Cephalopoda of the ammonite－like forms such as Medlicoltia，Waazenoceras，Popanoceros，in place of the more timple lobed goniatites of the Carboniferous．Brachiopods （Produclus horridus，Bahevellia tumida）．Bryozon and corals were by no means scarce in the more open Permian seas．Schizodus Schlotheimii，Strophalosia Goldfussi，Myophoria，Leim yalind，Bellero－ phon are characteristic Permian molluscs．The last of the trilobites appears in the Permian of North America．
The evidence so far ohtained indicates that in Permian times much of the land in the northern hemisphere was near the general sea－level，and that conditions of considerable aridity prevailed which involved the repeated isolation and evaporation of marine lagoons and land－locked seas．South of this region in Europe and Asia there extended an open＂Mediterrancan＂sea，the＂Tethys＂ of E．Suess；while over an enormous area in the southern hemisphere a great land area was spread．＂Gondwana land，＂the land of the Clossopteris flora．At many points in this vast tract，as we have scen，coarse conglomeratic deposits，Talchir，Dwyka，Bacchus Marsh，\＆ic．，indicate profound glacial conditions，which some have thought were prosent also in Britain，Germany and clsewhere in the north．Moderate earth movements were taking ploce in North America，where the Appalachian and Ouachita mountains were in course of elevation，and in Europe this was a time of great voleanic activity．In the Saal region volcanic rocks in the lower Rothliegende have been penetrated for 1100 （t．without reaching the bottom，and elsewhere in central Europe great sheets of con－ temporaneous quartz porphyry，granite porphyry．melaphyre and porphyrite are abundant with their corresponding tuffs．Melaphyres and tuffs appear in the Vosges．which in the south of France are enormous maspes of melaphyre and quartz porphyry．Basic lavas and tulfs－diabase，pierite，olivine basalt and andesite tuffs－were erupted from many snall vents in Ayrshire and the Nith basin， and basic laves occur also in Devonshire Voicanic rocke oceur also in New Zesland，Sumatra and the Transveal．

Tahle of Permian Strata，showing approximate correlations．

Stages．	Britain		Saxony， Thuringia， Bahemia．		Bain of the Saar．	Aps．		Russia．	India．		North America．		
Thuringian	Marls and gypsum． Magnesian limestone． Marl state．		Salt beds of Stassfurt． Zechstein lime－ stones． Kupfer－schiefer．		Upper red sandstones， breccias and canglomerates．		hun ne． les les arkt． nes en．	Tartarian Mars． Cephalopod beds of Armenia． Copper－ bearing				Kansas． Kiger stage．	
Punjabian or Saxonian		$\left.\begin{gathered} \frac{6}{8} \\ 6 \\ \frac{3}{3} \\ \frac{0}{2} \\ \frac{3}{4} \\ 3 \end{gathered} \right\rvert\,$	Weissliegendes． Tambach beds． Oberhof beds Goldlauter beda．		Red sandstones with eruptive rocks． The beds of Krcuznach， Wadern， Sotern， Tholey．	E E E S		in Ural region． Limestones and dolo－ mites of Kostroma （Russian Zechstcin）．			号 号 号	Salt Fork stage．	
Artinskian （marine） or Autunian （contimental）			Manebach beds． Brandschiefer beds of Wessig． Gehten beds． Braunam beds of Bohemia．		Lebach beda． Cusel beds．	$\begin{aligned} & \text { g } \\ & \stackrel{y}{5} \\ & 5 \end{aligned}$		Kungur and Artinsk mandstomes． Beds of Novaya 7emblya and Spitabergen．		$\begin{aligned} & \text { Part of Lower } \\ & \text { Africa, Aus } \end{aligned}$		Wellingt beds． Marion beds． Chase stage．	

Refrinances.-The literature dealing with the Permian and Permo-Cerboniferous is very extensive; H. B. Geinitz, J. Marcou, Sir R. I. Murchison, Sir A. C. Ramey, H. Potonio, R. Zeiller. O. Feim mantel, E. A. Newell, Arber, A. C. Seward, F. Bischoff, C. Ochsenaius, E. Mojaisovics V. Amalitzky, F. Noetling, C. Diener, A. Tachnerychew, A. Karpinsky, W. Waagen, H. F. and W. T: Blenford, G. H. Cirty and very many others have made important contributions to the aubject. Numerous referenoes will be found in Sir A. Geikie. rextbook of Gealogy, 4 th ed., and in the anuual Gealogicah Literature of the Geological Society of London See aloo en interesting mummary by C. Schuchert, "The Rumian Carboniferous and Permian compared with those of India and America," Amor. Journ. Sri. (1906), 4 th eerien, vol. xxii. pp. 27 seq. and a segeral sccount of the system in Lethoea seognastica, Th. Bd. 11., F. Frech and others (Stut1gart 1897-1902). H. Fverding, - Zur Geologie der deutehen Zochatcinsalze. Kgi. geolon. Lamdesamst. (Berlin, 1907) gives a lull acoount of the salt and potasaium-bearing beda.
(J. A. H.)

PRRMAIPBUCO, a north-eastern state of Brazil, bounded N. by Cearí and Parahyba, E. by the Allantic, S. by Alagoas and Bahia, and W. by Piauhy. Area, 49.573 sq. m.; pop. (1900), 1,178,1 50. It comprises a comparatively narrow coastal zone, a high inland plateau, and an intermediate zone formed by the terraces and slopes between the two. Its surface is much broken by the remains of the ancient plateau which has been worn down by erosion, leaving escarpments and ranges of flat-topped mountains, called chapadas, capped in places by horixontal layers of sandstone. Ranges of these chapodas form the boundary lines with three states-the Serras dos Irmios and Vermelha with Piauhy, the Serra do Araripe with Ceart, and the Serra dos Catiris Velhos wilh Parahyba. The coastal zone is low, well-wooded and fertile. It has a hot, humid climate, relieved to some extent by the south-enst trade winds. This region is localty known as the mattas (forests). The middle zone, called the coatinga or agreste region, has a drier climate and lighter vegetation. The inland region, called the sertdo, is high, stony, and dry, and frequently devastated by prolonged droughts (seccas). The ciimate is characterized by hot days and cool nights, and is considered healthy, though the daily change tends to provoke bronchial, catarrhal and inflammatory diseases. There are two clearly defined seasons, a rainy season from March to June, and a dry season for the remaining months. The rivers of the state include a number of small plateau streams fowing southward to the Sio Francisco River, and several large streams in theeastern part flowing castward to the Aclanlit. The former are the Moxotb, Ema, Pajehu, Terra Nova, Brigida, Bóa Vista and Pontal, and are dry channels the greater part of the year. The largest of the coastal rivers are the Goyanna, which is formed by the confluence of the Tracunhaem and Capibaribe-mirim, and drains a rich egricultural region in the north-cast part of the state; the Capibaribe, which has its source in the Serra de Jacarara and flows castward to the Allantic et Recile with a course of nearly 300 m. ; the Ipojuca, which rises in the Serra de Aldein Velha and reaches the const south of Recife; the Serimhen and the Una. A large tributary of the last-the Rio Jacuhipe, forms part of the boundary line with Alagoas.

Pernambuco is chiefly agricultural, the lowiands being devoted to sugar and fruit, with coffee in some of the more elevated locaities, the agreste region to cotton, tobacco, Indian corn, beans and stock, and the serto to grazing and in some localities to cotton. Sugar, molasses, rum (aguardende or cachaca), tobaceo and fruit are largely exported. Coco-nuts, cacao, bananas, mangoes and other tropical fruits are produced in profusion, hut the production of foodstufis (beans, Indian corn, mandioca, \&ec.) is not sufficient for local consumption. Mangabeira rubber is collected to a limited extent, and piassava fihre is an article of export. Orchids are also collected for export in the districts of Garanhuns and Timbacha. Cotton-weaving and cigar-making are the principal manufacturing industries, after the large engenhos devoted to the manufactare of sugar and rum. The railways of the state are the Recife and Sio Francisco (77 m .), Central de Pernambuco (132 m .) and Sul de Pernambuco (120 m .) -all government properties leased to the Great Westen of Brazil Railway Co., Ltd., since 1901. Benides these there are the line from Recile to Limociro and Timbaíba (112 m.), with an
extension from Timbatibe to Pilar (24 m.). All these then concentrate at the port of Recife. The capital of the stace is Recife, commonly known among foreigners as Pernambuco. There are a number of large towns in the state, but the census returns include their populations in those of the manicipia (communes) to which they belong. The most important are: Bezerros (17,484), Bom Jardim (40,160), Brejo da Madre de Deus (13,655), a town of the higher agreste region, Cabo (13,337), Caruara (17,844), Escade (9332), Garanhums (32,788, covering six towns and villages), Gloria de Goyti (24,554), Goyanna, Limoeiro (21,576), Olinda (8080), the old colonial capital and episcopal see, Rio Formosa (6080), Timbaiba (9514) and Victoria (32-422).

Pernambuco was first settled in 1596 by Christovio Jacques who founded a settlement on the Rio Iguarassí that was afterwards abandoned. The first permanent settlement was made by Duarte Coelho Pereira at Olindin in 1530 , and lour years later he was granted s ca pilania of soleagues ext ending from the mouth of the Salo Francisco north ward to that of the Iguarassú. Adjacent to this grant on the north was the copilania of Itamaract, granted to Pero Lopes de Souza, which covered the remainder of the present state. The capilania of Pernambuco was ably governed and took an active part in the expulsion of the French from the trading posts established along the coast northward to Maranhaxo, and in establishing Portuguese colonies in their places. In 1630 Pernambuco was occupied by the Dutch and continued under their rule until 1654. Although an activo guerrilla warfare was waged against the Dutch during a large part of that period, they did much to promote the agricultural and commercial interests of the colony, especially under the wise adminiatration of Maurice of Nassav. In 1817 Pernambuco was the scene of a revolutionary outbreak, which resulted in the separation of the present states of Alagoas and Rio Grande do Norte, Ceara and Parahyba having been detached in 1790. There was another insurrection in $\mathbf{1 8 2 2}$ when the Portugucte captain-general, Luiz de Rego, and his garrison was expelled, and in 1824 dissatisfaction with the arbitrary proceedings of Dom Pedro L. at Rio de Janeiro led to a separatist revolution for the formation of a new state, to be called the Federaç\$o do Equador. There was another outbreak in 183 r and frequent disorders down to 8848 , when they culminated in another unsuccessful revolution. The population of the Pernambuco serde has always been noted for jts turbulent, lawless character, due partly to distance fron the coast where the bulk of the population is concentrated, partly to difficult means of communication, and partly to the fact that this remote region has long been the refuge of criminala from the coast towns.

PRRNAD (in Russ. Pernot and in Esthonian Pernolin), a seaport and watering-place of western Russia, in the government of Livonia, 155 m . N. of Riga, on the left bank of the Pernau or Pernova, which about half a mile farther down enters the Bay of Pernau, the northern arm of the Gulf of Riga. Pop., 12,856. The harbour is usually free from ice from the end of April to the middle of December.

Founded on the right side of the river in 1255 by one of the bishops of Oesel, Permau soon became a flourishing place. In the r6th century it was occupiod in succession by the Swedes, the Poles and the Teutonic Knights. After 1599 the Poles transferred the town to the left side of the river; and in 1642 the Swedes, who had been in possession since 1617, strengthened it with regular fortfications. In 1710 it was taken by the Russians, and the fortress is nov demolished.

PRRNR, ANDREN (c. 1519^{-1} 589), vice-chancellor of Cambridge University and dean of Ely, born about 159 x , was son of John Perne of Easit Bilney, Norfolk. He was educated at Se John's college, Cambridge, graduating B.A. in r539, B.D. in 1547 and D.D. in 1552. He was elected fellow of Queens' in 1540 , and vice-prasident in 1551 , and was five times vicechancellor; but he owes his notoriet y to his remarkable versatility, and, like the vicar of Bray, be was always laithful to the nationed religion, whatever it might be. In April 1547 he advocated Catholic doctrines, but recanted two months later, and bis

Protentant faith was strongthemed during Edward VI.'s reific be wets appointed a royal chaplain and canom of Windsor. Soon after Mary's accestion, however, he perceived the error of his ways and was made master of Peterbouse in 1554 and dean of Ely in 1557. He preached the termon in 1556 when the bodics of Bucer and Fagius were disinterred and burnt for beresy, and also in 1560 when these proceedinga were reversed and the dead herelics were rehabilitated. In Elizabeth's reign he sulscribed the Thirty-nine Articles, denounced the pope and tried to convert Abbot Feckenham to Protestantism; and in 1584 Whitgift in vain recommended him for a bishopric. He died on the 36 ch of April 1589 . He was selected as the type of Anglican prelate by the authors of the Martin Mar-prelate tracts and other Puritans, who nicknamed him "Old Andrew Turncoat," "Andrew Ambo," "Old Father Palinode." Cambridge wits, it was said, translated "perno" by "I turn, I rat, 1 change often"; and a coat that had often been turned was suid to have been "perned."
(A. F. P.)

PTRONAR, town of northem France, capital of an arrondissement of the department of Somme, on the right bank of the Somme at its confluence witb the Cologne, 35 m . E. by N . of Amiens by rail. Pop. (1906), 3698. The church of St Jean ($1509-1525$) was greatly damaged during the bombandment of $1870-71$, but has sibce been restored. The castle of Peronne aill retains lour large conical-roofed towers dating from the middle ages, one of which is said to have been the prison of Louis XI. in 1468, when be was forced to agree to the "Treaty of Peronne." Peronne has a mub-prefecture, a tribunal of first instance and a communal college. Its trade and industry are of little importance.

The Frankish kings had a villa at Plroane, wbich Clovis II. gave to Erchinotidus, mayor of the palace. The latter founded a monastery here, and raised in honour of St Fursy a collegiate church, whicb was a wealthy establishment unt il the Revolution; ft is the burial-place of Charles the Simple, who died of starvation in a dungeon in Peronne, into which he had been thrown by the count of Vermandois (929). After the death of Philip of Alace, Peronne, which he had inherited through his wife, escheated to the French Crown in the reign of Philip Augustus, from whom in 1209 it received a charter. By the treaty of Arras (1435) it was given to the Burgundians; bought back by Louis X1., it pessed again into the hands of Charles the Bold in 1465 . On the death of Chaties, however, in 1477, Lauis XI. reaumed possession. In 1536 the emperor Charles V. besieged Peronne, but without success; in its defence a woman called Marie Foure greatly distinguimed herself. A statuo of her stands in the town; and the anniversary of the raising of the siege is still celebrated annually. It was the first town after Paris at which the League was proclaimed in $\mathbf{1 5 7 7}$. Ptronne's greateat misfortunes cccurred during the Franco-German War. It was invested on the 27th of December 8870 , and bombarded from the 28th to the geh of the following January, upon wbich date, on account of the sufierings of the civil population, emong whom small-pox had broken out, it was compelled to capitulate.

PEROVETITE, or Penorsitix, a mineral consisting of calcium titanate, CaTiO . usually with a small proportion of the calcium replaced by iron. The crystals found in schistose rocks have the form of cubes, which are sometimes modified on the edges and corners by mumerous small planes; on the other hand, the crystals occurring as an accessory constituent of eruptive rocks are octahedral in form and microscopic in size. Although geometrically cubic, the crystals are always doubly refracting, and they sometimes show evidence of complex mimetic twinning; their structure as shown in polarized light is very similar to that of the mineral boracite, and they are therefore described as pseudo-cubic. There are distinct cleavages parallel to the faces of the cube. The colour varies from pale yellow to blackishbrown and the lestre is adamantine to metallic; the crystals are transparent to opaque. The index of reftaction is high, the hardness 54 and the specific gravity $4^{\circ} \mathrm{O}$. The mineral was dizcovered at Achmatovsk near Zlatonst in the Urals by G. Rove in 1839, and named in honour of Count L. A. Peroviky;
at thin bocelity large cubes occur with oaicite and magnetite in a chlorite-schist. Similar crystals are also found in talc-schist at Zermatt in Switzerland. The micioscopic octahedral cryalals are characteristic of melilite basolt and nepbeline basalt; they have also been found in peridotite and serpentine.
(L. J. S.)

PRROWMR, JOHM JAMES ETETAET (1823-1904), English bishop, was born, of Huguenot ancestry, at Burdwan, Bengal, on the 13th of March 1823. He was educated at Norwich and at Corpus Christi College, Cambridge, bcoming a fellow in $\mathbf{1 8} \mathrm{dg}$. After bolding a chair in King's College, London, be was appointed vico-principal it St David's College, Lampeter (1862-1873). In 1868 be was Hulsean lecturer, taking as his subject 1 mman tality. He was elected canon of Llandafi in 1869, dean of Peterborough 1878, and in 1891 succeeded Henry Pbilpott as bishop of Worcester. Perowne was a good Hebrew scholar of the old type and sat on the Old Teatameat Revision Committee. He is best remembered as the general editor of the Comboridge Bible for Schools and Colleges. His chief works were a Como. mentary on the Book of Psalms (a vols., 1864-1868) and a life of Bishop Thirlwall (1877-18y8). He zesigned his see in 1901, and died on the 6th of November 1904
PRR0Z (Peirotes, Priscus, fr. 33; Perases, Procop. Pers. i. 3 and Agach. iv. 27; the modern form of the name is Feros, Fitus, ci. Flruzabad), Sassanid king of Persia, a.d. 457-484, con of Yasdegerd II. He rebelled against his brother Homizd III., and in 459 defeated and killed him with the help of the Ephethalites, or White Huns, who had invaded Bactria. He also hilled most of his other relatives, and persecuted the Christians. But he favoured the introduction of Nestorianism, in opporition to the orthodox creed of Byzantiom. With the Romans be mains tained peace, but he tried to keep down the Ephthalites, who began to conquer eastern Iran. The Romans supported him with subsidies; but all his wars were disastrous. Once be was himself taken prisoner and had to give his son Kavadh as hostago till after two years he was able to pay a heavy ransom. Then be broke the treaty again and advanced with a large army. But he lost his way in the eastern desert and perished with his whole army (484). The Ephthalites invaded and plundered Persia for two years, till at last a noble Persian from the old family of Karen, Zarmihr (or Sokhra), restored some degree of order. He raised Balash, a brother of Peros, to the throne.
(Ed. M.)
PRRPRNDICUEAR PRRIOD, the term given by Thomas Rickman to the third period of Gothic architecture in England, in consequence of the great predominance ol perpendicularlines. In the later examples of the Decorated period the omission of the circles in the tracery had led to the employment of curves of double curvature which developed into flamboyant tracery, and the introduction of the perpendicular lines was a reaction in the contrary direction. The mullions of tbe windows (which are sometimes of immense size, 80 as to give greater space for the stained glass) are carried up into the arch mould of the windows, and the upper portion is subdivided by additional mullions. The buttresess and wall surface are likewise divided up into vertical panels. The doorways are frequently enclosed within a square bead over the arch mouldings the spapdrils being fitted with quatrefoila or tracery. Inside the church the triforium disappeass, or its place is filled with panelling, and greater importance is given to the clerestory windows which constitute the finest features in the churches of this period. The mouldings are flatter and less effective than those of the earlier periods, and one of the chief characteristics is the introduction of large elliptical hollows. The finest festures of this period ars the magnificent timber roofs, such as those of Westminster Hail (395), Christ Church Hall, Orford, and Crosby Hall.
The earliest examplea of the Perpendicular period, datins from 1360, are found at Gloucester, where the masons of the cathedral would seem to have been far in advaoce of those in other towns. Among other buildings of note are the choir and tower of York Cathedral ($1389-1407$); the nave and westem transepte of Canterbury Cathedral (x378-wiz), and the towat.
(towards the end of the 1 ghh century); New College, Oxford ($1380-1386$); the Beauchamp Chapel, Warwick ($1381-1391$); the nave and aisles of Winchester Cathedral ($\mathbf{1 3 9 9}^{-1419 \text {); the }}$ transept and tower of Merton College, Oxford (1424-1450); Manchester Cathedral (1422); the central tower of Cloucester Cathedral (1454-1457), and that of Magdalen College, Oxford (1475-1480). To those example's should be added the towtrs at Wrexham, Coventry, Evesham, and St Mary's at Taunton, the first being of exceptional magnificenoe.

PbRpentr, or Parpent Stones, in architecture, bond or "through stones," the סrardioc of the Greeks and Romans, long stones going right through walls; and tying them together from face to face. The O. Fr. perpain, modem parpaing, from which this word is derived, is obscure in origin. It may be:from a supposed Lat. perpago, perpaginis, formed like compago, a joint, from the root of pangere, to fasten, and meaning "something fastened together, or from some popular corruption of Lat. perpendiculum, plummet or plumb-line (pir or pendere, to hang), referring to the smooth perpendicular faces of the stone.

PRRPETUAL MOTION, or Perpatuom Mobile, in its usual significance, not simply a mackine which will go on moving for ever, but a machine which, once set in motion, will go on doing useful work without drawing oa any external source of energy, or a machine which in every complete cycle of its operation will give forth more energy than it has absorbed. Bricfly, a perpetual motion usually means a machine which will create energy.

The earlier seekers after the "perpetuum mobile" did not always appreciate the exact natuce of their quest; for we find among their ideals'a clock that would periodically rewind itsell, and thus go without human interference as long as its machinery would last. The energy created by such a machine would sumpiy he the work done in overcoming the friction of its parts, eo that its projectors might he heid mereiy to have been ignorant of the laws of friction and of the dynamic theory of heat. Most of the perpetual motionists, however, had more practical views, and exphicitly declared the ohject of their inventions to be the doing of useful work, such as raising water, grinding corn, and so on. Like the exact quadrature of the cirde, the transmutation of metals and other famous problems of antiquity, the perpetual motion has now become a venerable paradox. Still, iike these others, it retains a great historical intercst. Just as some of the most interesting branches of modern pure mathematics sprang from the problem of squaing the circle, as the researcbes of the alchemists developed into the science of modern chemistry, 20 , as the result of the vain search after the perpetual motion, there grew up the greatest of all the gencralizations of physical science, the principle of the conservation of energy.

There was a time when the problem of the perpetual motion was one worthy of the attention of a philosopher. Bcfore that analysis of the action of ordinary machines which led to the laws of dynamics, and the discussion of the dynamical interdependence of natural phenomena which accompanied the establishment of the dynamical theory of heat, there was nothing plainly unreasonabie in the iden that work might be done by the mere concatenatioo of machinery. It had not then been proved that energy is uncreatable and indestructible in the ordinary course of nature; even now that proof has only been given by induction from long observation of facts. There was a time when wise men believed that a spirit, whose maintenance would cost nothing, could by magic art be aummoned from the deep to do his master's work; and it was just as reasonable to suppose that a structure of wood, brass and iron could be found to work under like conditions. The disproof is in both cases alike.' No such spirit bas ever existed, save in the imagination of his describer, and no such machine has ever been known to act, save in the fancy of its inventor.

The priaciple of the conservation of energy, which in one sense is simply denial of the possibibity of a perpetual motion, rests oa facts drawn from every branch of physical scfence; and, sahough its full estabHepment only dates from the middle of the

Igth centur'y, yet so numerous are the cases in which it has been tested, so various the deductions from it that have been proved to accord with experience, that it is now regarded as one of the best-established. laws of nature. Consequently, on any one who calls it in question is throwm the burden of proving his case. If any machine were produced whose source of energy could not at once be traced, a man of science (complete freedom of investigation being supposed) would in the first place try to trace its power to some hidden source of a kind already known; or in the last resort he would seek for a source of energy of a new kind and give it a new name. Any, assertion of creation of energy by means of a mere machine would bave to be authenticated in many instances, and established by long investigation, before it could be received in modern acience. The case is precisely as with the law of gravitation; if any apperent exception to this were observed in the case of some heavenly body, astronomers, instead of denying the lew, would immediately seek to explain the occurrence by a wider application of it, say by including in their calculations the effect of some disturbing body bitherto neglected. If a man likes to induige the notion that, after all, an exception to the law of the conservation of energy may be found, and, provided he submits his idea to the test of experiment at his own charges without annoying his neighbours, all that can be said is that he is engaged in an unpromising enterprise. The case is otherwise with the projector wbo comes forward with some machine which claims by the mere ingenuity of its contrivance to multiply the energy supplied to it from some of the ordinary sources of nature and sets to work to pestes scientific men to examine his supposed discovery, or attempts therewith to induce the credulous to waste their money. This is by far the largest class of perpetual-motion-mongers nowadays. The interest of such cases is that attaching to the morbid onatomy of the human mind. Perhaps the most striking feature about them is the woful sameness of the symploms of their madness. As a body perpetuad-motion seekers are ambitious, lovers of the short path to wealth and fame, but wholly superficial. Their inventions are very rarely characterized even by mechanical ingenuity. Sometimes indeed the inventor has simply bewildered himsclf by the complexity of his device; but in most cases the machines of the perpetual motionist are of child-like simplicity, remarkahle only for the extraordinary aseertions of the inventof concerning them. Wealth of ideas there is none; simply assertions that such and such a machine solves the problem, although an identical contrivance has been shown to do no such thing by the brutal test of standing still in the hands of many previous inventors. Hosts of the seekers for the perpetual motion have attacked their insoluble prohlem with less tban a schoolboy's share of the requisite knowledge; and their confidence as a rule is it proportion to their ignorance. Very often they get no further than a mere prospectus, on the strength of which they claim some imaginary reward, or offer their precious discovery for sale; sometimes they get the length of a model which wants only the Iast periection (already in the inventor's brain) to solve the great problem; sometimes fraud is made to supply the motive power which their real or pretended efforts have failed to discover.
It was no douht the barefaced fallacy of most of the plans for perpetual motion that led the majority of scientific men to conclude at e very carly date that the "perpetuum mobile" was an impossibility. We find the Paris Academy of Sciences refusing, as early as 1775 , to receive schemes for the perpetual motion, which they class with solutions of the duplication of the cube, the trisection of an angle and the quadrature of the circle. Stevinus and Leibnitz seem to have regarded its impossibility as axiomatic; and Newton at the beginning of his Principic states, so far as ordinary mechsnics are concerned, a principle which virtually amounts to the same thing.
The famous proof of P. De la Hire simply sciers to some of the more common gravitational perpetual motions. The truth is, as we have said already, that, if proof is to be given, of considered neceasary, it must proceed by induction from all physical' phanomena.

It would serve no useful purpose here to give an exhaustive historical account ' of the vagaries of mankind in pursuit of the "perpot uum mobile," The reader may refer to Henry Dircks's Pappetume Mobile (2 vols, 186 r and 1870), from which, for the most part, we select the following facts.

By lar the most numerous class of perpetual motions is that which seeks to utilize the action of gravity upon rigid soids. We have not read of any actual proposal of the kind, bat the most obvious thing to imagine in this way would be to procure some substance thich intercepte gravicational attraction. If this could be bad, then, by introducing a plate of it underneath a body white it was raised, we could elevate the body without doing work; then, removing the plate, we could allow the body to fall and do work: eccentrics or other imposing device being added tn move the gravitation intercepter, behold a perpetual motion complete! The great dificulty is that no one has found the proper matetial for an intercepter.
Fig. I represents one of the most ancient and oitencat-repeated of gravitational perpetual motions. The idea is that the balls
 rolling in the compartments between the felloe and the tim of the wheel will, on the whole, so comport themselves that the moment about the centre al those on the descending side excereds the moment of those on the ascending side. Endless devices, such as curved spokes, levers with elbow-joints, eccentrics, \&c, have been proposed for effecting this impossibility. The atudent of dynamice at ooce convinces himedf that no machinery can effect any such result; because if we give the wheel a complete turn, so that each ball returns to its original position, the whole work done by the ball will, at the most, equal that done on it. We know that if the laws of motion be true, in each step the kinetic energy given to the whole system of wheel and balls is equal to that talien from the patential energy of the bally less what dismipated in the form of heat by frictional forces, or vice verm. if the wheel and balls he tosing, kinetic encrgy-save that the friction in both cases leads to dissipation. So that, whatever the system may lose, it can alter it is left to itself, never gain energy during its motion.
The two most famous perpetual motions of history, viz, the wheels of the marquis of Worcester (d. 1667) and of Councillor Offyraews, were probably of this type. The marquis of Worcester gives the following account of his machine in his Century of Inwentions (art. 56):-
"To provide and make that all the Weighte of the descending side of a Wheel shall be perpetually further from the Centre than those of the mounting side, and yet equat in number and beft to one side as the other. A most incredible thing, if not seen but tried before die late king (of blessed memory) in the Tower, by my directions, two Extraordinary Embassadors accompanying His Majesty, and the Dulae of Richmond, and Duke Havilion, with mont of the Court, attending him. The Wheel wae i\&. Foot over, and 40 . Weights of so. pounds apiece. Sir William Balfore, then Lieutenant of the Tower, can justify it, with several others. They all saw that no moner these great Weights passed the Dlameter-line of the lower ide, but they, hung a foot further from the Centre, nor no sooner pasied the Diameter-line of the upper side but they hung a foot mearer. Be pleased to judge the consequence.'
We may here notice, so far more recent timet are concerned the claim of an American enthusiast, who, having worked a Hampson plant for liquefying air, stated that 3 lb of liquid air sufficed to tquefy ten, and of these ten'seven could be employed as a source of motive power, whilst the remaining three could be utilized in the production of nnother 10 lb of the liquid gas. There was thus available an inexhaustible upply of energy I The absurdity of the proposition is obvious to any one acquainted with the lawa of thermodynamics. Of more interest is the radium clock devised by the Hon. R. J. Strutt. This congigts of a vacuum vessel from the rop of which depends a short tube containing a fragment of a radiopetive substance. At the lower end of this tube there are two cold heaves as in an electroceope. Fused into the sides of the Facuum vessel at points where the extended gold leaves touch the glass are two platinum wires, the outer ends of which are earthed. The "clack" acta as follows. The radio-sctive substance emits aprepondecating number of positively electrified particles, w that the leaves become charged and hence extended. On contact with the wires fused into the vessel, this charge is conducted away and the leaves fall together. The process in then repeated, and vill costinue until all the energy of the re Jium has been dissipated. This period is extremply long, for 1000 years must elapee before evea hall the radium bae dinappeared.-[ED,]

Offyracus (whoes real name was Johana Entat Elian Beasler) ($1680-1745$) alon obtained distinguished patronage for his invention. Lis last wheel, for he appears to have constructed more than one, was 12 ft . in diameter and ift. 2 in. broad: it consisted of a light framework of wood, covered in with oikloth 50 that the interior was concealed, and was mounted on an axle which had no visible connexion with any external mover. It was examined and approved of by the landgrave of Hesme-Camel, in whove castle at Weissenstein it in said to have gone for eifht weeks in a scaled room. The mont remarkable thing about thit machine is that it evidently imposed upan the mathematician W. J. 'sCravesande. wha wrote a letter to Newton giving an account of his examination of Orffyraeus's whed undertaken at the request of the landgrave, wherein he profetwes himself diseatisfied wich the proofe theretofore given of the impossibility of perpetual motion, and indicates his opinion that the invention of Orffyraeus is worthy of investigation. He himself, however, was not allowed to examine the interior of the wheel. The investor eeems to have destroyed it himself. One story is that he did so on account of difficulties with the landgrave's government as to a licence for it; another that he was annoyed at the examination by 'sGravesande, and wrote on the wall of the room containing the fragments of his model that he had destroyed it becauge of the impertinent curiosity of 's Gravessade.

The overbalacing wheel perpetual motion seems to be as old as the 13th century. Dircks quotes an account of an invertion by Wilars de Honecort, an architect whose sketchbook is stiil preserved in the Ecoles des Chartes at Paris. De Honecort says, "Many a time have skilful workmen tried to contrive a wheel that Ehall turn of itself; bere is a way to do it by means of an uneven number of maliets, or by quicksilver." He thereupon gives a rude gleptch of a wheel with mallets jointed to its circumference. It would appear from some of the manuscripts of Leomardo da Vinci that he had worked with similar notions.

Another scheme of the perpetual motionist is a water-wheel which shall feed its own mill-stream. This notion probably as old as the first miller who experienced the difficulty of a dry scason. One form is figured in the Machemetical Magic (i648) of Bishop Wilkins (i614-1672); the essential piart of it is the waterscrew of Archimedes, which appears in many of the earlier machines of this class. Some of the later ones dispense with even the subtlety of the water-ecrew, and boldly represent a water-wheel pumping the water upan its own buckets.

Perpetual motions founded on the bydrostatical paradox are not uncommon; Denis Papin expores one of these in the Philosophical Transactions for 1685-. The moot nalve of these devices is that illustrated in fig. 2, the idea of which is that the larger quantity of water in the wider part of the vessel weighing more will overhalance the smaller quantity in the narrower part, 50 that the water will run over at C, and so on continually.
Capiltary attraction bas almo been a favourite feld for the vain quest; for, if by capillary action fluids can be made to disobey the law of never rising abave their own level, what so easy as thus to

Fic. 2. produce a continual ascent and overflow. and thus perpetual motion? Various schemes of this kind, involving an endless band which should raise more water by its capillary action on one side than on the other, have been proposed. The most celebrated is that of Sir William Congreve ($1772-1828$). EFG (fig. 3) is an inclined plane over pulleys; at the top and bottom travels an endless band of sponge, abcd, and over this again an endless band of heavy weights jointed together. The whole stnnds over the surface of still water. The capillary action raises the water in $a b$, whereas the same thing cannot happen in the part od, since the weights squceze the water out. Hence, inch for inch. ab is heavier than ad; hut we know that if ab were only just as heavy inch for inch as ad there would be equilibrium, if the heavy chain be also uniform; therefore the extra weight of $a b$ will cause the chain to move round in the direction of the arrow. and this will go on continually.

Fig. 3.

The more recondite vehicles of energy, such as electricity and magnetisn, are more scldom drawn upan hy perpetual-motion inventors than might perhaps be expected. William Gilbert, in his treatise D_{6} Magnele, alludes to some of them, and Bishop Wilkins mentions ancong othere a machine " wherein a loadstone is so disposed
that it shall draw unto It on a rectined phane a butlet of eteel. which, still, as it ascends near to the loadstone, may be contrived to fall through come hole in the plane and to to return unso the place whence at first it began to move, and being there, the losdatone will again attract it upwards, till, coming to this hole, it will fall down again, and so the motion shall be perpetual." The faet that screens do exist whereby electrical and magnetic action can be cut off would seem to open a door for the perperualmotion seeker. Unfort unately the bringing up and removing of these screens involves in all cases just that gain or loss of work which is deinanded by the law of the conservation of energy. A shoemaker of Linlithyow called Spence pretended that he had found a black substance which intercepted magnetic attraction and repulsion, and he produced two machinee which werc moved, as he asserted, by the agency of permanent magnets, thanks to the black subatance. The fraud was speedily exposed, but it is worthy of remark that Sir David Brewster thought the thing worth mentioning in a letter to the Annoles de chime (1818). wherein he states " that Mr Playfair and Captain Kater have inspected both of these machines and are astisfied that they resolve the problem of perpetual motion."

The present writer once was went an elaborate drawing of a locomotive engine which was to be worked by the agency of permanent magnets. He forgets the details, but it was not so simple

θ
Fig. 4 as the plan represented in fig. 4, where M and N are permanent magnets, whose attraction is "screened" by the wooden blocks A ard B from the upper left and lower right quadrants of the soft iron wheel W, which consequently is attracted round in the same direction by both M and N, and thus goes on for ever.
One more page from this chapter of the book of human folly; the author is the famons Jean Bernoulli the elder. We N translate his Latin, as far as puasibie, into modern phrascology. In the first place we must premise the following (see fig. 5). (t) If there be two fluids of difirent densitics whone densities are in the ratio of G to L, the height of equiponderating cylinders on equal bases will be in the inverse matio of L to \mathbb{E}°. (2) Accordingly, if the height AC of one fluid, contained In the vase AD, be in this ratio to the height EF of the other liquid, which is in a tube open at both ends, the liguids ∞ placed will remain at rest. (3) Wherefore, if AC be to EF in a greater ratio than L to G, the liquid in the tube will ascend; or if the tube be not sufficiently long the liquid vill overfow at the orifice E (this [ollows from hydrostatic princ ples). (4) It is possible to have two liquids of different density : thai will mix. (5) it is possible to have a filter, colander, or othee eparator, by meaps of which the lighter liquid mixed wit! ':' A leavier may be separated again therefrom.

Constrwction,-These things being presupposed (says Bernoulli), I thus construct a perpetual motion. Let there be taken in any

6

Fig. 5 . (f you please, in equal) quantities two liquids of different densities mixed toget her (which may be had hy hyp. 4), and let the ratio of their densities be first determined, and be the heavier to the lighter as G to L. then with the mixture let the vase AD be filled up to A. This done let the tuly EF, open at bothends, be taken of such a length that $A C: E F>2 L: G+L$; let the lower orifice F of this tube be stopped, or rather covered with the filter or other material separating the lighter liquid from the heavier (which may also be had by hyp. 5) : now let the tube thus prepared be immersed to the botton of the vessel CD; i say that the Ifquid will continually ascend through the orifice F of the tube and overflow by the orifice E upon the liquid below. Demonstration.-Because the orifice F of the tube is covered by the filter (by constr.) which separates the lighter liquirl from t z heavicr. it [ollows that. if the tube to soniosoru iv dic voivm of the vessel, the lighter liquid alone which is mixed with the henvier ought to rise through the filter Into the tube, and that, too, higher than the sarface of the nurrounding liquid (by hyp. 2), so that $A C: E F=2 L: G+L ;$ but since by constr. $A C: E F>2 L ; G+L$ it necessarily follows (by hyp. 3) that the lighter liquid will fow over by the orifice E into the vessel below, and there will meet the heavict and be again mixed with it; and it will then penetrate the filter, again ascend the tube, and be a second time driven through the upper orifice. Thus, therefore, will the flow be continued for ever -Q E D.

Bernoulti then proceeds to apply this theoty to explain the per. petual rise of water to the mountains, and its flow in rivers to the
sea, which others had faldy attributed to capillary action-hith idea being that it was an effect of the different densities of talt and fresh water.

One really is at a loss with Bernoulli's wonderful theory, wither to admire mote the conmcientious statement of the hypothesis, the prim logic of the demonstration, so carefully cut according to the pattern of the ancients, or the weighty superstructure bult on so frail a foundation. Most of our perpetual motions were clearly the result of too litile learningi surely this one was the product of too much.
(G. CH.)

PRRPETUITT (Lat. perpelsus, continuous), the state of being perpetual or continuing for an indefinite time; in law the tyins-up of an estate for a lengthened period, for the purpose of preventias or restricting alienation. As being opposed to the interest of the state and individual effort, the creation of perpetuities has been considerably curtailed, and the rule against perpetuities in the United Kingdom now forblds the mating of an executory interest unless beginning within the period of any fixed number of existing lives and an additional period of twenty-one years (with a few months added, if necessary, for the period of gestation). The rule applies to dispositions of personal property (see Accumuzation) as well as of real property. There are certain exceptions to the rule, as in the case of limitationa in mortmain and to charitable uses, and also in the case of a perpetuity created by act of parliament (e.g. the estate of Blenheim, settled on the duke of Marlborough, and Strathfieldsaye on the duke of Wellington). In the United States the English common-law rule against perpetuities obtains in many of the states; in others it has been replaced or reinforced by statutory rules (see Gray on Alicnation, 8 42). Charities may be estalitished in perpetuity, and provision may be made for an accumulation of the funds for a reasonable time, ag. for 100 years (Woodruff v. Marsh, 63 Conn Rep. 125; 3^{8} Amer. St. Rep. 346). The general tendency of American legislation is to favour tying up estates to a greater extent than was formerly approved.

PERPIGNAN, a town of south-western France, capital of the department of Pyrenees-Orientales, on the right bank of the Tet, 7 m . from the Mediterrancan and 42 m . S. by W. of Narboene by rail. Pop. (rgo6), town, 32,683 ; commune, 38,898 . The nortb-west quarter of the lown is traversed by the Basse, a tributary of the Tes, while to the south it is overlooked by a citadel enclosing a castle (13 th century) of the kings of Majorce. The chapel is remarkable as being a mixture of the Romanesque, Pointed and Moorish styles. The rampart currounding the citadd are the work of Louis XI., Charles V. and Vauban. The sculptures and caryatides still to be seen on the gatewray of the citadel were placed there by the duke of Alva. The cathedral of St Jean was begun in 1324 and finished in 1509 . The most noteworthy feature in the building is an immense reredos of white marble (early 17th century) by Bartholomew Soler of Barcelona.

In the north of the town commanding the gateway of NotreDame (t48I) there stands a curious machicolated stronghold known as the Castillet (14th and 1 gth centuries), now used as a prison. The buildings of the old university (18th century) contain the library and the museum, the latter possessing the first photographic proots executed by Daguerre and a collection of sculplures and paintings. Statues of Francois Arago, the astronomer, and Hyacinthe Rigoud, the painter, stand in the squares named after them.

Perpignan is a fortified place of the first class, and seat of a prefect, a bishop and a court of assizes, and has tribunals of first instance and of commerce, a chamber of commerce, a brapch of the Bank of France, a communal college for boys, a school of music and training colleges for both sexes. The higher tribunal of Andovic sits at Perpignan. Trade is in winc, iron, wool, oil, corks and leather.

Perpignan dates at least from the rotb century. In the irth and rath centuries it was a capital of the counts of Roussillon, from whom it passed in $t 172$ to the kings of Aragon. Philip the Bold, king of France, died there in $\mathbf{t 2 8 5}$, as he was returning from an unsuccessful expeditlon into Aragon. At that time it belonged to the kingdom of Majorea, and its soverefgus resided there until, in 1344, that small state reverted to the pometsion of the

Hinge of Argcoe, who in r349 foundod a uriversity at Peipignan. When Louis XI. occupied Roussillon as security for money advanced ty him to the king of Aragon, Perpignan resisted the French arms for a considerable time, and only yidided through atress of lamine (March 15, 1475). Roussilion was restored to Aragon by Charles VIII. and Perpagnan was again besieged in 1542 under Frascis-I., but wit hout success. Later on, however, the inhabitants, angered by the tymany and cruelty of the Spamish governor, surrendered the town to Louis XIIL. The citadel held out until the 9th of September 1642, and the. place has ever since helonged to France, to which it was formally ceded by the trealy of the Pyrenees (1659). In $\mathbf{I} 602$ the bishopric of Eline was transferred to Perpignan.
See P. Vibal, Perpignas depmis les arigines jusqu' d nus jours (Paris, 1898).
PERQUIRFIE (Lat. parquisilws, that which has been acquired hy carriful search; perquisicre, to search diligentiy), a terme properly msed of the profits which wecrue to the holder of an office over and above the regular emoluments; also, in law, the casual profits, such as accrue by heriots, fines, reliefia, \&xc, to a lord of a manot above the yearly revenue from the copyholts. The word is msed generally of the casual profits allowed by custom to servants or other exnployes from superfinous articies which the employer has enjoyed the use of or which are supposed not to be needed.
PTRRADLE CRARLES (1628-1703), Freach author, was born in Paris or the $\mathbf{2 1 2 h}$ of January 1628. His father, Pierre Perraclt, was a barrister, all of whose four nons were men of some distinction: Claude (1613 -1688), the second, was by profesaion a physician, hut becarue the architect of the Louvre, and transhted Vitruvius (1673). Charles was brought up at the Coltege de Beauvis, until he chose to quarrel with his masters, after which he was allowed to follow his own bent In the way of study. He took his degree of licencit en droil at Orleans in 1651, and was almost immediately called to the Patis ber, where, however, he practised for a very short time. In $\mathbf{r 6 5 4}$ his brother became receiver-general of Paris, and made Charles his clerk. After nearly ten years of this employment he was, in 1663 , chosen by Colbert $2 s$ this secretary to assist and advise him in matters relating to the arts and sciences, not forgetting literature. He eras controller-general of the department of public works, member of the commission that afterwards developed into the Academie des inceriplions, and in 1671 he was admitted to the Acodimic frangaise Perrault justified his election in several ways. One was the onderly arrangement of the business affairs of the Academy, another was the suggestion of the custom of holding pabtic seaseces for the reception of candidates. Colbert's death in 3683 put an end to Perrault's official career, and he then gave himself up to literature, beginning with Sains Poulin totque de Nive, anec wne tpitre chrstienme sur la perritence, at ane ode aux senveatix consertis. The famous dispute of the ancients and moderns arose from a poem on the Siecle de Louis le Crand (r687), read before the Academy by Perrault, on which Boileau commented in violent terms: Perrault had ideas and a will of his own, and he published (4 vols, 1688-1696) his Paralleledes emeiens at des modarnes. The controversy that followed in its trion raged holly in France, passed thence to England, and in the dags of Antoine Houdart de la Motte and Fénelon hroke cot agnin in the country of its origin. As far as Perrault is concerned he was inferior to his adversarfes in learning, bat decidedly superior to them in wit and politeness.

It is not known what drew Perrault to the composition of the only morks of his which are still read, hut the taste for fairy atorics and Oriental tales at court is noliced by Mme de Sevigit in 1676, and at the end of the 19th century gave rise to the fairy thories of MBE LHEritier de Villaudon, whose Bigarrures ingeniemses appeared in 1606, of Mme d'Aulnoy and others, while Antoine Galland's trannation of the Thossand-and-One Nights belonge to the early years of the 18 th century. The first of Perranlt's contes, Grisslidis, which is in verse, appeared in 1691, and was reprinted with Peans tome and Les Soukaiks ridicules, ateo in vertie, in a Reomeil de pibcer ouriouses-published at che

Hague in 1694. But Rertault was no poet, and the merit of these pieces is entirely obscured hy that of the prose tales, La Belle at bois dormant, Pelit chaperon roupe, Lo Barbe blewe, Le Chat bolle, Les Fles, Cendrillon, Riguet d la houppe and Le Pelit poucet, which appeared in a volume with 1697 on the tille-page, and with the general title of Histoires ou contes du tempr passe avec des moralites. The frontispiece contained a placard with the inscription, Contes de ma miere l'oic. In 1876 Paul Lacroix attributed the stories to the authorship of Perrault's son, P. Darrsancour, who signed the dedication, and was then, according to Lacroix, nineteen years old. Andrew Lang has suggested that the son was a child, not a young man of nineteen, that he really wrote down the stories as he heard them, and that they were then edited by his father. This supposition would explain the mitture of nalveté and satire in the text. Perrault's other Wrotss include his Mimaires (in which he was assisted by his brother Claude), giving much valuable information on Colbert's ministry; an Entide travestie written in collaboration with his two brothers, and Las Hommes illustres qui ont parm en France pendont ce sidcle (2 vols.; 1696-1700). He died on the 16th of May 1703, in Paris. Hia con, Perrault d'Arma-Court, was the author of a well-known book, Contes des ftes, containing the story of Cinderella, \&e.
Except the tales, Perrault's works have not recently been reprinted. Of these there are many modern editions, e.g. by Paul Lacroix (1876), and by A. Lefébvre ("Nouvelle collection Jannet." 1875): also Perrault's Popular Tales (Oxford, 1888). which contains the French text edited by Andrew Lang. with an introduction, and an examination of the sources of each story. See also Hippolyte Rigault, Hist. de la querclle des anciens el des mrodernes (1856).

PERRERS (or De Winmsor), ALICE (d. 1400), mistress of the English king Edward III., belonged probably to the Hertfordshire family of Perrers, although it is also stated that she was of more humble birth. Before 1366 she had entered the service of Edward's queen, Philippa, and she appears later as the wife of Sis Whliam de Windsor; deputy of Ireland (d. 1384). Her intimacy with the king began about 1366 , and during the next few years she received from him several grants of land end gifts of jewels. Not content with the great influence which she obtained over Edward, Alice interfered in the proceedings of the courts of law to secure sentences in favour of her friends, or of those, who had parchased her favour; actions which induced the parliament of 1376 to forbid all women from practising in the law courts. Alice was banished, but John of Gaunt, duke of Lancaster, allowed her to return to court after the death of Edward the Black Prince in June 1376, and the parilament of 1377 reversed the sentence against her. Again attempting to pervert the course of justice, she was tried by the peers and banished after the death of Edward III. in June 1377; but this sentence was annulled two years later, and Alice regained some influence at court. Her time, however, was mainly spent in jawsuits, one heing with William of Wykeham, bishop of Winchester, and another with her dead husband's nephew and heir, Johm de Windsor.
PRRRON, PIERRE CUILLIER (:755-1834), French military adventurer in India, whose name was originally Pierre Cuillier, was born in 1755 at Chateau du Lolre in France, the son of a cloth merchant. In 1780 he went out to India as a sailor on a French frigate, deserted on the Malabar coast, and made his way to upper India, where be endisted in the rana of Gohad's corps under a Scotsman mamed Sangster. In 1790 he took service under De Boigne, and was appointed to the command of his second brigade. In 1795 he assisted to win the battle of Kardla against the nixam of Fiyderabaid, and on De Boigne's retirement became commander-in-chief of Sindhia's army. At the battle of Malpura (1800) he defeated the Rajput forces After the defeat of Ujjain (1801) he refused to send his troops to the aid of Sindhia. His treachery on this occasion shook his position, and on the outbreak of war between Sindhia and the British in 1803 Perron wass superseded and fled to the British camp. In the battles of Delhi, Laswari and Assaye, Perron's batcalions were completely destroyed by Lord Iake and

Sir Arthur Wellestey. He roturned to France with a large fortune, and.died in $\mathrm{x8}_{34}$.
See H. Compton, Esuropeas Mitilary Admenturers of Hiadistam (1892).

PERRON (a French word meaning properly a " large stone," Ital. pedrome, from Lat. pedra, Fr. pierve, stone), in architecture, a term applied to a raised platform reached by steps in front of the entrance to a bailding. The grand flight of external steps entering the mansions of the medieval nobility or bigh officials was considered in itself a mark of jurisdiction, as it is said that zentence was there pronounced against criminals, who were afterwards executed at the foot of the steps-as at the Giant's Stairs of the Doge's palace at Venice.

PBRRONR, GIOVANNI (1794-1876), Italian theologian, was born at Chieri (Piedmont) in 1794 . He studied theology at Turin, and in his twenty-first year went to Rome, where he joined the Society of Jcsus. In 1816 be was sent as professor of theology to Orvieto, and in 1823 was appointed to a similar post in the Collegium Romanum. From Ferrara, where be was rector of the Jesuit College after 1830, he returned to his teaching work in Rome, being made head of his old college in 1850 . He took a leading part in tbe discursions which led up to the promulgation of the dogma of the Immaculate Conception (1854), and in $\mathbf{8 8 6 9}$ was prominent on the Ultramontane side in the Vaican :Council. His numerous dogmatic works are characteristic of orthodox modern Roman theology. They include Praelec. tiones theologicae (0 vols., Rome, 1835 sq9.), Praclectiones theologicae in comprendium redactac (4 vols., Rome, 1845), Il Hermerianismo (Rome, 1838), Il Protestantismo e la regola di fede (3 vols., 1853), De divinilate D. N. Jess Christi (3 vols., Turin, 1870). He died on the a6th of Angust 1876

PRRROT, SIR JOHN (c. 1527-150\%), lord deputy of Ireland, was the son of Mary Berkley, who afterwards married Thomas Percot, a Pembrokeahire gentleman. He was generally reputed to be a son of Henry VIII., and wan atteched to the household of William Paulet, ist marquess of Winchenter. He was in this way brought to the notice of Henry VIII., who died, however, before fulfiling his promises of advancement, but Perrot was Enighted at the coronation of Edward VI. During Mary's reign he suffered a short imprisonment on the charge of harbouting his uncle, Robert Perrot, and other heretics. In spite of his Protestantism he received the caotle and lordship of Carew in Pembrokeshire, and at the beginning of Elizabeth's reign be was entrusted with the naval deferce of South Wales. In 1570 Perrot reluctantly accepted the newly created post of lord presideat of Munster. He landed at Waterford in February of the next year, and energetically set about the reduction of the province. In the course of two years be hunted down James Fitamaurice Fitzgerald, whose submission he received in 1572. Perrot resented the reinstatement of Gerald Fitzgerald, ${ }^{\text {r }}$ 5th earl of Desmond, and after veinly seeking his own recall left Ireland without lave in July 1573, and presenting bimself at court was allowed to resign his offite, in which he was succeeded by Sir William Drury. He returned to his Welsh home, where be was fully occupied with hit datles as vico-admiral of the Weish seas and a member of the council of the marches. Although in 1578 he was accused by the deputy-admiral, Richard Vaughan, of tyranny, subversion of justice and of dealings with the pirates, he evidently retamed the royal confidence, for he was made commissioner for piracy in Pembrokeshire in :578, and in the next ycar was pul in command of a squadron charged to intercept Spanish ships on the Irish coast.

The recall of Arthur Grey, Lord Grey de Wilton, in $\mathbf{1 5 8 2}$, left vacant the office of Lord deputy of Ireland, and Perrot waa appointed to it early in 1584 . Sir John Norris became lord president of Munster and Sir Richard Bingham went to Cornaught. Perrot's chief instructions concerned the plantation of Munster, where the confiscated estates, some 600,000 acres in extent, of the earl of Desmond were to be given to English landlords at a nominal rent, provided that they hrought with them English farmers and labourers. Before be had had time to emberk on this eaterprise he beard that the Highland clant
of Maclean and MacDonnell wrexe raiding Ulater at the Invituation of Soricy Boy MacDonnell, the Scoto-Lrish constable of Dunluce Castle. He marched into Ulster, but Sorloy Boy exaped him, and crosed to Scotland, only to return later with reinforcerments. The lord deputy was roundly abused by EKizabeth for urodertaking "a rash, unadvised joumey," but Sorley Boy mas reduced to submission in 1586 . In $858{ }_{5}$ Perrot awoceeded is completing the "composition of Connaught," a scheme for a contract between Elizabetb and the landholders of the province by which the queen ahould receive a small quitrent. During his career as lord deputy he had established peace, and had desarved well of Elizabeth. But a rash and violent temper, coupled with unsparing criticism, not to say abuse, of his asoociates, had made him numerous enemies, A hastily conceived plan for the conversion of the revenues of St Patrict's Cathedral, Dublin, to provide funds for the erection of two colleges, led to a violent quacrel with Adem Loftus, archbishop of Armagh. Perrot had interfered in Bingham's government of Connaught, and in May 1587 be actually struck Sir Nichoias Bagenal, the knight marshal, in the council chamber. Elizabeth decided to supersede him in January ry88, but it was only six months later that bis succeseor, Sir Willinm Fitzwilliam, arrived in Dublin. After his return to England his enemies continned to work for his ruin, and a forged letter purporting to be from him to Philip II. of Spain gave colour to an accusation of treasonable correspondence with the queen's enemilos, bat when be was tried before a special commiscion in 1593 the charge of bigh treason was chiefly based on bls alleged contemptrous remarks aboat Flizabeth. He was found guilty, but died in the Tower in September 1592 . Elizabeth was said to have intended his pardon.

A tife of Sir John Perrot from a MS. dating from the end of Elizabeth's reign was printed in 1728 . Sir James Perrot (1571 1637), writer and politician, was bis illegitimate eon.

PERRY, MATTHEW CALBRAITE (1794-1858), Americal naval officer, was born In South Kingston, Rhode Island, on the 1oth of April 1794 . He became a midshipman in 1809, and served successively in the achooner "Revenge" (than commanded by his brother, Oliver H. Perry) and the frigate "President." In 1813 he became a lieutenant, and daring the War of 1812 served in the frigate" United States " (which, when ubandoned by Perry, was blockaded in the harbour of New London, Connecticut), the "President" and the "Chipperre" Soon after the war Perry was asaigned to the Brooklyn (Net York) navy yard, whefe he served till 2819 . Fle became a commander in 1826, and during 1826-1830 was in the recration service at Boston, where be took a leading part in organixing the first naval apprentice system of the United States navy. Be was promoted in 1837 to the rank of captain (then the higheat actual rank in-the United States navy), and in 1838-1840 commanded the "Fulion II.," the first American ateam war vesel. Be aloo planned the "Missouni" and the "Mississippi," the first stenm frigates of the United States navy, and was in command of the Brooklyn navy yard from June 5841 until March 1843, when he amumed command of a squadron sent to the Africen const by the United States, under the Webster-Ashburton treaty, to aid in soppressing the slave trade. This command of a Equachoi entitled him to the bonorary rank of commodore. On the z3rd of October 1846, during the Mexican War, Perry, in command of the steam vescels "Vixen " and "McLane," and four schooners, attacked and captured Frontera, at the moath of the Tobasco tiver, then pushed on up the river and (on the 24th) captured the town of Tobasco, tberehy cuttlng of Mexico from Yucatan He relieved Commodore David Conner at Vera Cruz on the 2 rat of March 1847 , and after a two days' bombardment by a batlery ianded from the ships the city wall wis breeched sufficienthy to admit the entrance of troops

Commodore Perry's distinctive achievement, however, was his negotiation in 1854 of the treaty between the United States and Japan, which opened Japan to the induencea of weater civilization. Perry salled from Norfoik, Virginia, on the seth of Novtmber 1853، in the "Missisulppi" Fie reached Hone-Kong
on the 7 th of April and on the 8th of July dropped anchor off the city of Uraga, on the western shore of the Bay of Yedo with the "Surquehannue"" bis flagship, the "Miscissippi," and the slocpe-of-war "Saratoga " and "Plymouth." On the 34 th of July, accompanied by hit officers and escorted by a body of armed maxines and sailon (in all about 300 men), he went ashore and presented to commissioners eapecially appointed by the ahogun to reccive Lhem, Presideat Fillmore's letters to the emperor, and his own credentiale. A lew days later the Ametican fleet sailed lor Hong-Kong with the understanding that Perry would return in the lollowing apring to receive the emperor's reply. On the inth of February, accordingly, he reappeared in the Bay of Yedo with his feet-this tume composed of the "Susqueharna," "Powhatan" and " Mistissippl," and the sailing vessels "Vandalin,"" Lexington "and "Southampton," and despite the protests of the Japanese melected an anchorage about 12 m . farther up the bey, nearly opposite the present site of Yokohama, and within about 10 m . of Yedo (Tokyb). Here, on the 3 ist of March 1854, was concluded the first treaty (ratified at Simoda, on the 2 rst of February 8855 , and proclaimed on the 22nd of June following) between the United States and Japan. The more important articles of this treaty provided that the port of Simoda, in the principality of Idzu, and the port of Hakodate, in the principality of Matsmai, were constituted as ports for the reception of American ships, where they could buy such supplies as they needed; that Japanese vessels should assist American vessels driven ashore on the coasts of Japan, and that the crews of such vessels should be properly cared for at one of the two treaty ports; that shipwrecked and other American citizens in Japan should be as free as in other countries, within certain prescribed limits; that ships of the United States should be permitted to trade at the two treaty ports under temporary regulations prescribed by the Japanese, that American ships should use only the ports named, except under stress of weat her, and that privileges granted to other nations thereafter must also be extended to the United States. Commodore Perry died in New York City on the 4th of March 1858.
A complete and readable account of this expedition, and ips resufts, acientific as well as political. compiled from the journals and reports of Commodore Perry and his ofteces, was pubhthed by the United Statee government under the tirle, Narratite of the Expeduion of an American Squadron to the Chima Scas amd Japan (3. vols. Washiggton, 28 g 6). The first volume of this work, conraining Commodore Perry's narrative, was also published spparately A bric biography of Perry is included in Charles Morris s Heroes of the Nareg tm Americe (Philadesphia and London, 1907). See also Wiliam E Grifisis Lallhew Calbraith Porry, a Typocal Amerriam Naval Officer (Boskon, 1887).
PEREY, OLIVER HAZARD ($1785-1819$), American naval officer, was born at South Kingston, Rbode Island, on the ${ }^{2} 3$ rd of August 1785 . He entered the navy as midshipman (1790) with his father, Cbristopher Raymond Perry ($1761-1818$). a captaip in the navy, and saw service against the Barbary pirates. At the beginning of the War of 8819 he was in command of a flotille at Newpont, but was tranalerred (Feb. 1883) to the Lake. He served with Commodore Chauncey, and then was sent from Lake Ontario to Lake Erie, where he took up the chief command at the end of March 1813. With the belp of a strong detachment af officers and men from the Atiantic roast he equipped a squadrom consisting of one brig, six fine sebooners and one sloop. Other vessets were laid down at Presqua Inle (now Erie), where he concentrated the Lask Erie feetin Juiy. When Captain Perry appeared of Amherstburg, where Captain Robent Heriol Barclay: (d. 1837), the British commander, wat lying with his squadron, he had a very marked soperiority. Captain Barclay, aftor a hot en-gagement-the Batile of Lake Eriew-in which Captain Perry's flageship the "Lawrence," a brig, was so severely shattered that he had to leave her, was completely defeated. Perty commanded the "Java" in the Mediterranean expedition of 18255^{-} 1826, and he died at Port of Spain in Trinidad on the 23rd of Aweust . 88 sg , of yellow fever contracted on the const of Brazt
Sce O. H. Lyman. Commodore O. X. Perry and the Wher on the Lekes (New York, 1903).

Prant, a city and the county-seat of Noble county, Okiahoma, U.S.A, 30 m. N. by E. of Guthrie. Pop. (1900), 335 t (399 negrocs); (19ro) 3133. Perry is served by the Atchison, Topeka \& Santa Fe railway and by the St Louis \& San Francisco system. It is the commercial centre of a large agriculturad and stock-raising region, which produces cotton and grain. Perry was mettled in $\mathbf{1 8 8 9}$.

PRERY (from Fr. poirf, from poire, a pear), an alcoholic beverage, obtnined by the fermentation of the juice of pears. The manufacture is in all essentials identical with that of Cloer (q.s.).

PERRYYILLE, a town of Boyle county, Kentucky, U.S.A. about 10 m W. of Danville. Pop. (1gro), 407. Here on the 8th of October 1863 Gencral Braxton Bragg, in command of the Confederate army of the Mississippi of about 16,000 men, with which he had invaded Kentucky, faced about In his alow retreat across the state and gave battle to the Union army of the Ohio of about 40,000 (of whom only about 22,000 were aetually engaged) commanded hy Major-General Don Carlos Buell. Bragg's order to attack was disregarded by Major-General Leonidas Polk, who preferred adopting the "defensive-ofiensive" rather than engage all of Buell's force. Bragg himself came on the field about 10 a m . and repeated his orders for an attack, but it was 2 p.m. before there was an actual engagement. Theh after much delay on Polk's part the Confederate army joined hattle with McCook's corps. The Confederate lines were broken and driven back through Perryville, where caissons, ammunition wagons and 140 officers and men were eaptured. Darkness had now come on, and in the night Bragg withdrew. His lossen were seported as 510 killed, 2635 wounded and 251 missing. The Union loss was 845 killed, 2851 wounded and 515 captured or missing. The battle was drawn tactically, but strategically it was a Union victory and it virtually closed Bragg's unsuccessful Kentucky campaign, which is sometimes calied the Perryville campaign.

PERSEPOLIS, an ancient city of Persia, situated some 40 m . N.E of Shiraz, not far from where the small river Pulwar flows into the Kur (Kyrus). The site is marked by a large terrace with its east side leaning on Kuhi Rahmet ('t the Mount of Grace '). The ot her three sides are formed by a retaining wall, varying in height with the slope of the ground from 14 to 41 ft .; on the west side a magnificent double stair, of very easy steps, leads to the top. On this terrace are the ruins of a number of colossal huildings, all constructed of dark-grey marble from the adjacent mountain. The stones were laid without mortar, and many of them are still in sith. Especially striking are the huge pillars, of which a number still stand erect. Several of the buidings were never finished. F. Stnlze has shown that in some cases even the mason's rubhish has not been removed.' These ruins, for which the mame Kizil minare or Chihil menare (" the forty columns or minarets "), can be traced back to the 13 th century, are now known as Takhti Jamihid (' the throne of Jamshid"). That they represent the Persepolis captured and parily destroyed by Alezander the Great has been beyond dispute at least since the time of Pictro della Valle.?
Behiod Takhti Jamshid are three sepulchres hewn out of the rock in the hillside, the facaden, one of which is incomplete, being fichly ornamented with reliels. About $8^{1} \mathrm{~m}$. N.N.E., on the opposite side of the Pulwar, rises a perpendicular wall of rock, in which Cour similar tombs are cut, at a considerable heaght from the bottom of the valley. The modern Persians call this place Nakshi Rustam (" the picture of Rustam " from the Sassanian relicis beneath the opening, which they take to be a representation of the mythical hero Rustam. That the
${ }^{1}$ Cf. I. Chardin, E. Kaempler, C. Niebahr and W. Oveeleq. Niebuhr's drewings, though good, are, for the purposes of the arth; tectural student. Inferior to the great work of C. Texier, and still more to that of E. Flandin and $\$$. Coste. Cood sketches, ehiefly afier Flandin, are given by C. Kossowicz, Inseriphtones poloebpersicue (Sp Petersburg. 187). In addicion to these we have the photographic plates in F. Stolzey PersepoliI (2 vola, Berila, 1882)

1 Lellere XY. (ed. Brighton, 1843), ii. 246 seq.
occupants of these seven tombs were kings might be inferred from the sculptures, and one of these at Nakshi Rustam is expressly declared in its inscription to be the tomb of Darius Hystaspis, concerning whom Ctesias relates that his grave was in the face of a rock, and could only be reached by means of an apparatus of ropes. Ctesias mentions further, with regand to a number of Persians kings, either that their remains were brought "to the Persians," or that they died there.' Now we know that Cyrus was buried at Pasargadae ($q: v$.) and if there is any truch in the statemeut that the body of Cambyses was brought home " to the Persians" his burying-place must be sought somewhere bevide that of bis father. In order to identify the graves of Persepolis we must bear in mind that Ctesias sssumes that it was the custom for a king to prepare his own tomb during his lifecime. Hence the kings buried at Nakshi Rustam are probabiy, besides Darius, Xerxes I., Artaxerxes I. and Darius II. Xerxes II., who reigned for a very short time, could scarcely have oblained so aplendid a monument, and still less could the usurper Sogdianus (Secydianus). The two completed graves behind Takhti Jamshid would then belong to Artaxerxes II. and Artaxerxes III. The unfinished one is perhaps that of Arses, who reigned at the longest two years, or, if not his, then that of Darius III. (Codomannus), who is one of those whose bodies are said to have been brought "to the Persians" (see Arciutecture, fig. 12). Another small group of ruins in the same style is found at the village of Hajjiabid, on the Puivar, a good hour's walk above Takhti Jamshid. These formed a single building, which was still intact 900 years ago, and was used as the mosque of the then existing city of Istakhr.
Since Cyrus was buried in Pasargidae, which moreover is mentioned in Ctesias as his own city, ${ }^{3}$ and since, to judge from the inscriptions, the huildings of Perscpolis commeaced with Darius I., it was probably under this king, with whom the sceptre passed to a new branch of the royal house, that Persepolis became the capital ${ }^{4}$ (see Persia: Ancient History, V. 2) of Persia proper. As a residence, however, for the rulers of the empire, a remote place in a difficult alpine region was far from convenient, and the real capitals were Susa, Babylon and Echatana. This accounts for the fact that the Greeks were not acquainted with the city until it was taken and plundered by Alexander the Great. Ctesias must certainly have known of it, and it is possible that he may have named it simply Mipoa, after the people, as is undouhtedly done by certain writers of a somewhat later date." But whether the city really bore the name of the people and the country is another question. And it is extremely hazardous to assume, with Sir H. Rawlinson and J. Oppert, that the words and Pdrsa, "in this Persia," which occur in an inscription on the gateway built hy Xerxes (D.1. 14), signify "in this city of Parsa," and consequently prove that the name of the city is identical with the name of the country. The form Persepolis (with a play on ripots, destruction) appears first in Cleitarchus, one of the earliest, but unfortunately one of the most imaginative annalists of the exploits of Alexander.

It bas been universally admitted that "the palaces" or "the palace " (rd $\beta_{a r l} \lambda_{\text {eua }}$) burned down hy Alexander are those now in ruins at Takhti Jamshid. From Stolze's investigations it appears that at least one of these, the castle built by Xerxes, bears evident traces of having been destroyed by fire. The locality described by Diodorus after Cleitarchus corresponds in important particulars with Takhti Jamshid, for example, in being supported by the
"This statement is not made in Ctesias (or raver in the extract: of Photius) about Darius II., which is probatyly accidental: in the case of Sogdianus, who as a usurper was not leemed worthy of honourable burial, there is a good reason for the imisaion.

- Arrian. iii 22, I.
- Cf. also in particular Plutarch. Artax. iii., where Pasargadae is distinctly looked on as the gacred cradle of the dynasty.
- The story of Aclian (H. A. i. 59), who mako Cyrus build he royal palace in Persepolis, deserves no attention.
So Arrian (iii. 18, I 10), or rather his best authority, King Ptolemy. So. apain, the Babylonian Berossua, chorty after Alexander. See Clemens Alex. Admom, ad gentes, c. 5, where, with Georg Hoffmann (Pers. Mdriyyer, 137), wal is to be incerted before Heporest. and this to be understood as the namt of the metropolis.
mountain on the east. There in, hoirever, one formidnble difficulty. Diodorus eays that the rock at the back of the palace containing the noyal sepulchres in so steep that the bodies could be raised to their last resting-placeonly by mochanical appliances. This is not true of the greves behind Takhti Jamghid, so which, as F. Stolze expressly observes, one can easily rido up; on the alber hand, it is strictly true of the graves at Nakshi Rustam. Stolse accordingly started the theory that the royal castie of Persepolis stood close by Nakshi Rustam, and has sunk in comrse of time to shapeless heaps of earth, under which the remsins may be concealed. The vast ruins, however, of Takhti Jamshid, and the terrace constructed with 80 much labour, can hardly be anything else than the zuins of palaces; as for templeat the Persians had no such thing, at least in the time of Darius and Xerxes. Moreover, Persian tradition at a very remote period knew of only three architectural woaders in that region, which it attributed to the fabulous queen Hamsi (Khumai)-the grave of Cyrus at Murgab, the building at Hejitabad, and those on the great terrace? It is sifest therefore to identify these last with the royal palaces destroyed by Alexander. Cleitarchus, who can scarcely have visiced the place himself, with his usul reckiessness of statement, confounded the tombs behind the palaces with those of Nakshi Rustam; indeed he appears to imagine that all the royal sepulchres were at the same place.
In 316 b.c. Persepolis was still the capital of Persis as a province of the great Macedonian Empire (see Diod. xix, 21 seq. 46 ; probably after Hieronymus of Cardia, who was living about 316). The city must have gradually declined in the course of time; but the ruins of the Achaemenidae remaiped as a witness to its ancient glory. It is probable that the principal town of the country, or at leust of the district, was always in this neighbourbood. About A.D. 200 we find there the cily Istakhr (properly Slakhr) as the seat of the local governors. Thare the foundalions of the second great Persian Empire were Laid, and Istakhs acquired special importance as the centre of pricstly wisdom and orthodoxy. The Sassanian kings have covered the face of the rocks in this neighbourhood, and in part even the Achaemenian ruins, with their sculptures and inscriptions, and must themselves have built largely here, although never on the same scale of magnificence as their ancient predeceseors. The Romans hect as litule about Istakhr as the Greeks had doae about Persepolis -and this in spite of the fact that for four hundred years the Sassanians maintained relations, friendly or hostile, with the empire.

At the time of the Arabian conquest Istakhr offeredadesperate resistance, but the city was still a plece of considerable importance in the ist century of Islam (see Cazipinate), aluhough its greatness was speedily eclipsed by the new metropolis Shiraz In the toth century Istakhr had become an utterly insignificant place, as may be seen from the descriptions of Istakhr, a mative (c. 950), and of Mukaddasi (c. 985). During the following cer turies Istakhr gradually declines, until, as a cily, it ceased to exist. This fruitful region, however, was covered with villages till the frightful devastations of the isth century; and evon now it is, comparatively speaking, well cultivated. The "castle of Istakhr" played a conspicuous part several times during the Mahommedan period ns a strong fortreses It was the middiemost and the highest of the three ateep crags which rise from the valley of the Kur, at some distance to the west or north-west of Nakshi Rustam. We learn from Oriental writers that one of the Bayid (Buwaihid) sultans in the roth century of the Flight constructed the great cisterps, which may yet be seen, and have been visited, amongat others, by James Moder and E. Flandin. W. Ouseley points out that this castle was atill used in the 16 th century, at least as a state prison. But when Pietro della Valle was thero in 1625 it was already in mins.
-The name of this mountain too, parinum Epen, is identical with Shahoüh. which is at least tolerably well eatabliched by W. Ouseley (ii. 417) as a synonym of Kinhi rahmed

T See especialiy Hamza Isp., 38 ;Tabari, $1.690,816$ (cf. T. Noldele, Ceschichte der Perser. . . aus . . . Tabari, p. 8). The ruins at Takhti Jamshid are alluded to as the work of Humla, in conomece with an event which occurred shortly after A.b. 200.

Biswograritr,-E. Finalin and P. Cone. Voyge on , Parse (1843-1847): F. Stolze. Dir Achaemenidischen wind Sassanilischen Doxkmaler und Inschriften mon Persepolis, \&c. (1882); G. Persot and C. Chipiex, Histoire de l'art dans fantiguite, 7 . (18go). See also Darios; Pensla: Ancient History; and Caliphate.

> (Ta. N. ; A.H.S.)

PMaskos, in Greek legend, son of Danat and Zeus. When Purnous whe grown to manhood Polydectes, king of Seriphus, cust his eye on Danatj and, in order to rid himself of the son, exacted of him a promise that he would bring him the head of the Gorgon Medusa. The Gorgons dwelt with their sisters the Graese (the grey women) by the great ocean, far away in the west. Guided by Hermes and Athena, Perseus came to the Graeze. They were three bags, with but one eye and one tooth between them. Perseus stole the eye and the tooth, and would not restore them till the Graeae had guided him to the Nymphs, from whom he received the winged sandals, a wallet (dißots, resembling a gamekeeper's bag) and the belmet of Hades, which rendered him invisible. Thus equipped and armed by Hermes with a sharp sword like a sickle, be came upon the Corgons as they slept, and cut off Medusa's head, while with iverted eyes he looked at her reffection which Athena showed shim in the mirror of ber shield. Perscus put the Gorgon's head th his wallet and fled, pursued by Medusa's sisters, to Ethiopia, where he delivered and married Andromeda (q.0.). With her he returned to Seriphus in time to rescue his mother and Dietys from Polydectes, whom be turned to stone with all his court by showing them the Gorgon's bead. The island itself was turned to stone, and the very frogs of Seriphus (so ran the proverb) were dumb (Aelian, Nat. anim. iii. 37). Perseus then tavq the head of Medusa to Athena, and, with Danat and Andromeda, bastened to Argos to see his grandfather, Acrisius, once more. But before his arrival Acrisius, fearing the oracle, had Hed to Larissa in Thessaly. Thither Perseus followed him, and at some funeral games held in honour of the king of that country anwittingly slew his grandfatber by the throw of a quoit, which strack him on the foot. Ashamed to return to Argos, Perseus pave his kingdom to Megapenthes (Acrisius's nephew), and received from him Tiryns in exchange. There he reigned and Counded Mideia and Mycenae, and became the ancestor of the Persides, amongst whom were Eurystheus and Heracles.
The legend of Perseus was localized in various places. Italy claimed that the chest containing Danae and Perseus drifted ashore on the Italian coast (Virgil, Aen vii. 372; 410). The Persian kings were said to have been descended from Perses a son of Perseus, and, according to Pausanias of Damascus, he tzught the Persians to worship fire, and founded the Magian priesthood. His cult was transferred to the kings of Pontus, for on coins of Amisus he is represented with the features of Mithradates Eupator. Like Andromeda, Hesione, the daughter of Leomedon, king of Troy, was rescued by Heracles from a seamonster, and both stories have been interpreted of the sun slaying the darkness, Andromeda and Hesione being the moon, which the darkness is about to devour. In one version of the zory of Hesione, Heracles is said to have spent three days, like Jonah, in the belly of the beast, and it is noteworthy that the Greek representations of Andromeda's monster were the models for Jonab's fish ln early Christian art. Its bones and Andromeda's chains were shown on a rock at Joppa. Perseus appears on coins of Pontus and Cappadocia, and of Tarsus in Cllicia, which he was said to have founded. The legend of St George was inalsenced by the traditions current regarding Perseus in Syria and Asia Minor.
For the slaying of the Medusa, see F. H. Knatr, Quomodo Persei pabulam artifices graeci af romani Iractaocrint (1893); nnd, on the whole atory, E. S. Hartand. The Legend of Perrews (1894-1896).

PERSEUS, in astronomy, a constellation of the northern bemisphere, called after the Greek legendary hero. it is mentioned by Eudozns (4th century B.c.) and Aratus (3rd century b.c.);

1 Author of a history of Antioch; be is quoted by John.Malalas, Clromegropicia, pp. $37-38$, ed. Bonn (1831). Nothing further is known of him (peo C.W. Muller, Fragmenta historicorum efactorum, 80.40\%)

Ptodemy and Tyoho Brake catalogned 99 stars, Revelius 46. The most important member of this constellation is β Persei or Algol (q.s.), a famons variable star. 0 Persei is atriple staf, composed of one 4 th maguitude star and two of the soth magnitude; p Persei is an irregular variable, with a range in magnitude of $3.4104 . \mathrm{x}$. Near Persei is a "new "star discovered in 1887 and subsequently recognized on Harvard plates by Mra Fleming in 1895; another new star was discovered by Anderson on the 2Lst of February 1go1, which, after increasing in magnitude, gradually became fainter and ultimately disappeared. There is a meblala sumpunding Nowa Persei (igo1) which was photograpbed at Yerkes observatory in September 1901; a pair of star clusters, appearing as a bright patch in the Milky Way; and the meteortc swarm nemed the Perseids, whicb appear in August and have their radiant in Perseus. (See Mercor.)

PERSEUS OF MACEDOEFIA (b. c. 212 日.c.), the last king of Macedonia, eldest son of Philip V. He had his brother Demetrius killed, and thus cleared his way to the throne in 179. War broke ont with Rome in I7I B.c. when P. Licinius Crassus was sent to attack him. Perseus defeated Crassus at Callinicus in Thessaly, but in 168 he was annibilated at Pydna by L . Aemilius Paulus. He was led in triumph through Rome, and died in captivity at Alba Fucens. (Sec Maczdonia.)
PERSHORE, a market town in the Evesham parliamentary division of Worcestershire, England, 113 m. W.N.W. of London and 7 S.E. of Worcester by the Great Western railway. Pop. (1901), 3348. The station is 1 i m . from the town. Market gardening and fruit-growing (especially plums) are carried on and agricultural implements are manufactured. The churches of the two parishes of Holy Cross and St Andrew face one another across a road. Holy Cross is a remnant of a mitred abbey of Benedictines, said to have been founded about 970 by King Edgar, on the site of a Mercian religious settlement. There remain only the fine Early English choir, with Decorated addtions, the Norman south transept and the majestic Decorated tower; while slight fragments of a Norman nave are seen.
PBRSLA, a kingdom of western Asia, bounded on the N. by the Caspian Sea and the Russian Transcaucasian and Transcaspian territories, on the E. by Afghanistan and Baluchistan, on the S. by the Arabian Sea and the Persian Gulf, and on the W. by Turkish territory. Long before the Christian era the satrapies of Darius comprehended roughly an immense rango of territory, from the Mediterranean to the Indus and frome the Caucasian chain and Jaxartes to the Persian Gulf aind Arabian Ocean. In the 17th and $88 t h$ centaries a.d. the conquests of 'Abbas and Nadir kept up those boundaries more or less on the east, but failed to secure them on the west, and were limited to the Caucasus and Oxus on the north. Persia of the present day. is not only, in the matter of geographical definition, far from the vast empire of Sacred Writ and remote history, but it la not even the less extensive dominion of the Safawi kings and Nadir Shah. It may he said, however, to comprise now quite as much settled and consolidated territory as at any period of its political cxistence of which we can speak with authority.

Boundaries.-The region of Ararat presents a good starting point for the definition of the western and northern frontiers of Persin. A line 20 m . ln length from a point on the river Aras, in $39^{\circ} 45^{\prime} \mathrm{N}$. and $44^{\circ} 40^{\prime} \mathrm{E}$. to Mt Ararat, in the soth-weaterly direction; divides Persia from Russia. Southwards from Mt Ararat the PersoTurkish frontier extends about-900 m. to the meuth of the Shatt el Arab in the Persian Gulf in $30^{\circ} \mathrm{N}$. and $48^{\circ} 40^{\prime} \mathrm{E}$., but is undefieed with the exception of the western boundary of the little district of Kotur. A mired commission was appointed in 1843 for the setclement of the Perso-Turkish frontier. Tha labours of this commisaion resulted in the Errerum treaty of 1847, by which both powers abandoned some lands and agreed to appoint commisfioners to define the frontier. The combmisuioners met in 1849, 1850 and $185 x$ at Ragdad and Mnhamreb without arriving at any result. In 1851 Lord Palmernton proposed that the general line of frontier should he traced by the fagents of Turkey and'Persie at Cocetantinople, amintod by the
comminoloners in confortaify with the treaty of Erserum, loaving doubtful localtires to be settled in future. The Russian government agreed to this proposial, and the work of surveying the country from Mt Ararat to the Persian Gulf was then zndertaken. When this was done the preparation of a map, embracing territory 700 m . in length hy $20 t 040 \mathrm{~m}$. broad, was
unsettled, and disputes have-frequently urien between the Turkish and Persian governments with regard to their respective claims to land (Hertslet, Persias Trealies). In the autumn of 1907 Turkish troops occupied not only "doubtful localities" hut also adjotning lands which vere indisputahly Persian tersitory. The want of a determined line of domarcation

put in hand, and this work lasted from November 2857 till March 1865, when the Porte was informed in May of that year that "in the opinion of the mediating Powers, the future line of boundary between the respective dominions of the sultan and the shah was to be found within the limits traced on the map; that the two Mahommedan governments should themselves mark out the line; and that in the event of any diferences arising bet wean them in regard to any particular locality, the points in dispute should be referred to the decision of the governments of England and Rusia.". This boundary has remained.
between the two countries may have political advantages, but is loconvenient to the geographer and most unfavourable to the cause of order and good government.
From the point on the Aras River 20 m . north-east of Mt Ararat, the river forms the northern boundary down to $48^{\circ} \mathrm{E}$. The frontier line then runs about 35 m . in a southeasterly direction through the Moghan steppe to Pikowar on the Bulgharu River and then south with

Normetr a bend to the west to the Astara River and the port of Astara in $38^{\circ} 27^{\prime} \mathrm{N}$. and $4^{8^{\circ}} .53^{\prime}$ E. From Astara eastwards the boundary
is formed by the shore of the Caspian untilit touches the Bay of Hassan Kul north of As arabad. East of the Caspian Sea and beginning at Has an Kuli Bay the ziver Alrek serves as the frontier as far as Chat. It then extends cast and southeast to Serrakhe on the 'Tejen River in $30^{\circ} 40^{\prime}$, N. and 62° s 20° E. The distance from Mt Ararat to Serrakhs in a straight Kine is about 930 on. The frontier from Mt Ararat to Astara was defined by the treaty of Turkmanchal (Feb. 22; 1828); and a convention of the 8th of July 1893 . The frontier cast of the Caspian was defined by the Akhal-Khorasan Boundary Convention of the arst of December 1881 and the frontier convention of the 8th of July 1893.

The eastern frentier extends from Serrakhs to near Gwetter on the Arabian Sea in 25° N. and $61^{\circ} 30^{\prime}$ E., a distance of about

8mante
 mpoatilets

 800 m . From Serrakhs to near Kuhsan the boundary. river of Herat, in its upper course); it then runs amost due south to the border of Seistan in $31^{\circ} \mathrm{N}$. , and then through Seistan Iollows the line fixed hy Sir Frederick Goldamid's and Sir,Henry McMahon's commissions in 1872 and 1903-1905 to Kuh i Malik Slah. From this point to the ses the frontier separates Persian territory frora British Baluchistan and runs southeenst tn Kuhak and then south-west ta Gwetter. This last soction was determined by Sir Erederick Coldsmid's commiesion in 187 J.The southern boundary is the coast line of the Arahian Sca and the Persian Gulf from Gwetter to the mouth of the Shatt Soubicra Proation el Arab, a distance of about 870 m. , comprised between $48^{\circ} 40^{\prime} \mathrm{E}$. and $61^{\circ} 30^{\prime} \mathrm{E}$. The islands situated close to the northern shore of the Persian Gulf are Persian territory; they are, firom east to west, Hormuz (Ormus), Larak, Kishm, Hengam, Furur, Kish (Xais), Hindarabi, Shaikh-Shu'aib, Jebrin, Kharal, Kharaku (Khorgu).

Physical Geography,-Modern Pervia occupics the western and latrger half of the great Iranian plateau which, rising to a height of from 4000 to 8000 ft. betweeo the valleys of the lndus and Tigris, covers more than a million square miles. Takiog the Kuren Dagh or Kopet Dagh to form the northern scarp of this plateau cast of the Caspian, we find a prolongation of it in the highlands north of the politicat fronticr on the Aras, and even in the Caucasus Itself. On the morth-west Peraia is united by the bighlands of Armenia to Lie mountains of Asia Minor; on the north-west the Paropamisus and Hindu Kush connect it with the Himalayas. The lincs of boundary on the western and eastern laces are to be traced amid bigh rapges of mountains broken here and there by deserts and valleys. These ranges lic for the most part north-east and southeast, as do thone in the interior, with a marked exception between Teherin and Bujnurd, and in Baluchistan, where they lie rather north-east and south-west, or, in the latter case, sometimes cast and west. The real lowlands are the tracts near the sea-coast belonging to the forest-clad provinces of the Caspian in the oorth and the shores of the Persian Gulf below Basra and clsewhere. The Persians have no special names for the great ranges. Mountains and valleys are known only by local names which frequently cover but a few miles. Even the name Elburz, which European geographers apply to the chains and ranges that extend for a lengeh of over 500 m . Irom Azerbaijan in the west to Khorasan in the east, stands with the Persians only for the 60 or 70 m . of mountains north and north-east of Teheran, including the cone of Demavend. The great central range, which extends, almost unbroken, for dearly 800 m . Irom Ascrbaijan in the north west to Baluchistan in the southeast, may aptly be calied the Centrol Range. It hae many peakes 9000 to $10,000 \mathrm{ft}$ in heigbt, and some of itt mutnmits rise to an eievation of 11,000 (t. and near Kermann of nearly 13,000 ft. (Kuh-i. Jupar). The valleys and plains weat of the Certral Range, as for instance those of Mahallat, Joohckan, Isfiahan, Sirjan, have an elevation of 5000 to 6500 ft ; those within the range. as fasp, Ardahal, So, Pariz, are about 1000 ft . higher; and thoge cast of it slope from a n elevation of 5000 to 6000 ft . down to the depressions of the central piateal which, east of Kurn, are not more than 2600 ft . and east of Kermina 1500 to 1700 ft . above the sca-level. Sonfe of the ranges west of the Central Range, which form the highlands of Kurdistan, Luristan, Bakhtlari and Fars, and are parallel to it, end near the Persias Gulf; others follow the Central Range, and take a direction to the east at some point between Kerman and the sea on the westem frontier of Baluchistan. Some of these western ranges Ase to codsiderable elevationsi those forming the TurkoPergian frontiet west of the lake of Urmla have peaks $11,000 \mathrm{ft}$. in height, while the Sahand, eatot of the lake and south of Tabriz, has an ctgration of 12,000 ft. Parther south, the Takht-i-BHikis; in the Ashar district, fives to $11,200 \mathrm{ft}$, the Elvend Gacient

Oiontes); newr Hamaden; to 11,600. Tha Shatutup Kuh mouth of Bonujird, is over $11,000 \mathrm{ft}$ in height, the Shahan Kuh, Kuh-i Gerra, Zardeh Kuh and Kub-iKaran (by come witers called Kuhdi-Rangh, all in the Bakhtiari country west of Iscaban, are 12,800 to 13000 It. in height; and the Kub-i-Dina (by some writert wrongixy called Kuh-i-Dinar) hats an devation of over 14,000 f. Still farther oouth. Lowards Kermana, there ere everal peakn (BidKhan, Lalebzar, Sbab-Kuh, Jamal Baris, \&c.) which rise to an elevmtion of 13,000 ft, or more, and the Kuh-i-Hazar, gouth of Kermila, is 14,700 it in height. Beginning near Andobil in Aserbaijan. where the come of Savcian rison to an eleyation of 15.792 ft . (Rumian trigonometrical survey), and ending in Khoraman, the great Elburz wange prosents on ite southern, or inward, lace a more or hoss abrupt ectrp rising above immease gravel slopes, and zeacheal in some of ite summits a heighe of nearly $13,000 \mathrm{ft}$.; and the peak of Demayend north-west of Teheria, has a beight of at lease 18,000 it. Thepa ere everad important ranges in Khoraman, and onc of them, the Binalud, west of Meahed and north of Nichapar, hass eeveral pealce of 11,000 to 12,000 ft. in height. In south-easters Persia the Kuh. 2 -Basmen, a dormant volcano, 15.000 to $12,000 \mathrm{ft}$ in beight, in the Baeman district, and the Kuh-i-Taftan, we. the bot or burning thountain (alco called Kub-i-Nushadar from the "sall ammoniac, wushadar, found on its alopes), an active triple-peaked volcano in the Sarhad district and 12,681 ' t. in height (Captain Jenningi), ase notable fcatures
Taking the aree of Persia at 628000 wq. m. the drainage may thus be distributed: (I) into the Arabian Sea and Persian Cull. 135,000 en. mi (2) into the Caspian, 100,000; (3) into Bivere the Seixtan depreasion ${ }^{43,000 ;}$ (4) into the Urimia The first district comprises mott of the oouth-western provinces and the whole of the coast region as lar east as Gwetter; the second relates to the tracts west, south and east of the southern part of the Caspian Sea. The tracts south of the Caspian are not more than 20 to 50 m . wide; those on the west widen out to a depth of $250 \mathrm{~m}_{\text {. }}$ meeting the waturshed of the Tigris on the one side and that of the Euphratea and Lake Van on the other, and embracing between the two the basin of Lake Urmia. On the east the watershed of the Caspian gradually increases in breadth, the foot of the scarp extending considerably to the north of the south-eastern angle of that sa, three degrees cast of which it uurns to the south-etast, parallel to The axis of the Kopet Dagh. The third drainage area comprises Persinn Scistan with part of the Helmund (Hilmend) basin and a coosiderable tract adjoining it on the west. The fourth is a comparatively arniall area on the westera frontier containing the basin of Lake Urmia, ahut of from the rest of the inland drainage, and the fifth area takes in a part of Baluchistan, most of Kermina, a part of Fars, all Yexd, Lsfahan, Kashan, Kum, Irak. Khamseb, Kazvin, Tcherun, Samnan, Damghan, Shabrud, Khorasan and the central desert regions
Four ivers belonging exsentially to Persia in reference to the Caspian watershed, are the Scafid Rud or Kizil Uzain on the southwest, the Herhaz on the south and the Gurgan and Atrek at the woutheastern corner of that inland sea. The Searid Rud risea in Persian Kurdistan in about $35^{\circ} 50^{\prime} \mathrm{N}$. and $46^{\circ} 45^{\prime}$ E., a fcw miles from Senendij). It has a very tortuous course of nearly 500 me . for the distance from its source to the Caspian, 57 m . east of Resht, is only 210 m . in.a straigtri line. The Kizil Uzain takes up some important affiuents and is called Seafid Rud from the point where it breaks through the Elburz to the sea, a distance of 70 m . It drains 25,000 to $30,000 \mathrm{sq}$. m . of the country. The Herhaz, though not important in tength of course or drainage, also, like the Scafid Rud, breaks throuph the Elbur range from the inner southers scarp to the north. It rises on the slopes of the Kasil Kuh, a peak 12,000 ft. in height withlo the Elburz, and about 25 m . north of Teherina flows casterly through the Lar plateau, where it is known as the Lar River, and takes up scveral affluents; turns to the northeast at the foot of Demavend, leaving that mountain to the ieft, and flows due north past Amol to the Caspian. Its length is about 120 m . The Gurgan rises on the Armutlu plateau in Khorasan east of Astarabad, and enters the Caspian in $37^{\circ} 4^{\circ} \mathrm{N}$, northwest of Astarabad, after a course of about 200 m . The Atrek rises a few miles from Kuchan and enters the Caspian at the Bay of Hassan Kuli in $37^{\circ} 21^{\prime} \mathrm{N}$., after a coursc of about 300 m . From the sea to the Kussian froncier poot of Chat the river forms the fronticr betweea Persia and the Russian Transcaspian region

The drainage of the rivers which have no outlet to the sea and form faland lakes and swamps (havir) may be estimated at 350.000 sq. In, including the drainage of Lake Urimia, which is about $20,000 \mathrm{~m} . \mathrm{m}$. Fourteen rivers flow into the lake: the Aj Chai, Sifi Chal, Murdi Chai and Jaghatu from the east, the Tatau (Tatava) from the south; and nine smaller fivers from the west. During heavy rains and when the snows on the hills melt, thousands of atreams flow from all direction into the innumerable depreselons of inner Persia, or belp to awell the perennial rivers which have no outlet to the sea. These latter are few in number, and some of them barely suffice for purposes of arricultural irrigation, and in summet dwindle down to smatl rifs. The perennial strame which help to form the kavirs (salt mamps) east of Kum ant Kashan are the Hableh-rud, rifing east of Demavend, the Jajrid,
riting north of Teherlin, the Kend and Kexaj rivert, rising morthwest of Teherin, the Shureh-rud (aleo called Abhar-rud), rining nent Sultanieh on the road between Kazvin and Tabris, and the Kara-an Fhich rive near Mamadan and is joined by the Zarinrud (also known as Do-ab), the Reva Chai (also called Mazdaganrud) the Jehrud River and the Kum-rud. The river of Iffahan, Zendeh-rud, is. "the great river" (from Persian sendeh [Pehlevi, sandek], great). but now generally known as Zayendeh-rud, is. "the life-giving river," flow into the Gavkhani or Gavkhaneh owamp, eate of isfahan. In Fars the Kur with its affuents forms the lake of Bakhtegan (aloo known as Lake of Niriz), and in its lower courte, is generally called Bandamir (made famous by Thomas Moore) from the band (dam) constructed by the Anir (prince) Aad-ed-dowleh in the 10th century, (" Mote on the Kur River in Fars," Proc, Royal Geog. Soc., London, 189r.). The rivers flowing lnto the Persian Cull and Arablan Sea diminish in importance from west to east. There are first the Diyala and Kerkheh fowing into the Tigris from the hills of Kurdistan; the Ab i Diz and Karun which unite helow Shushter, and reach the Shatt ei Arab at Muhamrah; and the Jarahi and Tab, which with the Karun form "the delta of Persian Arabistan, the moek extensive and fertile plain in Persia." There are many streams which though fordable at most reasons (some of them are often quite dry) are unfordable during the rains. Two of thewe may be mentioned here, viz the Mand and the Minab, which St John (loc. cil. p. 9) considered as being " of far more importance than the mapt would lead the observer to suppose." The former, after a run of over 300 m . from its sources in the hills wewt of Shiraz, debouches at Khor-i-Ziaret about 60 m . south of Bushire. It is mentioned by the old Arab and Pergian geographers as the Sitalkan (in some MSS. miaspelt Saklan), and is the Sitakos of Arrian and the Sitioganus of Pliny. In its upper course it is now known as the Kara-aghach (Wycheelm) River (ci, "Notes on the River Mand in Sourhern Persin." Royel Ceog. Soc., London, December 1881). The Minab has two outlets into the Perian Culf, one the Khor-i-Minsb, salt-water creek into which the river overflowe during the rains, about 30 m . east of Bander Abbasi, the other the true Minab, at Khagun, some miles south of the creek. It rises in the hills about 100 m . north of Bander Abbasi, and han a considerable drainage. Its bed near the town of Minab (is m. Irom the coast) is nearly mile in width, and during the rains the water covers the whole bed, rendering it quite unlordable. During ordinary weather, in March 1884, the water flowing past the town was 100 yds in width and 2 ft. deep (Precce, Proc. Royal Geog. Soc., January IB85). In ordinary seasons very little water of the river runs into its original bed, being diverted into canala, 8 cc . The creek, the Ansmis of Nearchus, is mavigable nearly all through the year as far as Shahbander, the custom-house, about 7 m . inland, for vesels of 20 tons burden.
"The great detort region of Persia," write Le Strange (Lamds of the Bastern Calliphate, 1905). "stretches right meross the high osorth plateau of lran going from north-west to wouth east, foupe; for the desert is continuous from the wouthern base of the Elburz mountains, that to the north overlook the Caspian to the trid ranges of Makrant which border the Persian Gulf. Thus it measures nearly 800 m . in length, but the breadth varies considerably: for in shape this immense aren of drought is somewhet that of an hour-glass with a narrow neck, measuring only mome 100 m . acrose, dividing Kerman from Seistan, while both north and south of this the breadth expands and in places reaches to over 200 m . At the present day the desert, as a whole, is known as the Lat or Dasht-i-Lat; the aline owamps and the dry salt area heing more pprticularly known as the Dasht-i-Kavir, the term Kavir being also occasionally applied to the desert as a whole."

A three-wire telegraph line on iron posts, completed in March 1907. passes through this region, and it is the unenviable lot of come Englistmen stationed at Bam and Nuaretabad Iapi (Isbidh of medieval Arab geographers) on the confines of the desert regu. larly to inspect and test it. Of the northerly Great Kavir Dr Tietze thought that it was compoeed of a complex of isolated ealt swampe eeparated by and-dunes, low ridges of limestone and pyparm, perhape also by volennic rocks (Jahroweh k. h. peolog. (eichsamslalh Vienna, 1877). Dr Sven Hedis explored the northern part of the Great Desert in 1906.

Gedogy.-Peria consists of a central region covered by Quaternary deposits and bordered on the north. west and south by a raised rim composed of older rocks. These older rocks also form the inolated ranges which rise through the Quaternary depoits of the central aret.

In northern Penia the rocls of the elevated rim ard thrown into folds which form a curve round the southern shore of the Caspian. The mountain ranges of Khorasan show the western portion of a opond curve of folding which ls probably continued into the Hindu Kuh. In the wettern rim of Pertia the folds run from north-west to south-eask, and in the south thea folde mppear to curve gradually ontwand, folfowing the trend of the coent. The foids in the central Permian chains run from north-west to mouth-eate, parallel to those of the westera bordor. It it teldom that the add cryulalline rocich which form the foor upon which the aedmentary mata were
deporited, are expoed to view. Gaeist, tranite and crystallite echint, however, are lound in the Elburz and in some of the central ranges; and dimilar rocks form a large part of the Zagros. Some of theme rocke are probably Archean, but some appear to be metamorphoned exdimentary deposita of itter date The oldert bed in which fowils have yet been found belong to the Upper Devonian. They are well developed in the Elburz range, where they attain a thickness of tome 9000 to 10,000 ft.. and they have been found also in some of the central raneges and in the Bithtiad Momntnime In the Elburz range the Devonian in succeeded by a cerien of limetones with Productys, The greater part of the meries belongs to the Carboniferous, but the upper beds are probably of Permian age. The limestone are lollowed by sandstoncs and shales with cceanionsl enams of conl. The plants which have been lound is these beds indirate a Rhaetic or Liasgic age The Middla and Upper Jurasic form a considerable portion of the Elbura and have yieded marine lossils belonging to several different borizoms. The Cretaccous system is very Widely epread in Perian It in ope of the most conspicuous formitions in the Zatroe and in the central ranges, and probably forms a large part of the plateau, beneath. the Quaternary deposits. The mont prominent member of the series is a massive limestone containing Hipparrites and belongins to the upper division of the system. The Tertiary deponts inciode nummulitic limestone (Eocenc); a series of limeatones, Eandatones and conglomerates, with marine Miocene fomils; and red marts, clays and andstonce with rock-alt and gypeum, believed to belons to the Upper Miocene. In the Elhurz there is a considerable deposit of palagonite tuf which appears to be of Ofigocene ape. The nummulitic ifmestone talkes part in the formation of the mountain chains. The Miocene deposits senerally lie at the foot of the chains, or in the valleys; but occasionally they are found at higher levela. Pliocene deponits cover a considerable ares near the coant. Both in the Elburz range and near the Baluchistan frontier there are numerous recent volcanoes. Some of these seem to he extinct, but ecveral continut to emic vapours and ganes. Demavend in the Elburz and Kuh-I-Taftan on the Baluchistan frontier are among the best-known.
(P. La.)

See W. K. Loftus, "On the Geology of Portions of the Turko Persian Frontier, and of the Districts adjoining," Quart. Jomen. Geal. Soc, vol. xi. pp. 247-344, pl. ix. (London, 1855); W.T. Blanfond Easterr Persia, vol. ii. (Zoology and Ceology) (Londom, 1876); C. L. Griesbach, Field-motes: No. 5, to accompany a Geological Sketes Map of Alghanistan and North-Eastern Khoresan, Ree Geol. Surv. India, xx 93-103 (1887), with map; A. F. Stahl.' Zur Geolowit yon Persien," Peterm. Mill., Erganzungsheft 122 (r8g7): J. de Morgan, Mission scientifique en Perse, vol. iti. (completed rgos, Paris), A summary by H. Douville of the principal geological reathe of de Morgan's expedition will be found in Bede. sec. del. Prenes, 4th series, vol. iv. pp. 539-553.

Climate. - For the rainfall on the watershed of the Persian Culf there are two places of observation, Bushire and Jask; at the firs it is a little in excests of that of inncr Perain, while at the second is is very much less. The rainfall on the Caspian waterthed greaty exceeds that of inner Persia iat Astarabad and Ashurada, in the south-eastern corner of the Caspian, it is about 50% more: and at Resht and Lenkoran, in the south-western corner, it is four and five times that of the adjoining districts acrows the ridgets to the south. With the exception of the Caspian watershed and that of the Urmia basin, the country has probably in no part a yearly rainfall exceeding t3 or 14 in., and throughout the greater part of central and south-eastern Pcrsia the yearly rainfall probably doe not exceed 6 in. The following mean values of the rajalall at Teherln have been derived from obeervations taken by the writer during 1892-1907:-

Mean.	Jan.	Feb.	Mar.	April.	May.	June.	Total for Year. 9.86 in.
	in.	in.	in.	$\operatorname{in}_{1 * 41}$	in. $\text { . } 50$	in. -06	
	'July.	Aug.	Sept.	Oct.	Nov.	Dee.	
	in.	in.	$\mathrm{in}_{.06}$	$\begin{aligned} & \text { in. } \\ & -32 \end{aligned}$	$\text { int. }_{\text {I.35 }}$	$\begin{aligned} & \text { in. } \\ & 1.26 \end{aligned}$	

Good harvests depend on the rainfalt from October to Aprith and on an amount of anow sufficient to cover the crops during Irosts During normal winters in Teherän and turrounding dis tricts the rainfall amounts to 9 or 10 in. with 3 to 4 of enow, Dat in the winter $1898-1899$ it was only 51 in., with only 1 in. of mov: and in 1899-igoo the harvests were in consequence exceptionaliy bad, and large quantitias of wheat and Gour had to be brought from the provinces and even from Russia at high freights, catusias the price of bread at Teheran to rise 200% The first cable on p. sgt shows the mean anout rainfall is incher at fitem etation fand near Persia
The prevailing wiads throughout Peris and the Perifan Gul are the north-wett and corth-eato owint partly to the porifion of the Elack Set and Mediteveman and of thenabian Sea, and gerty
to the bearing of the axes of the great mountain chains. A dry and warm wind comes down from the snowy Elturz to Gilan in December and January, and much resembles the fohn of the Alps (Dr Tholozan, "Sur les vents du Nord de la Perse et sur le foehn du Guilan." Comples rendus, Acad. d. Sciences, March 1882).

Frequently when the temperature in the shade at Bushire is not more than 85° or 90°, and the great humidity of the air causes much bodily discomfort, life is almost pleasant 12 or 20 m . inland with a temperature of over 100°.
Fauna.-Mr W. T. Blanford has described with great care and

Station.	Lat. N.	Long. E.	Altitude.		Ycar.	Autbority
Lenkoran	$38^{\circ} 46^{\prime}$	$48^{\circ} 51^{\prime}$	Feet. -60	Years. $28 \frac{1}{2}$	46.82	pan. ${ }^{1}$
Resht	$37^{\circ} 17^{\prime}$	$49^{\circ} 35^{\prime}$	-50	2	46.45	British Consul.*
Ashurada	$36^{\circ} 54^{\prime}$	$53^{\circ} 55^{\prime}$	-80	19	17.17	Supan. ${ }^{\text {a }}$
Astarabad	$36^{\circ} 51^{\prime}$	$54^{\circ} 25^{\prime}$	-40	7	16.28	Symons. ${ }^{\text {a }}$
Meshed	$36^{\circ} 17^{\prime}$	$59^{\circ} 36^{\prime}$	3180	9	$9 \cdot 33$	British Consul.
Quetta	$30^{\circ} 11^{\prime}$	$67^{\circ} 3^{\prime}$	5500	19	10.09	Supan. ${ }^{2}$
Ralat.	$28^{\circ} 53^{\circ}$	$66^{\circ} 28^{\prime}$	6500	15	8.98	
Maskat	$23^{\circ} \mathrm{29} 9^{\prime}$	$58^{\circ} 33^{\prime}$		3	6.13	
Jask.	$25^{\circ} 39^{\prime}$	$57^{\circ}{ }^{4} 6^{\prime}$	-	10	$3 \cdot 24$	English Telegraph. ${ }^{\text {b }}$
Bushire	28° 59 ${ }^{\prime}$	$50^{\circ} 49^{\prime}$		19	13.36	Supan. ${ }^{2}$ Tel
Isfahan	$32^{\circ} 37^{\prime}$,	$51^{\circ} 40^{\prime}$	5370	7	$5 \cdot 4$	English Telegraph.*
Teheran	$35^{\circ}{ }^{\circ} 41^{\prime}$	$51^{\circ}{ }^{\circ} 25^{\prime}$	3810	15	9.86	The writer.
Urmia (Sair	37 ${ }^{\circ}{ }^{\circ} 28^{\prime}$	$45^{\circ} 8^{\circ}$ $44^{\circ} 26^{\prime}$	6325	1	21.51 10.59	Symons
Merv .	$37^{\circ} 35^{\prime}$	$63^{\circ} 50^{\prime}$	700	1	$6 \cdot 36$	Symons. ${ }^{1}$

Observations for temperature have been taken for many years at the stations of the Indo-European Telegraph and for a few yeara at the British consulate in Meshed, and the monthly and annual means shown in the following table have been derived from the indications of maximum and minimum thermometers in degrees Fahrenheit.
(3) a marrow (3) a marrow strin of rooded country eouth-west of the 7agro range, from the Diyala River in Turkey in Asia to Shiras; (4) the Persian side of the Shatt-el-Arab, and Aralictan, east of the Tigris; and (5) the shores of the Persian Gulf and Baluchistan. The fauna of the Persian plateau he described as "Palaearctic, with a great prevalence of desert forms: or, perthape more correctly,

Station.	Jan.	Feb.	Mar.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.			
Meshed	32	34	49	59	68	76	7^{8}	7°	67	55	48	40	56.3	91	15	76
Tehersin	38	38	48	51	71	81	84	81	73	64	53	43	60.4	111	- 3	108
Tabrix * .	17	25	39	54	63	74	79	81	73	60	48	34	54-1	99	-18	117
Kashan' . . -	35	36	43	60	74	83	90	85	77	68	53	42	$62 \cdot 2$ 58.0	113	- 9	104
Isfahan : :	41	41	47	$\overline{56}$	68	- 75	-79	$\overline{75}$	71	$\overline{59}$	55	$\overline{46}$	$58 \cdot 0$ 59.5	106 96	-3	109 80
Dehbid : :	27	30	38	45	57	65	69	65	61	5	43	36	490	9	-19	110
Shiraz ${ }^{\text {a }}$ - -	48	47	55	63	73	80	85	81	76	67	55	49	65.0	113	21	92
Kazerun ${ }^{\text {a }}$	51	50	52	67	84	93	95	94	87	79	70	56	$73 \cdot 2$	510	36	74
Borazjuan ${ }^{\text {P }}$	55	57	66	80	94	97	100	99	98	83	72	64	$80 \cdot 0$	117	48	69
Bushire . .	58	60	65	74	82	86	90	90	87	80	71	62	75-4	109	41	68

Very few hygrometrical observations have been taken, and only those of the British renidency at Bushire are more or less trustworthy, and have been regulariy registered for a aumber of years. In inner Persis the air is exceptionally dry, and in many districts polished steel may be expoeed in the open during a great part of the year without becoming tarnished. Along the shores of the Caspian, particularly in Cilan and Mazandaran, and of the Persian Gulf from the mouth of the Shatt el Arab down to Bander Abbasi, the air during a great part of the year contains much moisture-diry- and wet-bulb thermometers at times indicating the eame temperature-and at niphts there are heavy falls of dew. In Gilan and Mazandaran the air contains much moisture up to considerable elevations and as far as 30 to 40 m . away from the sea; bur aloog the Persian Galf, where vegetation is very scanty, stations ouly a lew miles away from the coast and not more than 20 or 30 ft. above the sea-kevel have a comparatively dry climate.
${ }^{2}$ Dr A Supan, "' Die Vertheilung des Niederschlag's auf der ferten Erdoberfliche," Ped. Mill., Suppl. 124 (1898).
${ }^{2}$ Consular report (Gilan, 1897).
'Symons's Monhly Meleorological Mog. (Dec. 1893).

- 3899-1907.
- Observation taken at the telegraph stations, and kindly conmeniceted by Mr R. C. Barker, C.I.E., director of the IndoEuropean Telegraph Department in Porsia. Thow for Isfahan are durim the years $1900-1907$.
$138^{\circ} 5^{9}$ N.: $46^{\circ}{ }^{18} 8^{\prime}$ E.; altitude 4423 ft .

an being of the desert type with Palagarctic species in the more fertile regions." In the Caspian provinces he found the fauns on the whole, Palsearctic also, " most of the animals being identical with those of south-eastern Europe." But some were easentially indigenous, and he observed "a singular character given to the fauna by the presence of certain Eastern forms, unknown in other parts of Persia, wuch as the tiger, a remarkable deer of the IndoMalayan group, allied to Cervus axis, and a pit viper (Halys)." Including the oak-forests of Shiraz with the wooded slopes of the Zagros, he found in his third division that, however little known was the tract, it appeared to contain, like the second, "a Palaearctic fauna with a few peculiar species.". As to Persian Mesopotamia, he considered its fauna to belong to the same Palnearctic region as Syria, but could scarcely speak with confidence on its characteristic forms. The fifth and last division, Baluchistan and the shores of the Persian Gulf, presented, however, in the animals common to the Persian highland "for the most part desert types, whilst the characteristic Palaearctic species almost entirely disappear, their place being taken by Indian or Indo-African forms." The Persian Gnlf Arab, though not equal to the pure Arabian, is a very eerviceable samal, and has always a value in the Indian market. Amone others the wandering Turkish tribes in Fars have the credit a poasessing good steeds. The Turkoman honee of Khorasan and the Atak is a large, bony and clumsy-looking quadruped, with marvellous power and endurance. Colonel C. E. Stewart stated that the Khorasan camel is celebrated for its size and strength, that it howe very long har, and bears cold and exposure far better than the ordinary Arabian or Persian camel, and that, while the ordinary: Persian camel only carries a load of some 320 tb and an Indiait camel one of some 400 B , the Khoraman camel will earry froma 600 to 700 th. The best animals, he aotes, are a croas between the Bactrian or two-humped and the Arabian or one-humped camel. Streep, goets, dogs and cats are good of their kind; but not all the late the beautiful creatures which, bearing the mener of the
conntry, have asrived at such dietinction in Europe. Nor are these to be obttined, as supposed, at Angora in Asia Minor. Vaa or lefahan is a more likely habiint. The cat at the first placs, called by the Turks "Van kedisi," has a centain local reputation Among the wild animals are the lion, tiger, leopard, lynx, brown bear, hyena, hog, badger, porcupine, pole-cat, weasel, marten. wolf, jachal, fox, hare, wild ass, wild sheep, wild cat, mountaingoat. gacelle and deer. The tiger is peculiar to the Caspian provinces Lovett says they are plentiful in Astrabid; he measured two specimens, one so ft. 8 in , the other 8 ft .10 in . from the tip of thee nose to the end of the tail. Lynues and bears were to be found in the same vicinity, and the wild pig was both numerous and destructive.

According to Blanford there are about four hundred imown epecies of hirds in Persim. The game birds have admirable repreeentatives in the pheasant, "Joarkavui " (Phasianas colchicus, L.); enowcock or royal partridge "kebloi-dari" (Tetraogallus Caspias, Gmel.); hlack partridse, "durraj" (Francolinus vilgaris, Steph.); red-legzed partridge, "kebk" (Coccobis chukar Gray); sandpartringe or seesee, "tihu" (Ammaperdix bonhomi, Cray); Indian grey partridge, "jirufti" (Oriygorms ponticerdorms, Ginel.) ; quail, belderjin (Colsonix communis, Bonn.); sand qrouse, "syahictrox, I and O. M(cQuenii, Gray); woodcock, snipe, pigeoa, many kinds of goose, duck, \&c. The flamingo comes up lrom the south as fin notth as the neighbourhood of Teherin; the atork bbounds. Poultry in good and plentifut. A large kind of fowl known as "Lari" (from the province Lar; in sonthern Persia) is said to be a descendant of fowls brought to Persia by the Portugucse in the I6th century.
The fish principally caught along, the southern shore of the Caspian are the sturgeon, "咀gmahi", dogfish (Acipenser ruchenss and A. husp); sheat-ish or sifure, "simm," "gumm " (Silurus (lands); salmon, " azad mahi" (Salmo salar); trout " maseh" (Salme trullal; carp, " kupur" (Cyprimes ballorus and C. carpio); pream, " eubulu " (Abramis broma) ; pike-perch, " mahi safod" (Perces ducioperca or Luciopersa sardra) There is also a herring which frequents only the southern half of the Caspian, not passing over the shallow part of the sea which extends from Baku eastwards, As it was first observed near the mouth of the river Kur it has been mamed Clupea Kurcnsis. Fish are scarce in inner Pertia; salmon trout and mud-trout are plentiful in some of the mountain streams, Hany underground canals are frequented by carp and roach. The gilure has also been observed in some streams which flow into the Urinia lake, and in Kurdistan.
Fhora.-I the provinoes of Gilan, Mazandaran and Asmrabad on the Caspian, from the shore to an altitude of aboat 3000 it, on the morthern slopes of the great mountain range which separates those provinces from the highlands of Persia, the fora is similar to that of Grisebach's " mediterrancan region." At higher altitudes many forms of a more northem fora appear. As we approach inner Persia the toora rapidly makes place to "steppe vegetation" in the plairts, while the mediterrancan flora predominates In the hills, The steppe vegetation extends. in the south to the outer range of the hills which separate inner Persia from the Persion Gulf and the Indian Ocean. Beyond this outer range and along the shore of the sea the flora is that of the "Sahara region," which extends eastwards to Sind.

Generally speaking, everywhere, excepting in the northern lowlands and in a few favoured opots in the billy districts, the vegetation is scanty. In inner Persia the hills and plams are bare of trees, and steppe and desert predominate. The date-palm thrives Well as far north as Tabbas in latltude $33^{\circ} 36^{\prime}$ and at an altitude of 2000 ft. and in the south extensive date-groves, producing excellent insit, exist at altitudes of 2000 to 5000 It. The olive is cultivated at Rudbar south of Resht in Gilan, and a few isolated olive-trees have been observed in central and soathern Persia.

Of fruits the varicty is great, and nearly all the fruits of Europe are well represented. The common, yet excellent melons, watermelons, grapes, apricots, cherries, plans, apples, are within the reach of the poorest. Less common and picked Irtits are expensive, particularly 80 when cost of transport has to be considered; for mstance, a good orange costs 2d. or 3 d . In Tchertin, while in Mazandaran (only 100 m . distant), whence the oranges are brought, it coets fd. Some fruits are fnmous and vie in excellence with any that European orchards produce; such are the peaches of Tabriz and Meshed, the sugar melons of Kashan and Isfahiss, the apples of Demavend, pears of Natanz, figs of Kermanichah, dec. The otrawberry was brought to Persia about 1859, and is much cuftivated in the gardents of Teheran and neighbourhood; the raspherry was introduced at about the same time, but is not moch appreciated. Currantu and gooseberries are now also grown. The common vegetables also are plentiful and cheap, but only a few, zuch as the broad-bean, egg-plant (Solarsum melongean), onion, carrot, bertroot, black turnip, are appreciated by the natives, who generbHy do not take kindly to newly-introducod varicties. The potato, althongh rucceafully cultivated in Persia since about s 780 , has not yet foond favour, and the same may be said of the tomato, asparagus, celery and othere: Flowers are abondant, but it is only minoe

gardener were extployed in Peria, the they were ritionaly cultivated. Nearly fll the European garden flower, even the rater ones, can now be seen not only in the parks and gavderats of the rich and well-to-do but in many uapretentions courtyards with only a few square yards of surface.
Population.-In r88ı the present writer estimated the populan tion of Persia at $7,653,600 ; 1,963,800$ urban, 3,780,000 rural and 1,909, 800 wandering ("Bevvikerung der Erde," p. 28; Ency. Brif. 9th ed. p. 628); and, allowing for an increase of about 1% per annum the population for 1910 may be estimated at 10 millions No statistics whatever being kept, nothing precise is known of the movement of the population. During the ninth decade of the 19th century many Persian subjects emigrated, and many Persian villages were deserted and fell to ruins; since then n amall immigration has set in and new villages have been founded. Persians say that the females exceed the males by 10 to 20%, hut wherever the present writer has been able to obtain trustworthy information he found the excess to be less than 2%. Of the deaths in any place the only check obtainable is from the public body-washers, but many corpses are buried without the aid of the public body-washers; and the population of the place not being accurately known, the number of deaths, however correct, is useless for statistical purposes. Medical men have stnted that the number of deaths, in Limes when there are no epidemics, amounts to 19 or 20 per thousand, and the number of births to 25 to 40 per thousand.
The prices of the staple articles of food and all necessaries of life have tisen considerably since 1880 and, particularty in the large cities, are now very high. As salaries and wages have not increased at the same rate, many of the upper classes and officials are not so well off as formerly. By dismissing their servants in order to reduce expenditure, they have thrown great numbers of men out of employment, white mahy bbouters and workmen are living very poorly and often suffer want. Tradeamen are kess affected, because they cas sell the articles which they manufacture at values which are more in proportion with the increased prices of lood. In 1880 a labourer carning 25 krans, or $f 1$ sterling a month, could afford to keep \& Camily; by 1908, in krans, he earned double what he did in 1880, but his wage, expressed in sterling, was the same, and wherever the prices of food have risen more than his wages he could not afford to leeep a family. In many districts and cities the number of hirths is therefore reduced, while at the same time the mortality, in consequence of bad and often insufficient food, is considerably increased.

The description of the Persiah chardeter by C. J. Wills, in his In the Land of the Lion and Sun (1883), is still worth quoting:-
"The character of the Persian is that of an easy-going man with a wish to make thangs pleasant generally. He is hoapitable. obliging, and specially well disposed to the foreigner. -His home virtues are many: he is very kind and indulgent to his childien and, as a son, his respect for both parents is excessive, developed in a greater desree to his father, in whose presente be will sarely sit, and whom he is in the habit of addreasing and speaking of an 'master.' The full stream of his love and reverence is rtstrved for his mother; he never leaves her to starve, and her wishes are lava to him. The mosher is always the most important member of the houschold, and the grandmother is treated with veneration. The presence of the mother-in-law is coveted by their sons-in-law, who look on them as the guardians of the virtue of their wives. The paternal uncle is a much nearer tie than with us; while men look on their first cousins on the father's side as .their most natural wives.
"Black slaves and men-nurses or " lallahs" are much respected; the 'dayah' or wet nurse is looked on as a second mother, and usually provided for for life. Persans are very kind to their seryants; a master will often be addressed by his servant as his father, and the servant will protect his master's property as he would his own. A servant is invariably spoken to as bacha (child). The servants expect that their master will never allow them to be wronged. The slaves in Persia have a good time; well fed, well clothed, treated as spoiled children, given the lightest work, and often given in marriage to a favourite son or tathea as 'gegah' or concubine by the master himself, laves have the certainty of a welb-cared-for old age. They ane looked op as confidential servants, are entrusted with large aums of money, and the conduct of the most important affairs; and seldom abuae their trust. The greatest punishment to an untrustworthy slave is to give him his liberty and let him earn his living. They vary in culour and value: the "Habashi ' or Abysainian is the most valued: the Subali or Somali, next in blackness, is next in price; the Bonnbassi, or cual-black negro of the interior, being of smuch lees price. and usually only used as a cook. The prices of slaves in Shiraz

wame age, half at moch p whlle a Bombund in wo be got for far, being chocen merely for physical strength. They are never mold, eave on importation, though at timea they are given away. . . . I have never scen a Persian unkind to his own horse or his sheve, and when overtaken by poverty he will Grst sell his shirt, then his slave.

In commercial morality, a Pectian menchant will eomparo mot unfavourably with the European esencrally. . . To the poor, Persians are unoatentatiously generuus; most of the rich have regular pensioners, old servants, or poor relations who live on their bounty; and though there are no workhouses, there are in ondinary times no deaths from stervation; and charity, though sut ogganized, is general. : "Procrastination is the attribute of all Persians, 'to-morrow; being ever the answer to any proposition, and the 'to-morrow' means indefinite delay. A great diatike is shown gencrally to a written contract binding the partiea to a fixed date; and, as a rule, on breaking st the Perian alwayn apprals for and expects delay and indefinite days of grace.

Perians are clean is their persons, washing themselves and their garments frequentiy. The Persian always makes the best of his appearance: he is very neat in his drese, and is particular as to the sit of his hat and the cut of his coat. All Perrians are fond of animats, and do mot treat them badiy when their own property.
"Cruelty is nos a Persian vice; torture and punishments of an unusual and painful nature being part of their judicial system. There are novindictive punishmente, surch as a molitary confinement. penal servitude for long tersas of yeara, Ac. Seldom, indeed, is a man imprisoned more than twelve months, the rule being that there is a general jail delivery at the New Year. Royal clemency is frequently shown, often, perhaps, with want of judgment."

Coslume.-The contume of the Persians may be shortly described as fitted to their active habith. The men invariably wear an unstarehed ahirt of cotton, sumn vith white silk, oftea, particulary in the south of Persia, elaborately embroidened about the necte It fastens in front by a flap, having two small buttons or knote as the ieft shoulder, and seldom comes below the hips. It has no collar, and the sleeves are loose. The lower orders often have it dyed blue; but the mervant and upper clasmes always prefer a white whirt Siik shirts are now ecldom seen on men. Among the very religious during the mourning month ("Muharram ") the shirt is at times dyed black. The "pir.jamah," or trousers, are of cloth among the higher elvisees, particularly thow of the military order, who affect a garment of a tightneso approaching that worn by
 cotton, very loome, and are exactly similar to the pyjamas worn by Europeana in India. They are heid up by a thin cord of red or green silk or cotton round che waist, and the labouring clutwel, when engaged in heavy or dirty work, or whem ruaning, geverally tuck the end of these garmenty under the cord, thich leaves their legs bare and free to the middle of the thigh. The amplitude of chis part of his attire enables the Pertian to seit without discomfort on his heela; chairs are only used by the rich, great or Europeanized. Over the shirt and "gir-jamah "comen the " Atchalik, generilly of quilted chints or print, a closely-fitaing garment, collariess, with tight sleevee to the elbow, whence, to the wrist, are i number of litile metal buttons, fastened in wimer, buz aot ta summer. Aloove this is the "kamarchin," a turic of coloured calico cloth, Kashmir or Kermien shawl, silk, tetin or valvet gold emborodered, or otherwise), according to the time of the year and the purse and position of the wearer. This, like the "arknalik" is open in front, and shows the shirt. It wometimes has a small standiag collar, and is double-breasted. It han a packs-bole on either side, giving access to the pockets, which are alway in the "erkhalik," where allo is the breat pocket in which watch, money, jowels, and weals are kept. The length of the "lamarchin" denotes the clage of the warer. The military and officisl clasess and the various servants wear it short, to the knee, whike lops and sharpers wear it even zhorter. Priests; merchanis, villagers, especially about Shiraz, townmen, shoplevepers, doctors and lawyers wear It very long often nearly to the hecis. Over the "Manamethin " is worn the " kulijah," or coat. This is, as a rule, cast of in aummer, eave on formal occasions, and is often borme by a servant, or carried over the shoulder by the owrer. It is of cloth, ahawi or camel-hair cloth, and is lined with silk or cloth, flannel or fur. It hat like the Turkish trockcoat, a very loose deeve, with many plaits behind. lt has lapelm, as with us, and is trimmed with yold loon, hawl or lur, or is worn quite plain. It has a roll coilar and falee pockets.

Besides these garments there are others: the long "jubba," or cloth cloak, worn by "mirzas" (secretaries). sovernment employbe of high rank, as ministers, farmers of taxes, courtiern, physicians, priests; the "abba," or camel-hair cloak of the Arab, wom by traveilern, priests and horsermen: the "pustin," or A Shan skinclonk, uned by travellers and the sick or aged; the "nimtan,"' or common sheepskin jacket, with short sleeves, used by shoplocepers and the lower class of servanta, grooms, de. in winter: the "yapanjah," or woollen Kurdish cloak, a kind of tett, having a shagsy cide, of immense thicknesb, worn generally by shepherds, who use it as greatcoat, bed and bedding. There in aloo the felt cone of the

Zir jamah are loose trousere and siso drawrow morm under the

Whager, very inarn and inexpenatve, the coot being from 5 to 15 krans (s cran - rod.). The "tamarbend," or girdle, is aloo charic teristic of clasa. lt is made of muslin, shaw or cotton cloth amone the priesth, merchants, bazas people, the secretary chas and the more aged government employes. In it are carried, by literati and merchants, the pen-case and a roll of paper; its voluminous folda are nued as pockets; by the bamar people and villagets, porten and merchants servants, a emall whesih knife is struct in it; whil by "farrashea" the carpet-spreader clate, a large "khanjar," ot curved dagerer, with a heavy ivory handle, is carried. The headgear is very disinctive. The turban wom by priests is generally white compering of many yards of mualin. When the wearers are "yayid of the Prophet, a green" turben in worn aleo a "kamartend "o of erean mualin, pr shaw or cotton cloth. Merchants generally wear a turbinn of muslin embroidered in colours, or of a yellow partera on atraw-coloured musilin, or of calico, or shani. The distisctive mark of the courtier, milizary, and upper servant ciass to the belt generally of black varnished leather with a brase clapp; princes and courtiers of ten reptace this clasp by a huge round oramment of eut cones. The "kulah, ${ }^{10}$ or hat is of eloth or sheepsicin on a frame of parteboard:- The fashions in mats charge yeuny. The Isfahan merchent and the Armenian at times wear the hat very tall. (The vaist' of the Persian is generally small, and he $\$$ very proud of bis fine agure and broad shooldern.)
The hair is generally shaved at the crown, or the entlre head ta shaved, a "keakul," or long thin lock, being sometimes left, often 2 ft . bong from the middle of the crown. This is to enable the prophet Mathomet to draw up the believer into paradise. The lower ordets generally, have the halir over the temporal bone long. and brought ?n ewo lorg tocks turning backwards behind the ear termed "gulf": the beaur and youths are constantly ewising and combing these. The rest of the head is chaven. Long halr however, is going out of fashion in Pertia, and the more civilized affect the cropped hair worn by Europeans, and even have a parting In it. The chin is never shaved, save by "beauty men," or "kashange" though often clipped, while the moustache is usuaily lefe long. At forty a man generally lets hia beard grow its full length, and cherishes it much; part of a Perrian'a relippous exercise is the combing of his beard. Socks, knitted principally at lslahan, are worn; they are only about 2 in . long in the leg. The rich, however, wear them longer. They are of white cotton in summer and colourted worsted in winter. Villagers oniy wear wocks on atere occestions. Shoes are of many patterns. The "urusi," of Rusmian shoe is the most common; next, the "kafsh " or olipper of variove kinds. The heel is fodded down and remains wo. The prieste wear a peculiar heavy shoe, with an ivory or wooden lining as the heel. Green shoes of shagreen are common at Isfahan. Blacking is unknown to Persians generally. Boots are only uted by hortemen. and are then wom much too larze for ease. Thove worn by couriers often come up the thigh. With boots are worn "chalwhes," of bagty riding breeches, very loose, and tied by a moting at the ankle: a vort of kilt is worn by couriers. Pockethminderchiefo are seldom used, save by the fich or the Teherlnis. Mose Peruians wear a "shab kula h," or nlght hat, a boow befgy cap of chavi or quilted material, often embroidered by the ledies.
Arms are umaliy carried only by tribespen. The atives of the south of Persia and eervants carry a "kammah," or dirk. The noldiery, on or of duty, always carry one of these or their sidearmes somelimes both. They hack but never thrust with them. On the road the carrying of weapone to necesmery.

The costume of the woonen has undergone comiderable change in the last century. it is now, whem carried so the extreme of fashion, highly indecent and must be very uncomfortabic. The garment doing duty as a chernise is called a." pirahan "; it is, with the lower orders, of white or bloe cafico, and comes down to the otiddle of the thigh, kenving the leg nude. Armans the upper chemen it in requently of silke Xt Shiras it in ofren of fipe cottron, and elaborately ormamented with black embroidery. With the rich it is orten of gauze, and much embroidered with gold thread, pearls. Se. The head is usually covered with a "char-kadd;" or harze square of embroidered siti or conzon, folded so nes to dioplay the cornerte and tatesed under the chin by a brooch. If is ofoen of consider: able value, being of Kachmir shavis embroidered gavec, ac. A "jika." a jevelled feather-like ornament, is often worn at the side of the head, while the front hair, cut to a level when the month, is brought up in lopolocks on either cheel. Berlenth tha "chan kadd "is teperally a cuall kerchiof of dark matariel, ooly the adge of wbich is virible. The ends of the "char-kadd" cover the ghouldery, but the gauze "pirahan" is quite eransparent. Aprofusion of jewellery is worn of the moat wolid deseription, none hollow: shiver to worn ondy by the very poor, coral only by neqreween Nerklaces and bragelets are much affected, and chains with meent-ganketa attached, while the arms are covered with clanking glass banglea called "alangu," some twenty even of theme being on one arm. Jewelled "bazabonds," containing talimmans, are often worn on the upper arna, while acnong the lower onders and south Penias or Arab women note-ringe are not uncommon, and basples or auksets of beada
? Green turbans are now rarely wea; the coloor lis gencrally dart blue, or black.

The face on important occationt is uamely much peinted, save by young ladien in the heyday of beauty. The colour is very freely applied, the cheeks being as much raddled as a clown's, and the neck smeared with white, while the eyelashes are marked round with "kuhl." Tbis is supposed to be benefcial to the eyes, and aimost every woman usea it. The eyebrows are widened and painted till they appear to meet, while sham moles or stars are painted on the chin and cheek; even spangles are stuck at times on the chin and forehead. Tattooing is common among the poor and in villapes, and is eeen among the upper classes. The hair, though generally hidden by the "char-kadd;" is at times exposed and plaited into innumerable little tails of great length, while a coquettish little skull-cap of embroidery, or ahawl. or coloured silk is worn. False hair is common. The Persian ladies' hair is very luxurient and cever cut; it is nearly always dyed red with henne. or with indigo to a blue-black tinge; it is naturally a glose black. Fair hair is not esteemed. Blue eyes are not uncommon, but brown ones are the rule. A full-moon face is much admired, and a dark complexion termed "aamak " (calt) is the highest native idea of beauty. Most Persian women are small, with tiny feet and hands. The agure is always lost after maternity, and no support of any kind is worn.
A very ahort jacket, of gay colour, quite open in front, having tight sleeves with many metal buttons. is usually worn in summer, and a lined outer coat in cold weather. In winter a pair of very short white cotton mocks are used, and tiny slippers with a high heel; in summer in the house ladics go often bareloot. The rest of the cootume is composed of the "tumbun " or "shalvar," short skirts of great width, held by a running atring-the outer one being urually of silk, velvet, or Kashmir shawl often trimmed with gold lace, or, a mong the poor, of loud-patterned chintz or print. Beneath are innumerable other garments of the same shape, varying in texture from silk and satin to print. The whole is very short, among the women of fashion extending only to the thigh. In winter an over-mantle like the "kulijah," or coat of the man, with thort sleeves, lined and trimmed with furs, is worn. Leg-coverings are now being introduced. In ancient days the Persian ladien alwaye wore them, as may be seen by the pictures in the South Kensington Mupeum. Then the two embroidered legs, now so fashionable as Persian emhroideries (" naksh"), occupied a girl from childhood to marriage in making; they are all sewimg in elaborate patterns of great beauty, worked on muslia in silk. The outdoor costume of the Persian women is quite another thing. Eaveloped in a huge blue sheet, with a yard of linen as a veil perforated for two inches mquare with minute holes, the feet thrust into two huge bags of coloured stuff, a wife is perfectly unsecognizable, even by ber husband, when out of doora. The dress of all is the same; and, mue in quality or costliness, the effect is similar.

As for the children, they are alwaye when infants swaddled; when they can walk they are dressed as little men and women, and with the dress they generally ape the manners. It in a strange custom with the Persian ladies to dress little girls as boys, and little boys as girls, till they reach the age of seven or eight years; this is olten done for fua, or on account of come vow-oftener to avert the evil eye.

Towns.-The principal cities of Persia with their populations as estimated in 1908 are: Teher 1 n (280,000); Tahriz (200,000); Isfahan (100,000); Meshed (80,000) ; Kerman, Resht, Shiraz (60,000); Barfurush, Kazvin, Yezd (50,000); Hamadan, Kermânshăh (40,000); Kashan, Khoi, Urmia (35,000); Birjead, Burujird, Bushire, Dizful, Kum, Seneadij (Sinna), Zenjan (25,000 to 30,000); Amol, Ardebil, Ardistan, Astarabad, Abekuh, Bam, Bander, Abhaai, Bander Lingah, Damghan, Dilman, Istahbanat. Jahrum, Khunsar, Kumishah, Kuchan, Marand, Maragha, Nishapur, Sari, Sabzevar, Samnan, Sbahrud, Shushter (10,000 to 20,000).

Political and Administrative Divisions.-The empire of Persia, officially known as Mamalik i Mahrusek i Iran, "the protected kIngdoms of Persia," is divided Into a number of provinces, which, when large, and containing important sub-provinces and districts, are called mamlikat, "kingdom," when smaller, vilayal and ayalat, and are ruled by governors-general and governors appointed by and directly responsible to the Crown. These provinces are further divided into sub-provinces, vilaya/s, districts, sub-districts and parishes, buluk, nahiyek, mahal, and towns, cities, parishes and villages, shehr, hassabeh, wahalleh, dih, which are ruled by lieutenant-governors and other functionaries appointed by and responsible to the governors. All governors are called hakim, or hukmran, but those of large provinces generally have the title of soli, and sometimes firmarfrme. A governor of a small district is a zabit; a deputysovernor is called maib el kukumek, or naib al ayaleh; an administrative division is a kalamro, or hukmmal. Until recently the
principal governonthips wert conferted upon the shah's anas brothers, uncles and other near relatives, but now many of them are beld by men who bave little if any connexion with the royal family. Alwo, the governors are now, as a rule, tesident in their provinces instead of being absentees at the capital. There are abso some small districts or dependencies generally held in fief, turyul, by princes or high functionaries who take the revenues in lieu of selaries, pensions, allowances, \&c., and cither themselves govern or appoint others to do so.

Every town bas a mayor, or cbief magiktrate, called bagderbegi, " lord of lords," kafanfar, "tbe greater," and sometimes daregite, " overseer," or chief of police; every ward or parish, mahalleh, of a town and overy village has a head-man called ked khode, "house-lord." These officert are responsible to the governor for the collection of the taxes and the orderly state of their towns, parishes and villages. In the importanl provinces and sabprovinces the governors are ascisted by a man of experience, to whom the accounts and details of the government are entrusted. This person, called visiar, or paishkar, is oiten nominated by the shah, and bis functions in the provincial government are sirrilap to those of the grand vizir in the central government, and com prise very extended administrative powers, including at tima the command of the military forces in his province. Among the nomads a different system of titles prevails, the chiefs who are responsible for the taxes and the orderly conduct of their tribes and clans being known as ilkhani, ilbegi (both meaning "tribe-lord," but the latter being considered an inferior titk to the former), khan, rais, amir, mir, shaikh, tushmal, \&c.

The governors and chiefs, excepting those possessing bereditary rights, are frequently changed; appointments are for ooe year only and are sometimes renewed, but it does not ofter occur that an official holds the same government for longer than that period, while it happens rarely that a province is goveroed by the same person for two or three ycars. This whe not so formerly, when not infrequently an official, generally a near relation of the shah, beld the same governorship for five, ten or even more years. The governorship of the province of Azerbaijan was an exception until the end of 1906, being always held by the Valiahd, " heir apparent," or crown prince.

The political divisions of Persia, provinces, sub-provinces, dis tricts, \&c., ruled by hakims number over 200 (cf. the atafement ia Noldeke's Geschichte des Arlachstr Papakan.." after Alexander's death there were in Iran 240 looal governors"). but the adminis trative divisions, hukumal, or halamro, with governors appointed by the Crown and responsible to it for the revenues, have beea under fifty for sixty-five years or more. In 1840 there were tweatynine administrative divisions, in 1868 tweny-two, in $\mathbf{2 8 7 5}$ twentynine, in 1884 nineteen, in 1890 forty-six, and in 1908 thirty-five, as follows:-
(a) Provinces:-

1. Arabistan and Bakhtiari.
2. Astarabad and Gurgan.
3. Azerbaijan
4. Fara
5. Gerrus.
6. Gilan and Talish.
7. Hamadan. $\begin{aligned} & \text { Irak, Gulpaigan, Khunsar, } \\ & \text { Kamereh, Kezza, Fera- }\end{aligned}$ Kamereh, Kezzez, Ferakan.
8. Isfahan.
9. Kashan.
10. Kazvin.
11. Kermin and Baluchistan.
12. Kermánahah. .
(b) Dependencies, or Fiffs:-
13. Asadabad.
14. Demavend.
15. Firuzkuh.
16. Josehekan.
17. Kangaver.

Roods.-With the exception of five short roads, having as agerte gate length of less than 900 m ., all the roads of the country are mere mule tracks, carriageable in the plains and during the dry season, but totally unfit lor continuous whecled traffic during ah scasons, and in the billy districts often so difficult as to cause munb damage to aoode and the animals carrying them. There are a few miles of roads in the immediate neighbourhood of Teheritn leading from the city to royal palaces but not of any commercin
mportance The five excoptions ere (t) Reabt-kiswin-IMtran 227 m.: (2) ulfa-Tabriz, 00 m. : (3) Teherln-Kum-Sultanabad, $160 \mathrm{~m} . ;$ (4) Neshed Kuchan-Ancabad, 150 m ; 30 of which are on Russian territory; (5) Isfahan-Ahvar, 280 in. The first of the foads consists of two sections : Resht-Kazvin, 135 m. and KarvinTeherun, 92 m . The frrt section was constructed in $1897-1899$ by a Russian company, in virtue of a concessuon which the Pertisn government granted in 1893 ; and the second acction was constructed in 1878-1879 by the Persian government at a cout of about $\{20,000$, ceded to the concemionnaire of the firat section in I896, and repaired and pertly reconstructed by the•Russina oompany in 1898-1899. Both ections were officially opened to trafic in August 1899. The capital of the company is $3,200,000$ roubles (341,330), of which $1,700,000$ is in thares taken by the public, and $1,500,000$ in debenture taken by the Rustian government, which also guarantees 5% on the shares. About two-thirds of the capital has been expended on construction. The company's income is derived from tolls levied on vehicles and animals using the road. These tolld were at ant very high but were reduced by is $\%$ in lgot, and by another 10\% in 1909: If all the trade between Russia and Tehertn were to past over this road, the tolle would no doubt pay a fair dividend on the capital, but much of it goes by way of the Teherni-Mcshed-i-Sar route, which is much shorter and has no tolls. The accond cond, Julra-Tabriz, 80 m. was constructed by the game Russian compeny in 1903. The third road, Teherin-KumSulta nabad, 160 m... also consists of two soctions: the first, TeheranKum, 92 m., the other, Kum-Sultanahad, 68 m . The first section vas constructed by the Persian government in 1883 at a cost of about f:12,000, purchased by the Imperial Bank of Persia in 1400 for $\{10,000$, and reconstructed at a cost of about $f 45,000$. The eecond section formed part of the "Ahvaz road concession" which was obtained by the Imperial. Bank of Persia in 1800 with the object of connecting Teheran with Ahvaz on the Karun by a direct cart road via Sultanabad. Burujird, Khorremabad (Luristan), Dieful and Shushter. The concession was ceded to Messrs Lynch, of London, "The Persian Road and Transport Company," in 1903. The fourth cart-road, Meshed-Askabad, 120 m . to the Persian frontier, was constructed by the Persian government in 1889-1892 in accordance with art. \mathbf{v}. of the Khorasan Boundary Convention between Rusaia and Persia of December 1881. The Persian section cost $£ 13,000$. The fifth road, Isfahan-Ahvaz, 280 m . is tle old mule track provided with some bridges, and improved by freeing it of bouldere and stones, \&ce., at a total cost of 5500 . The concession for this road was obtained in 1897 by the Bakhtiari chiels and ceded to Messrs Lynch, of London. who advanced the neecsasary Capital at 6% interest and later formed the Persian Road and Transport Company. The road was opened for traffic in the autumn of 1900 . The revenue is derived from tolls levied on animala passing with loads. The tolls collected in 1907 amounted to $\mathrm{d}_{3} 100$.

Raifuays.- Persia possessess only 8 m . of railway and 61 m . of tramway, both worked by a Belgian company. The railway consists of a single line, one-metre gauge, Irom Tehertn to Shah-abdul-Azim, south d Tehertin, and of iwo branch lines which connect the main line with sorne himestone quarries in the hills south-east of the city. The tramway also is a single line of one-metre gauge, and runs through some of the principal streets of Teherin. The length of the maln railway line in 57 m ., that of the branches 2 k . The main line was opened in 8888 , the branches were constructed in 1893, and the tramway started in 1889. The capital now invested in this enterprise, and largely mubacribed for by Russian capitalists, mounts to $/ 320,000$. There are also ordinary shares to the amount of (200,000 put down in the company's annual balance-sheets as of no value. The general opinion is that if Russian eapitalists had not been interested in the enterprise the company would have fiquidated long ago. SOn railways in Persia, the many concessions granted by the Persian government, and only one having a result, ch. xviit. of Lord Curzon's Persia [i. 61,3-639], and on the Belgian enterprise, Lorini's La Parsia econonnice [pp. 157-158] may be consulted.)

Posts.- Down to 8874 the postal system was in the hands of an official called chaporch bashi, who was the head farmer of the post. or chapars, and letters and smaff parcels were conveyed by him and his agents at high and arbitrary rates and without any reapomibility. The establishment of a regular post was one of the rexults of the shah Nasp-ed-din's first visit to Europe (1873). Two officials of the Austrian pootal department having been engaged in 1874, an experiment of a post office upon European lines was made in the following year with a postal defivery in the capital and some of the neighbournag vilages where the European legationa have their mumer quarters. In the beginning of 1876 a regular weekly post was established between Teherín, Tabriz and Julfa (Russo-Persian frontier) and Resht. Other lines, connecting all the principal cities with the capisal, were opened shortly ufterwards, and on the 18t of September 1877 Persia joined the international postal union with the rates of $2 \mathbf{2 d}$. per 102 . for letters, Id. for post-caida, \&d. pct zoz. for newspapers, \&c., between Persia and any union country. The inland rates were a little ken. There are now between Persia and foreign countriey á bl-weekty mervice vin Russia (Resht-Baku, Tabriz-Tials) and a weekly ervice via India (Buehire-Bombay). Os the latiand sinem, with the exception of that between Teberta
and Tabric; the mervide weolly. There are reported to be 140 post oficen Statiatics as to the number of lettero, post-carda, newspaperan Ace. conveyed are kept but not published; and since 1885, when a liberal-minded director communicated thome for the year 1884-i885 to the present writer, no others, although many times promised, have been obtained. In the year 1884-1885 there were conveyed $1,368,835$ letter, 9050 post-carda, 7455 samples, and 173.995 parcels, having a value of 2304.720; and the rectipte exceeded the expenditure by $£ 466$. Since then the craffic has much increased, and the execss of receipte over expenditure in the year 1898-1899 was reported to have been $\{10,000$, but was probably mowe than that, for the minister of posts farmed the department for (12,000 per annum. The farm system was abolished in 1901 and in the following year the poat office was joined to the customs department worked by Bolgian officiale. Under the mpat favourable conditions letters from London via Russia are delivered at Tabris in 9 days, at Teheran in 10, at Lafahan in 14, and at Shirize in 18 days: and vil India, at Buahire in 26 days, at Shiraz in 31, at Isfahan in 36, and at Teheren in 40 days; but during the winter leters between London and Teherañ sometimes take a month. In the interior the mails are conveyed on horseback, and, being packed in badlymade soft leather bags, are frequently damaged through carelem packing and wet. The first Persian postage ttamps were isoued its 1875 and roughly printed in Persia. Since then there have been numerous issues, many practically bogus ones for collectors Authentic specimens of the early ones are much valued by stamp collectors, (For information on the postal system of Persia, gee G. Riederer, $A u s$ Persien, Vienna, 1882 ; Fr. Schueller, Dia persische Posi und die Postwerthseichen pon Persien, Vienna, 1893.)

Telegraphs.-The first line of telegraphs-from Tchertan to Sultanieh, about 160 m . on the road to Tabriz-was constructed in 1859. In the following year it was continued to Tabriz, and in 1863 to julfa on the Russian frontier. With the object of establiching a direct telegraphic communication between Enyland and India, by connecting the European and Indian syatemas by a land line through Persia from Bagdad- then the most eanterty Turkish telegraphic station-to Bushire and by a cable from Bushire eactwards, a telegraphic convention was concluded in the same year between the British and Persian governmenta, and a one-wire line on wooden ponts from the Turkish frontier, near Bagdad, to Bushire via Kerminshah, Hamadan, Teberàn, Iffahaa and Shiraz, was constructed at the cont and undor the supervision of the British government. In 1865 a new convention, providing for a becond wire, was concluded, and for mome years messagea between Europe and India were trassmaitted either vis Constantnople, Bagded, Tehertre, Bushire, or via Rumia. Tiflis, Tabria, Teherin, Gushire. An alternative line between Bagdad and India was created by the construction of a land line to Fao, at the head of the Persian Gulf, and the thying of a cable thence to Bughire. The eervice was very inefficiont, and messages between England and India took severs! daya and sometimes weeks to reach their deaxination. In 1869 Mesers Siomens of Beriin, in virtue of conrictesions obtained in the year before and later disposed of to the Indo-Europenan Telegraph Company, Led.- who alco took over Reuter's cable Irom Lowertoft to Emden (374 knots) conecructed a two-wire line on iron posts through Germany and Ruesia, and in Perio from Julfa to Teherin. This line was opemed on the 3ret of Japonary i87a The Britiah government then handed the Bagdad-Teharlan seetion, which had become unnecesanry for Internacional through traffic between Europe and India, over to the Persian government, and changed its Teherin-Bubhire line into ove of two wires on iron posts. In'r873, according to a convention signed Docember 187a, a third wire was added to the line, and there was then a three-wire line on iron posts (439 m . Indo-European Telegraph Company 675 m . Indian govemment) (rom Juhfa to Bushire. In Auguit 1got a convencion was concluded between the Britich and Persian governments for a three-wive line on Iron pouts lrom Kmahan (a gtation on the Teherln-Bushire line) to Baluchistan via Yeed, Kerman and Bam (8os m.). The conatruction of this "Central Persia line," as it is known officially, wat bequm in December 1902 and completed in March 1907. The rection Kashan-lifahan of the old Teherin-Bushire was then taken up and Isafahan was connected with the Central Persia line by a two-wire lise from Ardistan. 71 m . eouth-cast from Kashan. One of the three wires between. Isfahan and Bushire wha aloo taken up, and there are now a five-wire line from Teherin to Ardistan (2241 m .), a three-wire line from Ardistan to the Baluctistan (frontier (734 m .) and a twowire line from Ardistan to Bushire (497 mm .). These lines, as well as that of the Indo-European Telegraph Company from Julfa to Teheran, are worked throughout by an. Englich staff and may be classed among the finest and most cfficient in the world. The central tine is continued through Baluchistan to Karachi, and from Bushife messages go by cahle (faid in 1864) to Jask, and thence either by cable or by land to Karachi, Bombay, \&c. The telegraphio convention between the British and Persian goverameats has agaln been renewed, and is in force until 1925; and the concessionat to the company were prolonged to the same year by the Ruasian govemment in March 1000. In addition to these lines, Pervia posseswes 4191 m . of gingle-wire lines on wooden poles belonging to the Percian government and worked by a Paraian staft ato

Tcherin－Meshed line（ 555 m ）．howterer，is Loaked after by an English iaspector and two English clerks at Meshed，and aince 1885 the Indian government hes allowed a sum not exceeding a0000 rupees per anpum for its maintenance；and the Meshed－ Seistan line， 523 m ．，is looked after by twelve Rusaian inspectors end clerks，The Persian lines are farmed out for 1，800，000 krans （about $\{36,000$ ）per annum and no statistics are published．There （about in al 131 stations Statistice of the traffic on the Indo－European line are given in the administration reports of the Indo－European telegraph department，published by governmeat，and Irom them the figures in the following table have been obtained：－

Yut．	Trafic cres Line between Londoa and Krachi．	Elarimeg ta Pounds．		Net Proftes of the Govertmera Depl．	
	Nutmber of Memerte tratemitted．	$\begin{aligned} & \text { 曾宫 } \\ & \text { 最管 } \end{aligned}$		Toul amomist． Rupote	
1887－1888	83，031	74	100	198，381	1.75
1892－1893	117.500	84	116	437.668	3.80
1897－1898	146，988	106	145	758，172	6.57
1902－1903	178，250	111	155	589.571	4.50
1905－190\％	211，003	113	157	774.368	$5 \cdot 39$
1906－1907	259.355	108	149	458，559	3－09

Manufoctures，Eic．－The handbook on Persian art publishod by Colonel Murdoch Smith，R．E．，in 1876，with relerence to the col－ lection purchased and sent home by him for the Victoria and Albert Museum，has an instructive acoount of the more common many． lactures of the country．They are classified under the respective beads of＂porcolain and earthenware，＂＂tiles，＂＂arms and armour，＂， ＂teatile fabrica，＂＂needlework and embroidery，＂＂metal－work，＂，＂ ＂wood carving and moeaic－painting，＂＂maauscripts，＂＂enamel，＂ ＂jewelry＂and＂musical instruments．＂Specimens of the greater number are not only to be procured in England，but are almost familiar to the ordinary Londoner．It need acarcely be caid that tiles have rather increased in value than deteriorated in the cyes of the connoisseur，that the ornamentation of matal－work，wood carving and intaying，gem and scal engraving，are exquisite of their kind，and that the carpets manulactured by akilled workmen，when left to themselves and their native patterns，are to a groat extent unrivalled．Of the above－mentioned articles，carpets，shawls， woollen and cotton fabrics and silk stufis are the more important． Carpets may be divided into three categories：（1）Kall，with a pile， and cut like plunh；（2）gilim，scoooth；（3）nimads，felts．Only the two first are exported．The Kali and its smaller sizes，called Xolichet（in Europe，rugs），are chiefly made in Ferahan，Sultanabad （Irak），Khorasan，Kurdistan，Karadagh，Yezd，Kermann，aad among the nomad tribes of southern Perwia．From the two first－mentioned localitied，where a British firm has been established for many years，great quantities，valued in some years at $£ 100,000$ ，find their may to Earopean and Amcrican markets，while rugs to the value of $\mathbf{~} 30,000$ per an num are exported（rum the Persian Gull ports．Of the second kind，silime（used in Europe for curtains，hangings，and chaircovers），considerable quantities are exported from Shushter and Kurdistinn．The value of the carpets exported during the year 1906－1907 was close upon 6900,000 ，Turkey taking，$£ 613,300$ ， Ruasia 1396,700 ，United States 840,600 ，Great Britain 420,700 ， Egypt 188,500 and India 55400 ．Shawls are manufactured in Kerman and Mesbed，and form an articic of export，principally to Turkey．Woollen rabrics are manulactured in many districts，but are not exported in any great quantity．Coarse cotton stuffs， chiefly of the kind called Rerbas，used in their natural colour，or dyed blue with indipo，are manulactured in all districts but not exported；cottome，called Kalamkas，which are made in Manchester and block－printed in colours at Isfahan and Kumishah，find their way to foreign markets，principally Russian．Of silk fabrics manufactured in Persia，principally in Khorasan，Kashan and Yead，about f100，000 worth per annum is exported to Turkey． Russia and India．In the environs of Kashan and in Fars，chiefly at Maimand，much rose－water is made，and a considerable quantity of it is exported by way of Bushire to India and Java．Many attempts have been made to start manulactures，supported by foreign capital and conducted hy foreigners，but nearly all have resulted in toos．In 1879 the Persian government was induced to gopend $\{30,000$ on the erection of a gas factory in Teherän，but work was woon stopped for want of good cocal．A lew years later a Persian bought the factory and plant for fin，000，and unde them over in 1891 to the Compagnie genirale pour 1＇eclairaye et le hauffage en Perse，which after bringing out much additional plant，and masting much capital in trying for some years in vain to make pood and cheap gas out of bad and dear coal，closed the lactory． Iz 1891 another Belgian company．Socifté anonyme dea verreries gationales de Perse，opened a glass factory in Teherãn，but the difficulty of obtaining the raw material cheaply and in large quanti－ ties was too gneat to make it a paying concern，and the lactory
had to be cloned．A third Belojan company，Société amonyme pour is fabrication du aucre en Perse，with a large capital，then came to Persia，and began making beetroot augar in the winter of 1895．But，like the gas and glass companies，it found the cost of the raw material and the incidental expenses too great，and ceased jts operations in 1899．In 1890 a Russian company started a match lactory near Teheran with an initial outlay，it is said，of about f20，000，but could not succeasfully compete with Austrian and Swedish matches and ceased operations very soon．A Persian gentleman erected a cotton－npinaing factory at Teheran in 1894 with expensive machinery；it turned out some cxcellent yara but could not compete in price with imported yarns．

Agricullural Products．－Wheat，barley and rice are grown in all districts，the two lormer up to considerable altitudes（ 8000 ft ．），the last wherever the water supply is abundant，and in inner Persia generally along rivers；and all three are largely exported．The most important rice－growing districts which produce mose than they require for local consumption and supply other districts，or export great quantities，are Astarabad，Mazandaran，Gilan，Veramin， （near Tcheran）．Lenjan（near Isfahan），and some localities in Fars and Azerbaijan．Peas，beans，Ientils，gram，maize，millet，are also universally cultivated，and exported Irom the Persian Gulf ports to India and the Arabian coast．The export of rice amounced to 52,200 tons in 1906－1907，and was valued at 5472,550 ．The Persian fruit is excellent and abundant，and large quantities，princi－ pally dried and called thushkbar（dry fruit），as quinces，peachea， apricots，plums（of several kinds），raisins，figs，almonds，pistachios， walnuts and dates（the last only from the south），as well as oranges （only from the Caspian provinces），are exported．The fruit exported during 1906－1907 had a value of $f 1,019,000$ ．Nothing is being done to improve the vine，and the Persian wines，until recently of world－wide reputation，are yearly getting thinner and poorcr． The phylloxera has done much damage．The naturalist S ． \mathbf{G} ． Gmelin，who explored tho southern shores of the Caspian in 1771_{1} observed that the wines of Gilan were made from the wild grape． Cotton is largely grown，principally in the central districts and Khorasan，and some qualities are excellent and command high prices in the European markets； $\mathbf{3 8 , 4 0 0}$ tons of raw cotton，valued at $\{838,787$ ．Were exported to Rusia in 1906－1907．Good hemp grows wild in Mazandaran．Tobacco of two kinds，one the fumbak u （Nicoliane persics，Lindl．），for water pipes，the other the tufun （Nicotione rustica，L．），for ordinary pipes and cigarettes，is much cultivated．The tumbaku for export is chiefly produced in the central districts round about Isfahan and near Kashan，while the tumbaku of Shiraz，Fessa，and Darab in Fars，considered the best in Persia，is not much appreciated abroad．Tutun is cultivated in Azerbaijan，near Urmia and nther placea near the Turkish frontier． in Kurdistan，and，since $\mathbf{1 8}^{875}$ ，in the district of Resht，in Gilan．About 1885 the quantity of tobacco exported amounted to between 4000 and 5000 tons．In 1906－1907 only 1820 tons，valued at $£ 42,000$ ， were exported．The cultivation of poppy for opium greatly increased after 1880，and it was estimated in 1900 that the annual produce of opium amounted to over 1000 tons，of which about two－fifthe was consumed and emoked ia the country．The principal opium－producing districts are those of Shiraz Isfahan，Yezd， Kerman，Khorasan，Burujird and Kermanshah．While the quantity consumed in the country is now probably the same，the quantity exported is much less： 239 tons，valued at $\{237,270$ in $1906-1907$ ． The value of the silk produced in Persiz in the asixties was （ $1,000,000$ per annum，and decreased in consequence of silk－worm disease to $\{30,000$ ，in 1890 ．The quantity produced has since then steadily increased and its yearly value is estimated at half a million．Cocoons and raw silk valued at $\mathbf{6 1 6 , 1 4 0}$ were exported in 1906－1907．Ot oil－yiclding plants the castor－oil plant，scamme， linseed and olive are cultivated，the last only in a manal district south of and near Reaht．Very little oil is exported．The potato， not yet a staple article of food，tomatoes，celery，cauliflower，arti－ chokes and other vegetables are now much more grown than formerly， chiefly in consequence of the great infux of Europeans，who art the principal consumers．

Among the valuable vegetable producte forming articies of export are various guma and dyes，the most important being gum tragacanth，which oxudes from the astragalus plant in the billy region from Kurdistan in the morth－west to Kermin in the south－eatot．Other gums are gum－ammoniac，asafetida，galbanum， sagapanum，sarcocolla and opoponax．In 1906－1907， 3310 tons of various gurns of a value of（300，000 were exported．of dye－stuff there are produced henna（Lawsonic inermis）principally grown at Khabis near Kerming，vond and madder；a mall quantity of indigo is grown near Divful and Shushter．The export of dyes in 1906－1907 was 985 tons，valued at 432,326 ．

Hormes，mulea and donkeys，farmerly exported in great numbers， are at present not very abundant，and．their prices have risea much since 1880．Some nomad tribes who owned many brood mares，and yearly eold bundreds of horses，now hardly poesess susfi－ cient animals for their own requirements．The scarcity of animals af well as the dearness of fodder，is one of the causes of the dearnets of transport，and freights have risen on the mose frequented roads from 3d．per ton－mile in 1880 to rod．，and even 13d．，per ton－mile．

The prpess of stapie articles of food rowe ateadily frop 1880 and
roched a maximum in $1 g 00$ and Igot, is will be meti from the following table:-

	Avcrage Price, 1880.	Price, April 1900.	Price, Juna 1908.
Wheat, per kharvar. .	$\begin{array}{ll} 5 . & d \\ 22 & 6 \end{array}$	5 102	3.0
Rice ${ }^{\text {a }}$	563	640	640
Bread, ordinary, per manin (64 d$)$.	3.60	$9 \cdot 60$	3.84
Mcat,mutton(per mann)	12.40	29.60	1 5-28
Cheese	16	$2 \quad 4.80$	10
Clarified butter	23	$4 \quad 960$	54.80
Milk	4.50	$9 \cdot 60$	$7 \cdot 68$
E.gast, per 100. .	16	$3 \quad 7 \cdot 20$	$3 \quad 2.40$

Porests and Timber.-Timber from the farests of Mazandaran and Gilan has been a valuable article of export for many years, and since about 1870 large quantities of boxwood have also beea exported thence; In some years the value of the timber and boxwood exported has exceeded 550,000 . This value represented about 200,000 box trees and quite as many others. Much timber is aiso used for charcoal-burning, and occasionally large party of forest are buraed by the people in order to obeain clearings for the cultivation of rice. The desfruction of the forests by timbercutters and charcoal-burners has been allowed to go on unchecked. no plantations have been laid out, and nothing has been done for Iorest conservation. Indiscriminate cutting has occasionally been confined within certain bounds, but such restrictions were generally either of short duration or made for the convenience and profit of local governory. Tbo oak foreata of Kurdistan, Luristan and the Bakhtiari district are also being rapidly thinned. A small step in the right direction was made in 1900 by engaging the services of an official of the Prusslan forest department, but unfortunatcly, beyond sending him to inspect the Mazandaran forest belonging to the Crown, and employing him to lay out a bind plamation in the Jajrud valley, cat of Teherkn, nothing was done. The monopoly for cutting and exporting the timber of the Mazandaran foresks in leased to European Krms, principally for box and oak. Boxwood has become scarce. There are many kinds of good timber-yiclding treee, the best known being alder (Alnus detinost, Witd., A. barinta, A. cordifolia, Ten.), ash (Frasimus excalsior, L.), beech (Fagus sylvatica), elm (Vimus campestris, U. cifusa, $)_{, ~ p e d u n c u l a l a\} . ~}^{\text {. }}$ wych-cim (Ulmus montana) hornbeam (Carpinus betulus, L.). juniper (Jynipervs excelsa, J. communis, J. sabina), maple (Acer inaigue, Bliss, A, camprstre, A. pseuda-platansus, L.), oak (Qurrcus ballala, Q. castancoefolia, Q. sessilhifora. Q. peatwerplata), walnut, nettle tree (Cellis australts, Lo). Siberian clan (Zelkona crenala Spach.), and various kinds of poplar. Pipe-sticks, from the wild cherry tree, are exported to Turkey.

Fisheries.-Fish is a staple food along the shooes of the Pendan Gulf, hut the Crown derives no revenue from fisheries there. The fisheries of the Caspian litioral are leased to a Russian firm (since 1868), and most of the fish goes to Russia (31,120 tons, value (556,125, In $1906-1907$). The fish prineipally caught are sturgeon. giving cavlare, sheat fish or eilure, bimon, carp, hream and perch.

Mimerols and Mining.-Pervis poesesess considerable mineral riches, but the absence of chcap and easy means of transport, and the scarcity of fuel and water which prevails almost everywhere, make asy exploitation on a remunerative gcale impossible, and the ettempta which have been made to work mines with Earopean eapital and ander European superintendence have beeu financially unsuoceterfu. Depowits of rich ores of copper, lead, iron, mangancse. sinc, nickel, cobalt. \&c., abound. A few mines are worked by natives in a primitive. systemless manner, and without any great outlay of eapital. There are turquoise mines near Nishapur (for description of mines, manner of Working, \&ec, eee A. Heutum= Schindler, Ryport on the Twrquoise Mines in Khorasam. F.O. Reports 1884, and " Die Gegend zwischen Sabzwar und Meachhed." Jahrbuch h. k. geol. R. A. Wien, voi. xxxvi.: also E. Ticlze, Verhandl. k. R. geol. R. A.1 1884, p. 93): several copper mines in Khorasan. Semnan, Azerbaijan and Kermban; some of lead, two considerably argentiferous, in Khoresan, Tudaryar (ncar Samnan), Anguran, AGhar (both west of Zenjan), and Kerman; two of iron at Mesula in Gitan and Nur in Mazandaran; two of orpiment in Afshar and near Urmia; one of cobalt at Kamsar (near Kashan): one of alum in Tarom (near Kazvin); and a number of coal in the Lar districe, north-eant of Teheran, and at Hiv and Ahyek, north-west of Teherin. There are also many quarrics of rock-salt, gypsum, lime and some of anarble, alabaster, sopatone, \&c. The annual revenue of the government from the leases, rents and royatties of mines does not amount to more than (is,000, and about f 6000 of this amount fis derived lrom the rumquise mines near Nishapur. As the rents and royalties, excepting thome on the tufquaise mines, amount to about one-fifth of the net proceeds, it may be estimated that the value of the annual output does nor exceed 50,000 , while the Intrin tic vaiue of the ores, particularly those of lend, iron, cobalt and nickel, which have not yet been touched can be extminted at
 Pertia. far away on the fringe of the dewert, and under existing conditions quite valueless. The richert deposits of nickel, cobale and antimony ores are also situatod in localities where thers is fitche water and the nearest useful fucl some hundred milea awayAuriferous alluvial strata have becn dicovered in various lecalitien, but everywhere the ockrcity of water has been a bar to their being exploited with profik. A. rich naphtha-benring zone stretche from the Luristen hills near Kermanshah down to the Persian Guld. Compotent engineges and specialists have declared that boriege in the Bakhtiari hilk, west of Shuchter, would give eacelient rearite, but the difficult billy country and the total aboence of roada, as wefl, as the antipathy of the inhabitants of the district, would make the eransport and estahlishment of the necessary plant a most difficult matter. A Britich syndicate bes been boring at weveral: places in the zone since toos.

Commerce. The principal centres of commerce are Tabriz, Tcherăn, Resht, Meshed and Ycxd; the princlpal ports Bapuder Abbasi, Lingah, Bughire and Muhamrah on the Persian Gulf," and Antara, Enceli. Meshed I Sar and Batrder i Gez on the Casplan.
Until 1899 all the qustoms were larmed out. (ifge-itg9 for (300,000), but in March of that year the larm system was abofished in the two provinces of Aevrbijan and Kermanshah, and, the experiment there proving auccesshul, in all other proviacen in the following year. At the stame time a unitorm duty of 5% at valorem was eatablinhed. In October 1901 a trenty fixing a tarif and reserving " the most tavoured nation " treatment for the countrifte alteady enjoying It was concladed between Persia and Russia. It was ratified in December 1902 and came into force on the 14 th of February 1903. The commercial treaty wieh Great Britalnt concluded in 1857, provided for the "mos? favoured nation "t treatment, but nevertheless a new trenty under which. the duties levied on British imports would be the same as on Rusaina imports was made with Great Britain a few days before the new tanf ceme into force and was ratified in May.

For the value of imports and export previous to 1901 the only statistics available were the figures'given in coasular reports, which were not always correet. In 1897 it was estimated that the value of the imports from and exports to Great Britain, ineluding india amounted to $\mathbf{6} 3.250,000$. About a quarter of this trade passed over the western froncier of Persia, while three-quarters passed through the Persian Gull ports. The value of the trade between Russia and Persia was then about $\mathbf{\$ 3 , 5 0 0 , 0 0 0 \text { . Since } 1 9 0 1 \text { detalled }}$ atatistics have been published by the customs department, and according to them the values of the lmports and exports in thousands of pounds stering for the six ycars 1901-1907 were as follows:-

	Imports.	Exports.	Total.
1901-1902	3429	2738	8,167
1908-1903	4970	598	8,358
1903-1904	7000	4032	11,632
1904-1905	583\%	4138	9,964
1905-1908	6441	488	11,377
1906-1907	7982	6344	14.576

The imports and exports during the year $1906-1907$ (total value [14,526,234) were distributed as follows (valotes in thousands sterling) =-

Rusaia	\%. . 8298	US. Americt . . . 69
Great Britain	. . 3128	Italy. 65
Turkey	- . 1335	Esypt . . $\quad .4 t$
France	. . 700	Netherlands : - 57
- Anstria	- 277	Belgham . . . 24
Afghaniscen	- 203	Switsertad . $: 20$
Germany	- 182	Swerlett : . . . \%
China	- 142	Other countries . : . i.

While the value of the trade between Great Britain and Persia in, 1906-1907 was almost the same as in 1897, that of the trede with. Rusta had increased from 3 it millions to 84 or 137% The average yeariy value of the trade between Great Britain and Persia during the six years was $\{2,982.185$, imports $\{3,435,16$, export \&5 77, I (69) ; betwoen Russia and Pertia 66,475,866 (imports \{ $3,350,072$, exporti $23, \mathrm{i} 25794$, The average values of the trada with ot her countriga were; Framee $\{666,000$, Auctip 6246,000 . Cermany $4124, \mathrm{COO}$ Italy 279,000, United States of America $\mathbf{1 5 2 , 0 0 0 , N e t h e r i a n d s ~ 1 3 9 , 0 0 0 . ~}$
The principal imports into Persie in approximate order of value are cotions, suger, tce, woollens, cotton yarn, petroleum, stuffs of wool and cotton mixed, wool, hardware, fronmongery, matches, iron and steel, dyes, rice, spices and glassware. The pincipal exports are (ruits (dried and fresh), carpets, cotton, Gsh, rice, gumy, woot, opium. ailk cocoons, skins, live strimals, silks, cottons, wheat, barley, drugs and tobaceo.

Shippterg and Navigation, Shipping under the Persian fleg in restrieted ta veserts betonging to the Persian Gulf portw Some of the larger eraft, which are called bagleh, and vary from so' to 300 tons, carry merchatize to and from Bombay, the Malaber
const, Zanzibar, ste: while the amaller veswela, ellled bagarah, and mostly under 20 tons, are employed in the coasting trade and the peari-isheries on the Arabian coast. It is estimated that the four principal porta and the many smaller onea (as Machur, HindianZaidin, Bander, Dilam, Rig, Kongan, Taberi, Kishm, Hormuz. \&cc.) possess at least 100 baglahs and several handred bagaraks, besides a large number of smali boats. The following figures from the cormmercial atatistics published by the Persian Customs Department show the total shipping at the four principal Persian Gulf ports, Bushire. Bander Lingah, Bander Abbasd and Muhamrah during the yeary 1904-1907.

	1904-1905.	1905-1906.	1906-1907.
	Tons		Tons.
Prersian :	671,366	827,539 $\mathbf{2 5 , 0 6 9}$	6,425
Russian	24,121	29,182	40,616
Arabian.	22,487	16,749	7.932
Turkish	3,176	3.877	5,005
French	2,901	570	52,935
Total	760,868	902,986	939.507

The British shipping amounted to 89.2% of the total shipping at the four ports during the years 1904-1907. There was no Cerman shipping in the gulf belore 1906, but in the first year of its appearance (1906 -1907), its tonnage at the gulf ports was almost as much as that of all other nations with the exception of Great Britain.
The shipping of 1906-1907 was distributed among the four ports as fallows -
Bushire . . 354,798 tons. Bander Abbast 245,746 tons. Bander Lingah 155,720 " Muhamrah . . 183,243 ."
Bander Lingah being the port where most of the pearla obtained on the Arabian coast of the gulf are brought to and exported from, has trore native shipping (all mailing vessels) than the other ports.
All the shipping on the Caspian is under the Russian flag ${ }^{1}$ and no ret urns of the arrivals and departures of vessels at the Persian ports were published before 1906. According to the statistice of the customs department the shipping of the Persian ports amounted in $1906-1907$ to 650.727 tons. The shipping at the principal Persian ports on the Caspian in the year 1906-1907 was: Astara 137,935 tons; Enzeli 202,132 tons; Meshed i Sar 90,799 tons; Bander-i-Gez 56,135 tons. Two or three fiat-bottomed sailing vessels navigate the lake of Urmia in north-western Persia, carrying merchandise, principally agriculcural produce, from the western and mouth-western shores to the eastern for the wupply of Tabriz. The navigation is a state monopoly, leised out for $£ 250$ per annum.

Coinage. Weights and Measures.-The monetary unit is the kran, a silver coin, formerly weighing 28 nakhods (88 grains), then reduced to 26 nakhods (77 grains), and mow weighing only 24 nalchods (71 trains) or somewhat lesa, Before the new coinage came iato use (1877) the proportion of pure silver was from 92 to 95% i uubsequently the proportion was for some time 90%; now it is about 891% In consequence of this depreciation of the coinage and the fall in the price of silver, partly aboo in conscquence of exchange tranactions by banke, the value of the kran has cince 1895 rarely been more than $4 \cdot 80 \mathrm{~d}$., or halt what it was in 1874, and fell to less than 4 d . in 1905 . In 1874 the kran was worth a franc: in June 1908 the exchange for a CI $_{1}$ bill on London was 50 krans which gives the value of 1 kran as 4 d . Taking this value of the kran, the values of the varipus nickel and silver coins In circulation work ritt as:-

Five shahis $=$ Silver Kran . 1 -20d. Ten shahis $=1$ kran . 2.40 d . One kran $=20$ shahis - 9 40 pul Two krans \qquad . 4.80 dod

In 1899 from 80 to 83 copper shahis (weighing about it ib) were teing given for one silver kran. This was owing to the depreciation of the copper coinage from 1896 onwards, consequent upon there being an excess of coinage due to the excessive quantities formerly put in circulation from the mint. Accordingly the government in 1900 replaced the copper by a nickel coinage (lace value of nickel coin in circulation end of 1907, 4,000,000 lrans). Accounts are

$$
\text { I. Byarticle v. of the Treaty of Guligtan of } 1813 \text {, confirmed by article }
$$ viii. of the Treaty of Turkmanchai of 1828, it was declared that Russia slone should have the right of maintaining veseels of war gn the Caspian, and that no other Power should fly the milinary fang on that sea; and by a decision of the council of the Russian Empire, publizhed on the 24th of November 1869, the establishment of companien for the navigation of the Caspian, except by Rusian wobjects, and the purchave of shares of guch companies by foreigners wex prohibited. (Stale Pagers, vol. Lxiii. 925.)

kept in dinare, formerly a gold piece, now an imaginary coia fthy of a kran. Ten thousand dinars are equal to one tomas (a word meaning ten thousand), or 10 krans silver, and 50 dinars are one shahi.
Gold coins are: $3^{2}, \frac{3}{2}, 2,2,5$, and 10 toman pieces, but they are not in circulation as current money because of their ever-varying value in silver krans, which depends upon the exchange on London.

The unit of weight is the miskal (71 grains), uubdivided into 24 nakhods (2.96 grains), a nakhod being further subdivided into 4 gandum (-74 grains). Larger wetghts, again, are the sir (16 miskals) and the abbasi, wakkeh, or kervankeh (5 sir). Mont articles are bought and sold by a weight called batman, or man, of which there are several kinds, the principal being:-
 Corn, straw, coal, \&c, are sold by kharvar $=100$ Tabriz mans -649 It .
The unit of measure is the zar or gez, of which, as in the case of the man, there are several variants. 40.95 in. is the most common length for the zar, but in Azerbaijan the length is $44 \cdot 09$ in. Long distances are calculated in farsakhs, a larsakh being equal to 6000 zar. Probatly the zar in this measure $=40 \cdot 95$ in., which makes the farsakh 3.87 m ., but the other length of the zar is sometimes used, when the farsakh becomes 4.17 m . Areas are measured in jeribs of from 1000 to 1066 square zar of $40-95$ in., the surface unit thus being from 1294 to 1379 sq. yda.

Constilution and Gosernment.-Up to the year igo6 the government of Persia was an absolute monarchy, and resembled in its principal fcatures that of the Ottoman Empire, with the exception, however, that the monarch was not the religious head of the community. The powers of the Shah (Shahanshah,' or " king of kings") over his subjects and their property were absolute, but only in so far as they were not opposed to the shar', or "divine law," which consists of the doctrines of the Mahommedan religion, as laid down in the Koran, the oral commentaries and sayings of the Propbet, and the interpretations by his successors and the high priesthood. In 1g05, however, the people began to demand judicial reforms, and in 1906 cried out for representative institutions and a constitution. By a rescript dated the sth of August Murafiar-ud-Din Shah gave his assent to the formation of a national council (Majlis ishora imilli), to be composed of the representatives of the various classes: princes, clergy, members of the Kajar family and tribe-chiefis and nobles, landowners, agriculturists, merchants and tradesmen. By an ordinance of the toth of September the aumber of members wes fixed at 162 (60 for Teherinn, 102 for the provinces) to be raised to 200 if necessary, and elections were held soon after. Electors must be males and Persian subjects of not less than 25 years of age and of good repnte. Landowners must possess land of at least 1000 tomans ($(200$) in value, merchants and tradesmen must have a fixed and well-known place of business or shop with an annuad value of not less than the average values in the localities where they are established. Soldiers and persons convicted of any criminal offence are not entitled to vote. The qualifications for membership are knowledge of the Persian language and ability to read and write it and good repute in the constituency. No person can be elected who is an alien, is under the age of 30 years or over the age of 70 years, is in the employ of the goverament, is in the active service of the army or navy, has been convicted of any criminal offence, or is a bankrupt.

On the 7th of October the national council, or as many members of it as could be got together, was welcomed by the shab and elected a president. This was considered as the inaugura4 tion and formal opening of parliament. An ordinance tigned

- We see this titie in its old Persian form, Khshayalkiya Khshayas thiy, in the cunciform inscriptions; as Bacilass Bagitian on the coins of the Arsacides, and as the Pahlavi Malkan Kalka on the coins and in the inscriptions of the Sassanians. With the Mahoramedan conquent of Persia and the fall of the Sassanians the titlo was abolished; it was in use for a short time during the roth century, having been granted to Shah lamail Samani by the Caliph Motadid A.D. 900; it appeared again on coins of Nadir Shah. 1736-1747, and was asumed by the present dynasty, the Kajars, in 1799 .
by Muzaffar-ud-Din Shah, Mahommed All Mtrsan (his successor) and the grand vixir, on the 3oth of December 1go6, deals with the rescript of the 5th of Ausust, stales the powers and duties of the national council and makes provision for the regulation of its general procedure by the council itself. The members heve immunity from prosecution except with the knowledge of the national council. The publicity of their proceedings except under conditions accepted by the council is secured. Ministers, or their delegates may appear and speak in the national council and are responsible to that body, which also has special control of inancial affairs and internal administration. Its sanction is required for all territorial changes, for the alienation of state property, for the granting of concessions, for the contracting of loans, for the conistruction of roads and railways, for the ratification of treaties, \&c. There was to be a senate of 60 members of whom 30 were to be appointed to represent the shah and 30 to be elocted on behalf of the national council, 15 of each class being from Teherin and 15 from the provinces (the senate, bowever, was not immediately formed).
By a rescript dated February 2, 1907, Mahommed Ali Shah confirmed the ordinance of the 3oth of December, and on the 8th of October 1907 he signed the final revised constitution, and took the outh which it prescribes on the rath of November in the presence of the national council.

In accordance with the constitution the shah must belong to the Shiah faith, and his successor must be his eldest son, or next male in succession, whose mother was a Kajar princess. The shah's civil list amounts to 500,000 tomans ($(100,000$).
The executive government is carried on under a cabinet composed of seven or eight vizirs (ministers), of whom one, besides holding a portfolio, is vizir azam, prime minister. The vizirs are the ministers of the interior, foreign affairs, war, justice, finance, commerce, education, puhlic works.
Until 1906 the shah was assisted in the task of government by the sady asam (grand vizir). a number of vizirs, ministers or heads of departments somewhat on European lines, and a "grand council of state," composed of some ministers and other membert nominated by the shah himself as occasion required. Many of the "ministers" would have been considered in Europe merely as chiefs of departments of a ministry, as, for instance, the minister for Crown buildings, that for Crown domains, the minister of ceremonies, thore for arsenals, army accounts, ace: also an accumulation of several offices without any connexion between their functions, in the hands of a single person, was frequently a characteristic departure from the European model. The minlsters were not responsible to the Crown in a way that ministers of European government are: they rarely took any initiative, and generally referred their afairs to the grand vizir or to the shab for final decision.
There were twenty-seven vizirs (ministers), hut only some of them were consulted on affairs of state. The departments that had a vizir at their head were the following: court, ceremonies, shah's secretarial department, interior, correspondence between court and governors, revenue accounts and budget, finance, treasury, outstanding accounts, foreign affairs, war, army accounts, military worts, arsenals, justice, commerce, mines and industries, agn. colture and Crown domains, Crown buildings, public works, public instruction, telegraphs, posts, mint, religious endowments and pensions, customs, press. In addition to these twenty-seven venim with portfolios, there were some tinulary vizirs at court, Fike Vizir i Huzur i Mumayun (minister of the imperial presence), $V i z i v i$ makhsus (extroordinary minister), \&c, and a number in the provinces assisting the governors in the same way as the grand vizir assists the shah. Most of these ministers were abolithed under the new constitution, and the heads of subsidiary departments are entitled mudir or rais, and are placed under the responsible ministers.

Religion.-About $9,000,000$ of the population are Mahommedans of the Shiah faith, and 800,000 or 900,000 , principally Kurds in north-western Persia, are said to belong to the other great brazch of Islam, the Sunni, which differs from the former in religious doctrine and historical belief, and is the state religion of the Turkish Empire and other Mahommedan countries. Other religions are represented in Persia by about 80,000 to 90,000 Christians (Armenianis, Nestorlans, Greek Orthodox and Roman Catholics, Protestanta), 36,000 Jews, and go00 Zoroestrians.
Society in Persia, being based almost exclusively on religious inw, is much as it was in Biblical times among the Jews, with this
difference, however, that there exists no sacerdotal caste. In Persia any person capable of reading the Koran and interpreting its laws may act as a priest (m ullah), and as soon as such a priest becomes known for his just interpretation of the shar' and his superior knowledge of the traditions and articles of faith, he becomes a mujtahid, literally meaning "one who strives" (to acquire knowledge), and is a chief priest. The mullaks are referred to in questions concerning religious law, bold religious assemblies, preach in mosques, teach in colleges, and are appointed by the government as judges, bead-preachers, \&c. Thus the dignitaries, whose character seems to us specially a religious one, are in reality doctors, or expounders and interpreters of the law, and officiating ministers charged with the ordinary accomplishment of certain ceremonies, which every other Mussulman, "true believer," has an equal right to fulfil. Formerly there were only four or five mujlahids in Persia, dow there are many, sometimes several in one city-Teherfin, for instance, has ten; hut there are only a few whose decisions are accepted as final and without appeal. The highest authority of all is vested in the mujlakid who resides at Kerhela, or Nejel, near Bagdad, and is considered hy many Shi'ites as the vicegerent of the Prophet and representative of the imam. The shah and the government have no voice whatever in the matter of appointing nsullaks or mujtahids, hut frequently appoint skeikhs-ul-islam and cadis, and occasionally chief priests of mosques that receive important subsidies out of government funds. The chief priest of the principal mosque of a city, the masjid $i j a m i^{\prime}$, is called imam juma", and he, or a representative appointed hy him, reads the khulba, "Friday oration," and also preaches. The reader of the khuiba is also called khatib. The leader of the prayers in a mosque is the pishnamaz, and the crier to prayers is the mu'azrin. Many priests are appointed guardians of shrines and tombs of members of the Prophet's family (imams and imamezadehs) and are responsihle for the proper administration of the property and funds with which the establishments are endowed. The guardian of a shrine is called muavoli, or, if the shrine is an important one with much property and many attendants, mulanali-bashi, and is not necessarily an ecclesiastic, for instance, the guardianship of the great shrine of Imam Reza in Meshed is generally given to a high court functionary or minister as a reward for long services to the state. In the precincts of a great shrine a malefactor finds a safe refuge from his pursuers and is lodged and fed, and from the security of his retreat he can arrange the ransom which is to purchase his immunity when he comes out.

Formerly all cases, civil and criminal, were referred to the clergy, and until the ryth century the clergy were subordinate to a kind of chief pontiff, named sadr-us-sodur, who possessed a very extended jurisdiction, nominated the judges, and managed all the religious endowments of the mosques, colleges, shrines, \&c. Shah Safi (1629-1642), in order to diminish the influence of the clergy appointed two such pontiffs, one for the court and nohility the other for the people. Nadir Shah ($1736-1747$) abolished these offices altogether, and seized most of the endowments of the ecclesiastical establishments in order to pay his troops, and, the lands appropriated by him not having been restored, the clergy have never regained the power they once possessed. Many members of the clergy, particularly those of the higher ranks, have very liberal ideas and are in favour of progress and relorms so long as they are not against the shar', or divine law; but, unfortunately, they form the minority.

The Amenions of Pervia, in so far as regards their eccleaiantical state, are divided into the two dioceses of Azerbaijan and Isfahan, and, since the late troubles in Turkey, which caused many to take refuge in Persia, are said to number over 50,000. About three-fifths of this number belong to the diocese of Azerbaljan, with a bishop at Tabrix, and reside in the eities of Tabriz, Khot, Selmas, Urmia and Maragha, and in about thirty villages cloese to the gorth-western frontier; the other two-fifths, under the diocese of Isfahan with a bishop in Juifa, reside in Teherañ, Hamadan. Julfa, Shiraz. Bushire, Resht, Enzeli and other towns, and In some villages in the districts of Chahar Mahal, Feridan, Barbarud, Kamareh, Kazaz, Kharaltan, \&c. Many Penian Armenians are engaged in trade and commence, and mome of
their merchante dispose of much capital, but the bulk live.on the proceeds of agriculture and a re poor.
The Nesiorians in Persia, all living in cities and villages close to the Turkish frontier, numbered about 25.000 to 30,000 but many of them, some say half, together with two or three bishops, recently Went over to the Greek Orthodox (Russian) Church, in consequence of the unsatisfactory protection afforded them by their patriarch, who resides in Mosul. These latter are now cared for by an archimandrite of Russian nationality and some Russian priests.
The Greek Orthodox Catholics are represented by Russians, who reside in nortbern Persia; they have a church at the Russian legation in Teheran, and another at the Russias consulate in Ta hriz.
The Roman Calholics in Persin, Europeans and natives (mostly Armenians), number about three or four thousand, and have churches in Teherfin, Julfa and Azerbaljan, served by members of the French Lazarist Mission. They also have some orphanages, schools and medical dispensaries, under the care of sisters of charity of St Vincent de Paul.
The Prolestants, Europeans and natives (converted Armenions and Nestorians), number about 6500 . The religious missions ministering to their spiritual welfare are: (1) The board of foreign missions of the Presbyterian Church in the United States of America; which has six establishments in Persia: Urmia since 1835, Teherảa since 1872. Tabriz since :873, Hamadan since 1880, Resht since 1902 and Kazvin since 1903. The establishments of Tabriz and Urmia form the Western Persia Mission. those of Teberän, Hamadan, Resht and Kazvin the Eastern Persia Mission. The former mission has 24 churches, 118 schools, 2 hospitals and 4 dispensaries; the latter has 4 churches, II schools, 2 hospitals and 4 dispensarics. (2) The Church Missionary Society, established in Persia since 1869. In June z908 it had 4 placest of worship (Julfa, Yezd, Kermâa, Shiraz), 5 schools (Julfa, Islaban, Yezd, Kerman and Shiraz). There are also hospitals and dispensaries for men and women at Julfa. Isiahan, Yezd and Kermán. The hospitals at Julfa and Isfahan have accommodation for 100 patients each, and are sometimes full to overflowing; the dispensarics are generally overcrowded. The eatablishnment of the Church Missionary Society is under the care of a bishop. who resides at Julfa and is under the bishop of London. (3) The Anglican mission, which was established by Dr Benson, erchbishop of Canterbury, and has its work among the Nestorians in Azerbaijan. (4) The London Socicty for promoting Christianity among the Jews, which was establishod at Teheran in 1876, and at Isfahan and Hamadan in 1889. It has in Teheran a church and a school, at Isfahan a school and at Hamadan a small schoot. (5) The British and Foreign Bible Society has been represented at Isfahan since 1879 .
The Jews in Persia auraber about 36,000 , and are found in nearly all eities of the country, but communities with synagogues and priests exist only in the larger cities like Teheran, lsfahan, Yezd, Shiraz. Hamadan, \&c.
The Zoroastriases, commonly called "gabrs"" numbering about 9000, reside principally in the cities and villages of Yead and Kerman, and only three or four hundred live in Teheran, Kashan, Isfahan and Shiraz, some engaged in trade and commerce, but most of them employed in agricultural work and gardening. Their interests are at tended to by a delcgate who is appointed by the Bombey Parais and resides at Teherän.
The non-Mussulman Persian subjects, particularly those in the provinces, were formerly much persecuted, but since 1873 when Nasru 'd-Din Shah returned to Persia from his first journey to Europe they have been treated more liberally. In cities where many nond Mussulman subjects, reside a special official is appointed to protect them: and the ministry of justice has a special section to look after them and see that tbey are protected against fanaticisrn and injuatice.
Insiruction.-Primary schools, maklab (where Persian and a Hittle Arabic, sufficient for reading the Koran, and sometimes also a little arithmetic, are taught to boys between the ages of seven and twelve), are very numerous. These scbools are privete establishments, and are under no supervision whatever. The payment for tuition varies from fourpence or fivepence to tenpence a month for each child. Colleges, madrasah (where young men are instructed, fed, and frequently also lodged gratuitously), exist in nearly every town. Most of them are attached to mosques, and the teachers are members of the clergy, and receive fixed salaries out of the college funds. The students are instructed in Arabic and Persian literature, religion, interpretation of the Roran, Mussulman law, logic, thetoric, philosophy and other subjects necessary for admittance to the clergy, for doctors of law, esc., whibe modern sciences are neglected. Families who have means and do not desire their children to become members of the clergy, employ private tutors, and several have latterly obtained the services of English and French professors to educate their children, while others send their boye to school in Eagtand, France, Germany and Russia. At
the beginning of Nasru'd-DIn Shah's reign, a public achool on the lines of a French lycte was opened in Teherăn, principally. with the object of educating officers for the army, but also of introducing a knowledge of Western science and languages, and a ministry of public instruction was created at the same time. Mlitary and civilian teachers were obtained from Europe; and the state granted a large sum of moncy for the support of the establishment. The tuition is gratuitous, and the pupils are clothed and parly fed at government expense. Some years later a similar school, but on a much smaller scale, was opened in Tabriz. After a time the annual grant for the support of these two schools was reduced, and during the ycars 1890-1908 amounted to only $£ 5000$. The average number of pupiks was about 250 , and until the beginning of 1899 these two schools were the only establishments under the supervisioa of the minister of public instruction. Soon after his eccession in iSg6 Muzaffar-ud-Din Shah expressed a desire that something more should be done for public instruction, and in the following year a number of Persian notables formed a committee and opened some schools in Teheran and other places in the beginning of 18g8. A year later tbe new schools, until then private establishments, were placed under the minister of public instruction. The new schools at Tehersin have from 1000 to 1400 papils.
A German school with an annual grent of $\{2400$ from Persia and of fio00 from Germany was opened at Teheran in 1907. There is also established a French school under the auspices of the Alliance Francaise. Much has been and is being done lor education by the Armenians and the Protestant and Roman Catholic missions in Persia, and a large percentage of the pupils is composed of Mussulmans. The Alliance Israelite has opened a school in Teherin. In 1907 the American Protestant mission bad 229 schools with 3423 pupils, the English Protestant missions had 5 schools with 425 pupils, the Roman Cathoiic mission (Lazaristes) had 3 schoots with 400 pupils, and the Armenians bad 4 schools and 646 pupils. All these schools are supported by voluntary subscriptions and donations, and instruct both boys and girls.

Army.-Persia had no regular army until 1807, when some regiments of regular infantry (sarbaz) were embodied and drilled by the first French military mission to. Persia under General Gardane. Since then seven other military missions (two British, two French, two Austrian, and one Russian) have come to Persia at the request of tbe Persian government, and many officers and non-commissioned officers, and even civilians, of various nationalities, have been engaged as army instructors. The last serious attempt to reorganize the Persian army was made in 1879, when the second Austrian mission Iormed the "Austrian corps" of seven new battalions of 800 men each. These new battalions were disbanded in 1882. The Russian mission of 1879 has been the most successiul, and the so-called "Cossack brigade" which it formed has always been commanded by Russian officers. The brigade has a strength of about 1800 men and costs $\mathcal{L} 50,000$ per annum. The total annual expenditure Ior the army amounts to about a third of the total revenues of the government.
According to statistics published for 1905 the Persian army has an effective force of about 91,000 men, but the number of mex actually serving with the colours does not exceed 35,000:-

Nary.-The Persian government possesses nine steamers. One is the "Nastu 'd.Din," an old yacht of about 120 tons, presented in the 'seventics by the emperor of Russia, and stationed at Enzeli, the port ol Resht. The others, all employed in the customs service in the Persian Gulf, are the following: The "Persepolis," built 1884, 600 tons, 450 h.p., with three $7 \frac{1}{2}$ cm . and one 81 cm . Krupp. The "Susa," built 1884, 36 tons, with one Krupp. An old Belgian yatht "Sellka," purchased 1903 and renamed "Muzafleri," with two Hotchkiss guns. Five launches brait in the Royal Indian Marine Docks, Bombay, in 1905, at a cost of 60,000 rupees each, of about 80 toses.

Imerich-By the theory of a Mahommedan atate thore should be no other courts of juitice except those established for the ad snimetration of the shar", the "divine or written law." but in Peria there is another judicature, which is called 'my and repreeents the "customary" or "" known and unwritten law." justice, therelore, is administered by the whah and hia reprosentatives according to one law and by the clergy according to another, but the decisions of the former must not be opposed to the fundament al doctrine of Islam. The shah's represcntatives for the adminis tration of justice are the governore and other officats alcendy mentioned. The officials charged with the adminietration of justice according to the shar are judges, called shaikh-ul-itam and hasi (hadni, kadt or cadi of Arabs and Turks), members of the clergy appoiated by the pevernment and receiving a fixed salary, but some cities are without regular appointed judges and the title of CaN is Altaost obsolete: decitions accordiag to the shag are given by at members of the clergy, ranging from ignorant mullahs of little villages and cantons to lcarned mujtahids of the great cities. If the parties to the suit are dissatisfied with the judgment, they may apereal to a prient who teands higher in puhbic estimation, ow one of the partien may induce a highat authority by bribery to quash the judgment of the firgt. Unfortunately, many. members of the clergy are corrupt, but the mujiahids, as a rule are honces and entirely truseworthy. The functions of the representatives of the shar' are now lionited to clvil caisen, while all criminal cases are referred to the 'urf, which, however, alvo talces cognisance of civil disputcs, should the partics desire it.

In criminal cascs the dispensation of fustice is always summary, and, when the offence is small, the whole procedure, including the examisation of witnceser and criminal, te well ts the decision and the punighment, a bastiondo, is a matter of mome rainutea For commercial cascs, not paying a bill in time, bankruptcies, \&en, a kind of jurigdiction is excrcised by the minister of commerce, of a board of merchants, but the decisions of the minister, or those of the boand, are rarely final. In Teherta the board of merchants is presided over by the malin u "ujjor. "Kine of Mierchanats." in the proviacial cities by a person called malik amis, and mais of merchants.

After his mecond journey to Europe in 1878 Nasurd-Din Shah deared to organime a police for the whole of Perta on the European sytem, but only amall body of police, in the capital and its fmmediate neighbourhood, was croated in 1879. Its strengh is 60 mounted policemen and 190 loot, with if superior and 40 enbaltern officers.

There is also a "Tribunal of the Ministry for Forcign Affairs," presided over at Tehersan by an offaial of the foreign office, mod in the provircial cities by the hargwars, "agente", of that department. The functions of this tribunal are to inquire into and judge differenees and suits between Persian subjects and forelgners, and it is alpulated to the treaty of Turkmanchai, which is the basis of all existing treatien betwean Pertia and other conntrice, that "such differences and suits shall only be emmined and judgment given in the presence of the dragoman of the mission or consutate (of the forcign subject), and that, once judicially concluded, such wits shail not give cause to a second linquity. If, however, cirm cumatances should be of a mature to require a second inquiry, it shal not take place without previous notice given to the minioter, or the charge d'affaircs, or the consul, and in this case the busincse shall only be proceeded with at the supreme chancery of the shah at Tabris or Tchertin, likewiot in the presence of a dragoman of the mimion, of of the consmlate." (Artiele vii.)

A forcign subject implicated is a criminat sait cansot be purned of molested in any way unless there exist full proofs of hia having taken part in the crime imputed to him, and should he be duly convieted of the crime, he is handed over to his legation, which either made him back to his awn country to undergo the piniahi ment cutablishod by law, or, according to more fuent ustipe puniahes him in Peria by fine, imprisonment, \&c. In this respect the powers of the forctga representatives in Persin, now numbering ten (Great Britain, Rusia, France, Turkey, Austria-Hungary, Cormaty, United Statet of America, Itaby, Delgium and the Netheriands) vary considerably, some havins the power of condemning a criminal to death, while other canmot do more than fine and imprison for short periods. Suits civit and criminal, between formgn subjects are altogether out of Persian jurisdiction, and are judyed by the representatives of the foreign powers mecredited to Persia.

In 1889_{1} after Nësru 'd-Din Shah's return from his third visit to Europe, the council of state wa instructed to compile a code of law lor the regulation of jastice. A beginning was made by orderIn che trandertion of the Code Napolton, the Indian Mahommedan code, and the Code Napoléch at modified foc Algerta; but nothint further was donc.

Finance. - The fixed nevenues of Peman are derived from (i) regular taxertion (madiaf) composed of tates on lands, flocles, herds, shopkeoper, artimans and trade; (2) revenues from Crown iands: (3) customs; (4) rents and letues of tate momopoties. Thepp it also a kind of irregular revenue derived from public requisitions presents, Gnes, confiscations, \&ec., nowadays not producing much.
and hind, and shopld brocate an invinge to about 25% of the ydeld of the soit. The teration on foeks and herds exister either is a supplemedizary becthod of lind taxation, or as a contribution of a certain sum per animal, and the tax on shopkeepers, artisans and trudes sometimes zalaes the form of a poll-taxi sometimes that of an impont on the profies of the trades. The revenue from Crowd lands consista of a certain ppoportion of the produce. and also varios much according to localitien. Unti March 1899 ah the custonas wore farmed out, buts since then they have been organized on European principlos, with the help of Betgian ofetals. By treaties with R ussia and Great Britatn, conchuded in Iqot and rgos repectivaly. the 5% duty fixed by the Turkmanethaf treaty was abolished, and an equitable tarifi way established. The revennes from rents and leques of stite monopoliem are derived from poste telegraphs, mincs, mint, locests, banke, fiskerics, factories, \&e., and amount to about fis0,000 per apnume.

The total revenve of Prrsin, from all sources, airrounted in 1876 to $58.700,000 \mathrm{kran}$, in 1884 to $50,800,000$, In 1800 te $60,000,000$; and in $1907-1908$ to about $80,000,000$ larans. This would seem to thow a stondy inerease, but when we consider that the value of the kmin in 1876 was nearly 8 \% d., and has fallen in consequence of the great dopreciation of silver to only $4 t$ d., the total revenue really decreaged frome $21,950,000$ in 1876 to $11,600,000$ in 190\% 1906. Out of the actual teml revenve $\mathbf{6 0 0 , 0 0 0}$ is represented by customs and firc,000 by rents and leascs of tente monopolich, leaving foga, ooo for maliat and revenues of Crown lands. In 8876 the two later items amounted to abopt fi,600,000, while the two former were only $\mathbf{5 3 5 0 , 0 0 0}$ instead of $\mathbf{6 1 0 , 0 0 0}$ in 1907 1900. While the prices in krans of agricultural prodoce, arid hence the profite of the landowners and the wages and profits of artiana and tradesmen, were in $1907-1908$ more than dauble what they were in 1876 , the matliat, the backbone of the reventer, hes hatdly increased at all. being $\$ 0,000,000$ krant ($11,000,000$) bgainst $43,200,000$ brans $(f 1,600,000)$ in 1876 , and showing odecrease of over 37% in sterting money. A new aspembment of the maliat basod upon the protent value of the prodece of lands and actual profits of artisans and tradesmen, has frequently been ppoken of, and government, sided by a strong minister of tbe interior and an able minjster of finance, ought to have no difficulty in raising the mnitat to is proper level and the tolal revenues of the country to about two millions sterfing.

Until 1888 the yearly expenditure was leas that the yeariy income, but sabsequently the revenues were not sufficient to cover the expenditure, and many payments fell in arnear in spite of empty. ing the tressury of its reserve and contracting numerous loans.
In May t8a the Petsian government eoncluded a contract with the Imperial Banke of Persia, eatablished by British royal charter in 8889 , lor a loan of fscon 000 at 6% repayable in the course of lorty yoars; and tuarantced by the customs of Fars and the Persian Gull ports. The produce of this loan eetved for the payment of an indernnity to the Imperial Tobaceo Corporation, which began in 1890 and had to ceare ite operations in Januaty 4892 . In Itnuary 8900 the Petsian government, in order to pay the arterre and start airesh with a clear balance-sheet, contrieted a lotn through the Banque dea Prets de Perse, a Rustiab institution connected with the Russian state benk, and established in 1890. This loan was for 221 militin roubles $(~\{2,400,000)$ at 5% interest, guaranteed by all the Persian customs with the excepton of thoue of Fars and the Persian Gulf ports, and ropayable in the course of seventy-five years. In the contract, which wis signed at S_{t} Petersburg at the end of January 1goo, the Persian government undertook to redeem all its former forcign obligations (the t89a loan) out of the procesds of the new loan, and not to contract any other foreign loan before the redemption of the new loan without the consent of the Russian bank. The Ioan was at 867, lest it for commisuion and charges, the Pensian government thus receiving 85% of the nominat cipital. or $\{2,040,000$. The bonde enjoy the lull guarantee of the Rywian government. The yearly charge for interest and amortization, about $\mathbf{~} 124,000$, is to be paid in two haff-yearly instalmerta, and in the event of defauit the Rustian bank will have the right to excrelse effective corttrol of the customs With a maximurt number of twenty-five Europenn empldyes. When the contract for the new loan wes concluded, the siabifitits of the Persian government for the balance of the 1892 ioan (about (435,000), temporary loans from various barks, arreare of pays and salaries, and ather debts, amounted to pver $\{1,500000$, so that not mach mamin was left. The shat's visit to Europe in the same year cost the exchoquer about $\{180,000$. In Manch 1900 the Russian bank agreed to grant a further lan of 10 miltion roublea on the stme conditions as those of the first loan, and the woole amosant wits plaid by the end of the year, but another visit of the shat to Emope and reckess expendiure at home sxade the pooitica worve than before Alter Noveraber; 1903 the expeapditure with reduced, and the new customs tariff which came into force on the 14th of February 1903 increased the revenue by nearly $[200,000$ per annum; it was thooght that the expenditure would not exceed the receipth oven if the dath undartook a third voytge In Europe (which he did in 1905). However, in Nowmber igot, when the national assembly ar council demanded a budect and made ioquirie as to the firancini position, it was lound that the expenditure fot
sorte years past had been half a mation teenline per annum in exoeve of the recetpts and that comaderable aums were owing to banka and commercial firms who had leat money. Mont of the money borrowed is at 12 to 15% interest.

Banhing-It was only in 1888 that a European bank (the New Oriental Bank Corporation, Litrited) ertablinhed itself in Peria and modern ideas of banking wene introduced into the ceuntry. Until then the banking was done by the mative moncy-changers (sarrafs) and some merchants-forcign and native-who occasion. ally undertook special outside tranmections In 1889 the shat gramted a cosesxsion to Baron Julius de Reuter for the formation \%f a state bank with the exciusive right of issuiag bank-notesnot excoeding 8800,000 , without special menent of the Perian government-on the basis of the local currency, the silver kran. With the title of "The Imperinl Bank of Persia " the bank was formed in the autumn of the same year, and incorporated by zoyal charte granted by Queen Victoria and dated the and of September 1889. The authorized capital was four millions stering, but the bank started with a capital of one million and began ite businewa is Persia In October 1889. In April 1890 it took over the Perian buaincts of the New Oriental Bank Corporation, soon afterwards opened branches and agencies at. the principal towns, and ineued notes in the same year. During the first two years the bank remitied the creater part of its capilal to Persia at the then prevalling exchange, and reccived for every pound sterling 32 to 34 krans; but in consequence of the great lall in silver in 1893 and 1894 . the exchange rose to go krans per pound aterling and more, and the bank's capital employed in Persia being reduced in vilue by more than one-thind-100 krans, which at the beginning represented f3. then being worth only f 2 or lese-the original capital of one milion stering was reduced to 1650,000 in December 1804 . The bank has made steady, progrese in spite of innumerable dificultien, and paid a Gir dividend to its sharcholders. In bis paper on "Banking in Pertia" (Jownal of the Inaldyte of Bamkers, 189:), Mr Joseph Rabino pointed out the great dificulties which malse the casy distribution of funds- hhat is the providing them when and where required-a matter of imponaibility in Pergita, and gives this fact as the reason why the Imperial Bank of Perii has local isucs of notes, peyable at the isouing branches only, "for, in a Country like Persia, where movements of specie are 80 contly, slow and difficult as to become impracticable except on a small sale, the danger of isauiag notes payable at more than one place is obvious." On the $20 t h$ of September 1907 the value of the noted in circulation wass 6395,000 , and the bank held $\mathbf{4 5 5 0 , 0 0 0}$ degosits in Persia

In 1889 the shah also grented a concemion to Jaques de Poliatov of St Peteriburg for che eatiblishment of a "loan bank" or, as the original concession said, "mont-de-pittit" with exclusive rights of holding public auctions A company was formed in the same year and started husinest at Teherin In 1890 an the "Banque des Pretes de Perse." After confining its operations for wome ycars to ordinary pewnbroking, without profith, it obtained the add of the Russion State Banic, acquired larye premiset in Teheran, made advances to the Persian government (fince 1898), and in January 1900 and March 1902 Gnanced the loans of $f 2,400,000$ and $\{1,000,000$ to Persia. It has branches at Tabris, Reatt, Meabeol and other places

Various Armenian firms, one with branches at many places in Perris and Rusein, also do banking businens, while various European Grms at Tabriz, Teherín, lafahan, Shiras and Bushire, Iacilitate remittances betyeen Europe and Pernia.

The chice husineas of the native sarrafs (moneyrchangers, bankers, exc.) is to discount bille at high raten, hardiy ever lcesthan 12%. and remit money from place to place in Pergis for a commission amounting to from t to 5 or even 6% on each transaction; and in apite of the European banks giving lower rates of discount and remitting moncy at par, the majority of the people and mercantile clasmes still deal with the antives. For advances with eood mecurity a native sarrof charres at least $1,2 \%$ interest per annum; as the security diminishes in value the rate of interete increasem, and tranactions at 10% month, or more than 120% per annum, ere not infrequeat A Pernian who obtains an advence of money at lees than 12% considers that he gets money "for nothing.
(A. H.S.)

History
A.-Ancient, to the Fall of the Sastamid Dynasly.
I. The Nama.-"Persia," In the strict significance of the vord, denotes the country inhabited by the people designated as Persians, i.e. the district known in antiquity at Persis (q.v.), the modern Fars. Custom, bowever, has extended the name to the whole Iranien plateau; and it is in this semse that the term Persia is here employed.
II. Ancient Eihrogaphy. In historical timen we find the major portion of Iran occupied by peoples of Indo-Europent origin, terming themselves Aryans (Arya; Zend, Airya) and their language Aryan- -0 is the inscriptions of Darius-ibe
tame name, which is used by the consangulineous tribes of Indie who were their ncarest relations The whole country is desigmated Ariana (Zend, Airyane)-" the land of the Aryans "-the original of the Middle-Persian

Desand Eran and the modern Iran; the Greck geo- Iratena grapbers Eratosthenes and Strabo were in error when they limited the name to the eastern districts of lran. Thus the name of Iranians is understood to comprehend all these people of Aryan nationality.

Besides the Iraninns, numerous tribes of alien origin were found in Iran. In Baluchistan, even yet, we find side by side with the eponymous Iranian inhabitants, who
 ethnologically and philologically distinct race of the Brahui, who are probably connected with the Dravidians of India. In them we may trace the original population of these districts; and to the same original population may be assigned the tribes here settled in antiquity: the Paricanii and Gedrosii (Gadrosii), and the Myci (Herod. iii. 93, vii. 68; the Maka of Darius, the modera Mekran), to whom the mame "Aethiopians" it also occasionally applied (Herod. iii. 94, vii. 70). In Medis the Greek geographers mention a peopie of Amarincae (Strabo xi. 503, 574; Pliny, Nof. Tist. vi. 48; Ptolem. vi. 25 ; in Polyb. v. 44. 9. 'Amapdxat, i.e. "Non-Aryans." To these the Tapuri, Amardi. Caspit, and especially the Cadusii or Gelae-situated in Chilan on the Caspian-probably belonged. Prcsumahly they were also related to the tribes of Armenia and the Caucasus, In the chains of Zagros we fird, in Babylonian and Assytian times, no trace of Iranians; but partly Semitic peoples-the Gutaerns, Lulubaeans, \&c.-partly tribes that we can refer to no known ethnelogical group, e.g. the Comenei (see below), and in Elymais or Susions the Elymmeans (Elamites).

That the Iranians must have come from the East to their later home, is aufficiently proved by their close relationship to the Indians, in conjunction with whom tbey pro- wament viousty formed a single people, bearing the name andarye Arye. Their residence must bave lain chiefly in tameas. the great steppe which stretches north of the Black Ses and the Casplan, through South Russia, to Turan (Turkestan) and the Oxus and Jasartes. For here we continually discover traces of Iranian nationality. The names and words of the Scythians (Scoloti) in South Russia, wbich Herodotus has preserved, are for the most part perfectly transparent Iranina forrations, identified by Zeuss and Mullenhoff; among then are many proper names in Aria-(Apio-) and aspa (-horse-eotro; Zend, aspos). The predatory tribes of Turan (e.g. the Massagetac) seem to have belonged to the same stock. These tribes are distinguished by the Iranisn peasants as Dahs (Gr. Atas), "enemies"" "robbers"; by the Persians as Sacae; and by the Greeks generally as Scythians.

From the region of the steppes the Aryans must heve penetrated into the cultivable land of Eastern Iran: thence one part apreted over the district of the Indus, then on again to the Ganges; another moved westward to Zagros and the borders of the Semitic world.

The date of this migration cannot yet be determined with certainty. We know only that the Aryans of Indie lready cceupied the Puajab in the Vedic ern, c. 5600 B.C. Antw On the other hand, about the same period a number oftan of names, undoubtedly Iranian, made their appear. intalan ance in Western Asia, (cf. Edvard Meyer, "Zur Mbeme Itesten Geschicbte der Iranier," in Zeilschriff firm vergetchend Sprachforschucug, 1907). In the cunelform letters Irom Tell e-Amaras in Egypt (1400 B.c.), we find anong the princeling? of Syria and Palestine mames like Ardamenya, Arsouriye, Sfir wardala, a name terminating in -wormana, \&c.; while the kinge of Mitennl on the Eupbrates are Artalama, Shutarma, Artsshumara, and Dushrotho-naraes too nuraerous and too senvipely Iranian to allow of the hypothets of coincidence. Later atili, in the Assyrian Inscriptions we occnsionally meet with Iranian names borme by North-Syrian princes-6.g. Kundapi and

Kustacpi (= Hystaspis). Their subjects, on the contrary, speak absolutely difierent tongues: for the attempts to explain the languages of the Cossaeans, Mitannians, and Arzapians as Indo-European (Iranian) have ended in failure (cf. Blomfield in the Americon Jowrnal of Philology, घv. p. i sqq.).

It appears, then, that towards the middle of the second millennium before Christ, the Iranians made a great forward movement to the West, and that certain of their princes-at first, probably in the role of mercenary leaders-reached Mesopotamia and Syria and there founded principalities of their own, much as did the Germans under the Roman Empire, the Normans, Turks, \&c. With this we may probably connect the well-known fact thet it was about this very period (1700 B.C. approximately) that the horse made its appearance in Babylonia, Egypt and Greece, where for centuries subsequently its use was confined to war and the war-chariot. Before this it was as foreign to the Babylonians, even in the time of Khammurabi, as to the Egyptians under the XIIth Dynasty. On the other hand, it had been familiar to the Aryans from time immemorial: indeed they have always been peculiarly a people of riders. Thus it is quite conceivable that they brought it with them into Western Asia: and the quarter from which it came is sufficientiy indicated by the fact that the Babylonians write the word "horse" with a group of signs denoting "ass of the East."

Of the Assyrian kings, Shalmaneser (Salmamassar) II. was the first to take the field against the Medes in 836 日.c., and from that period onwards they are frequently mentioned in the Assyrian annals. Sargon penetrated farthest, receiving in 715 B.C. the tribute of numerous Median town-princes. He gives list of their names, twenty-three of which are preserved either wholly or in part, and almost all are unmistatably Iranian; as is also the case with those preserved by Esar-haddon (Assarhaddon) and elsewhere.

The Medes, then, were an Iranian nation, already occupying In the 9 th century B.C. their later home in the centre of the Median highland. On the other hand, among their neighbours in Zagros and the north-corresponding to the Anariacae (Non-Aryans) of the Greeks-Iranian names are at best isolated phenomena. With other Iranian tribes the Assyrians never came in contact: for the oft-repested assertion, that the Parsun, 50 prominent in their annals, were the Persinns or the Parthians, is quite untenable. The Parsus ol the Assyrians are located south of Lake Urmia, and can hardly have been Iranians.

None the less, the Assyrian statements with regard to the Medes demonstrate that the Iranians must have reached the west of Iran before goo B.C. It is probable that at this period the Persians also were domiciled in their later home, even though we have no direct evidence to adduce. If this reasoning is correct, the Iranian immigration must be assigned to the first half of the second pre-Christian millennium.

The Aryans of Iran are divided into numerous tribes; these, sgain, being subdivided into minor tribes and clans. The 7hber principal, sccording to the inscriptions of Darius tho which closely agree with Herodotus-are the Irasices following, several of them being also enumerated in the Avesta:-

1. The Medes (Mada) in the north-west (see MEDIA).
2. The Persians (Parsa) ia the south (see Persis). To these belong the Carmanians and the Usians (Yuliya), who are mentioned expressily by Darius as inhabiting a district in Persis (Beh. III, 40).
3. The Hyrcanians (Vorkera In Darius, Zend Vehrkina) on the eastern comer of the Caspian. in the fertile district of Astarabad. 4. The Parthians (Parlhytei; Pers. Parthown) in Khorasan (see Parthia).
4. The Arians (Apeiso, Pers Fiaraina), in the vicinity of the river Arius (Heri-rud), which derived its naric from them. This mame, which survives in the moders Herat, has of course no connexion with that of the Aryans.
5. The Drangians (Zaranhe in Darius, Sarangions in Herod. iii. 93,117 , vii. 67), sltuated south of the Arians, in the north-wrest of Aghanstan (Arachosia) by the western affiuents of Lake Hamun. and extending to the present Seistan.
6. Arachotians (Perm. Faraspad), in the dittrict of the Helmand and its tributarics, round Kandahar. They are mentioned in the lists of Darius, also by the Greels after Alevander. In Herodotus their phee is talen by the Dectyans, whow mame nutvives to the
present duy in the ward Pushtw, with which the Afghans denote their language (Herod. if. soz, iv. 44, vii. 67, 85). Probahly it was the old tribal name: Arachosiz being the local designation. The Thamanaeans, who appear in Herodotus (iii. 93. 117), must be classed with them.
7. The Bactrians (Pers. Bewhtri), on the northern declivity of the Hindu Kush, as far as the Oxus. Their capital was Bactra, the modern Balkh (see Bactria).
8. The Sogdians (Pers. Sugudu), in the momntainoms district between the Oxus and Jaxartes.
9. The Chorasmians (Khwarizmians, Pers. Uvarazwiya), in the great oasis of Khiva, which still bears the name Khwarizm. They stretched far into the midst of the nomadic tribea.

If. The Margians (Pers, Margu), on the river Margus (Murghab): chiefly inhabiting the oasis of Mcrv, which has preaerved their nameDarius mentions the district of Margu but, Like Herodotus, omite them from his list of peoples; so that ethnographically they are perhaps to be assigned to the Arians.
12. The Sagartians (Pers, Asagaria); according to Herodotus (vii. 85). a nomadic tribe of horsemen; speaking, as he expressly declares, the Persian language. Hence he describes them (i. 125) as a subordinate nomad clan of the Persians. They, with the Drangians, Utians and Myci, formed a single eatrapy (Herod. iii. 93). Ptolemy (vi. 2, 6) speaks of Sagartians in the Eastern Zagros in Media.
13. We have already touched on the nomadic peoples (Diha, Dahans) of Iranian nationality, who occupied the steppes of Turkestan as lar as the Sarmatians and Scythens of South Russia That these were conscious of their Aryan origin is proved by the names Ariantas and Ariapcithes borne by Scythian (Scolot) kinge (Herod, iv. 76, 87). Still they ware never counted as a portion of Iran or the lranans. To the settled "peasantry, these nomads of the steppe were always " the encmy " (dana, doha, Adec, Dahae). Side by side with this name we find "Türan" and "Turanian": a designation applied both by the later Persians and by modera writers to this region. The origin of the word is obscure, derived perhaps from an obsolete tribal name. It has no connexion whatever with the much later "Turks." who penetrated thither in the 6th century after Christ. Though found neither in the inscriptions of Darius nor in the Greek authors, the name Turan must never: theless be of great antiquity; for not merely is it repeatedly found in the Avesta, under the form Tura, but it occurs already in a hymn. which, without doubt, originates from Zoronster himself, and in which "the Turanian Fryana "* and his descendants are commemorated as faithful adherents of the prophet (Yosme. 46, 62).

The dividing line between Iranian and Indian is drawn by the Hindu Kusb and the Soliman mountains of the Indus district. The valley of the Kabul (Cophen) is already occupied by Indian tribes, especially the Gandatians; and the Satagydae (Pers. Thalagu) there resident were presumably also of Indian stock. The non-Aryan population of Iran itself has been discussed above. Of its other ncighbours, we must here mention the Sacae, a warlike equestrian people in the mountains of the pamir platcau and northward; who are probably of Mongol origin. Herodotus relates that the Persians distinguished "all the Scythinns "-ic. all the northern nomads-as Sacae; and this statement is confirmed by the inscriptions of Darius. The Babylonians employ the name Gimiri (i.e. Cimmerians) in the same sense.
III. Civiliation and Religion of the Iraniass.-In the period when the ancestort of Indian and Iranian alike stil formed a single nation-that of the Aryans-they devcloped a very marked character, which can still be distinctly traced, not only in their language, but also in their religion and in many views common to both pooples. A great number of gods-Asura, Mithras, the Dragon-ilayer Verethraghna (the Indsa of the Indians), the Water-shoot Apam napat (the lightning), \&c.-date from this era. So, too, fre-worshjp, especially of the sacrificial flame; the preparation of the intoxicating some, which fils man with divine strength and uplifts him to the gods; the injunction to " good thoughts and good works," imposed on the pious by Veds and Avesta alike: the belief in in unwavering order (rla) -a law controlling gods and men and dominating them all; yet with this, a belief in the power of magical formulae (mandra), exclamations and prayers, to whose compulsion not merely demons (the evil spirits of deceptiondruh) but even the gods (darna) must submit; and, lastly, the institution of a pricsthood of fire-kindlers (athravon), who are at once the repositories of all sacral traditions and the mediators in all intercourse between earth and heaven. The transition, moneover, to settied lifo and agriculture belongs to the Aryen
period; and to it may be traced the pectuliar sancitity of the cow in India and Persia. For the cow is the animal which voluntarily yields nourishment to man and aids him in his daily labours, and on it depends the industry of the peasent as contrasted with the wild desert brigand to whom the cow is unknown.

Very mumerous are the legends common to both nations. These, in part, are rooted in the primeval Indo-European days, though their ultimate form dates only from the Aryan epoch. Foremost among them is the myth relating the battle of a sungod (Ind. Trita, generally replaced by Indra, Iran. Throctona) against a fearful serpent (Ind. Ahi, Iran. Avhi; known moreover as Vrira): also, the legend of Yama, the first man, son of Vivasvant, who, after a long and blessed life in the happy years of the beginning, was seixed by death and now rules in the kingdom of the departed. Then come a host of other tales of old-world heroes; as the "Glorious One" (Ind. Sushrova, Pers. Husrana, Chosrau or Chosroes), or the Son who goes on a journey to seek his father, and, unknown, mects his end at his hands.

These legends have lived and flourished in Iran at every period of its history; and neither the religion of Zomaster, nor yet Islam, Thefrason has availed to suppress them. Zoroastrianism-at in that form in which it became the dominant
Sars. Saga. creed of the Iranians-legitimized not only the old gods, but the old heroes also; and transformed them into pious helpers and servants of Ahuramazds; while the creator of the great national epic of Persia, Firdousi (A.0.935-1020), displayed stonishing skill in combinlng the ancient tradition with Islam. Through his poem, this tradition is perfectly familiar to every Persian at tho preseat day; and the primitive features of tales, whose origin must be dated 4000 years $4 g \circ$, are still preserved with fidelity. This tenacity of the Saga stands in the sharpest contrast with the fact that the historical memory of the Persian is extremely defective. Even the glories of the Achaemenid Empire faded rapidly, and all but completely, from recollection; 50 also the conquest of Alexander, and the Hellenistic and Parthian cras. In Firdoust; the legendary princes are followed, almost without a break, by Ardashir, the founder of the Sassanid dynasty: the intervening episode of Darius and Alcxander is not drawn from native tradition, but borrowed from Greek Iiterature (the Alexander-romance of the Pseudo-Callisthenes) in precisely the same way as among the nations, of the Christian East in the middle ages. ${ }^{1}$

Needless to say, however, this long period saw the Saga much recast and expanded. Many new characters-Siyawush, Rustam, \&c.-have swellod the original list: among thern is King Gushtasp (Vishtaspa), the patron of Zoronster, who was known from the poems of the prophet and is placed at the close of the legendary age. The old gods and mythical figures reappear as heroes and kings, and their battles are fought no longer in heaven but upon carth, where they are localized for the most part in the east of Iran. In other words, the war of the gods has degenerated to the war between Iranian civilization and the Turanians. Only the evil serpent Azhi Dahaka (Azhdahak) is domiciled by the Avesta in Babylon (Bawri) and depicted on the model of Babylonian gods and demons: he is a king in human form with a serpent growing from either shoulder and feeding on the brains of men. In these traits are engrained the general conditions of history and culture, under which the Iranians lived: on the one hand, the contrast between Iranian and Turanian; on the other, the dominating position of Bebylon, which infaenced most strongly the civilization and religion of Iran. It is idle, however, to read definite historical events into such traits, or to attempt, with some scholars, to convert them into history itself. We cannot dedace from them a conquest of Iran from Babylon: for the Babyloninns never eet foot in Iran, and even the Assyrians merely conquered the wastern portion of Media. Nor yet can we make the favoarite assumption of a great empire in Bactria. On the contrary; it is historically

[^13]evident that before the Achaemenids there mere in Bectrin only small local principalities of which Vishtaspa's wis one: and it is possible that the primeval empire of the Sage is only a reflection of the Achaemenid and Sassanid empires of reality, whose existence legend dates back to the beginning of the world, simply because legend is pervaded by the assumption that the conditions obtaining in the present are the natural conditions, and, as such, valid for all lime.

Closely connected as are the Mythology and Religion of Indian and Iranian, no less clearly marked is the fundamental difference of intellectual and moral standpoint, pomereme which has led the two nations into opposite paths botwewt of history and culture. The tendency to religious fremea asd thought and to a speculative philosophy, compre- pellan hending the world as a whole, is shared by both and is doubtless an inheritance from the Aryan period. But with the Indians this speculation leads to the complete abolition of all barriers between God and man, to a myatic pantheism, and to absorption in the universal Ego, in contrast with which the world becomes an unsubstantial phantasm and sinks into nothingness. For the Iraninn, on the contrary, practical life, the real world, and with them the moral commandment, fill the foreground. The new gods created by Iran are ethical powers; those of India, abstractions of worship (brahman) or of philosophy (alewan). These fundamental features of Iranian sentiment encounter us not oniy in the doctrine of Zorongter and the confestions of Darius, but also in that magnificent product of the Persia of Islam-the Sufi mysticism. This is pant beistic, like the Brahman philosophy. But the pantheism of the Persian is always positive, -affirming the world and life, taking joy in them, and seeking its ideal in union with a creative god: the pantheism of the Indian is negative-denying world and life, and descrying its ideal in the cessation of existence.

This contrast in intellectual and religious life must have developed very early. Probably, in the remote past violent religious disputes and feuds broke out: for otherwise it is almost inexplicahle that the old Indo-European word, which in India, also, denotes the gods-devo-should be applied by the Iranians to the malignant demons or devils (dacoa; mod. dis); while they denole the gods by the name biaga. Conversely the Asuras, whose name in Iran is the title of the supreme god (ahurc, atura), have in India degentrated to evil spirits. It is of great importance that among the Slavonic peoples the same word beguc distinguishes the deity; since this points to ancient cultural influences on which we have yet no more precise informa. tion. Otherwise, the name is only found among the Phrygians, who, according to Hesychius, called the Heaven-god (Zeus) Bagaeus; there, however, it may have been borrowed from the Persians. We posscss no other evidence for these events; the only document we posscss for the history of Iranian religion is the sacred writing, containing the doctrines of the prophet who gaye that religion a new form. This is the Avesta, the Bible of the modern Parsee, which comprises the revelation of Zoroaster.

As to the home and time of Zoroaster, the Parsce tradition yields us no soct of information which could possibly be of historical service. Its contents, even if they go back to lost parts of the Avesta, are merely a late patch.

Zarasster. work, hased on the legendary tradition and devoid of historical foundation. The attempts of West (Pahlavi Texts Tronslated, vol. v.) to tum to historical account the statements of the Bundahish and other Parsee books, which date Zoroaster at 258 years befort Alezander, are, in the present writer's opinion, a complete failure. Jackson (Zoroaster, the Prophef of Ancienl Iran, 1901) sides with West. The Greek theory, which relegates Zoroaster to the mists of antiquity, or even to the period of the Labulous Ninus and Semiramis, is equally valueless. Even the statement that he came Irom the north-west of Media (the later Atropateae), and his mother from Rai (Rhagae) in eastern Media, must be considered as problematic in the extreme. Our only trustivorthy information is to be gleaned from bis own testimony and from the history of his religion. And here we may take it as certain that the scenc of his activity was laid in
the east of Iran, in Bactria and its neighbouring regions. The contrast there existing between peasant and nomad is of vital consequence for the whole position of his creed. Among the adherents whom he gained was numbered, as already mentioned, a Turanian, one Fryana and his household. The west oi Iran is scarcely ever regarded in the Avesta, while the districts and rivers of the east are often named. The language, even, is markedly different from the Persian; and the fire-priests are not styled Magians as in Persia-the word indeed never occurs in the Avesta, except in a single late passage-but athravar, identical with the atharvan of India (nupaioor, "fire-kindlers," in Strabo xv. 733). Thus it cannot be doubted that the king Yishtaspa, who received Zoroaster's doctrine and protected him, must havo ruled in eastern Iran: though strangely enough scholars can still be found to identify him with the homonymous Persian Hystaspes, the father of Darius. The possibility that Zoroaster himself was not a native of East Iran, but had immigrated thither (from Rhagae?), is of course almays to be considered; and this theory has been used to explain the phenomenon that the Gathas, of his own composition, are written in a different dialect from the rest of the Aresta. On this hypothesis, the former would be his mother-tongue: the latter the speech of eastern Iran.

This district is again indicated as the starting-point of Zoroastrianism, hy the fact that dead bodies are not embalmed and then interred, as was usual, for instance, in Persiz, but cast out to the dogs and birds (cf. Herod. i. 140), a practice, as is well known, strictly enjoined in the Avesta, ruthlessly executed under the Sassanids, and followed to the present day by the Parsees. The motive of this, indeed, is to be found in the sanctity of Earth, which must not be polluted by a corpse; but its origin is evidently to be traced in a barbaric custom of momadic or semi-nomadic tribes who leave the dead to lie on the steppe; and we know from Greek sources that this custom was widely diffused among the tribes of eastern Iran.

The next clue towards determining the period of Zoroaster is, that Darius I. and all his successors, as proved by their inscriptions and by Greek testimony, were zealous adherents of the pure word of Zoroastrianism; which consequently must already have been accepted in the west of Iran. That Cyrus too owned alleginnce to the creed, cannot be douhted by an unprejudiced mind, although in the dearth of contemporary monuments we possess no proof at first hand. The Assyrian inseriptions demonstrate, however, that Zoroaster's teaching was dominant in Media two centuries before Cyrus. For in the list of Median princes, to which we have already referred, are two bearing the name of Mazdaka-evidently after the god Mazda. Now this name was the invention of Zoroaster hinsself; and he who names himself after Mazda thereby makes a confession of faith in the religion of Zoroaster whose followers, ${ }^{2 s}$ we know, termed themselves Mazdayasna, "worshippers of Marda."
Thus, if the doctrine of Zoroaster predominated in Media in 714 日.c., obviously his appearance in the role of prophet must have been much earlier. A more definite date cannot be deduced from the cvidence at our disposal, but his era may safely be placed as far back as 1000 B.c.

The religion which Zorcaster preached was the creation of a single man, who, having poudered long and deeply the problems of existence and the world, propounded the solution he faund as a divine revelation. Naturally he starts from the old vicws, and s indebted to them for many of his tenets and ideas; but out of this material he builds a uniform system which bears throughout the imprese of his,own intellect. In this world, two groups of powers coafront each other in a truceless war, the powers of Good, d Light, of creative Strength, of Life and of Truth, and the powers of Evil, of Datkness; Destruction, Death and Deceit. In the van of the first stands the Holy Spirit (spenta mainyu) or the "Great Wisdom" Mavdaa His helpera and vascals are the six powers of Good Thought (sonk mond ' Ou anhs), of Right Order (eskn, Ind. tha. Pern arka, " tawfulness ${ }^{\text {'l }}$), of the Exceilent Kingdom (khshathra pairya), of Holy Character (spenta armaiti), of Health (hauroatat). and of Immortality (amereial). These are comprised under the seneral titie of "undying boly ones" (amasies spenta, amshespand): ad a hoot of aubordinats angels (yasola) aro ranked with thern.

The powers of evil are in all points the opposite of the good; at their head being the Evit Spirit (antra mainyu, Ahriman). These evil demons are identical with the old gods of the popular faith-the devas (div)-while Mazdao bears the name Ahura, above discussed; whence Ahuramazda (Ormuzd).

From this it will be manifest that the figures of Zoroaster's religion are purely abstractions; the concrete gods of vulgar belief being set aside. All those who do not belong to the devils (depas), might be recognized as inferior servants of Ahuramazda: chief among them being the Sun-god Mithras (see Mithras); the goddess of vegetation and fertility, especially of the Oxus-stream, Anáhita Ardvisura (Anailis); and the Dragon-slayer Verelhraghna (Gr. Arlagnes), with the god of the intoxicating Haoma (the Indian Soma). In the religion of the people, thesc divinities always gurvived; and the popularity of Mithras is evinced by the numerous Aryan proper names thence derived (Mithradates, \&c.). The educated community who had embraced the pure doctrine in its completeness scarcely rocognized them, and the inscriptions of Darius ignore them. Only once he speaks of "the sods of the clans," and once of "the other gods which there are." Not till the time of Artaxerxes II. were Mithra and Anaitis received into the official religion of the Persinn kings. But they always played a leading part in the propaganda of the Persian cults in the West.

Only one element in the old Aryan bellef was preserved by Zoroaster in all its sanctity: that of Fire-the purest manifestation oi Ahuramazda and the powers of Cood. Thus fire-altars were everywhere erected; and, to the prophet also, the Fire-kiadlers (fithravan) were the ministers and priests of the true religion and the intermediaries betwcen God and man; at last in the popular mind, Zoroastrianism was identified with Fire-worship pure and simple, -inadequate though the term in reality is, as a description of it essentials.

Midway in this opposition of the powers of Good and Evil, man is placed. He has to choose on which side he will stand: he is called to serve the powers of Cood: his duty lies in speaking the truth and combating the lie. And this is fulfilled when he obeys the commands of law and the true order; when he tends his catte and fields, in contrast with the lawless and predatory nomad (Dahae); when he wars on all harmful and evil creatures, and on the devil worshippers; when he keepe free from pollution the pure creations of Ahuramazda-fire foremost, but also earth and water; and above all, when he practises the Good and True in thought, word and work. And as his deeds are, 80 shall be his fate and his fature lot on the Day of Judgment; when he must cross the Bridge Cinvaf, which, according to his works, will either guide him to the Paradise of Ahuramazda or precipitate him to the Hell of Ahriman. Obviously, it was through this preaching of a judgment to come and a direct moral responsibility of the individual man, that, like Mahomet among the Arabs, Zorcaster and his disciples gained their adherents and excrised their greatest influence.

In this creed of Zormastrianism three important points are especially to be emphasized: for on them depend its peculiar characteristics and historical significance:-

1. The abstractions which it preaches are not products of metaphysical speculation, as in India, but rather the ethical forces which dominate human life. They impose a duty upon man, and enjoin on him a positive line of action-a definite activity in the worid. And this world he is not to eschew, like the Brahman and the Buddhist, but to work in it, enjoying existence and life to the full. Thus a man's birthday is counted the highest festival (Herod. i. 133); and thus the joie de viore, rich banquets and carousals are not rejected by the Persian as godless and worldly, but are even prescribed by his religion. To create offspring and people the world with servants of Ahuramazde is the duty of every true believer. ${ }^{1}$
2. This religion grew up in the midst of a settled peakant population, whose mode of life and views it regards as the natural disposition of things. Consequently, it is at once a product or, and a main factor in civilization; and is thereby sharply differentiated from the laradite religion, with whose moral prectepts it otherwise coincides so frequently.
3. The preaching of Zoroaster is directed to each individual man, and requires of him that he shall choose his position with man, and to the fundamental problems of life and religion. Thus, even though it arose from national views, in its essence it is not national (as. for inatance, the lsraelite creed), but individualistic, and at the ume time universal. From the first, it aims at propaganda; and ise nationality of the convert is a matter of indififerince. So Zoroaster himself converted the Turanian Fryana with his klndred (oce above): And the same teadency to proeclytize alien peoples survived in hi religion. Zoroentrianism, in fact, is the first creed to work by mistions or to lay claim to universality of acceptance. It was, how ver, only nntural that its adherents should be won, first and chicfly, among the countrymen of the prophet, and its further success in gaining over all the Iranian tribee gave it a mational stamp. So the Suman trinslation of Darius' Betiotua inscription
${ }^{1}$ These ideas are etrongty exposed in a polemic against the Christians contained.in an official edict of the. Persian creed to the Armenians hy Mihr Narmeh, the vizier of Yazdegerd II. (about A.D. 450), preserved by the Armenian historian, Elithe.
terms Ahuramanda "the god of the Aryans" Thus the creed became a powerful factor in the development of an united Iranian mationality

That a religion, which lays its chief stress upon moral precepts, may readily develop into casuistry and external formalism, with an infinity of minute prescriptions, injunctions on purity and the like, is well known. In the Aresta all these recur ad nauseam, so much so that the primitive spirit of the religion is atifled bencath them, as the doctrine of the ancient prophets was stifled in Judaism and the Talmud. The Sassanid Empire, indeed, is completely dominated by this formalism and ritualism; but the carlier testimony of Darius in his inseriptions and the statements in Herodotus enable us still to recognixe the original healthy life of a religion capable of awakening the enthusiastic devotion of the inner man. lis formal character maturally germinated in the priesthood (Herod. i. 140; cf. Strabo xv. 733. \&e.). The pricsts diligently practise all the precepts of their ritual-e.f. the extermination of noxious animals, and the exposure of corpses to the dogs and birds, that carth may not be polluted by their presence. They have advice for every contingency in life, and can say with precision when a man has been defiled, and how he may be cleansed again; they possess an endless stock of formulae for prayer, and of sentences which serve for protection against evil spirits and may be tumed to purposes of magic.
How the doctrine overspread the whole of Iran, we do not know. In the Weat, among the Medes and Persians, the guardianship The maydecs. and ministry of Zoroastrianism is vested in an exclusive priesthood-the Maglans. Whence this name-upknown have no knowiready mentioned. to the Avesla-look its rise, we his list of Median tribes; and it is probable that they and theit teaching reached the Perslans from Mcdia. At all events, they play here not merely the rele of the "Fire-kindlers " (athravan) In the Avesta, hut are become an hereditary sacerdotal caste, acting an important part in the state--advisers and spiritual guides to the king, and so forth. With them the ritualism and magical character, above mentioned, are fully developed. In the narrations of Herodotus, they interpret dreams and predict the future; and in Greece, from the time of Herodotus and Sophocles (Oed. Tyr. 387) onward, the word Magian connotes a magician-priest.

See further, Zoroaster and works there quated.

IV. Beginnings of History.-A connected chain of historical evidence begins with the time when under Shalmaneser (SalAesyrias manassar II.), the Assyrians in 836 b.c. began for conguest the first time to penetrate farther into the mounof Medis. tains of the cast; and there, in addition to several non-Iranian peoples, subdued a few Median tribes. These wars were continued under successive kings, till the Assyrian power in these regions attained its eenith under Sargoa (g.en), who (755 B.c.) Led into exile the Median chicf Dayuku (see Deroces). a vassal of the Minni (Mannacans), with all his family, and subjected the princes of Media as far as the mountain of Bikni (Elburz) and the border of the great desert. At that time twenty-cight Mfedian "town-lords" paid tribute to Nineveh; two years later, (713 B.c.) no fewer than forty-six. Sargon's successors, down to Assur-bani-pal ($668-626$ 8.c.), maintained and even augmented their suzerainty over Media, in spite of repeated attempts to throw off the yoke in conjuncLion with the Mannaeang, the Saparda, the Cimmerians-who had penetrated into the Armenian mountains-and others. Not till the last years of Assur-bani-pal, on which the extant Assyrian annals are silent, can an independent Median Empire have arisen.

As to the history of this empire, we have an ancient account in Herodotus, which, with a large admixture of the iegendary, The chorles Amplons writers. In the latter Nincveh is destroyed by the Mede Arbaces and the Babyionian Belesys about 880 b.c., a period when the Asayrians were just beginning to lay the foundations of their power. Arbacea is then followed by a long list of Median kings, all of them fabulous. On the other hand, according to Herodotus the Medes revolt from Assyria about 710 B.c., that is to say, at the exact time when they were subdued by Sargon. Deioces founds the monarchy; his son Phraortes begins the work of conquest; and his son Cyaxares is first overwhelmed by the Scythians, then captures Nineveh, and raises Media to a great power. A hitile supplementary information may be gleaned from the inscriptions, of King Nabonidus of Babylon (555-539)
and from a fow allusions in the Old Teatament. Of the Median Empite itself we do not poseses a single monument. Consequently its history still lies in complete obscurity (cl. Mroin; Drioces; Phraortes; Cyaxaras).

The beginnings of the Median monarchy can scarcely go farther back than 640 8.c. To all appearance, the lnsurrection against Assyria must have proceeded from the desert tribe of the Manda, mentioned by Sargon: for Nabonidus invariably describes the Median kings as "kings of the Mande." According to the account of Herodotus, the dynasty was derived from Deioces, the captive of Sargon, whose descendants may have found refuge in the desert. The first historical ling would seem to have been Phraortes, who probably succeeded in subduing the small local priaces of Media and in readering himself independent of Assyria. Further development was arrested by the Seythian invasion described by Herodotua We know from Zephaniah and Jeremiah that these northern barbarians, in 626 p.c., overran and harried Syria and Palestive (cf. Cyaxares; Jews). With these inroads of the Cimmerians and Scythians (see Scxthu), we must doubliess connect the great ethnographical revolution in the north of anterior Asia; the Indo-European Armenians (Haik), displacing the old Alarodians (Urorlu, Ararat), in the country which has since borne their name; and the entry of the Cappadocians-first mentioned in the Persian period-into the east of Asia Minor. The Scythian invasion evidently contributed largely to the enfeeblement of the Assyrian Empire: for in the same year the Chaldeean Nabopolassar founded the New-Babylonian empire; and in 606 b.c. Cyaxares captured and destroyed Nuseveh and the other Assyrian cities. Syria and the soutb he abandoned to Nabopolassar and his son Nebuchadrezzar; while, on the other band, Assyria proper, cast of the Tigris, the north of Mesopotamia with the town of Harran (Carrhaa) and the mountains of Armenis were annexed hy the Medes Cappadocia also fell beiore Cyaxares; in a war with the Lydian Empire the decisive battle was broken off by the celebrated eclipse of the san on the 28th of May $5^{8} 5$ z.c., foretold by Thales (Herod. i. 74). Aiter this a peace was arranged by Nehuchadrezzar of Babylon and Syennesis of Cilicia, recognizing the Halys as the borderline. To the east, the Median Empire extended far over Iran even the Persiars owning its sway. Ecbatana (g.v.) became the capital.

Of the states which arose aut of the shattered Assyrian Empire (Media, Babyion, Efypt, Cilicia and Lydia), Media was by far the strongest. In Bahylon the kingy feared, and the exiled Jews hoped, ap attack from the Medes (cf. Isa. xiii., ziv., xxi.; Jer. l., ii.); and Nebuchadrezzar sought by every means-: greal fortifications, canals and so forth-to secure bis empire against the menace from the north. He succeeded in maintaining the slatus que practically unimpaired, additional security being found in intermarriage between the two dynastics. In this state of equilibrium the great. powers of Apterior Asia remained during the first half of the 6th century.
V. The Parsiom Empire of the Achaemenidr.一The balance, however, was disturbed in 553 B.C., when the Persian Cyres, king of Anshan in Elam (Suriana), revolted against his-suzcrain Antyages, the son of Cyaxares, and of cymes three years later defeated him at Pasargadae (g.v.). ${ }^{\text {a }}$ ad Shortly aiterwards Astyages was taken prisoner, Cembremh Ecbatang reduced, and the Median Empire replaced by the Persian. The Persian tribes were welded by Cyrus into a single nation, and now became the foremont people in the world (see Pexsis and Cymus). At first Nabonidas of Babylon hailed the fall of the Medes with delight and utilized the opportunity by occupying Harran (Carchae). But before long he peocgnized the danger threatened from that quarter. Cyrus and his Persians paid Hule heed to the treaties which the Modian king had coacluded with the other powers; and the result was a great coalition against him, embracing Nabonidus of Babylon, Amasis of Egypt, Croesus of Lydia, and the Spartans, whose highiy efficient army seemed to the Orieatal states of great value. In the spring of 546 8.c., Croesus opened the attack. Cyrus ${ }^{1}$ Seefurther, Bagyonia and Aspymai iv. Histery.
fung himsell upon him, beet Alm at Pteria in Cappadocia and pursued him to lydia. A second victory followed on the benks of the Pretolus; by the autumn of 546 Sardis had already fallen and the Peraian power advanced at a bound to the Mediterranean. In the course of the next few years the Greek littoral towns were reduced, as also the Carians and Lycians. The king of Cilicia (Syennesis) voluntarily acknowledged the Persian suzcrainty. In 539 Nabonidus was defeated and Babylon occupied, while, with the Chaldean Empire, Syria and Palestine also became Persian (see Jewrs). The cast of Iran was further suhdued, and, after Cyrus met his end (528 e.c.) In a war against the eastern Nomads (Dahae, Massagetae), his son Cambyees conquered Egypt (525 s.c.). Cyprus and the Greek islands on the canst of Asia Minor also submitted, Samos being taken hy Darius. On the other hand, an expedition by Cambyses agningt the Ethiopian kingdom of Napata and Meroc came to grief in Nubia. The usurpation of Smerdis ($522-521$ n.c.) and his death at the hands of Datius was the signal for aumerous insurrections in Babylon, Susians, Persis, Medis, Armenia and many of the Eastern provinces. But, within two years ($521-519$), they were all crushed by Dartus and his generals.
The causes of this astonishing successa, which, in the brief space of a single generation, raised a previously obscure and secluded Armen tribe to the mastery of the whole Orient, ean only be Arms and tribe to the mastery of the whole Orient, can only be ority. The chief weapon of the Persians, asse their military superiority. The chief weapon of the Persians, as of all Iranians, was the bow, which accordingly the king himself holds in his portraits, e.g. on the Behistun rock and the coins (darics). In addition to the bow, the Persians carried short lances and short dagsers. But it was not by these weapons, nor by hand to hand ngigting, that the Persian victorics were wor. They overwheimed thetr enemy under a hail of arrows, and never allowed him to come to close quarters. While the infantry kneeled to shoot, the cavalry owarmed round the hossile, squadrons, threw their lines into confusion, and completed their discomfiture by a vigorous pursuit. la a charge the infantry also might employ lance and dagger; but the essential point was that the archers should be mobile and their use of the bow unhampered.

Conscquently, only a few distinguished warrion wore shirts of mail. For purposes of defence the rank and file metely carried a light hide-covered shield: which the infantry, in shooting, planted before them as a sort of barrier against the enemy's misailes. Thua the Persian army was lost, if heavy-armed hoplites succeeded in gaining their linee. In spite of all their bravery, they succumbed to the Greek phatanx, when. once the generalship of a Miltiades or a Pausanias had brought matters to a hand to hand conflict; and it was with justice that the Greck--Aeschylus, for instanceviewed their bartles against the Persian as a contest between upear and bow. None the less, till Marathoa the Persians were successfui in disconifting every enemy before he could close, whether that enemy consisted of similarly accoutred bowmen (as the Medes), of cavalry armed with the lance (as the Lydiann), or of heavily armoured warriors (as the Babylonians, Egyptians and Greeck).
To all thia should be added the superiority of their icaders; Cyrus especially must have been an exceedingly able general. Obviousty, also, he must have understood the art of organizing his people and arousing the feeling of nationality and the courage of neff-sacrifice. Is bis timo the Perrinna were a etrong manly peasantry, domiciled in a healthy climate and babifuated to all hardships-a point repeatedly emphasized, in the tales preserved by Herodotus, as the cause of their successes (e., Herod. ix. 122). Herodotus, however, also records (i. 135) that the Pervians were "of all mankind the readiest to adopt foreige customm, good or bad," a sentence which is equally applicable to the Romass, and which in the case of both natione goes far to explain, not merely their successes, but also the character of their extipires.

Tho fundamental features of the imperial orgagization must have been due to Cyrus himself. Darius followed in his steps orgenime- and completed the vast structure. His role, indeed, than of was peculiarly that of supplementing and perfecting the work of bis great predecessor. The orgatization of the empire is planned throughout on broad, free lines; there is nothing mean and timorous in it. The great god Ahuramazda, whom king and people alike scknowledge, has given them dominion "over this earth alar, over many peoples and tongues;" and the consciousness is strong in them that they aro masters of the world. Thus their sovereign styles himbelf "the king of kings" and "the king of the dands" -that is to say, of the
whole civaltzed world. For the provinces remaining unsubdued on the extreme frontiers to the west, the north and the east are In their view almost negligible quantities. And far removed as the Persians are from disavowing their proud sense of nationality ("a Persian, the son of a Persian, an Aryan of Aryan stock " says Darius of himself in the inscription on his tomb)yet equally vivid is the feeling that they rule the whole civilized world, that their task is to reduce it to unity, and that by the will of Aburamazda they are pledged to govern it aright.
This is most clearly seen in the trealment of the subject races. In contrast with the Assyrians and the Romans the Perslans invariably conducted their wars with great humanity. The vanquiched kings were bonourably

Suppect
Nrions dealt with, the enemy's towns were spared, except when grave offences and insurrections, as at Miletus and Athens, rendered punishment imperative; and thelr inhabitants were treated with mildness. Like Cyrus, all his successors welcomed members of the conquered nationalities to their service, employed them as administrutors or generils and mado them grants of land: and this not only ln the case of Medes, hut also of Armenians, Lydians, Jews and Greeks. The whole population of the empire was alike bound to military servico The subject-contingents stood side by side with the native Persian troops; and the garrisom-in Egypt, for instancowere composed of the most varied nationalitien.
Among the subject racen the Medes particularly stood high in favour. Darius in his inscriptions always names them immediately after the Persians. They were the predecessors of the Persians in the empire and the more civilized people. Their inslitutions, court ceremoaial and dress were all adopted by the Achaemenids. Thus the tribal distinctions began to recede, and the ground was prepared for that amalgamation of the Iranians into a single, uniform nation, which under the Sassanids was completely perfected-at least for west of Iran.
The lion's share, Indeed, falls to the dorminant rece itself. The inhabltants of Persis proper-from which the eastern tribes of Carmanians, Utlans, \&x., were excluded and formed into a separate satrapy-pay no taxes. Thorsimes. Instead, they bring the best of their possessions (e.g. a particularly fiae iruit) as a gin to their king on festival days; peasants meeting him on his exciuslons do the same (Plut. Artax. 4 5; Dinon ap. Aelian. var. hist. i. 3 y ; Xen. Cyr. viii. 5, 21. 7, x). In recompense for this, he distributes on his return rich presents to every Pensian man and woman-the women of Pasargadae, who are membens of Cyrus's tribe, each recretving a piece of gold (Nic. Dam. fr. 66. Plut. Alex. 69). In relation to his Pessians, he is always the people's king. At his acecssion he is consecrated in the templo of a warrior-goddess (Anaitis ?) at Pasargadae, and partakea of the simple meal of the old peasant days-a mess of figs, terebinths and sour milk (Plut. Arlax. 3). The Persians swear allegiance to him and pray to Ahuramauda for his life and the welfare of the people, while he vows to protect them against every attack, and to judge and govern them as did his fathers hefore him (Herod. i. 132; Xen. Cyr. xviii. 5, 25, 27). For helpers be has at his side the "faw-bearers" (dutabara Dan. iil. 2, and in Babyl. documents; cf. Herod, iii. 31; v. 25, vī. 194; Esther i. 13, \&c.). These-the Persian judges-are mominated by the king for life, and generally bequeath their office to their sons. The royal decision is hased on consultation with the great onet of his people: and such is the case with hly officials and governors everywhere (cl. the Book of Eara).

Every Persian able to bear arms is bound to serve the king -the great landowners on horseback, the commonaliy on foot. The noble and well-to-do, who need not till their fieldm in person, are pledged to appear at court as frequently as possible. Their children are brought up in company with the princes "at the gates of the king," Instrueted in the handling of arms, in riding and hunting, and introduced to the service of the state and the znowledge of the law, as well as the commandments of religion. Then such as prove their worth are called to high offee and rewarded, generally with grants of land.

The higheat rank was held by the descendants of the six great familics, whose heads stood by Darius at the killing of the Magian. The Grecks class them and the king together, under the name of "the seven Persians." These enjoyed the right of entering the presence unannounced, and possessed princely entatos in the provinces. Besides these, however, numbers of other Persians were despatched to the provinces, setuled there, and andowed with lands. There existed, in fact, under the Achaomenids a strong colonizing movement, difused through the whole empire; traces of this policy occur more especially in Armenia, Cappadocia and Lycia, but also in the rest of Asia Minor, and not rarely in Syria and Egypt. These colonists formed the nucleus of the provincial military levy, and were a tower of strength to the Persian dominion. They composed, moreover, the Pcrsian council, and vice-regal househoid of the Satraps, exactly as the Persians of the home-country composed that of the king.

Though the world-empire of Persia was thus deeply impressed by a national character, care was nevertheless exercised that the general duties and interests of the subject races should eceelve due consideration. Wo find their representatives, side by side with the Persians, occupying every sort of position in the regal and vice-regal courts. They take their part in the councils of the satraps, precisely as they do. in military service (cf. the evidence of Ezra); and they, too, are rewarded by bounties and estates. To wield a peaceful nuthority over all the subjects of the empire, to reward merit, and to punish Kapsgression-such is the highest task of king and officials.

On his native soil Cyrus built himself a town, with a palace and a tomb, in the district of Pasargadae (now the ruins of Royal
Reskiderson. Murghab). This Darius replaced by a new capital, deeper in the centre of the country, which bore the name "Persian" (Pärsa), the Persepolis (g.v.) of the later Greeks. But the district of Persis was too remote to be the administrative centre of a world-empire. The natural centre lay, rather, in the ancient tertile tract on the lower Tigris and Euphrates. The actual capital of the empire was therefore Susa, where Darius I. and Artaxerxes II. erected their magnificent palaces. The winter months the kiags chielly spent in Babylon: the hot summer, in the cooler situation of Ecbatana, where Darius and Xerxes built a residence on Mt Elvend, south of the city. From a palace of Artaxerxes IL. in Ecbatana itsclf, the fragments of a few inscribed columns (now in the possession of Mr Lindo Myers and published by Evetts in the Zeilschr. f. Assyr. V.) have been prescrved. To Persis and Persepolis the kings paid only occasional visits especially at their coronations.

Within the empire, the two great civilized states incorporated by Cyrus and Cambyses, Babylon and Egypt, accupicd a position Anbyloale of their own. After his defeat of Nabonidus, Cyrus Babylanla
and proclaimed himself "King of Babel "; and the same tille was born by Cambyses, Smerdis and Darius. So, in Egypt, Cambyses adopted in full the tilles of the Pharaohs. In this we may trace a desire to conciliate the native population, with the object of maintaining the fiction that the old state still continued. Darius went still farther. He encouraged the efforts of the Egyptian pricsthood in every way, built temples, and enacted new laws in continuance of the old order. In Babylon his procedure was presumably similar, though berc we possess no local evidence. But he lived to see that his policy had missed its goal. In 486 B.c. Egypt revolted and was only reduced hy Xerxes in 484 . It was this, probably, that induced him in 484 to renounce his title of "king of Babel," and to yemove from its temple the golden statue of Bel-Marduk (Mcrofach), whose hands the king was bound to clasp on the first day of each year. This proceeding led to two insurrections in Babylon (probably in 484 and 479 B.C), which were apeadily repressed. After that the "kingship of Babel" was definitely abolished. In Egypt the Persian kings still retained the style of the Pharaohs; but we hear no more of concessions. to the priesthood or to the old institutions, and, apart from the great enegis of el-Kharga, no mare tcmples were erected (see Egypt: History).

At the head of the court and the imperial administration stands the commandant of the body-guard-the ten thousand "Immortals," often depicted in the sculptures of mpo water Persepolis with lances surmounted by golden apples, and other This grandce, whom the Greeks termed "Chiliarch," Onficiak. corresponds to the modern vizier. In addition to him, we find seven councillors (Ezra vii, 14; cf. Esther i. 14). Among the other afficials, the "Eye of the King" is frequently mentioned. To him was entrusted the control of the whole empire and the supcrintendence of all officials.

The orders of the court were issued in a very simple form of the cunciform script, probably invented by the Medes. This comprised 36 signs, almost all of which denote single sounds. In the royal inscriptions, a translation into Susan (Elam- ombert itic) and Babylonian was alwayt appended to the Lergumes. Persian text. In Egypt one in hieroglyphics whs added, as in the inscriptions of the Suez canal; in the Grecian provinces, another in Greck (e.g. the inscription of Darius on the Bosporus, Herod. iv. 37, cf. Iv. 91). The cuneiform script could only be written on stone or elay. Thus there has been discovered in Gabylon a copy of the Behistun (q.v.) inscription preserved oa a block of dolerite (Weissbach, Babylonische Miscellen. P. 24). For administrative purposes, however. it would seem that this inconvenient matefial was not employed; its place being taken by skins (δ dotipat, parchment), the use of which was edopted from the western peoples of the empire. On these were further written the journals and records kept at the court (ch Diod. ii 22, 32: Ezra iv. 15, v. 17, vi. 2; Esther vi. 1, ii. 23). With such materials the cunciform script could not be used; instead, the Persian language was written in Aramaic characters, a method which later lod to the so-called Pahlavi. i.e. Parthian ecript. This mode of writing was obviously alone employed in the state-services since Datins I.; and so may be explained the fact that, under the Achacmenids, the Persian language rapidly declined, and, in the inscriptions of Artaxerxes 111 . only appears in an extremely neglected guise (see Cuneiform Inscriptions, Alphabett).

Side by side with the Persian, the Aramaic, which had long been widely diffused as the speech of commerce, enjoyed currency in all the western half of the empire as a second dominant language Thus all deeds, enact ments and records designed for these provinces were furnished with an official Aramaic version (Ezra iv. 7). Numerous documents in this tongue, dating from the Persian period, have been discovered in Egypt (cf. Sayce and Cowley, Aramaic Papyri discorered af Assuan 1906), and the coins minted by the satraps and gencrals usually bear an Aramaic inscription. (So, also, a lion-wcight from Abydos, in the British Museum.) The Demotic in Epypt was employed in private documents alone. Only in the Hellenic provinces of the empire Greek replaced Aramaic (cf. the letter to Pausanias in Thuc. i. 129: an edict to Gadatas in Maqnesia, Cousin et Deschampa, Bulletin de corresp. hellesique xii 530 Dittenberger, Sylloge 2; 80, also, on coins)-a clear prool that the Persians had already begun to recognize the indepcadent and important position of Greek civilization.'
Darius I. divided the Persian Empire into twenty great provinces, satrapies, with a "guardian of the country" (khshathropavan; see Satrap) at the head of each. A list is preserved in Herodotus (iii. 89 sqq .); but the boundaries were frequently changed. Each satrapy was
again subdivided into several minor governorships. The satrap is the head of the whole administration of his province. He levies the taxes, controls the legal procedure, is responsible for the security of roads and property, and superintends the subordinate districts. The heads of the great military centres of the empire and the commandants of the royal fortresses are outside his jurisdiction: yet the satrape are entitled to a body of troops of their owit; a privilege which they used to the full, especially in later periods. The satrap is held in his position as a subject by the controlling machincry of the empire, especially the "Eye of the King "; by the council of Persians in his province with
${ }^{2}$ For the editions of the Persian inscriptions sec Bennstons. For the Persian documents, Ed. Meyer Entstehung des Judeniwws, P. 19 sgq. The hiejoglyphic inscriptions of the Suez Canal are published in the Recucil de trav. d'égyplot. at d'astyriol. vols. vii. ix xi. xiii; the private documents Irom Babylonia and Nippur, by Strassmaier, Babyl. Urkunden, and Hilprecht and Clay, Baby. Exped. of Unfu. of Pennsylponia, vols. ix. x. Numerous Jewish dceu: ments in Aramaic have been found at Elephantine (Sayce and Cowley, A ramaic Papyrs disconered as A sswan, 1906), among them an official romplaint of the Jewish colony settled at Elephaptinc. addressed to the Persian satrap of Judaca, in 408 B.c., which throws a new light on many passages in Exra and Nehemiah, published by Senchan in A blemallumgos der berh A hademior. 2907.
whom he is bound to debate alr matterin of inpottince；and hy the army：while in the hands of the messengers（Pers，dotdodat or ayyapon－a Babylonian word：see Angarn）the government despatches travel＂swifter than the crane＂along the great imperial highways，which are all provided with regular postal stations（ci．the description of the route from Suss to Sardis in Herod v．52）．

Within the satrapies the subject races and communities occupied a tolerably independent position；for instance，the subject Jews，under their elders and priests，who were evets communt able to convene a popular assembly in Jerusalem Clos．
（cf．the Books of Ezra and Nehemiah）．Ohviously also，they enjoyed，as a rule，the privilege of deciding lawrsuits among themselves；their general situation being similar to that of the Christian nationalities under the Ottomans；or to that of many tribes in the Russian Empire at the present day．The pressure of despotism was manifest，not so much in that the King and his officials consistently interfered in individual cases， but that they did so on isolated and arbitrary occasions，and then swept aside the privileges of the subject，who was impotent to resist．

For the rest，the subject population falls into a number of distinct groups．In the desert（as among the Arablan and Turanian nomads），in wild and sequestered mountains（as in Zagros in north Media，and Mysia，Pisidia，Paphlagonia and Blthynia in Asla Minor），and also in many Iranian tribes，the old tribal constitution，with the chicftain as its head，was left intact even under the imperial suzerainty．The great majority of the civilized provinces were subdivided into local administra－ tive districts governed by officials of the ting and his satraps． These the Greeks named zov，＂peoples．＂Within these， again，there might lie large town settlements whose internal affain were controlled by the elders or the officials of the com－ munity：se，for instence，Babylon，Jerusalem，the Egyptian cities，Tarsus，Sardis and others．On the same footing were the spinitual priveipalities，with their great teraplo－property； as Bambyce in Syria，the two Comanas in Cappadocia，and so lorth．Beaides these，however，vast districts were either con－ verted into royal domains（rapdiacroc）with great parks and hunting grounds under royal supervision，or else bestowed by the king on Persians or deserving members of the subject－races （the＂benefactors＂）as their personal praperty．Many of these estates formed respectable priscipalities；ag．those of the house of Otanes in Cappadocia，of Hydarnes in Armenia， Pharnabazus in Phrygia，Demaratus in Teuthrania，Themis－ tocles in Magnesia and Lampsacus．They were absolute privatc property，handed down from fathor to son for centuries，and in the Hellenistic period not rarely became independent king－ doms．These potentates were styled by the Greaks duyhorae or mbapxac．

The last class，quite distinct from all these organizations， was formed by the city－states（rdieas）with an independent The chy constitution－whether a monarchy（as in Phoenicia）， and popular assembly（as in the Greak towns）． The escential point was that they enjoyed a separate legalized organization（autonomy）．This was only to be scen in the oxtreme western provinces of the cmpise among tho Phocni－ cians，Greeks and Lycians，whose cities wereessentially distinct from those of the east；which，indeed，to Groek eyes，were only great villages（monorblecs）．It is raadily intelligible that their character should bave proved practically incomprehensiblo to the Persians，with whom they came into perpetual collision． These sought，as a rule，to cope with thedifficulty by trancferring the governpent to individual persons who enjoyed their confi－ deace：the＂tyrants＂of the Greek towns．Mardaniug，alone， after his suppression of the Lonic revolt－which had originated with these very tyrants－made an attempt to govern them hy the ansistance of the domocracy（ 493 B．C．）．

The proviaces of the Persian Empire differed as materially in economy as In organization．In the extreme west，a money currency in its mate rignly developed lorm－that of coinage mintod by
the Betce，or an autonomous comarulity－ihad dovaloped fince the 7th century among the Lydians and Greeks In the canmereo main portion，however，of the Oriental world－Egypt，and Pimaner Syria，Phoenicia and Babylonia－the old mode of commerce was sill in vogue，conducted by means of gold and silver bars，weighed at eich tramaction．Indoed，ar money curreacy only began to make headway in thase districts in the 4th century B．c．In the eastern provinces，on the other hand，the primitive method of exchange by barter still held the field．Only in the auriferous and civilised frontier districte of India（ethe Puepab）did a system of coinage find early acotetanpe．There Persian and Attic moncy was widely distributed，and imitations of it st ruck．in the fifth and fourth pre－Christlan centurics
Thus the empire was compelled to grapple with all these varied conditions and to reconcile them as best it might．At the court ＂natural ecomomy＂was still the rale．The officiale and Oriental troops received payment in kind．Tbey ware fed＂by the tatile of the king＂from which 15,000 men daily drew their sustenance （cI．Heraclides of Cyme \ln Athen，iv． 145 B ，\＆c．）and were rewarded by gifte and assignments of land．The Creek meroenaties，on the contrary，had to the paid in curteney；zor could the satraps of the west dispense with bard cach．The king，again，neoded the procions metals，not merely lor bountics and rewards but for important enterprises in which money payment was imperative．Conse－ quentiy，the royal revenues and taxes were paid partly in the prodous mectala，partiy in matural produce－thormes and cattele grain，clothing and ite materials，furniture and all articlen of inductry（cf．Theopomp．Ir．24，125，\＆ce．）．The satraps，also，in addition to money payments，levied contributions＂for their table， at which the officials＇ate（Nehem，v．14）．
The precious metals brought in by the tribute were collected in the great treasurehouses at Suea，Permopolis，Pasmerideo，and Ecbatana，whore gigantic manses of silver and，more especially，of gold，were stored In bulion or partially momer ach wrought into vessels（Herod．fiti．96；Strabo xv．73I，Colmage． 735；Arrian ii．16，\＆c．）；exactly as is the casc to－day in the shah＇s treasure－hamber（Curzon，Persis，茫 484）．It is also obmervable that the conjunction of payments in find and money taxes atill exists．The province of Khorasan，for Instance，with some hall mililion intrabitants，paid in 1885［154，000 in gold，and in addition natural produce to the value of th3，000（Cutzon，op．cit．i．181，18 ii． 3 80）．When the king required money he minted as much as was necessary．A reform in the coinage was effected by Darius， who struck the Daric．（Pcrs．Zarig，i．e：＂plece of gold＂；the word has nothing to do with the name of Darius），a gold plece of 130 grains（value about 23 s．）；this being equivalent to 20 silver pieces ＂＂Median shekels，＂alynou）of 86.5 grains（value according to the then rate of silver－ 13 silver to 1 gold－about is 2 d ．）．The coining of gold was the exclusive prerogative of the king；silver could be coined by the satraps，generals；independent communities and dynasts．

The extent of the Persian Empire Fas，in essentiak，defined hy the great conquests of Cyrus and Cambysear Darius was no more a conquistador than Augustus．Rether， the task he set himseli was to round of the empire and sccure its borders：and for this purpose in Asia

Ingoriat

 Pallicya Minor and Armenia he subdued the mountain－tribes and． advanced the frontier as far as the Caucasns；Colchis alone remalning an iadependent，kingdom under the imperial suzerainty．So，too，he annexed the Indus valley and tbe auriferous bill－country of Kafiristan and Cashmir（Khowion or Kdoweчpor，Herod．iii．93，vii．67，86；Steph．Byz．），as well．as the Dardae in Dardistan on the Indus（Ctesias，Ind．fr．12： 70，\＆c．）．From this point he directed several campaling against the Amyrgian Sacao，on the Pomir Platealu and northwards，whom he anumerates in his list of subject races， and whose mounted archers formed a main division of the armies despatched against the Greeks，It was obviously an． attempt to take the nomads of the Turanian steppe in tho rear and to reduce them to quiescence，which led to his unfortunate expedition against the Secythians of the Rusian＇ steppes（c． 512 в．c．；cf．Darros）．Side by side，however，with these wars，we can read，even in the scanty tradition at our disposal，a consistent effort to further the great crivilizing mission imposed on the empire．In the dist rict of Herat，Darius established a great water－basin，desigmed to facilitate the cultivation of the steppe（Herod．iii．117）．Ha had the course of the Indus explored by，the Carian captain Scylaz（q．b．）of Caryanda，who then mavigated the Indian Ocean－ back to Suez（Herod．iv．44）and wrote an account of his voyage in Greek．The desire to create a direct communication between， the seclusion of Persis and the commerce of the werld in exident，

In his foundation of several harbours, described by Nearchus, on the Persian coast. But this design is still more patent in his completion of a great canal, slready begun by Necho, from the Nile to Suez, along which several monuments of Darius have been preserved. Thus it was possible, as says the rempant of an hieroglyphic inscription there discovered, "for ships to sail direct from the Nile to Persia, over Saba." In the time of Herodotus the canal was in constant use (ii. 158, iv. 39): afterwards, when Ebypt regained her independence, it decayed, till restored by the second Ptolemy. Even the circumbavigation of Africa was attempted under Xerxes (Herod. iv. 43).

It has already been mentioned, that, in his efforts to conciliate the Egyptians, Darius placed his chief reliance on the priesthood: and the same tendency runs throughout the imperial policy toward the conquered races. Thus Cyrus himself gave the exiled Jews in Babylon permission to return and rebuild Jerusalem. Darius allowed the restoration of the Temple; and Artarerxes I., by the protection accorded to Ezra and Nehemiah, made the foundation of Judaism possible (see Jews: 甜 19 sqq .). Analogously in an edict, of which a later copy is preserved in an inscriplion (see nbove), Darius commands Gadatas, the governor of a domain (rapabacol) in Magnesia on the Macander, to observe scrupulously the privileges of the Apollo-sanctuary. With all the Greek oracles-even those in the mother-countrythe Persians were on the best of terms. And since these might reasonably expect an enormous extension of their lofluence from the eatablishment of a Persian dominion, we find them all zealously medizing during the expedition of Xerxes.
For the development of the Asiatic religions, the Persian Empire was of prime importance. The definite erection of a single, vast, Rempere world empire cost them their original connexion with the state, and compelled them in future to address themselves, not to the community at large, but to individuals, to promise, not political success nor the independence of the people, but the welfare of the man. Thus they became at once universal and capable of extension by propaganda: and, with this, of entering into keen competition one with the other. These traits are most clearly marked in Judaiam; but, after the Achaemenid period, they are common to all Oriental creeds, though our Information as to most is scanty in the extreme.
In this competition of religions that of Iran played a most apirited part. The Persian kings-none more so than Darius, whose religious convictions are enshrined in his inscriptionsand, with the kings, their people, were ardent professors of the pure doctrine of Zoroaster; and the Persians settled in the provinces diffused his creed throughout the whole empire. Thus a strong Persian propegandism arose eapecially in Armenia and Cappadocis. where the relfion took deep root among the people, but also in Lydia and Lycia. In the process, however, important modifications were introduced. In contrast with Judaiem, Zoroastrianism did not enter the lists against all gods save its own, but found no difficulty in recognizing them as subordinate powero-helpers and servants of Shuramazda. Consequently, the foreign creeda often reacted upon the Persian. In Cappedocia, Aramaic inscriptions have been discovered (1900), in which the indigenous god, there termed Bel the king, recognizes the "Mazdayamaian Religian" (Din Mcedayasmish)-i.a. the religion of Ahuramazda personified as a woman-as his cister and wile (Lidzbaraki, Ephem. f. semil. Episr. i. 59 sqq.).
The gorgeous cult of the gods of civilization (especially of Babylon), with their host of temples, images and festivals, exercised a corresponding influence on the mother-country. Moreover, the unadulterated doctrine of Zoroaster could no more become a permanent popular religion than can Christianity. For the masses can make little of abstractions and an omnipotent, omnipresent deity; they need concrete divine powers, standing ncares to themwives and their lot. Thus the old Ggures of the Aryan folk-religion peturs to the foreground, there to be amalgamated with the Babylonian divinities. The goddess of springs and streams (of the Oxus in particular) and of all fertility-Ardoisura Anahila, AnailisIs endowed with the form of the Babylonian Ishtar and Belit. She is now depicted as a beautiful and strong woman, with prominent breasta, a golden crown of stare and golden raiment. She is worebipped as the goddess of generation and all sexual life (cf. Herod. i. 13I, where the names of Mithras and Anaitis are interchanged); and religious prostitution is translerred to her service (Strabo xi. 332, xii. 559). At her side stands the sun-god Mithras, who is represented as a young and victorious hero. Both deities occupy the very first rank in the popular creed; white to the theologian they are the most potent of the good powers-Mithras being the herald and propagator of the service of Light and the mediator betwixt man and Ahuramazda, who now lades more into the baclapround. Thus, in the abbequent period, the Pesian religion
appoars purely as the religion of Mithras. The fentival of Mitbras is the chief leatival of the empire, at which the king drinks and is drunken, and dances the national dance (Cies. fr. 55; Duris fr. 13). This development culminated under Artaxercics II., who, according to Berowass (fr. 16 ap. Clem. Alex. prol. 1. 5. 65), Grss erected Etatues to Anaitia in Persepolis, Ecbatana. Bactria, Suse. Bebylon, Dampacius and Sardis. The truth of this account it proved by the fact that Artaxerxcs II. and Artaxerxes III. are the only Achaemenids who, in their inscriptsons, invoke Anaitis and Mithra side by side with Ahuramazda. Other gods, who come into prominence, are the dragon-slayer Verethraghna (Areagnes) and the Good Thought (Vohumano, Omanos); and even the Sacacan festival is adopted from Babylon (Berossus fr. 3: Ctes. fr. 16: Strabo xi. 512, \&cc.). The chiel centres of the Persian cults in the west were the district of Acilisene in Armenia (Strabo ki. 532, \&c.). the town of Zela in Cappadocia (Strabo xií 559), and several citics in Lydia.
The position of the Persian monarchy as a world-empire is characteristically emphasized in the buildings of Darius and Xerxes in Persepolis and Susa. The peculiarly national basis, still recognizable in Cyrus's architecture at Pasargadae, recedes into insignificance. The royal edifices and sculptures are dependent, mainly, on Babylonian models, but, at the same time, we can trace in them the influence of Grecee, Egypt and Asia Minor: the last in the rock-sepulctrea. All these eleneats are combined into an organic unity, which achicved the greatest creations that Oriental architecture has found poscible. Nevertheless, the result is not a national art, but the art of a world-empire; and it is obvious that foreign craftsmen must have bern active in the royal servicesamong them, the Greek sculptor Telephanes of Phocaea (Pliny xuxiv. 68). So, with the cullapse of the empire, the imperial art vanishes also: and when, some 500 years later, a aew art arowe under the Sassanids, whose achievements stand to those of Achaemenid art in much the same relation as the achicvements of the two dynasties to each other, we discover only isolated reminiscences of its predecessor.
For the organization and character of the Persian Empire, see Barnabas Brisson, De reqia Persarum principalu libri iii. (1590); Heeren, Ideen uber Politik, Handel und Verkehr der allen Yill. i.; G. Rawtinson, History of Herodolus, iit. 555 sqq.; Fioe Eastern Monarchics, iii.; Eduard Meyer, Geschichice des Allertums, iii. On the Satrapies, ef. Krumbholz, De Asine minoris sadrapiis paricis (1883). See also Mithras.
3. History of the Achaemenian Empire.-The history of the Persian Empire was often written by the Greeks. The most ancient work preserved is that of Herodotus (q...), who supplics rich and valuable materials for the period ending in 479 B.c. These materials are drawn partly from sound tradition, partly from original knowledge-as in the account of the satrapies and their distribution, the royal highway, the nations in Xerxes' army and their equipment. They also contain much that is admiltedly fabulous: for instance, the storics of Cyrus and Croesus, the conquest of Babylon, \&ac. Forty years later (c. 390 B.c.), the physician Ctesias of Cnidus, who for 17 years (414-398 B.c.) remained in the service of the Great King, composed a great work on the Persian history, known to us from an extract in Photius and numerous fragments. Clesias (g.v.) possesses a more precise acquaintance with Persian views and institutions than Herodotus; and, where he deals with matters that came under his own cognisance, he gives much useful information. For the early period, on the other hand, he only proves how rapidly the tradition had degenerated since Herodotus; and here his narrations can only be utilized in isolated cases, and that with the greatest cautlon. Of more value was the great work of Dinon of Colophon (c. 340), which we know from numerous excellent fragments; and on the same level may be placed a few statements from Heraclides of Cyme, which afford specially important evidence on Persian institutions. To these must be added the testimony of the other Greek historians (Thucydides, Ephorus, Theopompus, \&c, with the histories of Alezander), and, before all, that of Xenophon in the Anabasis and Hellewica. The Cyropaedia is a didactic romance, written with a viow to Greek institutions and rarely preserving genuine information on the Persian Empire. Of Oriental sources, only the contemporary books of Exra and Nehemiah are of much importance: also, a few statements in the much later Esther romance. Berossus's history of Babylon contained much valuable and trustworthy information, but next to nothing has survived. That the native tradition almost entircly forgot the Achaemenid Empire, has been mentioned above. For a more detailed account
of these sources see separate articles on Hmocoros, Acc; Ezan; and Nericicuar
Of modern mecounts mee expecially Th. Nowdeke, Amfstles smp persisches Gaschichte (1887). The worke of Marquart, Unient sukwingen sur Geschicher son Eran (2 pta, 1896-190p), abound in daring theories and must be used with caution. On the chronology. c. Eduard Meyer, Forschungen wur allen Geschichte, ii.

The external history of the empire is treated under the

Lhe of che
xine individual kings (see also history sections of articies Geeece; Egypt; \&c.). The order is as follows:-
Cyrus (558-528); conquered the Medes in 550; king of Babylon
from 538. from 538.
Caybyses (528-521).
SMERDIS (521).
Darius I. ($521-485$).
Xerxes I. (485-465).
Artaxerexes I. (465-425).
(Xerxes II. and Secydianus or Sogdianus, 425-424.)
Dakivs II. Nothus (424-404).
Amtaxerexes II. (404-359).
Ariaxiaxes iil. Ochus (359-338).
Asess (339-336).
Darius III. (336 -330).
The chronology is cxactly verified by the Ptolemaic canon, by numerous Babylonian and a few Egyptian documents, and by the evidence of the Grefka. The present article pives oaly a brief conspectus of the main events in the history of the empire.

Though, unlike Cyrus and Cambyses, Darius made no net expeditions of conquest, yet a grest empire, which is not bounded The wars by anot her equally great, but touches on many small sariast tribes and independent communities, is Inevitably arese. driven to expansion. We have already scen that the altempt of Darius to control the predatory nomads in the north led to his expedition against tbe Scythians; this, again, led to the incorporation of Thrace and Macedonia, whose king Perdiccas submitted. And since a great portion of the Mediterranean coast-line belonged to the empire, further complications resulted automatically. In contrast with the Greeks Carthage took the part of Persia. Darius, indeed, numbers the city-under the name of Karka-among his dominions: as also the Maryans (Maciya) on the Syrtes (Andreas, Verkandl. d. xiii. oriental. Congresses, Hamburg, 1902, p. 97). But, above all, the Greek cities with their endless feuds and violent internal factions, were incessant in their appesls for intervention. Nevertheless, Darius left European Greece to itself, till the support accorded to the Ionian and Carian insuugents by Athens and Eretria (499 B.c.) made war inevitable. But not only the expeditions of Mardonius (492) and Datis (490), but even the carefully prepared campaign of Xerxes, in conjunction with Carthage, completely failed ($480-479$). On the fields of Marathon and Plataea, the Persian archers succumbed to the Greek phalanz of hoplites; but the act ual decision was effected by Themistocles, tho had meanwhile created the Athenian fleet whicb at Salamis proved its superiority over the Perso-Phoenician armade, and thus precluded beforchand the success of the land-forces.

The wreck of Xerxes' expedition is the turning point in the history of the Persian Empire. The superiority of the Greeks was so pronounced that the Persians never found coarage to repeat their attack. On the contrary, in 466 B.c. their army and fleet were again defeated by Cimon on the Eurymedon, the sequel being that the Greek provinces on the Asiatic coast, with all the Thracian possessions, were lost. In itself, indeed, this loss was of no great significance to such a vast empire; and the attempts of Athens to annex Cyprus and conquer the Nile vailey, in alliance with the revoited Egyptians, ended in failure. Athens, in fact, had nol sufficient strength to undertake a serious invasion of the empire or an extensive scheme of conquest. Her struggles witb the other Hellenic states constrained her, hy the peace of Callias (448), definitely to renounce the Persian wrar; to abandon Cyprus and Egypt to the king;and to content berself whit his promise-not that be would surreoder the littoral towns, but that he would abstain from an armed attack upon them. The really decisive point was, rather, that the disasters of Selamis and Plataca definitely shattared the offensive power
of the empire; that the centre of gravity in the world's history had shifted from Susa and Babylon to the Aegean Sea; and that the Persians were conscious that in spite of all their courage they were hencelorward in the presence of an enemy, muperior in arms as well as in intellect, whom they could not hope to subdue by their own strength.
Thus the great empire was reduced to immobility and stagna-tion-a process which was assist ed by the deteriorating influences of civilization and world-dominion upon the character of the ruling race. True, the Persians continued semeot to produce brave and honourable men. But the Empano. influences of the harem, the eunuchs, and similar Rebelloan. court officials, made appalling progress, and men of energy began to find the temptations of power stronger than their patriotism and devotion to the king. Thus the satraps aspired to inder pendence, not merely owing to unjust treatment, but also to avarice or favourable conditions. As early as 465 B.c., Xerres was assassinated by his powerful vizier (chiliarch) Artabanus, who attempted to seize the reins of empire in fact, if not in name. A similar instance may be found in Bagoas (q, v.$) , after the$ murder of Artaxerxes III. (338 b.c.). To these factors must be added the degeneration of the royal line-a degeneration inevitnble in Oriental states. Kings like Xerres and more especially Artaxerxes 1. and Artaxerxes II., so far from being gloomy deapots, were good-natured potentates, but weak, capricious and readily accessible to pcrsonal infuences. The only really brutal tyrants were Darius H., who was completely dominated by his bloodthirsty wife Parysatis, and Artaxerxes III. wbo, though be shed rivers of blood and all but exterminated his whole family, was successful in once more uniting the empire, which under the feeble sway of his father had been threatened with discolution.

The upshot of these conditions was, that the empire pever again undertook an important enterprise, but neglected more and more its great civilizing mission. In considering, however, the subsequent disorders and wars, it must be borne in mind that tbey affected only individual portions of the empire, and only on isolated occasions involved more extensive areas in long and serious strife. To most of the provinces the Achaemenid dominion was synonymous with two centuries of peace and order. Naturally, however, the wild tribes of the mountains and deserts, who could be curbed only by strict imperial control, asserted their independence and harassed the neighbouring provinces. Among these tribes were the Carduchians in Zagros, the Cossaeans and Uxians in the interior of Elam, the Cadusians and other non-Aryan tribes in northern Media, the Pisidians, Iseurians and Lycaonians in the Taurus, and the Mysians in Olympus. All efforts to restore order in these districts were fruilless; and when the kings removed their court to Ecbatans, they were actually obliged to purchase a free passage from the mountain tribes (Strabo ci. 524; Arrian iii. 17, 1). The kings (e.g. Artaxerxes II.) repeatedly took the field in great force against the Cadusians, hut unsuccessiully. When, in 400 B.c., Xenophon marched with the mercenaries of Cyrus from the Tigris to the Black Sea, the authority of the king was nonexistent nortb of Armenia, and the tribes of the Pontic mountains, with the Greek cities on the coast, were completely independent. In Paphlagonia, the native dynasts founded a powerful though short-lived kingdom, and the chieftains of the Bithynians were absolutely their own masters. The frontier provinces of India were also lost. Egypt, which had already revolted under Libyan princes in the years 486-484, and again with Athenian help in $460-454$, finally asserted its independence in 404. Henceforward the native dynastics repelled every atteck, till they succumbed once more before Artaxerzes III. and Mentor of Rhodes.
In the other civilized countries, indeed, the old passion for freedom had been completely obliterated; and after the days of Darius L-apart from the Greek, Lycian and Phoenician towns-not a single people in all these provinces dreamed of shaking off the foreign dominion. All the more clearly, then, was the inner weakness of the empise revealed by the revolts
of the satraps. These were facilinted by the custom-quite contrary to the original imperial organization-which entrusted the pro incial military commands to the satraps, who began to receive great masses of Greek mercenaries into tbeir service. Under Artaxerxes I. and Darius II., these insurrections were still rare. But when the revolt of the younger Cyrus against his brother (40r B.c.) had demonstrated the surprising ease and rapidity with which \& courageous army could penctrate into the heart of the empire-when the whole force of that empire had proved powerless, not only to prevent some 12,000 Greek troops; completely surrounded, cut off from their communications, and deprived through treachery of thelt keaders, from escaping to the coast, but even to make a serious attack on them-then, Indeed, the imperial impotence became manifest. After that, revolts of the satraps in Asia Minor and Syria were of everyday occurrence, and the task of suppressing them was complicated by the forcign wars which the empire had to sustaln against Grecce and Egypt.
At this very period, however, the foreign policy of the empire gained a brilliant success. The collapse of the Athenian power Lemar Warne beiore Syracuse (413 B.c.) induced Darius III. to whithe order his satraps Tissaphernes and Pharnabazus, ametes. in Asia Minor, to collect the tribute overdue from poces of the Greek cities. In alliance with Sparta (see neundeder Petoponnestan War), Persia intervened in the conflict against Athens, and it was Persian gold that made it possible for Lysander to complete her overthrow (404 B.C.). True, war with Sparta followed immediately, over the division of the spoils, and the campaigns of the Spartan generals in Asla Minor ($399 \% 395$) were all the more dangerous as they gave occasion to numerous rebellions. But Persis joined the Greek league against Sparta, and in 394 Pharnabazus and Conon annihilated the Lacedaemonian fieet at Cnidus. Thus the Spartan power of offence was crippled; and the upshot of the long-protracted war was that Sparta ruefully returmed to the Persian alliance, and by the Peace of Antalcidas ($q . v$. .), concluded with the king in 387 B.c., not only renounced all claims to the Asiatic possessions, but officially proclaimed the Persian suzerainty over Greece. Ninety years after Salamis and Plataea, the goal for which Xerxes had striven was actuslly attained, and the king's will was law In Greece. In the following decades, no Hellenic state ventured to violate the king's peace, and all the feuds that followed centred round the efforts of the combatants-Sparta, Thebes, Athens and Argos-to draw the royal powers to their side (see GreEce: Ancient History).
But, for these successes, the empire had to thank the internecine strife of its Greek opponents, rather than its own strength. Its feebleness, when thrown on its own resources, is evident from the fact that, during the next years, it failed both to reconquer Egypt and to suppress completely King Evagoras of Salamis in Cyprus. The satrap revolts, moreover, assumed more and more formidable proportions, and the Greck states began once more to tamper with them. Thus the reign of Artaxerxes II. ended, in 359 a.c., with a complete dissolution of the imperial authority in the west. His successor, Artaxerxes Ochus, succeeded yet again in restoring the empire in its full extent. In 355 b.c., he spoke the fatal word, which, a second-or rather a third-time, demollished the essentially unsound power of Athens. In 343 he reduced Egypt, and his generais Mentor and Memnon, with his vizier Bagoas (q...), crushed once and for all the resistance in Asin Minor. Ae his death in 33^{8}, immediately before the final catastrophe, the empire to all appearances was more powerful and more firmly established than it had been since the days of Xerxes.

These successes, however, were won only by means of Greek armies and Greek generals. And simultaneously the Greek Progrue civilization-diffused by mercenaries, traders, artists, oforove prostitutes and slaves,-advanced in ever greater thamon force. In Asia Minor and Phoenicia we can clearly trace the progress of Hellenism ($q .0$.), especially by the coinage. The stamp is cut by Greek hands and the Greek tongure pre domiontes more and more in the inseription. We can see that
the victory of Greek civilization had long been prepared on every side. But the vital point is that the absolute superiority of the Hellene was recognized as incontestable on both hands The Persian sought to protect himself against danger, by employing Greeks in the national service and turning Greek policy to the interests of the empire. In the Greek worid itself the disgrace that a peopie, called to universal dominion and capable of wiedding it , should be dependent on the mandate of an impotent Asiatic monarchy, was keenly felt by all who were not yet absorbed in the rivalry of dty with city. The spokesmas of this national sentiment was Isocrates; but numerous other writers gave expression to it, notably, the historian Calisthenes of Oiynthus. Union between Greeks, voluntary or compulsory, and an offensive war against Rersia, was the programme they propounded.
Nor was the time for its fulfilment far distant. The new power which now rose to the first rank, created by Philip of Macedon, had no engrained tendency inimical to the Persian Empire. Its immediate programme was rather Macedonian expansion, at the expense of Thrace and Ilyria, and the subjection of the Balkan Peninsuin. But, in its efforts to extend its power over the Greek states, it was bound to make use of the tendencies which aimed at the unification of Greece for the struggle against Persia: and this ideal demand it dared not reject.

Thus the conflict became inevitable. In 340, Artaxerxes III and his satrapa supported the Greck towns in Thrace-Perinchus and Byzantium-against Macedonlan aggression; in 3.38 be concluded an alliance with Demosthenea. When Philip, after the victory of Chaerones, had founded the league of Corinth (337) embracing the whole of Greece, he accepted the national programme, and in 336 despatched his army to Asia Minor. That he never entertained the thought of conquering the whole Persian Emplre is certain. Presumably, his ambitions woold have been satisfied with the liberation of the Greek cilies, and, perhaps, the subjection of Asia Minor as lar as the Taurus With this his dominion would beve allained much the same compass as later under Lysimachus; farther than this the baldest hopes of Isocrates never went.

But Philip's aseassination in 336 fundamentally altered the situation. In the person of his son, the throne was cocupied by a soldier and statesman of genius, saturated with Greck culture and Greck thought, and intolerant of every goal but the bighest. To comquer the whole world for Hellenic civilization by the aid of Macedoninn spears, and to reduce the whole earth to unity, was the tark that this heir of Heracles and Accillos san before him. This idea of universal conquest was with him a conseption much stronger developed than that which had inspired the Achaemenid rulera, and he entered on the project with full consciousaess in the strictest sease of the phrase. In fact, if we are to understand Alexander aright, it is fatal to forget that he was overtaken by death, not at the end of his carcer, bul at the beginning, at the age of chirty-three.
VL The Macedonian Dominion.-How Alexander conquered Persia, and how he framed his world-empire, cannot be related here. The essential fact, however, is that after the
victory of Gaugmela (Oct. 8, 313 s.c.) and, still Abroper more completely, after the asmasaination of Dariusavenged according to the Persian luws, on the perpetratorsAloxander regarded himself as the legitimate head of the Perrina Empira, and therefore adopted the dress and ceromoninal of the Periian kings.

With the capture of the capitals, tho Penian wre was at an end, and the atonement for the expedition of Xerxes was con-plete-a truth symbolically expressed in the burning of the pelace at Persepolis. Now began the world-conquest. For an universal empira, however, the forces of Macednnia and Greece were insufficient; the monarch of a world-empire could not be bound by the limitations imposed on the tribal king of Macedoa or the general of a league of Hellenic republica. He must stand as

1 Sce Alexaroter the Getat; Macedonian Empine; Itelutio Isw (for later revulto).
an autocrat, above them and above the law, reallzing the theoretical doctrines of Plato and Arfstotle, as the true king, who is a god among men, bound no more than Zeus hy a law, because "hinself he ts the law." Thus the divine kingship of Alexander derives indlrect line, not from thie Oriental politieswhich (Egypt apart) know nothing of royal apotheosis-but from these Fellenic theories of the state. Henceforward it becomes the form of every absolute monarchy in a civilized land, being formally mitigated only in Christian states by the assump. tion that the king is not God, but king " by the grace of Cod." The expedition of 332 B.c. to the shrine of Ammon was a preliminary to this procedure, which, in 324, was sealed by bis official elevation to divine rank in all the repablics of Greece To this corresponds the lact that, mstead of acting on the doctrines of Aristotle and Całlisthenes, and treating the Macedonians and Greeks as masters, the Asiatics as scrvants, Alexeader frad impartial recourse to the powers of all his subjects and strove to amalgamate them.' In the Persians particularly be sought a second pillar for his world-empire. Therefore, as early as 330 D.c., he dralted 30,000 young Persians, edueated them in Greek customs, and trained them to war on the Macedonian model. The Indian eampaign showed that has Macedonian troops were in fact inadequate to the conquest of the world, and in the summer of 326 they compelled hm to turn back from the banks of the Hyphasis. On his return to Persla, he consummated at Susa (Feb. 324 B C.) the union of Persian and Macedonian by the great marriage-feast, at which all his superior officers, with some 10,000 more Macedonians, were wedded to Perslan wives. The Macedonian veterans were then dishanded, and the Persians taken into his army. Simuliancously, at the Olympian festival of 324, the command was issued to all the cities of Greece to recognize him as god and to receive the exiles home. ${ }^{1}$ In 323 B.c. the preparations for the circumnavigation and subjection of Arabia were complete: the next enterprise being the conquest of the West, and the battle for Hejlenic cukure against Carthage and the Italian tribes. At that point Alezander died in Babyion on the 33th of June 323 в.c.

Alexander left no heir. Consequently, his death not only. ended the scheme of universal conquest, but led to an Immediate
the Kiogmers of cue Diefochl

Macedonian reaction. The army, which was considered as the representative of the people, took over the government under the direction of tts generals. The Persian wives were practically all discurded and the Persian satraps removed-at least from all important provinces. But the attempt to maintaln the empire in its unity proved impracticable; and almost immediately there began the embittered par, waged for several decades by the generals (diadochi), for the inheritance of the great king. ${ }^{2}$ It was e000 obtfous that the eastern rulers, at af events, could not dispense with thie natlve element. Peutestas, the governor df Persis, there played therble of Alexander ind wor the Persians completely to his side; for which be was dismissed hy Antigonus in. 315 (Diod. rix. 48). A similar position was attained by Seleucus-the only one of the diadochi, who had not divorced bis Persian wife, Apama-in Babylonia, which be governed from 319 to 316 and regained in the autumn of 312 . While Antigonus, who, since 315 , had striven to win the kingdom of Alexander for himself-wis detained by the war with hils rivals in the west, Seleucus; with Babyion as his headquarters, conquered the whole of Iran as far as the Indus. In northern Media alone, which lay outside the main scene of operations and had only been partially subject to the later Achaemenids, the Persian-satrap Atropetes, appointed by Alexander, maintained his independence and bequeathed his provinee to his successora. His name lis borne by north Media to the present day-Atropatene, modern Azerbaijon or Adherbeijan (see Medin). So, too, in Armenia the Persian dynasty of the

[^14]Hydarnids held its ground; and to these must be added, in the east of Asia Minor, the kingdoms of Pontus and Cappadocia, Pounded c. j01, by the Persians Mithradates I. and Anarathes I. These states were fragments of the Achaemenid Empire, which had safely transferred themselves to the Hellenistic state-systern.

The annexation of Iran by Seleucus Nicator led to a war for the countries on the Indian frontler, his opponent being Sandracottus or Chandragupta Maurya (9 g.), the founder Selocouy 1 . of the great Indian Empire of Maurya (Palimbothra) Nketor; and The result was that Seleucus abandoned to the actocime 4 Indian king. not merely the Indian provinces, but even the frontier districts west of the Indus (Strabo xv. 689-724), receiving as compensation 500 elephants, with other presents (Appian, Syr. 55. Justin xv. 4 ; Plut. A/cx:62, Athen. i. 18 D.). His next expedition was to the west to assist Lysimachus, Prolemy and Cassander in the overthrow of Antigonus.
The battie of Ipsus, in' 301, gave him Syria and the east of Asia Minor; and from then he resided at the Syrian cown of Antiochia on the Orontes. Sbortly afterwards he handed over the provinces east of the Euphrates to his son Antiochus, who, in the following years, till 282, excrcised in the East a very energetic and beneficial activity, which continued the work of his father and gave the new empire and the Oriental Hellenistic civilization their form. In order to protect his conquests Alexander had founded several cities in Bactria, Sogdiana and India, in which he settled his veterans. On his death, these revolted and endeavoured to return to Greece, hut were attacked and cut to pieces by Pithon (Diod. zviii. 7). Of aroek the other Greck townis in Asia scarcely any were rowesto founded by Alexander bimself, though the plan mall. adopted by his successors of securing their dominions by building Greek cities may perhaps be due to him (cf. Polyb. x. 27). Most of these new cities were based on older settlements; but the essential point is, that they were peopled by Greck and Macedonian colonists, and enjoyed civic independence with laws, officials, councils and assemblies of their own, in other words, an autonomous communal constitution, under the suzerainty of the empire. A portion, moreover, of the surrounding land was assigned to them. Thus a great number of the country distriets-the $80 m$ above mentioned-were transformed mino municipal corporations, and thereby withdrawn from the mmediate govemment of the king and his officials (satraps or stralegi'), though still subject to their control, except in the cases where they received unconditional freedom and so ranked as "confederates" The native population of these villages and rural distriets, at first, had nocivic rights, hut were governed by the foreign settlers. Soon, however, the two elements began to conlesce, in the Seleucid Empire, the process seems generally to have been both rapid and complete. Thus the cities became the maln factors in the diffusion of Hellenism, the Greek language and the Greek civilization over all Asia as far as the Indus. At the same time they were the centres of commerce and industrial life: and this, in conjonction with the royal lavour, and the privileges eccorded them, continually drew new settlers (especially Jews), and many of them developed into great and flourishing towns (see further under fieilenism).
Shortly after his conquest of Babylonia, Seleucus had founded a new capital, seleucia (q.v.), on the Ttgris: his intention being at once to displace the ancient Babylon from its former central position, and to replace it by a Greek city. This was followed by a series of other foundations in Mesopotamia, Babylonia and Susiann (Elam). "Media," stys Polybius (x. 27), "was encircled by a sequence of Greek towns, designed as a barriep against the barbarians." Among those mentioned are: Rhagac (Rai), which Seleucus metamorphosed into a HeHenic city, Europus, Laodicea, Apamea and Heraclea (Strabo xl. 525; Plin. vi. 43: cf. Mrois). To these must be added Achaea in Parthia, and, farther to the east, Alexandria Arion in Aria the modern Herat: also Antiochia Margiana (Strabo xi. 514, 516 Plin. 46, 93), now Merv, and many others. Further, Alexandria in Aradrosia, near Kandahar, and the towns founded by Alexander on the Hindu-Kagh anding.Sogetiana.

Thus an active Hellemic life soon arose in the East; and Greek settlers must have come in numbers and founded new cities, Which afterwards formed the basis of the Graeco-Bactrian kingdom. Antiochus's general Demodamas crossed the Jarartes and set up an altar to the Didymacan Apollo (Plin. vn. 49). Another general, Patrocles, took up the inveatigation of the Caspian, already begun by Alexander. In contrast with the better knowledge of an older period, he came to the conclusion that the Caspian was coanected with the ocean, and that it was posaible to reacb India on ship-board by that route (Strabo ii. 74, xi. 588; Plin. vi. 38). A project of Seleucus to connect the Caspian with the Sea of Azov by means of a canal is mentioned by Pliny (vi. 3i). To Patrocles is due the information that an active commerce in Indian wares was carried on with the shores of the Black Sea, via the Caspian (Strabo xi. sog).
While Hellenusm was thus gaining a firm footing in all the East, the native population remained absolutely passive. Apart Tho ponian from the rude mountain tribes, no national resisRongher tance was dreamed of for centurics. The Iranians Ender Croet Rot quietly aceepted the foreign yoke, and the higher arim classes adopted the external forms of the alien civilization (cf. the dedication of a Bactrian, Hyspasines, son of Mithroaxes, in the inventory of the temple of Apollo in Delos, Dittenberger, Sylloge, 588, 1. rog) even thougb tbey were unable to renounce their innate charaeteristics. Eratosthenes, for instance, speaks ($a p$. Strabo i. 66) in high terms of the Iranians (Ariani), ranking them (as well as the Indians, Romans and Carthaginians) on a level with the Greeks, as regards their capacity for adopting city civilization. The later Parsee tradition contends that Alexander burned tho sacred books of Zoroaster, the A pesta, and that only a lew fragments were saved and afterwards reconstructed by the Arsacids and Sassanids. This is absolutely unhistorical. The Persian religion was never attacked by the Macedonians and Greeks. Under their dominion, on the eontrary, it expanded with great vigour, not only in the weat (Armenia, north Syria and Asia Minor, where it was the official religion of the kings of Pontus and Cappadocia), but also in the cast, in the countrics of the Indian frontier. That the popular gods-Mithras, Anaitis, *ic.had come to the forefront has already been mentioned. This propagandism, however, was void of all national character, and ran on precisely the same lines as the propagandism of the Syrian, Jewish and Egyptian cults. Only in Persia itself, to far as we can judge from a few scanty traces, the national character of the religion seems to have survived among the people side by side with the memory of their old imperial position.
In 282 8.c. Seleucus took the field against Lysimachus, and annexed his dominions in Asia Minor and Thrace. In 28r he ungonamas wassassinated in crossing to Europe, and his son

Climitame in Anctrit and Purthle. Antiochus I. was left supreme over the whole empire. From that time onward the Seleucid Empire was never at rest. Its gigantic extent, from the Aegean to the Indus, everywhere offered points of attack to the enemy. The Lagidac, eapecially, with their much more compact and effective empire, employed every means to weaken their Asiatic rivals; and auxiliaries were found in the minor states on the frontier-Atropatene, Armenia, Cappadocia, Pontus and Bithynia, the Galatians, Pergamum, Rhodes and other Greek states. Moreover, the promotion of Greek civilization and city life had created numerous local centres, with separate interests and centrifugal tendencies, struggling to attain complete independence, and perpetually forcing new concessions from the empire. Thus the Selcucid kings, courageous as many of them were, were always batting for existence (see Seleucto Dynasty).
These disturbances severely affected the borders of Iran. While the Seleucid Empire, under Antiochus II. Theos (264-247), was being harried by Ptolemy II. Pbiledelphus, and the king's attention was wholly engaged in the defence of the western provinces, the Greeks revolted in Bactria, under their governor Diodotus ($\mathrm{O} . \mathrm{p}$). Obviously, it was principelly the aeed of
protection aguinst the nomadic tribes which led to the fonadstion of an independent kingdom; and Diodotus soon attaived considerable power over tbe provinces north of the Hindu-K ush In other provinces, 100 , insurrection broke out (Strabo xi. 575, Justun ali. 4), and Arsaces, a chief of tbe Parni or Aparmi-an Iranian nomad tribe (therefore often called Dahan Scythians), inhabiting tbe steppe east of the Caspian-raade himselr master of the district of Parthia (q.a.) in 24^{8} B.C. He and his brother Tiridates ($q, 0$.) were the founders of the Parthinn kingdom, which, however, was confined within very modest limits during the following decades. Seleucus 11 . Callinicus (247-226) successfully encountered Arsaces (or Tiridates), and even expelled him (c. 238), but new risinga recalled Seleucus to Syria, and Arsaces was enabled to return to Parthis.
Greater succeas attended Antiochus III., the Great (292-187). At the beginning of his raign (220) he subdued, with the hetp of bis minister Hermias, an insurrection of the Ametecter satrap Molon of Media, who had assumed the royal are efo title and was supported hy his brother Alexander, aroen satrap of Persis (Polyb. v. 40 sqq.). He further seized the opportunity of extorting an advantageous peace from Kins Artabazanes of Atropatene, who had coasiderably ertended bia power (Polyb. v. 55). After waying an unsuccessful war with Ptolemy 1V. for the conquest of Coele-Syria, but suppressing the revolt of Achaeus in Asis Minor, and recovering the former provinces of the empire in that quarter, Antiochus led a great expedition into the East, designing to restore the imperial authority in is full extent. He first removed (211) the Armenian king Xerxes by treachery (Polyb. viii. 95; John of Antioch, (r. 53), and appointed two governors, Artaxias and Zariadris, in his place (Strabo xi 53I). During the next year he reduced the affairs of Media to order (Polyb. x. 27); he then conducted a successful campaign against Arsaces of Parthia (209), and against Euthydemus (9.p.) of Bactria (208-206), who had overthrown the dynasty of Diodotus (Polyb. x. $28499 ., 48$ eq4. xi. 34; Justin xii. 5). In spite of his successes he concluded peace with both kingdoms, rightly considering that it would be impossible to retain these remote frontier provinces permanently. He neat renewed his old triendship with the Indian king Sophagasenus (Subhagasens), and received from him Iso elephants (206 b.c.). Through Arachosia and Drangiane, in the valley of the Etymander (Helmand), he marchod to Carmania and Persis (Polyb, xi. 34). Both here and in Babylonin be re-established the imperial authority, and in 205 undertook a vovage from the moyth of the Tigris, through the Arabian gull to the flourishing mercantile town of Cerrhe in Arabia (now Bahrein) (Polyb. xiii 9).

Shortly afterwards, however, his succesaful campaiga aqions Ptolemy V. Epiphanes led to a war with Rome in which the power of the Selcucid Empire was thattered (190 B C), Donsocero Asia Minor lost, and the king compelled to pay a Sonmotf heavy contribution to Rome for a long term of years. Ampish In order to raise money he plundered a wealthy temple of Bel in Elara, but was killed by the inhabitants, 187 s.c. (Diod. Exviii. $3 n$ xxix. ${ }^{15}$; Strabo xvi. 744; Justin xxxii. 2 ; S. Jerome (Hieconymus) on Dan. xi. 19; Euscb. Chroni. i. 253). The consequence of this enfecblement of the empire was that the governors of Armenia asserted their independence. Artaxias founded the kingon of Great Armenia; Zariadris, that of Sopheae on the Euphrates and the sources of the Tigris (Strabo xi. 531). In other districts, also, rebellions occurred; and in the cast, Euthydemus and his successors (Demetrius, Eucratidas, se.) begen the conguest of the Indus region and the Iranian borderland (Arachonia, Aria). (See Bactria; Eutiypenus; Eucrations; Demistios; Menander.)

But the energetic Seleucids fought desperately agalnat their fate. Antiochus IV. Eplphanes (176-163) reatored once more the Eastern dominion, defeated Artaxias of Armenir (Appian, Sy. 45, Diod. zxai. 17a; S. Jerome on Dem. xf. 40), restored meveral towns in Babyionia and subdued the Eymiears. Fis atterapt. however, to phunder the sanctuary of Anaitis failod (Polyb. 8 xin . 24 cf. Maccah. i. 6, ii. 1,23 ; App. Syr. 66). Parsion ahor asd

Media were still subject to him. But after his death at Tabae in Persis (163 B.c.; ci. Polyb. xxxi. 11; Maccab. i. 6, ii. 9; Jos. Ant. Jud. xii. 9, 1), the Romans took advantage of the dynastic broils to destroy the Seleucid Empire. They reduced its army and fleet, and favoured every rebellion: among others, that of the Jews. In spite of all, Demetrius I. Soter ($161-150$) succeeded in suppressing ($\mathbf{1 5 9}$) a revolt of Timarchus of Miletus, governor of Babylon, who had occupied Medis, assumed the title of "great king," and had been recognized by the Romans (Appian, Syr. 45-47; Trogus, Prol. 34; Diod. xxxi. 27 A: cf. the coins of Timarchus). 1
VII. The Parthian Empire of the Arsacids.-Meanwhile, in the east, the Arsacids had begun their expansion. Phraates I. (c. 175-170) subdued the Mardians in Elburz. His hrother Mithradates I. (c. $170-138$) had to sustain a difficult war with Eucratides of Bactria, hut eventually succeeded in wresting nature from him a few districts on the Turavian frontier aner 1 aod Indeed, he penetrated as far as, and farther than, the piractes in. Indus (Diod. axxiii. 18; Oros v. 4, 16). In the west he conquered Media, and thence subdued Babylonia. He further reduced the Elymaeans, sacked their temple in the mountains, and captured the Greek city of Seleucia on the Hedyphon (Strabo zvi. 744 ; Justin xli. 6). The Seleucids, meanwhile, were harassed by aggravated disorders and insurrections. Nevertheless, in 40, Demetrius II. Nicator took the field in order to save the cast, but was defeated and captured. Shortly afterwards Mithradates I. died. His son Phraates II. (c. 138-127) was atiacked in 130 by Antiochus VII. Sidetes, the brother of Demetrius II., on which the Parthian king released the latter Antiochus pressed successfully on, and once more recovered Babylonis, but in 129 was defeated in Media and fell in a desperate struggle. With this battle the Selcucid dominion over the countries east of the Euphrates was definitely lost. The Babylonian towns, especially Seleucia (q.v.), were handed over by Phriates to his favourite, the Hyrcanian Himerus, who panished them severely for their resistance.
Doring these wars great changes had taken place in eastern Iran. In 159 Mongolian tribes, whom the Cbinese call Yue-chi mume and the Greeks Scythians, forced their way into ansin. and Sogdiana, and, in 139, conquered Bactria (Strabo 4n Suco xi. 571; Justin xiii. 1 ; Trog. Prol. 41; see Bactran). From Bactria they tried to advance farther into Iran and India. Entering into an alliance with Antiochus VII., they assailed the Parthian Empire. Phraates II. marched to encounter him, but was bimself defeated and shin, and hls country ravaged far and wide. His successor Artabanus I. (c. 127-124), the uncle of Phraates, also fell in battle against the Tocharians, the principal Scythian tribe (Justin xlii. 1, 2; Jos. AMf. fr. 66); but his son Mithndetes II., surnamed "The Great" (6. 124-88), defeated the Seythians and restored for a while the power of the Arsacids He also defeated Artavasdes, the king of Great Armenia, his non Tigranes, a hostage in the hands of the Barthians, was only redeemed by the cession of 70 valleys (Strabo xi. 532) When Tigranes attempted to seize Cappadocia, and the Roman prator P. Cornelius Sulla advanced against him, Mithradates in 92 B C. concluded the first treaty between Parthia and Rome (Plut Sulla, v; Liv. epit. 70). The dynastic troubles of the Seleucids in Syria gave him an opportunity for successful intervention (Jos. Anf. Jud. xiii. 13, 4: 14, 3). Shortly afterwards he died. and, with his death, the Arsacid power collapsed for the second time. The poasession of the western provinces and the dominant position in western Asia passed to the Armenian Tigranes ($q .8$), who wrested from the Parthians Mesopotamia and the suzerainty of Atropatene, Gordyene, Adiabono, Osroene. Simultaneously began a new and severe conflict with the Scythians. Parthian coins, probably dating from this period (Wroth, Catal of the Coins of Parthic, 1903, p. xxx. and p. 40), mention victorious campaigns of Parthian kings and a conquest of the provinces of Aris, Margiane and (?) Traxiane (ef. Strabo xi. 505). But how
${ }^{1}$ For the whole of this period see further Anticomos; Anriocins LIV.; simucio Dranty; Hewnition
confused the situation was is shown by the fact that in 76 8.C the octogeaarian king Sanatruces was seated on the Parthian throne by the Scythian tribe of the Sacaraucians (cf. Strabo xi. 5I1; Trog. Prol. 42). The names of his predecessors are not known to us. Obviously this period was marked by continual dynastic feuds (ci. Trog. Prot. 42: "ut varia complurium regum in Parthis successione imperium accepit Orodes qui Crassum delevit"). Not till Sanatruces' successor Phraates III. (70-57) do we find the kingdom again in a settled state.

A fact of decisive significance was that the Romans now began to edvance against Tigranes. In vain Mithradates of Pontus and Tigranes turned to the Parthian king, the latter even proffering restitution of the conquered frontier Centrote
Nive the provinces. Phraates, though rightly distrusting Rome, nevertheless concluded a treaty with Lucullus (69 B.c.) and with Pompey, and even supported the latter in his campaign against Tigranes in 66. But after the victory it was manifest that the Roman gencral did not consider himself bound by the Parthian treaty When Tigrancs had submitted, Pompey received him into favour and extended the Roman supremacy over the vassal states of Gordyene and Oaroenc; though he had allured the Parthian king with the prospect of the recovery of his old possessions as far as the Euphrates. Phraates complained, and simultancously attacked Tigranes, now a Roman vassal (64 e.c.) But when Pompey refused reparation Phraates recognized that be was too weak to begin the struggle with Rome, and contented himself with forming an alliance with Tigranes, in hopes that the future would bring an opportunity for his revenge (Dio Cass. xxxvi. 3, 5; xxxvii. 5 sqq.; Plut. Lac. 30; Pomp 33, $3^{8,}$ cf. Sallust's letter of Mithradates to Arsaces).

Although Phrates III. had not succeeded in regaining the full power of his predecessors, he felt justified in again assuming the title " king of kings"-which Pompey declined to acknowledgeand even in prochaiming himself as "god" (Phlegon, fr. 12 ap. Phot. cod. 97; and on part of his coins), but in 57 B.c. the " god" was assassinated by his sons Orodes and Mithradates.

The Parthian Empire, as founded by the conquests of Mithradates I. and restored, once by Mithradates II. and again by Phrastes III., was. to all exterior appearance, a continuation of the Achaemenid dominion. Thus the Arsacids now began to assume the old tille "king of kings " (the shahanshah of modern Persia), though previously their coins, as a rule, had borne only the legend "great king." The official version, preserved by Arrian in his Parthica (ap. Phot. cod. 58: see Partilia), derives the line of these chiefteins of the Pamian nomads from Artaxerxes II. In reality, however, the Parthian Empire was totally different from its predecessor, both externally and internally. It was anything rather than a worldempire. The countries west of the Euphrates never owned its dominion, and even of Iran itself not one half was subject to the Arsacids. There were indeed vassal states on every hand, but the actual possessions of the kings-the provinces governed by their satraps-consisted of a rather narrow strip of land, stretching from the Euphrates and north Babylonia through southern Media and Parthia as far as Arachosia (north-west Afghanistan), and following the course of the great trade-route which from time ummemorial had carried the traffic between the west of Asia and India. We still possess a description of this route by Isidore of Charax, probably dating from the Augustan period (in C. Miller, Geagraphi gracci minores, vol i.), in which is contained a list of the 18 imperial proviaces, known also to Pliny (vi. 112 cf 41). Isidore, indeed, enumerates nineteen; but. of these. Sacastene formed no part of the Parthian Empire, as has been shown by von Gutschmid.
The lower provinces (i.e. the districts west of Parthla) are: (1) Mesopotamia, with northern Babylonsa, from the Euphrates bridge at Zeugma to Seleucia on the Tigris; (2) Apolloniatis, the plain east of the Tigris. with Artemita, (3) Chalonitis, Provicoras
phain east of the Tigris. with Artermita, (3) Chalonitis, Bagistana (Behistun)-the mountainous portions of Media, (6) Upper Media, with Ecbatana; (7) Rbagiane or Eastern Media Then with the Caspian Gates the pass berween Elburr and the central desert, through which my the noute from west Iran -

Comisene, the districts on the verge of the desert; (10) Hyrcania; (11) Astabene, with the royal town Asaac on the Attruck (see Parthia); (12) Parthyene with Parthaunisa, where the sepulchres of the kings were laid; (13) Apavarcticene (now Abiward, with the capital Kelat): (i4) Margiane (Merv); (15) Aria (Herat); (16) Anauon, the eoouthern portion of Aria; (17) Zarangiane the country of the Drangians, on the lake of Hamun; (18) Arachosia, on the Etymander (Helmand), called by the Parthians "White India," extending as far as Alexandropolis (Kandahar), the fronkier city of the Parthlan Empire.

On the lower Etymander, the Sacae had established themselves -obviously on the inroad of the Scythian tribes-and after them the country was named Sacastene (now Sejistan, Seistan). Throagh it lay the route to Kandahar; and for this reason the dlstrict is docribed by Isidore, though it forraed no part of the Parthian Empire.
Round these provinces lay a ring of numerous minor states. which as a rule were dependent on the Arsacids. They might. Vaveal however, partially transfer their allegiance on the rise slutas. of a new power (e.g. Tigranes in Armenia) or a Roman Areacid period is described, in the later Persian and Arabian tradition, as the period of "the kings of the part-kingdoms "among which the Ashkanians (i.e. the Arsacids, from Ashak, the Luter pronunciation of the name Arshak arsaces) had won the first place. This tradition, however, is nebulous in the extreme, the whole list of kings, which it gives, is totally unhistorical; only the names of one Balash ($=$ Vologaeses) and of the last Ardewan (-Artabanus) having been preserved. The period, from the death of Alexander to the Sassanid Ardachir I., is put by the Persian tradition at 266 years; which was afterwards corrected, after Syro-Grecian evidence, to 523 ycars. The actual number is 548 years (i.e. 323 B.C. to A.d. 226). The statements of the Armentian historians as to this period are also absolutely worthless.

The ten most important of the vassal states were:-

1. The kingdom of Osroene ($q . v$.) in the north-cast of Mesopotamia, with Edessa as capital, founded about 130 B.c. by the chieftain of an Arabian tribe, the Orrhoci, which established itself there.
2. To this must be added the numerous Arabian tribes of the Mesopotamisn desert, under their chiefs, among whom one Alchaudonius comes into prominence in the period of Tigranes and Crassus. Their settlement in Mesopotamia was encouraged by Tigranes, according to Plutarch ($L_{41 .}$ 21) and Pliny (vi 142). In later times the Arabic town Atra in an oasis on the west of the Tigris, governed by its own kings, gained special importance.
3 and 4. To the east of the Tiyris lay two kingdoms. Gordyene (or Cordyene), the country of the Carduchians (now Bohtan), a wild, mountainous district south of Armenia; and Adiabenc (Hadyab), the ancient Assyria, on either side of the Zab (Lycus).
3. Oa the farther side of Zagros, adjoining Adiabene on the east. was the kingdom of Atropatene in aorth Media, now often simply ealled Media (q.v.).

While the power of Armenia was at its height under Tigranes (86-69 日.c.) all these states owned his rule. After the victories of Pompey, however, the Romans claimed the suzcrainty, so that. during the next decades and the expeditions of Crassus and Antony. they ascillated between Rome and Parthia, though their inclinal 1015 was generally to the latter. For they were ali Orientals and. conscoously or unconsciously, representatives of a reaction against that Hellenism which had become the heritage of Rome At the game tlme the loose organifation of the Parthian Empire, afforded them a greater measure of independence than they could bope to enjoy under Roman suzerainty.
6. In the south of Babylonia, in the district of Mesine (the modern Maisan), after the fall nf Antiochus Sidetes (1298 C). an Arabian prince. Hyspaosinee or Spasines (in a cuneiform in scriptlon of 127 , on a clay tablet dated after this ycar, he is called Aspasine) (ounded a kingdom which existed till the rise nf the Sassanian Empirc. Its capital was a city (mod. Mohammerah) first lounded by Alexander on an artificial hill by the junction of the Eulaeus (Karun) with the Tigris, and peopled by his veterans. The town, which was originaily named Alexandra aud then rebuilt by Antiochus I. as Antiochia, was now refortified with dikes by Spasines, and christencd Spasinu Charax ("the wall of Spasines '"). or simply Charax (Plin. vi ${ }^{1} 38 \mathrm{seq}$.). In the foltowing centuries ix was the main mercantile centre on the Tigris estuary.

The kingdom of Mesenc. also called Characene. 15 known to us from ocepsional references in variqus authors. especially Lucian (Macrobit, 16), as well as irom numerous coins. dated by the Selcucran era, which allow us to frame a fairly complete list of the kings ${ }^{1}$ The Arabian dynasty speedily assimilated itself to the native population; and most of the kinge bear Babylonian-in a few cases, Parthian-names. The official tanguage was Greek, till, on the destruction of Seleucia (A.D. 164), it was replaced on the coinage by Aramaic. Aoother Babylonian dyasst must have

[^15]been Hadadnadinaches (c. 100.B.c.), who buitt in Tello the fortifed palace which fias been excavated by de Sarzec.
7. Enst of the Tigris lay the Eingdom of Elymais (Elams, to which belonged Susa and its modern representarive Ahras, farther dows on the Eulseus. The Elymaeans, who had airendy offered a repeated resistance to the Seleucids, were subdued by Mithradates I. as we have mentioned above; but they rernained a separate statc, which often rebelled against the Arsacids (Strabo xvi. 744; cf. Plut. Pomp. 36; Tac. Ans, vi. 50). Of the kinge who appanently belonged to a Parthian dynasty, several beariag the same Caramat: cires are known to us from coins dated 81 and 71 B.C. One of these is designated by Lucian (Macrobit, 16) "King of the Parthians "; while the coinage of another, Orodes, displays Aramaic script (Allotte de la Fuye, Rev. num., 4 me strie, t. vi. p. 92 sq9. 1902). The kingdom, which is seldom mentioned; gurvived till Ardashir. I. In its meighbourhood Strabo mentions "the minor dynasties of the Sagapenians and Silaceniaris" (xvi. 745). The Uxians, moteover, with the Cossacans and other mounta in tribes, maintained their independence exactly as under the later Achas menids (Strabo xvi. 744; Plin. vi. 133).
8. The district of Persis, also, became independent soon aftet the time of Antiochus IV., and was ruled by its own things, who perpetuated the Achaemenian traditions, and on'their colns-which bear the Persian language in Armaic characters, te. the so-called Pahlavi-appear as mealous adherents of Zorosstrianiam and the Fire-cult (see Pesers). They were forced, bowever, to aclsnoriedge the suzerainty of Parthia, to which they stood in the same position as the Persians of Cyrus and his farefathers to the Median Empire (ef Strabo xv. 728, 733, 736; Lucian, Macrob. 15). In later times, before the foundation of the Sassanid domiaion, Perais man dist integrated into numerous small local states. Even in Carmania we find independent kings, one of wham gave his name to a town Vologesocerta (Balashkert).
9. The east of Iran-Bectria with Sogiliana, Eastem Arachosia and Gedrosia-was nevor buhject to the Arsacids. Here the Gracco-Bactrian and Graeco-Indian kingdoms beld their own till, in 139 日.c., they succumbed before the invading Mongolian and Scythian tribes see Bactria and works quoted there). But in the Indurs district the Greek kings held their ground for an appreciably longer period and, for while, widely extended their power (see MENANDER OF INDIA) Among the kings then following, only known to us from their coins, there appears a dynasty with Iranian and sometimes peculiarly Parthian names which seerns to have reigned in the Punjab and Arachosia. Its best-known representative, Gondophases or Hyndopherres, to whom legend makes the apostle Thomas write, reignod over Arachosia and the Indua dis trict about A.D. 20. Further, about A.D. 70, the Peripluf of the Erythracan Sca mentions that the great commerciat town of Minnagar in the Indus Delta was under Parthian kings, "whe spent Ihcir time in expelling one another." Here, then, it wowld ceem there existed a Parthian dynasty. which probably went back 1o the conquests of. Mithradmes L. (cl. Vincent A. Smith, "The Indo-Parthian Dynastics from about 120 a.c to A D. $100{ }^{\prime \prime}$ " in the Zeitschr. der deulschen norgenh. Gesedlsch. 60, 1906). Naturally. such a dynasty would not long have recognized the suzerainty of the Arsacids. It succumbed to the Indo-Scythian Empire of the Kushana, who had obtaimod the sovereigity of Bactia as early as about a D. 50 . and thence pressed onward into India. In the period of the Periplus (c. A. D. 70) the Scythans were already set tled in the Indus valley (pp 38.41. 48), their dominnn reaching rts zenith under Kanishka (c A D. 123-153)

This empire of the Kushana merits special mention hers, on accnunt of its peculiar religious attitude, which we may gather from the coias of tas kings, partucularly those of Kanishka and his successor Huvishka, on which an alphabet adapted from the Greek is employed (cf Aurel Stein. "Zoroastrian Daities on Indo-Scythian Coins." in The Bobslontarn and Orvental Recerd, vol i . 1887) Kanishka, as as well known, had cmbracod Buddhism, and many of his coms bear the image and name of Buddha Iranan divinities, however, predompnate on his currenty' Mithras (Mihro or Hclios), the Moon Mah (also Selene), Alhro. the Fire; Orlhragno (Verethragna): Pherro= Farnia (hwarema), "the renjesty of kingstrip ". Terro = Tir (Tistrya "the archer"); Nana (Nanaia), and others Here, thers we have, a perfect example of syncretisti: as in the Mithras cult in Armenia. Asia Minor, and still further in the Roman Empire Buddhism and Zorastriansm have bien wedded in the state re ligion, and, in characteristic Indian fashyon, are on the bet of terrent with noe another, precisely as, in the Chunese Empire at the present day, we find the most varied religions, side by side, and on an equal footing
in. Originally a part of the Turamian steppe belonged to the Arsacids; it was the starting-point of their power. Soon, howerer, the nomads (Dahae) gained their independence, and, as we have scen, repeatedly attacked and devastated the Parthin Empire io conjunction with the Tocharians and other tribes of Sacac and Scythians. In the subsequent period, again, wrestall frequently meet zhem.

It may appear eurprising that the Arsacids made no attempt to incorporate the minor stalen in the cmpire and
crente a great and united cominion, such as existed ander the Achaemenids and was alterwards restored by the Sassanids. This fact is the clearost symptom of the inner weakness of chameter of their empire and of the stmall power wielded by the the Puethasa "king of kings." In contrast alike with its predeEmpiose cessors and its suecessors, the Arsacid dominion was pecullarly a chance formation-a state which had come into existence through fortuitous external circumstances, and had no firm foundation within itsell; or any intrinsic raison d'tire.

Three elements, of widely differtent kinds, contributed to its origin and defined its character. It was sprung from a predatory nomad tribe (the Pamian Dahae, Scythisns) which had established isself in Khorasan (Parthia), on the borders of civilizatlon, and thence gradually annexed further districts as the political sifuation or the weaknest of its neighbours allowed. Consequently, these nomads were the main pillar of the enipire, and from them were obviously derived the great magnatcs, with their huge. estates antd hosts' of eerls, who composed the imperial council, lod the ammies, governed the provinces and made and unmade the kings (Strato xa. 515: Justin xtl. 2; the former terming them sorveveis," kinsmen of the king, the latter. probuli). Of these great lamilics that of Surenas held the mivikge of setting the diardem on the head of the new king (Plut. Crass a1, Tac. Ann vl, 42).

The military organization, morcover, was wholly nomadic in character. The nucleus of the ammy was lormed of armoured horsemen. exceflently practised for long-distance fighting with bow and javciin, but totally unable to venture on a hand-to-hand confliet their tactics being rather to awarm round the enemp's sqpadront and overwhelm them under a hail of missiles. When attacked they broke up, as it secmed, in hasty and complete fiught, and having thus led the foostile army to break its formation, they themselves rapidly reformed and tenewed the asanlt How diffieult it was [or infantry to bold ther own aginst thene. mounted aguadrons was demonstrated by the Roman campaigas. especially in broed plains like those of Mesopotamia. In winter, however, the Parthians were powerless to wage war, as the moisture of the atmosphere relaxed their bows. The infantry, montrast with its carlier status under the Permians, was wholly neglected. On the other hand, every magnate put into the ficld as many mounted warion as possible, chleny servants and bought slaves, who, like the Janissaries and Mamelukes, were trained exchusively for war Thus Surenas, in 53 s.c., is stid to hava put at the king's dispesal 1000 mailed horsemen and, in ali, mo,000 men, including the train, which also comprised his attendants and harem (Plut. Crass. 21; description of the military organization; Dio Cass. 40,15 , Justin xli. 2). In the army of 50,000 mounted men which took the fieid against Mark Antony there were, says Justin, only 400 freemen.

How vital wat tha nomadic element in the Parthian Empire is obvious from the fact that, in eivil wars, the deposed kinge conThe framian sistently took refuge among the Dahae or Scythians Popufectos and were restored by them. But. in Parthia, these and, mith monads were amalgammed with the mative penstantry, Even the their teligion, had adopted theif dress and manners, Even the lings, after the first two or three, went their hair and beard long, in the Iranian fashion, whereas their predecessors pre beardless. Although the Arsaclds ane strangers to any deep religious interest (in contrats to the Achmemenids and Sastanids) they acknowledge the Persian gous and the laading teanets of Zoroastrianism. They erect fire-altars, and even obey the command to abandon all corpses to the dogs and lowls (Justin xili. 3). The union, mereover, recommetted by that creed, between brother and sister-and even son and mother oceurt among thom. Consequently, beaide the council of the nobilty, there is a tecond council of "Magians and wime men" (Straba xis 5t5).

Again, they perpetuate the traditions of live Achacmenid Empire. The Arsmelds essume the title "King of kings" and derive their line from Artaxetwes If. Purther, the foyal apotheosis, to common amoge them and recurriag under the Sabanids, ts probabiy not so unuci of Greck origin as a development of Iranian views. For at the side of the great god Ahuramazda there stands a host of subgrdinate divine beinge who execute his will-among these the deified heroes of legend, to whote circle the king is now admitted, since ox him Aburamtada ha bestowed vietory and might,

This gradual Immianization of the Parthinn Empiry is showp by the fact that the subsequent Iranian traditions, and Firdouad in particular, apply the name of the iParthinn' magnates (Pahlavor) to the glotiotw berves of the levendary epoch. Con-
 which are retained under the Sastanids, ruccived the name Painowi, i.e. "Parthian." The script was derived from the Aramaic.

But to thesc Oriental clements must be added that of Hettenism, tho domitnatit world-culture whleh had penetruted into Parthia Relutese and Media. It was indispenmable to every stite which Romure Hownif Molloaiant hoped to play some part in the world and was not so utterty secluded as Persis and Atrogatenc; and the Armads entertained the less thought of opposition ais they nere dextituce of an independent mational bation All their
external Institutions were borrowted from the Sefeucid Empire: their coinape with its Gresk intcriptions and nomenclature, their Attic standard of currency; and, doubtless, a great part of their administration also. In the towns Greck marchants were everym where settled. Mithradates l. even lollowed the precedent of the Scleacids in building a new city, Arsacia, which replaced the ancient Rhagae (Ral, Europus) in Media. The farther the Arsacida expandod the deeper they penetrated into tha province of Hellecinom; the first Mithradates himself assumed, alter his great conquethe, the title of Philhellen. "the protector of Hellenism", which was cotained by almost all his successorg. Then [ollow the surnames Epiphames "the revealed god," Dicaemat "the just." Emergetes "The bencfactor," all of them espatially Greck in their meferonce, and also regularly borme by all the kings. After the conquest of the Euphratos and Tigris provinces it was imperative that the royal residence should be fixed there Bat as no one ventured to transfer the noyal household and the ermy, with ite hordes of wild horsemen, to the Creck town of Seleucia, and thes divoresenise its commerce, the Arsacids set up their abude in the great village of Ctesiphon, on the lelt bank of the Tigris, opposite to Seleucia, whith accordingly retained lth free Fellenic constitution (see Creshriom and SELEven). So, also, Orodes I. apoke good Greek. and Greok trapedies were staged at his coprt (Plut. Cogas. 33).

In spite of this, however, the rise of the Arsacid Empire marke the beginning of a reaction against Hellenism-not, indecd, a conscious or officusl reaction, but a reaction which was all the more efiective because it depended on the Impetus Reaction of curcumstances working with all the power of a natural agelat force. The essential point is that the East is completely divorced from the Mediterrancan and the Hellenic world, that it enn denive no fresh powers from that quarter, and that, consequently, the infurace of the Orieatal clensents mupt ticadily increase. Thil procesa can be most clonrly traced on the coins-almoet the nolo memorials that the Parthian Empire has left. From reign to reiga the portraits grow poorer and more stercotyped, and the inscriptions more neglected, tili it becomes obvious that the engraver himself no longen underwtpod Greek but copied mechanically the signi beiore his eyes, as is the case with the contemporary Indo-Scythian coinage, and also in Mesene. Indeed, after Yologaeses I. (gI-77), the Aramaic script is occasionally employed. The political opposition to the western empires, the Seleucida first, then the Romans, precipitated this developmenti Naturally enough the Greek citien beheld a liberator in every army that marched from the West, and were ever ready to cast in their lot with such-a disposition for which the subsequent peralty was not lackling. The Parthian mignates, on the other hand, with the army, would have fittle to do with Gredie culture and Greek modee of life, which they corrtemptuously, regended as effeminate and unmanly, Morcover they required of their rulers that they should tive in the fashigm of their country, practise arms and the chase, and appear as Oriental sultans, not as Grecian kings.

These tandencies tolan together explain the radieal weakness of the Parthian Empire. It was eaby enough to collect a great army and achicve n great victory; it was absolutely impossibie to hoid the army together for any longer period, or to conduct a regular campaign. The Parthlans proved incapable of creating a firm, united orgepization, such as the Achacmenids befors them, and the Sassanids after therp, gave to their empirs. The kinge themselves were toys in the hands of the magnates and the army who, teraciously as they clung to the anointed dynasty of the Arsacids were uttarty indifferent to the person of the individual Arsacid. Every moment they were ready to overthrow the reigning monnteh and to seat another on hia throns. The kings, for their part, sought protection in craft, treachery and cruelty, and only succeeded ip aggravating the situation. More especially they saw an encmy in every prince, and the worst of enemies in their own sons. Sanguinary crime were thus of everyday occurnence in the royal house hold: and Erequently it was merely a matter of chance whether the father anticipated the son, or the son the father. The conditions were the same as obtained subsequently under the Mahommedain Caliphate (y.v.) and the empire of the Ottomans. The internal history of the Parthian dominion is an mbrolcen eaquence of civil war and dynastic strife.
For the fiterature dealing with the Pacthian Empire and numismaties, see PARTMtA, under which heading will be found e complete list of the kings, oo far as we are able to reconstitute them.

These conditions elocidate the fact that the Parthian Empire, though founded on annexstion and perpetually menaced by bostile arms in both.the East and the West, yet Later Fio. hever took a strong offensive after the days of tory offics Mithredates II. It was bound to protect itself Armecte againat Scythian aggression in the Eabt and Emain
Roman aggession in the Weat. To maintafn, or regain, the sureerainty over Mesopotamia and the vassal states of that regici, as alvo over Atropatese and Armenia, was its most imperative tinc. Yet it almays remained on the defenive and over' 00 was
lacking in energy. Whenever it made an effort to enforce its claims, it retreated so soon as it was confronted by a resolute foe.

Thus the wars between Parthia and Rome proceeded, not from the Parthians-deeply injured though they were by the wars whe encroachments of Pompey-but from Rome herself. Crusessed Rome had been obliged, reluctantly enough, to enter Antoemere upon the inheritance of Alexander the Great; and, since the time of Pompey, had definitely subjected to her dominion the Hellenistic countries as far as the Euphrates. Thus the task now faced them of annexing the remaindet of the Macedonlan Empire, the whole East from the Euphrates to the Indus, and of thereby saving Greek civilization (cf. Plut. Comp. Nic. es Crass. 4). The aristocratic republic quailed before such an enterprise, though Lucullus, at the height of his successes, entertained the thought (Plut. Luc. 30). But the ambitious men, whose goal was to erect their own sovereignty on the ruins of the sepublic, took up the project. With this objective M. Licinius Crassus, the triumvir, in 54 B.c., took the aggressive against Parthia, the occasion being favourable owing to the dynastic troubles between Orodes I., the son of Phraates III., and his brothet Mithradates III. Crassus fell on the field of Carrhae (June 9, 53 घ.c.). With this Mesopotamia was regained by the Parthians, and King Artavasdes of Armenia now entered their alliance. But, apart from the ravaging of Syria (5I b.c.) by Pacorus the son of Orodes, the threatened attack on the Roman Empire was carried into effect neither then nor during the civil wars of Caesar and Pompey. At the time of his assassination Cecsar was intent on resuming the expedition of Crassus. The Parthians formed a league with Brutus and Cassius, as previously with Pompey, but gave them no support, until in 40 日.c. a Parthian army, led by Pacorus and the republican general Labienus, harried Syria and Asia Minor. But it was easily repulsed by Ventidius Bassus, the Leutenant of Mark Antony. Pacorus himself fell on the gth of June 38 b.c. st Gindarus in northern Syria. Antony then attacked the Parthians in 36 B.c., and penetrated through Armenia into Atropatene, but was defeated by Phrantes IV.-who in 37 B.c. had mardered his father Orodes I.-and compelled to retreat with heavy losses. The continuation of the war was frustrated by the conflict with Octavian. Armenia alone was again subdued in 34 B.c. by Antony, who treacherously captured and executed King Artavasdes.

Roman opinion universally expected that Augustus would take up the work of his predecessors, annibilate the Parthian Polny of dominion, and subdue the East as far as the Polloy of Indians, Scythians and Seres (cf. Horace and the other Augustan pocts). But Augustus disappointed these expectations. His whole policy and the needs of the newly organized Roman Empire demanded peace. His efforts were devoted to reaching a modus vivendi, by which the authority of Rome and her most vital claims might be peacefully vindicated. This the weakness of Parthia enabled him to effect without much difficulty. His endeavours were seconded by the revolt of Tirldates II., before whom Phraates IV. was compelled to flee (32 b.c.), till restored by the Scythians. Augustus lent no support to Tiridates in his second march on Ctesiphon (26 8.c.), but Phrates was all the more inclined on that account to stand on good terms with him. Consequently in 20 B.C., he restored the standands captured in the victories over Crassus and Antony, and recognized the Roman suzerainty over Osroene and Armenia. In return, the Parthian dominion in Babylonia and the other vassal states was left undisputed.

Thus it was due not to the successes and strength of the Parthians but entirely to the principles of Roman policy as defined by Augustus that their empire appears as a second great independent power, side by side with Rome. The precedence of the Cacsars, indeed, was always admitted by the Arsacids; and Phraates IV. soon entered into a state of dependency on Rome by sending (9 B.c.) four of his sons as hostages to Augustus-a convenient method of obviating the danger threatened in their person, without the necervity of killing them. In 4 B.c, however,

Phraates was assassinated by his favourite wife Musa and her son Phraates V. In the subsequent broila a Parthian faction obtained the release of one of the priaces interned in Rome as Vonones I. (a.b. 8). He failed, however, to maintain his position for long. He was a stranger to the Parthian customs, and the feeling of shame at dependency on the foreigner was too strong. So the rival faction brought out another Arsacid, resident among the Scythian nomads, Artabanus II., who easily expelled Vonones-only to create a host of enemies by his brutal cruelty, and to call forth fresh disorders.
Similar proceedings were Irequently rcpented in the period following. In the intervals the Parthians made several attempts to reassert their dominion over Armenia and there
install an Arsacid prince; but on each occasion Raforemes 2 they retreated without giving battle so so0n as the
Romans prepared for war. Only the dynasty of Atropatene was finally deposed and the country placed under an Arsacid ruler. Actual war with Rome broke out under Vologaeses I. (51-77), who made his brother Tiridates king of Armenia After protracted hostilities, in which the Roman army was commanded by Cn. Domitius Corbulo, a peace was concluded in a.d. 63, confirming the Roman suzerainty over Armenis but recognizing Tiridates as king (see Corbulo). Tiridates himself visited Rome and was there invested with the diadem by Nero (A.D. 66). After that Armenia continued under the rule of an Arsacid dynasty.
These successes of Vologaeses were counterbalanced by serious losses in the East. He was hampered in an energetic campaign against Rome beattacks of the Dahae and Secae. Hyrcania, also, revolted and asserted its independence under a separate line of kings. A little later, the Alans, a great Iranian tribe in the south of Ruscia-the ancestors of the present-day Ossets-broke for the first time through the Caucasion passes, and ravaged Media and Armenia-an incursion which they often repeated in the following centuries.
On the other side, the reign of Vologaeses I. is characterized by a great advance in the Orlental reaction against Hellenism. The line of Arsacids which came to the throne in the person of Artabanus II. (A.D. 10) stands in open opposition to the old kings with their leanings to Rome and, at least external, tinge of Hellenism. The new régime obviously lald much more stress on the Oriental character of their state, though Philostratus, in his life of Apollonius of Tyana(who visited the Parthian court), states that Vardenes L (A.D. 40-45), the rival king to the brutal Gotarzes (A.D. 40-5I), was a cultivated man (Vil. Ap. i. 22, 28, 3 r sqq.): and Vologaeses I. is distinguished by the excellent reiations which subsisted all his life between himself and his brothers Pacorus and Tiridates, the kings of Media and Armenia. But the coins of Vologaeses I. are quite barbarous, and for the first time on some of them appear the initials of the name of the king in Aramaic letters by the side of the Greek legend. The Hellenism of Seleucia was now attacked with greater determination. For seven years (A.D. 37-43) the city maintained isself in open rebellion (Tac. Ann. xi. 8 seq.), till at last it surrendered to Vardanes, who in consequence enlarged Ctesiphon, which was afterwards fortified by Pacorus (a.d. 78-105: v. Ammian. 23, 6, 23). In the neighbourhood of the same town Vologacses 1. fcunded a city Vologesocerta (Balashkert), to which he attempted to transplant the population to Seleucia (Plin. vi. 122: of. Th. Noldeke in Zeilschr. d. deutsch. mergent. Gesellschaf, xoviii., roo). Another of his foundations was Vologesias (the Arabian Ullaish), situated near Hirs on the Euphrates, south of Babylon, which did appreciable damage to the commerce of Selcucia and is often mentioned in inscriptions as the destination of the Palmyrene caravans.
After Vologaeses I. follows a period of great disturbances. The literary tradition, indeed, deserts us almost entirely, but the coins and isolated literary references prove that during the years A.D. 77 to 147, two kings, and sometimes three or more, were often reigning concurrently (Vologaeses 11. 77-79, and 111-147; Pacorus 78-c. 105; Osroes ro6-129; Mithradates V. 1a9-147; also Artabanus ILL. 8o-8I; Mithradates IV. and his
son Sanatruces II. 1r5; and Parthamaspates 136-117). Obviously the empire can never have been at peace during these yeart, a fact which materially asaisted the aggressive campuigns Wen wim of Trajan (113-117). Trajan resascitated the promeneat old project of Crassus and Caesar, by which the monere empire of Alexander as far as India was to be won Aurofiver
for Western civilization. In puruance of this plan he reduced Armenia, Mesopotamiar and Babylonis to the position of imperial provicces. On his death, however, Hadrian immediately reverted to the Augustan policy and reatored the conquests. Simultaneously there arose in the East the powerful Indo-Scythian empire of the Rushane, which doubtless limited still lurther the Parthian poesessions irr cestem Iran.
An eta of quiet seems to have returned with Vologaeses III. (147-x91), and we hear no more of rival kings. With the Roman Empire a prolound peace had reigned alince Hadrian (117) which was first disturbed by the attack of Marcus Aurelius and Aelius Verus in 162. This war, which broke out on the question of Armenia and Osroenc, proved of decisive significance for the future development of the East, for, in its coure, Seleucia was destroyed by the Romans under Avidius Casesus (164). The downfall of the great Greek eity scaled the fate of Hellenism In the countries east of the Euphrates. Henceforward Greek culture practically vanishes and gives place to Aramaic; it is significant that in future the kings of Mesese atamped their coinage with Aramalc legends. This Aramaic victory was powerfully aided by the ever-increasing progress of Christianity, which 200 n created, as is well known, an Aramaic literature Cermunemby, of which the lenguage was the dialect of Edessa, a city
in which the last king of Oaroene, Abgar IX. (179214), had been converted to the faith. After that Greek culture and Greek litcrature were only accessible to the Orientals in an Aramaic dress. Volognenes III. is probably also the king Valgash, who, according to a native tradition, preserved In the Dinkart, began a coilection of the sacred writings of Zoroaster-the origin of the Apeste which has come down to us. This would show bow the national Iranian element in the Parthian Empire was continually gethering strength.
The Roman war was closed in 165 by a peace which ceded north-west Mesopotamia to Rome. Similar conflicts took place in 195-202 between Vologneses IV. (x91-209) and Septimius Severus, and again in 116-217 betweon Artabenus IV. (200-226) and Caracalla. They lailed, however, to afiect materinlly the position of the two empires.
VIII. The Sassanion Empire.-That the Arsacid Empire should have endured some 350 years after its foundation by Andeabirh Mithradates I. and Phreates II., was a result, not or internal atrength, but of chance working in its external development. It might equally well have so existed for centuries more. But under Artabanus IV. the catastrophe came. In his days there arose in Persis-precisely as Cyrus had arisen under Astyages the Mede-a great personality. Ardashir (Artaxerxcs) I., son of Papak (Babek), the descendant of Sasan, was the sovereign of one of the small atates into which Persis had gradually fallen. His lather Papak had taken possession of the district of Istakhr, which had replaced the old Persepolis, long a mass of ruins. Thence Ardashir I., who seigned from about A.D. 212, subdued the neighbouring poten-tate-disposing of his own brothers among the rest. This proceeding quickly led to war with his suzerain Artabanus IV. The confict was protracted through several years, and the Parthians were worsted in three battles. The last of thene witnessed the fall of Artahunus (A.D. 226), though a Parhian king, Artavasdes-perhaps a son of Arabanus IV -who is only known to us from his own coins, appears to have retained a portion of the empire for some time longer. The menbers of the Arsecid line who foll into the hands of the victor were put to death; a number of the princes found reluge in Armenia, where the Arsucid dynasty maintained itself till a.D. a 20 . The remainder of the vassal stateb-Carmania, Susiana, Mocepe -were ended by Ardashir; and the autonomous desert fortres of Hatra in Mesopotamia was destroyed by his con Shapur
(Sapor) I. according to the Persian and Arabian traditions, which, in this point, are deacrving of credence. The victorious Ardashlr then took posecsaion of the palece of Ctesiphon and assamed the title " King of the kings of the Iranians" (6aodnat Baankew 'hpranio).

The new empire founded by Ardashir I.-the Sascanian, or Nec-Persian Empire-is asentially different from that of bis Armacid predecemors It is, rather, continua- sampane tion of the Achaemenid traditions which were still Weat win alive on their native soil. Consequently the national Romat
impetut-already clearly revealed in the title of the new woveralgn-ayain becomes atrikingly manifeat. The Sassanian Empire, in fact, is once more a mational Persian or Iranian Empire. The religious element is, of coursc, Inceparable from the national, and Ardashir, like all the dynasts of Perain, was an ardent devotee of the Zoroestring doctrine, and closely connected with the priesthood. In his royal style he assumed the designation "Mardayasnian" (Maddaซvas), and the firecult was everywhere vigorously dismominated. Simultaneously the old claims to world dominion made their reappearence. After the defeat of Artabanus, Ardashif, es beir of the Achuemenids, formulated his pretensions to the dominion of westerp Asia (Dio. Cass, 80, 3 ; Herodian vi. 2, 4; Zonar. xii. 15; similarly under Shapur II: Ammian. Mare xvil. 5, 5). He altacked Armenia, though without permanent success (cf. von Gutschmid in Zeilscitr. d. d. morgenl. Ges. xrxi. 47, on the fabulons Armenian account of these wars), and despatched his armies against Roman Mesopotamia. They strayed as far as Syria and Cappedoria. The inner decay of the Roman Empire, and the widespread tendency of its troops to mutiny and usurpation, savoured his enterprise. Nevertheless, the armies of Alexander Severus, supported by the king of Armenia, succeeded in repelling the Persians, though the Romans sustained severe losses (23I233). Towards the end of his reign Ardashir resumed the atteck; while his son Shapur I. (241-272) reduced Nisihis and Carthae and penctrated into Syria, but Tas defeated by shawin Gordian III. at Resacna (243). Scon afterwards,
however, the Roman Empire seemed to collapse titterly. The Goths defcated Decius (251) and harried the Dalkan Peninsula and Asia Minor, while insurrections broke out everywhere and the legions created one Cacas after the other. Then Shapur resumed the war, subdued Armenis and plundered Antioch. The emperor Vaierian, who marched to encounter him, was overthrown at Edessa and taken prisoner (260). The Perian armies advanced into Cappadoda; but here Ballista or Balista (d. c. 264) beat them back, and Odenathus (Odainath), prince of Palruyra (q, v,), rose in their rear, defeated Shapur, captured his harem, and twice forced his way 10 Clesiphon (263-365). Shapur was in no position to repair the defeat, or even to hold Armenia; so that the Serasanid power falied to pass the bounds of the Arsacid Empire. Nevertheless Shapur I., In contrast to his father, assumed the title " King of the kings of the Iranians and non-Iranians" (Baoilabs Baoilbuy 'Apranos mal 'Ampravém; shah as shah Iran we Anirati), thus emphasiving his clalm to world dominion. His successors retalned the deaignation, little as it corresponded to the facts, for the single non-Iranian Land governed by the Sassanids was, as under the Parthians, the district of the Tigris and Euphrates as far as the Mesopotamian desert; western and northern Mesopotamis remained Roman,

The Sassanid ruler is the representative of the "Kingly Majesty," derived Irom Ormuzd, which appears in the Averste as the anget Kavaem Hvareno, "the royal glory," and, according to legend, once beamed in the lrantan kings. unattainable to all but those of royal blood. A picture, which (requently them tecurs in the rock-reliefs of Ardashir 1 . and Shapur $h_{\text {, }}$ representa the king and the god Orausd both on horseback, the latter in the act of handing to his companion the ring of sovercignty. Thuy it is explicable that alt the Sassanids, as many of the Aracids belore them. include the designaion of "god " in their formal style. From this developed (as already under the Arsacids) that atrict principle of legitimacy which is still vigorous in Firdousi, it applies, however, to the whole royal house, precisely as in the Otcoman Empire of to-day. The perman of the individual riset
is, on the other hand, matter of indifference. He can readily be removed and replaced by another; but no usurper who was not of the legitimate blood can hope to become the genuine king, Therefore the native tradition carries the Samanald line back to the Achaemenids aod, still further, to the kings of the losendary period.
Officially the king is all-powerful, and his will, which is guided by God and bound up in His law, unfettered. Thus, externally. he is surrounded by all the splendour of sovereignty; on his head he wears a great nnd resplendent crown, with a high circular centrepiece; be is clothed in gold and jewels; round bim is a brilliant court, composed of his submissive servants. He sits in dazzling atate on his throne in Ctesiphon. All who approach fing themselves to the ground, life and death depend on his nod. Among his people he is accounted the fairest, atrongest and wisest man of the empire; and from him is required the practioe of all piety and virtue, as well as akill in the chase and in arms-especially the bow. Ardashir 1., moreover, and his successors endeavoured to estabtish the validity of the royal will by absorbing the vassal gtates and instituting a firmer organization. Nevertheless they tailed to attain the complete independence and power of the Achaemenide Not atrong enough to break up the nobility, with its great estates, they were forced to utilize its services and still further to promote its intcresta; while their dependence on its good-will and assistance led inevitably to incessant gifts of money, lands and men. This state of affairs had also prevailed under the later Achaemenids, and had materially contributed to the disintegration of the empire and the numerous insurtections of the satraps But the older Achaemenids held an entirely different position; and hardly a single Sassanid enjoyed even that degree of power which was etill retained by the later Achaemenids. It was of \{undamental Importanco that the Saseanian Empire could not make pood its chim to world dominion; and, in spite of the title of its kings, it always remained essentially the kingdom of Iran-or rather west Iran. together with the districts on the Tigris and Euphrates. This fact, again, is most closely connected with its military and administrative organization. The external and interual conditions of the empire are in mutual reaction upoa one another. The empire, which in extent did not exceed that of the Arsacids with its vassal states, was protected on the east and west by the great
milliary
Achinve deserts of central lran and Mesopotamia. For the defence of these provinces the mounted archers, who formed the basis of the army, possessed adequate strength; and though the Scythian nomads from the east, or the Romans Irom the west, might occasionally penetrate deep into the country, they never succeeded in malntaining their position. But the power of the neo-Persian Empire was not great enough for lurther conquests, though its army was capable and animated by a far stronger national leeling than that of the Parthians. It gtill consisted, however. of icvies from the retinue of the magnates led by their territorial lords; and, although these troops would atream in at the beginning of a war, they could not be kept per. mancntiy together. For, oa the one hasd, they were actuated by the most varied personal interests and antipathics, not all of Which the king could sutisty; on the other hand he could not, owing to the natural character and orgnization of his dominions, maintain and pay a large army for any length of time. Thus the great hosts soon melted away, and a war, begun succesafully. ended ingloriously, and often disastrously. Under such circump stances an elaborate tactical organization employing different species of arms, or the execution of n comprehensive plan of cam. pargn, was out of the question. The succemsen of the Satannds in the cant were garned in the later period of their dominoon, and the Roman arraics, in spite of decay in discipline and military sporit. still remained their tactical and strategical supenors. A great victory might be won-even an emperor might be captured, like Valerian-but immediately afterwarde succossem, such as those gained agalnst Shapur I. (who wat certainly an able general) by Ballista and Odenathus of Palmyra, or the lster victories of Carue Julian and others, demonstrated how far the Persians were from being on an equality with the Romans. That Babylonia perma: nently remained a Sassanian province was due merely to the geographical conditions and to the political situation of the Roman Empirc, not to the strength of the Persians.
Among the magnates six great houses-seven, if we include the royal house-were still regarded as the foremost, preclsely as The under the Achacmenids, and from these were drawn The frequently find princes of the blood, who then bear the royal title (shath). Some of these houses-whose origin the legends derive from King Cushtasp (i.e. Vishtaspa), the proterior of Zoroaster (Marquart, Zeisichr. d. d. morgenl. Ges. x jix. 633 sqq .), already existed under the Arsacids, e.s. the Suren (Surenas. vide supra, p. 798) and Karen the Arsacids, e.8. the Suren (Surenas. vide supra, p. 798) and Karen cause of the victorions dynasty at the correct moment and so retained their position. The name Pahtavan, mneovver, which denoted the Parthian magnates, passed over into the new empire. Below these there was an inferior nobility, the dikhans ("village-lortls") and the "knights" (arwar); who, as among the Parthians, took the feld in heavy scale-utmour. To an even greater extent than
under the Aracids the empire wan uubdivided into a hout of small provinces, at the head of each being a Martban ("boundary-lord," Prord of the rnarches"). These were again comprised in four great diesticts. With cach or these local potentates the sing could deal with as scant consideration as be pleased, always provided that he hod the power or understood the art of maloing himsed feared. But to break through the system or replace it by another was impossible. In fact he was compelled to proceed writh great caution whenever be wished to elevate a favourite of humbler origin to an office which custom reserved for the nobility. Thas it is all the more worthy of recognition that the Sassanian. Empire was a fairly orderly empire, with an excellent legal administration and that the later covereigns did their utmost to repress the encroachments of the nobility, to protect the commonalty, and, above all, to carry out a just system of taxation.
Side by side with the nobles ranked the spiritual chiefs, now a far more powerful body than under the Arsacids. Every larger district had its upper Magian (Maqupaf, moobed, i.e. "Lord of the Magians "). At their head was the oupreme Mobed, readent in Rhagae (Ral), who was ne- \qquad ganded as the successor of Zorpastcr. In the new empire, of which the king and people were alike zealous profespors of the true faith, their influence was extraordinarily strong (cf. Agathiss il 26) - comparable to the influence of the pricsthood in later $E_{\mathcal{B}}$) pt, and especlatly in Byzantium and medieval Christendom. As bas already beea indicated, it was in their religious attitudes that the essential difference lay between the Sassanid Empire and the odder Iranian states. But, in detailo, the fluctuations were so manifodd that it is necessary at this point to enter more fully into the history of Persian relifion (cr. especially H. Gelzer، "Eznik u. d. Ent wicked der perm. Rcligione-bystems," in the Zeitschr. f. armen. Phath
The Pervian religion, as we have scen, apread more and more widely aftor the Achaemenian period. In the Indo-Scythian Empire thi Persian gods were zealously worshipped; in Armenia tbe olel nation 1 religion was almost entirely, benished by the Persian cult (G. 'zer," Zur armen. Götterlehre." ia Ber. d. sächs. Grsisi d. Wissensch., 1895); in Cappadocia, North Syria and the west α Ain Mi.t, the Persian gods were everywhere adored side by side with the native deities. It was in the third century that the cult of Mithras, with its maysteries and a theolony evolved from Zoroastrianism, attained the widest diffusion in all Latio-speaking provinces of the Roman dominion; and it even secmed for a whik as's though the Sol invictus Mithras, highly favoured by the Cacsara would become the official deity-inchief of the empire. But in all these cults the Perian gods are perfectly tolerant of other native or Corcign divinitics; vigonous at was their propagandisen, it was yre equally far removed from an attack on other creede. Thus this Parsecism always bears a syncretic character; and the supreme god of Zoroastrian theory, Ahuramazda (i.e. Zeus or Jupiter). in practice yiclds place to his attendant deities, who work in the worid and are able to lead the believer, who has been initiated and keeps the commandments of purity, to salvation.
But, meanwhile, in its Iranian home and especially in Persis, the religion of Zoroaster lived a quict life, undisturbed by the proceedings of the outside world. Here the poems of the prophet and fragments of ancient religious literature survived, understood by the Magnous and rendered acceseible to the faithful laity by versinns in the mecrern dialect (Pahlavi). Here the opposition between the good spirit of light and the demons of evil-between Ormurd and Ahriman- still remained the principal dogma of the creed: whit all other oda and angels, however eatimable their aid, were bat suburdinuie scrvants of Ormusd, whose highest manilestation of carth was not the sun-pod Mithras, but the holy fire guarded by tis priests. Here all the prescriptions of purity-partly conmecled with national customs, and impossible of execution abroadwere diligentiy observed; and even the injunction not to pollute carth with corpses. but to cast out the dead to vulture and dog, was obeyed in its full lorce. At the same sime Ahuramardr preserved his character as a natlonal god, who bestowed on kis worshippers victory and world dominion. In the sculptures of the Sassanids, as also in Armenian tradtions, he appears on horse back as a war-god. Here, again. the theology was further developad and an attempt made to annul the old dualism by envicaging botl Ormuzd and Ahriman as emanations of an original principle of infinite time (Zervan), a doctrine which long enjoyed official validity under the Sassanids till, in the reign of Chosroes I.. "the sect of Zervanites" was pronounced herctical." But. above all, the ritual and the doctrine of purity were claborated and expanded and there was evolved a compicte and detailed system of casuist?: dealing with all things allowed and Corbidden. the forms of pollution and the expiation for cach, \&e., which, in its arid and poiritks monetony vividly recalls the similar prescriptions in the Penpateuct. Thi coneegnences of shis development were that orthodoxy and literal obedience to all pricstly injunctions now assumed an unpor. tance far greater than previously: henceforvard, the great commandment of Zoroastrianism, as of Judalsm, is to combat the heresirs

[^16]of the heathen, a movement which had already had an onergetic represcrtative in the prophet himself. Henthenish cults and forbidden manners and customs are a pollution to the land and a deep insult to the true God. Therefore the duty of the betiever is to combat and destroy the unbeliever and the heretic. In short, the tolcrance of the Achacmenids and the indifference of the Arsacids are now replaced by intolerance and religious persecution.

Such were the views in which Ardashir I. grew up, and in their energetic prosecution he found a potent inst rument for the building up of his empire. It has previously boen mentioned that Vologacses III. had alrcady begun a collection of the holy writings; and the task was reoumed under Ardashir. At his order the orthodox docerincs and texts were compiled by the high priest Jansar; all divergent theorics were prohibited and their adherents proscribed. Thus arose the Avesta, the sacred book of the Parsees. Above all, the sacred book of laws, the Vendided, breathes throughout the spirit of the Sassanian period, in its intolerance, its casuistry degenerating into absurdity, and its eoulless monotony. Subscription to the restored orthodox doctrine was to the Iranian a matter of coursc. The schismatics Ardashir imprisoned for a ycar; if_{1} at its expiration, they still refused to listen to reason, and remained stiff-necked, they were executed. It is even related that, in his zeal for uniformity of erced. Ardashir wished to extinguish the holy fres in the great citics of the cmpire and the Parthian vassal states, with the exception of that which burned in the residence of the dynasty. This plan he was unable to execute. In Armenia, also, Ardashir and Shapur, during the period of their occupation, tought to introduce the orthodox religion, destroyed the heathen images-even those of the Iranian gods which were here considercd heathen,-and turned the shrincs into fire-altars (Gelzer, Ber. sachs, Ges. p. 135, 1895). Shapur I., who appears to have had a broader outlook, added to the religious writings a collection of scientific treatises on medicine, astronomy, mathematics, philosophy, zoology, \&ic., partiy from Indian and Greck sources.

This religious development was mose strongly influenced hy the lact that, meanwhile, a powerful opponent of Zoroastrianism had acention arisen with an equally zealous propagandism and an

Ruferion
astry. cqual exclusivencss and intolcrance. More especjally in the countries of the Tigris and Euphrates, now altogether Aramaic, Christianity had everywhere gained a from footing. ${ }^{2}$ But its missionary enterprise stretched over the whole of Iran, and even farther. The time was come when, in the western and eastern worlds alike, the religious question was for large masses of people the moat important questinn in life, and the diffusion of their own creed and the suppression of all others the highert and holiest of tasks. The man who thinks thus knows no compromise, and so Zoroastrianism and Christianity confronted each other as mortal enemics. Stijl the oid ldea that every religion contained a portion of the truth, and that it was possible to borrow something from one and amalgamate it with another, had not yet lost all its power. From such a conception arose the teaching of Mani or Mancs. For Manichacism (q.D.) is an attempt to weld the doctrine of the Gospel and the doctrine of Zoroaster

Menlolese into a uniform system, though naturally not without an admixture of other clements, principally Babyloninn and Gnostic. Mani, perhaps a Persian lrom Babylonia, is said to have made his first appearance as a teacher on the coronation
day of Shapur 1. At all events he found numerous adherents, both at court and among the magnates of the empire. The king even inclined to him, till in a great disputation the Magians gained the predominance. None the lesp Mani found means to diffuse his creed far and wide over the whole empirc. Even the heir to the throne. Hormizd I. (rcigned 272-273), was favourably dioposed to him; but Shapur's younger son, Bahram I. (273-276), yielded to sacerdotal pressure, and Manl was executed. Atter that Manichacism was persecuted and extirpated ini Iram. Yet it maintained itself not merely in the west, where its head resided at Babylon-propagating thence far into the Roman Empire-but also in the cast, in Khorasan and beyond the bounds of the Sassanian dominion. There the seat of its pontiff was at Samarkand; thence it penctrated into Central Acia. where, buried in the desert sands which entomb the citics of eastern Turkestan, numerous lragments of the works of Mani and his disciples, in the Persian language (Pahlavi) and Syrian acript, and in an East Iraalan dialect, called Sogdian, which was used by the Manicheeans of Central Asia, have been discovered (K. Muller, "Handschriftenreste in Estrangelo-schrift a us Turfan, in Chinesisch-Turkestan." in Abh. d. berl. A kad,, 1904): among them tranglations of texts of the Nev Testament (K. Maller, Berichte der Berl; 1907, . p. 260 日eq.). In these texts God the Father ia identified with the Zervan of Zarathustrism, the devil with Ahriman. The further religious development of the Sassanid Eapire will be touched upon later.
'For the propagation and history of the Christiand in the Sapsanid Empire, cf. Labourt, Ie Christianiswe day Dempire perse sous la dymastic sassanide (igo4); Harnack, Dit Mission umd Ausbreilung des Christenhisems in den ersten drei Jahrhunderten, 2. Aufl. (1906), Bd. II. p. 121 seq.; Chabot, Symadicon ariantale (1902) (a collection of the acts of the Nestorian synods held under the rule of the Samaaids).

Like the Arsacids the kings resided in Ctesiphor, where, out of the vast palace built by Chosroes I., a portion at least of the great hafl is still erect. On the ruins of Seleucia, on the opposite bank of the Tigris, Ardashir I. built the city Architecture of Vch-Ardashir ("good is Ardashir"), to which the later and Arts kings added new towns, or rather new quarters. In Susiana Shapur !. built the great city of Gondev-Shapur, which sucoeeded the ancient capital of the Persian Empirc. At the same time the mother-country again gained importance; especially the capital of Persis, Istakhr, which had replaced the former Persepolis (now the ruins of Hajil-abad). Farther in the south-east, Ardashir I. built Gur (now Firuzabad), under the name of Ardashir-khurre (" the glory of Ardashir "): At these places and in Sarwistan, near Striraz and eloowhere, lie ruins of the Saesanid pataces, which in their design go back to the Achaemenid architecture, btending with it, however, Gracco-Syrian clements and serving in their turn as models for the structures of the Caliphs (sce ARCHITECTURE E Sessamian). After its long quicscence under the Arsacids native art underwent a general renaissance, which, though not aspiring to the Achacmenian creatione, was stiil of no small importance. Of the Sassanian rock-sculptures some have atrcady been mentioncd; besides these, numerous engraved signet-stones have been preserved. The metal-work, carpets and fabrics of this period enjoyed a high reputation; they were widely distributed and even influenced western art.

In the intellectual life and literature of the Sassanid cra the main characteristic is the complete disappearance of Hellenism and the Greck larguage. Ardashir I. and Shapur I. still
appended Greek translations to some of their inscrip- Lemeratere. tions; but all of later date are drawn up in Pahlavi alone. The coins invariably bear a Pahlavi legend-on the obverse the king's head with his name and title; on the reverse, a fire-altar (gencrally with the ascription "fire of Ardashir, Shapur, \&ec." s.e. the fire of the royal palace), and the name of the place of cointge, ustafly abbreviated. The real missionaries of culture in the ompire were the Aramacans (Syrians), who were connceted with the West by theis Christianity, and in their translations diffused Greek. Hiterature through the Orient. But there also developed a rather extensive Pahlavi literature, not limited to religious subjects, but containing works in belles letues, modernizationg of the old Iranian sagas and native traditions, e.f. the surviving fabulous history of Ardashir I.. ethical tales, \&c., with translations of foreign literature, principaliy Indian, one instance being the cciebrated book of talcs Kalifal and Dimmah (sce Syriac Literature), dating from Chosroes I.. in whose reign chess aiso was introduced from India.

Authorities.-Side by side with the accounts of Roman and Greck authors stands the indigenous tradition which, especially for the tater years of the empire, is gencrally trustworthy it goes back to a native work, the Kheudai nama (" book of fords ""). compiled under Chosrocs I. and continued to Yaadeterd III. Its narrations are principally preserved in Tabari, though there combined with numcrous Arabian traditions; also in the poetical adaptation of Firdousi. To these may be added Syrian accounts, particularly in the martyrologies, which have been exceliently treated by G. Hofimann, Auszuge aus sywischen Ahien persischer Marryrer (1880); also the etatements of the Armenian historians.

The fundamental work on Sassanian history is Theodor Noldeke's Gesch. der Perser \#. Araber zur Zeil der Sassaniden, aus der arabischen Chronik des Tabari (1879, trans, with notes and excursuscs chicfly on the chronology and organization of the empire). On this is based Noldcke's Aufsdtse sur pers. Gesch. (1887; containing a history of the Sassanian Empire, pp. 86 sqq.). The only other works reguiring mention are: C. Rawlinson. The Seventh Greal Oriental Monarchy (1876), and F. Justi's sketch in the Grundriss der iranischem Philologic, vol. is. (igo4). For the geography and numerous details of administration:. I. Marquart, "Eranshahr" (Abh. d. zettim. Ges. d. Wissensch., 1901). For the numismatoiogy the works of A. D. Mordtmann are of prime importance, especially his articles in the Zedrehr. d. d. morgenl. Ges. (1879), xxiii. III sq9. apd xxxiv. I sqq. (1880), where the inscriptions of the individas kings are also enumerated. Also Noldeke, ibid. xoxi. 147 sq9. (1877). For facsimiles of coins the principal work is J. de Bartholomaei, Collextion de monnaies sassanides (2nd ed.; St Petcrsburg, 1875). For the inscriptions: Edward Thomas, "Early Sassanian Inscriptions," Jotor. R. A. Soc. vol. ii. (1868); West. "Pahlavi Litcrature" in the Grusdriss d. iran. Philol. vol. ii. For the monuments: Flandia and Coste, Voyage en Perse'(1851); Stolze, Persopolis (i882); Fr. Sarre, Iran. Felsrehefs a. d. Z. der Achaemeniden und Sassamiden (1908).

In forcign policy the problems under the Sassanid king*
${ }^{2}$ List of kings (after Nöldeke, Tabari, p. 435);
Ardashir I., 226-24 I.
Shapur 1. 241-272.
Hormizd 1., 272-273.
Bahram I., 273-276.
Bahram II. 276-293.
Bahram III., 293 ,
Nareh (Narses), 293-309.
Hormind IL., $302+310$.
Shapur 1I., 310-379.

Ardashir II., 379-383.
Shapur III. ${ }^{38} 3-388$.
Behram IV.
38-3e9.
Yardegerd I., $399+420$.
Bahram V., Cor. 420-435.
Yazdegend II $\mathrm{H}_{1} 438+457$.
Hormind I11, 457-459.
Perox $457-484$
Bilash, 484-48.
remained as of old, the defence and, when possible, the expansion of the eastern and western frontiers. In the first two centuries Hhtory of the Sassanid Empire we hear practically nothing
of che
Sassarelet
Roghes It relations with the bas. notices show that the inroads of the Oriental nomads had not ceased, and that the extent of the empire had by no means exceeded the bounds of the Parthian dominion -Sacastene (Seistan) and western Afghanistan. Far to the east, on botb sides of the Indus, the Kushana Empire was still in existence, though it was already hastening to decay, and about A.D. 320 was displaced from its position in India by the Guple dynasty. In the west the old conflict for Oaroene and northem Mesopotamia (now Roman provinces), with the fortresses of Edessa, Carrhae and Nisibis, still smouldered. Armenia the Sassanids were all the more eager to regain, since there the Arsacid dynasty still survived and turned for protection to Rome, with whom, in consequence, new wars perpetually broke out. In the reign of Bahram II. ($276-293$), the emperor Carus, burning to avenge the disaster of Valerian, penctrated into Mesopotamia without meeting opposition, and reduced Coche (near Seleucia) and Ctesiphon; but his sudden death, in December of 283, precluded further success, and the Roman army returned home. Bahram, however, was unable to effect anything, as his brother Hormizd was in arms, supported by the Sacse and other tribes. (Mamertin, Panegyr. Maximin. 7. 10; Genethl. Maximin. 5, 17.) He chose, consequently, to buy peace with Diocletian by means of presents. Some years later his uncle and auccessor, Narses, after subduing his rival Bahram III., occupied Armenia and defeated the emperor Galerius at Callinicum (290). But in the following year he sustained a severe reverse in Armenia, in which be lost his war-chest and harem. He then concluded a peace, by the terms of which Armenia remalned under Roman suzerainty, and the steppes of northern Mesopotamia, with Singara and the bill-country on the left bank of the Tigris as far as Gordyenc, were ceded to the victor (Ammiad, Marc. xxv. 7, 9; Petr. Patr. fr. 13, 14; Rufus brat. 25). In return Narses regained his household. This peace, ratified in 297 and complet ely expelling the Saseanids from the disputed districts, lasted for forty years.

For the rest, practically nothing is known of the history of the first six successors of Shapur I. After the death of Hormind II. (302-310), the son of Narses, the magnates imprisoned or put to death his adult sons, one of whom, Hormisdas, later escaped to the Romans, who used him is a pretender in their wars. Shapur II., a posthumous child of the fate king, was then raised to the throne, a proof that the great magnates held the sovereignty in their own hands and attempted to order matters at their own pleasure. Shapur, however, when he came to manhood proved himsalf an independent and energetic ruler.

Meanwhile the Roman Empire had become Christiad, the sequel of which was that the Syro-Cbristian population of smapor if. Mesopotamia and Babyionis-even more than the Preocution Hellenic cities in former times-gravitated to the ©file Chirtationges. west and looked to Rome for deliverance from the infided yoke. On similar grounds Christianity, as opposed to the Mardaism enforced officially by the Sassanids, became predominant in Armenia. Between these two great creeds the old Armenian religion was unable to hold its own; as early as a.D. 294 King Tiridates was converted by Gregory the Illuminator and adopted the Chriatian faith. For this very reason the Sassanid Empire wha the more constrained to champion Zoroastrianism. It was under Sbapur II. that the compilation of the A valte was completed and the state orthodony perfected by the chief mobed, Aturpad. All heresy was proscribed by the

Kavadh I., 488-53x.
(Djamatp; 486-598).
Chowroen (Khowau) I., Anumis
van, 531-379.
Hormixd IV. $579-590$.

(Bahram VI., Coblin, Bistam 590596.$)$

Kavadh II. Sherpe, 628.
Ardashir III. 628-630.
(Shahrbaras, 630)
(Boran and others, 630-632.)
Yazdegerd III. 632-655;

On most of them kiogs there are separate articien
state, defection from the true faith pronounced a capital crime, and the persecution of the heterodox-particularly the Chris-lians-began (ci. Sachall, "Die rechtichen Verbiltnisse der Christen in Sassanidenreich," in Mitteilungen des Seminers far oricntalische Sprachen für Berlin, Bd. X., Abl. 2; 2007). Thus the duel between the two great empires now becomes simultaneously a duel between the two religions.

In such a position of affairs a fresh war with Rome was inevitable.' It was begun by Shapur in A.D. 337, the year that saw the death of Constantine the Greal. The conflict ceatred round the Mesopotamian fortresses; Shapur thrice besieged Nisibis without success, but reduced several others, as Amida (359) and Singara (360), and transplanted great masses of inhabitants into Susiana. The emperor Constantius conducted the war feebly and was consistently beaten in the field. But, in spite of all, Shapur found it impossible to penetrate deeper into the Roman cerritory. He was hampered by the attack of nomadic tribes in the east, among whom the Chionites now begin to be mentioned. Year after ycar he took the field against them (353-358), till finally he compelied them to support him with auxiliaries (Ammian. Matc. 14, 3; 16, $9 ; 17,5 ; 18,4,6$). With this war is evidencly connected the foundation of the greal town New-Shapur (Nishapur) in Khorasen.

By the resolution of Julian (363) to begin an energetic attack on the Persian Empire, the conflict, alter the lapse of a quarter of a century, assumed a new phase. Julian presed forward to Ctesiphon but succumbed to a wound; and his succeseor Jovian soon found himself in such straits, that he could only extricate himself and his army by a disgraceful peace at the close of 363. which ceded the possessions on tbe Tigris and the great fortres of Nisibis, and pledged Rome to abandon Armenia and her Arsacid protege, Arsaces III., to the Persian.

Shapur endeavoured to occupy Armenia and introduce the Zoroastrian ortbodoxy. He captured Arsaces III by treacbery and compelled him to commit suicide; hut the Armenian maguates proved refractory, placed Arsaces' son Pap on the throne, and found secret support among the Romans. This all but led to a new war; but in 374 Valens sacrificed Pap and had him killed in Tarsus, The aubsequent invasions of the Goths, in battle with whom Valens fell at Adrianople (375), definitely precluded Roman intervention; and the end of the Armenian troubles was that (c.390) Bahram IV. and Theodosius the Great concluded a treaty which abandoned the extreme west of Armenia to the Romans and confirmed the remainder in the Persian ponsession. Thus peace and triendship could at last exist with Rome; and in 408 Yazdegerd I. contracted an alliance with Theodosius II. In Armenia the Persians immediately removed the list lings of the bouse of Anmpenter of Arsaces (430), and thenceforward the main portion of the country remained a Persian province under the control of a marzban, though tbe Armenian nobles still made repeated attempts at insurrection. The introduction of Zoroastrinnism was abandoned; Christianity was already far too deeply rooted. But the sequel to the Roman sacrifice of Armenian interests was that the Armenian Christians now seceded from the orthodoxy of Rome and Constantinople, and organized themselves into an independent national church. This church was duc, before all, to the efforts of the Catholicos Sahak (390-439), whose colleague Mesrob, by his translation of the Bible, laid the foundations of an Armenian literature (see Absisnian Cigurct).

In the interior of the Sassanian Empire the ofd troubles broke out anew on the death of Shapur II. (379). At first the magnates raised bis aged brother Ardashir II. to the throne, then in 383 deposed him and enthroned Shrpur's mon as
Shapur III. In 388, however, be was essassinated, Yenomert as was also his brother, Bahram IV., in 399. But the
son of the latter, Yazdegerd I: (399-420), was an energetic and intelligent sovereign, who held the magnates within bounds and severely chastised their attempts at encroachment. He even sought to emancipate himself from the Magian Church
${ }^{4}$ For the mocceeding events see also under Rome: Axciend Bistory; and articles on the Roman emperors and Perien kings
put an end to the persecutions, and allowed the Persian Christians an individual organization. In the Persian tradition he is consequently known as "the sinner." In the end he was probably assassinated. So great was the bitterness against bim that the magnates would admit none of his sons to the throne. One of them, however, Bahram V., found an auxiliary in the Arab chief Mondhir, who had founded a principality in Hira, west of the lower Euphrates; and, as he pledged himBairem v o, self to govern otherwise than his father, he received general recognition. This pledge he redeemed, and he is, in consequence, the darling of Persian tradition, which bestows on him the title of Ger (" the wild ass"), and is eloquent on his adventures in the chase and in love. This reversal of policy led to a Christian persecution and a new war with Rome. Bahram, however, was worsted; and in the peace of 422 Persia agreed to allow the Christians free exercise of their religion in the empire, while the same privilege was accorded to Zoroastrianism by Rome. Under his son, Yazdegord II. (438-457), who once more revived the persecutions of the Christians and the Jews, a short conflict with Rome again ensued (441): while at the same time war prevailed in the east against the remanants of the Kusban Empire and the tribe of Kidarites, also named Huns.
Here a new foe soon arose in the shape of the Ephthalites (Haitab), also known as the "White Huns," a barbaric tribe The Epthan which shortly after A.B. 450 raided Bactria and terBers or minated the Kushana dominion (Procop. Pers. i. 3). Whap Hass These Ephthalite attacks harassed and weakened the Sassanids, exactly as the Tocharians had harassed and weakened the Arsacids after Phraztes II. Peroz (457-484) fell in battle against them; his treasures and family were captured and the country devastated far and near. His brother Balash ($484-488$), being unable to repel them, was deposed and blinded, and the crown was bestowed on Kavadh I. (488-53I), the son of Peroz. As the external and internal distress still continued be was dethroned and imprisoned, but took refuge among the Ephthalites and was restored in 499 by their assistance-like Keradin L. 80 many Arsacids by the arms of the Dahace and attributed mainly the fact that in the whole of this period no Roman war broke out. But, at the same time, the religious duel had lost in intensity, since, among the Perslan Christians, the Nestorian doctrine was now dominant. Peroz had already favoured the difusion of Nestorianism, and in 483 it was officially adopted by a synod, after which it remained the Christian Church of the Persian Empire, its head being the patriarch of Seleucia-Ctesiphon.
Kavadh proved himself a vigorous ruler. On his return be restored order in the interior. In 502 he attacked the Romans and captured and destroyed Amida (mod. The Mardo- Diarbekr), but was compelled to ratify a peace owing to an inroad of the Huns. Toward the close of his reiga (527) be resumed the war, defeating Belisarius at Callinicum (531), with the zealous support of the wild Arab Mondhir II. of Hira. On his death his son Chostoes I. concluded a peace with Justinian (532), pledging the Romans to an annual subsidy for the madintenance of the Caucasus fortressas. In his home policy Kavadh is reminiscent of Yazdegerd I. Like him he had little inclination to the orthodox church, and favoured Mazdak, the founder of a communistic sect which had made beadway among the people and might be used as a weapon against the nobles, of whom'Mazdak demanded that they should cut down their luxury and distribute their superfluous wealth. Another feature of his programme' was the community of wives. The crown-prince, Chosroes, was, on the other hand, wholly orthodox; and, towards the close of his father's reign, in confunction with the chief Magian, he carried through a sacrifice of the Mazdakites, who were butchered in a great massacre (528). Chosroes I. (531-579); surnamed Anushirvan (" the blessed '"), then restored the orfhodox doctrine in
Chearoes 2., Anmathirvas. full, publishing his decision in a religious edict. At the same time he produced the official exposition of the Asesho, an exegetical translation in the popular tongue
(Pahlavi), and declared its confents hinding. Defection from Zoroastrianism was punighed with death, and therefore also the proselytixing of the Christians, though the Sytian martyrologies prove that the kings frequently ignored these proceedings so long as it was at all possible to do so.

Chosroes I. was one of the most illustrious sovereigns of the Sassanian Empire. From him dates a new and equitable adjustment of the imperial tazation, which was bater adopted by the Arabs. His reputation as an enlightened ruler stood so high that when Justinian, in 529, closed the school of Athens, the last Neoplatonists bent their steps to him in bopes of finding in him the true philosopher-king. Their disillusionment, indeed, was speedy and complete, and their gratitude was great, when. by the conditions of the armistice of 549 , he allowed their retura. From 540 onvard he conducted a great war against Justinian (527-565), which, though interrupted by several armistices, lasted till the filly years' peace of 562 . The net result, indeed, was merely to restore the stalus guo; but during the campaign Chosroes sacked Antioch and transplanted the population to a new quarter of Ctesiphon (540). He also extended his power to the Black Sea and the Caucasus; on the other hand, a siege of Edessa failed (544). A second war broke out in 577, chiefly on the question of Armenia and the Caucasus territory. In this Chosroes ravaged Cappadocia in 575; but the campaign in Mesopotamia was unsuccessful. In the interval between these two struggles (570) he despatched assistance to the Arabs of Yemen, who had been assailed and sabdued by the Abysemian Christians; after which period Yemen remained nominally under Persian suzerainty till its fate was scaled by the conquests of Mahomet and Islam.

Meanwhile, about a.d. 560, a new nation had sprung up in the East, the Turks. Chosroes concluded an alliance with them against the Ephthabites; and so conquered Bactria soutb of the Oxus, with its capital Balkh. Thas this province, which, since the insurrection of Diodotus in 250 m.C., had undergone entirely different vicissitudes from the rest of Iran, was

Pros Apo percance of the Turth. Sattrah Canquera of once more united to an Iranian Empire, and the Sassanid dominions, for the first time, passed the frontlers of the Arsacids. This, however, was the limit of their expansion. Neither the territories north of the Oxus, nor castern Afghanistan and the Indus provinces, were ever subject to them. That the alliance with the Turlss should soon change to hostility and mutual attack was inevitable from the nature of the case; in the second Roman war the Turkish Khan was leagued with Rome.
Chosroes bequeathed this war to his son Hormizd IV. (579590), who, in spite of repeated negotiations, failed to re-establish peace. Hormizd had not the ability to retain the authority of his father, and he further afironted the Magian priesthood by declining to proceed against the Christians and by requiring that, in his empire, both religions should dwell together in peace. Eventually he succumbed to a conspiracy of his magnates, at whose head stood the general Bahram Cobin, who had defeated the Turks, but afterwards was beaten by the Romans. Hormizd's son, Chosroes II., was set up against his father and forced to acquiesce in his execution. But immediately new risings broke out, in which Bahram Cobin-though not of the royal line-attempted to secure the crown, while simullancously a Prince Bistam entered the lists. Chosroes fied to the Romans and the emperor Maurice undertook his restoration at the head of a great army. The people flocked to lis standard; Bahram Cobin was routed (591) and fled to the Turks, who slew him, and Chosroes once more ascended the throne of Ctesiphon; Bistam held out in Media till 596. Maurice made no attémpt to turn the opportunity to Roman advantage, and in the peace then concluded he even abandoned Nisibis to the Persians.
Chosroes II. ($590-628$) is distinguished by the surname of Parvez (" the conqueror"), though, in point of fact, he was immeasurably inferior to a powerful sovereign like his grandfather, or even to a competent general. He lived, however, to witness unpardleled vicissitudes of fortune. The assamination
of Marice in 602 impelled him to a war of revenge against Rome, in the course of which his armics-in 608 and, again, in 625 and 626 -penctrated as iar as Chalcedon opposite Constantinople, ravaged Syria, reduced Antioch (6in), Damascuis ($6: 3$), and Jerusalem (614), and carried off the holy cross to Ctesiphon; in 619 Egypt was occupied. Meanwhilo, the Roman Empire was it the lowest ebb. The great emperor Heractius, who assumed the crown in 630 , took years to create the nucleus of a new military power. This done, however, he took the field in 623, and repaid the Perainns with interest. Their armies were everywhere defeated. In 624 he penetrated into Atropatene (Azerhaijan), and there destroyed the great fire-temple; in 627 he advanced into the Tigris provinces. Chosroes attempted no resistance, but fled from his residence at Dastagerd to Ctesiphon These proceedings, in conjunction with the avarice and licence of the king, led to revolution. Chosroes was deposed and slain by his son Kavadh II. (628); but the parricide died in a few months and absolutechaos resulted. A whole list of kings and pretenders-among them the General Shahrbaraz and Boran, a daughter of Chosroes-followed rapidly on one another, till finally the magnates united and, in 632, elevated a child to the throne, Yardegerd III., grandson of Chosroes. In the interval-presumably during the reign of Queen Boranpeace was concluded with Heraclius, the ald frontier being apparently restored. The cross had already been given back to the emperor.

Thus the hundred years' struggle between Rome and Persia, which had begun in 527 with the attack of the first Kavadh
The Arab Conqueat on Justinian, had rua its fruitless course, utterly enfeebling both empires and consuming their powers. So it was that room was given to a new enemy who now arose between either state and either religion-the Arabs and Islam. In the same year that saw the coronation of Yazdegerd III.-the beginining of 633-the first Arab squadrons made their eatry into Persisn territory. Atter several encounters there ensued (637) the battle of Kadisiya (Qadisiya, Cadesia), fought on one of the Euphrates canals, where the fate of the Sassanian Empire was decided. A little previoualy, in the August of 636, Syria had fallen in 2 battle on the Yarmuk (Hieromax), and in 639 the Arabs penetrated jnto Egype. The field of Kadisiya laid Ctesiphon, with ali its treasures, at the mercy of the victor. The king fled to Media, Where his generals attempted to organize the resistance; hut the bat tle of Nehavend (3641) decided matters there. Yazdegerd sought reluge in one province after the other, till, at last, in 651, he was assassinated in Merv (see Calpphate: A, if i).

Thus ended the empire of the Sassanids, no less precipitately and ingloriously than that of the Achaemenids. By 650 the Arabs had occupied every province to Balkh and the Oxus. Only in the secluded districts of northern Media (Tabaristan), the "generals" of the house of Karen (Spahpat, Ispebbed) maintained themselves for a century as vassals of the caliphaexactly as Atropates and his dyasty had done before them.

The fall of the empire sealed the fate of its religion. The Moslems officially tolerated the Zoroastritn creed, though occasiopal persecutions were not lacking. But lit tle by little it vanished from Iran, with the exception of a few remnants (chiefly in the oasis of Yezd), the faithful finding a refuge in India at Bombay. These Parsees have preserved but a small part of the sacred writings; but to-day they still number their years by the era which begins on the $\mathbf{8 6 h}$ of June A.D. 632, with the accession of Yazdegerd III., the last king of their faith and the last lawful covercign oi Iran, on whom rested the god-given Royal.Glory of Ormuzd.
Aurhonitiss. - Besides the works on special periods quoted above the following general works should be consulted: Spiegel, Eranische Alterlumskydue (3 vols., ${ }^{8876}$ sqq.) ; W. Ceiger and Ernst Kuhn, Grundriss der iranischen Philologie heraurg., wol. ii. (Literature, History and Civilisation, 1896 sq9.): G. Rawlinson. The Fise Greal Mondrchies The Sixth Monarchy, The Sepenth Monarcky. Further the mutually supplementary work of Th. Nöldeke, Aufsätse zur persischen Geschichue (188\%. Medes, Persians and Sasanaids), and A. v. Gusuchmid. Geschichue Irams von Alexander d. Gr. bis swm Unecrigine der Arsaciden (1889), A valuable work of reference is F. Justi, Iramisches Namenbuch (1895).

The most important works on the monuments are: Flandin et Conte, Vojage an Pase (6 vols, 1840 sqg.); Texier, LiArmbuic. is Perse, al La Kesopolamis (2 vols., 1842); Stolze, Prrsepolis (2 vole. 1882); Sarre, Iranische Felsceliefs (1908).

For works on the external history of Persia see those quoted undar articles on Pervian tings; also Rove; Grester EgTfT: Srria; act
(Ed. M.)

B.-Transition Period: froms the Fall of the Sassamid Dymanty to the Death of Tinsur (1405).

With the final defeat of the Sassanids under Yazdegerd III. at the battles of Kadisiya (Kadeasia) (637) and Nchavend (641) Pervia ceased to exist as a single political unit. The country passed under a succession of alien rulers who cared nothing for its ancient institutions or ARef its zeligion. For about 150 years it was governed, frost from Medina and efterwards from Bagdad, by officers of the Mabommodan caliphs whose principal aim it was to destroy the cld natlonality by the suppression of its religion. The success of this policy was, however, only apparent, especially in Iran, the inhabitents of which adopted Islam only in the most anperficial manner, and it was from Persia that the blow fell which destroyed the Omayyad caliphate and set up the Abbasids in its place (see Caliphare). Even before this event adventurers and dissatisfed Mosiem officers had utilized the slumbering hostility of the Pernian peoples to aid them in attacks on the caliphs (e.g. Ziyad, son of Abu Sofian, in the reign of Moawiya I.), and the policy of eastern expanaion brought the Arab atmies perpetually into the Persian provinces.
In the reign of Merwan I. the Persians (who were mostly Shi'ites) under a Monlem officer named Mokhter (Mukhtar), whom they regarded as their mabdi, vainly attempted to ascert their independence in Kufa, hut were soon defeated. This rising was followed by many more (see Caliphate: 5 B) in which the caliphs were generally successful, and Abdalmalik (d. 705) considerably strengthened the Moslem power by instituting a thorough system of Moslem coins and enforcing Arabic as the official language throughout the empire. In the succeeding reign Persla was further subducd by the great conqueror Qoteiba (Qotaiha) b. Moslim, the Arabic governor of Khornsan Omar II., however, extended to non-Arsbic Moolems immunity from all tazes except the sakas (poor-rate), with the resule that a large number of Persians, who sill smarted under their defeat under Mokhtar, embraced Islam and drifted inte the towns to form a nucleus of sedition under the Shi'ite preachers, In the reign of Yazid II. (7 10-724) serious risings took place in Khornsan, and in opite of the wise administration of his successor Hisham (d. 743), the disorder continued to spread, fanned by the Abbasids and the Shiite prenchers. Ultimately in the reign of Merwan II. the non-Arabic Moslems found a leader in AbuMoslim, a maula (elient) of Perslin origin and a henchman of Ibrahim b. Mahommed b. Al, the Shi'ite imam, who raised a great army. drove the caliph's general Nasr b. Sayyar into headlong fight. and finally expelled Merwat. Thus the Abbacids became masters of Persin and also of the Arab Empire. They had gained their success largely by the qid of the Persians, who began thenceforward to recover their lost gense of nationalityi according to the Spanish author Ibn Hazm the Abhasids were a Persian dynasty which destroyed the old tribal system of the Arabs and ruled despotically as Chosroes had done. At the same time the Khorasanians had fought for the old Alid family, not for the Abbasids, and with the murder of Abu Moslim discontent again began to grow among the Shi'tes (q.9.). In the reign of Harun al-Rashid disturbances broke out in Khorasan which were teraporarily appeased by a visit from Harun bimsell. Immediately afterwards Rafi' b. Laith, grandson of the Omayyad general Nasr b. Sayyax, revolted in Samarkand, and Harun on his way to attack him died at Tus (809). Harun's sons Amin and Mamun quarrelled over the succession; Amin became caliph but Mamun by the aid of Tahir h. Hosain Dhu 'l-Yaminain (" the man with two right hands ") and others succeeded in deposing and killing him. Tahir ultimately (820) received the governorship of Khorasan, where he succeeded in establishing
a practically independent Moelem dynasty (the Tahirids)' which ruled until about 873 in nominal obedience to Bagdad. From 825 to about 898 a similar dynasty, the Dulafids ${ }^{2}$ or Dolafids reigned nominally as governors under the caliphs till they were put down by Motadid. In the reign of the caliph Motasim a serious revolt of Persian Mazdaklte sectarics (the Khorrami) in alliance with Byzantium was with difficulty suppressed, as also a rising of Tabaristan under an hereditary chief Maziyar who was secretly supported by the Turkish mercenaries (e.g., Afshin) whom the caliph had iovited to his court. To another Turk, Itakh, the caliph Wathiq gave at itular authorify over all the eastern provinces. In the reign of the tenth ealiph Motawakkil the Tahirids fell before Yakub b. Laith at-Saffar, who with the approbation of the caliph foumided a dynasty, the Saffarid (q.v.), in Sciglan.

It is convenient at this point to mention several other minos dynasties founded by nominal governors in various parts of Persia and its borlertand. From 879 to about 930 Mimor Dymartione the Sajids ruted in Azerhaijan, while in Tabaristan an Alid dynasty (the Zaidites) was independent from 864 to 928 , when it fell before the Samanids. Subsequently descendants of this house ruler in Dailam and Gilan. Through out this period the caliphate was falling completely under the power of the Turkish officers. Mohtali, the fourteenth Abbasid caliph, endeavoured vainly to replace them hy Persians (the Abaa). His successor Motamid was attacked by the Saffarid Yakub who however was compelled to flee (sce Calfphate: $\$ \mathrm{C}$, 15). Yakub's brother Amr (reigned 878-goo) received the vacant position, but was taken prisoner by Ismaii b. Ahmad, the Samanid, and the Salfarids wore hencelorward a merely nomisearariten nal dynnsty under the Samanids ($900-1229$). Tho Samanids (q.v.) were the first really important nonArabic Persian dyansty aince the fall of Yaxiegerd III. They heid sway over most of Pcrsia and Transoxiana, and under their rule acholarship and the arts Bourished exceedingly in spite of namerous civil wars. Ultimately they fell before the Ghaznovid dynasty of Sabuktagin.
In the reign of Mfotadid (Caliphatz: $\$ \mathrm{C}_{\mathbf{\prime}} \$ \mathrm{y} 6$) who, as we have seen, put down the Dolafids, and niso checked the Sajids of Azerbaijan in tbeir designs on Syria and Egypt, the Kharijitos of Mesopotamia were put down by the aid of the Hamdanites of Mosul, who were to become an important dynasty (see below). Subsequently the caliphate, which had temporarily recovered some of its authority, resumed its downward cnurse, and the great families of Persia once again asserted themselves. In the reiga of Qahir (d .934), 2 new dynasty arose in Persla, that surites. of the Buyids (Buwayhids). This family was descended from one Ahu Shaja Buyn, who claimed to be of the old Sassinian house and had become a chicftain in Dellam. He had succesively lought for the Samanids and the Ziyarids, a dynasty of Jorjan, and his son Imad addaula (ed-dowleh, originally Aba II Hnsan Ali) received from Mardawij of the latter house the governorship of Karaj; his second mon Rokn addaula (Abu Ali Hasan) subsequently held Ral and Istahan, while tbe third, Molzt addauka (Abu'l Hosain Ahmad) secured Kermin, Ahvaz and even Bagdad.

The reign of the caliph Mottaqi (Caliphate: \& C, 821) was a period of perpetual strite between the Dailamites, tbe Turks and the Haradanid Nasir addaula of Mowl. In the next reign Moizz addaula took Bagdad (945) and was recognized by the calliph Mostakifis sultan ${ }^{4}$ and amir al-Omara. It was at this

[^17] 11. 844-862: Mahommed, 862-873.
 (873); Ahmad (878); Omar 893-898).
; The Ziyarid dynasey was Younded by Mardewij b. Ziyar (928935). His successors were Zahir addaula (ud-daula, ed-dowleh) Abu Mansur Washmagir ($935-967$), Bistun ($967-976$), Shams al Marali Oabue ($976-1012$), Falak al Ma'ali Manuchahr (ioiz-ro29). Aanalirwin (1029 -3042). They were Alyite in religion. They were of progressively lesa importance under the Samanids, and were whimstely expelied by the Chaznevids.
-This is denied by S . Lane Poole, who poigts odt that they did oot une the sitic on their coims.
time that the three brothers took thetities Imad, Rukn (Rokn), and Moize addaula. The asthority of the family was absolute, though they paid outward respect to the caliphs. Moizz addaula repelled an attack of the Hamdanids of Mosul. The Buyids, and especially Adod addaula (Azud-ed-Dowleh, and similat forms), ruled Bagdad wisely and improved the city by great public works such as the great dike, still known as the Bend Amir on the Kur (Cyrus) near Persepolis. Their sway extended from the Persian Gulf to the Caspian Sea (Caluphate: $\$ \mathrm{C}, \mathrm{\&} 24$). Ultimately, however, the Buyid dynasty grew weaker under the quarrels of its members and fell an casy prey to the Ghaznevids. In the meantime (999) the Samanids fell before the Ilek-Khans of Turkestar, to the great advantage of the Ghaznevid princes.

For these and other minor dynastics such as the Hasanwayhids of Kurdistan (c. 959-1015) and the Kakwayhids of Kurdistan (1007-5051), soe Stockvin, Mamad d'kistoirs, I. 113 aqq. (Leiden, 1888).

The centre of force in Persian politics now changes from west to cast. Fitherto the uitimate power, at least nominally, had resided in the caliphate at Bagdad, and all the dynasties which have been noticed derived their authority formally from that source. With the rise of the Ghaznevids and later ahazerwian the Scljuks, the Abbasid caliphate ceased to count as an independent power. As we have scen, the Ghaznevid armies in a briel space destroyed most of the native dynastics of Persia. The first of the house was Alptagin, a Turkish slave of the Samanid Mansur I., who, having quarrelled with his mastet, look reluge in Afghanistan and founded a semi-Independen: authorily. After his death three unimportant governors of his house held sway, but in 977 the power fell to another former slave, Sahuktagin, whe was recognized by the Samanid Nuh II. His son and successor Mahmud (q.v.) was attacked by a brother, Isma'il, and retired from Khorasan (of which he had been governor). The Samanids then fell under the power of the Tatar likhans, but Mahmud returned, triumphed over both the Samamids and the Tatars, and assumed the independent title of sultan with authority over Khorasan, Transoxiana and parts of north-west India. Mahmud was a great conquefor, and wherever he went he replaced the existing religion by Mahommedanism. He is described as the patron (if a somewhat ungenerous one) of literature; it was under his auspices that Findousi collected the ancient myths of Persla and produced the great epic Shahnoma (Book of the Kings). His descendants held 2 nominal rule till 1187 , but $\ln 1152$ they lost all their extra-Indian territories to the Ghorids, and during the last thirty-five years reigned in diminished splendour at Lahore. Even before this time, however, the supremacy which they enjoyed under Mahmud in Persia had fallen into the hands of the Seljuks who, in the reign of Mas'ud I., son of Mahmud, conquered Khorasan. In 1037 Seljuk princes were recognized in Merv and Nishapur, and in the ensuing eighteen ycars the Scljuks conquered Balkh, Jorjan, Tabaristan, Khwarizm, Hamadan, Rai, Isfahan, and finally Bagdad (2055). The Abbasid caliphs, who still enjoyed a precarious and shadowy authority at the pleasure of Turkish viziers, gladly surrendered themselves to the protection of the Mahommedan Seljuks, who paid them all outward respect.
Thus for the first time since the Arab conquest of the Sassanian realm Persia was ruled by a single authotity, which extended its conquests westward into Asia Minor, where it checked the rulers of Byzantium, and enstward to India and Central Asia The history of this period is treated at length in the artides Callphate: $C, 5826$ sqq-i and Selfurg. A bere outling only is required here.

The first three Seljuk rulers were Toghrul Beg, Alp Arslan and Malik Shah. On the death of the last the empire wat distracted by civil war between his sons Barkiyaroq, Mahommed and Sinjar, with the result that, although the Seljuks of the direct line maintained nominal supremacy till the death of Sinjar ($\mathbf{2 1 5 7}$), other branches of the family established themselvea in various parts of the empire-Syria, Rum (Asia Minor),

Kermin, and Irak wish Kardistan. Sinjar himself lost all his dominions except Khorasan in wars with the Karakitai. The sultans of Kermin were rarely independent in the full sense, but they enjoyed comparative peace and prosperity till the death of Toghrul Shah (1170), after which their power fell before the Ghuzz tribes; Kerman was finally captured in 1195 by the Khwarizm shahs. Meanwhile an independent dynasty was formed about 1136 in Azerbaijan by the governors (atabegs) appointed by the Seljuks; this dynasty was overthrown by the Khwarizmshahs in 1225. Similar dynasties existed in Laxistan and Fars.
The empire of the Seljuks was essencially military. Their authority over their own officers was so precarious that they preferred to entrust the command to Turkish slaves. These officers, bowever, were far from loyal to their lords. In every part of the empire they gradually superseded the Seljuk princes, and the minor dynasties above mentioned all owed their existence to the ambition of the Turkish regents or atabegs. The last important dynasty in Persia prior to the Mongol invasion was that of the Salgharids in Fars, founded by the descendants of a Turkish general Salaghar, who had formerly been a Turkoman leader and ultimately became chamberlain to Toghryl Beg. The first ruler was Sonkor b . Modud, who made himself independent in Fars in 1148 . The fourth, $\mathrm{Sa}^{\circ} \mathrm{d}$, became tributary to the Khwarizm shahs in 1195, and the fifth acknowledged allegiance to the Mongol Ogotai and received the title Kutbegh Khan. His successors were vassals of the Mongols, and the last, the Princess 'Abish (d. 2287), was the wife of Hulagu's son Mangu Timur.
Before passing on to the Mongol conquerors of Persia it is necessary briefly to notice the shabs of Khwarizm, who have Khwartem. frequently been mentioned as oyerthrowing the minor dynastics which arose with the decay of the Seljuks. These rulers were descended from Anushtajin, a Turkish slave of Chazni, who became cupbearer to the Seljuk Malik Shah, and afterwards governor of Khwarizm (Khiva) in 1077. In 1138 the third of the line, Atsiz, revolted but was defeated and expelled by Sinjar. Shortly afterwards he returned, firmly established his power, and extended the Khwarizm Empire as far as Jand on the Sihun. The brief reigns of IL-Arshn and Sultan Shah Mahmud were succeeded by that of Tukush (1172-1199) and Ala ed-din Mahommed' (1199-1220). The former of these subdued Khorasan, Rai and Istahan, while the latter brought practically all Persia under his sway, conquered Bokhara, Samarkand and Otrar, capital of the Karakitai, and had even made himself master of Ghazni when his career was stopped by the hordes of the Mongol Jenghiz Khan. In 1231 the last of his house, Jelal ud-din (Jalaluddin) Mangbarti, or Mango-berti, was banished, and thus the empire of the Kluwarizm shahs, which for a bricf period had included practically all the lands conquered by the Seljuks, passed away.
Thus froin the fall of the Samanids to the invasion of the Mongols five or at most six important dynastics held sway over Persia, while some forty bmall dynastien enjoyed a measure of local autonomy. Daning the whole of thin period the Abbasid caliphs had been nominally reigning throughout the Mahornmedan world with their capital at Bagdad. But with hardly any exceptions they had been the merest puppets, now in the hands of Turkish ministers, now under the protection of practically independent dynasts. The real rulers of Persia during the years 874-1231 were, as we have seen, the Samanide, the Buyids, the Chaznevids, the Seljuks, the Salgharids and the Khwarizm shahs. We now come to a new period in Persian history, when the sumerous petty dyrasties which mucceeded the Seljulas were all swallowed up in the great Mongot invasion.

In the kater years of the r2th century the Mongols began their westward march and, after the conquest of the ancient Maggets. kingdom of the Kajakitai, reached the borders of the territory of the Khwarizm shahs, which was at once overwhelmed. Jenghis Khan died in 1272, and the Mongol
${ }^{2}$ It was this prince who destroyed the Ghorid dynasty, which daimed deacent from the legendary Persian monarch Zohak. Except for \& brief period of subrnistion to the Chaznevids (10091099) they ruled at Ghor until 1225, whea they were conguered after a fierce struggle.

Empire sfretching from the Caspian to the Yellow Sea was divided up among his sons. Persia itself fell partly in the domain of Jagatai and partly in that of the Colden Horde. The actual governor of Persia was Tului or Tule, whose son Hulagu or Hulaku is the first who can he rightly regarded as the sovereign of Persia. His acceasion occurred in 1256, and henceforward Persia becomes after 600 years of spasmodic governmeat a national unit. Hulagu at once procteded to destroy a number of nascent dynasties which endeavoured to establish themselves on the ruins of the Khwarizm Empire; about 1255 he destroyed the dynasty of the Assassins ${ }^{2}$ by the capture of their stronghold of Alamut (Eagle's Nest), and finally in 1258 captured Bagdad. The thirty-eighth and last Abbasid caliph, Mostasim, was brutally murdered, and thus the Mahommedan caliphate ceased to exist even as an emasculated pontifcate. The Persian Empire under Hulagu and his descendants extended from the dominions of Jagatai on the north to that of the Egyptian dynasts on the south, and from the Byzantine Empire on the west to the confines of China. Its rulers paid a nominal homage to the Khakhan (Great Khan) in China, and officially recognized this dependence in their title of Ilkban, i.e. provincial or dependent khan. From 1258 to 1335 the Ilkhams were not scriously challenged. Hulagu fixed his capital at Maragha (Meragha) in Azerbaijan,where he erected an observatory for Nasir ud-din Tuai, who at his request prepared the astronomical tables known as the Zidj-i-Ilkkani. He died in 1265 and was succeeded by his son Abagha or Abaka, who married the daughter of Michact Palacologus, the Byzantine ruler. Abagha was a peaceful ruier and endeavoured by wise administration to give order and prosperity to a country torn asunder by a long period of intestine war and the Mongol invasion. He succeeded in repelting two attacks by other Mongolian princes of the house of Jenghiz Khan; otherwise his reign was uneventiful. His brother Nikudar (originally Nicoles) Ahmad Khan succeeded him in 1281. This prince was converted to Islam, an event of great moment both to the internal peace and to the external relations of Persia. His persecution of the Christians led them into alliance with the Mongols, who detested Islam; the combined forces were too strong for Nikudar, who was murdered in 1284 . The external results were of more importance. The llkhans, who had failed in their attempt to wrest Syria from the Mameluke rulers of Egypt, had subsequently endeavoured to effect their object by inducing the European Powers to make a new crusade. The conversion of Nikudar put an end to this policy and Egypt was for some time free from Persian attack (sce EGYPT: History). The Mongol leaders put on the throne a son of Abagha, by name Arghun. His reiga was troubled. His first minister Shams ud-din was suspected of having poisoned Abagha, and was 300 n put to death. His successor, the amir Bogha, conspired against Arghun and was executed. Under the third minister ($\mathrm{x} 28 \mathrm{~g}^{-}$ 1291), a Jewish doctor named Sa'd addaula (ed-Dowleh), religious troubles arose owing to his persecution of the Miahommedans and his favouring the Christians. The financial administration of Sa'd was prudent and successful, if somewhat severc, and the revenue benefited considerably under his care. But be committed the tactical error of appointing a disproportionate number of Jews and Christians as revenue officials, and thus made many cnemies among the Mongol noblcs, who had him assassinated in 1291 when Arghun was lying fatally ill. It is possible that it was Sa'd's diplomacy which led Pope Nicbolas IV. to send a mission to Arghun with a view to a new crusade. The reign of Arghun was also disturbed hy 2 rebellion of a grandson of Hulagu, Baidu Khan. Arghun died 8000 after the murder of Sa'd, and was succeeded by his brother Kaikhatu, or Gaykhatu, who was taken prisoner by Baidu Khan and killed (1205). Baidu's reign was cut short in the same year by Arghun's son Ghazan Mahmud, whose reign (1295-1304) was a period of prosperity in war and administration. Ghasan

[^18]was a man of great bbity. Fie extablisbed a permanent staff to deal with legal, financial and military affairs, put on firm basis the monetery system and the syatem of wrights and measures, and perfected the motmted postal service. Ghamen fought with success against Egypt (which country had already from 1293 to December 1294 been ruled by a Mongol usurper Kitboga), and even held Demascus for a few montho. In 1303, bowever, his troops were defeated at Merj al-Saffar, and Montol claims on Syria were defmitely abandoned. It was even suggested that the titular Abbasid calipks (who retained an empty title in Cairo under Mameluke protection) ahould be reinstated at Bagdad, but this proposal was not carried into effect. Chazan is historically important, however, mainly as the first Mongol muler who definitely adopted Islam with a large number of his subjects. He died in 1304, traditionally of anger at the Syrian fiasco, and was succeeded by his brother Uljaitu (Oeljeitu). The chief events of his reign were a successful war against Tatar invaders and the substitution of the new city of Sultania as capital for Tabrix, which bad been Ghazan's headquarters. Uljaitu was a Shitite and even stamped his coins with the names of the twelve Shi'ite imams. He died in 1316, and was succeeded by Abu Sa'id, his son. The prince, under whom a definite peace was made with Malik al-Nasir, the Mameluke ruler of Egypt, had great trouble with powerful viziers and generals which he accentuated by his passion for Bagdad-Khatun, wife of the amir Hosain and daughter of the amir Chupan. This lady he eventually married, with the result that Chupan headed a revalt of his tribe, the Selduz. Abu SaId died of fever in 1335, and with him the first Mongol or Ilkhan dymasty of Persia practically dame to an end. The real power vas divided between Chupan and Hosain the Jelair (or Jalair), or the Ilkhanian, and their sons, known respectively as the Little Fasan (Hasan Kuchuk) and the great Hasan (Hasan Buzurg). Two puppet kings, Arpa Khan, a descendant of Hulagu's brother Arikbuhga, and Musa Khan, a descendant of Baidu, nominally reigned for a few months each. Then Hasan Kuchuk set up one Sati-beg, Abu Sa'id's daughter, and wife successively of Chupan, Arfa Khan and one Suleiman, the last of whom was khan from 1339 to 1343 ; in the same time Hasan Buzurg set up successively Mahommed, Tughs-Timur and JahanTimur. A sixth nonentity, Nushirwan, was a Chupani nominee in 1344, after which time Hasan Buzurg definitely instalied himself th the first khan of tho Jelairid or Ilkhanian-Jelairid dynasty.
Practically from the reign of Abu Sa'id Persis was divided under five minor dynasties, (1) the Jelairids, (2) the Mosaffarids, (3) the Sarbadarids (Serbedarians), (4) the Beni
mprestios Kurt, and (5) the Jubanians, all of which ultimately fell before the armies of Timur.

1. The Jelairid rulers were Hasan Buzurg (1336, strictly 13441356). Owais (1356-1374), Hosain (1374-1382), Sultan Ahmad ($3382-1410$), Shah Walad ($1410-14 \mathrm{tt}$). Their capital was Bagdad, and thest dominion was increased under Hasan. Owais added Azertaijan. Tabriz, and ever Mosul and Diarbekr. Hosain fought with the Mozaffarids of Shiraz and the Black Sheep Turkomans (Kara Kuyunli) of Armenia, with the latter of whom he ultimately entered into alliance. On his death Azerbaijan and Irak fell to his brother, Sultan Ahmad, while another brother Bayczid rulede for a few months in part of Kurdistan. It was about this time that Timur (q.v.) began his great carcer of corquest, under which the power of the various Persian dynastics collapsed. By 1393 he had conquered northern Persia and Armenia, Bagdad, Mesopotamia, Dharbekr and Van, and Ahmad fled to Egypt, where he was received by Barkuk (Earquq) the Mamcluke sultan. Barkuk. who had already excited the enmity of Timur by slaying one of his envoys, espoused Ahmad's cause, and restored him to Bagdad after Timur's return to his normal capital Samarkand. Timur retaliated and until his death Ahmad ruled only from time to time. in 1406 Ahmad wis finally restored, but almost immediately entered upon a gutrrel with Kara Yusuf, leader of the Black Sheep Turkomans (Kara Kuyuali), who defeated and killed him in 1410. His nephew Shah Walad reigned Ior a few months only and the throne was oceupied by his widow Tandu, formerly wife of Barkuk, who ruled over Basra, Wasit and Shoster till 1416, paying allegiance to Shah Ruth, the second Timurid ruler. Walad's sons Mahmud, Owais and Mahomped, and Howain, grandgon of Sultan Ahmad, succeraively cocropled the chrone. The last of these was lilled by the Kere

Kuyunil, who had extablished a dynank in mentern Peruia witer Kara Yusuf's victory in 1410.
2. The Mozaffarids. who ruled roughly from 1313 to 1399 in Fars, Kerman and Kurdistans, were descended from the Amir Mosaffar, or Muraffar, who held a post as governor under the Ilkhan ruler. His son Mobariz ud-din Mahommed, who followed him in 1313, became governor in Fars under Abu Sa'id, in Kermen in 1340, and subsequently made himself independent at Fars and Shiraz (353) and in Idahan (1356). In 1357 he was deposed and blinded, and though restored was exiled agam and died in 1364 . His descendants, except (or Jelal ed-din (Jalaluddin) Shah Shuja", the patron of the poet Hafiz, were unimportant, and the dynasty was wiped out by Timur about 1392.
3. The Sartadaride (so called Irom their mot to Sar-ba-dar. "Heat to the Gibbet "), despendants of Abd al-Raxrak, who rebelled in Khorasan about 1337 t enjoyed some measure of independence under twelve rulers till they also were destroyed by Timur (c. I380).
4. The Beni Kurt (or Kart), who had governed in Khorasan from 1245, became independent in the early 14th century; they were abolished by Timur (c.1383).
5. The Jubanians had some power in Axerbaijan Irom 1337 to 1355, when they were dethroned by the Kipchats of the bouse of Jenghiz Khan.

The authority of Timur, which, as we have seen, was dominant throughout Persia from at least as enrly as 1395 till his death in 1405, was never unchallenged. He passed from one victory to another, but the conquered districts were never really settled under his administration. Fresh risings of the defeated dynasties followed each new enterprise, and he had also to deal with the Mongol hordes whose territory marched with northern Persia. His descendants were for a brief period the overlords of Persia, but after Shah Rukh (reigned 1409-1446) and Ala addaula (1447), the so-called Timurid dynasty ceased to have any authority over Persia. There were Timurid governors of Fars under Shab Rukh, Pir Mahommed (1405-1409), Iskendar (1409-1414), Ibrahim (1415-1434) and Abdallab (1434); in other parts of Persia many of the Timurid family held governerships of greater or less importance.

Authozitiss,-The worts relating to Peride will be found under articles on the maindynastics (CALIPHATE; SRLJUKS; Moncols), and the grcat rulers (Jenchiz Khan; Mahmud of Ghazni; Timur). For genernl information and chronology see S. Lane Poole, Mfohammedan Dynasties (London, 1894): Stockvis, Manuel d'hisboire. vol. i. (Leiden, 1888); Sir H. Howorth. History of the Mongots (1876-1888).
(J. M. M.)
C.-From the Doalk of Timur to the Fall of the Sofowid. Dynasty, 1405-1736.
Timur died in $\mathbf{3} 405$, when in the sevemieth year of his age and about to invade China. Besides exercjsing sovereignty over Transoxiane and those vast regions more of 7 . Them less absorised in Asiatic Russia of the zoth century, floces ned inclusive of the Caucasus, Astrakhan and the Turtomana, lower Volga, and overrunning Mesopotamia, Syria, $1405-1499$. Asia Minor, Afghanistan and India, he had at this time left his indelible mark upon the chicf cities and provinces of Persia. Khorasan and Mazandaran had submitted to him in 1381, Azerbaijan had shortly after followed their example, and Isfahan was seized in 1387 . From Isfahan he passed on to Shiraz, and thence returned in triumph to his own capital of Samarkand. Five years later he subdued Matandaran, and later still he was again at Shiraz, having effected the subjugation of Luristan and other provinces in the west. It may be said that from north to south, or from Astarabad to Hormus, the whole counery had been brought within his dominion.
The third son of Timur, Miran Shah, had ruled over part of Persia in his father's lifetime; but he was eaid to be insenc, and his incapacity for government had caused the loss of Bagdad and revolt in other provinces. His claim to succession had been put aside by Timur in favqur of Pir Mahommed, the son of a deceased son, but Khalil Shah, a son of the discarded prince, won the day. His waste of time and treasure upon a fascinating mistress named Shadu "1-Mulk; the "delight of the kingdom," soon brought about his deposition, and in 1408 he gave way to Shak Rukh, who, with the exception of Miran Shah, was the only surviving son of Timur. In fact the uncle and nephew changed places-the one quitting his-govermnent of Xhoresen
to take possecsion of the Central-Asian throne, the other consenting to become governor of the vacated Persian province and abandon the cares of the empire at Samarkand. In 1400 Xhatil Shah died; and the story goes that Shada 1-Mulk stabbed herself and was buried with her royal lover at Rai, one of the towns which his grandfather had partly destroyed.
Shah Rukh, the fourth son of Timur, reigned for thirty-eight years, and appears to have been a brave, generous, and enightened monarch. He removed his capital from Samarkand to Herat, of which place he rebuilt the citadel, restoring and improving the town. Mery also profited from his attention to its material interests. Sir John Malcolm speaks of the splendour of his court and of his encouragement of science and learning. He sent an embassy to China; and an English version of the travels to India of one of his emissaries, Abd ur-Razzak, is to be found in R. H. Major's India in the Fifteenth Century (London, Hakluyt Society, 1857). As regards his Persian possessions, he had some trooble in the north-west, where the Turkomans of Asia Minor, known as the Kara Kuyun,' or " Black Sheep," led by Karz Yusuf" and his sons. Iskandar and Jahan Shah, had advanced upon Tabriz, the capital of Azerbaijan. On the death of the Shah Rukh in 1446 he was succeeded by his son Ulugh Bey, whose scientific tastes are demonstrated in the astronomical tables bearing his name, quoted by European writers when determining the latitude of places in Persia. He was, moreover, himself a poet and patron of literature, and built a college as well as an observatory at Samarkand. There is no evidence to show that he did much to consolidate his grandfather's conquests soutb of the Caspian. Ulugh Bey was put to death by his son Abd ul-Latif, who, six months later, was slain by his own soldiers. Babar-not the illustrious founder of the Mughal dynasty in India, but an elder member of the same house-next obtalned possession of the sovercign power, and established himself in the government of Khorasan and the neighbouring' countries. He died after a short rule, from habitual intemperance. After him Abu Sa'id, grandson of Miran Shah, and once governor of Fars, became a candidate for empire, and allied himself with the Uzbeg Tatars, seized Bolhara, entcred Khorasan, and waged war upon the Turkoman tribe aforesaid, which, since the invasion of Azerbaijan, had, under Jahan Shah, overrun lrak, Fars and Kermsn, and pillaged Herat. But he was eventually taken prisoner hy Uzun Hasan, and killed in 1468.
It is dfficult to assign dates to a few events recorded in Persion history for the cighteen years following the death of Abd ulLatif; and, were it not for chance European missions, the same difficulty would be felt in dealing with the period after the death of Abu Said up to the accession of Isma'il Sufin in 1499 . Sultan Ahmad, eldest son of Abu Sa'id, reigned in Bokhara; his brother, Omar Sheikh, in Fergbana; but the son of the latter, the great Babar, was driven by the Usbegs to Kabul and India. More to the purpose is it that Sukan Hosain Mirza,

Hosala
 Mrras.

great-grandson of Omar Sheikh, son of Timur, reigned learned men, among others of the historians Mirkhond and Khwadamir, and the poets Jami and Hatif. But at no time could bis control have extended over central and western Persia. The nearest approach to a sovereignty in those parts on the death of Ahu Sa'id is that of Uzun Hasan, the leader of the Ak Kuyun, or "White Sheep" Turkomans, and conqueror of the "Black Shecp," whose chief, Jahan Shah, he deleated and slew. Between the two tribes there had long been Uzux thasas. a deadly feud. Both wore composed of settlers in Asia Minor, the "Black Sheep" having consolidated their power at Van, the "White "at Diarbekr.
Sir John Malcotm states that at the death of Abu Said, Sultan Hosuin Mirza "made himself master of the empire,"
${ }^{1}$ They were commonly called Kara Kuyun-lu and the "White Sheep" Turkomane Ak Kuyun.lu, the affix "lu" signiifying posession, ie. possession of a gtandard bearing the image of a black or white sbeep.
${ }^{1}$ Arcording to Erskine, this chied killed Miran Shah, whose dwelling-place was Tabriz'
and, a little Later, that " Uzun Elasan, after he had made himself master of Persia, turned his arms in the dircction of Turkey"; but the reader is left to infer for himself what the reat "empire" of Hosain Mirza, and what the Hmit of the "Persia " of Uzun Hasan. The second could not well be inctuded in the first, because the Turkomans were in possession of the greater part of the Persinn platcau, while the "gultan" was in Herat, to which. Khorasan belonged. It may be assumed that an empire Hike that acquired by Timur could not long be maintained by his descendants in its integrity.

The Turkish adjective azur, $\mathbf{i g j g} \mathbf{j}$ " long," applied to Hasan, the Turkoman monarch of Persia (called also by the Arahs Hasanu 't-Tawil), is precisely the qualifying Persian word 5ly used in the compound designation of Artaxerxes Longimanus; and Malcolm quotes the statement of a Venetian envoy in evidence that Uzun Husan was "a fall thin man, of a very open and engaging countenance." This reference, and a furtber notice in Markham's history, supply the clae to a store of valuable information made available by the publications of the Hakluyt Society. The narratives of Caterino Zeno, Barbaro and Contarini, envoys from Venice to the court of Urun Hasan, are in this respect especially interesting. Zeno was sent in 1471 to incite this warlike ruler against the Otoman sultan, and succeeded in his mission. That the result was disastrous to the shah is not surprising, but the war seems to hold a comparatively unimportant place in the annals of Turkey.

Uzun Hasan had married Despina (Gr. Díanouna), daughter of the emperor of Trebizond, Calo Johannes of the house of the Comneni; and Zeno's wife was niece to tbis Christian princess. The relationship naturally strengthened the envoy's position at the court, and he was permitted to visit the queen in the name of the republic which be represented. Barbaro and Contarini met at Isfahan in 2474, and there paid tbeir respects to the shah together. Kum and Tauris or Tabriz (then the capital) were also visited by the Italian envoys following in the royal suite; and the incidental notice of these cities, added to Contatini's formal statement that " the extensive country of Ussuncassan [sic] is bounded by the Ottoman Empire and by Caramanin," and that Siras (Shiraz) is comprehended in it, proves that at least Azerbaijan, Itak, and the main part of the provinces to the south, inclusive of Fars, were within the dominions of the reigning monarch.

There is good reason'to suppose that Jahan Shah, the Black Sheep Turkoman, belore his defeat by Uzun Hasan, had set up the standard of royalty; and Zeno, at the outsel of his travels, calls him " king of Persia "s in 1450. Chardin alludes to him in the same sense; but Hasan the Long is a far more prominent figure, and has hardly reccived justice al the hands of the historian. Indeed, bis idontity seems to have been lost in the various modes of spelling his name adopted by the older chroniclers, who call him indiscriminately ${ }^{4}$ Alymbeius, Asemheius, Asembec, Assimbeo, or Ussan Cassano. He is said to have earned the character of a wise and valiant monarch, to bave reigned eleven years, to lave lived to the age of seventy, and, on his death in 1477 or (according to Krusinski and Zeno) 1478, to have been succeeded on the thronc of Persia by his son Ya'qub. This prince, who had slain an elder brother, dicd by poison (1485), after a reign of seven years. The dose was offered to him by his wife, who had been uniaithful to him and sought to set her paramour on his throne.

Writers differ as to the succession to Ya'qub. Zeno's account is that a son named Allamur (called also, Alamut, Alvante. El-wand and Alwung Bey) was the next king, who, besides Persia, possessed Diarbekr and part of Anerctor. greater Armenia near the Euphrates. On the other hand, Krusinski states that, Ya'qub dying childless, his relative Julaver, one of the grandees of the kingdom, scized the throne, and held possession of it for three ycars. Baisingar, it is added, succeeded him in 1488 and reigned till 490 , when a young nobleman named Rustan (Rustam?) obtained the sovereign power and exerciscd it for seven years. This account is confirmed by

See also Ramusio't preface. - Knolles. Purchas. Zeno.

Aingiolclio, a traveliter who followed his countrymen Barbaro and Contarini to Persin; and from the two authorities combined may be gathered the further narration of the murder of Rustam and usurpation of the throne by a certain Ahmad, whose death, under torture, six months aflerwards, made way for Alamut, the young son of Hesan. These discrephthcies can be roconciled on reference to yat another record bound up with the narratives of the four Italians aforesaid, and of much the same period. In the Trasels of a Merchase in Persia tbe story of Ya'qub's dealh is supplemented by the statement that "the great lords, hearing of their king's decease, had quarrols among themselves, so that for five or six years all Pertia was in a state of civil wat, first one and then another of the nobles becoming sultans. At last a youth asmed Alamut, agod fourteen years, was raived to the throne, whicb he beld till the succession of Sheikh Isma'il." Who this young man was is not specificd; but other writers call Aharut and his brother Myrad the sons of Ye'qub, as though the relationship were unquestionable.

Now little is known, mave incidentally, of Julaver or Rustim; but Baisingar is the name of a nephew of Omar Sheikb, king of Ferghana and contemporary of Uzun Hasan. There was no doubt much anarchy and confusion in the interval botween the death of Ya'quh and the restoration, for two gears, of the dynasty of the White Shetp. But the tender age of Alamut would, even is civilized countries, have sccesitated a regency; and it may be assumed that be was the next legitimate and more generally recognized sovereign. Markham, in deagnating this prince the last of his house, states that he was dethroned by the renowned founder of the Salawi dynasty. This event bring us to one of the most interesting periods of Persian history, any account of thich muat be defective without a prefatory stetch of Isma'il Sufi.

The Sayf of Safowid (Safown) Dynasty (2490-1730).-Sheikh Saifu 'd-Din Iahak 2-lincally descended frow Musa, tbe seventh swente imam-was a recidert at Ardeblt (Ardabil) south.
 contury. It is said that his reputation for sanctity. attracted the attention of Timur, who sorght him out in his abode, and was so charmod by the visit that he relensed, at the holy man's request, a number. of captives of Turkish origin, or Georgians, taken in the wass with Bayedd. The act essured to the Sheikh the constant devotion and gratitude of these mena feeling which was loyally maintained by their deacendanta for the members of his fimily in succesaive gederations,
His son Sadru'd-Din and grandson Kwaja 'Ali (who visitod Meces and died at Jerualem) retained the high reputation of their pious predecessor. Junaid, a grandson of the last, married a sister of Uzun Hasan, and by her had a son named Sheith Heidar, wbo married his cousin Martha, daughter
Shabar. of Uzun Klasan and Queen Dcspina. Three sons Wavar. were the issue of this marriage, Sultan 'All, Ibrahim Mirza, and the youngest, Isma il, the date of whose birth is put down at 8480 for reasons which will appear hercelter. So great was the infuence of Sheikh Haidar, and so earnestly did he carry out the principles of conduct which had characterized his family for five generations, that his name has become, as it were, inseparable from the dynasty of his son Isma'l; and the term "Haidari" (leoninc) is applied hy many persona to Indicate generally the Safawids of Fersia. The outcome of his teaching was a division of Mahommedanism vitally momentous to the world of Ilam. The Persian mind was peculiarly adapted to receive the form of religion prepared for it by the phitosopherts of Ardebil. The doctrines presented were dreamy and mystic; they rejected the infallihility of human wisdom, and threw suspicion on the order and arrangement of buman orthodoxy. There was free scope given for the indulgente of that political Imagination whicb revels in revolution and chafes at prescriptive bondage. As Meleolm remarke, "the very essence of Sufi-ism is poetry."
${ }^{1}$ Aceording to Langles, the annoeator of Chardin, his roal denignetion wer Abu.' 'Fsach Izhak, the Sheikh Sailu 'l-Hikk wu "d-Dia or - "pure one of truth and aulivion""

Those authorites who malntain that Ya'quh Shah left' no son to succeed him consider valid the claim to the vacant throne of Sheikh Haidar Sufi. Purchas says that Ya'qub himself, "jealous of the multitude of Aidar's disciples and the greatness of his fame, caused him to be secretly murthered "; but Krusinski attrihutes the act to Rustam a few ycars later. Zeno, the anonymous merchant and Angiolello affirm that the devotee was deteated and killed in batlle-the first making his conqueror to be Alamut, the second a general of Alamut's, and the third an officer sent by Rustam named Sulciman Bey. Maicolth, following the Zubdatu 'ftawarikh, relates that Sheikh Haidat was vanquished and slain by the govemor of Shirvan. The subsequent statement that his son, Sultan 'AE, was seired, in company with two younger brothers, by Y g'quh, "one of the descendants of their grandfather Usun Hasan, who, fealous of the mumurous disciptes that reserted to Ardebil, confined them to the hill fort of Istakhr in Fars," seems to indicate a sceond interpretation of the passage just extracted from Purchas, and that there is confusion of persons and incident somewhere. One of the sons here alluded to was Isma'il, whom Malcolm makes to have been only seven years of age when he lled to Gilan in 1492. Zeno states that he was then thirteen, which is much more probable, and the several data availahle for reference are in favour of this supposition.

The life of the young Sufi from this period to his assumption of royalty in 1499 was fult of stirring adventure; and his cateer as Isma'il I. was a brtlliant one. According to Zeno, who scems to have carefully recorded the lamaulla events of the time, he left his temporary home on an island of Lake Van before he was elghteen, and, passing into Karabakh," between the Aras and Kur, turned in a south-easterly direction into Gilan. Here he was enabled, through the assintance of a friend of his father, to raise a small force with whlch to take possesaion of Baku on the Caspian, and thence to march upoa Shemakhe 'In Shirvan, a town abandoned to him without a straggle. Fearing, however, that Alamut was advancing to meet him, he was compelled to seek new levies from among the Jengian Christians and others. At the bead of 16,000 men, he thoroughly routed his opponents, and, having cleared the way before him, marched straight upon Tabriz, which at onee surrendered. He was soon after proclaimed shah of Persia (4499), under the desigantion which marked the farnity achool of theright.

Alamut had taken refuge at Diarbekr; but his hrother Murad, at the head of an army strengthened by Turkish aaxiliaries, was still in the field with the ohject of contesting the paternal crown. Ima'il lost no time in moving against him, and wor a ncw victory on the plains of Tahrix. Murad fled with a small remnant of his soldiers to Diarbekr, the mallying-point of the White Sheep Turkomans. Zeno states that in the following year Ismanil entered upon a new campaign in Kurdistan and Asia Minor, but that he retumed to Tabriz without accomplishing bis object, having been harassed by the tactics of Ala ud. Daula, a beylerbey, or governor in Armenia and parts of Syria. Another writer says that he marched against Murad Khan in Irak-f. Ajami and Shiras. This last account is extremely probable, and woald show that the young Turkoman had wished to make one grand effort to save Isfahan and Shiras (with Kazvin and the neighbouring country), these being, after the capital Tabris, the most important cities of Uzun Hasen's Persia. His men, however, apparently dismayed at the groving preatige of the enemy, did not support him, and he was defeated and probably slain. There is similar evidence of the death of Alamut, who, it is alleged, was treacherously handed over to be killed by the shah's own hands.

Isma'il returned again to Tabriz (I $_{5}$ Or) "and cauted great rejoicings to be made on account of his victory." In 1503 he had added to his conquests Bagdad, Mosul and Jezira oa the Tigris. The next year he was called to the province of

[^19]Gilan to chastise a refractory ruler. Having accomplisbed his end, he came back to his capital and remanned there in comparative quiet till 1507^{1} Malcolm's dates are

Coplept wha shalsent

 somewhat at variance with the above, for he infers that Bagdad was subducd in tbat particular year, but the facts remain. All writers seem to agree that in 1508 the king's attention was drawn to an invasion of Khorasan by Shaibani, or Shahi Beg, the Uzbeg, a descendant of Jenghiz and the most formidable opponent of Babar, from whom he had. seven years before, wrested the city of Samarkand, and whom he had driven from Turkestan to Kabul. Since these exploits he had oblained great successes in Tashkent, Ferghana, Hissar, Kunduz, and Khwarizm (Kharcem), and, at the time referred to, had left Samarkand intent upon mischief south and west of the Oxus, had passed the Murghab, and had reached Sarakhs (Serrakhs). Isma'il encamped on this occasion at Isiahan, and there concentrated the bulk of bis army-strengthening his northern (and probably nortb-eastern) (ronticr wilh large bodies of cavalry, but maintaining an attitude of simple watchfulness. In 1510 , when Shaibani had invaded Khorasan the second time, and had ravaged the Persian province of Kermin, Shah Isma'il asked for redress, referring to the land encroached on as " heredhary "; and Shaibani replied that he did not understand on what was founded the claim "to inherit." Eventually the Perrian troops were put in movement, and the Uzbegs, having been divided into small detachments scattered over the country, fell back and retreated to Herat. Their leador repaired to Merv, but Isma'il quickly followed him and enticed him out to battle by taunt and reproach. Shaibani was defeated and tled, but was overtaken in his light, and put to the sword, together with numerous relatives and companions.The next remarkable event in Lsmail's reigh is his war with Sultan Selim L. Its origin may be traced to the Ottoman Warwhen emperor's hatred and persecution of ail heretical Salters. Moslems in bis dominions, and the shat's anger at the fanalicism which had urged him to the slaughter of 40,000 Turks suspected to have thrown off the orthodox Sunnite doctrines. The sultan's army advanced into Azerbaijan and western Persia through Tokat and Erzingan. Isma il had at this time the greater number of his soldiers employed in his newly-canquered province of Khorasan and was driven to raise new levies in Kurdistan to oblain a sufficient force to resist the invasion. It is asserted hy some that bis frontier then extended west ward to Sivas, a city situated in a large high plain watered by the Kizii Irmal, and that hence to Khoi, 90 m , west of Tabriz, he followed the approved and often successful tactics of ravaging and retreating, so as to deprive his advancing enemy of supplies. There is good evidence to show that the Turkish janissaries were within an ace of open revolt, and that but for extraordinary firmness in dealing with them they would have abandoned their leader in his intended march upon Tabriz. In fine, at or near Khoi, the frontier-town of Azerbaijan, the batte (1514) was foughe between the two rival monarchs, ending in the defeat of the Persians and the triumphant entry of Selim into their capital.

There are stirring accounts of that action and of the gallant deeds performed by Selim and Isma'il, both personally engaged in it, as well as by their generals. ${ }^{2}$ Others maintain that Isma il was not present at all.' It is tolerably certain that the Turks won the day by better organization, superiority of numbers; and more especially the use of artillery. On the side of the Persisos the force consisted of little more than cavalry.

[^20]Selim remained at Tabrir no more than eight days. Levying a contribution at that cily of a large number of its skilled artisans whom he sent off to Constantinople, he marched thence towand Karabagh with intent to fix his wioter quarters in those parts and newly Invade Persia in the spring; hut the insubordination of his troops rendered necessary bis speedy return to Turkey. His expedition, if not very glorious, had not been unproductive of visible iruits. Besides humbling the power of an arrogant enemy, he had conquered and annexed to bis dominions the provinces of Diarbekr and Kurdistan. ${ }^{4}$

From 1514 to 1524, although the hostike feelling between the two count ries was very strong, there was no serious nor open warfare. Selim's attention was diverted from Persia to Egypt; Isma'il took advantage of the sultan's death in 1519 to overrun and subdue unfortunate Georgia, as Jahan Shah of the " Black Shcep" had done before him; but Suleiman, who succeeded Setm, was too strong to admit of retalistory invasion being carried out with impunity at the cost of Turkey.

In 1524 Ismail dieds at Ardebil when on a pilgrimage to the tomb of his father. "The Persians dwell with rapture on his character," writes Sir John Maloolm, for they deem him "nol only the founder of a great dynasty, but the person to whom that faith in which they glory owes its establishment as a national religion." And he quotes a note handed down hy Purchas from a contempocary European traveller which reports of him tbus: "His subjects deemed him a saint, and made use of his name in their prayers. Many disdained to wear armour when they fought under Isma'il; and so enthusinstic were his soldiers in their new faith that they used to bare their breasts to their enemies and court death, exclaiming 'Shiahl Shiahl' to mark the holy cause for which they fought."

Shah Tahmasp,' the eldest of the four sons of Isma'il, succeeded to the throne on the death of his father." The priscipal occurrences in his reign, placed as nearly as possible in chronological order, were a renewal of war witb the Uzbegs, who had again invaded Khorasan, and the overthrow of their army (1527); the recovery of Bagdad from a Kurdish usurper (1528); the settlement of an internal feud between Kizil-bash tribes (Shamlu and Tukulu), contending for the custody of the royal person, by the slaughter of the more unruly of the disputants (1529); the rescue of Khorasan from a fresh irruption, and of Herat from a besieging army of Uzbegs (1530); a new invasion of the Ottomans, from which Percia was saved rather by the severity of her climate than by the prowess of her warriors (1533); the wresting of Bagdnd from Persia by the sultan Suleiman (5334); the king's youngest hrother's rebellion
It was about this time that Persia again entered into direct relations with one of the states of western Europe. In $\mathbf{2 5 1 0}$ and 1514 Alphonso d'Albuquerque, the governor of Portuguese India, sent envoys to Isma'il, seeking an alliance. In 1515, After occupying Hormus, he despatched a third embassy under Eernao Gomet de Lemos. His object was to utilize the Shirite armies in conjunction with the Portuguese fleet for an attack upon the Sunnite powersEgypt and Turkey-which were then at war with Portuged in the East. Sec for further details and authorities, K. G. Jayne. Vaste da Gama and his Successors, pp. 108-110 and App. A. (London, 1910),-ED.
© Malcolm says 853, Krusinski 1525; Anpiolello heard of his death at Cairo in August 1524 . Krusinaki adda that he was fortyfive years of age.
*Angiolello calls him "Shincthemes." As an instance of the absurd iransliterating current in France as in England the word "Ach tacon" may be mentioned. It is explained in Chardin" text to mean " les hopitaux a Tauris: c'est-â-dire liest on ron fait profusion de pepres." Chardin"a editor remarka." La dernience partie de ce mot est méconnaissable, et je ne puis deviner quel mot Persan signifiant profusion a pu donner naiseance a la corruption qu'on voit ici." In other words, the first syllable "ach " (Anglice ash) was understood in its common acceptance for " food ${ }^{n}$ of "victuals ": but "tacon" was naturally a puzaler. The wolution of the whole difficuity is, however, to be found in the Turco-Peraian ails hestak khaneh, pronounced by Turtes hasta homa, or more vulgarly osta hhon and even to a French ear-ash-lacon, a hospital, literally a sick-house. This word is Gudoubtedly current at Tabriz and throughout northern Pernim.

T'The other brother were Ilkhas, Bahram and Sam Mipa, eech having hat his particular appanage ampigned him
and the actual setzore of Herst, necesaitating the recovery of that city and a march to Kandahar (1536); the temporary loss of Kandahar in the following year (1537), when the governor coded it to Prince Kamran, non of Babar; the hospitable reception ecconded to the Indian emperor Humayun (1543); the rebellion of the shah's brother next in age, Ilkhas, who, by his alliance with the sultan, brought on a war with Turkey (1548); ${ }^{2}$ and finally a fresh expedition to Geargia, followed by a revengeful incurvion which resulted in the enfarced bondage of thousands of the inhabilants (1552).
Bayezid, a son of the Turkish emperor, rebelled, and his army was beaten in 1559 by the imperial troops at Konia in Acia Minor. He fled to Persia and took refuge
wor with
THERH.
with Shah Tahmasp, who pledged himsell to give him a permaneat asylum. Sukiman's demand, however, for extradition or execution was too peremptory for refusal, and the prince was delivered up to the messengers sent to take him. Whatever the motive, the act itself was highly appreciated by Suleiman, and became the means of cementins a seceatly concluded peace between the two monarchs. Perhaps the domestic affliction of the emperor and the anarchy which in his later years had spread in his dominions had, however, more to do with the maintenance of tranquillity than any mere personal feeling. At this time not only was there religious lanaticism at work to stir up the mutual hatred ever existing between Sunni and Shi'ah, but the intrigue of Eunopean courts was probably directed towards the maintenance of an hostility which deterred the suitan from aggressive operations north and west of Constantinople. "'Tis only the Persian stands between os and ruin" is the reported saying of Busbecq, ambassador at Suleiman's court on the part of Ferdinand of Austria; "the Turk would fain be upon us, but he keeps him back."

In 1 g61 Anthony Jenkinson arrived in Persia with a letter from Queen Elizabeth to the shah. He was to treat with his majesty of "Trafique and Commerce for our English Marchants," ${ }^{2}$ hut his reception was not encouraging, and led to 00 result of importance.
Tahmasp died in 1576, after a reign of about fifty-two years. He must have been some sixty-six years of age, having come to the throne at fourteen. Writers describe

Thereaspos

 him as a robust man, of middle stature, wide-lipped, and of tawny complexion. He was not wanting in soldierly qualities; but his virtues were rather negative than decided. The deceased shah had a numerous progeny, and on his death his fifth son, Haidar Mirza, proclaimed himself king, supported in his pretensions by the Kizil-bash tribe of Ustujulu. Another tribe, the Afshar, insisted on the succession of the fourth son, Isma'il. Had it not been that there were two candidates in the field, the contention would have resembled that which arose shortly after Tahmasp'e accession. Finally Isma'il, profiting from his brother's weak character and the intrigues set on foot against him, obtained his object, and was brought from a prison to receive the crown.The reign of Isma'il IL. lasted less than two years. He was found dead in the bouse of a confectioner in Kazvin, having left the world either drunk, drugged or poisoned mandill No steps were taken to verify the circumstances, for the event itself was a cause of general relief and joy. He was sacceeded by his eldest brother, Mahommed Mirza, otherwise mamomen called Mahommed Khudabanda, whose claim to Khode Anele sovereignty had been originally put aside on the ground of physical infirmity. He had the good sense to trust his state affairs almost wholly to an able minister; but he was cowardly enough to deliver up that minister into the hands of his enemies. His kingdom was distracted by intestinc divisions and rebellion, and the foe
${ }^{3}$ Cresoy says that "Suliman led his armies against the Persians in reveral campaigns (1533 , $1534,1535,1548,1553,1554$), during which the Turks often suifered severely through the dimpult nature d the countries traversed. as well as through the bravery and ectivity of the enemy." All the years given were in the reiga of Thatmen 5 .
appeared also from without. On the east hin youngest son "Abbas, held possession of Khorasan; on the weat. the sultan's troops again entered Aserbaijan and took Tabriz His eldest son, Hamza Mirza, upheld his fortunes to the utmost of his power, reduced the rebel chieftains, and forced the Turks to make peace and retire; but he was stabbed to death by an assassin. On the news of his death reaching Khorasan, Murahid Kuli Khan, leader of the Ustujulu Kivil-bash, who had made good in hght his chaims to the guardianship of 'Abbas, at once conducted the young prince from that province to Kazvin, and occupied the royal city. The object was evident and in accordance with the popular feeling. "Abbas, who had been proclaimed king by the nobles at Nishapur some two or three years before this occurrence, may be gaid to have nor undertaken in earnest the cares of covereignty. His ill-starred father, at no time more than a nominal ruler, was at Shirat. apparently deserted by aoidiers and people. Malcolm infers tbat he died a natural death, hut when ${ }^{2}$ or where is not stated

Shah 'Abbas the Great commenced his long and glorious reign (1 386) by retracing his stepa towards Khorasan, which had been reinvaded by the Uxbegs almost immediately after his departure thence with the Kizi-bath ${ }^{\text {Actath }}$ chief. They had besieged and taken Herat, killed the governor, plundered the town, and laid waste the surroundins country. Abbas advanced to Meahed, but owing to internal troubles he was compelled to return to Karvin without going larther east. In his absence "Abd-ul-Munim Khan, the Uzbeg commander, attacked the sacred city, obtained possession of it white the shah lay helplessly ill at Teheran, andallowed his savaga soldiers full licence to kill and plunder. The whole kingdom was perplexed, and 'Abbas had much work to restore confidence and tranquillity. But circumstances rendered impossible his immediate renewal of the Khorasan warfare. He was summoned to Shiraz to put down rebellion in Fars; and before he could drive out the Uzbegs, he had to secure himself against Turkish inroads threatening from the west. He had been engaged in a war with Murad III. in Georgia. Peace was concluded between the two sovereigns in 1590; but the terms were unfavourable to Persia, who lost thereby Tabrix and one or more of the Cespian ports. A stipulation was included in the treaty to the effect that Persians were not to curse any longer the first three caliphs, -a sort of privilege previously enjoyed by Shilites as part and parcel of their religious faith.

In 1597 'Abbas renewed operations against the Uabegs, and succeeded in recovering from them Herat and Khorasan. Eastward he extended his dominions to Balkh, and in the south his generals made the conquest of Bahrain (Bahrein), on the Arabian side of the Persian Gulf, and the territory and islands of the Persian seaboard, inclusive of the mountainous province of Lar. He strengthened his position in Khorasan by plabting colonies of Kurdish horsemen on the frontier, or along what is called the " atak" or skirt of the Turkoman monntains north of Persia. In 1601 the war with the Ottoman Empire, which had been partially renewed prior to the death of Sultan Murad in 1595, with litule success on the Turkish side, was now entered upon by 'Abbas with more vigour. Taking advantage of the weakness of his ancient enemy in the days of the poor voluptuary Mahommed III., he began rapidly to recover the provinces which Persia had lost in preceding reigns, and continued to reap his advantages in succeeding campaigns under Ahmed I., until under Othman II. a peace was signed restoring to Persia the boundaries which she had obtained under the first Isma'il. On the other side Kandahar, which Tahmasp's lieutenant had yieided to the Great Mogul, was recovered from that potentate in 1600.

At the age of seventy, aftor a reign of forty-two years, "Abbas died at his favourite palace of Farababad, on the coast of Mazandaran, on the night of the agth of January 1628. Perhaps the most distinguished of all Pexian kings, his fame mas not merely tocal but world-wide At his court were ambeseadors from England, Russia, Spain, Portugal, Holland and India
${ }^{2}$ Krusionte eary in 1585.

To his Christian suhjects he was a kind and tolerant ruler. The establishment of internal tranquillity, the expulsion of interlopers and marauders like Turks and Uzbegs, the introduction of salutary laws and the promotion of public works of ntility-these alone would render remarkable his two-score rears of enlightened government. With a fine face, "of which the most remarkable features were a high nose and a keen and piercing eyc, ${ }^{\text {" }}$ he is asid to have been below the middle height, sobust, active, a sportsman, and capable of much endurance. Il is, however, to be regretted that this monarch's memory is tarnished by more than one dark deed. The murder of his eldest son, Sufi Mirza, and the cruel treatment of the two younger brothert, were stains which could not be obliterated by an after-repentance. All that can be now said or done in the matter is to repent the testimony of historians that his griel for the loss of Sufi Mirza was profound, and that, on his deathbed, he nominated that prince's son (his own grandson) his unccessor.

Sam Mirza was seveateen years of age when the nobles, in fulfinnent of the charge committed to them, proclaimed him aten suat king under the title of Shah Suf. He reigned fourteen years, and his reign was a succession of barbarities, which can only be attributed to an evil disposition acted upon by an education void of all civilizing influences. When left to his own devices he became a drunkand and a murderer, and is accused of the death of his mother, sister and favourite queen. Among many other sufferers Imam Kuli Khan, conqueror of Ler and Hormuz, the son of one of "Abbas's most famous generals, founder of a college at Shiras, and otherwise a public benefactor, fell a victim to his savage cruelty. During his reign the Uabegs were driven back from Khorasan, and a rebellion was suppressed in Gilan; hut Kandahar was again handed over to the Moguls of Delhi, and Bagdad retaken from Persia by Sultan Murad-both scrious natlonal losses. Tavernier, without charging the shah with injustice to Christians, mentions the circumstance that "the first and only European ever publicly executed in Persia was in his reign." He was a watchmaker named Rodolph Stadler, who had slain a Persian on suspicion of intrigue with his wife. Offered his life if he became a Moslem, be resolutely declined the proposal, and was docapitated. His tomb is to be recognized at Isfahan by the words "Cy git Rodolpbe" ona long wide stab. Shah Sufi died (1641) at Kashan and was buried at Kum.

His son, 'Abbas IL, succeeded him. Beyond regaining Kandahar, an operation which he is said to have directed in asoas If. person when barely sixteen. tbere is not much to mation his life to the outer world. As to foreign relations, he received embassies from Europe and a deputation from the Erench Eost India Company; he sought to conciliate the Uzbegs by treating their refugee chicfs with unusual honour and mumptuous hospitality; be kept on good terms with Turkey; be forgave the hostility of a Georgian prince when brought to him a captive; and he was tolerant to all religions-always regarding Cbristians with especial favour. But he was a drunk. and and a debauchee, and chroniclers are divided in opinion as to whether he died from the effects of drink or licentious living. That he changed the system of blinding his relatives from passing 2 hot metal over the open eye to an extraction of the whole pupil is indicative of groes brutality. 'Abbas II died (1668) at the age of thirty-eight, after a reign of twenty seven years, and was buried at Kum in the same mosque as his father.

- 'Abbas was succeeded by his son, Shah Sufi II., crowned a second time under the name of Shah Sukiman. Though weak.

Suctruat

 dissolvte and cruel, Suleiman is not without his panegyrists. Chardin, whose testimony is all the more valuable from the fact that he was comtemporary with him, relates many stories characteristic of his temper and hahits Ho kept up a court at Isfahen which surprised and delighted his foreign viaitors, among whom were ambassadors from Europieas states, and one learned writer, Kemplar, creditshim with wisdom and good policy. During his jelgn Xtiorthan was invaded by the ever-encroaching Uzbegs, the Kipchat Tatars plundered the shores of the Cespian, and the ialand of Kishm was taken by the Dutch; but the kingdom suffered otherwise no material loss. He died in 1694, in the forty-pinth year of his age and twenty-sixth of his reign.
About a year before his death, he is deacribed by Sanson, ${ }^{2}$ a missionary from the French king Louis XIV., as tall, strong and active, "a fine prince-a little too effeminate for a monarch," with "a Roman nose very well proportioned to other parts," very large blue eyes, and " a midling mouth, a beard painted black, shav'd round, and well turn'd, even to his eara. The same writer greatly praises him for his kindmese to Christian missionaries.
Krusinski's memoir is full of particulars regending Shab Hosain, the successor of Suleiman. He had an elder and e younger brother, sons of the same mother, but the shaskia
eldest had been put to doath by his father's orders, and the youngest secreted by matermal precaution leat animilar fate should overtake him. There was, however, a second candidate for power in the person of a halr-brother, "Abbass The latter prince was the worthier of the throne, but the other better suited the policy of the eunuchs and those noblemen who had the right of election. Indeed Suleiman himelf is reported to have told the grandees around him, in his lust days, that " if they were for a martial king that would always keep his foot in the stirrup they ought to choose Miras 'Abbas, but that if they wished for a peaceable reign and a pacife king they ought to fix their eyes upon Hosain." But he himself made 50 definite choice.
Hosain was selected, as might have been anticipeted. On his accession (1694) he displayed bis attachment to religions ohservances by prohibiting the use of wine-causing all winevessels to be brought out of the royal cellars and destroyed, and forbidding the Armenians to eell any more of their stock in Isfahan. The thah's grandmother, by feigning herself sick and dependent upon wine only for cure, obtained reversal of the edict. For the following account of Shah Hosain and his successors to the accession of Nadir Shah, Sir Clementa Markham's account has been mainly utilized.
The new king soon fell under the influence of mullahs, and was led so far to forget his own origin as to persecute the Subs. Though good-hearted he was weak and licentious; and once out of the hands of the fanatical party he became ensnared by women and entangled in harem intrigues. For twenty years a profound peace prevailed throughout tire empire, but it was the precursor of a terribie storm destincd to destroy the Safawid dynapty and scatter calamity broadcast over Pernia. In the mountainoys districts of Kandahar and Kabul the hardy tribes of Afghans had for centurics led a wild and almost independent life. They were divided into two great branches the Chilrais of Ghaani and Kabul and the Sadurais of Kandahar and Herat. In 1702 a newly-appointed governor, one Sbah Nawaz, called Gurii Khan from having been "wali" or ruler of Georgia, arrived at Kandahar with a toleralily large lore. He was a clever and energetic man, and had been instructed to take scvere measores with the Aighans, some of whom were suspected of intriguing to restore the city to the Delhi emperor. At this time Kandahar had been for sixty years uninterruptedly is the shah's possession. The governor appears to have given great offence by the harshness of his proceedings, and a Ghilzai chief named Mir Wa'iz, who had complained of his tyranny, was sent a prisoner to Isfahan. This person had much ability and no litile cunning. He was permitted to go on a pilgrimage to Mecca, and on his return in 1708 he so gained upon the confidence of the Persian court that he was allowed to so back to his country. At Kandahar he planned a conspiracy against the government; slew Gurji Khan and his retinue, seized the city, defeated two Persian armies sent against him, and dicd a natural death in 1715 . His brother, Mir Abdallah, succeeded him in the government of the Afghans; but aftera [ew months, Mahmud, a son of Mir Wa'iz, a very young man, murdered his uncle a nd assumed the titk of a sovercign priace.
In the meanwhile the Saduzai tribe revolted at Herat, and declared itself independent in 1717: the Kurds overtan the country round Hamadan; the Uzbess desolated Khorasan; and the Arabs of Muscat seized the island of Bahrein and threatemed Bander Abbosi. Thus surrounded by dangers on all sides the wretehed shat was bewildered. He made one vain attempt to regain his possessions in the Persian

* Present Slate of Parsic (London, 3695).

Gulf; bot the Forteruere foet Fhich had protuined to tramegort hia troops to Bahrein wis defeated by the imam of Muscat and forced to retreat to Con.

The court of Ifahan had no moner received tidings of this dinaster than Mahmod, with a large army of Afghans, invaded Ataner Perbin in the year 17at, ariged Kermsh, and in the following year advanced to within four days' march of the city of Isfahan. The shah offered him a sum of money to return to Kandahar, but the Aighan answered by advancing to a place called Gulnabad, within 9 m . of the capital. The im-disciplimed Persian army, hastily collected, advanced to attack the rebele. It centre was led by Sheikh 'Ali Khan, covered by twenty-four field-pieces. The wali of Arabia commanded the right, and the 'itimadu' d-daulah, or prime minister, the left wing; The whole force amounted to $50,000 \mathrm{men}$, while the Aghans could oot count half that number.
On the 8th of March 1722 the richly dressed hoste of Persia appeared before the little band of Alghans, who were scorched and disigured by their long marches. The wall of Arabia commenced the battle by attacking the left wing of the Afghans with great fury, routing it, and plundering their camp. The prime minister immediately nfterwards attacired the enemy's right wing, but was routed, and the Afghans, taking advantage of the confusion, captured the Persian guns and turned them on the Persian centre, who fled in confusion without striking a blow. The wali of Arabia escaped into Lstahan, and Mahmod the Afghan gained a complete victory. Fifteen thousand Pereana remained dead on the field. A panic now seized on the surtounding inhabitants, and thousands of country people fled into the city. Isiahan was then one of the most magnBoent cities in Asia, containing more than 600,000 inhabitants. Mahmod sefped on the Armenian suburb of Julfa, and invested the doomed city; but Tahmasp, eon of the shah, had previoualy escaped into the mountains of Mazandaran. Famine boon began to presa hard upon the beacored, and in September Shah Hosain offered to capitulate. Having been coniducted to the Afghan camp, he fixed mabowes. the royal plume of feathers on the young rebel's turban Userperten with his own hand; and 4000 Aghanm were ondered to entered I occupy the palace and gates of the city. Mahmud and, sea fahan in triumph, with the captive shah on his left hand acing himself on the throne in the royal palace, he was saluted at sovereign of Persia by the unfortunate Hosain. When Tahmap, the fugitive prince, received tidinge of the abdication of his father, be at once asepmed the title of ghah at Karvin
Turicey and Russia were not slow to take advantage of the calamities of Persia. The Turks reized on Tiflis, Tabriz and Hamadan, while Peter the Great, whoee aid had been sought by the friendlens Tahmesp, fitted out a fleet on the Caspian. ${ }^{\text {: }}$ The Rusaians occupied Shirvan, and the province of Gilan south-west of the Caspian; and Peter made a treaty with Tahmasp II. in July 1722, by which he agreed to drive the Afghans out of Persia on condition that Darband (Derbend), Bakw, Gilan, Mazandaran and Astarabad were ceded to Russia in perpernity. These were all tho richest and most mportant northern provinces of Persia.
Meanwhile the invader, in 1723, invited 300 of the principal Persian nobility to a banquet and massacred them. To prevent their children riging up in vengeance they were all murdered also. Then be proceeded to sinughter vat numbers of the citizens of Isfahan until the place was nearly depopulated. Not content with this, in February 1725 he assembled all the captives of the royal family, except the shah, in the courtyard of the palace, and caused thern all to be murdered, commencing the massacre with his own hand. The wretched Hosain was himaelf whunded in endeavouring vainly to save his infant mon only five years of age. All the males of the royal family, except Hosain himself, Tahmasp, and two children, are eaid to have perished. At length the inhuman miscreant Mahmud died, at the early age of twenty-seven, on the 2and of April 1725. With acarcely any neck, be had round shoulders, a broad face with a fiat nove, a thin beard, and squinting eycs, which were generally downcast.
Mahmud was sncceeded by his first cousin, Ashraf, the son of Mir AAbdallah. He was a brave but cruel Afghan. He gave the dethroned shah a handsome allowance, and trove, by a mild policy, to acquire popularity, In 1727, ofter a short war, be signed a treaty with the Turks, acknowledging the sultan as chief of the Modoms. But the fortunate star of Tahmasp II. was now bebinning to rise, and the days of Afghan usurpation were numbered. He had collected a mall army in Marandaran, and was supported by Fath AAl Khan, the powerful cbief of the Kajar tribe. In 1727
2 We have an account of the Afghan invasion and sack of Isfahan fom an eyo-titnes, Father Krotinsic, procurntor of the Jesuits at that place, whoe interesting vork Fag trandated into Engliah in the ant century.
${ }^{2}$ In 1721 Sultan Hosain eent an embassy to the Rusoians, sceking sid against the Mghans. In May if2a a fictila deacended the Volga commended by Tras Peter and on the rgth of July the Rustian leg frat waved over the Cerpian. Gilan was oceupied by 6000 men nader General Matushkin.

The Russians remaised in Gilan until 1734, when they were obiged to evecuate it, owing to the unhealthigen, of the chimate.
the furitive shah mas jolaed by Nscifr Kall, a tobber chief, who murdered Fath ${ }^{\circ} \mathrm{Ali}$, and, having easily appensed the shah, received the command of the royal army. In I729Ashral became alarmed, and led an Agghan army into Khorasan, where acpece he was defeated by Nadir at Damghan, and forced to oflctans, retreat. The Persian general followed clowe in his rear and again defeated him outside Isfahan in November of the eame yoar. The Aghans fled through the town; and Ashraf, murdering the poor old shah Hosain on his way, hurried with the wreck of his army towards Shiraz. On the 16th of November the victorious Nadir entered Isfahan, and was soon followed by the young shah Tahmasp II., who burst into tears when he beheld the mined palace of his ancestors. His mother, who had escaped the numerous massacres by disguising herscll as a slave and performing the most degrading offices, now came forth and threw herself into his anms Nadir did not give his enemies time to recover from their defeat. He followed thern up, and again utterly routed them in Jamuary 1730. Ashral tried to encape to Kandahar almost alone, but wa murdered by a party of Baluch robbers; and thus, by the genius of Nadir, his mative hand was deivered from the terrible Aghan invaders.

The ambition of Nadir, however, was far greater than hie boyalty, On pretext of incapacity, he dethroned Tahmasp II. in 1732, and sent him a prisoner into Khorasan, where he was murdered some years afterwards by Nadir's son while

Ralet
Safawhts the conqucror was absent on his Indian expectition.
For a short time the wily usurper placed Tahmasp's son on the throne, a little child, with the title of "Abbses III., while he contented himelf with the office of regent. Poor little Abbas died at a very convenient time, in the year 1736, and Nadir then threw off the mask. He was prochaired shah of Persia by a vest aseemblage on the glain of Moghan.

By the fall of the Safavid dyonsty Persia lost ber race of national monarchs, conadered not only in reapect of origin and birthplace but in essence and in spirit. Ismain, Tahmasp and "Abbas, whatever their faults and failings, were Peraian and peculfar to Persians. Regarded in a sober English apirit, the reign of the great Abbas is rendered mythical by erime. But something liberal in the philosophy of their progenitocs threw an attractivemess over the earlier Safawid kings which wat wanting in those who came after them. The fact if that, two centuries after Shah Ismail's accescion to the throne, the Safawid race of kings was effete; and it became noceanary to make. room for a more vigorous if not a more lasting rule. Nadir was the strong man for the hour and occasion. He had been designated a "rohber chief "; but his entecedents, like those of many others who have filled the position, have zedeeming points of melodramatic interest.

A map attached to Krusimei's volumes illustrates the extent of Persian torritory in 1728 , or cne year before Asbraf was finally defeated hy Nadir, and some eight years prior to the date on which Nadir wes himself prochimed king.

Perala is 1718. It shows, during the reign of the Safawids, Tifis, Erivan, Khoi adid Bagdad to have been within the limita of Peris on the west, and in like manner Badth and Kendahar to have been included within the eastern border. There is, however, also shown, as a result of the Afghan intrusion and the impotency of the later Sufawid kings, a long broad strip of country to the west, including Tabris and Hamadan, marked "conquests of the Turks," and the whole west shore of the Cespian from Astrakan to Masandaran marked "conquests of the can of Muscovy "; Makran, written Mecran, is designated "4 a wrarlike independent nation." If further allowance be made for the district held by the Afghan invaders as part of their own country, it will be seen how greatly the extent of Persia proper was reduced, and what a wort Nadir had before him to restore the kingdom to its former proportions.

Bat the former proportions had been partly reverted to, and would doubties have been in some respects exceeded, both in Afgharistan and the Ottoman dominions and on the shores of the Caspian, hy the action of this indefatigable general, had not Tahmasp II. been led into a premature treaty with the Turics. Nadir' anger and indiznation had been great at this weak proceeding; indeed, be had mode it the ostensible cause of the shah's deposition. He had addreseed letters to all the military chiefs of the country, calling upon then for suppott; be bad sat an envoy to Constantinople insisting upon the sultan's restorttion of the Pertian provinces still in his possession-that is,

Georgis and part of Azerbselian-and he had threatened Bagdad with assault. As regent, he had failed twice in taking the city of the caliphs, but on the second occasion he had defested and killed its gallant defender, Topal 'Othman, and he had succeeded in regaining Tifis, Kars and Erivan. ${ }^{1}$

Russia and Turkey, naturally hostile to one another, had taken occasion of the weakness of Persia to forget their mutual quarrels and unite to plunder the tottering kingdom of the Safawid kings. A partition treaty had been signed between these two powers in 1723, by which the czar was to take Astarnhad, Mazandaran, Gilan, part of Shirvan and Daghistan, while the acquisitions of the Porte were to be traced out by aline drawn from the junction of the Aras and Kur rivers, and passing along by Ardebil, Tabriz and Hamadan, and thence to Kermanshah. Tahmasp was to retain the rest of his paternal kingdom on condition of his recognizing the treaty. The ingenious diplomacy of Russia in this transaction was manifested in the fact that she had already acquired the greater part of the territory allotted to her, while Turkey had to obtain het share by further conquest. But the comhination to despoil a feeble neighbour was outwitted by the energy of a military commander of a remarkable type.

D.-From the Aecassion of Nadir Shak, in 1736, to 2884.

Nadir, it has been said, was proclaimed sheh in the plains of Moghan in 1736. Mirza Mahdi relates how this event was brought about by his addrest to the assembled Nedrosetoas. nobles and officers on the morning of the "Nau-rux," or Persian New-Year's Day, the response to that appeal being the offer of the crown. The conditions were that the crown should be hereditary in his family, that the claim of the Safawids was to be held for ever extinct, and that measures should be taken to hring the Shi'ites to accept uniformity of worship with the Sunnites. The mulla bashi (or high priest) objecting to the last, Nadir ordered him to be atrangled, a command which was carried out on the spot. On the day following, the agreement having been ratified between sovereign and peopic, he was proclaimed emperor of Persia. At Kazvin the ceremony of inauguration took place. The edict expressing the royal will on the religious question is dated in June, but the date of coronation is uncertain. From Kazvin Nadir moved to Isfahan, where be organized an expedition against Kandahar, then in the posseasion of a brother of Mahnud, the conqueror of Shah Glosain. But before setting out for Afghanistan he took measures to secure the internal quiet of Persia, attacking and scizing in his stronghold the chief of the marauding Bakhtiaris, whom he put to death, retaining many of his men for service as soldiers. With an army of 80,000 men he manched through Khorasan and Seistan to Kandahar, which city he blockaded ineffectually for a year; but it finally capitulated on the loss of the citadel. Balkh fell to Riza Kuli, the king's son, who, moreover, crossed the Oxus and defeated the Uzbegs in battle. Besides tracing out the lines of Nadirabad, a town since merged In modera Kandahar, Nadir had taken advantage of the time available and of opportunitics presented to enlist a large number of men from the Abdali and Ghibrai tribes. It is said that as many as 16,000 were at his disposal. His rejection of the Shrite tenets as a state religion seems to have propiliated the Sunnite Afghans.

Nadir had tent an ambassador into Hindustan requesting the Mogul emperor to order the surrender of certain unruly Inverian of Afghans who had taken refuge within Indian tetrimanas. tory, but no satisfactory reply was given, and obstacles were thrown in the way of the return of the embiascy. The Persian monarch, not eorry perhaps to find a plasibla pretext for encroachment in a quarter so full of prombe to booty-seeking soldiers, pursued some of the fugitives through Ghanni to Kabul, which city was then under the immodiate control of Nasp Khan, governor of eastern Afghanistan, for Mahomened Shah of Delhi. This functionary, alarmed at the aver approech of the Persinos, fled to Peshawar. Kabul had 1 Malcolm
long been consideried not only an incegral part but also one of the main gates of the Indien Empire; notwithalanding a stout resistance on the part of its commandant, Shir or Shirzah Khas, the place was stormed and carried (1738) by Nadir, who moved on eastward. Mirza Mabdi relates that from the Kabul plain he addressed a new remonstrance to the Dellif court, but that his envoy was arrested and killed, and his escort compelied to return by the governor of Jalalabad. The same authority notes the occupation of the latter place by Persian troops and the march thither from Gandamak. It was probably througt the Khaibar (Khyber) Pass that he passed into the Peshavar plain, for it was there that he first defeated the imperial forces

The invasion of India had now fairly commenced, and its successful progress and consummation were mere questions of time. The prestige of this Eastern Napoleon was immense It had not only reached but had been very keenly felt at Delli before the conquering army had arrived. There was no actul religions war; all sectarian distinction had been disavowed; the contest was het ween vigocous Mahommedans and effete Mahoramedans. Nadir's way had been prepared by circumstances, and as he progressed from day to day his army increased There must have been larger accesslons by voluntary recruits than losses hy. death or desertion. The victory on the plain at Karnal, whether accomplished by aheer fighting or the interver tion of treachery, was the natural outcome of the previon situation, and the submission of the emperor followed as a matter of course.
Delhi must have experienced a sense of relicf af the departara of its conqueror, whose residence there had been readerd painfully memorable by carnage and riot. The marriage of his son to the granddaughter of Aurangzeb and the formal restoration of the crown to the dethroned emperor were doubsless politic, but the descendant of Babar could not casily forget how humiliating a chapter in history would remain to be written against him. The return march of Nadir to Persia is pot recorded with precision. On the gth of May 1739 he left the gardens of Shalamar, and proceeded by way of Lahore and Peshawar through the passes to Kabul. Thence he seerps to have returned to Kandahar, and in May 1740 -just one yers after his departure from Delhi-he was in Herat displaying tbe imperial throne and other costly trophics to the gase of the admiring inhabitants. Sind was certainly included in the cession to bim by Mahommed Shah of "all the territoria westward of the river Attok," hut only that portion of it, such as Thattah (Tatta), situated on the right bank of the Indus.
From Herat he moved upon Barkh and Bokhara, and received the submission of Abu'l-Fais Khan, the Uzbeg ruler, whom be restored to his throne on condition that the Oxus should be the acknowledged boundary between the Nowtors two empires. The khan of Khwarizm, who had made
repeated depredations in Persian territory, was taken prisoner and executed. Nadir then visited the strong fortress of Kehat, to which he was greatiy attached as the scene of his boyish exploits, and Meshed, which he constituted the capital of his empire. He had extended his boundary on the east to be Indus, and to the Oxus on the north.
On the south he was restricted hy the Arabinn Ocean and Persian Gulf; hut the west remained open to his fartber progress. He had in the first place to revenge the death of his brother Ibrahim Khan, slain hy the wrest the Lesghlans; and a campaign agalnat the Turks might
follow in due course. The first movement was unsuccessful and indirectly attended with disastrous consequences. Nadir, when hastening to the support of sorme Afghan levies who were doing good service, was fired at and wounded by a stray assailant; suspecting his son, Riza Kuli, of complicity, he commnoded the unfortunate prince to be seized and deprived of sight. From that time the heroism of the monanch appeared to die out. He became moroee, tyrannical and auspicious. An enay victory over the Turks gave him but little additional glory; and be readily concluded a peace with the sultan which brought bet
intignificint galn to Revinal Another bettle mon from the Ottoman troope near Diarbekr by Nusr Ullah Mirza, the young prince who had married a princess of Delhi, left matters much the same as before.

The lat years of Nadir's life were full of internal trouble. On the part of the sovereign, marders and executions; on that of his subjects, revolt and comapiracy. Such a state of things could not lant, and certain prowribed persons glotted the deatruction of the half-demented tyrant. He was despetched by Salah Bey, captain of his guards (2747). He was some sixty years of age, and had reigned eleven years. About the time of setting out on his Indian expedition he was described as a most comely man, upwards of 6 ft ., tall, well-proportioned, of robust make and constitution; Inclined to be fat, but prevented by the tatigue he underwent; whth fine, large black eyes and oyebrows; of annguine complexion, made mose menly by the mefuence of sun and weather; a loud, stiong voice; a moderate wine-drinker; fond of simple diet, such as pilaos and plain dishes, but often neglectful of meals altogether, and sathfied, if occosion required, with parched peas and water, always to be procured.'
During the reign of Nadir an attempt was made to establinh a Britich Caspian trade with Perala. The names of Jonas Hanway and John Elton were honourably connected with this undertaking; and the former has left most valuable records of the time and country.
From Nodir Shah to the Kajar Dywasty.-After the death of Nadir Shah somelhing like anarchy prevailed for thirteen years in the greater part of Persis as it existed under Portod of Acarith. Shah 'Abbas No mooner had tbe crims become known than Ahmad Khan, chlef of the Abdall Agghans, took posseasion of. Randaher and a certain amount of treasare. By the action of Ahmad Abdali, Afghanitatan was et once lost to the Persian erown, for this leader wes strong enongh to found an independent kingdom. The chief of the Bakhtiaris, Rachid, aloo with treasure, fied to the mountains, and the conspirators invited 'Ali, 2 nephew of the decensed monarch, to ascend the vacant throne. The Bakhtiari eacouraged his brother, 'All Mardan, to compete for the succession to Nadtr. The prtace was welcomed by his subjects; he told them that the murder of his uncle was due to his own instigation, and, in order to conciliate them, remilted the revenuts of the eurrent year and all extraordinary' taxes for the two years tollowing-

Taking the titia of "Adil Shah, or the "just" king, he commenced his reign by putting to death the two princes Riza Kuli and Nasr Ullah, as well as all relatives whom he considered his competitors, with tho exception of Shah Rukh, son of Riza Kuli, whom be spared in case a lineal descendent of Nadir should at any time be required. But be had not removed all daugerous members of the royal houte, nor had be gavged the temper of the times or people. 'Adil Shah was soon dethroned by his own brother, Ibrahim, and he in his turn was defeated by the adhereats of Shah Rukh, who made their leader king.

This young prince had a better and more legitimate title than that of the grandson of Nadir, for he was also grandson, sonen Ruth on the mother's side, of the Safowid Shah Husain.

Amiable, generous and libcral-minded, and of prepossessing exterior, be proved to be a popular prince. But he was neither of an age nor character to rale over a people led by turbulent and disaffected chicfs, ever divided by the confilcting intertsts of personal ambition. Sa'id Mabommed, son of Mirza Daud, a chief mullah at Meshed, whose mother was the reputed daughter of Suleiman, declared himself king, and imprisoned and blinded Shah Rukt. Yusul 'Ali, the geaeral commanding the royal troops, defeated and slew Suleiman, and replaced his master on the throne, reserving to himself the protectorship or regency. A new combination of chiefs, of Which Jiafir the Kurd and Mir 'Alam the Arabian are the
1 Creasy mys the war broke out in 3743 , but was termainated In 1746 by a treaty which made little change in the odd aramgo ments fixed uruder Murad IV.

- Freecr': BIistery of Nodir Shai (1742).
primipal names handed down, brought sbout the death of Yusuf 'All and the second imprisonment of Shah Rukh. These events were followed by a quarrel terminating in the supremacy of the Arab. At this functure Ahmod Shah Abdeli reappeared in Persian Khorasan from Herat; he attacked and took possession of Meshed, slew Mir 'Alam, and, pledging the local chiels to support the blinded prince in retaining the kingdom of his grandfather, returned to Afghanistan. But thenceforward this unfortunate young man was a mere shadow of royalty, and his purely local power and prestige had no further influence whatever on Persia as a country.
The land was partitioned among eeveral distinguished persons, who had of old been biding thelr opportunities, or were born of the occasion. Foremost among theae was Mahommed Hasan Khan, bereditary chief of thowe Xajars Perthor who were eatablishod in the south-tast corner of
the Casplan. Bis father, Fath 'Ali Khan, alter sheltering Shah Tabmasp II. at his home in Astarabad, and long acting as one of his most loyal supporters, had been put to death by Nadir, who had appointed a succestor to his chiaidom from the "Yukari" or eupper" Rajars, instead of from his own, the "Ashagha," or "lower." Mahommed, with his brother, had fled to the Turkomans, by whose aid he had attempted the recovery of Astarabad, but had not succeeded in regaining a permanent footing there until Nadir had been removed. On the murder of the tyrant he had raised the standard of independence, muccessfully resisted Ahmad Shah and his Aighans, who sought to check his progress in the interests of Shah Rukh, and eventually brought under his own sway the valuable provinces of Gilan, Mazandaran and Astarabad 4-quite a little kingdom in itself. In the lirge important province of Aserbaijan, Azad Khan, one of Nadir's generals, had eatablished a eeparate government; and 'Ali Mardan, hrother of the Bakhtiaxi chiff, took lorcible possession of Islahan, empowering Shah Rukh's governor, Abu'l-Fath Khan, to act for the new master instead of the old.

Had "All Mardan deciared himself an mdependent ruler he would have been by far the most mportant of the three persons named. But such usurpation at the old Safawid capital wouid have been too lagrant an act for general assont; so be put forward Imma'il, a nephew of Shah Husain, as the representative of sovereignty, and himself as one of his two ministers-the other being Kurlm Khen, a chief of the Zend Kurds Shah Isma'il, it need acarcely be said, possessed no real authority; but the ministers were strong men is their way, and the Zend eapecially had many high and excellent qualities. After a time Ali Mardan was astanainated, and Karim Khan became the sole living power at Iffahan. The story of the period is thus told by R. G. Wateon:-
"The three rivala, Karim, Azad and Muhammad Hasan, pro ceeded to sectle, by means of the sword, the question as to which of them was to be the sole macter of Persia. A three sided war then ensued, in the courne of which cach of stmarth of the combatants in turn reemed at one time sure to be the final conqueror. Karim, when he had arranged the Thy 4. borders on Mazandaran Where the governor of that province was ready to meet bim. After a closely contested batcle victory remained with Muhammad Hasan; who, however, was unable to follow, up the loe, as be had to return in order to encounter Arad. That leader had invaded Gilan, but, on the news reaching him of the victory which the governor of Mazardarkin had sained, he thought it prudent to retrace his stepe to Sulcaniyah. Karima reunited his ahatuered forces at Tehrin, and retired to fapahan to prepare for a second campaign. When he again took the field it was not to measure himpelf once more with the Kajar chief, but to put down the pretensjons of Azad. The wary Afghan, however, shut himwelf up in Kasvin, a position from which he was enabled to inflict much injury on the army of Karim, while his own troops remained unharmed. behind the. wasls of the town. Karim retired a second time to

- There were three branches of the Kajar tribe, i.e. the Suldur, Tuagkut and Ialaiyar. The last, aceordiag to Watson, became setuled in fran and Turan, and seem at first to have given their name to all the tribe.
"Watson. Malvolm eays that Glan was under ove of its own chief, Hidniyat Khan
spahan, and in the following apring advanced again to meet Azad. A pitched battle took place between them, in which the army of Karim was defeated. He retreated to the capital, closely pressed by the foe. Thence he continued his way to Shiriz, but Azad was mill upon his traces. He then threw himself upon the mercy of the Arabs of the Garmsir or hot country, near the Persian Gulf, to whom the name of the Alghans was hateful, and who rose in a body to turn upon Azad. Karim, by their aid, once more repaired his loses and advanced on Ispahan, while Muhammad Haean with fifty thousand men was coming from the opposite direction. ready to encounter either the Aighan or the Zend. The Afghan did not await his coming, but retired to his government of Tabriz.
"The Zend issued Irom Ispahan, and was a second time defeated in a pitched battle by the Kajar. Karim took refuge hehind the walls of Shirima and all the efforts of the enemy to dislodge him were ineffectual. Muhammad Hasan Khan in the following year turned his attention to Adarbaijan. Azad was no longer in a position to oppose him in the field, and he in turn became master of every place of importance in the province, while Azad had to eeck assistance in vain-first from the pasha of Baghdad, and then from his former enemy, the tsar of Georgia. Next year the conquering Kajar returned to Shiraz to make an end of the only rival who now stood in his way. On his side were 80,000 men, commanded hy a general who had twice defeated the Zend chief on an equal feld. Karim wan still obliged to take shelter in Shiraz, and to employ artifice in onder to supply the place of the force in which he was deficient. Nor were his efforts in this respect unattended with success: seduced by his gold, many of the troops of the Kajar began to desert their banners, In the meantime the neighbourhood of Shiraz was laid waste, 80 as to destroy the source from which Muhammad Hasen drew his provisions; by degrees his army vanished, and he had finally to retreat with rapidity to lspahan with the few men that remained to him. Finding his position there to be untenable, he retreated still farther to the country of his own tribe, while his rival advanced to lapahan, where he received the submission of nearly all the chief cities of Persia. The ablest of Karim's officers, Shaikh 'Ali, was sent in pursuit of the Kajar chief. The fidelity of the commander to whom that chiefmia had confided the care of the pess leading into Mazandaran, whe corrupted: and, as no further recreat was open to him, he found himself under the neceacity of fighting. The combat which ensued resulted in his complete defeat, alchough he presented to his followers an example of the most determined valour. While attempting to effect his escape he was recognized by the chief of the other branch of the Kajar tribe, who had deserted his cause, and who had a blood-feud with him, in parsuance of which he now put him to death.
" For nineteen years after this event Karim Khan ruled with the ticle of wakil, or regent, over the whole of Persia, excepting the resto Khas. province of Khurisann. He made Shirix the eeat of own every attempernment, and by meaas of his brothers put The rule of the great Zend chief was just and mild, and he is on the whole, considering his education and the circamstances under which he was placed, one of the moot faulticss charscters to be met with in Persian history."

Karim Khan died at his capital in 1779 in the twentieth year of his reign, and, it is said, in the eightieth of his ago. He built the great bazaar of Shiras, had a tomb constructed over the remains of Hafix, and repaired the "turbat " at the grave of Sa'di, outside the walls. He encouraged commerce and agriculture, gave much attention to the shores of the Persian Gulf, and carefully studied the welfare of the Armenian community settied in his dominions. In his time the British factory was removed from Bander Abbasi to Bushire.

On Karim's death a new period of anarchy supervened. His brother, Zaki, a cruel and vindictive chief who, when governor ELL of Isfahan, had revolted against Karim, assumed the government. At the same time be proclaimed Abu 'l-Fath Khan, second son of the deceased monarch, and his brother Mahommed 'Ali, joint-successors to the tbronc. The scizure of the citadel at Shiraz by the adherents of the former, among whom were the more influential of the Zends, may have induced him to adopt this measure as one of prudent conciliation. But the garrison held out, and, to avoid a protracted siege, be had recourse to treachery. The suspicious nobles were solemnly adjured to trust themselves to his keeping, under promise of forgiveness. They believed his professions, tendered their submission, and were cruelly butchered Zaki did not long enjoy the fruits of his perfidious dealing. The death of Rarim Khan bad raised two formidable adversaries to mar his peace.

Aga. Mahommed, son of Mahommed Hasan, the Rajar chief of Astarabad, a prisoner at large in Shiraz, was in the enviroas
of that city awaiting intelisence of the old king's decease, and, hearing it, instantly escaped to Marandarin, there to gather his tribesmen together and compete for the crown of Persia. Taken prisoner by Nadir and barbarously mutilated by "Adil Shah, he had afterwards found means to rejoin his people, but had surrendered himself to Karim Khan when his father was killed in battle. On the other hand, Sadik, brother to Zaki, who had won considerable and deserved repute by the capture of Basra from the Turkish governor, abandoned his hold of the conquered town on hearing of the death of Karim, and appeared with his army before Shiraz. To provide against the intended action of the first, Zaki detached his nephew, "Ali Murad, at the head of his best troops to proceed with all speed to the north; and, as to the second, the scizure of such families of Sadik's followers as were then within the walls of the town, and other violent measures, struck such dismay into the hearts of the berieging soldiers that they dispersed and abandoned their leader to his fate. From Kermin, however, where be found an asylum, the latter addressed an urgent appeal for assistance to 'All Murad. This chief, encamped at Teheran when the communication reached him, submitted the matter to his men, who decided against Zaki, but put forward their own captain as the only master they would acknowledge. 'Ali Murad, leaving the pursuit of Aga Mahcmmed, then returned to Isfahan, where be was received with satisfaction, on the declaration that his one object was to restore to his lawful inheritance the eldest son of Karim Khan, whom Zaki had set aside in favour of a younger brother. The sequel is full of dramatic interest. Zaki, enraged at his nephew's desertion, marched out of Shiraz towards Isfahan. On his way he came to the town of Yezdikhast, where he demanded a sum of money from the inhabitants, claiming it as part of secreted revenue; the demand was refused, and cighteen of the head men were thrown down the precipice beneath his window; a "saiyid," or holy man, was the nert victim, and his wife and daughter were to be given over to the soldiery, when a suddenly-formed conspiracy took effect, and Zaki's own life was taken in retribution for his guilt (1779).
When intelligence of these cvents reached Kermin, Sadik Khan hastened to Shiraz, proclaimed himself king in place of Abu 'I-Fath Khan, whom he declared Jacompetent to reign, and put out the eyes of the young tir matal princo. He despatched his son Ji'atir to assume the government of Isfahan, and watch the movements of 'Ali Murad, who appears to have been then absent from that city; and he gave a younger son, 'Ali Naki, command of an army in the field. The campaign ended in the capture of Shiraz and assumption of sovereignty hy 'Ali Murad, who caused Sidit Khen to be put to death.
From this period up to the accession of Aga Mahommed Khan the summarized history of Markham will supply the principal facts required.
'Ali Murad reigned over Persia unfil 1785, and carried on successiul war with Aga Mahormod in Mazandaran, defecting him in eeveral engagements, and occupying Teheran and Sari. He died on his way from the former place to Islahan, and was succeeded by Ji'afir, son of Sadik, ${ }^{1}$ who reigned at Shiraz, assisted In the government by an able but unprincipled "kalentar," or head magistrate, nemed Hajji lbrahim. This ruter was poisaned by the agency of conspirators, one of whom, Saiyid Murad, sueceeded to the thronc. Hajji lhrahim, however, contriving to maintain the loyalty of the citizens towards the Zend reigning family, the usurper was killed, and Lutf 'Aii Khan, son of Ji'afir, proclaimed bing. He had hattened to Shirm on heanng of his Latf'M father's death and received a warm weloome from the reen. inhabitants. Hajji lbrahim became his chicf adviser, and a new minister was found for him in Mirza Hosain Shirasi. At the time of his accession Lut 'Ali Khan was only in his twentieth yoar. very handsome, tall, graceful, and an exceltent horseraan. While difiering widely in character, he was a worthy succesear of Kerim Khan, the great founder of the Zend dynasty. Lut At Khan had not been many months on the throne when Aga Mahommed advanced to attack him. and invested the city of Shirat, but retreated soon afterwards to Teheratn. which he had made the capital of hia dominions. The young king then enjoyed a short period of peace.
'A five days' usurpation of Bakir Khan, governor of Isfahan. ia not taken into mocount.

Afterwards, in 1790 , he collected his forces and marched against the Kajars, in the direction of Isfahan. But Hajji. Ibrahim had been intriguing against his sovereign, to whose family he owed everything, not only with his officers and soldiers but also with Aga Mahommed, the chicf of the Kajara, and areh-enemy of the Zends. Lutf 'Ali Khan was suddenly deserted by the whole of his army, except seventy faithful followers; and when he retreated to Shiraz he oound the gates closed against him by Hajji Ibrahim, who held the city for the Kajar chicf Thence falling back upon Bushire, he found that the sheikh of that town had also betrayed him. Surrounded by treason on every side, he boldly attacked and rooted the chicf of Bushire and blockaded Shiraz. His unconquerable valour gained him many followers, and he deieated an army sent against him by the Kajars in 1792.
Aga Mahommed then advanced in person against his rival. He encamped with an anmy of 30,000 mon on the plain of Mardathe. near Shiraz. Lutf Ali Khan in the dead of night, suddenly attacked the camp of his enemy with only a lew hundred followers. The Kajars were completely routed and thrown into confusion; but Aga Mahommed, with extraordinary presence of mind, remained in his tent, and at the first appearance of dawn his " muezzin", or public crier, was ordered to call the faithful to morning prayer as usual. Astonished at this, the few Zend cavaliers, thinking that the wholy army of Kajars had returned, fled with preclpitation leaving the field in possession of Aga Mahommed. The suecessful Kajar then entered Shiraz: and promoted the traitor Hajii lbrahim to be his vizier. Lutf 'Ali Khan took refuge with the hospitable chief of Tabbas in the heart of Khorasan, where he succeeded in collecting a few collowers; but advancing Into Fars, he was again defeated, and forced to take refuge at Kandahar.
In 2794 , however, the andaunted prince once more crossed the Persian frontier, determined to make al last effort and cither regan copere of his throne or die in the attempt. He occupied the centica city of Kermãn, then a flourishing commercial town, half way between the Persian Gulf and the province of Khorasan. Aga Mahomitred besieged it with a large army in 1795, and, after a stout resistance, the gates were opened through treachery For three hours the gallant young warrior fought in the streets with determined valour, but in vain. When he saw that all hope was gone he. with only three followers, tought his way through the Kajar host and escaped to Bam-Narmashir, the most eastern districe of the province of Kermata on the borders of Seistan.

Furious at the escape of his rival, the savage conqueror ordered a general massacre: 20,000 women and children were sold into davery, and 70,000 eyes of the inhabltants of Kermat were brought to Age Mahommed on a platter.
Lutf 'Ali Khan took refuge in the town of Bam: but the governor of Namnashir, anxious to propitiate the conqueror, basely surrounded him as he was mounting his faithful horse Kuran to seek a more secure sylum. The young prixce fought bravely; but, being badly woupded and overpowered by numbers, he was secured and seat to the camp of the kajar chief. The spot where he was scized at Bam, when mounting his horse, was marked by a pyramid, formed, by order of his revengeful enemy, of the skulls of the most laith ful of his adherents. The most hideous indignities and a trocities were committed upon his person by the cruel Kajar, and finally be was sent to Teheràn and murdered, when only in his twentyEixth year. Every member of his family and every friend was ordered to be massacred by Aga Mahommed; and the successful miscreant thus founded the dynasty of the Kajars at the price of all the best and noblest blood of Iran.

The Zend is said to be a branch of the Lak tribe, dating from the time of the Kaianian kings, and claims to hava been charged with the care of the Zcnd-Avesta by Zoroaster himself. ${ }^{1}$ The tree attached to Markham's chapter on the dynesty contains the names of eight members of the family only, i.e. four brothers, one of whom had a son, grandson and great-grandson, and one a son. Four of the eight were murdeted, one was bilnded, and one cruelly mutijated. In one case a brother murdered a brother, in another an uncle hlinded his nephew.

Kajar Dymasty.-Aga Mahommed was undoubtedly one of the most cruel and vindictive despots that ever disgraced a throne. But be was not without care for the honnur of his empire in the eyes of Europe and the outer world, and his early career in Mazandaran gave him a deeply-rooted mistrast of Russia, with the officers of which power he was in constant contact. The following story, told hy Forster, ${ }^{2}$ and varied by a later writer, is characteristic. A party of Russians having obtained permission to build a "counting-house "at Ashraf,

[^21]in the bay of that name, erected instead a fort-with eighteen: guns. Aga Mahommed, learning the particulars, visited the spot, expressed great pleasure at the work done, invited the officers to dine with hum, imprisoned Ara them, and only spared their lives when they had removed the whole of the cannon and razed the fort to the ground. This occurrence must have taken place about 1782

Forster was travelling homeward by the soothern shores of the Caspian in January 1784, and from him we gather many interesting details of the locality and period He calls Aga Mahommed chief of Mazandaran, as also of Astagahad and "some districts situate in Khurasan," and describes his tribe the Kajar, to be, like the Indian Rajput, usually devoted to the profession of arms. Whatever hold his father may have had on Gilan, it is certain that this province was not then in the son's posseasion, for his brother, Ji'afir Kuli, governor of Balfrush (Balfroosh), had made a recent incursion into tt and driven Hidaiyat Khan, its ruler, from Resht to Enzeli, and Aga Mahommed was himself meditatizg another attack on the same quarter. The latter's patace was at San, then a small and partly fortifed town, thickly inhabited, and with a plentifully As "the most powerful chief in Persia" since the death of Karim Khan, the Russians were seeking to put their yoke upon him.

As Aga Mabommed's power increased, his dislike and jealousy of the Muscovite assumed a more practical shape. His victory over Lutf 'Ali was immediately followed by an cumpaige expedition into Georgia. After the death of Nadir agelant the wali of that country had looked around him aborgto. for the safest means of shaking off the yoke of Persia; and in course of time an opportunity had offered of a promising kind. In 1783, when the strength of the Persian monarchy was concentrated upon Isfahan and Shiraz, the Georgian tsar; Heraclius entered into an agreement with the empress Catherine by which all connexion with the shah was disavowed, and a quasi-vassalage to Russia substituted-the said empire: extending her aegis of protection over her new ally. Age: Mahommed now demanded that Heraciius should return to his position of tributary and vassal to Persia, and, as his demand was rejected, prepared for war. Dividing an army of 60,000 men into threecorps, he sent one of these intoDaghestan, another was to attack Erivan, and with the third he himself laid siege to Shusha in the province of Karabakh. The stubborn resistance offered at the last-named place caused him to leave there a suall investing force only, and to move on with tha remainder of his soldiers to join the corps d'armé at Erivan. Here, again, the difficulties presented caused him to repeat the same process and to effect a junction witb his first corps at Ganja, the modern Elisavetpol. At this place be encoantered the Georglan army under Heraclius, defeated it, and marched upon Tlflis, which he pillaged, massacring and enslaving ${ }^{2}$ the inhahitants. Then be returned triumphant to Teherann, whero (or at Ardebil on the way) he was publicly crowned shah of Persia. Erivan surrendered, but Shusha continued to hold out. These proceedings caused Russia to enter she field. Derbent was taken possession of by Imbov, Baku and Shumakhy were occupied and Gilan was threatened. The death of the empress, however, caused the issue of an order to retire, and Derbent and Baku remained the ondy trophies of the campaign:

In the meantime Aga Mahommed's attention had been called away to tbe east. Khorasan çould hardly be calted an integral part of the shah's kingdom so long as it was under even the nominal rule of the blind grandson of $\underset{\sim}{2}$ Nadir. But the eastern division of the province Keramen, and its outlying parts were actually in the hands of the Afghans, and Meshed was not Persian in 1796 in the sense that Delhi was British at the outbreak of the Indian Muting: Shah Rukh held his position, such as it was, racher-under Apmas

[^22]Shah and his successors in Arghanistan than under any other sovereign power. Aga Mahommed determined to restore the whole province to Persia, and, after a brief residence in Teherian on his return from the Georgian expedition, he set out for Meshed. It is important to note that on the occasion of his coronation he had girded on the sabre consecrated at the tomb of the founder of the Safawid-thus openly pledging himself to support the Shi'ite faith.

But tbere had been continual dissatisfaction in the capital of Khorasan, and constant inroads upon it from without, which the royal puppet was unable to prevent. His popularity was real, but never seemed to have effect outside the limited sphere of personal sympathy and regard. Owing to the frequent revolutions in the holy city the generals of Timur Shah, king of the Afghans, had made three expeditions on Shah Rukh's behalf Meshed had been taken and retaken as though be were not a resident in it, much less its de jure king. Moreover, his two sons Nadir Mirza and Wali Ni'amat had long been fightung, and the former was in 1796 the actual ruler of the place Three years before Timur had died, and his third son, Zaman Shah, by the intrigues of an infuential sirdar, Paiyanda Khan, and been proclaimed his successor at Kabul.

Aga Mahommed's entry into Meshed was effected without a struggle on the part of those in possession. The Kajar shah walked on foot to the tomb of Imam Riza, before whlch he knelt and kissed the ground in token of devotion, and was recognized as a Shi'ite of Shi'ites. Shah Rukh submissively followed in his train. Then began the last act of the local tragedy. The blind king's gradual revelation, under horrible torture, of the place of concealment of his several jeweis and treasures, and his deportation and death (of the injuries thus received, at Damghan, en route to Mazandaran), must be classed among the darkeat records of Oriental history.

From Meshed Aga Mahommed sent an envoy to Zaman Shah, asking for the cession of Balkh, and explaining his invasion of Khorasan; but the Alghan monarch was too perplexed with the troubles in his own country and his own insecure position to do more than send an unmeaning reply. It is not shown what was the understood boundary between the two countries at this particular period; but Watson states that on the shah's departure he had received the submission of the whole of Khorasana, and beft in Meshed a garrison of 12,000 men.

Aga Mahommed had now fairly established his capital at Teherän. On his return thither in September 1796 he dismissed Donts and his troops for the winter, directing their reassembly chanctir in the following spring. The re-invasion by Russia olace mahomased. Wrested frovinces and districts he had recently great progress, but the circumstance does not seem to have changed his plans for the army. Although, when the spring arrived and the shah led his forces to the Aras, the Russians had, it is true, relreated, yet territory had been regained by them as far south as the Talysh. Aga Mahommed had now arrived at the close of his career. He was enabled, with some difficulty, to get his troops across the river, and take possession of Shusha, which had given them so much trouble a year or two before. There, in camp, he was murdered (1797) by his own personal attendants-men who were under sentence of death, but allowed to be at large. He was then fifty-seven years of age, and had ruled over part of Persia for more than eighteen years-over the kingdom generally for about three years, and from his coronation for about one year only.

The brutal treatment he had experienced in boyhood under the orders of "Adil Shat, and the opprobrious name of "eunuch" with which he was taunted by his enemies, no doubt contributed to embitter his nature. His contempt of luxury, his avoidance of hyperbole and distike of excessive ceremony, his protection to coramerce and consideration for his soldiers, the reluctance with which he assumed the crown almost at the close of his reign-all these would have been praiseworthy in another man; but on his death the memory of his atrocious tyranny alone curvived. Those who bave seen his portrait once will recognire
the face wherever presented. "Beardless and shrivelled," writes Sir John Malcolm, "it resembled that of an aged and wrinkled woman, and the expression of his countenance, at no time plensant, was horrible when clouded, as it very often was, with indignation. He was sensible of this, and could not bear that any one should look at him."
Aga Mahommed had made up his mind that he should be succeeded by his nephew Fath 'Ali Shah, son of his full brother, Hosain Kuli Khan, governor of Fars. There was a short interval of confusion after the murder. The remains of the sovereign were exposed to insult, the

Fental
 sach

 army was disturbed, the recently captured fort on the left bank of the Aras was abandoned, but the wisdom and resolation of the minister, Hajji Ibrahim, and of Mirza Mahommed Khan Kajar secured order and acceptance of the duly appointed heir The first, proclaiming his own allegiance, put himself at the head of a large body of troops and marched towards the capital. The second closed the gates of Teheriln to all comers until Fath'Ali Shah came himself from Shiraz. Though instantly proclaimed on arrival, the new monarch wasnot crowned untir the spring of the following year (3798)The so-called rebellions which followed were many, but not of any magnitude. Such as belong to local history are three in number, i.e. that of Sadik Khan Shakaki, the general whose possession of the crown jewels enabled him, after the defeat of his army at Kasvin to neerre his personal safety and obtain a government; of Hosain KuH Khan, the shah's brother, which was compromised by the mother's intervention; and of Mahommed, son of Zaki Khan, Zend, who was defented on more than one occasion in battle, and fed into Turkish territory. Later, Sadiz Khan, having again incurred the royal displeasure, was seized, confined and mercilessly bricked up in his dungeon to die of starvation.
Another adversary presented himself in the person of Nadir Mirza, son of Shah Rukh, who, when Aga Mahommed appeared before Meshed, had taken refuge with the Afghans. Fath 'Ali sent to warn him of the consequences, but without the desired effect. Finally, he advanced into Khorasan with an army which appears to have met with no opposition save at Nishapurand Turbet, both of which places were taken, and when it reached Meshed, Nadir Mirza tendered his subunission, which was accepted Peace having been further cemented by an alliance hetween a Rajar general and the prince's deughter, the shals returned to Teherain.
Now that the narrative of Persian kings has been brought up to the period of the consolidation of the Kajar dynasty and commencement of the 19th century, there remains but to summarize the principal events in the reigns of Fath 'Ali Shah and his immediate successors, Mahommed Shah and Naşu 'd-Din Shah.
Fath 'Alli Shah come to the throne at about thirty-two years of age, and died at sixty-eight, after a reign of thirty-six yeare Perin's great aim was to recover in the north-went, as in the porthcast of her empire, the geographical limits obtained for her by the Safawid kings. and thas was no casy matter when she had to contend with a strong European power whose territorial limits touched her own. Fath Ali Shah undertook, at the outset of his reign, a contest with Rumia on .the western dide of Worwila the Caspian, which became constant and harassing warfare- Georgia was, clearly, not to revert to a Mahommedan suzerain. In 8800 its tsar, George, son and successor of Heraclius, notwithstanding his former profesaions of allegiance to the shah, renounced his crown in favorur of the Rusuian emperor. His brother Alexander indignantly repudiated the act and recisaed its fulfilment, but he was deleated by Genernl Lazerov on the benks of the Lora. Persia then reentered the ficld. Among the more notable cocurrences which followed were a three days' battle, fought mear Echmiadzin, between the crown priace. Abfas Mire, and General Zirianov, in which the Perwians suflered much from the enemy's artillery, but would not admit they were defeated; ursuccessful attempts on the part of the Russian commander to get possession of Enivan: and a surprise, in camp, of the shat's forces, which caused them to dinperse, and necempitated the ting's owa presence with reinforcements. On the latter cocation the ahah il credited with gallantly swimming his horse acrose the Aras, and eetting an example of energy and valour. In the following year Abbas Mirza advanced upon Shichah, the chief of which plece and of the Karabagh had declared for Russia; much fightine ensued, and Erivan was formally taken pomemion of in the name of
thorkah. The Rusciama, morperer, made a futile attempt an Gilan by banding troope at Enzeli, which returned to Bakw, where Zizianov fell a vietim to the treachery of the Peroian governor. Somewhat later Ibrahims Khalii of Shusha, repenting of his Rusoophilism, determined to deliver up the Muscovite garrison at that place, but his plans were betrayed, and he and his relatives put to death. Reprimala and engagements Lollowed with variod success; and the crown prince of Persia, after a demonstration in Shirvan, returned to Tabriz. He had practically made no progreas; yet Russia, in eecuring poneemion of Derbent, Baku, Shirvan, Shefi, Ganja, the Talyeh and Mugan, was probebly indebted to gold as well as to the force of arms. At the same time Persia would not listen to the overtures of peace made to her by the governor-general who bed succeeded Zizianov.
Relations had now commenced with Englaad and British Iadin. A certain Mahdi Ali Khan had landed at Bushire, entrusted by avestomst the goverior of Bombay with a letter to the shah, and aretens: be was followed ahortly by an English envoy from the Aand, hols enifreter army. He had not only to talk about the Arghans but about the French, and the trade of the Persian Gulf. The results were a political and commercial treaty. and a return mistion to India from Fath 'Ali Shah. To him France mext eent ber mesagge. In 1801 an Armenian merchant from Bagdad had appeared as the bearer of credentiais from Napoleon, but his mission was mistrusted and came to nothing. Some five years aiterwards Jaubert, after detention and imprisosment on the roed, arrived at Teherin and went back to Europe with a duly sccredited Pcrsian ambassador, who concluded a treaty vith the French emperor at Finkenstin. On the return of the Persian diplomatist, a mission of many officers under Cencral Gardano to instruct and drill the local army was sent from France to Persia. Hence aroce the counter-mission of Sir Harford Jones from the. British government, which, on atrival at Bombay in April r808, found that it had been anticipated by a previously ent mission from the governor-general of India, under Malcolm again, then holding the rank of brigadier-seneral.

The home mission, however, proceeded to Bushire, and Malcolm's return thenoe to India enabled Sir Harlord to move on and reach the capital in Febriary 1 Bog. A few days before his entry Generad Gardanse had been dismised, as the pence of Tilkit debarred France from aiding the ehah agninat Rumin. Sir Harford concluded a treaty with Persia the month after his arrival at the capital; but the government of India were not content to lenve matters in his haods: notwithatandipg the anomaiy of a double misstion, Maboolm vas in i810 again detpotched as their own particular envoy He brought with him Captains Lindsay and Christie to asciatt the Pervians in the war, and presented the ghah with some servictable fieldpieces; but there was little occasion for the exercies of his diplomntic ability gave in his non-official intercourse with the people, and here be availed himelf of it to the great advantage of himelf and his country. ${ }^{1}$ He mas welcomed by the thah in camp at Ujani, and took heave a month afterwarls to teturn via Bagdad and Bama to India. The next year Sir Harford Jones was relieved as eavoy by Sir Gore Onseley.

Metnwhile bostilities had been resumed with Rumia, and in 1812 the British envoy used his good offices for the rentoration of peace, but the endeavour failed. To add to the Persian
 Ruscras between England and Ruscia, and this circumstance War. caused the envoy to direct that British officers sbould take no further part in Ruseo-Pernian military operations. Chrietie and lindsay, however, resolved to remain at their own risk, and advanced with the Persian army to the Aras. On the 31st of October the force was surprised by an attack of the eneray, and reereated; the next night they were again attacked and romted at Aclanduz. Chrisxie fell bravely fighting at the head of his brigade; Lindsay saved two of his niot gunss but neither of the two Engtishmen was responsible for the disater. Lenkoran was taken by Penia, but retaken by Ruasia during the next three months; and on the 13th of October 1813, through Sir Gore Ouseley's intervention, the Treaty of Gulistan put an end to the war. Persia Iormally ceded Georgie and the seven provinces before named, with Karabakh.
On the death of the empperor Alexander in Deceraber 1825 Prince Menshikov was sent to Teherian to settle a dispute which had ansen between the iwo governmente regarding the prescribed frunter. But, as the claim of Persia to a particular district then occupied by Russia could not be adonitted, the special envoy was given lis contt, and war was recommenced. The chief of Talysh struck the firn blow, and drove the enemy from Lenkoran. The Persuans then carried all before them; and the hereditary chiefs of Shirvan. Sheki and Baku returned from exile to cooperate with the shah's eneral in the south. In the course of three weeks the only
1The " makilu "l-anulk," governor of Kerman, told Colonel Coldamid, when his guet in 1866, that "his father had been Sir John Malcoim's Mihmevdar. There nevor was ouch a man at "Malcolm Sahib." Not only was he generous on the part of his povernment, but with his own money also."-(T degraph and Trovel, P 5l木)
advancell poit held by the goverworgeneral of the Caucrats wat the obetinate little fortress of Shusha. Bur before long all was again changed. Hearing that a Ruseian force of eome 9000 men was concentrated at Tilis, Mabommed Mirca, son of the crown prince, advanced to meet them on the baniks of the Zezam. He was defeated; and his father was routed more seriously still at Ganja. The shah made great efforts to renew the war; but divisions took place in his son's camp, not conducive to suceess ul operations, and new proposals of peace were made. But Russia demanded Erivan and Nakhichevan as well as the cost of the war; and in 1827 the campaign was reopened. Briefly, after buccessive gains and lowes, not only Erivan was taloen froma Persia but Tabriz also, and fiaally, through the intervention of Sir John Macdonald, the English envoy, a new treaty was conclurded at Turkmanchal, laying down the boundary between Russia and Persia. Among the hard conditions for the latter country were the cession in perpetuity of the ichanates of Erivan and Nakhichevan, the inability to have an armed vesoel in the Caspian, and the payment of a war indernnity of some $\mathbf{~ 3 , 0 0 0 , 0 0 0 .}$

After Rusaia, the nelghbouring state next In importance to the well-being of Perin was Turkey, with whom she was united on the west by a common line of frontier. Selim had not crupled, In 1804 and 1805, to aliow the Rusciant to Wrwat malse free use of the south-eastern coasts of the Black Turtien. Sea, to facilitate operations againt the thah's treops; and there had been a passage of arms betwsen the king's eldest a0n, Mahommed -Ali Miras, and Suleiman Pasha, son-in-haw of the governor-general of Bagdad, which is locally credited as a battle won by the former. But there was no open rupture between the two sovereigns until 182r, when the frontier disputes and complaints of Persian travellers, merchants and pilgrims culminated In dectaration of war. This made 'Abbas Mirza at once seize upon the lortified places of Toprak Kal'ah and Ak Sarai within the limite of the Ottoman Empire, and, avercoming the insufficient force tent agsinst him, he wis further enabled to extend his Inroads to Muah, Bitlis, and other knowa localitics. The Turkish government retaliated by a counterinvasion of the Persian frontier on the touth. At that time the Pasha of Bagdad was in command of the troops. He was defeated by Mahommed 'Ali Mirza, then prince-governor of Kermanshah. who drove his adveraary back towards his capital and advanoed to its immediate environs. Being attacked with cholera, however. the Persian commander recrossed the frontier, but only to muccumb to the dimease in the pase of Kirind. In the sequel a kind of desultory warfare appears to have been proeecuted on the Persian shde of Kurdistan, and the shah himself came down with an army to Hamadan. Cholera broke out in the royal camp and caused the troope to diaperse.

In the north the progress of Abbas Mirza was stopped at Bayazid by a like deadly visitation; and a suspension of hortilities was agreed upon for the winter season. At the expiration of four months the sirdar of Erivan took poweesion of a Turkish military station on the road to Eraerum, and the crown prince marched upon that city at the head of 30,000 men. The Ottoman anmy which met fim is eid to have numbered eome 52,000; but victory wis on the side of their opponents. Whether the result was owing to the defection of 15,000 Kurds or not the evidence adduced is insufficient to decide. In the English records of the period it is stated that the defeat of the Turks was complete.

Profiting from this victory, Abbas Mirza repeated an offer of peace before made without avail to the pasha of Erxerum; end, in order to conciliate him more effectually, he retired within the old limits of the dominions of the shah, his father. But more troublet arose at Bagdad, and other reasons intervened to protract negotititions for a year and a half. At length, in July 1823, the Trenty of Erzerum cloed the war between Turkey and Perma. It provided especially against a recurrence of the proved caused of war, stuch as extorting taxes from Persian travelters or pllgrims, dierespect to the ladies of the royal harem and other ladies of rank proceeding to Meoca or Karbala (Kerbela), irregular levies of custom-duties, mon-pu nishment of Kurdish depredators trantegressing the boundary, and the Ilke.

With respect-to the eastern boundaries of his kingdom, Fath "Ali Shah was fortunate in having to deal with a less dangerous neighbour than the Muscovite of persistent policy and the Turk of precarious friendship. The Afghan, though TheAhyhan equal to the Perrian in physical force and prowess, was Questloa. his inferior in worldly tnowledge and experience. Moreover, the family divisions among the ruling houres of Afghanistan grew from day to day more destructive to that patriotism and sense of nationality which Ahmad Shah had held out to his couatrymen as the sole specifics for becoming a strong people.

The revolt of Nadir Mirza had, as before explained, drawn the shah's attemtion to Khorasan in the early part of his reign; but, although quiet had for the moment been restored at Meahed by the presence of the roya! camp, fresh grounds of complaint were urged aganst the rash but powerless prince, and recourse was had to extreme measures. Charged with the murder of a holy aaiyid, his hands were cut of and his tongue was plucked oot, as part of the horrible punishment inficted on him. fi does not appear that Nadir Mirzest cause wes ever eeriously eqpowed by the Afynatis
nor thet Fath "AR Shah's clain to Meshed, as belonging to the Persian crown, was actively retisted. But the large Province of Khorasan, of which Meshed was the capital, had never been other than a nominal dependency of the crown aince the death of Nadir; and in the autumn of 1830 the shah, under Russian advice, asembled a large force to bring into subjection all kurbulent and refractory chiefs on the east of his kingdom. Yead and Kerman were the first points of attack; Khorasan was afterwardsentered by Samnan, or the main raad from Teherin. The expedition, led by 'Abbas Mirza, involved some hard fighting and much loes of bile; several forts and places were captured, among them Kuchan and Serrakhs; and it may be concluded that the objects contemplated were more or less attained. An English officer, Colonel Shee, commanded what was called the "British detachment " which accompanied the pripoe. Thus far as regards Yetd, Kerman and Khorasan. It was otherwise with Herat.

Hajji Firtzu'd-Din, won of Timur Shah, rejgned undisturbed In that city from 1800 to 1816. Since Fath Ali Shah's accession he and his brother Mahmud had been, as it were, under Persian procection. Persia claimed the principality of Hertu as part of the empire of Nadir, but her pretensions had been satisfied by payments of tribute or evasive, replies. Now, however, that she marched her army against the place, Firuzu 'd-Din called in the aid of his brother Mahmud Shah of Kabul, who sent to him the famous vicier, Fath Khan Beraksai. The latter, intriguing on his own account, got posesesion of the town and citadel; he then sallied forth, engaged the Persian forces, and forced them to retire into their own country. In 1824 , on 2 solicitation from Mustaia Khan, who had got teroporary hold of Herat more troops were despatched thither, but, by the use of money or bribee, their departure was purchased. Some eight or nine years afterwards 'Abbas Mirza, when at the head of his army in Meahed, invited Yar Mahommed Khan of Herat to discuss a settlement of differences bet ween the two governmenta The meeting was unproductive of good. Agxin the Persian troops advanced to Herat itself under the command of Mahommed Mirza, an of Abbas; but the news of his lather's death caused the commander to break up his camp and return to Meshed,

Sir Gore Ouseley returned to England in 1814. in which year Mr Ellis, assisted 6y Mr Morier-whose "Hajji Balsa "is the unfailing proof of his ability and deep knowledge of Pcrsian character -neqotiated on the part of Great Britain the Treaty of Teheran. Eagland was to provide troops or a subsidy in the cvent of uaprovoled invasion, while Persia was to attack the Mghans chould they invade India. Captain Willock succeeded Morier as chargo dafaires in 1845, and since that period Great Brithin has always been represented at the Porian court. It was in 1uth 'Ali Shah's reign that Herry Martyn was in Persia, and completed bis able translation of the New Testament into the lamguage of that country. Little more remains to be here narrated of the days of Fath 'Ali Shah. Among the remarkable occurrences may be noted the murder et Teherin in 1808 of M. Grebayadov, the Rutaian envoy, whope conduct in forcibly retaiping two women of Eriven ptovaked the interference of the mullas and people. To repair the evil conequences of this act a conciliatory eprbasay, consisting of a young son of the crown pritice and some high officers of the state, was despatched to St Peteraburt. Shonty afterwards the allianct with Russia vas strengthened, and that with England slackened in proportion.

Fath Ali Shah had a numerous fa mily. Agreeably to the Persian custom, asserted by his predecesoort, of nominating the heir-apparent from the eons of the sovereign without restriction to seniority, he had passed over the eldest, Mahommed ' $\mathrm{Ali}_{\text {, }}$ in favour of a junior, Abbas; but, as the nomince died in the lifetime of his father, the old king' had proclaimed Mahomrned Mirza, the son of 'Abbas, and his own grandson, to be his successor. Why a younger son had been ociginaily selected, to the prejudice of his elder brother, is differently stated by different writers. The true reason was prohably the superior rank of his mother.

Mahommed Shah was twenty-eisht years ofd when he came to the throne in 1834. He died at the age of forty-two, after a reign motemmed of about thirteen and a half years. His accession was father's death, for it was neceasary to clear the way of Il competitors, and there were two on this occasion-one 'Ali Mirza, governor of Teheran who actually assumed a royal title. and one Hasan 'Ali Mirza, governor of Shiras. Owing to the steps talen by the British envoy, Sir John Campbell, asxisted by Colonel Bethune, at the head of a considerable force, supplied with artifiery, the opposition of the first was neutralized, and Mahommed Shaf, entering Teherin on the and of January, was proclaimed king on the 31 st of the same month. It cost more time and trouble to bring the eecond to book. Hasan "Ali "farman-farman" or tom. mander-inchief, and his brother and abettor, had an army at their disposal In Fars. Sir Henry Lindsay Bethunt marched his soldiers to lgfahan to be ready to meet them. An engagement which took place near Kumishah, on the road between lafahan and Shiraz. having been succesoful, the English commander pushed on to the intter town, where the two rebel princes were acised and imprisoned. Forwanded under encort to Teherin, they were, according to Watson, ordered to be etrat on thance as state prisomers to Ardebil but the
farman-factua diedion the wery, and fits brother was blinded befort incarceration. Markhasn, hovever, etates that both "All Mirza and Hasan 'Ali were allowed to retire with a small ponsion, and that no atrocitiet stained the beginning of the reigh of Mahommed Shah It is presumed that the fate of the prime minister or " leminn-makern," who was strangled in prison, was no more than an ordinary enecatina of the law. This event, and the prevalence of plague end choler at Teherkn, marked somewhat gloomily the new monarch's fint year.

The selection of a premier was one of the first weighty quentions for solution. A member of the royal family, the "amp 'd-daka," governor of Khorasan, left his governouent to urge his candidaturt for the post. The king's choice, however, fell on Hajfi Mirza Aghasi, native of Erivan, who in former years, as tutor to the tons of Abbas Mirza, had gained a certain reputation for learning and a smattering of the oocult scieoces, but whooe qualification for gtatesmanship were craftincsa and saspicion. As might have been anticipated, the hajji fell into the hands of Russia, represented by Count Simonich, who urged him to a frech expedition into Khorasan and the siege of Herst. There was no doubt oplasible pretext for both proposals. The chiefs, erpeffon reduced to ternporary eubmismion by "Abbee Mirea, had again revolted; and Shak Kamran, supported by his vizier, Yar Mahommed, had broken those engagements and pledgea on the strength of which Fath'Ali Shah had withdrawn his troeps In addition to these casues of offence he had appropriated the province of Seistan, over which Persia had lons profeseed to hold the rights of sutcrainty. But the king's ambition was to go farther than retaliation or chastitement. He refused to acknowledge ant right to eeparate government whatever on the part of the Aghans, and Kandahar and Ghasni were to be recoverod, as belonging to the empire of the Safawid dynacty. The advice of the British envoy was dissuasive in this respect. and therefore distasteful.

Sir John Campbell, in less than year after the sovereign's installation, went home, and wat succeedad as British envoy by Hesty Eilis. The change in personnel signified also a transfer of superintendence of the Persian legation, which passed from the government in India to the authoritics in England. The expedition was to commence with a campaign against the TurcomansHerat berng its later destination. Such counter-proposals as Ellis had suggested for consideration had been politely put aside, and the case whs now more than ever complicated by the action of the Baralzai chiefs of Kandahar, who had sent a mission to Teherin to offer assistance against their Saduzai rival at Herat. Fresh provocation had, moreover, been given to the shah's govermment by the rash and incapable Kamran.
About the close of the summer the force moved from Teherim. The royal camp was near Astarabad in November 1836 . Food was scance: barley sold for ten times the usual price, and wheat was not procurable for any money. The troops were dissatisfied, and, being kept without pay and on short rations, took to plundering. There had been operations on the banks of the Gurgan, and the Turcomans had been driven from one of their stronghodds; but little or no propress had been made in the subjection of these marauders, and the Heratis had sent word that ali they could do was to pay tribute, and, if that were insufficient, the shah had better march to Herat A military council was held at Shahrud, when it was decided to return to the capital and set out again in the spring. Accordingly the troops dispersed, and the sovereign's prescnee at Teheran was taken advantage of by the British minister to renew his attempts in the cause of peace. Although on the present occasion Simonich ostensibly aided the British charge d'affiires M'Neilh, who had succeeded Ellis in 1836, no argument was of any avail to divert the monarch from his purpose. He again sot out in the summer. and, invading the Herat territory in November 1837, began the siege on the ayrd of that month.

Not antil September in the following year did the Persian ormy withdraw from before the waith of the city; and then the movement only took place on the action of the British government. M'Ncilt, who had joined the Persian camp on Herat. the 6th of April. left it again on the 7 th of June. He had done all in his power to effect a reasomable agreement bet ween the contending parties; but both in this respect and in the matter of a commercial treaty with England, then under negotiation, his efforts had been met with evasion and latent hostility. The Russian envoy, who had appeared among the tents of the beaieging ermy ahnost simultancously with his English colleague, no sooner found himself alone in his diplomacy than he resumed his aggressive counsels, and listle more than a fortnight had clapsed since M'Neili's departure when a vigoroue assault, planned, it is asgerted, by Simonich himself, was made upon Herat. The Persians attacked at five points, at one of which they would in all fikelihood have been successfal had not the Afghans been aided by Eldred Pottinger, a young Eaglishman, who with the science of an artillery officer combined a courage and determination which inevitably influenced his subordinates. Still the garriton was disheartened; but Coloned Stoddart's arrival on the IIth of August to threhten the shah with British intervention put a stop to further action. Colonel Stoddart's cefusal to allow any but British medintors to decide the panding dispute won the day; and that officer was able to report phen of
the gth of Suptember Mahomned Shah had " mounted his horse " and gone from before the walls of the beleaguered city.

The sicge of Herat, which lasted for nearly ten months, was the great event in the reign of Mahommed Shah. The British expedition in support of Shah Shuja, which may be called its matural consequence, involves a question forcign th the present marrative.
The remainder of the king's reign was marked by new difficultics with the British government; the releclion of Aga Khan Mahlati otherwise known as the chicf of the Assassins; a new rupture with Turkey ; the banishmeat of the asafu'd-daula, governor of Khorasan, followed by the insurrection and defeat of bis son; and the rise of Bābinam (q, s. .). The first of these only colls for any detailed account.
In the demands of the British Govemment was included the cession by Persia of places such as Farah and Sabzewar, which had

Dutionils
whe
Enpinad the British legation. M'Neill gave a certain time for having decision, at the end of which, no satisfactory reply British officers lent to the shah to proceed towards Bagdad en route to India, and retired to Erzerum with the members of his mission. On the Persian side, charges were made against M.Neill, and a special envoy was sent to England to support them. An endeavour was at the same time made to interest the calinets of Europe in infuencing the British governmert on behalf of Persi. The envoy managed to obtain an interview with the minister of foreign affairs in London, who, in July 1839, supplied him with a statement, fuller than before, of all English demands upon his country. Considerable delay ensued, but the outcome of the whole proceedings
was not only acceptance but fulfilment of all the engagements contracted. In the meartime the island of Kharak had been taken poosession of by an expedition Irom India.

On the IIth of October 1841 a new mission arrived at Teherin from London, under John (afterwards Sir John) M ${ }^{2}$ Neill, to renew diplomatic relations. It was most cordially received by the shah, and as one of its immediate results, Kharale was evacuated by the Britist-Indian troops.
There had been a long diplomatic correspondence in Europe on the proceedings of Count Simonich and other Russian officers at Herat. Among the papers is a very important letior from Count Nesselinde to Count Pozzo di Borgo in which Russia declares herself to be the first to counsel the shath to acquicsce in the demand made upon him, because she found "justice on the side of England "and "wrong on the side of Persia." She withdrew her agent from Kandahar and would "not have with the Arghars any relations but those of commerce, and in no wise any political interests."

Aga Khan's rebelifion was fontered by the defection to his cause of a large portion of the force sent against him; but he yielded at last to the local authorities of Kerman and ged the province and country. He afterwards resided many ycars at Bombay, where, while maineaining among natives a quasi-spiritual character, he was better known among Europeans for his doings on the turf.
The quarrel with Turkey was pencraily about frontier selations. Eventually the matter was referred to an Anglo Russian commision, of which Colonel Williams (afterwards Sir Fenwick Williams of Kars) was pressdent. A massacre of Persians at Kerbela might have eeriously complicated the dispute, but, after a first burst of indignation and call for vengeance, an expression of the regret of the Ottoman government was accepted as a sufficient apology for the occurrence.

The rebellion of the asafu 'd-daula, maternal uncle of the shah, was punished by exile, while hls son, after giving trouble to his oppopents, and once gaining a victory over them, took shelter with the Turcomans.
Before closing the reign of Mahommed Shah note should be taken of a prohibltion to import African slaves into Persia, and a commercial treaty with England-recorded by Watson as gratifying achievements of the period by British diplomatists. The Fresch misejions is which occur the names of MM. de Lavalette and de Sartiges were notable is their wiy, but somewhat barren of results.

In the autumn of 1848 the shah was seized with the malady, or combination of maladies, which caused his death. Gout and erysipelas had, it is seid, ${ }^{1}$ ruined his constitution, and be died at his palace in Shimran on the $4^{\text {th }}$ of September. He was buried at his palace in Simman where in situated the shrine of Fatima, daughter of Imam Kiza, by the side of his grandfather, Fath 'Ali, and ot her kings of Persis. In pernon he is described as short and fat, with an aquiline nose and agreeable countenance:
On the occasion of his father'a death, Naşru 'd-Din Mirza, who had been proclaimed wall abd, or heir apparent, some years before,

Namer

 was absent at Tabrix, the headquarters of his province of Azerbaijan. Colonel Farrant, thea charge d affaires on the part of the Britiah government, in the absence of Colonel Sheil., who had succeeded Sir John M'Neill, had, in anticipation of the thah's decease and consequent trouble, sent a memenger to summon him instantly to Teherīn. The British officer, moreover, associated himself with Prince Dolgoruki, the representative of Russia, to recure the young prince's accession.
${ }^{1}$ Wateon.
4 Markham.
KX15

The queen-mocher, as president of the councll, showed much judgment and capacity in conciliating adverse parties. But the gix or seven wecks which passed between the death of the one king and the coronation of the other proved a disturbed interval, and full of atirring incident. The old minister, Hajji Mirza Aghasi, shut himself up in the royal palace with 1200 followers, and had to take refuge in the sanctuary of Shah 'Abdul--Azim near Teheran. On the other hand Mirza Aga Khan, a partisan of the asafu d-daula, and himself an ex-minister of war, whom the hajii had causedto be banished, was welcomed back to the capital. At Isafahan, Shiraz and Kerman serious riots took place, which were with difficulty suppressed. While revolution prevailed in the city, rohbery was rife in the province of Yexd; and from Kazvin the son of Ali Mirza otherwise called the "xillu's-sultan," the prince-governor of Teheran, who disputed the succession of Mahommed Shah, came forth to contest the crown with his cousin, the heir-a pparent. The lastnamed incident soon came to an inglotious termination for its hero. But a more serious revoit was in full force at Meshed when, on the 20th of October 1848, the young shah entered his capital and was crowned at midnight king of Persia.
The chief events in the long reign of Naspu 'd-Din, fall under four heads: (1) the Insurrection in Khorasan, (2) the insurrection of the Babis, (3) the fall of the amiru ' n-nizam, and (4) the war with England.
It has been stated that the asafu 'd-daula was a competior with Hajji Mirza Aghasi for the post of premier in the cabinet of Mahommed Shah, that he was afterwards, in the same reign, exiled for rising in rebellion, and that his son, luswrmos. the salar, took shelter with the Turcomans. Some ton to four months prior to the Mahommed Shah's decease Khorasaa. the latter chief had reappeared in arms against his authority; he had gained possession of Meshed itself, driving the prince-govertior, Hamza Mirza, into the citadel; and so firm was his attitude that Yar Mahommed of Herat, who had come to help the government officinals, had retired after a fruitless co-operation, drawing away the prince-movernor also. The salar now defied Murad Mirzz, Nasru 'd-Din's uncle, who was besieging the city. In April 1850, after a siege of more than eighteen months, fortune turned against the bold insurgent, and negotiations were opened for the surrender of the town and citadel. Treachery may have had to do with the result, for when the shah's troops entered the holy city the salar sought refuge in the mosque of Imam Riza, and was forcibly expelled. He and his brother were seized and put to death, the instrument, nsed being, according to Watson, "the bowstring of Eastern story." The conqueror of Meshed, Murad Mirza, became afterwards himself the prince-governor of Khorasan.

In the aricie on BABirsm, the facts as to the life of the Bab, Mirza Ali Mahommed of Shiraz, and the progress of the Babilist movement, are separatcly noticed. The Bab himself was executed sebinam in 1880, but only after serious trouble over the new Bablima
religious propaganda; and his followers kept up the revolutionary religious propaganda; and his followers bept up the revolutionary in the sum
In the summer of 1852 the shah was attacked, while riding in the vicinity of Tehertin, by four Babis, one of whom fred a pistol and slightly wounded him. The man was killed, and two others were captured by the royal attendants; the fourth jumped down a well: The existence of a conspiracy was then discovered in which some forty persons were implicated; and ten of the conspirators were put to death-some under cruel torture.
Mirza Taki, the amiru ' n-nizam (vulgarly amir nizam), or com-mander-in-chief, was a good specinoen of the solf-made man of Pcrsia. He was the son of a cook of Bahram. Mirza, Mahommed Shah's brother, and he had filled high and important offices of state and amassed much wealth when he was Fall of made by the young shah Nasru 'd-Din, on his accession,
both his brother-in-law and his prime-minister. The choice was an admirable one; he was honest, hard-working. and ijberal according to his lights; and the services of a byal and capable adviser were socured for the new regime. Unfortunately, he did not boast the confidence of the queen-mother; and this circumstance greatly strengthened the bands of those encmies whom an honest minister nust ever raise amund him ln a corrupt Oriental state. For a time the shah closed his cyes to the accusations and Insinuationa against him; but at last he fell under the evil influence of designing counscliors, and acts which should have redounded to the minister's credit became the charges on which he lost his office and his life. He was credited with an intention to graap in his own hands the royal power; his infucnee over the army was cited as a cause of danger; and on the night of the xath of November 18 g 1 he was summoned to the palace and informed that he was no longer premicr. Mirza Aga Khan, the " 'itimadu 'd-daulah," was named to succeed him, and had been accordingly raised to the dignity of "eadr'azim." As the hostilo faction pressed the necessity of the ex-minister's removal from the capital; he was oficred the choiee of the government of Fars, fsfahan or Kum. He declined all; but, through the mediation of Colonel Sheil, he was afterwands offered and accepted Kushan. Forty days after his departure an order for his execution was signel, but he anticipated his fate by committing suicide.
When England was engaged in the Crimean War of 1854-55 her aliance with Mahoumedan power in no way added to bee
popularity or streagthened ber position in Persia. The Sunnite Turk was almost a greater enemy to his neighbour the Shitite than Ruptrone the formidable Muscovite, who had curtailed him of whin Engiand. Since Sir John M'Neill's arrival in Teherin in 1841, Engtead. formally to repair the breach with Mahommed Shah, there had been little differences, demands and explanations, and these symptoms had culminated in 1856, the ycar of the peace with Russia. As to Agghanistan, the vizier Yar Mahommed had in 1842, when the British troops were perishing in the passes, or otherwise in the midst of dangers, caused Kamran to be sulfocated in his prison. Since that event he bad himself reigned supreme in Herat, and, dying in 1855 , was succeecled by his son Sa id slahommed. This chief swon entered upon a scrics of intrigues in the Persian interests, and, among other acts offensive to Great Britain, wuffered one Abbas Kuli, who had, under guise of friendship. betrayed the cause of the salar at Mcshed, to occupy the citade of Herat, and arain place a detachment of the shalh's troops in Ghurian. Colonel Sheil remonstrated, and obtained a new engagement of noninterference with Herat from the Persian governmeat, as well as the recall of *Abbas Kuli. In September 1855 Mahommed Yusuf Saduzai seized upon Herat, putting Sa id Mahommed to death with some of his followers who were supposed accomplices in the murder of his uncle Kamran. About this time Kohan Dil Khan. one of the chiefs of Kandahar, died, and Dost Mahommed of Kabui ennexed the city to his territory. Some relations of the deceased chief made their escape to Tcherän, and the shah, listening to their complaint, directed the prince-governor of Meshed to march across to the eastern fronticr and oceupy Herat, declaring that an invasion of Persia was imminent. Negoliations were uscless, and on the ist of November 1856 war against P'ersin was dechred.

In less than three wecks after its issue by proclamation of the governor-general of India, the Sind division of the ficld force Ieft Karachi. On the 13 th of lanuary following the Bombay government orvers notified the formation of a sccond division under Lieut.-General Sir James Outram. Belore the general arrived the island of Kharak and port of Bushire had both been occupied, and the fort of Rishir had been attacked and carried. After the general's arrival the march upon Borazjan and the engagement at Khushab-two places on the road to Shiraz-and the operations at Muhamrah and the Karun Rivor decided the campaign in favour of England. On the sth of April, at Muhamrab, Sir James Outram recelved the sews that the troaty of peace had been signed in Paris, where Lord Cowley and Farrukh Khan had conducted the negotiations. The stipulations regarding Herat were much as before; but there werc to be apologics made to the misaion for past insolence and ruclencss, and the slive trade was to be suppreseed in the Persian Gulf. With the exception of a small force retained at Bushire under General John Jacob for the three months assigned for exccution of the ratifications and giving cffect to certain stipulations of the treaty with regard to Afghanistan the Britisb troops returned to India, where their presence was greatly needed, owing to the outhreak of the Mutiny.

The question of constructing a telegraph in Persia as a link in the overland line to connect England with India was broached in he Teherxn by Colonel Patrick Stewart and Captain Atepto 7 Champain, officers of engincers, in 1862, and an agree-
 Cnempant on the subject concluded by Edward Eastwick, when charge d'affaires, at the close of that ycas. Three years later a more formal convention, including a scoond wire, was gigned by the British ervoy Charles Alison and the Persian forcign minister; meantime the work had been actively carried on, and communication opened on the one side Letween Bushire and Karachi and the Makran coast by cable, and on the other between Bushire and Bagdad via Teheran. The untrustworthy character of the line througb Asiatic Turkcy caused a subsequent change of direction: and an alternative line-the Indo-European-from London 20 Teberan, through Russia and along the castern shores of the Black Sea, was constructed, and has worked weil since 1872, in conjunction with the Persian land telegraph system and the Bushirc-Karachi line.

The Scistan mission, under Major-General (afterwerds Sir Frederic) Goldsmid, left England in August 1870 , and reached Teheräa on the 3rd of October. Thence it proceeded to Isfahan, from which city it moved to Baluchistan, instcad of secking its original destina. tion. Difficulties bad arisen both in arranging the preliminaries to arbitration and owing to the disondered state of Alghanistan, and it was therefore deemed advisable to commence operations by settling a frontier dispute between Persia and the Kalat statc. Unfortunately, the obstructions thrown in the way of this settlement by the Persian commissioner, the untoward appcarance at Bampur of an unexpected body of Kalatis, and the absence of definite instructions marred the fulfiment of the programme sketrhed out; but a line of boundary was proposed, which was afterwards wocepted by the litigants. In the following year the same mission, accompanied by the mame Persian commissioncr, proceeded to Scistan, where it remained for more than five weeks, prosecuting its inquiries, until joined by another mission (rom India, under Major-General (alterwards Sir Richard) Pollock. eccompanying the Algban commisioner. Complications then
easued by the determined refusal of the two native officials to mcet in conference: and the arbitrator had no course available but to take adventage of the rotes alrcady obtained on the spot, and return with them to Teheran, there to deliver his decision. This was donc on the 19th of August 1872. The contending partics appealed to the British secretary of state for forcign afiairs, provided by previous understanding: but the decision held good, and was eventually sccepted on both sides.
Nasru 'd-Din Shah, unlike his predecessors, visited Europein 1873 and in 1879 . On the first occasion only he extended his journey to England, and was then attended by his "sadr azim." or prime minister, Mirza Husain Khan, an able and enlightened adviser, and a Grand Croses of the Sear of India. His second visit was to Rusia, Germany, France and Austria, but he did not cross the Chanincl.
(F. J. G.; X.)

E.-Pcrsia from 1884 to 1901.

In 1865 the shah had mooted the idea of a Persian naval Aotilla in the Persian Gulf, to consist of two or three steamers manned by Arabs and commanded by English naval officers; but the idea was discountenanced by the ofthe British government, to whom it was known that the Perelan project really concealed aggressive'designs upon auti the independence of the islands and pearl fisheries of Babrein (Curzon, Persia, il. 294). Fifteen or sixteen years later it was repeatedly pointed out to the authorities that the revenues from the customs of tho Persian Gull would be much increased if control were exercised at all the ports, perticularly the small ones where smuggling was being carried on on a large scale, and in 1883 the shah decided upon the acquisition of four or five stcamers, one to be purchased ycarly, and instructed the Iate 'Ali Kuli Khan, Muk hber ad-daulah, minister of telegraphs, to obtain designs and estimates from British and Germen firms. The tender of a well-known German firm at Bremerhaven was finally aceepted, and one of the minister's sons then residing in Berlin made the necessary contracts for the first steamer. Sir Ronald Thomson, the British representative in Persia, having at the same time induced the shah to consider the advantages to Persia of opening the Karua River and connceting it with Teherān by a carriageable road, a small river steamer for controlling the shipping on the Karun was ordered as well, and the construction of the road was decided upon. Two steamers, the "Susa " and the "Persepulis," were completed in January 1885 at a cost of $£ 32,000$, and despatched with German officers and crew to the Dersian Gull. When the stcamers were ready to do the work they had been intended for, the farmer, or farmers, of the Gulf customs raised difficulties and objected to pay the cost of maintaining tbe " Pcrsepolis "; the governer of Muhamrab would not allow any interference with what he considered his bereditary rights of the shipping monopoly on the Karun, and the objects for which the steamers had been brought were not attained. The "Persepolis" remained idle at Bushire, and the "Susa " was ticd up tn the Failich creek, near Muhamrah. The scheme of opening the Karun and of constructing a carriageable road from Ahvaz to Teherấn was also abandoned.

Frequent intcrruptlons oceurred on the telegraph line between Tcheran and Mcshed in 1885, at the time of the "Panjdeh lncident," when the Russians were ndvancing towards Afghanimtan and Sir Peter Lumsden was on the Alghan frontier; and Sir Ronald Thomson concluded an agreement with the Persian government for the line to be kept in working order by an Engliah Inspector, the Indian government paying a share not exceeding 20,000 rupees per annum of the cost of maintemance, and an English signaller being stationed at Meshed. Shortly afterwards Sir Ronald Thomson left Persia (he died on the 15 th of November 1888), and Arthur (alterwards Sir Arthur) Nicolson was appointed charge d'affaires. During the lattcr's tenure of office an agreement was concluded between the Persian and British governmente regarding the British telegraph sctilement at Jask, and the telegraph conventlons of 8868 and 1872 rilative to telegraphic communication between Europe and India through Persia, in force until the ist of January 1895, were prolonged until the 31 st of January 1905 by two conventions dated the 3rd of July 1887. Since then these conventions have been prolonged to 1925.
Ayub Khan, son of Shir 'Ali (Shere Ali) of Afghanietan, who had raken refuge in Persia in October 1881, and was kept Interned in Tcheratin under an agreement, concluded on the $7^{\text {th }}$ of April 1884, bet ween Great Britain and Pcrsia, with a pension of $£ 8000$ per a anum, from the British government escaped on the 14th of August 1887. After a futile alteropt to eater Alghaa territory and raize a revolt
againgt the Arnir Abdur Rahman, he gave himself up to the British
consul-general at Meshed in the beginning of November, and was consul-general at Meshed in the beginning of Novernber, and was sent under escort to the Turkish frontier and thence via Bagdad to India. Yahya Khan, Mushir-ad-daulah, the Persian minister for toreign affairs (died 1892), who was supposed to have connived at Ayub Khan's escape in order to please his Russian friends, was dismissed from office.
In December ${ }^{1887}$ Sir Henry Drummond Wolff was appointed minister to Pcrsia. The appointment greatly pleased the Persian court, and the shab lent a willing ear to his advocacy for the development of trade and commerce, construction of roads, abolition of various restrictions hampering Persian merchants, \&e. The shah soon afterwards (May 26, 1888) issued a proclamation assuring freedom of life and property to all his subjects, and (Oct. 30) declared the Karun river open to international navigation up to Ahvaz. At about the same time he appointed Amin-eg-Sultan, who had been prime-minister since 1884, Grand Vizier (Sadr 'azim). In the same year ((June 25) the first railway in Persia, a small line of $5 \frac{3}{2}$ miles from Teherän to Shah-abdul-Azim, was opened under the auspices of a Belgian company. A few months later (Jan. 30, 1889) Baron Julius de Reuter-in consideration of giving up the rights which he held by his concession obtained in 1873-became the owner of a concession for the formation of a Persian State Bank, with exclusive rights of issuing bank-notes and working the mines of iron, copper, lead, mercury, coal, petroleum, manganese, borax, and asbestos in Persia. Russia now insisted upon what she considered a corresponding advantage; and Prince Dolgoruki, the Russian minister. obtained in February 1889 a document from the shah which gave to Russia the refusil of any railway concession in Persia for a period of five years. The Persian State Bank was established by British royal charter, dated the 2nd of Scptenber 1889, and started business in Persia (Oct. 23) as the "Imperial Bank of Persia." The railway agreement with Russia was changed in November 1890 iato one interdicting all railways whatsoever in Persia.
In April 1889 the shah set out upon his third voyage to Eurrope. After a visit to the principal courts, including a stay of a month shah's in England, where he was accompanied by Sir Henry

Vatio
Erose. Drummond Wolff, he returned to his capital (Oct. 20). March of the following year the Persian government granted another important concession, that of a tobacco monopoly, to British capitalists. In the autumn lad health obliged the British minister to lcave Persia. It was durng his stay in England that the shah, for two or three days without his grand vizier, who was mouming for the death of his brother, listened to bad advice and Pranted a concession for the monopoly of lotteries in Persia to a Persian subject. The latter ceded the concession to a British syndicate for 440,000 . Very soon afterwards the shah was made aware of the evil results of this monopoly, and withdrew the concession, but the syndicate did not get the money paid for it retumed. This unfortunate affair had the cffect of greatly discrediting Persia on the London Stock Exchange for a long time. The concession for the tobacco monapoly was taken up by the Imperial Tobacco Corporation (1891). The corporation encountered opposition fostered by the clergy and after a serious riot at Teheran (Jan. 4 ; 1892) the Persian government withdrew the concession and agreed to pay an indemnity of $\{500,000$ (April 5, 1892). In order to pay this amount Persia contracted the 6% loan of $\$ 500,000$ through the Imperial Bank of Persia, which was redeemed in 1900 out of the proceeds of the Russian 5% loan of that year. (For details of the tobacco concession and an account of the events which led to its withdrawal, see E. Lorini. La Persia econowica. Rome, 1900, pp 16y-169; and Dr Feuvrier, Trois ans a la coxr de Perse. Paris, ${ }^{28} 89, \mathrm{ch}$. v., the latter ascribing the failure of the tobacco monopoly to Russian intrigue.)
In November 1889 Malcolm Khan, Nizam-ul-Mulk, who had been Persian representative to the court of Great Britain since October 1872, was recalled, and Mirza Mahommed 'Ali Khan, consulgeneral at Tifis, was appointed in his stcad, arriving in London the following March. In 1800 the scheme of a carriagcahle road
from Teheran to Ahvaz was taken up again; the Imperial Bank of from Tcherản to Ahvaz was taken up again; the Imperial Bank of
Persia obtained a concession, and work of construction was begun in the same year, and continued until 1803. In this ycar, too, the mining rights of the Jmperial Bank of Persia were ceded to the Pcrsian Bank Mining Rights Corporation, and a number of engincers were sent out to Persia. The tctal absence of casy means of communication, the high rates of transport. and the scarcity nf fuel and water in the mineral districts made profitable operations impossible, and the corporation liquidated in 1894 , after having expended a large sum of money.
Great excitement was caused in the summer of 1891 by the report that an English girl, Kate Greenficld, had been lorcibly carricd

Katerent

 a way from her mother's house at Tabriz by a Kurd. The British authoritics demanded the girl's restitution from the Persian government. The Kurd, aTurkish subject. refused to give up the giri, and took het to Saujbulagh. The Turkish authorities protected him, and ericus complications were imminent; but finally an inberview between the girl and the British agent was arranged, and the matter
what promptly sectled by her declaring that she had left her mother's house of her own accord, and was the wife of che Kurd. It also became known that she was the daughter of a British-protected Hungarian named Grinfeld, who had died some years since, and an American lady of Tabriz.
Sir Frank Lascelles, who had been appointed minister to Persia in July, arrived at Teherin in the late autumn of 1891. In the following year Persia had a visitation of cholera. In Teherlin and surrounding villages the number of fatal cases exceeded 28,000, or dbout 8% of the population. In 1893 the epidemic appeared again, but in a milder form. In June 1893 Pervia ceded to Russia the small hut very fertile and strategically important district of Firuza and the adjacent lands between Baba Durmaz and Lutfabad on the northem frontier of Khorasan, and received in exchange the important village of Hissar and a strip of desert ground near Abbasabad on the frontier of Azerbaijan, which had become Russian territory in 1828, according to the Treaty of Turkmanchai.
Sir Frank Lascelles left Persia in the early part of 1894 , and was succeeded by Sir Mortimer Durand, who was appointed in uly and arrived in Teherin in November. In the lollowing year the shah, by a firman dated the 12th of Frescla May gave the exclusive right of exploring ancient sites Arataoin Persia to the French government, with the stipulation that one-half of the discovered antiquities, except- Concessian ing those of gold and silver and precious stones, should belong to the French government, which also had the preferential right of acquining by purchase the other half and any of the other antiquities which the Persian government might wish to dispose of. In 1897 M. J. de Morgan, who had been on a scientific mission in Persia some years belore and later in Egypt, was appointed chief of a mission to Persia, and began work at Susa in December.

On the 1st of May 1896 Nasur 'd-Din Shah was assassinated while paying his devotions at the holy shrine of Shah-abdul-Azim. Five days later he would have entered the fifticth (lunar) year of his reign, and great preparations for duly cele- Ascasshatbrating the jubilee had been made throughout the toa of the country. The assassin was a small tradesman of Kermann named Mirza Reza, who had resided a short time in Constantinople and there acquired revolutionary and anarchist idcas from Kemalu 'd-Din, the so-called Afghan sheikh, who, after being very kindly treated by the shah, preached revolution and anarchy at Teherana, fed to Europe, visited London, and finally took up his residence in Constantinople. Kemalu 'd-Din was a native of Hamadan and a Persian subject, and as the assassin repeatedly stated that he was the sheikh's emissary and had acted by his orders, the Persian government demanded the extradition of Kemal from the Porte; but during the protracted negotiations which followed he died. Mirza Reza was hanged on the 12th of August 1896. There were few troubles in the country when the news of the shah's death became known. Serious rioting arose only in Shiraz and Fars, where some persons lost their lives and a number of caravans were looted. European firms who had lost goods during these troubles werc alterwards indemnified hy the Persian government. The new shah, Muzaflar-ud-Din (boru March 25. 1853), then governor-general of Azerbaijan, residing at Tabriz, was enthroned there on the day of his father's death, and proceeded a few days later accompanied by the British and Russian consuls, to Teberan, where he arrived on the 8th of June
An excessive copper coinage during the past three or four years had caused much distress among the poorer classes since the beginning of the year, and the small trade was almost paralysed. Immediately after his accession the shah decreed that the coining of copper money should
curvery ccasc and the excess of the copper coinage be withdrawn from circulation. In order tn reduce the price of meat, the meat tax which had existed since ancient times was abolished. The Imperial Bank of Persia, which had already advanced a large am of money, and thereby greatly facilitated the shah's carly departure from Tahriz and enabled the yrand vizicr at Teheran to carry on the government, started buying up the copper coinage at all its branches and agencics. The nominal value of the copper money was 20 shahis equal to 1 kran, but in some places the copper money cir. culated at the rate of 80 shahis to the kran. less than its intrinsic value; at other places the rates varied between 70 and 25 shahis, and the average circulating value in all Persia was over 40 . If government had becn able to buy up the excess at 40 and reissue it gradually after a time at its nominal value when the people required it, the loss would have been small. But although the transport of copper money from place to place had been strictly prohibited, dishonest officials found means to trafic in copper money on their own account, and by buying it where it was cheap and Jorwarding it to cities where it was dear. the bank bought it at high rates, thus rendering the arrangement ior a speedy withdrawal of the excess at amall cost to govermment futile. It was only in 1899 that the distress caused by the excessive copper coinage ceased, and then only at very great loss to government. The well-intentioncd abolition of the tan on meat also had not the desired result, for by a system of "cornering " the price of meat roee to more than it was before.

In the autumn of 1896 the grand vizier (Amin-ea-Sultan) encountered much hostility from come members of the shah's mboheriar entourage and various high personagea. (Amin-adChangest Ha9\%-1ast Azerbaijen and sent to Tabriz Shortly afterwards the grand vizier found it impossible to carry on his work, resigned, and retired to Kum (Nov, 24), and the shah formed a cebinet composed for the greater part of the leading members of the opposition to the grand vizier. After three months of the new rexime affairs of state fell into arrears, and the most important department, that of the interior, was completely disorganized. The shah accordingly recalied Amin-ad-daulah from Tabras (Feb. 1897), and appointed him minister president (rals-i-vuzara) and minister of the interior. In June Amin-ad-daulah was made prime minister (vizir asim) and given more cxtended powers, and in August raised to the dignity of grand vizier (sadr 'azim). Nasra '1-Mulk was appointed minister of finance (Feb, 1898), and made an attempt to introduce a ample system of accounts, establish a budget, reorganize the reveaue department, made a ncw assessment of the land-tax, \&cc.; but resistance on the part of the officials sendered is abortive.
In the latter part of 1897 E. Graves, the inspector of the English selegraph line from Jask eastwards, was brutally murdered by Bahuchis, and the agents of the Persian government sent to meize the murdeners were resisted by the tribes. A considerable district breaking out into open revolt, troops under the command of the governor-general of Kerminn were despatched into Baluchistan. The port of Fannoch was taken in Mareh 1898 , and order was restored. One of the murderers was hanged at Jask (May 31).

Verious attempts to obtain a foreign loan had been made during the previous year, but with the sole result of discrediting the Abortive Persian government in Europe, In the beginning of Nepodthonts 1898 the bah's medical adyisers strongly recommended cor Brdith as his departure from Persia without paying the arrears 20\%s. to the army and to thousands of functionaries, or 1685 providing a sufficient sum for carrying on the government during his absence, would have created grave discontent, merious negotiations for a loan were entered upon. It was estimated that $\$ 1,000,000$ would be required to pay all debts, including the balance of the 1892 loan, and leave a surplus sufficient for carrying on the government until the shah's return. London capitalists offered to float a loan for $\{1,250,000$ at 5% and on the guarantee of the customs of Fars and the Persian Gulf ports. and to give \&t,025,000, or 82% to the Persian goverament. They stipulated for a kiod of control over the custom-houses by placing their own agents as cashiers in them. This stipulation was agreed to in principle by the grand vizier, Amin ad-daulah, who in March, in order to meet some pressing demands on the treasury borrowed [50,000 on the customs receipts of Kermanshāh and Bushire, and agreed to the lendera, the Imperial Bank of Persia's agents, being placed as cashiers in the custom-bouses of both cities. He encountered, however, much opposition from the other ministers. Further negotiations ensued, and the shah's visit to Europe was abandoned. The assistance of the British government not being forthcoming, the grand vizier's pasition became more and more difficult, and on the 5 th of June be had to resign. Muhsin Khan, Mushir-addaulah, minister for Ioreign affairs, then became presidont of the cabinet, and continued the negotiations, but could not bring hem to a succossful issue. Moreover, the Persian government, finding that the previous estimate of the money required for paying its debts was about 50% below the mark, now asked for double the amount offered by the London capitalists, without, however, proportionately increasing the guarantee. This disorganized ali previous arrangements, and the negotiations for a London loan came to ao end lor a time at the end of July, leaving in the minds of the Persians the unfortunate impression that the British government had done nothing to aid them.

On the gth of July the former grand vizier, Amin-es-Sultan, was recalled from Kum, where he had resided since November 1896 , arrived at Teheran three days later, and was reinstated as grand vizier on the 1oth of August. His immense popularity, his Iriendly relations with the clergy, and some tempomry advances Irom the banks, tided over difficultics for some time. The reform of the customs department was now (Sept. 1898) takrn up seriously, and the three Belgian custom-house officials who had been engaged by Amin-ad-daulah in the beginning of the ycar were instructed to collect information and devise a scheme for the reorganization of the department and the abolition of the farm system. In March I8g9 the custom-houses of the provinces of Azerbaijan and Kermanshah were given over to the Belgians. The results of this step were so satisfactory that government was induced to abolish the farm system and set up the new regime in the other provinces in March 1900, and a number of other Belgian custom-houscs officials were engaged.

In September, when renewed negotiarlons for a loan from London were not apperating to progress favourably, and the long-thoughtof vinit to Europe was considered to be absolutely necessary in the following yeer, the shah isued a firman authorizing the Rustian Benque de Prete de Perse to flopt Ioan. Shortly after thio it was
said that the London capitalinta were willing to lend fagsoono without insisting upon the objectionable control clause; but the proposal came too late, and on the 30th of lanuary 1g00, the Russian government had permitted the issue of a loan for 221 million roublea $(~(1,2,400,000)$ at 5%

Rapaly guaranteed by all the customs receipts of Persia, ex. ccpting those for Fars and the Persian Gulf ports. Only in the event of any default of paying instalments and interests was the bank to be given control of the custom-houscs. Persia received 85% of the nominal capital, and the Russian government guaranteed the bondholders. Money was immediately remitted to Teherdn, and nearly all the arrears were paid, while the balance of the 1892 London 6% loan was paid of by direct remittance to London.

Sir Mortimer Durand left Teherin in the early spring, and proceeded to Europe on leave. On the r2th of April the shath, accompanied by the grand vizier and a numerous suite. started on his voyage to Europe. The affairs of State starth during his absence were entrusted to a council of Vevis de ministers, under the presidency of his second son, Evoeper Malik Mansur Mirza, Shua-es-Sultanch, who had made fros, sena a long stay on the Continent the year before.

Afterya residence of a month at Contrexeville, the shah proceeded (July 14) to St Petersburg, and thence to Paris (July 29), intending to go to London on the 8th of August. But on account of the mourning in which several courts were thrown through the death of the king of Italy (July 29) and the duke of Saxe-Coburg-Gotha (July 30), the visits to England, Germany and Italy were abandoned. On the 2nd of August an anarchist made an attempt upon the shab's life in Paris.

F.-Russo-British Rivalry (1002-1007) and the Persian Repolution ($1000-1009$).

In 1902 Muzaffar-ud-Din Shah revisited the principal European capitals, and was received by King Edward VII. at Portsmouth in August. A mission headed by Viscount Downe was afterwards despatched to Persia, to invest the shah with the order of the Garter, a ceremony which took place in Teheran on the and of February 1903. A week later, a new commercial treaty was concluded between Great Britain and Persia, which instituted various reforms in the customs service, secured to both countries the " most-favoured-nation " treatment, and substituted specific import and export dutics for the charge of 5% ad malorem provided for in the treaty of $\mathbf{2 8 5 7}$. Thaso provisions to some extent counterbalanced the losses inflited on British trade hy the Russo-Persian commercial treaty signed in 1gow, which had scriously damaged the Indian tea trade, and had led to a rapid extension of Russian influence. Between 1899 and 1903 the Russian Bank had lent Persia $14,000,000$, of which fully half was paid to tbe shah for his personal requirements. Russian concessionnaires were given the right to build roads from Tabrix to Teheraln (1902) and from Tabriz to Kazvin (1903); and the Russian Bank opened new branches in. Seistan-an example followed in 1003 hy the Bank of Persia. It was, however, in the Persian Gulf that the rivalry between Great Britain and Russia threatened to become dangerous. Great Britain had almost a monopoly of maritime commerce in the Gulf, and wis ałone responsible for buoying, lighting and policing its waters The British claim to political supremacy in tbis region had thus a solid economic basis; it had been emphasized by the British action at Kuwet (q.v.) in 1899, and by the declaretion made in the House of Lords by Lord Lansdowne, as secretary of state for foreign affiirs, to the effect that Great Britain would resist by all moans in its power the attempt of any other nation to catablish itself in force on the shores of the Gulf. On the z6th of November 1903, Lord Curzon, the viceroy of India, sailed from Karachi for the Persian Gulf. His ship, the "Hardinge," was escorted by four cruisers, and the voyage was regarded as a political demonstration, to be interpreted in connexion with Lord Lansdowne's declaration. At Bushire, on the ist of December, the Persian governor of Fars, Ala ad-daula, committed a breacb of diplnmatic etiquette which induced 1ord Curzon to sail away witbout landing. This incident was comsidered by some British observers to have been brought about by Russian intrigue, and the fact that Ala ad-daula was dismissed in rgo4, after the Japanese had achieved several initial successes in the Russo-Japanese war, was held to confirm this opintoa. But Russian financial and commercial infarance in

Persia continued to increase; in December rgo4 a special mission under Mirza Riza Khan was received in audience by the tsar; and in May 1gos Muraflar-wd-Din Shah himself left Persia to visit the courts of Vienna and St Petersburg.

The Seistan Mission of 1g02-rpos.-A disputeas to the frontier between Afghaaistan and Scistan arose in 1902 . The boundary delimited by the Seistan mission of 1870-1872, and known as the "Goodsmid line," was dramn along the course of the river Helmund. Between 1872 and 1902 the Helmund took a more westerly direction; no boundary marks had been erected, and a wide strip of territory remained in dispute. The Persians claimed that the boundary was the old bed of the river, the Afghans that it was the new bed; and in accordance with the treaty of 2857 both parties asked the British government to arbitrate. In January 1903, Colonel Arthur Henry MacMahon, who had previounly delimited the frontier between Afghanistan and British India, was despatched from Quetta. The Persian officials were at first hostile, but their opposition, which was aftributed to Russian influeace at Teherin, was eventually overcome, and Colonel MacMabon (who was knighted in 1906) delivered his final award, sustaining the Persian contention, in February 1905.
British Commercial Missions.-Owing to the success of the Maclean mission, which visited and reported upon the merkets and trade-routes of north-westem Persia in 1903, under the direction of the Board of Trade, a similar mission was eent to southern Persia in 1904, under the auspices of the Upper India Chamber of Commerce, the Bengal Chamber and the Indian Tea Cess Company. The report of this mission (by GleadoweNewcomen) was published in rgo6. After showing that civilized goverument was practically non-existent in the regions visited, it auggested as the chief remedy the conclusion of a RussoBritish convention, and the division of Persia into "spherea of influence."

Russo-British Conotrition of 1007.-The political situation created by the Russo-Japenese War and by an internal crisis in Fersia itself rendered possible such an agreement between the two rival powers, and a Russo-British convention was signed on the 318 s of August 1907. Its chief provisions, in regard to Persia, are as follows: (i) north of a line drawn from KasrShirin, Isfahan, Yead and Kakh to the junction of the Russian, Persian and Afghan frontiers Great Britain undertook to seek no political or commercial concession, and to refrain from opposing the acquisition of any such concession by Russia or Russian subjects; (2) Russiz gave to Great Britain a like undertaking in respect of the territory south of a line extending from the Afghan frontier to Gazil, Birjend, Kermana and Bander Abbasi; (3) the territory between the lines above-mentioned was to be regarded as a neutral zone in which either country might obtain concessions; (4) all existing concessions in any pert of Persia were to be respected; (5) should Persia fail to meet its liabilities in respect of loans contracted, before the signature of the convention, with the Persian Banque d'Escompte and de Prets, or with the Imperial Bank of Persia, Great Britain and Russia reserved the right to asanme contral over the Persian revenues payable within thelr respective spheres of influence. With this convention was published a letter from the British secretary of state for foreign affairs (Sir E. Grey), stating (1) that the Persian Gulf lay outaide the scope of the convention, (2) that Rusia admitted the special Intereats of Great Britaln in the Goulf, and (3) that these interests were to be maintained by Great Britain as before.

The Persian Constituion.-The misgovernment and disorder which were revealed to Europe by the Gleadowe-Newcomen report, and by such sporadic outbreaks as the massacre of the Bibis in Yezd (1903), had caused widespread discontent in Persla. In 1905, partly owing to the example shown by the revolutionary perties in Russia, this discontent took the form of a demand for representative institutions. On the gth of August 1906, Muzaffar-ad-Din Shah issued a rescript in which he undertook to form a national council (Majlis) representing the whole people (ree above, Gosstitution). The Majlis wes duly elected,
and was opened by the shah in person on the 7 th of October 1906. In January 1907 the shah died, and was succeeded by his eldest son, Mahommed 'Ali Mirza, who on the rith of February published a message to his people, pledging himsell to adhere to the new constitution.

The Revolution.-On the 12th of November the shah visited the Majlis, and repeated his pledge, but during December a riot in Teheran developed into a political crisis, in which the shah's troops were employed against the civil population. The Majlis issued a manifesto to the powers, declaring that the shah intended to overthrow the constitution, and demanding intervention. The Russian and British ministers in Teherin urged Mahommed 'All to maintain the constitution, and he sent a mesage to the Majlis, promising compliance with its demands and agreeing to place the whole army under the control of the minustry of war. These concessions allayed the prevailing unrest for a time, but the Royalist and Nationalist parties continued secretly to intrigue against one another, and in February 1908, while the shah was driving in Teheran, two bombs were exploded under his motor-car. Two persons were killed, but the shah was unhurt, and the Majlis formally congratulated him on his escape. A prolonged ministerial crisis, in April and May, was attributed by the Nationalists to the influence of reactionary courtiers, and by the Royalists to the influence of the Anjumans, or political ctubs, which were alleged to control the Nationalist majority in the Majlis. Early in June the Majlis urged the shah to dismims the courtiers under suspicion, Mahommed "Ali consented, but withdrew from Teherina; and on his departure the royal bodygurd of so-calied "Cossacks"-Persian soldien officered by Russians in the shah's service-at once came into conflict with the Nationalists. The house of parliament was bombarded, and when the Majlis appointed commissioners to discuss terms, the shah issued a manifesto dissolving the Majlis, and enitrusted the restoration of order in Teheran to military administrators. He also proposed to substitute for the elected Majlis a council of forty members, nominated hy himself; but under pressure from Great Britain and Russia he promised to abandon this scheme and to order another general election. Meanwhile, civil war had brokea out in the provinces; Kurdish raiders had sacked many villages near Tabriz; Persian hrigands had attacked the Russian frontier-guards on the borders of Transcaucasia, and the indemnity demanded by the tsar's government was not paid until several Persian villages had been burned by Russian troops. This incident, combined with the employment of the so-called Cossacks, evolked a protest from the Nationalists, who asserted that Russia was aiding the Royalists; the accusation was true only in so far as it referred to the conduct of certain Russian officials who acted without the consent of the Russian government. Early in 1909, indeed, a Russien force of 2600 men was sent to watch events near Tabrix, and if necessary to intervene in favour of the Nationalists who held the town, and had for some months been besieged by the shah's troops. The presence of the Russians ultimately induced the Royalists to abandon the siege. In January of the same year the revolution spread to Isfahan, where the Bakhtiari chiefs made common cause with the Nationalists, deposed the Royalist governor and marched on the capital. In May and June the shab issued proclamations declaring his fidelity to the constitution, and promising an amnesty to all political offenders; but he was powerless to stay the advance of the combined Bakhtiari and Nationalist troops, who entered Teherann on the 13th of July. After severe street fighting the Cossacks deserted to tbe rebels, and the shah took refuge in the Russlan legation (July $\mathbf{1 5}$). This was interpreted as an act of abdication; on the same day the national council met, and chose Mahommed 'Ali's son, Sultan Ahmad Mirza, aged thirteen, as his successor. Asad ul-Mulk, head of the Kajar tribe, was appointed regent. On the gth of September 1goo, the ex-shah departed for his place of exile in the Crimen, escorted by Russian Cossacks and Indian sowars. On the 1 gth of November a newly elected Majlis was formally opened by the shah.

Bialrooxatixy.-i. Geneval: Lond Curson of Kedlemon, Persia and the Pernin Questions (London, 1892). contans an acoount of European literature relating to Persha (A.D. $900-1901$) and numerous bibliographical noten, See also Lady (M L. Shiel. Life and Manners in Persis (London, isg6): Sir A. H. Layard, Early Adpememees in Persia (London, 1887); S. G. W. Benjemin, Persia and the Persians (ard ed., London, 189i); C. E. Yate, Khurasan and Sislan (Edinburgh, 1900); H. S. Landor, Across Coveled Lands (London, 1902); i de Morgen, Míssion scientifique (vols. i.-v.. 1897-1904). N. Malcolm, Fiue Years in e Persian Town (Yesa) (London, 1gos): A.V.W. Jackson, Porsia, Past and Presemt (Lordon, 1906); E. C. Williams Across Persic (London, 1907). The works of James Morier (g.v.), especially his Adventures of Hajis Baba of Ispahan, throw much light on Persian society in the early years of the teth contury.
2. Hiptory: Sir J. Malcolm. History of Persia (and cd., London. 1829); R. G. Watson, A History of Persia from the Beginning of The Ninetecnth Century (London 1873); Sir C. R. Markham, A General Sheich of the History of Persia (London, 1874), and Curzon, as quoted above, are the standard authoritics on modern Persian history. The Trasels of Pedro Teireira (London, 1902) and other publications of the Hakluyt Society relating to Perua are also of great historical Yalue. For more recent events sce the reports oi the GleadoweNewcomen and MacMahon missions: E. G. Brownc. The Persion Revolution of 1905-09 (London, 1910); A. Hamilton, Problems of the Middle East (London, 1909); V. Chirol, The Middle Easkem Question (London, 1904); E. C. Williams, Across Persia (London, 1907). The commercial convention of 1903 is given in Treaty serics, No. 10 (London, 1903), the Russo-British convention in Treaty weries, No. 34 (London, 3907). Other official publications of hisrorical importance are the annual British \mathbf{F}. \mathbf{O}. reports, and the U.S. Consular Reports.

Lanounae and Literature

I. Persian (Iranian) Languages.-Under the name of Persian is included the whole of that great family of languages occupying a field nearly coincident with the modern Iran, of which true Persian is simply the western division. It is therefore common and more correct to speak of the Iranian family. The original native name of the race which spoke these tongues was Aryan. King Darius is called on an inscription "a Persian, son of a Persian, an Aryan of Aryan race"; and the followers of the Zoroastrian religion in their earliest records never give themselves any other title but Airyard danghoos, that is to say, "Aryan races." The province of the Irnian language is bounded on the west by the Semitic, on the north and north-east by the Ural-altaic or Turanian, and on the south-east by the kindred language of India.

The Iranian languages form one of the great branches of the Indo-European stem, first recognized as such by Sir William Mance Langeses Jones and Friedrich Schlegel. The Indo-European b) mann into (1) Aryan, with sub-branches (a) Indian,
(b) Iranian; (2) Armenian; (3) Greek; (4) Albanian; (5) Italic;
(6) Celtic; (7) Germanic, with sub-branches (a) Gothic, (b) Scandinavian, (c) West Germanic; and (8) Balto-Slavonic. (See Indo-European.) The Argan family (called by Professor Sievers the "Asiatic base-language ") is subdivided into (1) Iranian (Eranian, or Erano-Aryan) languages, (2) Pisacha, or non-Sanskritic Indo-Aryan languages, (3) Indo-Aryan, or Sanskritic Indo-Aryan languages (for the last two see Indo-Aryan); Iranian being also grouped into Persian and non-Persian.
The common characteristics of all Iranian languagen, which distinguish them especially from Sanskrit, are as follows:-

1. Changes of the original 3 into the spirant k. Thus-

Samskr	Zend.	Old Persian.	N
u (Indus)	hindo	hindu	hin
(all)	haurve	haruva	har
(whoie)	hama	hama	ha
i (sunt)	henti	hantiy	hend.

2. Change of the original aspirates $g h, d k, b h(-x, \theta, \phi)$ into the corresponding medials-

Samskrid.	Zend.	Ond Persion.	Now
bhimi (earth)	bâmi	bormi	bûm
dhita (0arb)	dasta		
gharma (heat)	garema	carma	carm.

th, k, t, p belore a consonant are changed ioto the apirants $\boldsymbol{H}_{\mathrm{i}}$ 4h, f

Sanskrit. prathama (fing)	$\underset{\text { fratema }}{\text { Zend. }}$	Ord Persias. Iratama	Nes Persian. fradum (Parii)
Lexntu (insight)	khratu		Mradum

4. The dovelopment of soft sibilants-

Samkri.	2 L	Ofd Persian	N
gurs Medher	Ahurठ Masdiso	Auremand	Ormuad
bähu (arm)	bizu		
hima (hiems)	zima	- . ${ }^{\text {. }}$	zim.

Our knowledge of the Iranian languages in older periods is too fragmentary to allow of our giving a complete account of this Iamily and of its special histoncal development. It will be anfficient here to distinguich the main types of the older and the more recent periods. From antiquity we have sufficient knowledge of twro dialects, the first belonging to eastern Iran, the second to western.

1. Zend or Old Bactrian.-Neither of these two tites in well chomen. The name Old Bactrian mugeests that the language was limited to the small district of Bactrin, or at least that it was spoken there-which is, at the moxe, only an zeed. hypothesis. Zend, again (originally decintesh), is not the name of a manguage, as Anquetil Duperron supposed, but means "interpretation "" or "explanation," and is specially applied to the medieval Pahlavi translation of the Aveste. Our "Zend-Avesta" does not mean the Aresta in the Zend language, but is an incorrect transeription of the original expression "Avistäk va zand," i.e "the holy text (Avesta) together with the translation." But, since we still lack aure data to fix the home of this laguage with any certainty, the convenient name of Zend bas become generally established in Europe, and may be provisionally retained. But the home of the Zend language was certainly in eastera Iran; all at tempts to eeek it farther west-4.g. in Medis ${ }^{2}$ must be regended as failores.

Zend is the language of the so-called Areste, the boly book of the Persians containing the oldest documents of the religion of Zoroaster. Besides this important monument, which is about twice as large as the Iliad and Odyssey put together, we only possest very scanty relics of the Zend language in medieval glospes and ecattered quatations in Pahlavi books. These remains, however, suffice to give a complete insight into the atructure of the language. Not only amongst Iracian languages, but amongst all the languagen of the Indo-European group. Zend takes one of the very highest places in importance for the comparative philologits. In se it almost rival Sanglerit; in primitiveness it gurpences that language in many points; it is inferior only in respect of its lese extensive literature, and because it has not been made the subject of systematic grammatical treatment. The age of Zend must be examined in congexion with the age of the Asesta. In its present form the Apesta is not the work of a single author or of any one age, but embraces collections produced during a long period. The view which became eurrent through Anquetil Duperron, that the Avesto is throughout the work of Zoroaster (in Zend, Zaratheshtra), the founder of the religion, hat long been abandonod an untenable. But the opposite view, that not a single word in the book can lay claim to the authorship of Zoroaster, also appeart on closer atudy too swecping. In the Avesta two stages of the language are plainly distinguishable. The odder is represented in but a small part of the whole work, the so-called Gallis or wonge. Theme songe form the true bernel of the book Yasna; ' they must have beed in exiesence long before ali the other parts of the Avestia, throughout the whole of which allusions to them occur. These githas are what they claim to be, and what they are honoured in the whole Avesta as being the actual productions of the prophet himself or of his time. They bear in themselves irrefatable proofe of their authersticity, bringing us face to face not with the Zoroaster of the legends but with a real person, announcing a new doctrine and way of salvetion, no supernatural Being astared of victory, but a mere man, struggling with human conficte of every sort, in the midet of a society of fellow-believers yet in its earliest infancy. It is almoet impossible that a much later period could have produced such unpretentious and almost depreciatory representations of the deede and personality of the prophet. If, then, the gathas reach back to the time of Zoroaster, ald he himself, according to the mont probable estimate, lived as early as the 14th century B.C., the oldest component parts of the Apesta are hardly inferior in age to the oldest Vedic hymna. The gathas are still extremely rough in style and expression; the language is richer in forms than the more recent Zend: and the vocaberiary shows important differences. The predominance of the long voprels is a maribed charteteristic. the constant appearance of a long final vowel contrasting wrtb the preference lor a final short in the later speech.

[^23]| (ata | Caldit | L |
| :---: | :---: | :---: |
| abhi (aear) | aibi | . aiwi |
| Tha (work) | izha | izha. |

The clearest evidence of the extreme age of the language of the gathas is its striking resemblance to the oldest Sanskrit, the language of the Vedic poems. The gatha language (much more than the Inter Zend) and the language of the Vedas have a close resemblance, exceeding that of any two Romank languages; they seem hardly more than two dialects of one tongue. Whole strophes of the gathas can be turned into good old Sanskrit by the application of certain phonetic laws; for example-
" mat vabo padaish ya frasrita trhayaio pairijasti mazds ustanazasto

ât våo vangēhush mananghō hunarctâta, "
becomes in Sanskrit-
" mana vah padaith ye praçuta inEyath
parigachati medha uttảnahastah
Et va rtena radhrasyaca namasd
It vo vasor manasah süprtayă.":
The langage of the other parts of the Avesta is more modern, but not all of one date, 00 that we can follow the gradual dectine of Zend in the Avesta itself. The later the date of a text, tho simpler is the grammar, the more lax the use of the cases. We have no chronological points by which to fix the date when Zend coased to be a living language; no part of the Avesta can well be put later than the 5 th or th century B.C. Before Alecander's time it is said to have been already written out on dressed cowhides and preserved in the state archives at Persepolis.

The followers of Zoroaster soon ceased to understand Zend. For this reason all thet time had spared of the Apesto was translated into Middle Persian or Pahlaviz (q.v.) under the Sassaaians. This translation, though still regarded as canonical by the Parsees, shows a very imperfect knowledge of the original language. Its value for modern philology has been the subject of much needless controversy amongst Europan scholats It is only a secondary means tovards the comprcheasion of the ancient text, and must be used tith discrimination. A logical system of comparative exegesis, aided by constant reference to Sanskrit, its nearest ally, and to the other Iranian dialects, is the best mearts of recovering the lost ense of the Zend texts.

The phometic system of Zend consiste of simple signs which express the different shades of sound in the language with great precision. In the vowel-system a notable feature is the presence of the short vowels e and o, which are not found in Sanskrit and Ofd Persian; thus the Sanskrit sanli, OId Persian hanliy, becomes hemti in Zend. The use of the vowels is complicoted by a tendency to combinations of vowels and to epenthesis, i.e. the transposition of veale vowels iato the next syllable; e.g. Sanskrit bharali, Zend bapaiti (he carries); Old Persian margu, Zend mourva (Merv); Sanskrit rimakt, Zend irinakhti. Triphthongs are not uncommon, e.f. Sanskrit aquebhyas (dative plural of aça, a horse) is in Zend espatiby ; Sanskrit kenoti (he does), Zend hereraoifi. Zend has alse a great tendency to insert irrational vowels, especially near liquids; owing to this the words seem rather inflated; e.p savya (on the left) becomes in Zend havaya : bhrdjati (it glitters), Zend
 are struck by the abundance of sibilants (s and sh, in three forms of modification, 2 and $2 k$) and nasals (five in number), and by the complete absence of L A characteristic phonctic change is that of ritito sh: e.g. Zend asha for Sanskrit tia, Old Persian arto (In Artaxerxes): frapashi for Pahlavi fravardin, New Persian ferser (the spirits of the dead). The verb displays a like abundance of primary forms with Sanskrit, but the conjugation by periphrasis is only slightly developed. The aoun has the same eight cases as in Sanskrit. In the gathis there is a special ablative, limited, as in Sanskrit, to the "a stems, whilst in later Zend the ablative is extended to all the stems indifferently.
We do not know in what character Zend was written before the time of Alexander. From the Sassanian period we find an alphabetic and very Iegible character in use, derived from Sassanian Pahlavi, and closely resembling the younger Pahlavi found in books. The oldest known manuscripts are of the rath century A.D. ${ }^{2}$

Although the existence of the Zend language was known to the Oxford seholar Thomas Hyde, the Frenchman Anquetil Duperron. who went to the East Indies in 1755 to visit the Parsee priests, was the first to draw the attention of the learned world to the subject. Scientific atudy of Zend texts began with E. Burnouf, and has
1 with verses of my making, which are now heard. and with prayefful hands, I come before thee, Mazda, and with the sincere humility of the upright man apd with the believer's song of praige."
${ }^{2}$ Grewnars by F. Spicgel (Leipzig 1867) and A. V. W. Jackson (Stuttgart, 1892): Dictionary by F. Juet (Leipaig, 1864): editions of the Aveste by N. L. Westergatd (Copenhagen, 1852) and C. F. Geldner (Stuttgart; 1886-1895; also in English); translation inta German by Spiegel (Leipaig, 1852), and into English by Darmesteter (Oxford, 1880) io Max Mulier's Sacred Boaks of the Baak.
since then made rapid tridea, especially since the Vodas have opened to us a knowedge of the oldest Sanskrit.
2. Oid Persias.-This is the tanguage of the ancient Persians properly so-called, in all probability the mother-tongue of Middle Persian of the Pahlavi texts, and of New Persian. We oid Peraiar. know Old Persian from the rock-inscriptions of the
Achaemenians, now fully deciphered. Moet of them, and these the longets, date from the time of Darius, but we have specimens as late as Artaxerxes Ochus. In the latest inscriptlons the language is already much degraded; but on the wholo it is almost as antique as Zend, with which it has many pointe in common. For instance, if we take a sentence from an inscription of Darius 49

Auramazda hya imãm bumim adE hya avam asmenam ad⿱ hya martiyam ada hya siyatim ada martiyahye hya Dirayavaum khshyyathiyam akunaush ajvam paruvnäm khshayathiyam,"
it would be in Zend-
" Ahuro maxdaxo yō im3m bümim adzt yo aom asmanem adzt yo
 akerenaot Öyum pourunam kbshaētem."
The phonetic system in Old Persian is much simpler than in Zend; we reckon twenty-four letters in all. The short vowels e, o are wanting; ia their place the old "a " sound still appears as in Sanskrit, e.g. Zend bagem, OId Persian bagam. Sanskrit bhagam; Old Persian hamarana, Zend hamerena, Sanskrit samarana. As regards consonants, it is noticeable that the older (soft s) still preserved in Zend passea into d-a rule that still holds in New Persian; compore-

Sanshrif.	Zend.	Old Persian.	Nez Persian.
hasta (hand)	zasta	dasta	dast
jrayas (sea)	zrayo	daraya	darya
aham (l)	azem	adam	...

Also Old Persian has no special l. Final consonants are almost entirely wanting. In this respect Old Persian goes much farther than the kindred idjoms, e.g. Old Persian abara, Sanskrit abharah, Zend abaral, Edpt: nominative bagg, root-form baga-s, Sanskrit bhagas. The differences in declension between Old Persian and Zend are unimportant.

Old Persian inscriptions are written in the cuneiform character of :hr in criptions int besides two translations into the more complicated linds of cunciform character of two other languages of the Persian Empire. One of these is the Assyrian; the real nature of the sccond is still a mystery. The interpretation of the Persian cunciform, the character and dialect of which were equally unknown, was lisgun by G. F. Groteiend, who was followed by E. Burmouf. Sir Henry Rawlinson and J. Oppert. The ancient Persian inscriptions have been collected in a Latin translation with grammar and glossaries by F. Spiegel (Leipzig, 1862; new and enlarged ed., 1881). The other ancient tongues and dialects of this lamily are known only by name; we read of peculiar idioms in Sogdiana, Zalulistan, Herat, \&ic. It is doubtful whether the languages of the Scythians, the Lycians aad the Lydians, of which hardly anything remains, were Iranian or not.

After the fall of the Achacmenians there is a period of five centurics, from which no document of the Persian language has come down to us.

Under the Arsacids Persian nationality rapidly declined; all that remains to us from that period-namcly, the inscriptions on coins -is in the Greek tongue. Only towards the end of the Parthian dynasty and after the risc of the Sassa nians, under whom the national traditions were again cultivated in Persia, do we recover the lost traces of the Persian language in the Pahlavi inscriptions and literature.
3. Middle Persian.-The singular phenomena presented by Pahlavi writing have been diseussed in a separate article (see Pahlavi). The languages which it disguises rather than expreses-Middle Persian, as we may call it- pertion. presents many changes as compared with the Old Persian of the Achaemenians. The abundant grammatical forms of the ancient language are, much reduced in number; the case-ending is lost ; the noun has only two inflexions, the singular and the plural; the cases are expressed by prepositions-e.g. Fibbin (the soul), nom. and acc sing., plur. rübaban; dat. vol or a*o raban, abl. win or as rüban. Even distinctive forms for gender are entircly abandoned, c.g. the pronoun aro sipnifies "he," "she," "it." In the verb compound forms predominate. In this respect Middle Persian is almost exactly similar to New Persian.

And pernaps of the Medes. Although we have no record of the Median language we cannot regard it as differing to any great extent from the Persian. The Medes and Persians were two clovely-connected races. There is nothing to justify us in ${ }^{\text {i }}$ soking for the true Median language cither in the cunciform writings of the second class or in Zend.
"Ormuzd, who created this carth and that hemven, who created man and man's dwellirts-place, who made Darius king, the one and only king of many."
4. New. Parsian.-The last step in the development of the language is New Persian, represented in its oldest form by Firdousi. New In grammatical forma it is still poorer than Middle pownen. Persian; except English, no Indo-European language has so few inflexions, but this is made up for by the cubtle development of the syntax. The structure of New Persian has hardly altered at all since the Skohndima; but the original purism of Firdousi, who made every effort to keep the language free from Semitic admixture, could not long be maintained. Arabic literature and speech exercised so powerful an infiuence on New Persian, especiaily on the written language. that it could not withstand the admission of an immense number of Semitic words. There is no Arabic word which would be refused acceptance in good Persian. But, nevertheless, New Persian has remalned a lanquage of genuine I ranian stock.
Among the changes of the sound system in New Persian, as contrasted with carlier periods, especially with Old Persian, the first that claims mention is the change of the tenuea $k, l_{1}, p_{1} c_{1}$ into g, d, b, s. Thus we have-

Od Persian or Zead	Pahlasi.	Neo Persiam.
mahrka (death)	mark	marg
Thraẽtaona	Fritûn	Feridun
Ep (water)	${ }^{\text {a }}$	5 b
hvatō (self)	khot	khod
raucah (day)	roj	nive
haca	aj	az.

haca (day)
A series of consonants often dimappear in the spirant; thus-
Old Persian or Zend.
Pahlaw.
Neto Parsiam.
kaufa (mountain)
gathu (place), 2. gatu
cathware (four)
kof
${ }^{k}{ }^{\text {kgh }}$
gah
bañdaka (slave)
gas
lsandak spada (army) bandah sipah dadami (I give)
Old d and $d k$ frequently become y -

Old Persian or Zend.	Pahlaei.	New Persiam
madhn (wine)	mai	
baodho (consciousness)	bäd	.
padha (foot)	\ldots.	boi
kadha (when)	\ldots.	pai.

metre and rhyme; others mention as author of the first Persian poem a certain Abulhafs of Soghd, near Samarkand. In point of fact, there is no doubt that the later Sassanian rulers fostered the literary spirit of their nation (see Parlavi). Pahlavi books, however, fall outside of the present subject, which is the literature of the idiom which shaped itself out of the older Persian speech hy alight modifications and a steadily increasing mixture of Arabic words and phrases in the gth and roth centuries of our era, and which in all essential respects has remained the same for the last thousand years. The death of Hirlin al-Rashid in the beginning of the gth century, which marks the commencement of the decline of the caliphate, was at the same time the starting-point of movements for national independence and a national literature in the Iranian dominion, and the common cradle of the two was in the province of Khorasan, between the Oxus and the Jaxartes. In Merv, a Khorasanian town, a certain 'Abbls composed in 809 A.D. (193 A.ri), according to the oldest biographical writer of Persia, Mahommed 'Aufl, the first real poem in modern Persian, in honour of the Abbasid prince Maman, Haron al-Rashid's son, who bad bimself a strong predilection for Persia, his

Berfloat Movern parkier Preve mother's native country, and was, moreover, thoroughly imbued with the freethinking spirit of his age. Soon after this, in 820 (205 A.B.). Tahir, who aided Maman to wrest the caliphate from his brother Amin, succeeded in estahlishing the Girst semiindependent Persian dynasty in Khorâsăn, which was overthrown in 872 (259 A.I.) by the Saffarids.

The development of Persian poetry under these first native dynasties was slow. Arabic language and literature had gained too firm a footing to be supplanted at once by a new literacy idiom still in its infancy; nevertheless the few poets who arose under the Tahirids and Saffarids show already the germs of the characteristic tendency of all later Persian literature, which aims at amalgamating the enforced spirit of Islamism with their own Aryan feelings, and reconciling the strict deism of the Mahommedan religion with their inborm loftier and more or less pantbeistic ideas; and we can casily trace in the few fragmentary verses of men like Hanzala, Hakim Firler and Abu Salik those principal forms of poetry now used in common hy all Mahommedan nations-the forms of the gasida Prome of (tbe encomiastic, elegiac or satirical poem), the Poery. ghazal or nde (a love-ditty, wine-song or religious hyman), the rube't or quatrain (our epigram, for which the Persians invented a new metre in addition to tbose adopted from the Arabs), and the molhnowls or double-rhymed poem (the legitimate form for epic and didactic poetry). The first who wrote such a mathnawi was Abu Shukur of Balkh, the oldest literary representative of the third dynasty of Khoraisän, the Sämannids, who had been able in the course of time to dethrone the Saflarids, and to secure the govermment of Persia, nominally still under the supremacy of the caliphs in Bagdad, but in fact with full sovereignty. The undisputed reign of this family dates from the accession of Amir Naş II. (913-942; 301-33I A.H.), who, more than any of his predecessors, patronized arts and sciences in his dominions. The most accomplished minstrels of his time were mositels Mahommed Faraladi (or Farâlawi); Abu 'l-'Abbas of 10 : of Bokhära, a writer of very tender verses; Aba Ceatery. 'I-Mutaffar Naş of Nishaspar; Abü 'Abdallah Mahommed of Junaid, equally renowned for his Arabic and Persian poctry; Ma'nawi of Bokhāra, full of original thoughts and spiritual subtleties; Khusrawenf, from whom even Firdousi condescended to borrow quotations; Aba I-Hasan Shahid of Balkh, the first who made a diwatn or alphabetical collection of his lyrics; and Rudagl (or Radak!), the first classic genius of Persia, who impressed upon every form of lyric and didactic poctry its peculiar stamp and individual character (see RODAGI). His graceful and captivating style was imitated by Hakim Khabbax of Nishäpur, a great baker, poet and quack; Abu Shu'aib Salih of Herat, who left a spirited little song in honour of a young Christian maiden; Raunaqit of Bokhara; Abu'l-Fath of Bust, who was also a good Arabic poet; the amir Abü 'I-Hnsan 'All Alagatchl, who handled the pen as skilfully as the sword; 'UmEra of Merv, a famous
astronomer; and Kisaty, a native of the same town, a man of stern and ascetic manners, who sang in melodious rhythm the praise of 'All and the twelve imams. All these poets flourished under the patromage of the Saminid princes, who also fostered the growing desire of their nation for historical and antiquarian researches, for exegetical and medical studies. Mangïr l., the grandson of Rudagi's patron, ordered ($963 ; 352$ A.B.) his vizier Balami to translate the famous universal history of Tabari Tabart. (838-923 A.D.) from Arabic into Perrian; and this Persian, is not mertly remarteble from a philolotical mint view, it is also the classic model of an easy and simple style (French trans, by L. Dubeux and H. Zotenberg, 1867-1874). The same prince employed the most learned among the utema of Transoxiana for a translation of Tabari's second great work, the Taffir, or commentary on the Koran, and accepted the dedication of the first Persian book on medicinc, a pharmacopoeia by the physician Ahe Mansilr Muwafiaq b. 'All of Herat (edited by Seligmann, Vienna, 1859), which forms a kind of connecting link between Greek and Indian medicine. It was soon after further developed by the great Avicenna (d. 1037; 428 a.H.), himself a Persian hy birth and antior of pretty winesongs, moral maxims, psychological tracts, and a manual of philosophic science, the Ddnishndine-i-Ald't, in his native tongue.

A still greater Impulse was given, both to thepatriotic feelings and the national poetry of the Persians, by Mansor's son and successor, Prince Nüh II., who ascended the throne in 976 (365 A.H.). Full of enthusiasm for the glorious past of the old Iranian kingdom, he charged his court poet DakikI (Daqiqi), Dalyz who openly professed in his ghazals the Zoroastriar into Persian verse. Shortly after commencing this work DakikI ras murdered in the prime of life; his death was soon folluwed by the fail of the Samānid dynasty itself. But Dakili's great enterprise was not abandoned; a stronger hand, a higher genius, was to contigue and to complete it, and this genius was found Firderat in Firdoust ($940-1020$; 328-4II A.K.), with whom we enter the golden age of the national epopee in Persia (see Firmoosi). In ioni, after thirty-five years of unremitling Labour, be accomplished his gigantic task, and wrote the last distichs of the immortal Shakmama, that "glorious monument of Bastern genius and learning," as Sir W. Jones calls it, " which, if ever it should be generally understood in its original language, will contest the merit of invention with Homer itself." The ShahAntreptens ofrdrat, from the very moment of tis appearance, ano ${ }^{4}$ stario exercised such an irresistible fascination upon all atmant minds that there was soon a keen competition among the younger poets as to who should produce the anost successful initation ol that classic model; and this competition has gone on tunder different forms through.all the following centuries, even to the most recient times. First of all, the old popular traditions, so far as they had not yet been exhausted by Firdousi, were ransacked for new epic themes, and a regular cycle of national epopees gathered round the Book of Kings, drawn almost exclusiveiy from the archives of the princes of Sejistin, the family of Firdousi's greatest hero, Rustam. The first and most ambitious of these competitors seems to have been Asadr's own son, 'All b. Apmad al-Asadi, the authot of the oidest Persinn glossary, who completed in 1066 (458 A.fi.), in upwards of 9000 distichs, the Garshdspondmat, or marvellous story of the warlike feats and love adventures of Garshasp, one of Rurtan's ancestors. The heroic deeds of Rustam's gramdfather were celebrated in the Somndma, which almost equals the Shahmama in length; those of Rustam's two sons, in the Jobugatmama and the Faremmratioma; those of his daughter, an ameron, in the Brunhild style of the German Nibelunge, in the Band Gusindspodma; those of his grandson in the Barsindma; thoce of hif great-grandson in the Shahriyterndma (ascribed to Mukhtati and dedicated to Mas'ud Shah, who is probably identical चith Mas'ad b. Ibrahim, Sultan Mahmid's greatgranden, 1099-1214; 492-508 A.E.); and the wonderful exploits

Bahmarmanma.

When these old Iranian sources wera almost exhausted, the difficuilty was met in various ingenious ways. Where some slight historical records of the heroic age were still obtainable poetical imagination seired upon them at once; where no traditions at all were forthcoming fiction pure and simple asserted its right; and thus the national epopee gave way to the epic story, and-substituling prose for verse-to the novel and the fairy tale. Modets of the former class are the vatious Iskandarnemas, or " Books of Alexander the Great," the oldest and most original of which is that of Nidemt of Canja, the modern Elizavelpol (completed about 1203; 599 A.E.); the latter begins with the Kitab-i-Samah '/ydr, a novel in three volumes (about 1189 ; 585 A.H.), and renches its climax in the Bosldn-i-Khayd, or "Garden of Imagination," a prose romance of fifteen large volumes, by Mahommed Taki Khayal, written between 1742 and 1756 (in55 and 1169 A.f.). Some writers, both in prose and verse, turmed from the exhausted fields of the national glory of Persin, and chose their subjects from the chivalrous times of their own Bedouin conquerors, or even from the Jewish legends of the Koran. Of this description are the Arbiyondma, or history of the pre-Mahommedan prophets, by HasenI Shabistarl "Ayani (before the 8th century of the Hegira); Ibn Hustm's Khduarndma (i427; 830 A.F.), of the deeds of 'Ali; Badhil's Hamba-i-Faidart, which was completed by Najaf (1723; In35 4.z.), or the life of Mahommed and the
 joy of Fistima, Mahomet's daughter (1737; 1150 A.r.) -all four in the epic metre of the Shathama; and the prose stories of Hdive Tith the famous model of liberality and generosity in preIslamitic times; of Avif Hameah, the uncle of Mahomet; and of the Mu'jivali-M Escwis, or the miraculous deeds of Moees, by Mu'fn-almiskin (died about I 501; 907 A.H.).

Quite a different turn was taken by the ambition of another class of imitators of Firdousi, especially during the last four centuries of the Hegira, who tried to create a new,
heroic epopee by celebrating in rhythm and rhyme Later Ravas. stirring events of recent date. The gigantic figure of Timar inspired Hatif (d. $1525 ; 927$ A. $\mathrm{H}_{\text {. }}$) with his TImimbma; the stormy epoch of the first Safawid rulers, who succeeded at last in reuniting for some time the verious provinces of the old Persian realm into one great monarchy, furnished Kasimi (died after $1560 ; 967$ A.H. $)^{1}$ with the materials of his Shahmama, a poetical history of Shih Isma'ti and Shah Fahmasp. Another Shabmama, celebrating Shih 'Abbas the Great, was written by Kamali of Sabzevir; and even the cruelties of Nadir Shh were duly chronicled in a pompous epicstyle in 'Ishrati's Shahndma-iNadiri (1749; 1162 A.H.). But all these poems are surpassed in length hy the 33,000 distichs of the Shahinshahnemat hy the poet-laureate of Fath 'All Shah of Persia ($1797-1834$), and the 40,000 distichs of the Georgenima, a poetical history of India from its discovery hy the Portuguese to the conquest of Poons hy the English in 18i7. In India this lind of epic versification has flourished since the beginning of Humaylan's reign (1530-1 556); e.g.the Zafarnima-iShahjahans by KudsI (d. 1646; ros6 A.H.); the Shohinshahendet by Talib Kalim (d. y65I; 106I A.E.), another panegyrist of Shah Jahin; Atashr's "Adifndma, in honour of Shah Mahommed 'Adil of Byjapur, who ascended the throne in 1629 (1039 A.R.) or 1627; the Tawirikh-i-Kuly Kutbshit, a metrical history of the Kutb shaths of Golconda; and many more, down to the Fothmema-i-Tipi Sulfors by Ghulam Hasan (1784; 1198 A.H.).

Bu't the national epopee was not the only bequest the great Firdoust left to his nation. This rich genius gave also the first impulse to romantic, didactic and mystic poeiry; and even his own age produced powerful co-operators in these three most conspicuous departments of Persian literature. Romantic fiction, which achieved its highest triumph in Nizami of Ganja's (1141-1203; 535-599 A.H.)
brilliant pictures of the struggles and passions in the buman heart
${ }^{1}$ After is72 (979 A.E.) according to H. E. in Grwndriss, iti. 237.
(see Nizami), sent forth its first tender shoots in the numerous love stories of the Shdhadma, the most fascinating of which is that of Zall and Radabeh, and developed almost into full bloom in Firdousi's second great mathnawl Yesus a Zalikhd, which the aged poet wrote after his fight from Ghazni, and dedicated to the reigning caliph of Bagdad, al Qadir billah. It represents the oldest poetical treatment of the Biblical story of Joseph, which has proved so attractive to the epic poets of Persia, among others to 'Am'ak of Bokhărà (d. 1149), who was the first after Firdous! to write a Yosuf \% Zalikh to Jami (d. 149a), MaujI Kásim Khinn, Humalyon's amir (d. 1571), Nâim of Herat (d. 1670), and Shaukat, the governor of Shiraz under Fath 'All Shăh. Perhaps prior in date to Firdousi's Yoskf was his patron 'Unsuri's romance, Wdmif * Adhrd, a popular Iranian legend of great antiquity, which had heen first written in verse under the Tahirid dynasty. This favourite story was treated again by Fashi Jurjani (5 th century of the Hegira), and by many modern poetsas Damili, who died under the Saiawl shāh Mahommed (15771586; 985-994 A.H.), NamI, the historiographer of the Zand dynasty, and Hosain of Shiraz under Fath 'Als Shah, the last two fourishiog towards the beginning of the present century. Another love story of similar antiquity formed the basis of Fakr-uddin As'ad Jorjani's Wis ar Rdmin, which was composed in Igfaban about 1048 (440 a.s.) -a poem remarkable not only for its high artistic value but also for its resemhlance to Gottfried von Strassburg's Tristam und Isald.

The last-named Persian poet was apparently one of the eariest eulogists of the Seljoiks, and it was under this Turkish dynasty Eeconements that lyrical romanticism rose to the highest pitch. acd Setritets. What Firdousi and the court-poets of Sultan Mabmad and commenced, what Abu 1-Faraj Rani of Lahore and Mas'od h. Sa'd b. Salman (uoder Sultan Ibrihim, 1059^{-} 1099) had successfully continued, reached its perfection in the famous group of panegyrists who gathered in the first half of the 6th century of the Hegira round the throne of Sultan Sinjar, and psrtly also round that of his great antagonist, Atsiz, shah of Khwärizm. This group included Adib Şăbir, who was drowned by order of the prince in the Oxus about 1145 (540 A. .4.), and his pupil Jauhari, the goldsmith of Bokharad; AmIr Mu'izuI, the king of poets at Sinjar's court, killed by a stray arrow in 1147 (542 A.B.), Rashid Walwalt (the Swallow) who died in 1182 (578 A.s.), and left, besides his kasidas, a valuable treatise on poetry (Hadd'it-essifr) and a metrical translation of the sentences of 'All, 'Abd-alwasi' Jahall, who sang at first, like his contemporary Hasan Ghaznawi (d. 1169; 565 A.. .), the praise of the Gheznevid shsh Bahram, but afterwards bestowed his eulogies upon Sinjar, the conqueror of Ghazni; and Aubad-uddIn Anweri, the most celebrated kasida-writer of the whole Persian literature. Anwarl (died between 1189 and 1191; 585 snd 587 A.E.), who in early life had pursued scientific studies in the madrasa of Tus, and who ranked among the foremost astronomers of his time, owes his renown as much to the inexhaustible store of poetical similes and epitheta ornantia which he showered upon Sinjar and other royal and princely personages, as to his cutting sarcasms, which he was careful to direct, not against individuals, hut against whole classes of society and the cruel wrong worked by an inexorable fate-thus. disregarding the example of Firdoust, whose attack upon Sultan Mahmad for having cheated bim out of the reward for his epopee is the oldest and most finished specimen of personal satire. This legitimate branch of high art, however, soon degenerated either into the lower forms of parody aod travesty-for which, for instance, a whole group of Transoxanian writers, SūzanI of Samarkand (d. 1174; 569 A.H.) and his contemporaries, Abu 'Alt Shatranji of the same town, Lami of Bokhara, and others gained a certain literary repatation-or into mere comic pieces and jooular poems like the "Pleasantrics" (Haaliyyai) and the humorous stories of the "Mouse and Cat" and the "Stane-cutter" (Sangtarash) by 'Ubaid Zakani (d. 1370; 772 A.H.). Anwari's greatest rival was Khakant (d. IIO9; 595 A.B.), the son of a carpenter in Shirvin, and panegyrist of the shahs of Shirvan, usually called the Pindar of the East. To European taste only the sharter
epigrams and the double-rbymed poem Tuhfatulirabain, in which Khakani describes his joumey to Mecca and back, give full satisfaction. Among his numerous contemporaries and followers may be noticed Mujir-uddin Bailatini (d. ing8; 594 A.h.); Zahir Faryabl (d. 1202; 598 A.h.) and Athir Akhsikatl (d. 1211; 608 A. H .)--all three panegyrists of the atabegs of Azerbaijan, and especially of Sultan Kizil Arslan-Kamall-uddia Isfahanf, tortured to death by the Moguls in 1237 (635 A.f.), who sang, like his father Jamal-uddin, the praise of the governors of Isfahmin, and gained the epithet of the "creatot of five thoughts " (Khalliz-ulma'äni); and Saif-uddin Isfarangi (d. 1267, 660 A.H.), a favourite of the shanhe of Khwlizizm.

Fruitful as the 6 th and 7 th centuries of the Hegira were in panegyrics, they attained an equally high standard in didactic and mystic poetry The origin of both can again onsoctcon be traced to Firdousi and his time. In the ethical myetts reflections, wise maxims and moral exhortations peorry. scattered throughout the Shohndma the didactic element is phainly visible, and equally plain in it are the traces of that mystical tendency which was soon to pervade almost all the literary productions of Persian genius. But the most characteristic passase of the epopee is the mysterious disappearance of Sháh Kaikhosrau, who suddenly, when at the height of earthly fame and splendour, renounces the world in utter disgust, and, carried away hy his fervent longing for an abode of everlasting tranquillity, vanishes for ever from the midst of his companions. The first Persian who employed poetry exclusively for the illustration of \$ofic doctrines was Firdousl's contemporary, the renowned sheikh Abu Sa'Id b. Abu
1.Khair of Mahna in Khorasasn (068-1049; 357-440 4.B.), the founder of that specific form of the ruba' 1 which gives the most concise expression to religious and philosophic aphorisms -a form which was further developed by the great freethinker 'Omar m. Khayyan (q.o.), and Afdal-uddin Kiash (d. 1307; 707 A.B.). The year of Aba Sa'rd's death is moet likely that of the first great didactic mathnawl, the Rishoan. a'Inama, or "Book of Enlightenment," by NAşr Khosmav (q.s.), a poem full of sound moral and ethical maxims with slightly mystical tendencies. About twenty-five years later the first theoretical handbook of Sofism in Persian was compoeed by 'All b. 'Uthmann al-Jullabl al-HujwirI in the Kashf-wimakjob, or, "Revelation of Hidden Things," which treats of the various schools of Şufts, their teachings and observances. A great saiot of the same period, Sheikh 'Abdallikh Angert of Herat (roob1089; 396-481 A.f.), assisted in spreading the pantheistic movement by his Mundjal or "Invocations to God," by several prose tracts, and by an important collection of biographies of eminent Solts, based on an older Arahic compilation, and serving in its tum as ground work for Jaml's excellent $N a f$ obdhaluns (completed in 1478; 883 A.r.). He thus paved the way for the publication of ooe of the earliest textbooks of the whole sect, the Badikatulkakikal, or "Garden of Truth" (in3o; 525 A.H.), by Hakip Sani'T of Chazni, to whom all the later Safic poets refer as their unrivalled master in spiritual knowledge. As the most unconpromising Sufis appear the greatest pantheintic writer of all ages, Jelàl ud-dín Rümi (1207-1273; 604-672 A.H.; see ROXil), and his scarcely less renowned predecessor Farid ud-din 'Attar, who was slain by the Moguls at the age of 114 luner years in 1230 (627 A.B.). This prolific writer, having performed the pilgrimage to Mecca, devoted himself to a stern ascetic life, and to the composition of \$uric works, partly in proee, as in his valuable " Biography of Eminent Mystic Divines," hut moatly in the form of mathnaws (upwards of twenty in number), among which the Pandndma, or "Book of Counsels," and the Mandik-Mffair, or the "Speeches of Birds," occupy the first rank. In the latter, an allegorical poem, interspersed with moral tales and piovs contemplations, the final absorption of the Şafi in the deity is most ingenioualy illust rated.

In strong contrast to these advanced Sufis stands thegreatest moral teacher of Persia, Sheikh Sa'dl of Shirizz (died about 110 junar ycars old in 1292; 691 A.H.; see SA'dl), whose two best known works are the Bastan, or "Fruit-garden," and
the Colislas, or "Roce-garden" However, both heve found comperatively few initations-the former in the Dasitendma, soed or "Book of Examplam," of Nizstri of Kohistan (d. 1320; 720 A.B.), in the Dah Bdb, or "Ten Letters"," of KatibI (d. 4434; 838 A.IB), and in the Gublur, or "Rose-bower," of Hairatl (murdered 1554; 961 A.E.); the latter in Mu'In-uddin Juwain's Nigdristan, or "Picture-gallery" (1335i 735 A.I.) and Jamr's Bahdristdn, or "Spring-garden" (1487 ; 892 A.B.); whereas an innumerable bost of purely Sofic comporitions followed in the wake of Sans'Tr, 'Attar's and Jelal uddin Rumi's mathnawis. It will suffice to name a few of the most conspicuous. The
Portace Lama'Al, or "Sparks," of 'Irakd (d. between 1287 and 1309; 686 and 209 A.B.), the Zad-wlmusdjvin, or "Store of the Waytarers," by Husaini (d. 1318; 718 A. B .), the Gustanan-Ras, or "Rose-bed of Mystery," by Mabmud Shabistarl (d. 1320; 720 A.i.), the Jdmi-Jam, or "Cup of Jamshid," by Aubged (d. 1338; 738 A.ER), the Anis-ul "Ariftn, or "Friend of the Myatics," by Kisim (Qasim)-i-Anwar (d. г434; 837 A....), and others; "Apgrir's Mihr w Mushant, or "Sun and Jupiter" (X 376 ; 778 a.B.), "Arifts Gai u Chougdn, or "The Ball and the Bat " (1438; 842 A.LI), Husn w Dil, or "Beauty and Heart,"
 "The Candle and the Moth," by Ahli of Shria (1489 ; 894 A.1.). Skhth Gade, or "King and Dervish," hy Hilair (put to death 1532; 939 A.E.), Bahil-wd-din 'Amir's (d. 1621; 1030 A.H.) Nime EHahwo, or "Bread and Sweets," Skitr u Shakar, or "Milk and Sugar;" and many more.
During all these periods of literary activity, lyric poetry, pure and simple, had by no means been neglected; almost all the Lyre Powto. renowned poets since the time of Radagg had sung in endless strains the pleasures of love and wine, the beauties of nature, and the almighty power of the Creator; but it was left to the incomparable genius of Hafis (d. 1389 ; 791 A. H ; see F $\mathrm{K} \boldsymbol{\mathrm { rx }} \mathrm{x}$) to give to the world the most perfect models of lyric composition; and the lines be had laid down were more or less

charal
 writert.

 atrictly followed by all the ghazal-wrterss of the oth and roth centuries of the Hegira-by Salman of Sawa (d. about 1377; 779 A.E.), who excelled besides in kaplim and mathnawl; Kamai Khujendī (d. 1400; 803 A.B.), Gafid's friend, nod protege of Sultan Hotain (1374-1382 A.D.); Mabomamed Shirln Maghuibl (d. at Tabria in 1406; 809 A.r.), en inlimate friend of Kamal; Ni'mat-dlah Wall (d. $2431 ; 834$ A.B.), the founder of a special religious order; Kasim-i-Anwar (sce above); Amir Sbahl (d. $1453 ; 857$ A.EI), of the princely family of the Sarbadars of Sahzewar; Banna't (d. . 1512 ; 918 A.H.), who aho wrote a romantic poem, Bahrdm u Bikrdst; Baba Fighans of Shrels (d. 1519 ; 925 A.E.), usually called the "Little Hafiz"; Nargin (d. 1531 ; 938 A.‥); LisdnI (d. 1534: 943 A....), who himsalf was imitated by Damirf of Isfahsan, Mubtasham Kishir and Wabshr BafikI (all three died in the last decade of the roth century of the Hegira); Ahli of Shiraz (d. 1535; 942 A.B.), zuthor of the Sikr-i-मaldh, or "Lawful Witchcraft," which, like Kutbr's (d. 1434; 838 A.E.) Majma'-allatrain, of the "Confuence of the Two Seas," can be read in two different metres; Nan'I (d. 1610; sot9 A.n.), who wrote the charming romance of 2 Hindu princess who burned herself in Akbar's reigo with her decessed husband on the funcral pile, called S iz u Guddz, or "Burning and Metting," \&c. Among the immediate predecessors of Bufix in the 8th century of the Hegira, in which also Ibn Yamin, the great kit'a-writer, flourished, the highest fame was gained by the two poets of Delhi, Amir Hasan and AmIr Kbosrau. The latter, who died in 1325 (725 A.B.), two years before his triend Hasam, occupies the foremost place among all the Persian poets of India by the richness of his jmagination, bis graphic style, and the historical interest attached to his writings. Five extensive drwans testify to his versatility in all branches of lyric poetry, and nine large mathnawts to his mastership in the epic line. Four of the latter are poetical accounts of the reigns of${ }^{1}$ A fitia or mukationa is a poem containing moral reflections, and differs from the kasida and ghazal only by the absence of a matla or initial divich.
the emperars of Delhi, Alt-uddin Ehilji (1296-1gr6), his predecessor Feroz Shah and his successor Kutb-pddin Mubarek Shah-the Miffoh-wlfufinh, or "Key of Victories," the Kiranwssa"dain, or "The Conjunction of the Two Lucky Planets," the Nuh Sipihr, or "Nine Spheres," and the love-story of Khidrkhan motachdnt. His other five mathnawls formed the first attempt ever made to imitate Nisimi's famous Khamsah, or five romantic epopees, and this attempt turned out so well that henceforth almost all epic poets wrote quintuples of a similar description. Khwaja Kirmini (d. 1352; 753 A.h.) was the next aspirant to Nitanil's fame, with five mathnawis, among which Humdi \boldsymbol{y} Hmmaym is the most popular, but be had to yield the palm to 'Abd-urrahmin Jami (1414-1492; 817-898 A.E.), the last classic poet of Persia, in whose genius were summed up all the best qualitied of his great prede- Jimi and cessors. Many poets followed in Jami's footsteps, Lewor Powt first of all bis nephew Hatiff (see above), and either wrote whole Lhansahs or imitated at least one or other of NizinmI's epopees; thus we have a Laila 4 Mainets, for instance, by Maktabl (1490), Hilail (see above), and Rah-ulamin (d. 1637). But their efforts could not stop the growing corruplion of taste, and it was only at the court of the Mogul emperors, particularly of the great Akber (1556-i605), who revived Sultan Mahmod's "round table," that Persian literature still enjoyed some kind of "Indian summer" in poets like Ghanzli of Mashhed or Meshed (d. 1572); 'Urff of Shiraz (d. 1591), who wrote spirited kasidas, and, like his contemporaries Wahshf and Kauthari, a mathnawi, Farhdd u Shirin; and Faidi (d. 1595), the author of the romantic poem, Nal u Daman, who also imparted new life into the ruba'l. In Persia proper only Zulali, whose clever romance of "Sultan Mahmud and his favourite Ayaz " (1592) is widely read in the East, Sa'ib (d. 1677), who is commonly called the creator of a new style in lyric poetry, and, among the most modern, Hetlif of Isfahan, the singer of sweet and tasteful odes (died about 1785), deserve a passing notice.

But we cannot conclude our brief survey of the national literature of Persia without calling attention to the rise of the drama, which has only sprung up in the beginning of
the mineteenth century. Like the Greek drams and The Drama. the mysteries of the European middle ages, it is the offspring of a purcly religious ceremony, which for centuries has been performed annually during the first ten days of the month Muharram-the recital of mournful lamentations in memory of the tragic fate of the house of the caliph 'Alr, the hero of the Shi'jtic Persians. Most of these passion-plays deal with the slaughter of 'Ali's son Hosain and his family in the battle of Kerbela. But lately this natrow range of dramatic suhjects has been considerably widened, Bihlical stories and even Christian legends have been brought upon the Persian stage; and there is a fair prospect of a further development of this most interesting and important movement. (See further Dranu: Persian.)

In the various departments of general Persian literature not touched upon in the forcgoing pages the same wonderful activity has prevailed as in the realm of poctry and fiction, since the first books on history and medicine appeared under the Semanids (see above). The most important section is that of historical works, which, althougb deficient in sound criticism and often spoiled by a highly artificial style, supply us with most valuable materials for our own research. Quite unique in this respect are the numerous histories of India, from the first invasion of Sulen Mahmud of Ghazni to the English conquest. and oven to the first decades of the present century, most of which have been described and partly translated in the eight volumes of Sir H. M. Eiliot's History of India (1867-1878). Persian writers have given us, besides, an immense variety of universal histories of the world, with many curious and noteworthy dats (see, anong others, Mirkhond's and Khwândamir's works undef MInxiond); histories of Mahomet and the first caliphs, partly trandated from Arahic originals, wbich have been lost: detailed accounts of all the Pcrsian dynasties, from the Ghasnevids to the still reigning Kajars, of Jenghiz Khen and the Moguis (in Juwaini's and Wagsal's elaborate Ta'rikhs), and
of Tmar and his successors (see an account of the Zafarmima under Pens de la Croix); histories of sects and creeds, especially the famous Dabistdn, or "School of Manners" (translated by Shea and Troyer, Paris 1843); and many local chronicles of Iran and Toran. Next in importance to history rank geography, cosmography, and travels (for instance, the Nuthat-wlkulisb, hy Hamdallah Mustauff, who died in 1349, and the translations of Istakhri's and Karvini's Arabic works), and the various tadhkiras or biographies of Sofis and poets, with selections in prose and verse, from the oldest of 'Aufl (about 1220) to the last and largest of all, the Makhan-mulghard'ib, or "Treasure of Marvellous Matters" (completed r803), which contains hiographies and specimens of more than 3000 poets. We pass over the wellstocked sections of philosophy, ethics and politics, of theology, law and Șūfism, of mathematics and astronomy, of medicine (the oldest thesaurus of which is the "Treasure of the shath of Khwarizam," inio), of Arahic, Persian and Turkish grammar and lexicography, and only cast a parting glance at the rich collection of old Indian folk-lore and fables preserved in the Persian version

Prallamerens.

of Kalllak u Dimmah (see ROpact), of the Sindbddothers, and at the translations of standard works of Sanskrit literature, the epopees of the Ramdyana and Mahdbhdrata, the Bhagapad-Giia, the Yoga-Vasishtia, and numerous Pupdnas and Upanishods, for which we are mostly indebted to the emperor Akbar's indefatigable zeal.

Authonities.-The standard modern discussions of Persian literature are those of E. G. Brownc, Literary History of Persia (1902, seq.), and Hermann Ethe, in vol. ii. of Geiger and Kuhn's Grundriss der iranischen-Philologic (Strassburg, 1906); also the latter's Hסfische und romantische Poesie der Perser (1887), and Myslische, didaktische und lyrisclue Poesie wnd das spaitere Schrijth hum der Parser (1888). See also P. Horn, Geschichtre der persischen Litteralur (1901). Concise sketcher of Persian poetry are contained in Sir G. Ouscley's Biogrophical Notices of Persion Poets (1846); in G. L. Flugel's article in Ersch and Gruber's Allgemeime Encyklopedie (1842); in N. Bland's papers in the Jours. of the Roy. As. Soc., vii., 345 seq. and ix. 122 seq.; and in C. A. C., Barbier de Meynard's Poesie en Perse (Paris. 1877). Real mines of information are the catalogucs of A. Sprenger (Calcutta, 1854); W. H. Morley (London, 1854); Flagel (3 vols., Vienna, 1865); and C. Ricu (3 vols., London, $1879-1883$). For the first five centuries of the Hegira compare Ethe's editions and metrical translations of "Rudagi's Vorlauiter und Zcitgenossen", in Morgenlandische Forschungen (Leipziy. 1875); of Kisa' ${ }^{\prime}$ 't songs, Firdousit lyrics, and Abo Sa'id b. Aba '-Khair's ruba'is, in Sitsungsicrichle der bayr. Akademice (1872. p. 275 seq. $; 1873$, p. 622 seq. $; 1874$, p. 133 seq. $;$ 1875. p. 145 seq. ; and 1878, p. 38 seq.); of Avicenna's Persian poems, in Gottinger Nachrichten (1875, p 5\$5 seq.); and of Asadi and his munafarat, in "Persische Tenzonen. Verhandlungen des $5 t e m$ Oriendalisten-Congresses (Berlin, 1882, pt. ii., first half, p. 4^{8} geq.); H. Zotenberg's Chronique de Tabari (Paris, 1867-1874); Jurjani's Wis w Ramin, ed. in the Bibl. Indica (1864) (trans. Into German by C. H. Graf in Zeitschrift der morgentandischen Gesellschaft, xxiit. 375 seq. ; and A. de B. Kasimirski's Specimen du droon de MenowL chehri (Versailles, 1876). On Khakani, see N. de Khanykof's "Mémoire," in Journal as iatique, 6th series, vol. iv. P. 137 seqand yol. v. p. 296 seq., and C. Salemann's edition of his rublisis, with Russian trans. (Petersburg. 1875); on Farid uddin 'Attar S . de Sacy's edition of the Pandndma (Paris, 1819), and Garcin de Tassy's Mantik-uffair (Paris, 1857); on the Gulskon-i.rds, E. H. Whinfield's edition (London, 1880); and on Arnir Khoernu's mathnawis, the abstracis given in Elliot's History of India, iii. 524 seq. German translations of Ibn Yamin were yublished by O. Sehlechta-Wssehrd, Bruchstricke (Vienna, 1852); of Jami's minor poens, by V. von Rosenzweig (Vienna, 1840); by F. Rackert, in Zeilschrift für die Kunde des Morgenlandes. vols, v, and vi., and Zeischrift der d. morgent. Gesellsch., vols. ii., iv., v., vi., xxiv., xxv. and exix. ; and by M. Wickerhauser (Leipzig, 1855, and Vienna, 1858); German translation of Yӣsufu Zalikhä, by Rosenzweig (Vienna, 1824), English by R.T. H. Griffith (London, 1881); French translation of Laila w Majiñ, by A. L. de Chézy (Paris, 1805), German by A. T. Hartmann (Leipzig. 1807); Hilati's "Konig und Derwisch." by Ethe, in Mor gendand. Stud. (Leipzif. $1870, p$. 197 seq.). On the Persian drama compare I. A. de Gobineau's Reli ions et philosophies dans I'Asic cenirale (Paris, 1866); A. Chodzko's Thedtre persan (new ed., Paris, 1878); and Ethe, "Persische Passionspiele," in MorgenLēnd. Siud., P. 174 seq.
(H.E.)

PERsiGny, JEAN GILBERT VICTOR FIALIN, Ddede (ibos1872), French statesman, was born at Saint-German Lespinasse (Loire) on the 11th of January 1808, the son of a receiver of taxcs. He was educated at Limoges, and entered the cavalry
school at Saumur \ln 1826, becoming martchat des logis in the 4th Hussars two years later. The share taken by his regiment in supporting the revolution of 1830 was regarded as insubordination, and next year Fialin was dismissed trom the army. He became a journalist, and in 1833 became a string Bonapartist, assuming the title of comte de Persigny, said to be dormant in his famity. He planned the attempt on Strasshurg in 1836 and that on Boulogne in 2840. At Boulogne he was arrested and condemned to twenty years' imprisonment in a fortress, shortly afterwards commuted into mild detention at Versailles, where he wrote a book to prove that the Pyramids were hails to prevent the Nile from silting up. This was published in 1845 under the title, De la Destination at de l'utilitt permanente des Pyramidas. At the revolution of 1848 he was arrested by the provisional government, and on his release took a prominent part in securing the election of Louis Napoleon to the presidency. With Morny and the marshal Saint Arnaud he plotted the restoration of the empire, and was a devoted servant of Napoleon III. Hio succeeded Morny as minister of the interior in January 1852, and later in the year became senator. He resigned office in 1854 , being appointed next year to the London embassy, which he oocupied with a short interval (1858-1859) until 1860, when he resumed the portfolio of the interior. Bat the growing influence of his rival Rouher provoked his resignation in 1863, when he received the title of duke. A more dangerous enemy than Rouher was the empress Eugenie, whose marriage he had oppowed and whose presence in the council chamber he deprecated in a memorandum which fell into the empress's hands. He sought in vain to see Napoleon before he started to take over the command in 1870, and the breach was further widened when master and servant were in exile. Persigny returned to France in 1871, and died at Nice on the rith of January 1872.
See Memoires du duc de Persigny (2nd ed., 1896), edited by \mathbf{H}. de Laire d'Espagny, his former secretary; an eulogitic tile, Lo Duc de Persigny (1865), by Delaroa; and Emile Ollivier's Empire aibiral (1895, 8cc.).
PEASIMEMON, the name given to the fruits of Diospyros virginiane in the United States. The tree which bears them belongs to the order Ebenaceae, is usually from 30 to 50 ft . in height, and has oval entire leaves, and uniserual flowers on short stalks. In the male flowers, which are numerous, the stamens are sixteen in number and arranged in pairs; the female flowers are solitary, with traces of stamens, and a smooth ovary with one ovule in each of the eight cells-the ovary is surmounted by four styles, which are hairy at the base. The fruit-stalk is very short, bearing a subglobose fruit an inch or rather more in diameter, of an orange-yellow colour, and with a sweetibh astringent pulp. It is surrounded at the base by the persistent calyxlobes, which increase in size as the fruit ripens. The astringency renders the fruit somewhat unpalatable, but after it has been subjected to the action of frost, or has become partially notted or "bletted" like a medlar, its flavour is improved. The fruit is eaten in great quantities in the southern states of America, and is also fermented with hops, corn-meal or wheat-bran finto a sort of beer or made into brandy. The wood is heavy, strong and very close-grained and used in turnery. The tree is very common in the South Atlantic and Gulf states, and attains its largest size in the basin of the Mississippi. It was hrought to England before 1629 and is cultivated, but rarely if ever ripens its fruit. It is easily raised from seed and can also be propagated from stolans, which are often produced in great quantity. The Chinese and Japancse cultivate another species, the Dios pyros Kaki, of which there exist numerous ill-defined varieties. The fruits are larger than those of the American kind, variable in shape, but have similar properties. An astringent fluid, known as shibw, rich in tannin, is expressed from the green fruit and used in various industries. The tree is handy in the south of England and in the Channel Islands.

PERSIS (mod. Fars, g.0.), the south-western part of Iran (Persia), named from the inhabitants, the Iranian people of the Parsa (Fars), their name was pronounced by the Iunians Persai, with change from a to a, and this form has become dominant
in Greek and ina the modern Reropean languages. The natural features of Persis are described very exacily by Nearchus, the admiral of Alexander the Great (preservod by Arrian Inde. 40 and Strabo xv. 727). The country is divided into three parts, of very different character and climate: the coast is zandy and very hot, wilhout much vegetalion except date palms; it has no good harbours, and the climate is very unwholesome, the population is scanty. About 50 m . from the coast rise the chains of the mountains, through which some steep passes lead into the interior valleys (called roant) Hepoits, Strabo xv. 729), which lie about 5000 ft . above the sca. Here the climate is temperate, the country watered by many rivers and lakes, the soil fertile, the vegetation rich, the catle numerous. These regions, which were thickly populated, form the real Persis of history. "This land Persis," says Darius, in an inscription at Persepolis, "which Ahuramazda has given to me, which is beautiful and rich in horses and men, according to the will of Ahuramazda and mysolf it trembles before no enemy." The third part is the north, which belongs to the central plateau, still much higher, and therefore rough and very cold in the winter. Towards the north-west it borders on the Median district of Paraetacene (about Isfaban); towards the north and north-cast it soon passes into the great desert, of which only the oasis of Yexd (Isatichai in Ptolem. vi. 4. 2) is ínhabitabie. In the east, Persis proper is separated by a desert (Laristan) from the fertile province of Carmania (Kerman), a mountainous region inhahited by a Persian tribe. To Carmania belonged also the coast, whth the islands and harbours of Hormuz and Bander Abhasi. In the west Persis borders on the mountains and plains of Elam or Susiana. For the ancient topography c. Tomaschek, "Beitrlige zur historischen Topographic von Persien," in Sisungsber. der Wiener Akademie, phil. Cl. cii. cvini. cxxi.
The Persians are not mentioned in history before the time of Cyrus; the attempt to identify them with the Parsua, a district in the Zagros chains south of Lake Urmia, often mentioned by the Assyrians, is not tenable. The Parsua are perhaps the nonArian tribe Id́poso in northern Media, Strabo xi. sos. Herodotus i. 125 , gives a list of Persian tribes: the Pasargadae (at Murghab), Maraphii, Maspii, Panthialaei (in western Carmania), Derusiaei, Germanii (i.e. the Carmanians) are husbandmen, the Dahac (i.e. the "enemies," a general name of the rapacious nomads. used also for the Turanian tribes), Mardi, Dropici, Sagartii (called by Darius Asagaria, in the central desert; cf. Herod. vii. 85) are nomads. The kings of the Pasargadae, from the clan of the Achaemenidae, had become kings of the Elamitic district Anshan (probably in 596, cf. Cyrus). When, in 553, Cyrus, king of Anshan, rebelled against Astyages, the Maraphians and Maspians joined with the Pasargadae; after his victory over Astyages all the Persian tribes acknowledged him, and he took the title of " king of Persia." But from then only the inhabitants of Persis proper were considered as the rulers of the empire, and remained therefore in the organization of Darius free from tazes (Herod. iii. 97). But Carmania, with the Sagartians, the Uitans (called by Darius Yautiya), and other tribes, formed a satrapy and paid tribute (Herod. iii. 93); the later autbors therefore always distinguished between Carmania and Persis. Names of other Persian cribes, partly of very doubtiful authority, are given by Strabo xv. 727, and Ptolem. vi. 4 and 8.

The Persians of Cyrus (sce Peasin: Ancient History) were a vigorous race of husbandmen, living in a healthy climate, accustomed to hardship, brave and upright; many stories in Herodotus (especially ix. 122) point the contrast between their simple life and the efferinate nations of the civilized countrics of Asia. They were firmly attached to the pure creed of Zoroaster (cf. Herod. i. 131 sqq. and the inscriptions of Darius).
When Darius had killed the usurper Smerdis and gainod the crown, a now usurper, Vahyaxdata, who likewise pretended to 'To the Pateiskhoreis belongs the "lance-bearer of Darius, "Gobryas (Gauberuva) the Patiahuvarit"," mentioned in his tombinscription; they occur also in an inscription of Esarhaddon as Patuish-ara, eastwerdo of Media, in Choerene at the Caspian gates; the Kyrtii are the Kurda.
be Smerdis, the son of Cyrus, rose in Yawiya, bat was defeated in two battles by Darius's generals and pul to death (Behistom nnscription). Cyrus had built his capital with hus palace and tomb, in Pasargadae (9.0.). Darius founded a new city about 30 m . farther south on the left bank of the Puhrar, near its confluence with the Kur, with a lange terrace, on which his magnificent palace and that of his son Xerxes were builk. As Pasargadac was mamod after the tribe in whose district it lay, so the new capital is by the Persians and Greeks simply called "the Persians"; later authors call it Persepolis (q.v.), "the Persian city." Another Persian palace lay in Taoke, near the coast (Strabo xv. 728; Arrian Ind 39; Dionys. Perieg. 1069); Gabae, which Strabo mentions bcsides, is Isfahan in Paractacene and belonged already to Media.

Both in Persepolis and Pasargadae large masses of gold and silver from the tribute of the subject nations were treasured, as in Susa and Ecbatana. But Persis lies too far off from the centre of the Asiatic world to be the seat of government. Like Arabia and similar countries, it could exercise a great momentary innuence in history and produce a sudden change throughout the world; but afterwards it would sink into local insignificance. So the Persian kings fixed their residence at Susa, which is always considered as the capital of the empire (therefore Aeschylus wrongly considers it as a Perstan town and places the tomb of Darius here). After the reign of Xerxes, Persis and Persepolis became utterly neglected, in spite of occasional visits, and even the palaces of Persepolis remained in pert unfinished. But the national fecling of the Persians remained strong. When Alexander had won the victory of Arbela, and occupied' Babylon and Susa, be met (in the spring of 33°) with strong resistance in Persia, where the satrap Ariobarrancs tried to stop his progress at the "Persian gates," the pass leading up to Persepolis. Here he set fire to the cedar roof of the palace of Xerxes as a symbol that the Greek war of revenge against the Persians had come to an end. Our best information tells us that he soon had the fire extinguished (Plut. Alcx. 38); the story of Thais is a pure fiction, and we may well believe that he repented the damage he had done (Arrian vi. 30, 1).

Alcxander had planned to amalgamate the former rulers of the world with his Macedonians; but his death was followed by a Macedonian reaction. Peucestas, the new satrap of Persis, followed the example of Alexander, and thus gained a strong hold on his subjects (Diod. xix. 48); nor did Seleucus, to whom the dominion of the cast ultimatcly passed (from 311 onwards), disdain the aid of the Persians; be is the only one among the Diadochi who retained his Persian wife, Apame, daughter of Spitamenes. At the same time Seleucus and his son Antiochus I. Soter tried to introduce Hellenism into Persis. Of Greek towns which they founded here we know Alexandria in Carmania (Plin. vi. 107; Ptol. vi. 8, 14; Ammian. Marc. 23, 6, 49), Laodicea in the east of Persis (Plin. 6, 115), Stasis, "a Persian town on 2 great rock, which Antiochus, the son of Seleucus, possessed" (Steph. Byz. s.v.), Antiochia in Persis, founded apparently hy Seleucus I. and peopled by Antiochus I. with immigrants called together from all Greece, as we learn from a prepkismes passed by "boule and dcmos" of this town in 206 in honour of Magnesia on the Maeander (Kern, Inschriflen von Magnesic am Macander, No. 61= Dittenberger, Orientis 87 . inscr. 233, where they are mentioned together with a great many Scleucid towns in Susiana and Babylonia, and compare Kern, No. $18=$ Dittenberger, No. 23I). An insurrection of the Persians against Seleucus (II.) is mentioned in two stratagems of Polyaenus (vii. 39. 40). When in 221 Molon, the satrap of Media, rebelled against Antlochus III., his brother Alexander, satrap of Persis, joined him, but they were defeated and killed by the king. Persia remained a part of the Seleucid empire down to Antlochus IV. Epiphanes, who at the end of his reign restored once more the authority of the empire in Babylonia, Susiana and Persis; perhaps a battie, in which the atrap Numenius of Mesene (southern Babylonia) defeated the Persians on the shore of Carmania on sea and land (Plin. vi. 1 52), belongs to this time. But after the death of Aatiochus IV. (I64) the

Seleucid Empire began to dissolve While the central provinces, Media and northern Babylonia, were conquered by the Parthians, Mesene, Elymais and Persis made themselves independent.

Persis never became a part of the empire of the Arsacids, although her kings recognized their suprerancy when thoy were strong (Strabo xv. 728, 736). From the periplus of the Erythracan Sea $33-37$ we learn that their authority extended over the shores of Carmania and the opposite coasts of Arabia. A Persian king, Artaxerxes, who was murdered hy his brother Cosithros at the age of 93 ycars, is mentioned in a fragment of Isidore of Charax (Lucian, Macrobii, 15). Other names oceur on their coins, the oldest of which are imitations of Seleccid coins, and were perhaps struck by local dynasts under their supremacy; most of the others show the king's head with the Persian tiara, and on the reverse a fire-altar with the adoring king before it, a standard (perhaps the famous banner of the smith Kavi, which became the standard of Iran under the Sassunids), and occasionally the figure of Ahuramazda; they were first explained by A. D. Mordtmann in Zeilschrift für Numismolik, iii, iv. and vi.; cf. Grundriss der zranischen Philot. ii. 486 seq. The legends are in Aramaic characters and Persian (Pahlavi) language; among them occur Artaxerxes, Darius (from a dynast of this name the town Darabjird, " town of Darius," in castern Persia seems to derive its name), Narses, Tiridates, Manocihr and others; the name Vahubure seems to be identical with Oborzos, mentioned by Polyaenus vii. 40, who pul down a rebellion of 3000 settlers (ndrounos) in Persis. From the traditions about Ardashir I. we know that at his time there were different petty kingdoms and usurpers in Persis; the principal dynasty is hy Tabari called Bazangi. The coins demonstrate that Hellenism had become quite extinct in Persis, while the old historical and mythical traditions and the Zoroastrian religion were supreme. There can be no doubt that at this time the true form of Zoroastrianism and the sacred writings were preserved only in Persis, whercas everywhere else (in Parthia, in the Indo-Scythian kingdoms of the east and in the great propagandist movement in Armenia, Syria and Asia Minor, where it developed into Mithraism) it degenerated and was mixed with other cults and ideas. So the revival of Zoroastrianism came from Persis. When Ardashir 1. attempted to restore the old empire of Cyrus and Darius, and in 212 a.D. rose against the Parthian king. Artabanus, his aim was religious as well as political. The new Sassanid Empire which he founded enforced the restored religion of Zoroaster (Zarathustra) on the whole of Iran.
The new capital of Persis was Istakhr on the Pulwar, about 9 m . above Persepolis, now Hajjiabad, where even the predecessors of Ardashir I. are said to have resided. It was a great city under the Sassanids, of which some ruins are extant. But it shared the fate of its predecessor; when the empire was founded the Sassanids could no longer remain in Persis, but transferred their headquarters to Ctesiphon.
(ED. M.)
prrsius, in full Aulus Persius Flaccus (A.D. 34-62), Roman poct and satirist. According to the Life contained in the MSS., Persius was a native of Volaterrae, of good stock on both parents' side. When six years old he lost his father, and his step-father died in a few years. At the age of twelve Persius came to Rome, where he was taught by Remmius Palacmon and the rhetor Verginius Flavus. Four years later began a close intimacy with the Stoic Cornutus. In this philosopher's pupil Lucan, Persius found a generous admirer of all he wrote. Still in early youth he became the friend of the lyric poet Caesius Bassus, whilst with Thrasea Paetus (whose wife Arria was a relative) he had a clowe friendship of ten years' duration and shared some travels. Seneca he met later, and was not attracted by his genius. In his boyhood Persius wrote a tragedy dealing with an episode of Roman history, and a work, the title of which is rendered uncertain by corruption in our MSS. Pithou's generally accepted reading makes the subject that of travel; the excursions with Thrasea however must have taken place after boybood. The perusal of Lucilius revealed to Persius his
vocation, and he set to work upba a book of satires. But be wrote seldom and slowly, a premature death (azio stomachi) prevented the completion of his task. He is described as posscssed of a gentle disposition, garhsh modesty and personal beauty, and living a lufe of exemplary devotion towards his mother Fulvia Sisenna, his sister and his aune. To his mother and sister he left a considerable fortune. Cornutus auppressed all his work except the book of satires in which he made some alight alterations and then handed it over to Bassus for editing. It proved an immediate success.
the scholua add a few details-on what authority is, as gencrally with such sources, very doubtful. The Life itsell, though not free from the suspicion of interpolation and undoubtedly corrupt and disordered in places, is probably trust worthy. The MSS. say it came from the commentary of Vakerius Probus, no doubt a learned edition of Persus like those of Virgil and Horace by this same famous grammarian " of Berytus, the poct's contemporary. The only casce in which it seems to confict with the Satires themselves is in its statement as to thedeath of Persius's father Thedeclan ming of a suasorna in his presence (Sal. 3.4 sqq) implies a more mature age than that of six in the performer. But paler mught here mean "step-father." or Persius may have forgoten his own aulo biography, may be simply reproducing one of his models. The mere fact that the Life and the Satires agree so closely does not of course prove the authenticity of the former. One of the pointe of harmony is, however, 100 subtle for us to believe that a forger evolved it from the works of Persius. It requires andeed a thoughtul reading of the Lufe before we realize how distinct is the impression it gives of a "bookish" youth, who has never strayed far, at least in spirit, from the domestic hearth and his women-folk. And of course this is notoriously the picture drawn by the Salirts. So much better docs Persius know his books than the world that he draws the names of his characters from Horace. A keen observer of what occurs within his narrow horizon, he cannot but discern the seamy side of life (cf. e.g such hints as Sat. iti. 110); he shows, however, none of Jurenal's undue stress on unsavoury detail or Horace's casy-going acceptance of human weaknesses. The sensitive, homebred nature of Persius shows itself perhaps also in his frequent references to ridicule, whether of great men by street gamses or of the cultured by Philistines.

The chief int erest of Persius's work lies in its relation to Roman satire, in its interpretation of Roman Stoicism, and in its use of the Roman tongue. The influence of Horace on Persius can, in spite of the silence of the Life, hardly have been less than that of Lucilius. Not only characters, as noted above, but whole phrases, thoughts and situations come direct from him. The rescmblance only emphasizes the difference between the caricaturist of Stoicism and its preacher. Persius strikes the highest note that Roman satire reached; in carnestness and moral purpose rising far superior to the political rancour or good natured persiflage of his predecessors and the rhetorical indignation of Juvenal, he seems a forerunner of the great Christian Apologists. From him we leam a lesson Seneca never taught, bow that wonderful philosophy could work on minds that still preserved the depth and purity of the old Roman gravilas. When the Life speaks of Seneca's genius as not attracting Persius, it presumably refers to Seneca the philosopher. Some of the parallel passages in the works of the two are very close, and hardly admit of explanation by assuming the use of a common source. With Seneca, Persius censures the style of the day, and imitates it. Indeed in some of its worst failings, straining of expression, excess of detail, exaggeration, he outbids Seneca, whilst the obscurity, which makes his little book of not seven hundred lines so difficult to read and is in no way due to great depth of thought, compares very ill with the terse cleatness of the Epistolae morales. A curious contrast to this tendency is presented by his free use of "popular" words. As of Plato, so of Persius we hear that he emulated Sophron; the authority is a late one (Lydus, De mag. 1. 41), but we can at least recognise in the scene that opens Sal. 3. kinship with such work as Theocritus' Adoniasusae and the Mimes of Herodas.

Persius's satires are composed in hexameters, except for the scapons of the short prologue above referred to, in which he half ironically ansers that he writes to earn his bread, not because he is inspired. The first satire censures the literary tastes of the day as a reflection of the decadence of the national morals. The theme of Seneca's 314 th letter is simitar. The degcription of the recitolor and the literary iwaddlens after dinner is vividly natural, but an interesting passage which cites specimens of smooth versification
and the languishing style is greatly spoiled by the difficulty of apprectating the points involved and indeed of distribuling the dialogue (a not uncommon crux 10 Persius). The remaining satires handle in order (2) the question as to what we may jusily ask of the gods (cl. Plato's second Alcibrades). (3) the importance of having a definite atm in life, (4) the necessity of self-knowhedge for public men (cf. Phato's first Alcibsades). (5) the Stoic doctrine of liberty (introduced by generous allustons to Cornutus' zcaching), and (6) the proper uee of money. The Lifo tells us that the Salires were not left complete; some lines were taken (presumably by Cornutus or Bassus) Irom the end of the work so that it might be quars firifus. This perhaps means that a eentence in which Persius had leit a line imperfect. or a puragraph which he had not completed, had to be omitted. The same authority says that Cornutus definitely blacked out an offensive allusion to the emperor's literary taste, and that we owe to him the reading of the MSS, in Set. i. 121 -" auriculas asini quis non [for Mifda rex] habet!" Traces of lack of revision are, however, still visible; cf. e.g. v. 176 (sudden transition from ambition to superstition) and vi. 37 (where critiesm of Gruele doctones has nothing to do with the context). The parallels to passages of Horace and Seneca are recordod in the commentaries. in view of what the Lufe says about Lucan, the verbal resemblance of Ses. iil. 3 to Phars. x. 163 is interesting. Examples of bold language or metaphor: i. 25. rupto secore exiert caprificus, 60 , lingmae quantum sitiat canis: iii. 42, intus pallect, 81, sulentia rodunt; F. 92, weteres autoe de pulmone rewello. Passages like iit. 87, 100 sq9, show elaboration carried beyond the rules of good taste. "Popular". vords: baro. cedo, ebullire, gluto, lallare, mamma muttirs, obba, toipo. stloppus. Fine lines, \&c, in i. 116 sq9., ii. 6 sq4., 64 sqq., 73 sq9., iii. 39 sq9.
Authorities.-The MSS. of Persius fall into two groupe, the one represented by two of the best of them, the other by that of Pithocus, $s o$ important for the text of Juvenal. Since the publication of J. Bieger's de Perstt cod. pith. recte aestimando (Bedin, 1890) the tendency has been to prefer the tradition of the latter.
The important editions are. (b) with explanatory notes: Casaubon (Paris, 1605, enlarged edition by Dübner, Leipzig, 1833); O. Jahn (with the scholia and valuable prolegomena, Leipzig, I843). Coning. ton (with translation, 3 rd ed., Oxford, 1893), B. L. Gidersleeve (New York, 1875). G. Némethy (Buda-Pesth, 1903), (2) with critical ootes: Jahn-Bacheler (3rd ed., Berlin, 1893). S. G. Owen (with Juvenal. Oxford, 1902). Translations into English by Dryden (1693); Conington (Loc. cil.) and Hemphill (Dublin, 1901). Criticism, de., in Martha, Les Moralustes sous lempire romain (5th ed., Paris, 1886): Nisard, Podes latins de la decodence (Paris, 1834); Hirzel. Der Dralog (Leipaig, 1895); Saintsbury, History of Criticism, i. 248; Henderson. Life and Principate of the Emperor Nero (London, 1903): and the histories of Roman literature (especially Schanz, \$1 382 gqq.). A Bibliograpky of Persius, by M. H. Morgan (Cambridge, U.S.A., 1893).
(W.C.SU.)

PRPSOX, OPFBNCES AGAINET THE This expression is used in English law to classify erimes involving some form of assault or personal violence or physical injury, i.e. offences affecting the life, liberty or safety of an individual: but it is also extended to certain offences against morality which cannot technically be described as assaults. The bulk of the offences thus classified, so far as their definition or punishment depends upon statute hw, are included in the Offences Against the Person Act 1861 ($24 \% 25$ Vict. \mathbf{c}. 200), and in the Criminal Law Amendment Acts of 1880 and $\mathbf{~} 885$, and the Prevention of Cruelty to Children Act 1904 . The classification in these statutes is not scientific: e.g. bigamy is within the act of 1861 (3. 57), and certain offences involving assault, c.g- robbery, are to be found in other statutes. The particular offences dealt with by the acts above named are discussed under their appropriate tirles, e.g. aboction, assault, bigamy, homicide, rape, \&c. In the Indian penal code most of the offences above referred to fall under the head "offences against the human body" (ch. rvi.). In his Digest of the Criminal Lave Sir James Stephen includes most of these offences under the tilie "offences against the person, the conjugal and parental rights, and the reputation of individuals," a classification also to be found in the English draft code of 1880 and adopted in the Queensland code of 1899. In working out this classification offences not involving assault are relegated to another and perhaps more appropriate tilic, "offences against morality."

PERSONALITY (from Lat. persoma, originally an actor's mask, from persmarc, to sound through), a term applied in

1So Gabius Bassus in Cell. Nocl. Au. v. 7, 1. Since, however, It is difficult to explain persona from personare (Skeat surgests by analogy from tharem the Grenk equivalentl), Walde in
philosophy and also in common speech to the identify or individuality which makes ${ }^{2}$ being (person) what he is, or marks him off for all that he is not. The term "person," which is technicaily used not only in philosophy but also in law, is applied in theology (Gr. mpoownow) to the three hypostases of the Trinity. It was fist introduced by Tertullian, who implied by it a single individual; the Father, the Son and the Holy Ghost were three personac though of one and the same substance (urilas substantioc). The nature of this unity in difference exercised the minds of the early Christian theologians, and was the subject of many councils and officiad pronouncements, accordIng as emphasis was laid on the unity or on the separatemess of the persons. There was perpetual schism bet ween the Unitarians and Trinitarians (sce for example Sabeliuvs). The natural sense of the word "person" is undoubtedly individuality; hence those who found a difficulty in the philosophic conception of the three-in-one naturally tended to lay emphasis on the distinctions between the members of the Trinity (see Heresy; Monngcalanism; Locos, sc.). A further theological question arises in connexion with the doctrine of immortality (q.e.), and it is argued that immortality is meaningless unless the soul of the dead man is self-conscious throughout.

In philosophy the torm has an important ethical significance. The Greek moralists, attaching little importance to individual citizens as such, found the highest moral perfection in the subordination of the individual to the state. Man, as полuruciv 广êom, is good only when he is a good roduris. Subscquent ethical systems on the contrary have laid stress on the moral worth of personality, finding the summum bonum in the bighest realization of the self, This vjew is specially characteristic of the Neo-hegelian school (e.g. T. H. Green), but it belongs also in various degrecs to all intuitional and idealistic systems. Utilitarian universalistic hedonism and evolutionist ethics 80 far resemble the Greck theory that they tend to minimize the importance of personality, by introducing ulterior reasons (e.g. the perfection of the social organism, of humanity) as the ultimate sanctions of moral principles, whereas the intuitionists by making the critcrion abstract and absolute limit goodness to persomal obedience to the a priori moral law.

Still more important problems are connected with the psychological significance of personality. What is the origin and character of the consciousness of the self? The consciousness of the identity of another person is comparatively simple; but one's own individualit y consists partly in being aware of that Individuality; a man cannot use the word "I" unless be is conscious of the unity ol his "scif," and yet there is involved in the word "I" something more than this consciousness. In what does the unity of the "self" consisc prior to its being recognized in consciousness; how does the consciousness arise? The answer to this problem is to be found-in so far as it can he found-in the subject-object relation, in the distanction between the external world and the subjective processes of knowing and willing which that relation involves. I will something, and afterwards perccive a corresponding change within the unity of my extemal world. Hence, we may suppose, arises the consciousness of a permanent self and not-self.

It should be observed that self-consciousness varies according to the intellectual development, and the term "personality" is usually connected only with the self-consciousness of an advanced type, mot, for examplo, with that of an animal. Even among human beings there is considerable difference. The most elementary form of human self-consciousness includes in the self not only the soul hut also the body, while to the developed self-consciousness the physical self is part of the external or objective world. Finally it is necessary to refer to the Kantian distinction of the pure and the empirical ego, the latter (" the Me known ") heing an object of thought to the former (" the I knowing "').

From the use of the term "person" as distinguishing the Laleinisches elymologisches Wbrterbuch (1906), suggests a derivation from Greek $\zeta \mathbf{J m y}$, a zono. In Roman law persond wat one who had civil rights. For the, ecclesiastical persons ecciastac, see Parson.
self from the not-sel arises the phrase "personal equation" for those peculiar characteristics or idiosyncrasies which have to be taken into account in estimating the value of an individual judgment or observation. This phrase, which is commonly used in any connexion, was first applied to the errors detected in the astronomical observations of a Greenwich observer named Kinnebrook in $\mathbf{1 7 9 5}$. The recognized fact that the greater or less inaccuracy is habitual to individual observers has been investigated, e.g. by Bessel (Abhamdiwngen, iii. 300) and hy Wundt (Physiol. Psyckol.), and machines have been devised which make allowance for the error caused by the personal equation (see Mycroneter).

For the psychological problem, see Psicholocy. For the problems connected with sub-conscious action, \&e., wee SUBLImanal Self: Trance; Hy pnotise; Telefatuy.

PERSORIAL PROPERTY, one branch of the main division of the English law of property, the other being "real property." The division of property into real and personal represents in a great measure the division into immovable and movable incidentally recognized in Roman law and generally adopted since. "Things personal," according to Blackstone, "are goods, moncy, and all other movables which may attend the owner's person wherever he thinks proper to go " (Comm. ii. 16). This identification of things personal with movables, though logical in theory, does not, as will be seen, perfectly express the English law, owing to the somewhat anomalous position of chattels real. In England real property is supposed to be superior in dignity to personal property, which was originally of little importance from a legal point of view. This view is the result of feudal ideas, and had no place in the Roman system, in which immovables and movahles were dealt with as far as possible in the same manner, and descended according to the same rules. The main differences between real and personal property which still exist in England are these. (1) In real property there can be nothing more than limited ownership; there can be no estate properly so called in personal property, and it may be held in complete ownership. There is nothing corresponding to an estate-tail in personal property; words which in real property would create an estate-tail will give an absolute interest in personalty. A life-intercst may, however, be given in personally, except in articles quae ipso usw consumuntur. Limitations of personal property, equally with those of real property, fall within the rule against perpetuities. (2) Personal property is not subject to various incidents of real property, such as rent, dower or escheal. (3) On the death of the owner intestate real property descends to the heir; personal property is divided according to the Statute of Distributions. (4) Real property as a general rule must be transferred by deed; personal property does not need so solemn a mode of transfer. (5) Contracts relating to real property must be in writing by the Statute of Frauds, 29 Car. II. C. 3, s. 4 ; contracts relating to personal property need only be in writing when it is expressly so provided by statute, as, for instance, in the cases falling under s. 17 of the Statute of Frauds. (6) A will of lands need not be proved, but a will of personalty or of personal and real property together must be proved in order to give a title to those claiming under it. (7) Devises of real estate fall as a rule within the Mortmain Acts (see Charity and Charities; Corporation); bequests of personal property, other than chattels real, are not within the act. (8) Mortgages of real property need not generally be registered; mortgages of personal property for the most part require registration under the Bills of Sale Acts (see Pledoe, and Bille or Sale).

Personal estate is divided in English law into chattels real and chatlels personal; the latter are again divided into choses in possession and choses in action (see Chattel; Chose).
Interest in personal property may be either absolute or qualified. The latter case is illustrated by animals ferae naturae, in which property is only coextensive with detention. Personal property may be acquired by occupancy (including the accessio, commistio, and confusio of Roman law), hy invention, as patent and copyright, or hy transfer, either by the act of the law (as in bankruptcy,
judgment and intestacy), or by the act of the party (as in gift, contract and will).

There are several cases in which, by statute or otherwise, property is taken out of the class of real or personal to which it seems naturally to belong. By the operation of the equitable doctrine of conversion money directed to be employed in the purchase of land, or land directed to be turned into money, is in general regarded as that species of property into which it is directed to be converted. An example of property prima facie real which is treated as personal is an estate pur autre oie, which, since 14 Geo. II. C. 20, \& 9. 1740-174I (now replaced by the Wills Act 1837,8 . 6) is distributable as personal property in the absence of a special occupant. Examples of property prima facie personal which is treated as real are fixtures, heirlooms, such as deeds and family portraits, and shares in some of the older companies, as the New River Company, which are real estate by statute. In ordinary cases shares in companies are personal property, unless the shareholders have individually some interest in the land as land.
The terms herilable and mosoble of Scots law to a great extent correspond with the real and personal of English law. The main points of difference are these. (t) Leases are heritable as to the sucecssion to the lessee, unless the destination expresaly exclude heirs, but are movable as to the fisk. (2) Money due on mortgages and securitics on land is personaley in England. At common law In Scotland debrs secured on heritable property are themselvea heritable. But by the Titles to Land Consolidation (Scotland) Act 1868, 8. 117, heritable securities are movable as far as regards the successsion of the creditor, unless executors are expressly excluded. They still, however, remain heritable quoad fisckm, as between husband and wife, in computing legitim, and as far as regards the succession of the debtor. (3) Up to 1868 the heir of heritage succeeded to certain movable goods called heirship movables, which bore a strong likeness to the heirlooms of English law. This right of the heir was abolished by the act of 1868 , 2. 160 . (4) Annuitics, as having fractum fuluri cemporis, are heritable, and an obligation to, pay them falls upon the heir of the deceased (Wation, Lat Dict. s.p. "Annuitics").
The law in the United States agrees in most respects with that of England. Heirlooms are unknown, one reason being, no doubt, that the importance of title-deeds is much less than it is in England, owing to the operation of the Registration Acts. Long terms in some states have annexed to them the properties of freehold extates. In some states estates pur aulre oie descend like real property; in others an estate pur auire pie is deemed a freehotd only during the life of the grantec; after his death it becomes a chattel real. In yet other states the heir has a scintilla of interest as special occupent (Kent, Comus. iv. 27). In some states railway rolling -atock is considered as purely personal, in others it has been held to be a fixture, and so to partake of the nature of real property. Sharea in some of the early American corporations were, like New River shares in England, made real cstate by statute, as in the case of the Cape Sable Company in Maryland (Schouler, Loww of Personal Property, i.). In Louisiana animals employed in bubbandry are, and slaves were, regarded as immovables. Pews in churches are generally real property, but in some states they are made perwonal property by statute. The assignment of choses in action is penerally permittod, and is in most states regulated by statute. O . W.)
PERSONATION, in English law, a form of fraud consisting in a false representation by one person (by words or conduct) that he is another person living or dead. It is not an offence by the common law unless the representation is made on oath under circumstances constituting the offence of perjury, or unless the representation if not made on oath is made under circumstances amounting to a common law cheat. Personation has been made an offence by statute in the following cases: (1) where it amounts to a false pretence by words or conduct, and is done with intent to defraud, and property is by such false pretence obtained, 24 \& 25 Vict. C. 96 ss. 88-90 (see Falsz Pretences); (2) in the case of false and deceitful personation of any person or of the heir, executor, administrator, wife, widow, next of kin or relative of any person with intent fraudulently to obtain any land, estate, chattel, money, valuabie security or property (37 \& 3^{8} Vict. c. 36 s - 1); (3) in the case of personation of votes at elections (see Coneupt Practices).

The first of these offences is a misdemeanour only; the second is a felony punishable by penal servitude for life. The second offence was created in 2874 in consequence of the Tichborne cace, in which under the law as it then stood it had been meoemary
to premecute the clatment for perfury. Bealdes the enactments above referred to there are also a number of provisions for dealing with the personation of saiiors, soldiers, pensioners and owners of stock in the public funds or shares in joint-stock companies, and of persons who falsely acknowledge in the name of another recognizances, deeds or instruments, before a court or person suthorized to take the acknowledgment.
PBRSPECTIVE (Lat. perspicere, to see through), in mathematics the name given to the art of representing solid objects by a plane drawing which affects the eye as does the object itself. In the article Projection it is shown that if all points in a figure be projected from a fixed centre to a plane, each point on the projection will be the projection of all points on the projecting ray A complete representation by a single projection is tberefore possible only when there is but one point to be projected on each ray. This is the case by projecting from one plane to another, but it is also the case if we project the pisible parts of objects in nature; for every ray of light meeting the eye starts from that point in which the ray, if we follow its course from the eye backward, meets for the first time any object Thus, if we project from a fixed centre the visible part of ohjects to a plane or other surface, then the outlines of the projection would give the same impression to the eye as the outlines of the things projected, provided that one eye only be used and that this be at the centre of projection. If at the same time the light emanating from the different points in the picture could be made to be of the same kind-that is, of the same colour and intensity and of the same kind of polarization-as that coming from the objects themselves, then the projection would give sensibly the same impression as the objects themselves. The art of obtaining this result constitutes a chlef part of the technique of a painter, who includes the rules which guide bim under the name of perspective, distinguishing between linear and aerial perspective-the former relating to the projection, to the drowing of the outlines, the latter to the colouring and the shading off of the colours in order to give the appearance of distance. Here we deal only with the former, which is in lact a branch of geometry consisting in the applications of the rules of projection.

5 1. Our problem is the following: There is gioen a figwre in space, the plane of a piciure, and a point as centra of prijection; is is required to grojecl the figure from the pornt to the plane.

From what has been stated about projection (q.v.) in general it Collows at once that the projection of a point is a point, that of a line a line. Further, the projection of a point at infinity in a line is in general a finite point. Hence paralkl lanes are projected into a pencil of line meeting at some Gnite point. This point is cnlled the onishing point of the direction to which it belonge. To knd it, we project the point at iafinity in one of the paralled linet; that is, we draw through the eye a line in the given dinection. This cuta the picture plane in the point required.

Similarly all points at infinity in a plane are projected to a line (see Projection: 86) which is called the wanishing line of the plane and which is common to all parallel plames.

A! lines parallel to a plane have their manishing ppints in a line, viz. in the vanishing line of the plane.

All lines parallel to the picture plane have their vanishing points at infinity in the picture plane; bence parallel lines which are

Fig. Ir parallat to the picture plane appear in the projection os parallel limes in their true direction.

The projection of a line is deternained by the projection of troo points is $i t$, these being very often its vanishing point and its trace on the picture plane. The projectios of a point is determinued by the projection of two limes dirough 34.

These are the general rules which we now apply. We suppoee the picture plane to be vertical.
8. Let (fig. 1) S be the centre of projection, where the eye is situated, and which of sight, ABKL the picture In perspective is called the poind of sight, ABK, the pocture
plane, $X B M N$ a horizontal plane on which we suppose the objects
to rest of which a perspective drawing ts to be made The lowest plane which contains points that are to appear in the picture it generally selected for this purpose, and is thercfore called the ground planc, or sometimes the geometrical plane It cuts the picture plane in a horizontal line AB called the ground line or base lins or fundmmental line of the picture. A horizontal line SV. drawn through the eye S perpendicular to the picture, cuts the Iatter at a point V called the centre of the picture or the centre of Vision. The distance SV of the eye from the picture is often called the distance aimply, and the height ST of the eye abque the ground the height of the eye.

The vanishing line of the ground plane, and hence of every horizontal plane, is got by drawing the projecting rays from S to the points at infinlty in the plane-in other words, by drawing all borizontal rays through S. These lie in a horizontal plape which cuts the picture plane in a horizoatal line DD^{\prime} through the centro of vision V This line la called the horizon in the picture. It contalns the vanishing points of ah horizontal lines, the centre of yision V being the vaniching point of all lines parallel to SV, that is perpendicular to the picture plane. To find the vanishing point of any other line we draw through S the ray projecting the point at infinity in the Ine; that is, we draw throurg Sa a ray parpllel to the line, and determine the point where this ray euts the picture plane. If the line is given by its plan on the ground plane, and its elevation on the picture plane, then its vanishing point can at once be determined; it is the vertical trace of a line parallel to it through the eye (cf. Geometry ; Descriptive, 8 6).
53. To have construction In alngle plane, we suppose the picture plane turned down into the ground plaae; but before this is done the ground plane is pulled forward till, eay, the line MN takes the place of AB, and then the picture plane is turned down. By this we keep the plan of the figure and the pict ure itaelf separatc. In this new poaition the plane of the picture will be that of the paper (fig. 2). On it are marked the base line AB, the centre of vision V, and the horizon DD' ${ }^{\prime}$ and also the Hmits ABKL, of the actual picture. These, however, need not necessarily be marked. In the plan the picture plane must be suppoeed to pase through $A_{4} g_{1}$, and to be perpendicular to the ground
plane. If we further supplane. If we further suppose that the hormontal plane through the eye which

Fig. 2.
cuts the picture plane in the horizon $D D^{\prime}$ be turned down about the horizon, then the centre of sight will come to the poiat S, where VS equals the distance of the eye.

To find the vanishing point of any line in a horizontal plane, we have to draw through S a line in the given direction and see where it cuts the horimon. For instance to find the vaniching points of the two horizontal directiona which malee angles of 45° with the horizon, we draw through S linee SD and SD' maleing each an angle of 45° with the line DD^{+}. These points can also be found by mabing VD and VD' each equal to the distance SV. The two points D, $\mathrm{D}^{\text {, }}$ are therefore colled the distance pointe.
84 Let it now be required to find the perspective P of a point P_{1} (figss. I and a) in the ground plane. We draw tbrougl Pi two lines of which the projection can easily be found. The most conveaient lines are the perpendicular to the base line, and a line making an angle of 45° with the picture plane. These limes in the ground plane are $P_{1} Q_{1}$ and $P_{1} R_{4}$. The first cuts the picture at Q_{1} or at Q, and has the vanishing pcint V; hence $Q V$ is its perspective. The ot her cuts the picture in \mathbf{R}_{1}, or rather in \mathbf{R}, and has the vanishing point D; its perspective is RD. Thear two lines meet at P, which is the point required. It will be noticed that the line $Q R=Q_{1} R_{1}=Q_{1} P_{1}$ gives the distance of the point \mathbf{P} behind the picture plane. Hence if we know the point 0 where a perpendicular from a point to the picture plane cuta the latter, and aloo the distence of the point bchind the picture plane, we can Gad ita perspective We join Q to V. set off QR to the right equal to the distance of the point behind the picture plane, and join. R to the distance point to the left; where RD cuts $Q V$ is the point P required. Or we set of $Q R^{\prime}$ to the left equal to the distance and join R^{\prime} to the distance point D^{\prime} to the right.
If the digtance of the point from the picture should be very great, the point R might fall at too groat a distance from Q to be on the drawing. In this cape we might set off QW equal to the nth part of the distance and join it to a point E, oo that VE equals the nth part of VD. Thus if $Q W=10 R$ and $V E=T V D$, then $W E$ will again pass through P. It is thus posible to fiad for every point in the ground plane, or in fact in any horizontal plane, the perepective:
for the construction will not be altered if the ground plane be replaced by any other horizontal plane. We ean in fact now find the gerspective of asery point as soon as we know the foot of the perpendicular drawn from it to the picture plame, that os, if we know tis alowation on the picture plane, and its distasice behind th. For this reason it is of ten convenient to draw in slight outlines the elevation of the figure on the picture plane.

Instead of drawing the elevation of the figure we may also proceed as follows. Suppose (fig 3) Ai to be the projection of the pian of a point A. Then the point A lies vertically above A_{1} because oerlical lines appear in the perspective as periucal lines (if) If then the line $V A_{1}$ cuts the figure plape at Q, and we erect at Q a perpendicular in the picture plane to its base and set off on it QAs equal to the real height of the point A above the ground plane,

then the point A_{3} is the elevation of A and hence the line $A_{3} V$ will pase through the point A. The thtter thus is determined by the intersection of the vertical line through A_{4} and the line $A_{1} V$.

This process differs from the one mentioned before in this that the construction for finding the point ls not made in the horizontal plane in which it lies, hut that its plan is constructed in the ground plane. But this has a great advantage. The perspective of a horizontal plane from the picture to the Iine at infinity occupies in the picture the space between the line where the plane curs the picture and the horizon, and this spact is the greater the farther the plane is from the eye, that is, the farther its trace on the picture plane lies from the horizon. The horizontal plane through the eqe is projected into a line, the horizon; herice no construction can be performed in it. The ground plane on the other hand in the lowest horizontal plane used. Hence it offers most space for constructions, which consequently will allow of greater accuracy.
55. The procesa is the same if we know the co-ordinates of the point, viz. We take in the base line a point O as origin, and we take the base line, the line $O V$, and the perpendicular $O Z$ as axes of co-ordinates. If we then know the co-ardinates x, y, s meagured in these directions, we make $O Q=x$, set off on $Q V$ a distance $Q A$ such that its real length $Q R=y$, make $Q_{1}=s$, and we find A as before. This process might be simplified by setting off to begin with along $0 Q$ and $O Z$ scales in theif true dimensions and along $O V$ a scale oblained by projecting the ecalo on $O Q$ from D to the line $O V$.
8. The methods explained give the perspective of any point In space. If lines have to be found, we may determine the perspective of two points in them and join these, and this is in many cases the most convenient procese. Often, howaver, it will be advantageous to determine the projection of a line directly by finding ite vanishing poiat. This is especially to be recommended when a number of parallel lines have to be drawn.

The perepective of any curve is in general a curve. The projection of a conic is a conic, or in special cases a line. The perspective of circle may be any conic, not necessarily an ellipse. Similariy the perspective of the shadow of a circle on a plane is tome conic
87. A tew worda muat be sald about the determination of shadows In perspective. The theory of their construction is very simple. We have given, eay, a figure and a point L as source of light. We join the point L to any point of which we want to find the shadow and produce this lise tifi it cuts the sarface on which the shadow falls. These constructions must in many cases first be performed in plan and elevation, and then the point in the shadow has to be found in perspoctive. The constructions are differcnt according as we talse as the source of light a finite point (say, the flame of a lamp), or the sun, which we may euppoee to be at an infinite distance.

If, for instance, in fig. 3, A is a source of light, EHGF a vertical will, and C a point whose shadow has to be determined, then the shadow must lie on the line joining A to C. To eee where this ray meets the floor we draw through the source of light and the point C a vertical plase. This will cut the floor in a line which contains the feet A_{1}, C_{1} of the perpendiculars draven from the pointes A, C to the figer, or the plans of thes points. At C^{\prime}, where the line $A_{1} C_{1}$ cuts AC, will be the shadow of C on the floor. If the wall EHGF preventa the shadow from falling on the floor, we determine the internection K of the line $A_{1} C_{t}$ with the base EF of the wall and draw a vertical through it, this gives the Intervection of the wall with the vertical ptane through A and C. Where it cuts AC is the

If the shadow of a sereen CDD, C_{1} has to be found we find the shadow D^{\prime} of D which falls on the floor; then $D_{1} D^{\prime}$ is the shadow of $D_{1} D$ and $D^{\prime} C^{\prime}$ ' is the shadow on the floor of the line $D C$. The shadow of $D_{1} D_{\text {, h }}$ however, is intercepted by the wall at L. Here then the wall takes up the thadow, which must extend to D° as the shadow of a line on a plane is a line. Thus the shadow of the acreen is found in the shaded part in the figure.

88 II the shadows are due to the sun, we have to find first the perspective of the sun, that is, the vanishing point of its rays. This will always be a point in the picture plane; but we have to distinguish between the cases where the sun is in the front of the picture, and so behind the spectator, or behind the picture plane, and $s 0$ in Iront of the spectator. In the second case only does the yanishing polpt of the rays of the sun actually represent the sun itself. It will be a point above the horizon. In the other case the vanishing point of the rays will lie below the horizon. It is the point where a ray of the sun through the centre of sight S cuts the picture plane, or it will be the shadow of the eye on the picture. In either case the ray of the sun through any point is the line joining the perspec. tive of that point to the vanishing point of the sun's rays. But in the one case the shadow falls away from the vanishise poiat, in the other it lalls towards it. The direction of the sun's rays may be given by the plan and elevation of one ray.

For the construction of the shadow af points it is convenient first to draw a perpendicular from the point to the ground and to find its shadow on the ground. But the shadows of verticals from a point at infinity will be parallel; hence they have in perspective a vanishing point L_{1} in the horizon. To find this point, we dram that vertical plane through the eye which contains a fay of the sun. This cutsthe horizon in the required point L_{1} and the picture plane in a vertical line which contains the vanishing point of the sun's rays themselves. Let then (fog. 4) L be the vanishing point

FIG. 4
of the sun's rays, L_{1} 'be that of their projection in a borizontal plane, and lot it be required to find the shadow of the vertical column AH. We draw $A L_{1}$ and EL; they meet at E', which is the shadow of E. Similariy we find the shadows of $F, G_{1}^{\prime} H$. Then $E^{\prime} F^{\prime} G^{\prime} H^{\prime}$ will be the shadow of the quadrilateral EFGH. For the shadow of the column itself we join E^{\prime} to $A, 8 c$. , but only mark the outlines; F'B, the shadow of BF, does not appear as such in the figure.

If the shadow E has to be found when falling on any other surface we use the vertical plane through E determine its intersection with the surface, and find the point where this intersection is cut by the line EL.. This will be the required shadow of E.
89. If the picture is not to be drawn on a vertical but on another plane-say, the ceiling of a room-the rules given have to be slighty modified. The general principles will remain true. But if the picture is to be on a curved surface the constructions becoma zomewhat more complicated. In the most general case conceivable it would be necessary to have a representation in plan and elevation of the figure required and of the surface on which the projection has to be made. A number of points might also be fournd by calculation, using co-ordinate geometry. But into this we do not enter. As an example we take the case of a panorama, where the surface is a vertical cylinder of revolution, the eye being in the axis. The ray projecting a point \mathbf{A} cuts the cylinder in two points on oppodite ides of the eye, hence geometrionlly speaking every point has two projections; of these only the ont lying on the half ray from the eye to the point can be used in the picture. But tbe other has sometimes to be used ia constructions, as the projection of a line has to pass through both. Parallel lines have two vanish. ing points which are found by drawing a line of the given direction through the eye; it cats the cylinder is the vanishing points required. This operation may be performed by drawing on the groand the plan of the ray through the foot of the axis, and through the point where it cuts the cylinder a vertical, on which the point required must lie. Its height above is easily found by making a dratring of a vertical section on a reduced scale.

Parallel plancs have in the same manner a vanishing curve. This will be for horizontal planes a horizontal circle of the height of the eye above the ground. For vertical planes it will be a pair of genetators of the cylinder. For other planes the vanishing curves will be ellipses having their centre at the eye.

The projections of vertical lines will be vertical lines on the
cytioder. Of all other lines they will be etfipses with the centre at the eye. If the cylinder be developed into a plane, then these ellipses will be changed into curves of sines. Parallel lines are thum represented by curves of sines which have two points in cemmon. There is no dificulty in making ail the constructions on a small scale on the drawirg board and then transerring them to the cylinder.

510 . A variety of instruments have beea proposed to lacilitate perspective drawings. If the problem is to make a drawing from pature then a camera obocura or, better, Wollaston's camera lucida may be used. Other instruments are made for the construction of perspective drawings. It will often happen that the vanishing point of some direction which would be very useful in the construction falls at a great distance off the paper, and various methods have been proposed of drawing lines through such a point. For some of these see Stanley's Descriptive Treatise an Malhematical Dratwing Iastrumends.
(0. H.)

PERSPIRATION (Lat. pro, through, and spirare, to breathe), the excretion of sweat from the sweat-glands of the skin. Sweat is a clear colourless neutral or slightly alkiline fluid containing 3% of solids. Under pathological conditions, sugar urea and other substances are found. The secretion of sweat is constantly going on, the activity of the sweat-glands being under control of the central nervous system. The only furction of sweat is the regulation of the heat discharge from the body. The chief morbid conditions of the sweat-glands are excessive sweating (Hyperidrosis) and foetid sweating (Bromidresis). Excessive sweating is a symptom observed in various diseases, such as tuberculosis and rheumatic fever, but it may exist apart from such conditions, and either be general, aflecting the whole body, or confiaed to a part, such as the axillae, head, hands, feet, or, as in some rare instances, the one half of the body. Encessive perspiration may often he prevented bythe cold bath, and by tonics, such as iron, quinine, strychnia, \&ce. Locally, the use of astringent lotions of vinegar or a weak solution of lead will also be of service. Foetid sweating most frequently affects the feet, specially in those who have much fatigue, and is apparently due to rapid decomposition in the perspiration which has saturated the stockings; these should be frequently changed and the feet washed several times a day, dried carefully, and dusted with some antiseptic powder.

PRRTAB (or Partab) SINeH, Sir, maharaja of Idar (1844-), native Indian soldier and statesman, belonging to the Raht or Rajputs of the Jodha class, was born in 1844, being the son of Maharaja Takht Singh, ruler of Marwar (or Jodhpur). In 8878 and again in 1879 he was chief minister of Jodhpur. In the following year he accompanied the British mission to Afghanistan, and on his return he carried out many judicious reforms and administered Jodhpur with remarkable success. He visited England to take part in the celehration of the 1887 Jubilee of Queen Victoria's reign. He served on the stafis of Sir William Lockhart and General Elles in the Tirah and Momand expeditions in $\mathbf{2 8 9 7 - 9 8}$, was slightly wounded, was mentioned in despatches, and promoted to the rank of fall colonel. He won the repatation of being one of the keenest sportsmen and the best riders that even Rajputana has produced. When it was decided to send a force from India to China in 1900 to relieve the foreign embassies besieged in Peking, Sir Pertab Singh at once oflered the services of the Jodhpur Lancers, and himself accompanied them. His father rendered good services to the British government in the Mutiny, and Pertab Singh always cherished the memory of the protection given to Jodhpur by the East India Company in 1818. His services to the empire in India were universally recognized. From Queen Victoria he received the honour of knighthood and the Bath and the Star of India; from King Edward VII. the distinction of "aide-de-camp"; and the university of Cambridge gave him the degree of LL.D. From his own state of Jodhpur he obtained the title of Maharaja-Dhiraj. In igor he succeeded to the rulership of the state of Idar.
PERTH, EARLS AND DUKES OP. The Scottish title of earl of Perth was bestowed upon James, 4th Lord Drummond (d. 16is) In 1605. His ancestor Sir John Drummond (d. 1519) had been created Lond Drummond in 1488. The ast earl's greatnephew, James, $4^{\text {th }}$ earl and int duke of Perth ($1648-1716$),
whs a son of James, the jird earl (c. 16r5-i675). When John Maitland, duke of Lauderdale, was virtually the dictator of Scotland, Perth was among his opponents, and after Lauderdale's retirement in 1680 he was one of the committee of seven which managed Scottish affirs. He was made justice-gencral and extraordinary lord of session in 1682, and was lord chancellor of Scotland from 1684 to 1688. As a convert to Roman Catholicism after the death of Charles II., he stood high ia the favour of James II. Perth, who is credited with the introduction of the thumbscrew, was very unpopular with the Scot tish people, and during the Revolution of 1688 he was imprisoned at Stirling. Released from captivity in 1693 he joined James II. at St Germains, and was made duke of Perth, a titular dignity only after the exiled king's death in 1701. His son James (c. 1675-1720) was with James II. in Ireland, and led the cavalry at the battle of Sheriffmuir. He was attainted in 1725 , but claimed the dukedom of Perth after his father's death. His son James ($\mathbf{1 7 1 3 - 1 7 4 6 \text {), }}$ regarded by friends and dependants as the 3 rd duke of Perth, fought for the Young Pretender at Prestonpans and Culloden. His brother and heir, John, the 4th duke (c. 1716-1747), also joined Charks Edwand, and fought at Falkirk and Culloden. The titular dukedom became extinct when the sixth holder, Edward, amother son of the ist duke, died in 1760 .

The earldom was then claimed by Edward's cousin, James Lundin ($1707-1781$), a grandson of the 1 Ist titular duke of Melfort, who was a brother of the 1st duke of Perth and took the name of Drummond. His son James ($1744-1800$) secured the Drummond estates in 1783 , and was created a British peer as Lord Perth and Baron Drummond in 1797. On his death without sons in July 1800 his barony became extinct, but the claim to the earldom of Perth was inherited by his kinsman, the 4th titular duke of Melfort, and his descendants (sce below). The Drummond estates, however, passed to the baron's daughter Clementina (d. 1865), afterwards the wife of Peter Robert, 20th Lord Willoughby de Eresby, and thence to her descendant the earl of Ancaster.

The ist duke's brother, John (c. 1650-1715), earl of Melfort, rose to favour under Charles II. about the same time as his brother; like him, too, he became a Roman Catholic in 1686. In r684 he was made secretary of state for Scotland; in 1686 he was created earl of Melfort by James II., and during his reign he took a leading part in Scottish affairs. After the Revolution of 1688 his great influence with James 11. and with Mary of Modena drew upon him the hatred both of the French and of the Irish. He was with James II. at St Germains, but lost his former ascendancy, and died in Paris on the 25 th of January 1715. In 1694 he was made duke of Melfort, and all his tites were held under the singular condition that they should descend to the children of his second wife, Euphemia (d. 1743), daughter of Sir Thomas Wallace, in preference to his children by his first wife, Sophia Lundin, who were Protestants. In 170r Melfort was recognized as a French peer, the due de Melfort, by Louis XIV. In 1695 he had been attainted, but his titles were claimed by John (16821754), his eldest son by his second wife, who shared in the rising of 1715 . In 1800 John's grandson, James Louis, 4 th titular duke of Melfort, claimed the earldom of Petth: This claim was unsuccessful, but in 1853 George ($1807-1902$), nominally 6 th duke of Melfort, obtained a reversal of the various attainders, and his own recognition as earl of Pcrth and Melfort. The succeeding eart was his kinsman, William Huntly Drummond, Viscount Strathallan (1871-).

Sce Sir R. Douglas, The Peerage of Scotland; and Fistories of NoBie British Families, vol. ii., edited by H. Drummond (1846).

PERTH, the capital of Western Australia, situated on the Swan River, 12 m . by rail from the sea at Fremantie, and about 1700 m . W.N.W. of Melbourne. It is the seat of both Anglican and Roman Catholic bishops, and has two cathedrals. The fashionable streel is St Gcorge's Terrace; in it are situated the public lihrary, the government boys' school, the stock exchange, the town-hall, the government offices and the parliament huildings. Between it and the broad reach of the river known as Perih Water lie the governor's residence and domain. The
town-hall, built entisely by convict labour, stands on an eminence in the very heart.of the city; opposite to it are the government offices, housed in a four-storeyed structure in the style of the French Remismance. The mint, opened in $\mathbf{x 8 p g}$, is a massive freestone huilding. There are a public library, built as a memorial of Queen Victoria's Jubilee in 1887 , a Scots college, two good theatres, a mechanics' institute, a museum, and a fine Wesleyan church-house, known as Queen's Hall. The Perth Park, containing about 1200 acres, is connected by tram with the city, and in it is a well-equipped observatory. There are several smaller parks and squares in the city, while the esplanade gardens are a feature of the place, being thrown out like a pier into Perth Water. There is a good cricket ground, and three race-courses are in easy reach. South Perth, on the other side of the river, is connected by bridges and sterm ferry; and adjoining the city on the north-west are the suburban municipalitics of Leederville and Subiaco. Outlying muburbs are Belmont, Victoria Park, Burswood, Claremont, Cottesloe, Peppermint Grove and Bayswater. The city is lighted by clectricity, and has a good sorvice of electric trams. Perth has an agreeable climate, the mean temperature is $64.9^{\circ} \mathrm{F}$., and the average rainfall 33 in. Perth was founded in 1829 , received its municipal charter in $\mathbf{2 8 5 6}$, and was created a city in 1880. Between 1891 and 1901 the growth of the city was remarkedly rapid; in 1891 the population was anly 8447, but in 1901 it had grown to 27,471 in the city proper, and to 36,199 including the suburbs.

PRRTH, a city, and royal, municipal and police burgh, and county town of Perthshire, Scotland, 32 m. N. by W. of Edinburgh direct, and 47 m . by the North British railway, via the Forth Bridge and Kinross Junction. Pop. (1got), 33,566. It is situated on the right bank of the Tay, hetween the meadows of the North Inch (98 acres) and those of the South Inch (72 acres), both laid out as public parks. The river is crossed by St John's Bridge of nine arches, completed in 1772 from the designs of John Smeaton and widened a century later; by Victoria Bridge, a modern structure connecting South Street with Dundee Road; and fart her south (at the cand of Tay Street) by a footway alongside of the viaduct belonging to the Caledonian railway. Of carlier bridges one, which crossed at High Street, was swept away by the flood of 163 r, and another, construcsed by General Warde in 1723-1733, was apparently the predecescior of Smeaton's hridge. On the left bank of the river lie the suburb of Bridgend and Kinnoull Hill (729 ft.). To the south are the wood-clad heights of Moncrieffe Hill (725 ft .), Magdalents Hill (s 96 ft .), Kirkton Hill (540 ft .) and Craigie Wood (407) ft. In the river are Friarton or Moncrieffe Island and the Stannera-

Notwithstanding the importance of Perth in former times, almost the sole relic of the past is the church of St John the Baptist, a large Decorated cruciform huilding surmounted by a massive square central tower 155 ft . high. The original edifice is believed to have been erected in the time of Columba, but the transept and nave of the existing structure date from the early part of the 13 th century, the choir from the 15 th. The church was restored in 1891, and is now divided into the East, Middle and West churches. The silver-gilt communion cup used in the Middle Church is said to have been presented by Queen Mary. In May 1550 Jobn Knox preached in St John's his famous sermon in denunciation of idolatry. The Dominican or Blackfriars' monastery, founded by Alcxander II. in 1231, occupied a site near the west end of St John's Bridge; in what is now King Streel stood the Carthusian monastery, founded by James 1. in 1425; the Francisuan or Greyfriars' monastery, founded in 1460 by Laurance, first Lord Oliphant, stood on the present Greyfriars' cemctery; the Carmelite or Whitefriars' monastery, founded in 1260 , stood west of the town. The tombstone of James I. and his queen, who were buried in the Charterhouse, was afterwards removed to St John's East Church. During the period between the beginning of the 12 th century and the assossination of James I. in 1437, many of the Scotish parliaments were.held in Perth. The huilding in which they met stood of High Street and was only cleared away in 1858, its
site being occupied by the Fremmans' Elall. The earl of Gowrie's palace, built in 1520 , stood in spacious grounds near the river and was removed in 1805 to provide room for the county buildings. The castle of Perth stood an the north of High Street, not far from St John's. It was probably briit about 860 and demolished about 1400 . The Spey or Spy tower, the most important fortress on the city wall, guarded the south gate close to the river, but it was taken down early in the soth century. The market croas, erected in High Street in 1669 to replace the older cross which Cromwell destroyed, was removed in 1765 as an obstruction. The buge fortress, 406 ft . square, which Cromwell erected in 1651 on the South Inch, clove to the river and the Greyfriars' burying-ground, was demolished in 1663. The house of Catherine Glover, the "Fair Maid af Perth," stin stands in Curfew Row. James VI.'s Hospital, foranded in I 569, occupics the sice of the Carthusian monastery, the original structure having been pulied down by Cromwell's orders. The pensioners now live out and the hospital has been converted into artisans' dwellings. Among modern public buildimgs the principal are St Ninian's Episcopal Cathedral, in the Early Middie Pointed style, an important example (completed 1890) of the work of William Butterfield (1814-1900); the municipal buildings (1881); the city-hall; the Marshall Memorial Hall (1823), housing the public library and the museuns of the Perth Literary and Antiquarian Society; the Perthahire natural history museum; the Sandeman public library (1898), founded by a bequest of Prolessor Sandeman of Owens College, Manchester. The general prison for Scotland, south of the South Inch, was originally erected in 1812 as a depot for French prisoners, but was remodelled as a convict prison in 1840 and afterwards enlerged North-west of the city are the military barracks built in $\mathbf{7 9 3}{ }^{*}$ 1794. Beajdes the regular cementary schools there are the Perth Academy (1807) with which was subsequently amalgamated the Burgh Grammar School, an institution supposed to date from the 12 th century; Sharp's institute (1860); the Stewart's free school, an industrial school for girls, and the Fechney industrial echool. The charitable institutions comprise the royal infirmary, in the Italian stylo, considerably eniarged since its foundation in 1836; the Murray royal lunatic asylam in Bridgend; the Hillside House in Xinnoull and the small-por hospltal.
From the south the elty is entered by the North British railway and the Caledonian railway (which also runs wext to St Fillans, east to Dundee and north-west to Aberdeen); and from the north by the Highland railway, the three systems wtilizing a general station in the south-west of the town. During the season thete is communication with Dundee and other river ports by stemer. The navigation of the stream is considerably obstructed by sandbanks, but vessels of 200 tons can unload at the quays, which, with the town and Friarton harbours, lie below the South Inch. The greatest tidal rise is 13 ft . The chief imports are Balicic timber, coal, salt and manure; and the exports, manufactured goods, grain, potatoes and slates. Perth has long been famous for its dyeing and bleaching, the bleach-felds being mostly situated outside of the city, in convenient proximity to the Tay and Almond. The other leading industries include manufactures of gauge-glasses, ink, muslins, India shawls, jute goods, woollens and winceys, floarcloth, and boots and shoes. There are iran foundries, brewerics, distilleries, rope and sail works, coachbuilding yards, steam joinery works, and brick and tile works The salmon fisheries of the Tay yield a substantial revenue. Perth is under the jurisdiction of a town council, with a bord provost and bailies, and returns one member to parliament.
History.-During the time that it was occupied by the Romans, a period estimated at 320 years, the city was called Victoria; but shortly after their withdrawal it seems to have borne the Celtic appellation of Aber-tha (" at the mouth of the Tay"). The transition to the latinized form Bertha and later to Perth (the Gaelic name being Pcart) appears obvious. On the conversion of the original Piclish inhabitants and the dedication of the first church to St John the Baptist, the town
was designated St Johnstoun, and it continued to be known indifferently by this name and that of Perth down to the 17th century. Roman remains have often been found in excavations carried out within the existing boundaries, which suggests that the Roman settiement was at least twenty feet below the present surface. The obscurity of the early annals of the town is explained by the circumstance that Edward I. caused the records to be removed. Perth is stated to have been a burgh in 1106 and was made a royal burgh by William the Lion in 12 ra . During the Scottish wars of the Independence its fortifications were strengthened by Edward I. (1298). Robert Bruce several times ineffectually attempted to seize it, but in r31I he succeeded in scaling the walls during a night attack. This was the fourth and most brilliant of the seven sieges which the city has sustained. Taken by Edward III. in 1335, it was recaptured in 1339. In 1396 the combat between the Clan Chattan and the Clan Quhele, described in Scott's Fuir Maid of Perk, took place on the North Inch in presence of Robert III. and his queen, Annabella Drummond. The Blackiriars' monastery was the scene of the murder of James 1. by Walter, earl of Atholl, in 1437. In consequence Perth lost its status as capital, in which it had succeeded to Scone, and the Parliament Courts were transferred to Edinhurgh in 1482. Gowrie Palace was the scene of the mysterious "Gowrie" conspiracy against James VI. in 1600 . The town was taken by Montrose in 1644, by Cromwell in 1651, and was occupied by Viscount Dundee in 1689 . In 1715 the Old Pretender was prociaimed king at the Mercat Cross (Sept. 16), and the chevalier himself appeared in the city in the following January, only to leave it precipitately on the approach of the earl of Argyll. Prince Charles Edward spent a few days in Perth from the 3rd of September 1745 . In both rebellions the magistrates took the side of the Crown and were supported by the townsfolk generally, the Jacobites drawing their strength mainly from the county noblemen and gentry with their retainers. Since then the city has devoted itself to the pursuits of trade and commerce. Perth was visited by plague in 1512 , 1585-1587, 1608 and 1645; by cholera in 1832; and the floods of $1210,1621,3740,1773$ and 1814 were exceptionally severe.
AOTzoretriss-Maidment, The Chronicle of Perth from 1210 to 1068 (1831); Penney. Tradisiows of Perth (1836); Lawson, The Book of Perth (I847); Peacock, Perth, its A nrals and Archives (1849); Samuel Cowen, The Ancicut Capital of Scolland (1904).

PERTH AMBOY, a city and port of entry of Middlesex county, New Jersey, U.S.A., at the mouth of the Raritan river, on Raritan Bay and Staten Island Sound, about 15 m . S. by W. of Newark. Pop. (ig10 census) 32,121. It is served by the Pennsyivania, Lehigh Valley, Central of New Jersey and Staten Island Rapid Transit railways, and hy boats to New Yort City. It is connected by a railway bridge (C.R.R. of N.J.) and hy a foot and wagon bridge with South Amboy, on the south shore of the Raritan. Perth Amboy has a good harbour, shipyands and dry-docks. In the city still stands Franklin Palace (erected in 1764-1774), the home of William Franklin (1729-1813), a natural son of Benjamin Franklin and the last royal governor of New Jersey. In tbe vicinity is the Bartow House, in which William Dunlap ($1766-1839$), the art historian, made his first drawings. Other huildings of historic interest are the Parker Castle (c. 1729), a centre of Loyalist influence at the time of the War of Independence, and the Kearny Cottage, the home of "Madam Scribblerus," a halfsister of Captain James Lawrence. The city has various manufactures, the factory product in 1905 being valuod at $\$ 34,800,402$. Clay is obtained in the vicinity, and large shipments of coal are made. Perth Amboy was founded in 1683. It was at first called Amboy after the original Indian name; in 1684 the proprietors named it Perth in honour of James, earl of Perth (1648-1716), one of their number, and a few years later the two mames were combined. From 1686 until the end of the proprictary government in 1702 Perth Amboy was the capital of the province of East Jersey, and during the period of royal
government the general assembly and supreme coart of New Jersey met alternately here and at Burlington. Perth Amboy was incorporated as a city in 1718, and received a new charter in 1784, and another in 1844, the last being revised in 1870 . The township of Perth Amboy was incorporated in 1693 and in 1844 was included in the city.

PERTEES, FRIEDRICH CHRISTOPG (1772-1843), German publisher, nephew of Johan Georg Perthes (q.v.), was born at Rudolstadt on the 21st of April 1772. At the age of fifteen he became an apprentlice in the service of Adam Friedrich Bohme, a bookseller in Leipzig, with whom he remained for about six years. In Hamburg, where he settled in r793 as an assistant to the bookseller B. G. Hoffmann, he started in 1796 a bookselling business of his own, and in 1798 he entered into partnership with his brother-in-law, Johann Heinrich Besser (1775-1826). By his marriage in 1797 with a daughter of the poet, Matthias Claudius, he was brought into intimate relation with a group of Protestant writers, who exercised a powerful influence on the growth of his religious opinions. This, however, did not prevent him from being on friendly terms with a number of eminent Roman Catholic authors. Perthes was an ardent patriot; and during the period of Napoleon's supremacy he distinguished himself by his steady resistance to French pretensions. His zeal for the national cause led him, in 18ro-18ri, to issue Das deutsche Museum, to which many of the foremost publicists in Germany contributed. For some time the French made it impossible for him to live in Hamburg; and when, in 1814, he returned to that city he found that his business had greatly diminished. In 1821, his wife having died, be left Hamburg, transferring his business there to his partner, and went to Gotha, where he established what ultimately became one of the first publishing houses in Germany. It was owing to his initistion that the Bdrsenvercin der dewischen Bwhhbudler (Union of Getman Booksellers) in Leipzig was founded in 1825. When the foundation-stone of the fine building of the Union was laid in 1834, Perthes was made an honorary freeman of the city of Leipzig, and in 1840 the university of Kiel conferred upon him the degree of doctor of philosophy. Perthes died at Gotha on the 18 th of May 1843. Fis Life was written by his son, Klemens Theodor Perthes (1809-1867), professor of law in the university of Bonn, and author of Das deulsche Staasileben por der Rewolution (Hamburg and Gotha, 5845), and Das Herbergswesen der Handwerksgesellem (Gotha, 1856, and again 1883), whose son Hermann Friedrich Perthes ($1840-1883$) was the founder of the Fridericianum at Davos Platz. The publishing business at Gotha was carried on by Perthes's younger son, Andreas, (1813 -1890) and bis grandson, Emil ($184 \mathrm{I}-$), until r889, when it was handed over to a company.
See also O. Adler, Friedrich and Karoline Perthes (Leipzig, 1900).
PERTHES, JOHAN GEORG JUSTUS (r749-1816), German publisher, was born at Rudolstadt on the Irth of September 1749. In 1785 he founded at Gotha the business which bears his name (Justus Perthes). In this he was joined in 1814 by his son Wilhelm (1793-1853), who had been in the establishment of Justus' nephew, Friedrich Chistoph Perthes, at Hamburg. On the death of Justus at Gotha on the and of May 1816, Wilhelm took entire control of the firm. He laid the foundation of the geographical branch of the business, for which it is chiefly famous, by publishing the Hamd-allos (1817-1823) of Adolf Stieler (1775-1836). Wilhelm Perthes engaged the collaboration of the most eminent German geograpbers of the time, including Heinrich Berghaus, Christian Gottlieb Reichard (1758-1837), who was associated with Stieler in the compilation of the atlas, Karl Spruner (1803-1892) and Emil von Sydow (1812-1873). The business passed to his son Bernard Wilhelm Perthes (18211857), who was associated witb August Petermann (under whose direction the well-known periodical Pelermanns Milleilungen was founded) and Bruno Hassenstein (8839 -1902); and aubsequently to his son Bernard (1857-). In 1863 the firm first issued the Almanack de Gotha, a statistical, historical and genealogical annual (in French) of the various countries of the
world; and in 1866 the daborate Geographisches Jahrbuch was produced under the editorship of Ernst Behm (1830-1884), on whose death it was continued under that of Professor Hermann Wagner.
PRRTHSEIRE, an inland county of Scotland, bounded N. by the shires of Inverncss and Aberdeen; E. by Forfarshire; S.E. by the Firth of Tay and the counties of Fife and Kinross; S. by the shires of Clackmannan and Stirling; S.W. by the counties of Stirling and Dumbarton; W. by Argyllshire and N.W. by Invernese-shire. It is the fourth largest county in Scotland, having an area of $1,595,774$ acres, or 2493.4 sq. m., including the inland of Mugdrum in the Firth of Tay. By far the greater part of the county is mountainous. Including the hills on the conines of Inverness-shire and Argyllshire, there are at least fifty mountains exceeding 3000 ft . in height. Of these the most familiar are Ben Lawers (3984 ft .) near Loch Tay, Ben More (3843) east of Crianlarich, Ben Lui (3708) on the Argylishire border, Schichallion (3547) south of Loch Rannoch, Ben Vannoch (3125) west of Loch Lyon, and Bea Chonzic (3048) near the head of Glen Almond. Of the immense number of hills of lesser altitude there may be mentioned four that have been popularized by the Lady of the Lake-Ben Ledi (2875) and Uam Var (2179) near Callander, and Ben Venue (2393) and Ben A'an (1750), guardians of the Trossachs. The Ochils divide Perthshire from the shires of Clackmannan, Kinross and Fife. The chief stream is the Tay, which rises on the Argyllshire frontier and discharges into the North Sea off Buddon Ness, after a course of 117 m , being thus the longest river in Scotland. Its head-waters are the Fillan and Dochart, and among its affluents are, on the right, the Bran, Almond and Barn and, on the left, the Lyon, Tummel, rising in Argyllshire and receiving the Garry on its left, and Isk. The Earn flows out of Loch Earn and enters the Firth of Tay $6 \frac{1}{2} \mathrm{~m}$. below Perth. The Forth, the principal natural boundary of the shire on the eouth, properly belongs to Stirlingshire, in which it rises, but its leading left-hand affluents are Perthehire rivers, mamely, the Teith, the Goodie, issuing from the lake of Menteith, and the Allan, rising in the Ochils near Sherifimuir. All the lakes are marrow, scarcely one exceeding a mile in width. Loch Ericht, belonging partly to Invernest-ahire, is $14 \frac{\mathrm{~m}}{\mathrm{~m}}$. long. Loch Tay (14! m. long), situated about the centre, is the largest lake in the county. In the south are the ecrics of lakes which the Lady of the Lake has rendered famous-Löch Vennachar (41 m. long), Loch Achray ($1 \frac{\mathrm{~m}}{\mathrm{~m}}$. long), Loch Ratrine (about gm . long); to the west of Aberfoyle is Loch Ard (3 m . long) and to the east Lake Menteith (x / m. long). Nearly all the glens posmess atriking natural features, among them, from south to north, belng Clens Artney, Almond, Dochart, Ogle, Lochay, Iyon, Garry, Shee, Bruar and Tilt; while the Trossachs, Killiecrankie, Birnam and Leny are the loveliest passes in the Highlands. The low-lying country is represented mainly by Strathmoro, Strath Gartney, Strathallan, noted for its annual "gathering" or games, Strathearn, Strath Bran, Strath Tay and Strath Fillan, but more particularly by the fertile alluvial belts of the Carse of Gowrie, on the northern shore of the Firth of Tay, and the Carse of Stirling. The Moor of Rannoch on the borders of Argyllshire is a sterile boulder-strewn waste, and Flanders Moss, to the south-egst of Lake Menteith, is a vast boggy tract, which is, however, being gradually reclaimed and brought under cultivation.

Geolegy. -The Highland portion of this county is built up of a great series of schists and metamorphosed rocks grouped as "Dalradian" or -Eastern schists. The general direction of the strike of these rocks is W.S. W.-E.N.E. They are cut off from the Old Red Sandstone, which occupies most of the remainder of the county, by the great lault which sraverses the county comewhat to the north of Aberfoyle and Crieff. But for some distance north and east of Crieff the boundary between these two formations is an unconformable one. In the neighbourhood of the lault line the Highland uchists are loss metamorphosed than they are farther north; about Comrie and Callander they consist of ahales, preywackes and igneous rocks with radiolarian cherta and black thales that aresuggenive of the rocks of Arenig age in south Scotland. At Aberfoyle, Comrie and Dunkeld roofing slaten are prorked and massive limeetones occur in Glen Tilt, Pitlochry, Callander, Blair Atholl, Loch Rannoch and other places. A gritty serice comes on above the
alates and is well meen eapping the summit of Ben Vorlich. A great variety of mehists form the bulk of the series; but spasite masses appear in their midst as at Loch Rannoch, Loch Ericht and Glen Tilt, and there are numerous acid and intermediate diken which are themselven traversed by later basaltic dikea. The Old Red Sandstone consists in the lower portion mainly of coarsu volcanic agglomerater and lava fown followed by conglomerates eandstones and marle. The lowest beds are exposed slong the crest of the Ochil Hills which like the Sidlaw Hills are anticiinal in structure, while between the Ochils and the Highland fault the rocks are folded into syincline; near the fault they become very steeply inelined and even laverted, and it is intereating aloo to note that the sediments become coarser as the fault is approached. The Upper Old Red Sandstone is well expoeed near the Bridge of Earn and it extends beneath the marine platform of the Carse of Gowric. The rocks are mainly red sandstones and mark, let down between two parallel cust and weat faults but between the Bridye of Earn and Forgandenny, weat of the tract, they are ween to reat unconformably upon the lower division. Small outliers of Carboniferous rocks (lower) occur on the north of the Ochila. The marks of ice action left by the Glacial epoch are abundant and striking in Perthahire; moraines are common in the Highlapd stens, as those at the head of the Glengarry on bordern of Loch Katrine: ice-scratched surfaces are lound on the Sidlaw Hills, the Ochils, Kinnoull Hill and elsewhere; and erratic blocks of otone, such as "Samoon's Putting Stone," a mase of Highland schist reating on a hill of Old Red Sandatone near Coilantogle, are widely distributed Oid high level marine beaches form terraces far up everal of the larger streama, and the Carse of Gowrie, as already indicated, is formed by the beach at the $50-\mathrm{ft}$. level. The gravel cones poured out at the mouths of many of the glens which open on the courh of the Ochils on to the 100 - ft . or $50-\mathrm{ft}$. beaches are often the site of villaga

Climale and Agreulture.-The mountainous territory is extrernety wet, the rainfall for the year varying from 93 in. in Glengyle at the head of the Loch Katrine to 37 in. at Pitlochry and 23 in. af Perth Winter and autumn are the miniest meatons. The temperteure Is remarkably constant everywhere, averaging $47^{\circ} F$ for the yetr. January being the coldext month (36.5° F) and July the bottex (59° F.). Only a little more than one-ifth of the total arca ia under cultivation, and of this nearly one-third is in permanemt pasture, while in addition there are about 930,000 acres of hill pasturage. The arable land is chiefly in the drier recions of the cast and moutheast, the moil for the most part being fertile. Light soils prevail in the lower undulating districts; clay and alluvia land occur in the Carse of Cowric, the Carse of Stirling and the lower reach of Strathearn below and above Bridge of Earn. The ben heavy carse land is very rich and productive, but requirea to be thorougbly worked, limed and manured, being well adapted for wheat. X considerable area is occupled by orchards, the light quick soil of Tayside and the upper districts of Menteith being admirably fitted for applea. The number of holdings is alighthy in excess of 5000 and of thene the majority are under 50 acree each, chiefy in the Hightand valleys and pear the villages asd small towns. Of graia, osts is the predominatios crope, but beriey and wheat are also grown. Two-thirds of the aree devoled to green crops is occupied by turnips, the rest by potatoes. Most of the hornei raised, chlefty Clydendales, are used solely for mericultural purposes. Although dairy-farming is not an important inducty. a large number of cows, principally Ayrshires, are kept on the lowland farms, the herds of the straths and mountain past urea being most usually West Highlands or Kyloes. Perthshire, mext to Argyllshlre, still carries the heaviest flocks in Scotland. Black. faced is the principal breed in the Grampians, but there is also a large number of Cheviots and South Downs, and Leicesters are common on the lower runs. Only one-seventeenth of the surface is under wood. This is well up to the proportion of the of her Scottish counties, but compares unfavourably with the conditions existing in 1812, when 203.880 acres were under wood, of which 61,164 were planted and 142,716 natural. In Breadallbane and Menteith there are remains of the ancient Caledonian forest. Perthshire affords exceptional facilitics for sport with rod and gua. The lochs and rivers abound with salmon and trout, while hardly any of the erreams have suffered pollution from industries or manufacturea. The deer forests, exceeding 100,000 acrea in area. are frequented by red deer and roe deer, and on the extensive moors and in the woods are found grouse, pheasants, partridgt, capercailzie. woodcock, ptearmigan and hares.
Industries.-The thire is famous for its dyeing and bleaching works, which are situated in Perth and its vicinity; but, apart from these, there are flax and jute mills at Rattray and cotton mills at Stanley, Deanston and Crieff; woollens, linen, jute and tartans are woven at Dunblane, Alyth, Blairgowrie, Coupar-Angus, Auchterander and Crieff ; tanning is carried on at Blackiord, Couparangea and Crieff; there are breweries and dintilleries at various places. as at Anchterander and Logicrait; granite, Treestone. Hmerione and slate are quarried at different centres; and there are mamila and flour.mills.

Commmicailons.-The Caledonlan railway main line to Aberdeen eaters the corusty mear Dunblane and ram is a north-easteriy
direction via Perth. At Crieff junction it wends off a branch to Crieff and at Perth branches to Dundee and Locheamhead. The Stirting to Oban line of the same company crosses the shire from Dunblane to Tyndrum. The Highland railway runs northwards from Perth, and has a branch at Ballinluig to Aberfeldy. Branches of the North British railway reach Perth from Mawcarse in Kinrossshire and Ladybank in Fifeshire; part of the branch from Buchlyvie on the Forth and Clyde line runs to Aberfoyle, and the West Highland railway skirts the extreme west of the shire. At several points coaches supplement the rail. Ia the tourist season steamers ply on Loch Tay and Loch Katrine, and there is a service on the Tay between Perth and Dundec.

Population and Administration.-In 1891 the population amounted to 122,185 and in 1901 to 123,283 , or 49 persons to the sq. m . The rate of increase was the smallest of any Scottish county for the decade. In 1901 there were 78 persons speaking Gaelic only and 11,446 Gaclic ahd English. The chief towns are Perth (pop. 32,873), Crieff (5208), Blairgowric (3378), Dunblane (2516), Auchterarder (2276), Coupar-Angus (2064), Rattray (2019). Among lesser centres may be mentioned Aberfeldy (1508), a favourite resort on the Tay, well known for the falls of Moness, mentioned in Robert Burns's song "The Birks of Aberfeldy "; Abernethy (623), the seat of an early bishopric, retaining one of the three ancient round towers in Scotland; Alyth (1965); Callander (1458); Comric (in18), a holidsy resort on the Earn; Pitlochry (is41); and Stanley (1035), on the Tay. Of old the county was divided into hereditary jurisdictions, which were abolished in 1748, and in 1795 the county was divided into districts for administrative purposes, a system which obtained until 1889, when county and district councils were established. The sherifidom is divided into an eastern and western district, the seat of the one being Perth and the other Dunblane. For parliamentary purposes the county is also divided into an eastern and a western division, and the city of Perth returns a member. The shire is under school-board jurisdiction, and there are secondary schools at Perth and Crieff, and Trinity College in Glen Almond is a well-known public school on the English model.

History.-In 83 Agricola explored the lands beyond the Forth and in the following year penetrated to the Grampians, defeating the Caledonians under Galgacus with great slaughter. The site of this battle is conjectured by William Forbes Skene to have been near Meikleour, south of Blairgowric, hut other writers have referred it to Dalginross, near Comric; to Ardoch (where there are the most perfect remains of a Roman encampment in the British Isles); and even as far north as Raedykes, near Stonehaven in Kincardineshire. The Romans did not pursue their victory, and the Picts were left undisturbed for a considerable period. At this time, according to Ptolemy, the territory now known as Perthshire was occupied by three tribes-the Damnonii, the Veniconcs and the Vacomagi. The Damnonii held Bfenteith, Strathearn and Fothrif (the westem part of modern Fife and Kinross), with Alauna (Allan), just above Stirling, Lindum (Ardoch) and Victoria (believed hy some authoritics to be Lochore in Fifeshirc, and by others to be Perth city), as their chief towns. The Venicones inhabited north-western Fife and the adjoining tract of Perthshire, with Orrea (probably Abernet hy) as their chief town and a station at Ardargie. The Vacomagi dwelt in the Highland region, with stations at Inchtuthil (a peninsula in the Tay above Kinclaven) and Banatia (Buchanty on the Almond). The growing lawlessness of the southern Picts and their frequent raids in the more settled country in the south at last compelied the attention of the emperor Severus. He arrived in Britain in 208, but though he led a strong army to the shores of the Moray Firth, he was unable effectually to subdue the tribesmen. The road he constructed ran from Stirling to Ardoch (where there are notable remains) and thence by Strageath, near Muthill, where it hranched north-westwards to Dalginross and Buchanty, and north-east wards to Perth and so to the Grampians. When the Romans finally withdrew from Britain, the Picts established their capital first at Abernethy and then at Forteviot. Abernethy was the centre of the Celtic church after the conversion of the natives by Ninian, Palladius and other missionaries in the

5th and 6th centuries. On the burning of Forteviot by the Norsemen in the 8th century, the seat of Pictish government was removed to Scone. In the latter half of the gth century Dunkeld -to which Kenneth Macalpine had brought some of the relics of Columba from Iona-became the scene of monastic activity, the abbot succeeding to the position of the abbot of Iona, and exercising great influence for nearly a hundred years. The Danes periodically hartied the land, but a crushing defeat at Luncarty in 961 put an end to their inroads in this quarter. In 1054 Macbeth was defeated at Dunsinane by Siward, earl of Northumberland, who had invaded Scotland in the interest of his kinsman, Duncan's son, who, on the death of the usurper three years later, ascended the throne as Malcolm III., called Canmore. With Malcolm's accession the Celtic rule of the monarchy of Scone came to an end. Nevertheless, the Scottish sovereigns (excepting James II., James III. and Mary) continued to be crowned at Scone, which also retained the position of capital until the beginning of the 12 th century, when it was displaced by Perth. From the time of Alerander I. (d. I124), therefore, the history of the shire is merged in that of the county town, with the exception of such isolated incidents as the removal of the Coronation Stone from Scone to Westminster in 1296, the defeat of Robert Bruce at Mcthven in 1306, the battle of Dupplin in 1332, the victory of Dundee at Killiecrankie in 1689 and the indecisive contest at Sheriffmuir in 1715. Among archaeological remains may be mentioned the hill-fort on Dunsinane; the ship-barrow of the vikings at Rattray, weems (or earth-houses) in the parishes of Mondie, Alyth and Bendochy; the witch-stone near Cairnbeddie, one of the numerous spots where Macbeth is alleged to have met the witches, but probably a sepulchral memorial of some forgotten battle; standing stones near Pitlochry, and an extrwordinary assemhlage of sculptured stones at Meigle.

Bibliography.--Robertson, Comilatus de Atholize (Edinburgh, 1860); P. R. Drummond, Perthshire in Bygane Days (Lodadon, 1879); Marshali, Ifistoric Scentes of Perthshire (Perth. 1880); Beveridge, Perthshire-on-Forth (2 vols., London, 1885); R. B. CunninghameGrahame, Notes on the Districl of Menteith (London, 1895); Hutchison, The Lake of Menteith (Stirling, 1899).

PERTINAX, PUBLIUS EELVIUS (A.D. 126-193), Roman emperor, the son of a charcoal-burner, wasborn at Alba Pompeiain Liguria. From being a teacher of grammar he rose through many important offices, both civil and military, to the consulate, which he held twice. Chosen, at an advanced age and against his will, on the rst of January 193, to succeed Commodus, he was himself assassinated in a mutiny of the soldiers, on the 28 th of March 193.

PERTZ, GEORG HERNRICR (1795-1876), German historian, was born at Hanover on the 28th of March 1795. From 18ı3 to 1818 he studied at Göttingen, chiefly under A. H. L. Heeren. His graduation thesis, published in 1819, on the history of the Merovingian mayors of the palace, attracted the attention of Baron Stcin, by whom he was engaged in 1820 to edit the.Carolingian chroniclers for the newly-founded Historical Society of Germany. In search of materials for this purpose, Pertz made a prolonged tour through Germany and Italy, and on his return in 1823 he received at the instance of Stcin the principal charge of the publication of Monumenta germaniae historica, texts of all the more important historical writers on German affairs down to the year 1500 , as well as of laws, imperial and regal archives, and other valuable documents, such as letters, falling within this period. Pertz made frequent journeys of exploration to the leading libraries and public record offices of Europe, publishing notes on the results of his cxplorations in the Archis. der Gescllsch. f. dculsche Geschichtskundc (1824-1872). In 1823 he had been made secretary of the archives, and in 1827 principal keeper of the royal library at Hanover; from 1832 to 1837 he cdited the Hannoverische Zcilung, and more than oncesat as a representative in the Hanoverian sccond chamber. In 1842 he was called as chief lihrarian to Berlin, where he shortly afterwards was made a privy councillor and a member of the Academy of Sciences. He reaigned all his appointments in

1874, and on the 7th of October 1876 died at Munich while attending the sittings of the historical commission.
The Nownmenba began to appear in 1826, and at the date of his recignation 24 volumes folio (Scriptores, Leges, Diplomata) had appeared. This work for the first time made possible the existence of the modern school of scientific historians of medieval Germany. In connexion with the Monsmenta Pertz also began the pubtication of a melection of sources in octavo form, the Scriplores rerum germanicarum in ksum scholarum; among his other literary labours may be mentioned an edition of the Gesammelle Werke of Leibnitz, and a life of Stein (Leben des Ministers Froiherr" vom Stein (6 vols., $\mathbf{j 8 4 9}^{-1855}$); also, in an abridged form, Aus Steins Leben (2 vols, I856).
estimated at 439,000 to 480,000 sq. m., the Gotha measurements being $1,137,000 \mathrm{sq}$. kilometers, or 439, or $4 \mathrm{sq} . \mathrm{m}$.

With the exception of parts of the Ecusdor, Brazil and Bolivia frontiers, all the boundary lines have been disputed and referred to arbitration-those with Colomhia and Ecuador to the king of Spain, and that with Bolivia to the president of Argentina, on which a decision was rendered on the gth of July 1000 . There have been misunderstandings with Ecuador in regard to some smmll areas in the Chira valley, hut it may be assumed that the line is fixed between Santa Rosa ($3^{\circ} 21^{\prime}$ S.) on the Gulf of Guayaquil, and the Chinchipe river, a tributary of the
Maranion. At the junction of

PERU (apparently from Biru, a small river on the west coast of Colombia, where Pizarro landed), a republic of the Pacific coast of South Americs, extending in a general N.N.W.-S.S.E. direction from lat.: $3^{n} 21^{\prime} \mathrm{S}$. to about $18^{\circ} \mathrm{S}$., with a sea-coast of - 1240 m . and a width of 300 to 400 m ., exclusive of territories in dispute. Its area in 1906, including Tacna and Arica, and other disputed territories occupied by neighbouring states, was officially estimated at $1,752,422 \mathrm{sq}$. kilometers, or $676,638 \mathrm{sq}$. m.; exclusive of these territories, the area of Peru is variously

Ildefonso of 1777. This line has been twice modified hy tresties between Bolivia and Brazil, but without the consent of Pera, which claimed all the territory eastward to the Madeira between the above-mentioned line and the Beni-Madidi rivers, the line of demarcation following the Pahlo-hamha, a small trihutary of the Madidi, to its source, and thence in a straight line to the village of Conima, on Lake Titicaca. The dispute with Braxil relates to the territory acquired by that republic from Bolivia in 1867 and 1903 , and was to be settled, according to an agreement
of 1908, by direct negotiation if posaible, or, failing this, by arbitration. The decision of the president of Argentina of the gth of July 1909, in regard to the remainder of this extensive territory, was a compromise, and divided it into two nearly equal parts. The fine adopted starts from Lake Suches, the scurce of a small river of that name flowing into the north of Lake Titicaca, crosses the Cordillera by the Palomani to the Tambopata river, follows that stream to the mouth of the Lanza, thence crosses to the source of the Heath river, which forms the dividing line down to its junction with the Madre de Dios, descends that river to the mouth of the Torosmonas, thence in a straight line north-westerly to the intersection of the Tahuamanu river by the 6gth meridian, and thence north on that meridian to the Brazilian frontier. This decision at first gave offence to the Bolivians, but friendly overtures from Peru led to its acceptance by both parties with the understanding that modifications would be made in locating the line wherever actual settlements had been made by either party on territory awarded to the other. With Chile the de jure line is that of the Camarones ravine which separated the old department of Moquegua (including the provinces of Tacna and Arica) from that of Tarapaci. The de facto line is that of the Sama river (usually dry), which opens on the coast a little south of Sama point, near 18° S., Chile retaining possession of the two above-mentioned provinces in violation of the treaty of Ancon, which she forced upon her defeated antagonist.

Physical Geograpiny.-Pera is divided longitudinally into three well-defined regions, the coast, the sierra and the montafa. The coast. extending from the base of the Western or Maritime Cordilera to the Pacific Ocean, consists of a sandy desert crossed at intervals by rivers flowing through narrow, fertile valleys. The sierra is the region of the Andes, and is about 250 m . in width. It contains stupendous chains of mountains, elevated plains and table-knds, warm and fertile valleys and ravines. The montaña is the region of tropical forests withia the valley of the Amazon, and skirts the eastern alopes of the Andes.
The coast has been upraised from the ocean at no very distant geological epoch, and is nearly as destitute of vegetation as the Thecosse. African Sahara. It is watered, however, by fifty of theae have their origin in the summits of the Andes, and run with a permanent supply of water into the ocean. The others, rising in the outer range, which does not reach the anow-line and receives less moisture, carry a volume of water to the sea during the rainy season, but for the rest of the year are nearly dry. The absence of rain here is ascribed to the action of the lofty uplands of the Andes on the trade-wind, and to the influence of the cold Humboldt current sweeping northward along the west coast of the continent. The south-east trade-wind blows obliquely across the Atlantic Ocean until it reaches Brazil. By this time it is beavily laden with vapour, which it continues to bear along across the continent, depositing It and supplying the sources of the Amazon and La Plata. When the wind rises above the snow-capped Andes, the last perticie of moisture is wrung from it that a very low temperature can extract. Passing the summit of that range, it rushes down as a cool and dry wind on the Pacific slopes beyond. Meeting with no evaporating surface, and with no temperature colder than that to which it is subjected on the mountain-tops, this wind reaches the ocean before it becomes charged with fresh moisture. The constantly prevailing wind on the Peruvian coast is from the south, which is a cold wind from the Humboldt current. As it moves north it becomes gradually warmed and takes up moisture instead of depositing it as rain. From November to April there are usually constant dryness, a clear sky, and considerable, though by no means oppressive, heat. From June to September the sky is obscured for weeks together by fog, which is often accompanied by drizzling rain called garua. At the tirae when it is hottent and driest on the coast it is raining heavily in the Andes, and the rivers are full. When the rivers are at their lowest, the garwa prevails on the coast. The climate of various parts of the coast, however, is modified by local circumptances.

The Western Condillera, overhanging the Peruvian coast, contains a loog line of volcanic mountains, most of them inactive, but their presence is probably connected with the frequent and severe earthquakes, eapecially in the southern section of the coast. Since 1570 seventy volently destructive earthquakes have been recorded on the west coast of South America, but the register is incomplete in ite earlier part. The most terrible was that of 1746, which destroyed Callao, on the 28th of October, and there were 220 shocks in the following twenty-four hours. The town was overwhelmed by a vart wave, which rope 80 ft.; and the shocks continued until the following February. On the $1 j^{\text {th }}$ of August 1868 an earthquake
nearly destroyed Arequipa, and great waves rolled in upon the ports of Arica and lquique. On the gth of May 1877 nearly all the southern ports were overwhelmed.
The deserts between the river-valleys vary in extent. the largest being more than 70 m . across. On their western margin steep cliffs generally rise from the sea, above which is the pablaso or plateau, in some places slightly undulating in others with ridges of considerable height rising out of it. The surfare is generally hard, but in many places there are large accumulations of drifing sea-sand. The sand usually forms isolated hillocks, called medamos, of a half-moon shape, having their convex sides towards the tradewind. They are from 10 to 20 ft . high, with an acute crest, the inner side perpendicular, the outer with a steep slope. Sometimes, eapecially at carly dawn, there is a musical noise in the desert. like the sound of distant drums, which is caused by the eddying of grains of sand in the heated atmoaphere, on the crests of the medanas.
Apparently the deserts are destitute of all vegetation; yet three kinds of herbs exist, which bury themselves deep in the earth, and survive long periods of drought. One is an amaranthaceous plant, whove stems ramify through the coast Flora sandhils; the other two are a Martynia and an Aniseia, which maintain a subterranean existence during many years, and only produce leafy stems in those rare seasons when sufficient moisture penetrates to the roots. In a few hollows which are reached by moisture the trees of the desert find support, the algarrobo (Prosopis horrida), a low tree of very scraggy growth, the vichaya (Capparis crotonoides), and the sapole del perro Colicodendrum scalridum), mere shrubs. Near the Cordillera and on its lower slopes a tall branched cactus is met with, and there are Salicornias and Salsolas near the coast. But, when the mists set in, the low hills near the const bordering the deserts, which aro called lomos, undergo a change as if by magic. A blooming vegetation of wild flowers for a short time covers the barren hills. Near Lima one of the low ranges in brightened by the beautiful yellow lily called amancoes (Ismene A mancoes). The other flowers of the lomas are the papita de San Juan (Begonic gerunifolia), with red petals contrasting with the white inner sides, valerians, the beautifal Bomarca ovata, several species of Oxalis, Solansm and crucifers. But this carpet of llowers is very partially distributed and lasts but a thort time.
The valleys form a marvellous contrast to the surrounding desert. A great mass of pale-green foliage is usually composed of the algarrobo trees, while the course of the river is marked by lines or groups of palms, by fine old willows (Salix humbolddiana), fruit-gardens, and fields of cotton. Indian corn, sugar-cane and alfalfa (lucerne). In some valleys there are expanses of sugar-care, in others cotton, whilst in others vineyards and olive-yards predominate. The woods of algarrobo are used for pasture, cattle and horses enjoying the pendulons yellow pods.
For purposes of description the coast-region of Peru may be divided into five sections, beginning from the north: (I) the Piura resion; (2) the Lambayeque and Trujillo section; Sectons of (3) the Santa valleys; (4) the section from Lima to Nasca; the Coust (5) the Arequipa and Tacna section.
(1) The great desert-region of Piura extends for nearly 200 m . from the Gulf of Guayaquil to the borders of the Morrope Valley, and is traversed by three rivers-the Tumbes, Chira and Piura, the two former receiving their waters from the inner Cordillera and breaking through the outer range. It is here that the coast of Sonth America extends farthest to the westward until it reaches Capes Blanco and Parif̆a, and then turns southward to the Bay of Paita. The climate of Piura is modified by the lower latitude, and also by the vicinity of the lorests of Guayaquil. Fog and garua are much less frequent than in the coast-region farther south, while rain sometimes falls. At intervals of three or four years there are occasional heavy showers of rain from February to April. (2) The second section of the coast-region includes the valleys of the Morrope, the Chiclayo, and Lambaycque, the Saña, the Jequetepeque, the Chicama, Moche, Viru and Chao. With the intervening deserta this section extends over 200 m . All these valleys, except Morrope and Chao, are watered hy rivers which have their sources far in the recesses of the mountains, and which furnish an abundant supply in the season when irrigation is needed. (3) The third section, also extending for 200 m., contains the valleys of Santa Nepeđ̃a, Casma, Huarmey, Fortaleza. Pativilca, Supe and Huaura. The river Santa, which rises in the lake of Conococha, 12,907 ft. above the sea, and has a length of 180 m ., is remarkable for its long course betweea the outer and central ranges of the Andes, in a trough known as the "Callejon de Huaylas," 100 m . in length. It then breaks through \ln a deep gorge, and reaches the see alter a coarse of 35 m . over the coast-belt, and after fertilizing a rich valley. The Santa and Nepeina valleys are separated by a desert 8 leagues in width, on the shores of which there is a good anohorage in the bay of Ferrol, where the port of Chimbote is the termiaus of a railway. The Nepeña, Casma, Huarmey, Fortaleza and Supe rivers rise on the slope of an outer range called the Cordillera Negra, and are consequently dry during the great part of the year. Wells are dug in their beds, and the fertility of the valleys is thus maiotained. The Pativica (or Barranca) river and the Husura breale
through the orter range from their distant mources in the soowy Cordilera, and have a perennial supply of water. There are 9 leagues of desert bet ween the Nepeina and Casma, 16 between the Casma and Huarmey, and 18 between the Huarmey and Fortaleza. The latter desert, much of which is loose sand, is called the Pampa de Mata Casallos, from the number of exhausted animals which die there. Between the Supd and Pativilca is the desert called the Pampo del Medio Mundo. (4) The next coast-section extends for over 300 m. from Chancay to Nasca, and includes the rivers of Chancay or Lacha, of Carabayllo. Rimac. Lutin. Mala, Canete. Ctincha, Pisco or Chunchanga, Ica and Rio Grande. Here the maritime range approaches the ocean, leaving narrower strip of coast, but the fertile valleys are closer and more numerous. Thoee of Carabayllo and Rimac are connected, and the view from the Bay of Callao extends over a vast expanse of fertile plain bounded by the Andes, with the white towers of Lima in a setting of verdure. Lurin and Mala are smaller valleys, but the great vale of Cannete is one green sheet of eugar-cane: and narrow strips of desert separate it from the fertile plain of Chincha, and Chincha from the famous vineyards of Pisco. The valleys of lea, Palpa, San Xavier and Nasca are rich and fertile, though they do not extend to the sea; but between Nasca and Acari there is a demert 60 m . in width. (5) The Arequipa and Tacna tection extenda over 350 m . and comprisea the valleys of Acari, Atequipa, Atico, Ocoha, Majes or Camana, Quilca, with tbe interior valley of Arequipa, Tambo, llo or Moquegua, Ite or Locumba, Sama, Tacna, and Azapa or Arica. Here the Western Cordillera recedes, and the important valley of Arequipa, though on its western slope, is 7000 ft . above the sea and 90 m . from the coast. Most of the rivers here have their sources in the central range, and are well supplied with water. The coast-valleys through which they flow, especially those of Majes and Locumba, are famous for their vineyards, and in the valley of Tambo there are extensive olive plantations.

The coast of Peru has lew protected anchorages, and the headlands are generally ahrupt and lofty. These and the few islands are ishad. Irequented by sea-birds, whence come the guanodeposits, the retention of ammonia and other fertilizing properties being due to the absence of rain. The islets off the coast are al barren and rocky.

The most alorthern is Foca, in $5^{\circ} 13^{\circ} 30^{\circ}$ S., near the coast to the south of Paita. The islands of Lobos de Tierra and Lobos de Aluera (2) in $6^{\circ} 27^{\prime} 45^{\prime} \mathrm{S}$. and $6^{\circ} 56^{\prime} 45^{\circ} \mathrm{S}$. respectively, are of the desert of Sechura, and contain deposits of guano. The two Afuera islands are 60 and 36 m . respectively from the coast at the port of San Joac. The islets of Macabi, in $7^{\circ} 49^{\prime} 20^{\circ} \mathrm{S}$., also have guano deposits, now practically exhausted. The two islets of Guasiape, surrounded by many rocks, in $8^{\circ} 34^{\prime}$ S., contain rich deposits. Chao rises 450 [t. above the wet, off the coast, in $8^{\circ} 46^{\prime} 30^{\circ} \mathrm{S}$. Corcobado is in $8^{\circ} 37^{\prime} \mathrm{S}$. Le Vinda is off the port of Castua, in $9^{\circ} 23^{\prime} 30^{\circ}$ S.; and Tortuga is 2 m . distant to the north. Santa Islet lies of the bay of Cosca, in $9^{\circ} t^{\prime} 40^{\circ}$, and the three high rocks of Ferrol in $9^{\circ} 8^{\prime} 30^{\circ} \mathrm{S}$. Farther touth there is the group of iglets and rocks called Huaurn, in $1 I^{\circ} 27^{\prime} \mathrm{S}$., the chief of which are El Pelado. Tambillo. Chiquitana, Bravo, Quitacalzones and Mazorque. The Hormigas are in $11^{\circ} 4^{\prime} \mathrm{S}$. and $11^{\circ} 5^{8}$, and the Pescadores in $11^{\circ} 47^{\prime} \mathrm{S}$. The ialand of San Loren20, in $12^{\circ} 4^{\prime} \mathrm{S}$., is a lofty mase, $4 \frac{1}{4} \mathrm{~m}$. long by I broad, forming the Bay of Callao; its higheat point is 1050 ft. Off its south-enst end lies a small but lofty islet called Fronton, and to the south-west are the Palomitas Rocks. Horadada Islet, with a hole through ic. is to the south of Callao Point. Of the valley of Lurin are the Pachacamac Islands, the most northern and largest being half a mile long. The next, called San Francisco, is like a sugar-loaf, perfectly rounded at the top. The others are mere rocks. Asia Idand is farther south, 17 m . north-west of Cerro Azul, and about a mile in circuit. Pisco Bay contain San Gallan island, high, with a boid cliff outline, 21 m . long by 1 broad, the Ballista lslets, and farther north the three famous Chincha Islands, whose vast guano deposits are now exhausted. South of the entrance to Pisco Bay is Zarate Island, and farther south the white level isiet of Santa Rosa. The Infiernillo rock is quite black, about 50 ft . high, in the form of a sugar-loaf, a mile west of the point of Santa Maria, which is near the mouth of the Ica river: Alacran is a mall islet off the Dofty "morro" of Arica. All theme rocks and islets are barren and uninhabitable. The more common sea-hirds are the Sula pariegala of guano-bird, a large gull called the Larms moderfos, the Pelecanus thayus, and the Skerna Ynca, a beautiful tern with ctrved white fea thers on each side of the head. The rarest of all the gulls is also found on the Peruvian coast, namely, the Xema furcalum. Sea-lions (Otarie forsteri) are common on the rocky islandsand promoatories.

The region of the Cordilleras of the Andes is divided into puna, or lofty uninhabited wilderness, and sierra, or inhabitable mounSerra. tain slopes and valleys. This great mountain-system, chains or cordileras. The two chains, which run parallel and near each other on the wrestern side, are of identical origin, and have been separated by the action of water during many centuries. On these chains are the voicanoes and many thermal oprings. The narrow space between them is for the most part, but not always, a cold and bofty region known as the puna containing alpine lakesthe sources of the.cone-rivers. The great eastern chain, rising from
the basin of the Amazon and forming the inner wall of the byotern. is of distinct origin. These three chains are called the Western or Maritime Cordillera, the Central Cordillera and the Andea Paz Soldan and other Peruvian geographers give the name of Andes. par excellence, to the Eastern Cordillera.

The Maritime Cordillera of Peru has no connexion with the coast ranges of Cbilc, but is a continuation of the Cordillera Occidental of Chile, which under various local names forms the castern margin of the coastal desert belt from Atacama northward into Pera. It contans a regular chain of volcanic peaks overlooking the coastregion of Tarapaca. Chief among them are the anowy peak of Lifima ($19,128 \mathrm{fc}$.) over the ravine of Tarapach, the volcano of Isluga overhanging Camiña, the Bolivian peak of Sajama, and Tocora (19.74 It.) near the Bolivian frontier. In rear of Moguegua there is a group of volcanie peaks, elustering round those of Ubinat and Huaynaputina. A great eruption of Huaynaputina began on the 15th of February 1600 and continued untid the 28th. But generally these volcanoes are quiescent. Farther north the Misti volcano riscs over the city of Arequipa in a perfect cone to a height of over 20.013 ft . a ad near its base are the hot sulphur and iron springs of Yura. The peak of Sarasara, in Parinacochas (Ayacucho) is $19,500 \mathrm{ft}$. above the sea, and in the mountains above Lima the passes attain a height of more than $15,000 \mathrm{ft}$. In latitude $10^{\circ} \mathbf{S}$ the maritime chain eparates into two branches, which run parallel to each other for 100 m., enclosing the remarkable ravine of Callejon de Huaylas-the castern or main branch being known at the Cordillera Nevada, nd the westem as the Cordillera Negra. On the Nevada the pek of Huascan reaches a height of 22,051 ft. The Huandoy peak, sbove Carhuas, rises to 21,088 ft.; the Hualcan peak, overhanging tie town of Yungay, is $\mathbf{1 9 , 9 4 5} \mathrm{ft}$. high; and most of the puaks in this part of the chain reach a beight of $19,000 \mathrm{ft}$. Durio's the raius shason, from October to May, the sky is generally clear at dawn, and the magnificent snowy peaks are clearly sece But as the day advances the clouds collect. In most parts of the Perr vian Andes the line of perpetual snow is at $16,400 \mathrm{ft}$. ; but on the Cordillera Nevada, above the Callejon de Huaylas, it ainks to $\mathbf{1 5} 400$ ft. This greater cold is caused by the intervention of the Cordillera Negra. which intercepts the warmth from the coast. As this lower chain does not reach the saow-line, the streams rising from it are scanty, while the Santa, Pativica and other coast-rivers which brcak through it from sources in the mowy chain have a greater volume from the melted snows. At the point where the tiver Santa breaks through the Cordillera Negra that range begins to subside, while the Maritime Cordillera continues as one chain to and beyond the frontier of Ecuador.

The Central Cordillera is the true water-parting of the ayatern. No river, except the Maration, breaks through it either to the east or west, while more than twenty coast streams rise on Ita slopes and force theis way through the maritime chain. The Central Cordilitera consists mainly of crystalline and volcanic rocke, on each ade of which are aqueous, in great part Jurasaic, strata thrown up almoet vertically. In $14^{\circ} 30^{\circ} \mathrm{S}$. the central chain is connccted with the Eastern Andes by the transverse mountain-knot of Vilcanote, the peak of that name being 17,65 ! ft above the ceas. The great inlard basin of Lake Titicaca is thus formed. The central chain continues to run parallel with the 'Maritime Cordillera until, at Cerro Pasco. another transverse knot connects it with the Andes in $10^{\circ} 30^{\prime} \mathrm{S}$. Lat. It then continues northward, weparating the basins of the Maranoa and Huallaga; and at the nortbern frontier of Peru it is at leagth broken through by the Marafion flowing eastward.

The Eastern Andes is a magnificent range in the southern part of Peru, of Silurian formation, with talcose and clay slate, memy quartz veins and eruptions of granitic rocks. Mr Forbes says that the peaks of Illampu ($21,709 \mathrm{ft}$.) and Illimani ($21,014 \mathrm{ft}$.) in Bolivin are Silurian and fossiliferous to their summits. The eastern range is cut through by six rivers in Pert, namely, the Marafion and Huatlaga, the Perene, Mantaro, Apurimac, Vilcamayu and Paucartambo, the last five being tributaries of the Ucayall. The range of the Andes in south Peru has a high plateau to the west and the vest plains nf the Amazonian basin to the east. The whote range is highly auriferous, and the thickness of the strata ia not lest than 10,000 ft. It is nowhere disturbed by volcanic eruptions, except at the very edge of the formation near Lake Titicaca, and in this rempect it differs essentially from the Maritime Cordillera. To the eastward numerous spurs extend for varying distances into the great plain of the Amazons.

The Andes lose their majestic height to the northward; and beyond Cerro Pasco the eastern chain sinks into a lower range between the Huallaga and Ucayali. But throughout the length of Peru the three ranges are clearly defined.

For purposes of description the sierra of Peru may be divided into four actions, each embracing portions of all three tanges The first, from the north, comprises the upper basins of the Maranton and the Huallaga, and is 350 m . long by Sediea 100 broad. The second extends from the Knot of Cerro Pasco to Ayacucho, about 200 m. , including the Lake of Chinchay-cocha and the basin of the river Xaupa. The third or Cuzco section extends 250 m . to the Knot of Vilcafioca with the basins of the Pampas, Apurimac, Vilcamayu and Paucartambo. The fourth is the banis of Lale Titivena.

Lake Junin, or Chinchay-cocha, in the second section, is 36 m . long by 7 m . broad, and $13,232 \mathrm{ft}$. above the sea. Its marshy bankes are overgrown with reeds and inhabited by numerous waterfowh. From this lake the river Xauxa fows southwards through a populous valley for 150 m . before entering the foresta, Lake Titicaca (eee Bolivia), in the fourth or most southern section, is divided between Peru and Bolivia. It receives a number of ahort streams from the ranges shutting in the upper end of the valley; the largeat is the Ramiz, formed by the two streams of Pucara and Anangaro, both coming from the Knot of Vileabota to the north. The Suches, which has its source in Lake Suches falls into Lake Titicaca on the north-west side, as well as the Ylipa and Ylave. The principal islands are Titicaca and Coati (at the south end near the peninsula of Copacabana), Campanaria (9 m . from the cast chore), Soto and Esteves. There are two other lakes in the Collao, as the elevated region round Titicaca is called. Lake Arapa, a few miles from the northern shore of Titicaca, is 30 m . in circumference. Late Umayo is on higher ground to the westward. The lake in Pers which in third in qixe is that of Parinacochas on the coost watershed, pear the foot of the snowy peak of Sarasara. It is 12 m . long by 6 broad, but has never been visited and described by any modern traveller. The smaller alpine lakes, often forming the sources of rivers, are numerous.

The great rivers of the sierra are the Maration, rising in the lake of Lauricocha and flowing northward in a deep gorge between the Maritime and Central Cordilleras for 350 m .; when it lorces its way through the mountains at the famous Pongo de Manseriche and enters the Amazonian plain. The Huallaga riscs north of Cerro Pasco, and, passing Huanuco, flowa northwards on the other side of the Central Cordillera lor 300 m . It breaks through the range at the Poogo de Chasuta and lalls into the Marainon. The other great rivers are tributaries of the Ucayali. The Pozuzu, fowing cast. ward from the Knot of Cerro Pasco, joins the Pachitca, which is the most important northern affluent of the Ucayali. The Xauxa, becoming afterwards the Mantaro, receives the drainage of Xauxa, Huancavelica and Ayacucho. The southem valleys of this pert of the sierre furnish atreams which form the main rivers of Pampas, Pachachaca and Apurimac. These, uniting with the Mantaro. lorm the Ene, and the Ene and Perene (which drains the province of Tambo) form the Tambo. The Vilcamayu rises on the Knot of Vikaicota, fows nort h through a lovely valley, received the Yanatilde and Paucartambo on its right bank, and, uniting with the Tarnbo, foms the Ucayali. Most of these main streams flow through profound gorges in a tropical climate, while the upper slopes yield products of the temperate zone, and the plateaus above are cold and bleak, affording only pasture and the hardicst cereals.
The great variety of elevation within the sierra produces vegetation belonging to every zone. There is a tropical flora in the grome deep gorges. higher up a aub-tropical, then a temper-

Finera ald
fincor te, then a sub-arctic flora. In ascending from the coast-valleys there is first an arid ange, where the great-branched cacti rear themsetves up among is the native home of the potato. Here also are other plants with edible roots the oca (Oxalis tuberosa), ulluca (Ullucus muberosus), massua (Tropacolum tuberosum), and leared (Polymnia sonchifolia). Among the firse wild shrubs and trees that are met with are the chilca (Boccharis Frsillei), with a pretty yellow flower, the Mutisia acuminala, with beautiful red and orange flowers, several species of Senccio. calceolarias, the Schinus molle, with its graceful branches and bunches of red berries, and at higher elevations the lambras (Almus ocuminaia), the sauco (Sambucus persoiana), the quennar (Buddicia incana), and the Polylepis rocemosa. The Buddreic, locally called olino silpestre, flourishes at a height of $12,000 \mathrm{ft}$. round the ahores of Lake Titicaca. The most numerously represented family is the Compositae, the grasses being next in num. ber. The tempertete valleys of the sierra yied fruits of many kinds. Thooe indigenous to the country are the delicious chirs. moyas, pallar or alligator pears, the paceay, a species of Inga, the lucma, and the granaitllo or fruit of the passion-fower. Vineyards and sugar-cane yield crops in the warmer ravines; the sub-tropical valleys are lamous for splendid crops of maize; wheat and barley thrive on the mountain sfopes: and at heights from 7000 to 13,000 it. there are crops of quinua (Chenopodixm quinua). In the lofticst regions the pasture chiefly consiste of a coarse grass (Stipa ychen), of which the llamas eat the upper blades and the eheep browse on the tender shoots beneath. There are also two kinds of atrubby plants, a thorny Composita called "ccanilti" and another, called "tola," which is a resinous Baccharis and is used for fuel.
The animals which specially belong to the Peruvian Andes are the domertic llamas and alpacas and the wild viculas. There are deer, called tarnco (Cerous antisensis); the viscocho. a large rodent: a species of fox called aloc; and the puma (Pelis concolor) and uewimari or black bear with a white muzzle, when driven by hunger, wander into the boftier regions. The largest bird is the condor, and there is another bird of the vulture tribe, with a black and white wing feather formerly used by the Incas in their head-drem, called the coraquenque or alcamari. The pito is a brown speckled creeper which flutters about the rocks. There is a little bird. the size of a starling, tith brown back sxiped with bleck, and white bresot, which the

Indianscall ymakimalpa; it utters a monotonous sound at each hour of the nighit. A partridge called yulm frequents the long grase On the lakes there is a very bandsome goose, with white body and dark-green wings shading into violet, called huachug, two kinds of ibis, a large gull (Larus serraniss) frequenting the alpine lakes in Gocks, flamingoes called parikuana, ducks and water-hema, Many pretty little finches fy about the maize-felds and fruit-gardens, and a little green parakeet is met withas high as 12,000 it. above the see.
The third division of Peru is the region of the tropical foreste, at the base of the Andes, and within the basin of the Amazon. It is traverecd by great navigable rivers. The Marafion, having burst through the defile of the Pongo de Man- Madstien seriche (575 f (. above aea level), and the Huallaga through that of Chasuta, cnter the forests and unite after separate courscsof about 600 and 400 m ., the united flood then flowing castward to the Braxilian frontier. After 150 m . it is joined by the Ucayali, a great navigable river with a course of 600 m . The country between the Hurliaga and the Ucayali, traversed by the Eastern Cordillern, is called the Pampa del Sacrameato, and is characterized by extera. sive grassy plains. The lorests drained by the Marafion, Huallaga and Ucayali form the northern portion of the Peruvian montana. The couthern half of the montainc is watered by atreams flowing from the eastern Andch, which 80 to form the siver Mindre de Dios or Amaru-mayu, the principal branch of the river Beni, which falls into the Madeira. The regioa of the Peruvian montaña, which is 800 m . long from the Marañon to the Boifivian frontier, is naturally divided into two sections, the sub-tropical lorests in the ravines and on the eastern slopes of the Andes, and the dense tropical forests in the Amazonian plain. The sub-tropical section is importane from the value of its products and interesting from the grandeur and beauty of its scenery. Long spurs run of from the Andes gradually decreasing in elevation, and it is sometimes a distance of Oo or 80 m . before they finally suhside into the vast forest-covered plains of the Amazon basin. Numerous rivers flow through the valleys between these spurs, which are the native home of the quinine-ylelding einchona trees. The most valuable species, called C. Calisaya, is found in the forests of Caravaya in wouth Peru and in those of Bolivia. The species between Caravaya and the headwaters of the Huallaga yield very little of the febrifuge alkaloid. But the forests of Huanuco and Huamalios abound in species yielding the grey bark of commerce, which is rich in cinchonine, an alkaloid efficacious as a fehrifuge, though inferior to quinine. With the einchona trees grow many kinds of metastomacoae, especially the Lasiandra, with masses of purple flowers, tree-ferns and palms. In the warm valleys there are large plantations of coca (Erythroxylon Coca), the annual produce of which is stated at $15,000,000 \mathrm{pl}$. The other products of these warm valleys are excellent coffee, cocoa, sugar, tropical frults of all kinds, and gold in abundance. in the Vast untroddea lorests larther east there are timber trees of many kinds, incense trees, a great wealth of rubber trees of the IIeved genus, numerous varieties of beautiful palms, sarsaparilla, vaniila, ipecacuanha and copaiba. The abundant and varied fauna is the same at that of the Brazilian foresta.
Geology. - The Eastern Cordillera, which, however, is but litule known, appears to consist, as in Bolivia, chicfly of Palaeozoic rocks; the western ranges of theAndes are formed of Mesozoic beds, together with recent volcanic lavas and ashes; and the lower hills near the coast are composed of granite, syenite and other crystalline, rocks, cometimes accompanied by limestones and sandstones, which are probably of Lower Cretaceous age, and often covered by marine Teriary deposits. Thus the nrographical features of the country correspond broadly with the geological divisions.
The constitution of the Mesozoic band varies. Above Lima the weatern chain of the Andes is composed of porphyritic tuffi and massive limestones, while the longitudinal valley of the Oroya is hollowed in carbonaceous sandstones. From the analogy of the neighbouring countries it is possible that some of the tufls may be Jurassic, but the other deposits probably belong for the mout part to the Cretaceous bystem. The carbonaceours sandstone contains Gault fogsila. Like the similar sandstone in Bolivia, it includes seams of coal and is frequently impregnated with cinnabar. It is in this sandstone that the rich mercury mines of Huancavelica are worked.
Farther north, in the depertment of Ancachs, the Mesozoic belt is composed chiefly of sandstones and shales, and the limestones which form so prominent a feature above Lima seem to have disappeared. The Cordillera Negra in this region is in many places eut by numerous dikes of diorite, and it is near these dikes that silver ores are chicfly
${ }^{1}$ See L. Crosnier " Notice gtologique sur les départements de Huancavelica et d'Ayacucho." Ann. des mines, 3 th weries, vol. ii. pp. 1-43. Pl. 1 (185); A. Raimondi, El Dopartamento do A macacksy sms riguecat minerales (Lima, 1873); G; Steinmann," Ueber Tithop und Kreide in den peruaniechen Anden" Nexes Jahrs. (1882), vol. ii. pp. 130-1 53, Pls. 6-8; K. Gerhardt, Beitrag zur Kenntniss der Kreideformation in Venezuela und Peru,'" Neues Jahrb., Beil.-Bd. XI. (1897), pp. 65-117, Pls. 1, 2:J. Graybowski, "Die Tertiarahlagerungen des nórdichen Peru und ihro Moluakenfauma," Neves Jahbon BeilBd. XIL. (1899), pp. 6ro-664, Pla 15-20.
found. In the Cordillera Nevade the Mesosoic rocke which form the chain are often covered by masoes of modern volcanic rock. Similar rocks are also found in the Cordillera Negra, but the volcanic centres appear to have been in the Sierra Nevada.

Population.-The first trust worthy enumeration of the people of Peru was made in 1793 , when there were $6 \times 7,700$ Indians, 241,235 mestizos (Indian and white inter-mixture), 136,311 Spaniards, 40,337 negro slaves and 41,404 mulattoes, making a total of $1,076,977$, exclusive of the wild Indians of the montena. Viceroy Toledo's enumeration of the Indians in 1575 gave them atotal of $8,000,000$, the greater part of whom had been sacrificed by Spanish cruelty. Others had withdrawn into the mountains and forests, and in the native villages under Spanish administration the birth rate bad dropped to a small part of what it had been because the great bulk of the male population had been segregated in the mines and on the estates of the conquerors. This tells a story of depopulation under Spanish rule, to which the abandoned terraces (andenes) on the mountain sides, once highiy cultivated, bear testimony. Several diverse totals have been published as the result of the census taken in 1876, which is considered imperfect. One estimate places the total at 2,660,881, comprising about 13.8% whites, 57.6% Indians, 1.9% negroes, 1.9% Asiatics, chiefly Chinese, and 34.8% mixed races. In 1906 estimates were made under official auspices (see A. Garland, Peru in 1006, Lima, 1907), which gave the population as $3,547,829$, including Tacna (8000). It is believed, however, that this and other larger estimates are excessive. There is no considerable immigration.

The population of Peru is mixed, including whites, Indians, Africans, Asiatics, and their mixtures and sub-mixtures. The dominant race is of Spanish origin, to a considerable extent mixed with Indian hlood. The Indians are in great part descendants of the various tribes organized under the rule of the Incas at the time of the Spanish conquest. There are two distinct general types-the coast tribes occupying the fertile river valleys, who are employed on the plantations, in domestic gervice in the cities, or in small industries of their own, no longer numerous; and the sierra tribes, who are agriculturists, miners, stock-breeders and packers, still comparatively numerous. In addition to these are the tribes of vild Indians of the monlatia region, or eastern forests, who were never under Inca rule and are still practically independent. Their number is eftimated at 150,000 to 300,000 , divided into 112 tribes, and differing widely in habits, customs and material condition. Some live in settled communities and roughly cultivate the soil. Others are hunters and fishermen and are nomadic in habit. Others are intractable forest tribes, having no relations with the whites. The sierra or upland Indians, the most numcrous and strongest type, belong largely to the Quichua and Aymara families, the former inhabiting the regions northward of Cuzo, and the latter occupying the Titlcaca basin and the sierras of Bolivia. These Indians are generally described as Cholos, a name sometimes mistakenly applied to the mestizos, while the tribes of the eastern forests are called Chunchos, barbaros, or simply Indians. The Cholos may be roughly estimated at about 1,800.000 and form by far the larger part of the sierra population. Practically all the industries and occupations of this crtensive region depend upon them for labourers and servants.

The mestizos are of mixed Spanish and Indian blood. There are two general classes-the costefios or those of the coast, and the serranos or those of the sierras. The mestizos of the coast are usually traders, artisans, overseers, petty officers and clerks, and small politicians. In the sierras they have the same general occupations, but there are no social hars to their advancement, and they become lawyers, physicians, priests, merchants, officials and capitalists. The African and Asiatic elements furnish only about 2% each of the population. The Africans were introduced as slaves soon after the conquest, because the coast Indians were physically incapable of performing the work required of them on the sugar estates. All the heavy labour in the coast provinces was performed by them down to 1855 , when African sliavery was abolished. They have since preferred to live in the towns,
although many continue on the plantations. The first Chinese coolies were introduced in 8849 to supply labourers on the sugar estates, which had begun to feel the effects of the suppression of the Arrican slave traffic. At first the coolies were treated with cruelty. The scandals that resulted led to investigations and severe restrictions, and their employment now has become a matter of voluntary contract, usually for two years, in which fair dealing and good treatment are the rule. Many Chinese are also settled in the coast cities. Commercial relations have also been opened with Japan, and a small Japanese colony has been added to the population. The Spanish and African cross is to be seen in the mulattoes, quadroons and octoroons that inhabit the warm coast cities. Other race mixtures consist of the rambos (the African-Indian cross), an Asiatic graft upon these various crosses, and an extremely confusing intermirture of the various crosses, for which the Spenish races have descriptive appellations. The foreign population is chiefly concentrated in Lima and Callao, though mining and other industries have dravn small contingents to other places.
Edmeation.-Universilies and colleges were founded in Peru soon after the conquest, and Lima, Cuzco, Arequipa and Chuquisaca (now the Bolivian town of Sucre) became centres of considerable intelbectual activity. Something was done for the education of the sons of the Indian " nobility " echooln being created at Lima and Curoo. The university of San Marcos at Lima is the oldest collegiate inatitution in the New. World, originating in a grant from Charfes V. in 1551 to the Dominicans for the eatablishment of a college in their monaptery at Lima. Its present name, however, was not adopted until 1574 two years after its firnt sccular rector had been chosen. The college of San Carios was founded in 1770, and the school of medicine in ${ }^{1792}$. At Cuzco the university of San Antonio Abad was founded in 1598, and the college of San Geronimo at Arequipa in 1616. The instruction given in these institutions was of the religious-scholastic character of that time, and was wholly under the supervision of the Church. Independence opened the way for a larger measure of intellectual and educational progreas, especially for the lower classes. As organized under the law of the 5 th of December 1905, primary instruction is free and nominally obligatory. and is under the control of the national government. The primary schools are divided into two grades: a Iree elementary course of two years, and a higher course of three years, in a school called the "scholastic centre" in which learning a trade is included. There were 1508 elementary schools and 862 scholastic centres in 1906. There are. besides these, a large number of private schools, which in 1906 carried about 22.000 pupils on their rolls, or three times the number in the public primary schools. To provide teachers aiz normal schools have been established, two of which (one for males and one for females) are in Lima. For intermediate or secondary instruction there are 23 national colleges for boys in the various departmental capitals, and three similar colleges for girls, in Ayacucho, Cunco and Trujillo. In these the majority of pupila were under the direce tion of Belgian and German instructors. The private schools of this grade are still more numerous, and there are a number of special schools that belong to the same category. For higher instruction there are four universitics: the Universidad Mayor de San Marcoa at Lima, and three provincial institutions at Arequipa, Cusco and Trujillo. All these have faculties of letters and law. and San Marcos has in addition facultics of theology. medicine, matbematics and science, philosophy and edministrative and political economy. The professional schools include a school of civil and mining engineering at Lima (created 1876), a military achool at Chorrilos under the direction of French instructors, a naval school at Callac, nine episcopal seminaries (one for each diocese), a national agricultural school in the vicinity of Lima (created 1902), and a few commercial schools. There is a $1 s 0$ a correctional school at Lima devoted to the education and training of youthful delinquents.

Science and Literaluge.- Towards the end of the 18th century scientific studies began to receive attention in Peru. M. Codin. a member of the French commission for measuring an are of the meridian near Quito, became professor of mathematics at San Marcos in 1750: and the botanical expeditions sent out from Spain gave further zest to scientific remearch. Dr Gabriel Moreno (d. 1\&09) a native of Humantanga in the Marfitime Cordillera, studied under Dr Jussieu, and became an eminent botanist. Don Hipolito Unanve, born at Arica in 1755. wrote an important work on the climate of Lima and contributed to the Mercurio permano. This periodical was started in 1791 at Lima, the contributors formins in society called "amantes del pais," and it was completed in tleyen volumes. It contains many valuable articles on history. topography. botany. mining. commerce and statistics. An ephemeris and guide to Pertu wan begun by the learned geographer Dr Cosme Butno, and continued by Dr Unanue, who brought out his guides at Lima from 1793 to 1798 . In 1794 a nautical school was founded at Lima: with Andres Bales to as instructor and Pedro Alvarez as teacher of the une of instrumenta Balezto also conetructed a map of Peru.

A liet of Peruvina aythore in vicuregal times ecemplea a loag chapter in the life of St Toribio' by Montalvo; and the bibliographical tabours of the Peruvian Leon Pinelo are still invaluable to Spaniath sudents. The most prolific author of colonial times was Dr Pedro de Peralta y Barnuevo, who wrote more than sixty works, including an epic poem entitied lima fundada.

The topographical labours of Come Bueno and Unanue were ably continued at Lima by Admiral Don Eduardo Carraco, who compiled annual guides of Peru from 1826 . But the most eminent Peruvian geographer is Dr Don Mariano Felipe Paz Soldan (18zi1886), whose Geografia del Parm appeared in 1861. His still more important work, the Diccionario grografico astadesticoded Pern (1877). is a gavetteer on a most complete zcale. In 1868 appeared his first volume of the Historia del Pers independiente, and two orhers have since been published. His Historia de la guerra ded Parifico ta the Peruvian version of that dismstrous war. The earlier history of Peru has been writien in three valumes by Sebastinn Lorente (d. 1884): Marinno Rivero bas discused its antiquities; and Manuel Fuentes has edited six volumes of memoirs writecn by Spanish viceroys. But the most valuable and important historical work by a modern Peruvian is General Mendiburu's (1805-1885) Diccionarlo historicobiografico del Peris, a monument of patient and conacientious regarch, combined with critical discronment of a bigh order. As laborious historical seadents, Don Jowd Toribio Poto, the author of an ecelesiastical history of Peruvian dioceses, and Dan Enrique Torres Saldarnando, the historian of the Jeauits in Peru, have great merit. Among good local a nnalists may be mentioned Juan Gitberto Valdivia, who has written a history of Arequipa, and Pio Benigno Mesa, the author of the Annal's of Cusco.

The leadine Peruvian authors on constitutional and legal cubjects are Dr Jost Santissevan, who has published volumes on civil and criminal Law; Luis Felipe Villaran (subsequently rector of the univerGity at Lima), author of a work on constitutional right ; Dr Francizo Garcia Calderon (once president of Peru), author of a dictionary of Penuvian leqislation, in two volumes; Dr Francisco Xavier Mariategui, one of the lathers of Peruvian independence; and Dr Francisco de Paula Vigil (1792-1875), orator and statesmanas wefl as author, whose work, Dejenso de los gobiernos, is a noble and enlightened statement of the cape for civil governments against the pretensions of the court of Rome. Manuel A. Fuentes, an able slatistician and the author of the Eslodistice de Limc. has also written a manual of parliamentary practice. Perhapa the most important work on Peru of modern times is that of the Italian savant Antonio Raimondi ($1825-1890$), who spent the greater part of his life in studying the topography and natural resources of the country. Only four volumes had been published at the time of his death, but he left a mass of papers and manuscripts which the government has put in the hands of the Geographical Society of Lima lor pubication. His great work is entitled El Pery: estudios mineralosicos, ${ }^{2} \mathrm{Cc}$. (3 vols. LIma, $1890-1902$), and one separate volume on the department of Ancachs. Peruvian literature since the independence has also attained high merit in the walks of poetry and romance. The Guayaquil author, Olmedo, who wrote the famous ode on the virtory of Junin, and the Limenlans Felipe Pardo and Manuel Segura are names well known wherever the Sparish language is spoken. Both died between 1800 and 1870 . The comedies of Segura on the eustoms of Lima socicty, entitled Us Paseo a Amancaes and La Saye y Manta, have no equal in the dramatic literature of Spanimh America and lew in that of modern Spain. From 1840 date the first poetical efforts of Arnaldo Marquer, who is distinguished for his correct diction and rich imagination, as is Nicolas Corpancho for his dramas and a volume of poems entitled Brisns, Adolfo Garcia for a beautiful sonnet to Bolivar, which was published at Havre in 1870, in his one volume of poems, and Clemente Althaus for his productivity and style. Pedro Paz Soldan was a classical scholar who published three volumes of poems. Carlos Augusto Salaverry is known as one of Peru's best lyrical poets, and Luis Benjamin Cisneros for his two novels, Judic and Edgardo. Trinídad Fernandez and Constantino Carrasco were two pocts of merit who died young. the principal work of the latter being his metrical version of the Quichua drama, Ollantay. José Antonio Lavalle and Narciso Arestegui are chicfly known as novelists. In his youth Ricardo Palma published three books of poems, entitled Armonias, Veebos y Gerundios and Pasionarias, and then, since 1870, devoted his great fiterary talents to writing she historical traditions of Peru, of which six volumes were published. At the outbreak of the war with Chile he was vice-director of the national library at Lima, which was wantonly pllaged by the Chilean forces. After the evacuation of Lima by the Chileans Palma devoted his life to the recovery of his ecattered books and the acquisition of ncw collections, and he had the satisfaction before his death of re-opening the library. which had obtained about 30.000 volumes, or three-lourths of the number on its shelves belore the Chilean invasion.

Of the aboriginal inhabitants of Peru much has been written. The important work of Mariano Eduardo Rivero. of Arequipa, ${ }^{i}$ The city of Lima produced two saints. the archbishop St Totibio, who fourished from 1578 to 1606 , and Santa Rosa. the patron saint of the city of the kings (1586-1616), whose fentival is celebrated on the 26 th of August.
masisted by J. J. von Tschudi, on the satignisies of Peru (Antigucdades permenas, Venna, 184t: Eng. trans, New York, 1853) has been followed by other investigators into the language, literature, customs and reficion of the Incas. The best known of these are joses Sebastián Rarranca, the naturnlist and antiquary, Jons Fernandez Nodal, and Gavino Pacheco Zegarra of Cuxco, who published translations of the Inca drama of Ollantay, and Leonardo Vithar, of Cureco.

Among Peruvian naturalites since the advent of the republic, the most distinguished have been Miriano Eduando Rivero, the gcologist, mineralogist and archacolopist, and his friend and colteague Nicolas de Pierola, authors of Iemorial de cuencias nafurgles. The Lima Geographical Society (founded in 1888) is perhaps the best and most active scientific organization in the republic. Its special work covers national geographical exploration and study, archaeology, statistics and climazology, and its quarterly bulletins contain invalusble information. The sociery receives a government subady, and its rooms in the national tibrary in Lima are the principal centre of acientific study in Peru. It had an active membership of 163 in 1906 , besides i72 honorary and comesponding members. The historical Institutc of Peru, also at Lima, is charged by the government, from which it receives a liberal subsidy, wth the work of collecting, preparing and publishling documents relating to Peruvian hlstory, and of preserving objects of archaeological and historic character. Its museum, which is of great historical and artistic value and includes a collection of portraits of the Peruvian viceroye and preaidents, is in the upper foors of the Exposition Palace. Another mbsidized hations! society is the athenamm, which was founded in 1877 as the "literary club," and reorganixed in r887 under its present title. Its purpose is to foster learning and literary cffort, and it is a popular and prominent fenture ia the intellectual life of the country.

Religion-According to the constitution of 1860 "the mation professes the apostalic Roman Catholic religion; the state protecta it, and does not permit the pubfic exercise of any other." There is a certain degree of tolerance, however, and the Anglican and some of the evangelical chunches are permitted to entablith mistions in the country, but not always without hastile deroonstrations from the Catholic pricsihood. There are Anglican churches in Lima and Cuzco, belonging to the diocese of the Bishop of the Falkland Islanda; but their existence is illegal and is ignored rather than permitted. In its ecelesiantical organmation Peru is divided into nime diacetes: Lima, which is an archbishopric, Arequipa, Puno. Cuzco, Ayacucho, Huanuco, Huaraz, Trujillo and Chachapoyas. These diocescs are subdivided into 613 curacies, presided over by curas, or curatevicars. Dach diocese has its seminary for the education of the priest. hood, that of Arequipa being distinguished for its influence in church aflairs, Arequipa, fike Cordobs and Chuquisem, is a stronghold of clericatism and excrcises a decisive influence in politics as well sa in church matters. There are a number of fine churches in Lima and in the sees of the variouts dioceses. Monasteries and numneries are numerpus, dating back to the I6th and 17 th centuriet, but their influence is now less potent than in those days and the monastic population is not so large. In modern times many of the convents have been devoted to educational work especially for girls, which is an obstacle to the surcestul developratnt of a public school aystem in the country.

Poltical Divisions.-The empire of the Incas was divided into four main divisions, Chinchay fayu to the north of Cuzco, Anti-suyu to the east, Colla-suyu to the south and Cunti-suyu to the west, the whole empire being called Ttahuantin-suyu, or the four governments. Each was ruled by a viceroy, under whom were the "buaranca-camayocs" or officers ruling over tbousands, and inferior officers, in regular order, over 500, 100, 50 and 10 men. All disorders and irregulatitics were checked by the periodical visits of the tucuyricocs or inspectors. The Spanish conquest destroyed this complicated system. In 1569 the governor, Lope Garcla de Castro, divided Peru into corregiwicnios under officers named corregidors, of whom there were 77. each in direct communication with the government at Lima. An important administrative reform was made in 1784 , when Pera was divided into 7 intendencias, eacb under an officer celled an intendente. These intendencias included about 6 of the old corregimictlos, which were called parlidos, under officers named subdelegados. Thus the number of officers reporting direct to Lima was reduced from 77 to 7 , a great improvement. The republic adopted the same system, calling the intendencias departments, under a prefect, and the paridos provinces, under a sub-prefect. Peru is divided into 18 departments, 2 littoral provinces, and what is called the constitutional province of Callao. This is exclusive of Tacna and its 3 provinces. The departments, which contain 98 provinces, with their areas, capitals and estimated populations of 1906, are as follow: the
liat being atranged to show' the coast, sierra and montala divisions:-

Departments.	Area sq. m.	Estimated pop., 1906.	Capital.	Estimated pop., 1906.
Coast:-				
Piura . .	14,849	154,080	Piura . -	9,100
Lambayeque.	4,615	93,070	Chiclayo.	10,000
Libertad. .	10,209	188,200	Trujillo .	6,500
Ancachs.	16,567	317,050	Humraz .	13,000
Lima.	13.314	250,000	Lina (1903) .	140,000
Ica (or Yca)	8.721	68,220	lca . .	6,000
Arequips.	21.953	171.750	Arequipa	28,000
Cajamarca	12,542	333,310	Cajamarca	9,000
Huanuco.	14,028	108,980	Huanuco.	6,000
Junin. .	23.354	305,700	Cerro de Pasco	10,000
Huancavelica	9,254	167,840	Huancavelica	6,000
Ayacucho	18,190	226,850	Ayacucho .	15,000
Apurimac	8,189	133.000	Abancay .	2,400
Cuzco.	156.317	328,980	Cuzco.	23,000
Puno.	41,211	403,000	Puno .	4,500
Amazonas	13,947	53,000	Chachapoyas.	4.500
Loreto : .	238,493	120,000	Iquitos .	6.000
San Martin -	30.745	33,000	Moyobamba	7.500
Provintes:Tumber				
Tumbez -	1.981	8,000 33,879	Tumbez ${ }^{\text {Caliao (ig05 }}$	2,300 31,128
Moquegua	5,550 ${ }^{1}$	33,879 31,920	Moquegua).	3,128 5,000

Apart from the departmental capitals there are few towns of size and importance. The so-called coast towns are commonly at some distance from the seashore, and their shipping ports are little more than a straggling collection of wretched habitations in the vicinity of the landing-stage and its offices and warehouses. Callao (e.v.) is a noteworthy exception, and Paita and Pisco are something more than the average coast village. Near Lima, on the south, there ere three bathing resorts, Chorrillos, Miraflores and Barranco, which have handsome residences and large populations in the bathing season. North of Lima is the port and bathing resort of Ancon, in an extremely arid locality but having a fine beach, a healthy climate and a considerable population in the season. The towns of the coast region are usually built on the same general plan, the streets crossing each other at right angles and enclosing squares, or quadras. In the sierra there is the same regular plan wherever the site is level enough. High-pitched red tiled roofs take the place of the fat roofs of the coast. The upper storey often recedes, leaving wide corridors under the overhanging eaves, and in the "plazas" there are frequently covered arcades. In addition to the capitals of the departments, Tarma (about 4000) and Xzuxa, or Jauja (about 3000), are important towns of this region. In the manilata there are no towns of importance other than the capitals of the departments and the small river ports.

Commanications.-The problem of eary and cheap transportation hetween the coast and the interior has been a vital one for Peru, for upon it depends the economic development of some of the richest parts of the republic. The arid charactes of the coastal zone, with an average width of about 80 m ., permits cultivation of the soil only where water for irrigation is available. Only in the sierra and montafta regions is it possible to maintain a jarge population and develop the industries upon which their success as a nation depends. During colonial times and down to the middle of the 19th century pack enimals were the only means of transportation across the descrt and over the rough mountain trails. Railway construction in Peru began in $18{ }_{4} 8$ with a short line from Callao to Lima, but the building of railway lines across the desert to the inland towns of the fertile tiver valleys and the Andean foot-hills did not begin until twenty years later. These roads added much to the productive resources of the country, but their extension to the aierra districts was still a vital necessity. Under the administration (1868-1872) of President Jose Balta the construction of two trankandean and several coastal zone railways was begun. but their completion became impoesible for want of funds. Balta's plans covered 1281 m . of atate railways and 749 m . of private lines, the estimated cost to be about $£ 37,500,000$-a aum far beyond the resources of the republic. The two transandean lines were the famous Oroya raitway, running from Callio to Oroya (i893), which crosees the Western Cordilicra at an elevation of 15,645 \% t .
and later wri zo Cerro de Pasco (1gou), the Colliurisquivez coal mines (1904) and Hauri (1906); and the couthern line from Mollendo to Lalee Titicaca, which reached. Arequipa in 1869. Puno in 187r and Checcacupe (Curco branch) in 1906 . Surveys were completed in 1909 for an extension of the Oroya line from a point on its Cerro de Pasco branch castward to the Ucayali, and another transendean line frequently discussed is projected from Paita acroes the Andes to Puerta Limon, on the Marainon-a distance of 410 m .
The most important means of communication in the republic is that of its river system, comprising, as it does, the navigable channele of the Marainon, or upper Amazon, and lis tributaries. It is officially eatimated that this aystem comprises no lest than $20,000 \mathrm{~m}$. of connected riverways mavigable at higb water for all descriptions of boats, or $10,000 \mathrm{~m}$. for ateamers of 20 to 2 ft . draught. which is reduced to 5800 m . at low water. The rivers forming this, system are the Marañon from Puerto Limon to Tabatinga on the Brazilian frontier (484 ml .), the Japuri, Putumayo, Javary. Napo, Tigre, Huallaga, Uceyali, Pachitea, Juruk, Purís, Acre. Curaray and Aguarico all navigable over parts of their coursa for stcamers of 4 to 8 ft . draught in periods of histh water. As for the Marafion, it is claimed that steamers of 20 ft . draught can ascend to Puerto Limon at all seasons of the year. The inclusion of the upper waters of the Brazilian rivers Jurua, Purús and Acre is pro forma only, as they are wholiy under Brazilian jurisdiction. Practically the whole of the region through which these rivers ruorthe montonic of Peru-is undeveloped, and is inhabited by Indiass with a few settiements of whises on the river courses. Its chied port is Iquitos, on the Marañon. $\mathbf{3 3 5} \mathrm{m}$. above the Brazilian fronier and 2653 m . from the mouth of the Amazon. it in visited br ocean-going steamers, and is the ceatre of the Peruvian rive transportation system. The second port in importance is Yurimaguas, on the Huallaga, 143 m . from the mouth of that river and 528 m . from Iquitos, with which it is in regular communication There are small ports, or trading posts, on all the large rivers, and occasional steamers are sent to them with supplies and to briot away rubber and other forest products. of the rivers fariber south, which diucharge into the Amazon through the Madeira, the Madre de Dios alone offers an extended navigable chanoel, rogether with some of its larger tributaries, such as the Heath and Chandicss. Of a widely different character is the navigation of Lake Titicaca, where steamers ply regularly between Puno and Guaqui, the latter on the south-cast shore in railway conncxion with Le Paz, the capital of Bolivia. This is one of the moss remarkable steamer routes in the world, being $12,370 \mathrm{ft}$. above wealevel. The lake is 165 m . long and from 701080 m . wide and has a number of small Indian villages on its shores.

There are two submarine cable lines on the Peruvian coastthe (American) Central and South Amcrican Co extending from Panama to Valparaiso, and the (British) West Coast Cable Co. subsidiary to the Eastern Tclegraph Co., with a cable betwen Callao and Valparaiso. The inland teicgraph service dates from 1864, when a short line from Callao to Lima was constructed. and state ownership from 1875, when the government assumed control of all lines within the republic, some of which were subsequently handed over to private administration. They connect all the important cities, towns and ports, but cover only a mall part of the republic. The cost of erecting and maintaining celegraph lines in the sierra and mentafta regions is 200 great to permit their extersive use, and the government is seeking to substitute wircless telegraphy. From Puerto Bermudes, on the Pachites or Pichis river, the terminus of a government road and telegraph line, : wireless system connects with Massisea on the Ueayali, and thence with Iquitos, on the Maranion-a distance of 930 m . by steamer, which is much shortened by direct communication between the thrte radiographic stations. This service was opened to Iquitos on the 8th of July 1908, the first section between Puerto Bermudaz and Massisea having been pronounced a succesa. The Perusia telegraph system connects with those of Ecuador and Boliva. The use of the telephone is general, 5236 m . being in operalion ia 1906. The postal service is unavoidably limited and defective. owing to the rugged character of the country, its sparse population. and the large percentage of illiterates. On the caast, hovever, In and near the large cities and towns, it compares well with other South American countries. Peru belongs to the international postal union, and had in 1906 a money order and parcels exchange with seven forcign states. A noteworthy peculiarity in the foreigt mail scrvice is that an extra charge of 2 cents for each letter ard 1 cent for each post-card is collected when they are scnt across the isthmus of Panama. No charge is made for the transmission o newspapers within the republic. The letter rate is 5 cents sinver for 15 grams, or to cents to forcign countries in the postal union.
Commerce,-Owing to political disorder, difficulty in land communications. and the inheritance of vicious fiscal methods from Spanish colonial administration, the commercial development of Peru has been slow and erratic. There are many ports on the coast, but only eight of them are rated as first class, viz. Paita Eten, Pacasmayo, Salaverry, Callao. Pisco, Mollendo and Iha five of which are ports of call for foreign coasting steamers. Tbe inland port of !quitos. on the Marañon, is also rated as first clatas and enjoys special privileges because of its distance from the mational

 Loticid oi the Araeon neer the memer month of the jwar.

 onte wex come of South Americe, be beyn geaty improved

 chip on epplicetion and under certens eonditions. The unport

 ranking seond. The Largect share in Peru's forign emade in thats by Great Britain, Chile rankiag mocod and the United Sentea third.
Products.-Atihough her mining faduatries have been the fonpest and most widely known, the principal sourte of Pcru's wealk is agriculture. This seems incompatible witb the arid character of the country and the peculiar conditions of ite civilization, but irrigution than boen uuccemfully employed in the fertile valleys of the coast.
Agriculdime.- Sugar-cane is cultivated in mont of the const valleya, and with exceptional uucress in thowe of the Cancte, Rimac, Chancay, Huaura, Supe, Santa, Chicama, Pacasmaryo and Cbiclayo. Some of the large emates are owmed and worked by Britioh subjects. The indusiry was nearly ruined by the Chiloans in 1880, but its recovery coon followed the termination of the war and the output has been treadily increadng. At the outbruak of the war the production was about 80,000 tone; tha 1903 the production of sugar and molames amounted to 161,851 metrice rorme of which 194.34 were, exported. In 1906 the toxall production reached 169,48 metric tons. Next in importance is cotion, which is grown along the greater part of the Peruvian coonst, but chiefly in the departments of Piura, Lima and lica. Four kinds aro prodiced: frovgh cotion or "vegetable wool." mea island, brown or Mitafif, and smooth or American. Production is meadily bocreating, the export having been 8000 metric toms in 1900, 17,386 in 1903 and 20,000 in 1906 . Local consumption roquited about 2500 otons in 1905. Rice is an important crop in the inundated lands of Lambayoque and Libertad. It is a univenal articte of food in Peru. and the output is consumed in the country. Maize is another imporrant food product which in generally cultivased along the coast and in the lower valieys of the wierra. In some places iwo or three crope a year are obtained. It is the , staple food everywhere, and litate is exported. It is largely used in the manufacture of olvicha, a fermented drink popular among the lower classer. Tobsccto is grown in the department of Piura, and In the monnana departmeate of Loreto. Amazonas and Cajamarca. The bocal consumption la large and the export small. Another monseria product is coffee, whose successful development is prevented by difficult transport. A superior quality of bean is produced in the eastern valleys of the Kndes, especially in the Chanchamayo valley. Cacao is another montanda product, although like coffice it is cultivated in the warm valleys of the sierra, but the export is small. With cheap transport 10 the coast the production of coffee and cacao must largely hacrease. Coca (Erylhroxylon coca) is a product peculiar to the castera Andean slopes of Boivia and Peru, where it has long been cultivated for its leaves. These are sun-dried, packed in bales, and dias ributed throughout the sierra region, where coca is used by the natives as a stimulant. The Cholos are never withourt it, and with it aro able to perform incredible tasks with Hirte food. The common manner of using it is to masticate the dried leaves with a little lime. Cocaine is also derived from coca leaves, and a considerably quamtity of the drug is exported. The coca shrub is most sucocessfully cultivated at an elevation of 5000 to 6000 f . Fruits in great variety are grown everywhere in Peru, but beyond loca! market demands their commercial production io limited to srapee and olives. Grapes are produced in many of the irrigated valleys of the coast. such as Chincha, Lunahuana, ica, Vitor, Majes, Andaray, Moquegua and Locumba, and the fruit is manufactured into wince and brandies. Excellent clavert and white wines are produced. and the industry is steadily increasing. Olives were introduced carty in colonial times and are cultivated in several coass vallcys, especially in the provinces of Camans (A requipa) and Moquequa. The fruit is commonly used for the manufacture of oil. Which is consurmed in the counsty, and only a mmalit part is exported. Were large markets availeble, other fruits such as oranges. lemons. limes and bananas would undoubedly be extensively cultivited. In the sierre region, wheat, barley, onts, quinua (Chonopodivin quinde),
 principal pooducts. What is widely grown but the output is not large, Badny and cats are grown for forage, but for this purpoee alfara ha beconce the steple, and without it the mountain packtrins could not be maimtained. Quinm is an indigenout plant, growiag at elevations of $\mathbf{1 3} 500 \mathrm{ft}$. and more; its grain is an important food among the upland nitives. Potatoen ase grown everywhere in the sierran, and with quinua are the only crops that can be ruised for human food above 13,000 ft. Iuca (Marihot wificsima), known esersons in the Wett Indies and mandioce in Braril, is aloo widely cultivated for food and for the manalacture of atarch.

There are sood pestures in the cierras, end cattle have been vecenof ully meared in morme of the departmente since the marty years of Spanim occupliond, drialy in Ancachs, Cajamance, Junin. Ayweucho, Puno, and some parts of Cuzco. The development or alfalfe cukivation is extendiag the area of cattlobreadiag comewhet and is improving the quality of the beef produced. The cattle are commonly emall and hardy. Lrostect. ind, like the Mexicam cattle, are able to bear anfavoumble porditionts. Sheep ere reared over a momewhat wider mage, exclasively for theit wool. The "natives" of deacend mis of the parly importations, age emall, Ioncolagged nionals whone wool is manaty ald poor. Sioce the end of the 19th century efforta have been.made to improve the teeck through the importation of merinos, with good zevilts Sheep gingts undor the ctre of Scottish whepherds bave alas beas ectabished in the dopartment of Junin, the stock being ifnported from aouthern Petagania, England and Aturtralia. Coats are raisod in Piura and Linmbayeque for their ghins and fat, and wineboreding for the production of land has beconte important in sone of the cosest valiey immadiately north of Lima. Horten are reared only to a tiruted ertent, although there in a demand for them for railitary purpaces. The poverngent Is eveldint to poomete the induxtry through the importacion of breeding maras from Argenting. Mulew are bred in Piura and Apurbrac, and are highly estrerued for mourtain travel. The chidef breediag industry is that of the llamn, appace and viculioanimals of the Amehenias family domestiented by the Indians and bred, the firit as a pack animal, and the other two for thair wool, hidcs and meast The llame was the oaly beat of burien knowre to the South American matives before the arrival of the Spminieds and is highty mervicomble on the difieult traik of the Andes. The alpaca and viculta are smaller and weaker and have never been used for this serviee, hut their finc qloney flesces were wed by the Indlans in the manufacture of clothing and are otid an important commercial asset of the elevated table-lands of Peru and Bolivia. The export of mool in 1905 esceeded $3 \times 300,000$ it. The maring of these animals requires mweh patience and skill, in which no one has been able to match the Indian breeders of the Aadena plateang.

The natural products of Paru include rubber, cabinet moods in preat variecy, cinchons or Peruvian bark and other medicinal products, vitous fihres, and guano. There are two
 forests: jebe (alio wittum hebe) or serimgor and camelio-
the former being collected from the fifmed greymencis or \boldsymbol{I}. brasilitusis, and the latter from the Ceptilloa datica and mome other varictics. The Zace product is obtained annually by tappiag the trees and coagulating the enp over a smoky fire, but the csmeko is procured by felling the tree and collecting the tap in a hollow in the ground where it is coagulated by titring in a mixturt of soap and the juice of a plant called votillo. As the species from which Ceares rubber is obtained (Hancorine specioss) is found in Bolivia, it is probable that this is also a source of the Perrvian cawcho. The Hewed is found along the water-courses of the lowlands, which includes the large tributaries of the Maranor, while the caucho species flourish on higher ground, above 900 ft . elevation. Owing to the export tax on rubber (8 cents per kilogram on jebe and 5 cente on caucho) it is probable that the official statistics do not cover the total production, which was returned as 2539 metric tons in 1905 valued at $\mathrm{f913} 3 \mathrm{~g} 89$. The export of cinchona, or Peruvian bark, is not important in itself, being only 64 tons, valued at fir 406 in 1905. The best bark comes from the Carabaya district in southcastern Peru, but it is found in many localities on the castern slopes of the Andes. The Peruvian supply is praetically exhausted through the destructive methods employed in collecting the bark, and the world now depends chiefly on Bolivia and Ecuador. The forests of eastern Peru are rich in fine cabinet woods, but their inaccesaibility renders them of no great value. Among the best known of them are cedar, walnut, ironwood and caoba, a kind of mahogany. Many of the forest trees of the upper Amazon valley of Brazil are likewise found in Peru. The palm family is numerous and includes the species producing vererable ivory (Phytatephas), straw for plaiteng Pamama hats (Corludovica paimata), and tbe peach palm (Guiliclma spaciosa).

From geano an immense vovenue wat denived during the third quarter of the 19th century and it is still one of the largest exporta The guano beds are found on the barren islands of the amana Pacific coast. They were developed comrsercially during tbe administration ($18.45-185$) of President Ramon Castilla, at the sariee time that the nitrate degosits of Tarapace became
commercial aseet of the republic. The large revenses derived from theme sources uarloubtedly became a caure of weakness and demoratization and eventually remulted in bankrupecy and the loes of Terapach. The depoits have been partially exhauted by the large shipments of over a half-century, but the export in 1905 was 73.369 tons, valued at $\{2857729$.

Mining-Mining was the chief industry of Peru under Spanish sule. The Inca tribes were an agricultural and pastoral people, but the abundance of gold and silver in their poseemion at the time of the conquest showe that mining must have received considerable attentions They used thewe precious metals in decormtions and as ormanests, but apparently attached so great value to them. The une of bromee eloo fhows that they must have worked, perhapa tuperficially, come of the grett copper depositt Incmediately following the Spanish invasion the Andean region was thoroughly explored, and with the assistance of Indian taved thoutands of mines mere opened, many of thern failuses, some of them becoming fanous, There was a decline in mining eaterprise fier the revolt of the colonista against Spaninh rule, owring to the nasettled state of the country, and this decline continued in mome measure to the end of the ceetury. The mining laws of the colonial regime and political dieonder topether rained a barrier to the employment of the lange amount of capital needed, while the frequent outbreaks of civil war made it impoesible to work any large enterprise because of its interference with labour and the free uee of porte and roada. The Peruvians were impoverished, and under such conditions foreign capital could not be socured. In. 1876 new mining laws were enacted which gave better titles to mining propertied and better regulations for their operation, byt the outbreak of the war with Chite at the end of the decade and the mucceeding yeam of disorganization and partisan strife defeated their purpoas Another new mining code was adopted in 1901, and this, with an imptovement in political and economic conditions, has led to a renewal of mining enterprise.

Practically the whole Andean region of Peru is mineral-bearinga region 1500 m . long by 20020300 m , wide. Within these limits are to be found most of the minerals known-gold, silver, quicksilver, copper, lead, zinc, iron, manganese, wolfram, bismuth, thorium, vanadium, mica, coal, \&te. On or near the coat are coal, salt, sulphur, borax, nitrates and petroleum. Goid is found in lodes and alluvial depoait; the former on the Pacific slope at Salpo, Otuzco, Huaylas, Yungay, Ocros, Chorrillos, Casiete, Ica, Nascs, Andaray and Arequipa, and on the table-lands and Amazon slope at Pataz, Huánuco, Chuquitambo, Huancavelica, Cuzco, Cotabambas, Aymarcs, Paucartambo, Santo Domingo and Sandia; the latter wholly on the Amazon slope, in the country about the Pongo de Manseriche and at Chuquibamba, both on the upper Marainon in the districts of Pataz, Huanuco, Aymarea aind Antabamba (Apurimac), Paucartambo and Quippicauchi (Cuzco), and Sandia and Carabaya (Pumo). The last two are mont important and, it is believed, were the sources from which the Incas derived the greater part of their store. The alluvial deposits are found both in the beds of the emall streans and in the soil of the amall plaine or pompas. The Aporomat deposit, in the district of Seodia, is the best known. Long ditches with tone-paved sluices for waghing this mineral-bearing material have long been used by the Indians, who aiso construct stone bars across the beds of the streams to make riffles and hold the deposited graina of gold. Modern methods of hydrautie mining bave been introduced to woric the auriferous banks of Poto; elecwhere antiquated methods only are employed. The upper valley of the Marafion has undeveloped gold-bearing lodes. The nu mber of mines worked is smail and there is not much foreign capital invested in them. The gold ores of Peru are usually found in ferruginous quarte. The production in 1906 was valued at 4, ${ }^{2} \mathbf{6}, 355$.

Peru has been known chicfly for lits silver mines, some of which have been marveliously productive. The Cerro de Pasco district. with its 342 mines, is credited with a production, in value, of $\{40,000,000$ between 1784 and $\mathbf{1 8 8 9}$, and is still productive, the output for 1906 being valued at 6972,958 . The principal silverproducing districts, the grearer part on the high tabie-lands and slopes of the Andes, are those of Salpo, Hualgayoc, Huari, Huallanca, Huaylas, Huaraz, Recuay, Cajatambo, Yauli, Cerro de Pasco, Morococha, Huarochini, Huancavefica, Quespisiva, Castrovirfeyra, Lucanas, Lampa, Caylloma and Puno, but there are hundreds of others outside their limits. Stlver is generally found as red oxides (locally called rosicler). sulphides and argentiferous galena. Modern machinery is little used and many mines are practically unworkable for want of pumpa In the vicinity of mome of the deposits of argentiferous galena are large coal beds, but timber is warce on the table-lands. The driod dung of the llama (laquia) is generally used as fuel, as in pre-Spanish times, for roasting ores, as also a species of grass calked uchs (Slipa znoama), and a singular woody lungus, called yarela (Azordlaz wmbellifers), found growing on the rocke at elevations exceeding $12,000 \mathrm{ft}$. The methods formerly employed in reducing ores were lixiviation and amalgamation with quicksilver, but modern methods are gradually coming into use. Quicksiver is found at Huancavelica, Chonts (Ancachs), and in the department of Puno. The mine first named has been worked since $1 g t s$ and 1 ts zotal production is extimated ax 60,000
tons, the annual product being about 670 tons for a long period. The metal generally occurs as sulphide of mercury (cinmabar), but the ores vary preatly in richnees-from 2) to 20%. The nonual production has fallen to a small fraction of the former output, its value in 1905 being only f 340 , and in 1906 f495.

The copper deposits of Peru long remained undeveloped through want of cheap transport and failure to appreciate their true value. The principal copper bearing districts are Chimbote, Cajamarca, Huancayo, Huaraz, Huallanca, Junin, Huancavelica, lca, Arequipa. Andahusylas and Cusco-chicfly situated in the high, bleat resions of the Andes. The Junin district is the beat known and includes the Cerro de Pasco. Yauli, Morococha and Huallay groups of mines, all finding an outlet to the coast over the Oroyn rilway. These mines art of recent development, the Cerro de Pasco mines having been purchased by American capitaliste. A emelring plant was erected in the vicinity of Cerro de Pasco deligned to treat 1000 tons of ore daily, a railway was built to Oroya to connect with the state line terminating at that point, and a branch line 62 m . long was built to the coal-mines of Coillarisquiges. The Cerro de Pasoo mines are supposed by some authoritibs to be the largest copper deposit in the world. In addition to the smelting works at Cerro de Pasco there are other large works at Caspalga, between Onoya and Lima, which belong to a British compary, and amaller plants at Huallanca and Huingc. The production of copper is steadily incroasing, the returns for 1903 being 9497 tons and for 190613,474 tons, valued respectively at l476,824 and 1996 pgs. Of other metala, lead is widely distributed, its chief source being a high grade galena accompanied by ailver. Iron ores are found in Piura, the Huaylas valkey, Aja. and some other places, hut the deposite have not been worked through lack of fuel. Sulphur deposits exist in the Sechura desert region, on the coast, and extensive borax deposits have been developed in the department of Arequipa. Coal has been found in extemsive beds near Piura, Salaverry, Chimbote, Huarmey and Pisoo on the coast, and at Coillarisquisga. Huarochiri and other places in the iaterior. Both anthracite and bituminous deposits have been lound. Most of the depoaits are isolated and have not been developed for want of traneport. Petrolcum has been found at several points on the cosst in the department of Piura, and near Lake Titicaca in the department of Puno. The most productive of the Piura wells are at Talarm and Zorritos, where refineries have been catablished. The crude oll is used on some of the Peruvian railvaya.

The number of mining claims (pertenencias) registered in 1907 was 12,858, according to official returns, each aubject to tax of 30 soles, or f.3. per annum, the payment of which eecures complete ownership of the property. The clajms measure 100×200 metrea (about 5 scres) in the case of moineral veins or lodes, and 200×200 metres (about 10 acres) for coal, alluvial gold and other deposits. The labourers are commoniy obtained from the Cholos, or Indian inhabitants of the sierras, who are accustomed to high altitudes, and are penerally efficient and trustworthy.

Monnfactures-The manufacturing industries of Peru are confined chiefly to the treatment of agricultural and mineral productsthe manufacture of eugar and rum from sugar cane, textiles from cotton and mool, wise and epirita frort grapes, cigars and cigarettes from tobacco, chocolate from cacao, lerogene and benzine from crude petroleum, cocaine from coct, and refined metals from their ores. Many of the manufacturing industries are carried on with difficulty and maintained only by protective duties an competing goods. The Incas had made much progress in weaving, and specimans of their fabrice, both plain and coloured, are to be found in many museums. The Spanish introduced their own methods, and their primitive looms are still to be found among the Indians of the interior who weave the coarse material from which their own garmente ate made. Modern looms for the manulacture of woodlens were introduced in 1861 and of cotton goods in 1874 . There are large woolien factories at Cuxco and Lima, the Santa Catalina factory at the latter place turning out cloth and cashmere for the army, blankets, counterpanes and underclothing. There are cotton factories about Lima, at Ica and nt Arequipa. Besides the wine industry, an irregular though important industry is the manufacture of ertificial or counterfeit spinits and liqueurs in Caliao and Lima. There are brewerics in Arequipa, Callao, Cusco and Lima, and the consumption of beer is increasing. There are large cigarette factories in Lims, and others in Arequipa, Callao, Piura and Trujillo. The plaiting of Panama hats from the specially prepered 6bre of the "toquilla" palm is a domestic industry among the Indians at Catacoas (Piura) and Eten (Lambayeque). Coareer straw hats are made at other places, as well as hammocks. baskets, 80 c .

Government.-Peru is a centralized republic, whose supreme law is the constitution of 1860 . Like the other states of South Amernca its constitution provides for popular control of legislation and the execution of the laws through free elections and comparatively short terms of office, but in practice these snfeguards are often set aside and dictatorial methods supersede all others. Nominally the people are free and exercise
soveralign tiohts in the choice of their representatives, but the ifnoranoe of the mases, their apsthy, poverty and dependeace upon the great land proprictors and industrial corporations precticuly deleat these fundamental constitutional provisions. Citizenship is accorded to all Peruvians over the ago of 31 and to all married men under that age, and the right of saffrage to all citisens who can read and write, or ponsess real entate or workabops, or pay taxes. In all cusea the ecentise of citirenabip is regulated by lav.

The government is divided into these mopenadeat branches, legisiative, exocutive and fudicial, of which through force of circumstances the executive has become the dommeting power. The exscatire branch consists of a president and two vicopresideats elected for terms of four years, a cabloct of six ministers of state appointed by the president, and varions subordinate offictals who are under the direct orders of the peredient. The prosident is chosen by a direct popular election and cannot be re-elected to succeed himself. He must be not lese than 35 years of age, a Peruvian by birth, ts the enjoyment of all his civil rights, and domiciled in the republic ten years preceding the election. The hmmediatesupervision and despatch of public adminitrative affairs is in the hands of the cabinet ministers-intorior, foreign affoirs, war and marine, finance and conmeroe, justice and public instruction, and public works and promotion (fomento). The execution of the laws in the depertments and provinces, as well at the maintenance of public order, is entrusted to prefects and sub-prefects, who are appointees of the president. A vacancy in the office of presidont is Gilled by one of the two vice-preddents elected at the rame time and under the ame conditions. Inability of the first vice-president to ascame the office opens the way for the second vice-president, who becomes acting president until a successor is choeen. The vice-presidents cannot be candidates for che presidency during their occupancy of the supreme execative office, nor can the ministers of state, nor the general-in-chief of the army, while in the exercise of their official duties.

The iegislative power is exercised by a nationai Congresssenate and chamber of deputles-meeting annually on the 28th of July in ordinary somion for a period of 90 days. Senators and deputies are inviolahle in the exercise of their duties, and cannot be arrested or impriconed during a session of Congreas, incloding the manth preceding and following the session, except in flagrante delicto. Members of Congress are forbidden to accept any employment or benefit from the ezecutive. Senators and deputies are elected by direct voto-the former by depertments, and the latter in proportion to the population. With both are dected an equal number of anbatitutes, who assume office in case of vacancy.

Departments with eigbt and more provinces are entitled to four senators, those of four to seven provinces three senatore, those of two to three provinces two senators, and those of one province one senator. The deputies are chosen to represent 15,000 to 30,000 population each, but every province must have at least one deputy, Both eenatory and deputies are elected for termis of six yeara, and both must be native-born Peruvian citizens in the full enjoyment of their civil rights. A senator must be 35 years of age, and have a yearly income of $\$ 1000$. The age limit of a deputy is 25 years, and his income must be not less than $\$ 500$. In both chambers the exercise of wome ecientific profesion is socepted in lieu of the pecuniary income. No member of the executive branch of the government (president, cabinet minister, prefect, sub-prefect, or governor) can be elected to either chamber, nor can any judge or " "iscal " of the supreme court, nor any member of the ecclesinstical hierarcty from his diocese, provinoe or parish, nor any judge or "fiscal" of superior and first-instance courts from their judicial districts, nor any military officer from the district where he holds a military appointment at the time of election. No country is provided with more and better afeguards agninat electoral and oficial abusea than is Peru, and yet lew countrioe suffered more from political disorder during the 19th century. The president has no veto power, hut has the right to return a law to Congress with comments within a period of ten days. Should the act be again passed without amendments it becomes law; if, however, the surgented ameadments are acoepted the act must go over to the next session. Congress may also sit as a court of impeachmentthe senate hearing and deciding the case, and the chamber acting as prosecutor. The president, ministers of state and judges of the eupreme court may be brought before this court.
$x \times 15$

Justice.-The judiciary fis compoted of a mperans courth mperior courts and courts of firt ingtance, and juticet of the peace. The supremo const is establiahed at the national capical and conalite of 11 judgen and 2 "fiscals" or pronecutorn. The judgea ara aelected by Congress from lists of nominees submitted by the extecutive. The judgee of the superior courts are chosen by the president from the list of nominees zubmitted by the wupreme court. Quentioss of jurindiction butween the auperior and aupreme courts, as well as queations of like character between the suprems court and the ewective, are decided by the eenate witting at a court. The courts of firte instanct ase establimed in the capitaly of peovinces and their judges are chowen by the superior courte of the districts in which they are located. The independence of the Peruvian courts hat not been macrupulously maintained, and there has been much criticism of their character and decimons.
The national excecutive appoints and sernoves the profects of the departmenta and the tub-prefects of the proviscen, and the prefectis appoint the gobiernaderes of the diaricta. The-police oficiale throughout the repreblic are also appointese of the prest deat and ape under his ordern.
Army.-After the Chilean War the divorders fomented by the rival military officers led to a desine to place the adminiotration of public affaire under civilian control. This ied to a material reduction in the army, which, as reorganized, consiste of 4000 officers and men, divided into seven battallows of infantry of 300 mep each, teven equadrons of cavalry of 12 men each, nand one regiment of mowntain zrtillary of 590 men, with ix batterios of mouncain guns. The reorganization of the army wha carried out by 10 officers and 4 non-coma, of the French army, known as the French military mismion, who are also charged with the direction of the military school at Chorrilios and all branches of military instruction. There are a military high mehool, preparatory mehool, and "achool of application "in compexion with the training of young officers for the army. The head of the mission is chic! of staff.' Formerly the Indians were forcibly pressed into the sarvice and the whiter filled the pooitions of officers, in great part untrained. Now military service in oblligatory for all Peruvians between the agee of 19 and 50, who ane divided into four classas, firse and mexond reserves (19 to 30, and 30 to 35 yeara), supernumeraries (those who have purchased exemption from mervice in the reqular army), and the national guard (35 to 50 yeare). The regular force is maintained by anaum drawings from the lista of young mea 19 years of age in the first reacrves, who are required to merve four years. The direction of military affairs is entrusted to a gencral staff, which was reorganized in 1904 dn the lines adopted by the great military power of Europe. The republic is divided into fous military districts with headquarters at Piura, Lima, Arequipa and Iquito, and these into eleven circumestriptions. The mounted police force of the republic is aleo organized on a militafy bacis

Nevy. The Peruvian navy was practicaliy annibilated in the war with.Chile, and the poverty of the country prevented for many years the adoption of any meapure for ite rebuibling. In yoos it condisted of only five vesels. The naval ichool at Calleo is under the direction of an officer of the French navy. In addition to the foreqging the government has a few small river boats on the Maraion and ita tributarien, which are commanded by naval officars and used to maintain the authority of the republic and carry on geographical and hydrographical wort.
Fimance--The Ginancial record of Peru, notwithstandiag her enornuous natural resources, has boen one of disaster and discredit. Internal strife at first prevented the development of her resources, and then when the export of guano and nitrutes supplied her treasury with an abundance of funds the money was squandered on extravagant enterprises and in corrupt practices. This was followed by the lose of these remources, bankruptcy, and eventually the surrender of her principal aserts to her foreign creditors. The government then had to readjust expeniditures to largely diminished resources; but the obligation has been met intelligently and courageously, and since 1895 there has been an improvement in the financial state of the country. The public revenues are derived from custome, taxea, various inland and conmunption taxem, state monopolies, the goverament wharves, posts and zelegraphs, te. The custome taxes include import and export duties, surcharges, harbour dues, warehouse charges, \& c .; the inland taxes comprise consumption taxes on alcohol, tobacco, sugar and matches, stamps and stamped paper, capital and mining properties, hocences, transfers of property, ace.; and the state monopolies cover opium and alt. In 1905 a loan of $\{600,000$ was foated in Germany for additions to the navy. The growth of receipts and expenditures is shown in the following table:-

	1904.	1906.	1908.
Revenue. Expenditure	$\begin{aligned} & 11,090,568 \\ & 1,884,949 \end{aligned}$	$\begin{aligned} & \left\{\begin{array}{l} 2,527,766 \\ 2,178,252 \end{array}\right. \end{aligned}$	$\begin{aligned} & \mathbf{4}, 997,433 \\ & \mathbf{3}, \mathbf{0 4 3 , 0 3 2} \end{aligned}$

The revenues of 1896 were only $\{1,128,714$.

The foveign debt began with a small loan of $\{1,200,000$ in London in 1822, and another of $\{1,500,000$ in 1825 of which only $\{716,516$ was placed. At the end of the war, these loans, and sums owing to Chile and Colombia, raised the foreign deht to $£ 4,000,000$. In
$\mathbf{1 8 3 0}$ the debe and accamelated futerest owing in London amounted to $\{2,310,767$, in addition to which there was a home debt of 17, 183. 197 dollars. In 1848 the two London loans and acoumulated interent were covered by a new loan of $\mathbf{5 3 , 7 3 6 , 4 0 0}$, and the home debt was partially liquidated, the sale of guano giving the treaturry ample retources Lavich expenditure followed and the government was soon anticipating its revenues by obtaining advances from guano consignoen, usually on unfavourable termas, and then floating toans. There was another conversion loan is 1862 in the sume α 65,500,000 and in 1864 atill another loan of this character was issued, nominally for $[10,000,000$ of which $47,000,000$ only were isured. Then followed the ambitious achemes of President Balta, which with the loams of 1870 and 1872 raised the total foreign debt to 4 $49,000,000$, on which the annual interest charge was about f2,500,000, a sum wholly beyond the remources of the treasury. In 1876 interest peyments on account of thin debt were suspended and in 1879-1882 the war with Chile deprived Peru of her primipal sources-od income-the grano deposits and the Tarapaci nitrates. In 1889 the total foreign debt, including armers of interest, wat ($54,000,000$, and in the following year a contract was aigned with the Peruvian Corporation, a company in which the bondhoiders bocame ahareholders, for the tramafer to it for 66 years of the state railmays, the free use of certain ports, the right of navigation on Luke Titicuca, the exploitation of the remaining guaco deposits op to $3,000,000$ tona, and thirty-three annual subsidies $\propto \&\{80,000$ each, In consideration of the cancellation of the debl. Sompe modiGcationa were later made in the contract, owing to the government's failure to meet the annual subbidies and the corporation's failure to extend the railways agreed upon. This contract relieved Peru of its crushing burden of foreign indebtednew, and turned an apparently heavy low to the bondhoiders into a pomable profit. In 1gio the foreign debt utood at $\{3,140,000$, comapobed of (i) Peruyian Corporation $22,160,000$; (2) wharves and docke, $f 80,000 ;$ (3) loan of 1905, (500,000; (4) loan of 1906, f100,000.
Currency. - The single gold standard has been in force in Peru nince 1897 and 1898 , silver and copper being used for subaidiary coinage. The monetary unit is the Peruvian pound (librt) which is umilorm in weight and finenesw with the British pound sterling. Half and fifth pounds are also coined. The silver coinage consists of the 301 (100 cents), ball 301 (50 cents), and pieces of 20 (perela), to and 5 centa; and the copper coinage of 1 and 2 cents. The single standard has worked well, and has contributed much toward the recovery of Peruvian commerce and finance. The change from the double standard was effected without any noticeable disturbance in commercial affairs, but this was in part due to the procuution of making the British pound sterling legal tender in the republic and entablishing the legal.equivalent between gold and silver at 10 soles to the pound. The coinage in $1906-190$ was about $£ 150,000$ gold and 665,000 dilver, and the total circulation in that year was eximated at $\{1,400,000$ in gold coin and 6600,000 in silver coin. Previous to the adoption of the single gold standard in 1897 the monetary history of Peru had been uniortunate. The firse national coinage was begun in 18az, and the decimal sytem was adopted in 1863. Although the double standard was in larce, gold was practically demonetized by the monetary seform of 1872 because of the lallure to fix a legal ratio between the two metals. Experience with paper currency has been even more disastrous Duriog the administration (1872-1876) of President Pardo the government borrowed heavily from the banks to avoid the cuspension of work on the railwaye and port improvements. These banks enjoyed the privilege of issuing currency notes to the amount of three times the cash in hand without regard to their commercial liabilitica. A large increase in imports, caused by fictitious prosperity and inability to obeain drafts against. guano shipments, led to the exportation of coin to meet commercial obligations, and this soon reduced the currency circulation to a paper basia. The government being unable to repay its loans from the banks compelled the latter to suspend the conversion of their notes, which began to depreciate in value. In 1875 the banks were granted a moratorinm, to enable them to obtain coin, but without result. The government in 1877 contracted a new loan with the banks and ascumed responsibility for their outstanding emissions, which are said to have aggregated about $100,000,000$ soles, and were worth barely 10% of their nominal value. At last their depreciatioa reached a point where their acceptance was generally refused and silver was imported for commercial peeds, when the government suspended their lagal tender quality and allowed them to disappear.

Weighs and Measures.-The French metric system is the official stanclard of weights and measures and is in use in the custom-houses of the republic and in forcign trade, but the old units are still commonly used among the people. These are the ounce, 1.104 oz . avoirdupois; the libra, 1 -014 Ib avoirdupois; the gwintal, 101.44 tb avoirdupoit; the arroba, 25.36 m evoirdupois; ditto of wine, 6.70 imperial gallons; the galion, 74 of an imperial gallon; the varg, 927 yard; and the square para, 859 square yard.
(A. J. L.)

History.-Cyclopean ruins of vast edifices, apparently never completed, exist at Tiahuanaco near the southern shore of Lake Titicaca. Remains of a similar character are found at Huaraz
in Che north of Peru, asd at Curco, Ollantay-tambo and Finifinque between Huaras and Tiahuanaco. These works appear to have been erected by powerful sovereigns with unlimited command of labour, possibly with the ohject of giving employment to subjugated people, while feeding the vanity or pleasing the taste of the conqueror. Of their origin nothing is historically known. It is probeble, however, that the settlement of the Cusco valley and district by the Incas or "people of the sun" took place some 300 years before Pizarro hnded in Peru. The conquering tribe or tribes had made their wey to the sierra from the plains, and found themalves a new land sbeltered from attack amidst the lofty mouninins that hem in the valley of Cusco and the vast lake basin of Tilicaca, situated $12,000 \mathrm{ft}$, above the sea level. The fint historical records show us theso people slready posessed of a considerable civilisation, and speaking two allied languages, Aymara and Quichus. The expansion of the loca rule and the formation of Lhe Peruvian Empire was of modern growtb at the time of the Spanish conquest, and dated fram the victories of Pachacutic Inca who lived about a century before Huayna Capac, the Great Inca, wbose death took place in 1526 , the year before Piearro first appeared on the const. His ocopsolidated empire extended from the river Ancaamayu north of Quito to the river Maule in the south of Chile. The Incas had an elaborate system of state-worship, with a sltual, and frequently recurring lestivals. History and tradition were presetved by the bards, and dramas were enacted before the sovereign and his court. Roads with posthouses at intervals were made over the wildest mountain-ranges and the bleakest deaerts for hundreds of miles. A well-considered system of land-tenure and of colonization provided for the wante of all claves of the people. The administrative details of govermsent were minutely and carefully organized, and accurate statislics were kept hy means of the "quipus" or system of knots. The edifices displayed marvellous huilding akill, and their-mortmanship is unsurpassed. The world has nothing to show, in the wray of stone-cutting and fitting, to equal the alill and accuracy displayed in the Inca structures of Cuzoo. As workers in metals and as potters they displayed infinite variety of dexiga, while as cultivators and engineers they excelled their European cosp querors. (For illustrations see Amenica, Plate V.)
The story of the conquest has been told by Prescott and Helpa, who give ample refesences to original authorities; it will be sufficient here to enumerate tho dates of the leading events. On the ioth of March is26 the Comanes an contract for the conquest of Pert was signed hy Francisco Pizarro, Diego de Almagro and Hernando de Lnque, Gaspar de Espinose mupplyins the funds. In $\mathbf{z g a 7}$ Pisarro, after enduring fearful hardships, first reached the coast of Peru at Tumbez. In the following year he went to Spain, and on the 26th of July 1529 the capitulation with the Crown for the conquest of Pcru was cxecuted. Pizarro sailed from San Lucar with his brothers in January 1530 , and landed at Tumbes in 1531. The civil war between Huascar and Atahualpa, the soms of Huayna Capac, had been fought out in the meanwhile, and the victorious Atahualpa was at Cajamarca on his way from Quito to Cuzco. On the 15 th of November 1532 Pizarro with his little army, made his way to Cajamarca, where be received a friendly welcome from the Inca, whom he treacherously seized and made prisoner. He had with him only 183 men. In February is33 his colleague Almagro arrived with reinforcements. The murder of the Inca Atahualpa was perpetrated on the 2gth of August 1533, and on the 15th of November Pizarro entered Cuzco. He allowed the rightful heir to the empire, Manco, the legitimate son of Huayna Capac, to be solemnly crowned on the 24th of March 1534 . Almagro then undertook an expedition to Chile, and Pizarro founded the city of Lima on the 18th of January $\mathbf{r} 53 \mathrm{~s}$. In the following year the Incas made a brave attempt to expel the invaders, and closely besieged the Spaniards in Cuzco during February and March. But Almagro, returning from Chile, raised the siege on the 18th of April 1537 . Immediately afterwards a dispute arose between the brothers, Fraitisco, Juan and Gonzalo Pizarro and Almagro
$4 s$ to the limits of their respective jurisdictions. An interview took place at Mala, on the sea-coast, on the 13 th of November' 1537, which led to no result, and Almagro was finally defeated in the battle of Las Salinas near Cuzco on the atth of April 1538 . His execution followed. His adherents recognized his young half-caste son, a gallant and noble youth generally known as Almagro the Lad, as his successor. Bitterly discontented, they conspired at Lima and assassinated Francisco Pizarro on the 26th of June 154i. Meanwhile Vaca de Castro had been sent out as governor of Peru by Charles V., and on bearing of the murder of Pizarro be assumed the government of the country. On the 16 th of September 154^{2} he defeated the army of Almagro the Lad in the battle of Chupas near Guamanga, and the boy was beheaded at Cuzco.
Charles V. enacted the code known as the "New Laws" in 1542. "Encorniendas," or grants of estates on which the Cove Wers inhabitants were bound to pay tribute and give personal service to the grantee, were to pass to the Crown on the death of the actual holder; a fixed sum was to be assessed as tribute; and forced personal service was forbidden. Blasco Nufer de Vela was sent out, as first viceroy of Peru, to enforce the "New Laws." Their promulgation aroused 2 storm among the conquerors. Gonzalo Pizarro rose in rebellion, and entered Lima on the 28th of October 1544. The viceroy fled to Quito, but was followed, defcated and killed at the battle of Anaquito on the 28th of January 1546 . The "New Laws " were weakly revoked, and Pedro de la Gasca, as frrst president of the Audiencia (court of justice) of Peru, was sent out to restore order. He arrived in 1547, and on the 8th of April 1548 be routed the followers of Cionzalo Pizarro on the plain of Sacsahuaman near Cuzco. Conzalo was executed on the feld. La Gasca made a redistribution of "encomiendas " to the loyal conquerors, which caused great discontent, and left Peru before his scheme was made public in January 1550. On the azrd of September 1551 Don Antonio de Mendoza arrived as second viceroy, but he died at Lima in the following July. The country was then ruled by the judges of the Audiencia, and a formidable insurrection broke out, headed by Francisco Hernandez Giron, with the object of maintaining the right of the conquerors to exact forced service from the Indians. In May 1554 Giron deicated the army of the judges at Chuquinga, but be was hopelessly routed at Pucara on the inth of October 1554, captured, and on the 7th of December executed at Lima. Don Andres Hurtado de Mendoza, marquis of Cafiete, entered Lima as third viceroy of Peru on the 6th of July 1555, and ruled with an iron hand for six years. All the leaders in former disturbances were sent to Spain. Corregidors, or governors of districts, were ordered to try bummarily and execute every turbulent person within their jurisdictions. All unemployed persons were seat on distant expeditions, and moderate " encomiendes " were granted to a few deserving officers. At the same time the viceroy wisely came to an agreement with Sayri Tupac, the son and successor of the Inca Manco, and granted him a pension. He took great care to supply the natives with priests of good conduct, and promoted measures for the establishment of schools and the foundation of towns in the different provinces. The cultivation of wheat, vines and olives, and Eusopean domestic animals were introduced. The next viceroy was the Conde de Nieva ($\mathbf{5} 561-1564$). His successor, the licentiate Lope Garcia do Castro, who only had the title of governor, ruled from 1564 to 1569 . From this time there was a sucoession of vicerdys until i824. The viceroys were chief magistrates, but in legal matters they had to consult the Audiencia of judges, in finance the Tribunal de Cuentas, in other brasches of administration the Juntas de Gobierno and de Guersa.

Don Francisco de Toledo, the second son of the count of Oropesa, entered Lima as viceroy on the 26th of November 1569. Tobsors Fearing that the little court of the Inca Tupac Amaru Admenters (who had succeeded his brother Sayri Tupac) might dan. become a focus of rebellion, he seized the young prince, and unjustly beheaded the last of the Incas in the square
of Cuzeo in the year 1525. After a minute personal inspection of every province in Peru, he, with the experienced aid of the learned Polo de Ondegardo and the judge of Matienza, established the system under which the native population of Peru was ruled for the two succeeding centuries. His Libro de Tasos fixed the tribute to be paid by the Indians, exempting all men under eighteen and over fifty. He found it necessary, in order to secure efficient government, to revert in some measure to the system of the Incas. The people were to be directly governed by their native chicis, whose duty was to collect the tribute and exercise magisterial functions. The chiefs or "curacas" had subordinate native officials under them called "pichca-pachacas" over 500 men, and:" pachacas" over 100 men. The office of curaca or cacique was made hereditary, and its possessor enjoyed several privileges. Many curacas were descended from the imperial tamily of the Incas, or from great nobles of the Incarial court. In addition to the tribute, which was in accordance with native usage, there was the " mita," or forced labour in mines, farms and manufactories. Toledo enacted that one-seventh of the male population of a village should be subject to conscription for this service, but they were to be paid, and were not to be taken beyond a specified distance from their homes.
The Spanish kings and viceroys desired to protect the people from tyranny, but they were unable to prevent the rapacity and lawlessness of distant officials and the country was depopulated by the illegal methods of enforcing the mita. Toledo was succeeded in 1581 by Don Mere Martin Henriquex, who died at Lima two years afterwards. The Spanish colonies suffered from the strict system of monopoly and protection, which was only slightly relaxed by the later Bourbon kings, and from the arbitrary proceedings of the Inquisition. Between 158 I and 1776 as many as fifty-nine heretics were burned at Lima, and there were twenty-nine "autos"; but the Inquisition affected Europeans rather then natives, for the Indians, as catechumens, were exempted from its terrors. The curacas sorrowfully watched the gradual extinction of their people by the operation of the mita, protesting from time to time against the exactions and cruelty of the Spaniards. At length a descendant of the Incas, who assumed the name of Tupac Amara, rose in rebellion in 1780. The insurrection lasted until July 1783 , and cruel executions followed its suppression. This was the last effort of the Indians to throw of the Spanish yoke and the rising was by no means general. The army which overthrew Tupac Amaru consisted chiefly of Ioyal Indians, and the rebellion was purcly anti-Spanish, and had no support from the Spanish population. The movement for independence, which slowly gained force during the opening decade of the 19th century, did not actually become serious until the conquest of Spain by the French in 1807-1808. The Creoles (Criallos) or American-born Spaniards had for long been aggrieved at being shut out from all important official positions, and at the restrictions placed upon their trade, but the bulk of the Creole population was not disloyal.
Peru was the centre of Spanish power, and the viceroy bad his military strength concentrated at Lima. Consequently the insurrections in the more distant provinces, such as Chile and Buenos Aires, were the first to declare

Porulade themselves independent, in 1816 and 1817 . But the destruction of the viceroy's power was essential to their continued independent existence. The conquest of the Peruvian coast must always depend on the command of the sea. A fleet of armed ships was fitted out at Valparajso in Chile, under the command of Lord Cochrane (afterwards earl of Dundonald) and officered by Englishmen. It convoyed an army of Argentine troops, with some Chileans, under the command of the Argentipe general, San Martin, which landed on the coast of Peru in September 1820. San Martin was enthusiastically received, and the independence of Peru was proclaimed at Lima after the viccroy had withdrawn (July 28, 1821). On the 20th of September 1822 San Martin resigned the protectorate, with which be had been invested, and on the same day the first
congress of Peru became the soverelgn power of the state. Alter a short period of government hy a committee of three, the congress elected Don Jost de la Riva Aguero to be first president of Peru on the 28th of February 1823. He displayed great energy in facing the difficulties of a turbulent situation, but was unsurcessful. The aid of the Colombians under Simon Bolivar was sought, and Aguero was deposed.

Bolivar arrived at Lima on the 1st of September 1823, and began to organize an army to attack the Spanish viceroy in the interior. On the 6th of August $\mathbf{1 8 2 4}$ the cavalry action of Junin was fought with the Spanish forces under the command of a French adventurer, General Canterac, near the shores of the lake of Chinchay-cocha. It was won by a gallant charge of the Peruvians under Captain Suarez at the critical moment. Soon afterwards Bolivar left the army to proceed to the coast, and the final battle of Ayacucho (Dec. 9, 1824) was fought hy his second in command, General Sucre. The viceroy and all his officers were taken prisoners, and the Spanish power in Peru came to an end.

General Bolivar ruled Peru with dictatorial powets for more than a year, and though there were cabals against him there can be little doubt of his popularity. He was summoned back to Colombia when he had been absent for five years and, in spite of protests left the country on the 3rd of September 1826, foliowed by all the Colombian troops in March 1827.

General Jost de Lamar, who commanded the Peruvians at Ayacucho, was elected president of Peru on the 24th of August antr 1827, but was deposed, after waging a brief but Pmonicents. disastrous war with Colombla' on the 7 th of June 1829. General Agustin Gamarra, who had been in the Spanish service, and was chief of the staff in the patriot army at Ayacucho, was elected third president on the $315 t$ of August 1829.
For fifteen years, from 8829 to $\mathbf{1 8 4 4}$, Peru was painfully feeling her way to a right use of independence. The officers who fought at Ayacucho, and to whom the country felt natural gratitude, were all-powerful, and they had not learned to settle political differences in any other way than by tbe sword. Three men, during that period of probation, won a prominent place in their country's history, Generals Agustin Gamarra, Felipe Santiago Salaverry, and Andres Santa Crus. Gamarra, born at Cuzco in 1785 , never accommodated himself to constitutional usages; but he attached to himself many loyal and devoted friends, and, with all his faults he loved his country and sought its wellare according to his lights. Salaverry was a very different character. Born at Lima in 1806, of pure Basque descent, he joined the patriot army before he was fifteen and displayed his audacious valour in many a hard-fought hattle. Feeling strongly the necessity that Peru had for repose, and the guilt of civil dissension, he wrote patriotic poems which became very popular. Yet he too seized the supreme power, and perished by an iniquitous sentence on the 18 th of Fchruary $2836 .{ }^{1}$ Andres Santa Cruz was an Indian statesman. His mother was a lady of high rank, of the family of the Incas, and he was very proud of his descent. Unsuccessful as a general in the field, he nevertheless possessed remarkable administrative ability and for nearly three years ($1836-1839$) realized his lifelong dream of a Peru-Bolivian confederation. ${ }^{2}$ But the strong-handed intervention of Chile on the ground of assistance rendered to rebels, but really through jealousy of the confederation, ended in the defeat and operthrow of Santa Cruz, and the separation of Bolivia from Peru. But Peruvian history is not confined to the hostilities of these military sulers. Three constitutions were framed-in 1828, 1833 and 1839. Lawyers and orators are never wanting in Spanish-American states, and revolution succeeded revolution in one continuous struggle for the spoils

[^24]of office. An exception must be made of the administration of General Ramon Castilla, who restored peace to Peru, and showed himself to be an honest and very capable ruler. He was elected constitutional president on the zoth of April $\mathbf{1 8 4 5}$. Ten years of peace and increasing prosperity followed. In 1849 the regular payment of the interest of the public deht was commenced, steam communication was established along the Pacific coest, and a railroad was made from Lima to Callao. After a regular term of office of six years of peace and moral and material progress Castilla resigned, and General Jose Echenique was elected president. But the proceedings of Echenique's government in connexion with the consolidation of the internal debt were disspproved by the nation, and, after hostilities which lasted for six months, Castilla returned to power in January 1855 . From December 1856 to March 1858 he had to contend with and subdue a local insurrection headed by General Agostino Vivanco, but, with these two exceptions, there was peace in Peru from 1844 to 1879 , a period of thirty-five years. Castilla retired at the end of his term of office in $\mathbf{8 8 6 2}$, and died in 1868. On the 2nd of August 1868 Cohonel Juan Balta was elected president. With the vast sum raised from guano and nitrate deposits President Balta commenced the execution of public works, principally railroads on a gigantic scale. His period of office was signalized by the opening of an international exhibition at Lima. He was succeeded (Aug. 2, 1872) by Don Manuel Pardo (d. 2878), an bonest and enlightened statesman, who did all in his power to retrieve the country from the financial dificulty into which it had been brought by the reckless policy of his predecessor, but the conditions were not capable of solution. He regulated the Chinese immigration to the coast-valleys, which from 1860 to 1872 had amounted to 58,006 . He promoted education, and encouraged literature. On the 2nd of August 1876 General Mariano-Ignado Prado was elected.
(C. R. M.; X.)

On the sth of April 1879 the republic of Chile declared war upon Peru, the alleged pretext bcing that Peru had made an offensive treaty, directed against Chile, with Bolivia, warma a country with which Chile had a dispute; but the cane, sespor publication of the text of this treaty made known 18sas.
the fact that it was strictly defensive and contained no just cause of war. The true object of Chile was the conquest of the rich Peruvian province of Tarapaca, the appropriation of its valuable guano and nitrate deposits, and the spoliation of the rest of the Peravian coast. The military events of the war, calamitous for Peru, are dealt with in the article CamsPerovian War. Suffice it here to note that, after the crushing defeat of the Peruvian forces at Arica (June 7, 1880) Sefior Nicolas de Fierola assumed dictatorial powers, with General Andres Caferes as commander-in-chief, but the defeats at Chorrillos (Jan. 13, 1881) and Miraflores (Jan. 15) proved the Chilean superiority, and put Lima at their mercy tbough desultory fighting was maintained by the remnants of the Peruvian army in the interior, under direction of General Caceres. An attempt was made to constitute a government with Sefior Calderon as president of the republic and General Cáceres as first vice-president. The negotiations between this nominal administration and the Chilean authorities for a treaty of peace proved futile, the Chilean occupation of Lima and the Pcruvian seaboard continuing unintérruptedly until 1883. In that year Admiral Lynch, who had replaced General Baquedano in command of the Chilean forces after the taking of Lima, sent an expedition against the Peruvians under General Cáceres, and defeated the latter in the month of August. The Chilean authorities now began preparations for the evacuation of Lima, and to enable this measure to be effected a Peruvian administration was organized with the support of the Chileans. General Iglesias was nominated to the office of president of the republic, and in October 1883 a treaty of peace, known as the treaty of Ancon, bet ween Peru and Chile was signed. The Chilean army of occupation was withdrawn from Lima on the 22 nd of October 1883, but a strong force was maintained at Chorrillos until July 1884, when the terms of the treaty were finally approved. The
principal conditions imposed by Chile were the absolute eession by Peru of the province of Tarapaca, and the occupation for a period of ten years of the territories of Tacna and Arica, the ownership of these districts to be decided by a popular vote of the inhabitants of Tama and Arica at the expiration of the period named. A further condition was enacted that an indemnity of $10,000,000$ soles was to be paid by the country finally remaining in possession--a sum equal to about $£_{1,000,000}$ to-day. The Peruvians in tbe interior refused to recognize President Iglesias, and at once began active operations to overthrow his authority on the final departure of the Chilean troops. Affairs continued in this unsettled state until the middle of 1885 , Cáceres meanwhile steadily gaining many adherents to his side of the quarrel. In the latter part of 1885 President Iglesias abdicated.

Under the guidance of General Cáceres a junfa was then formed to carry on the government until an election for the presidency should be held and the senate and cham-

Cherest is Power.

 ber of deputies constituted. In the following year (1886) General Caceres was elected president of the republic for the usual term of four years. The task assumed by the new president was no sinecure. The country had been thrown into absolute confusion from a political and administrative point of view, but gradually order was restored, and peace\{u! conditions were reconstituted throughout the republic. The four years of office for which General Cáceres was elected passed in uneventiful fashion, and in 1890 Sefior Morales Bermudez was nominated to the presidency, with Sefor Solar and Seffor Borgofo as first and second vice-presidents. Matters continued without alteration from the normal course until 1894, and in that year Bermudez died suddenly a few months beiore the expiration of the period for which he had been chosen as president. General Cáceres secured the nomination of the vicepresident Borgotio as chief of the executive for the unexpired portion of the term of the late president Bermudez. This action was unconstitutional, and was bitteriy resented by the vice-president Solar, who by right should have succecded to the office. Armed resistance to the authority of Borgoto was immediately organized in the south of Peru, the movement being supported by Sefiores Nicolas de Pierola, Billinghurst, Durand and a number of influential Peruvians. In the month ol August 189.4 General Cáceres was again elected to fill the office of president, but the revolutionary movernent rapidly gained ground. President Cáceres adopted energetic measures to suppress the outbreak: his efforts, however, proved unavailing, the close of 1894 finds the country districts in the power of the rebels and the euthority of the legal government confined to Lima and other cities held by strong garrisons. Early in March 1895 the insurgents encamped near the outskirts of Lima, and on the 17 th, 18th and 19th of March severe fighting took place, ending in the defeat of the troops under General Cáceres. A suspension of hostilities was then brought about by the efforts of H.B.M. consul. The ioss on both sides to the struggle during these two days was 2800 killed and wounded. President Cáceres, finding his cause was lost, left the country, a provisional government onder Seffor Candamo assuming the direction of public affairs.On the 8th of September $\mathbf{r} 895$ Sefor Pierola was declared president of the republic for the following four years. The Peruvians were now heartify tired of revolutionary
Pierole
Prasiderit. disturbances, and an insurrectionary outbreak in the district of Iquitos met with small sympathy, and was speedily crushed. In 1896 a reform of the electoral law was sanctioned. By the provisions of this act an electoral committee was constituted, composed of nine members, two of these nominated by the senate, two by the chamber of deputies, four by the supreme court, and one by the president with the consent of his ministers. To this committee was entrusted the task of the examination of all election returns, and of the proclamation of the names of successiul candidates for seats in congress. Another reform hrought about hy Picrola was a measure introduced and sanctioned in 1897 for a modification of the marriage laws. Under the new act marriages of non-

Catholies solemnized by diplomatic or consular officers or by ministers of dissenting churches, if properly registered, are valid, and those solemnized before the passing of this act were to be valid if registered before the end of 1899 . Revolutionary troubles again disturbed the country in 1899, when the presidency of Señor Pierola was drawing to a close. In consequenice of dissensions amongst the members of the election committee conslituted by the act of 1896, the president ordered the suppression of this body. A group of malcontents under the leadership of one Durand, a man who had been prominent in the revolution against General Cáceres in 1894-95, conspired against the authorities and raised several armed bands, known locally as montaneras. Some skirmishes occurred between these Insurgents and the government troops, the latter generally obtaining the advantage in these encounters.
In September 1899 President Pierola vacated the presidency in favour of Señor Romana, who had been elected to the office as a popular condidate and without the exercise of any undue official influence. President Romafia

Romstă Prealteal was educated at Stonyhurst in England, and was a civil enginecr by profession. The principal political problem before the government of Peru was the ownership of the territories of Tacna and Arica. The period of ten years originally agreed upon for the Chilean occupation of these provinces expired in 1894. At that date the peace of Peru was so seriously disturhed by internal troubles that the government was quite unable to take active steps to bring about any solution of the matter. After 1894 negotiations between the two governments were attempted from time to time, but without any satisfactory results. The question hinged to a great extent on the qualification necessary for the inhabitants to vote, in the event of a plebiscite being called to decide whether Chilean ownership was to be finally estahlished or the provinces were to revert to Peruvian sovercignty. Peru proposed that only Peruvian residents should be entitled to take part in a popular vote; Chile rejected this proposition, on the ground that all residents in the territorics in question should have a voice in the final decision. The agreement bet ween Chile and Bolivia, by which the disputed provinces were to be handed over to the latter country if Chilean possession was recognized, was also a stumbling-block, a strong fecling existed among Peruvians against this proceeding. It was not so much the value of Tacna and Arica that put diffcultics in the way of a settlement as the fact that the national pride of the Peruvians ill brooked the idea of permanently losing all claim to this section of country. The moncy, about $£ \mathrm{I}, 000,000$, could probahly bave been obtained to indemnify Chile if occasion for it arose.

The question of the delimitation of the fronticr between Peru and the neighbouring republics of Ecuador, Coiombia, and Brazil also cropped up at intervals. A treaty was signed with Brazil 1876, hy which certain physical features were accepted by both countries as the basis for the boundary. In the case of Ecuador and Colombia a dispute arose in 1894 concerning the ownership of large tracts of uninhabited country in the vicinity of the beadwaters of the Amazon and its tributaries. An agrcement was proposed between Peru and Ecuador in connexion with the limits of the respective republics, but diff. cultics were created to prevent this proposal from becoming an accomplished fact by the pretensions put forward by Colombia. The latter state claimed sovereignty over the Napo and Maranion rivers on the grounds of the ecclesiastical jurisdiction exercised over this section of territory during the period of Spanish dominion, the government of Colombia asserting that these ecclesiastical rights to which Colombia became entitled after her separation from the Spanish crown carried also the right of absoiute ownership. In a treaty signed by the thrce interested states in 1895 a compromise was effected by which Colombia withdrew a part of the claim advanced, and it was agreed that any further differences arising out of this frontler question should be submitted to the arbitration of the Spanish crown. The later development of the boundary question is dealt with at the outset of this article.

Setior Manuel Candamo succeeded Sefor Romana as president in 1903. In the following year he died, and on the 24th of September 1904 Sefior José Pardo was installed in the presidential chair. In 1908 there were some insurrectionary movements at Lima and an attempt was made to assassinate President Pardo, but they were, however, suppressed without a serious outbreak. Señor Augusio Leguiva became presilent on the 24 th of September 1908.
(C. E, A.; G. E)

Biblograpily. - Among the principal publications relating to Peru are: C. E. Akers, A History of South America (London, 10ッ \ddagger): L. E. Ablertini. Pérou en $18 ; 8$ (Paris, 1878); C. B. Cisneros and R. E. Garcia, El Peru en Europa (Lima, 1900); the same authors, Geografia comercial de la America del Sud (3 vols., ibid. 1892); E. B. Clark, Twelve Months in Peru (London, 1891): Geo. R. Fitat y Cole, The Pernyians at Home, (ibid. 1884): A. J. Duffield, Perw in the Guano A ge (ibid. 1877); C. R. Enock. The Andes and lise Amce m (ibid. 1907): idem. Peru: its Former and Present Civilization, Ecc. (ibid. 1yo8): P. F. Evans, From Peru to the Plate (ibid. 1889): M. A. Fuentes, Lima, or Sketches of the Capital of Peru (ibid. 1860): Calderon F. Garcia, Le Pérou contemporain (Paris, 190j): Garcilaso de la Vcga, Royal commentaries of the Incas, 1609 (Haliluyt Socict's Publications); A. Garland, La Indinstrica azucarera en el Peru. 15503805 (Lima, 1895): idem, Peru in 1006 (official; ibid. 1907); E. Grandidier. Voyage dans l'A mévique du Sud, Pérou et Bolìte (Puris, 1863); T. Haènke, Descripcion del Peru (Lima, 1901); E. Higgin nn, Mines and Mining in Pers (ibid. 1003). S. S. Hill, Thavels in P'ru and Mexico (2 vols.0 London, 1860); T. J. Hetchinson, Two Firs in Peru (2 vols.; ibid. 1874); R. Laos, A Handbook of Peru for l): t lors and Immigrants (Balnmore, 1903); C. R. Markham, Cusko ad Lima (1.ondon, 1858): idem. Travels in Peru and Indio (ibid. 186); idem. The War belween Peru and Chile (ihid. 1883); idem. Musary of Peru (Chicago, 1892): V. M. Maurtua, The Question of the Pot fic (Philadelphia, 1go1): M. de Mendibura, Diccionaro hister: obiogrdfica del Pepu (8 vols., Callao, 1874-1890): E. W. MiddenelarI, Peru: Beobachiangen und Siudien uber das Land und seime Beamiver, \&ec. (Berlin, 1803) ; Federico Moreno, Pelroleum in Peru (Lima, 1890); Dr M. Neveu-Lemaire, Les Lacs des hauts platraux de l'A mérique du Sud (Paris, 1gob): M. F. Paz-Soldan, Hestoria del Peru inde, n diente (3 vols., 1868 et seq.) : idem, Diccionario Reográfico-estadi. ico del Pcru (Lima, 1870): A. Plane, A trasers l'Amerique équat $\mathbf{z e}$ (Paris, 1903); W. H. Prescott, History of the Conquest of Pern (3 , $1 \mathbf{t}$. Philadelphia, !868): A. Raimondi, El Peru: Estudios mineralón os \&c. (4 vols., Lima, 1890-1902); M. Ch. Renoz. Le Pérou (Uruxulles, 1897): G. Rene-Moreno, Ulimos dies coloniales en el Allo F'ru 1807-1808 (Samiazo de Chile, 1896-1898); F. Scebee, Tratríng Impressions in and Notes on Peru (2nd ed., London. 1905); E. G. Squier, Peru: Incidents of Traed and Exploration in the Land of the Incas (ibid. 1877): Edmond Temple, Travels in Various Paris of Peru (2 vols., ibid. 1830): J. J. Von Tschudi, Reisen durch Sid. amerika (5 vols., Leipzig, 1866-1868) ; idem. Travels in Peru (Lonion, 1847) : Charles Wicner, P(rou el Bolcuic (Paris, 1880); Frank Vincent, A round and about South America (New York, 18qo): Maric Robino on Wright. The Old and New Peru (Philadelphia, 1909); the Consular and Diplomatic Reports of Great Brisain and the United States; Hardbook of Peru and Bulletins of the Bureau of American Republics; and the departmental publications of the Peruvian Covernment

PRRU, a city of La Salle county, Ilinois, U.S.A., in the north-central part of the state, on the N. bank of the Illinois River, about 100 m . S.W. of Chicago and I m. W. of La Salle, a terminus of the Illinois \& Michigan Canal. Pop. (1900), 5863 (2095 foreign-born); (1910), 7984. It is served by the Chicago, Burlington \& Quincy and the Chicago, Rock Island \& Pacific railways. The city is built on the face and top of a series of river bluffs. It is the seat of St Bede College (Roman Catholic, opened in 1891), conducted by Benedictine fathers. In a large public park there is a bsonze monument in memory of the soldiers of Peru who died in the Civil War. There are extensive coal-mines in the vicinity; and the city includes various manufactures. Peru was first settled about 1827, was incorporated in $\mathbf{1 8 4 5}$, and rc -incorporated in $\mathbf{1} 890$.

PERU $\mathrm{U}_{\text {a }}$ city and the county-seat of Miami county, Indiana, U.S.A., about 75 m . N. of Indianapolis, on the Wahash River. Pop. (1910 U.S. census), 10,910 . Peru is served by the Chicago Cincinnati \& Louisville, the Lake Erie \& Western and the Wabash railways (each of which maintains shops here), and by electric lines to Indianapolis, Warsaw and other cities. The eity has a Carnegie library, a railway Young Men's Christian Association, and a hospital for the employés of the Wahash railroad. There is a city park on the river, and 9 m . cast of the city is Boyd park, an amusement resort. Peru is an important grain and produce market, and has various manufactures.

In $\mathbf{1 0 0 5}$ the vahue of the factory products was $\mathbf{8 1 , 7 0 3 , 4 1 7}$ $(27.3 \%$ more than in 1900). Petroleum is lound in the vicinity. Peru was settled in 1834 and was chartered as a city in 1867.

PBRUOLA (anc. Perusia), a city and archiepiscopal see of Italy, the capital of the province of Perugia (which forms the entire compartimento of Umbria) situated 1444 ft . above sealevel. Pop. (1006), 22,321 (town); 65,527 (commune). The town is finely situated upon a group of hills nearly 1000 ft . above the valley of the Tiber. Its outline is very irregular; from the centre of the town, at the junction of several ridges, parts of it extend for a considerable distance along their summits, being divided from one another by deep valleys. This is the extent enclosed by the medieval walls; within them are considerable remains of the lofty terrace walls of the Eutruscinn period. The so-called Arco di Augusio is a town gate with a Decorated superstructure, perhaps of the Etruscan period, bearing the inscription Augusta Perusia; above this again is a Renaissumce loggia. The superstructure of a similar gate (Poria Marzia). which was removed in 1540 to make way for the citadel, but is depicted in a fresco by Benedetto Bonfigli (between 1461 and 1477), was re-erected in the substruction walls of the citaded itself. It bears the inscription Colonta Vibia Auguste Perusic so that the town must have become a colony in the reign of the emperor C. Vibius Trebonianus Gallus (A.D. 251-253), who was a native of it. Four other gates of the Etruscan period can stin be traced (F. Noack in Rdmische Milleilungen, 1897, 166 sqq). In the garden of the church of S. Elisabeth was found in $18 ; 6$ a fine mosaic in black on a white ground representing Orpheus in the midst of the beasts (Notitic degli seavi, 1876, 181; 1877 300).

The citadel was crected by Pope Paul III. in $1540-1546$, after the plans of Antonio ta Sangallo the younger, and demolished in 1860 (see Bacile di Castiglione in L'Arte, 1903, 347). The Piazza del Duomo is at the north of the Corso. On one side stands the cathedral of San Lorenzo, a Gothic structure of the 14 th and 1 gith centurics, in the plan of a Latin cross, with nave and aisles of equal height; on the other the Palazzo del Municipio, presenting two fine Gothic facades, of the 14 th century (though the building was not completed till 1443), with the figures of the Perugian griffin and the Guelph lion above the outside stair; and in the centre the marble fountain constructed in 1277-12SO by Arnolio di Cambio, and adorned with statues and statueties by Niccolo and Giovanni Pisano. The cathedral contains the burial-place of Urban IV. and Afartin IV.- the remains of InnocentIII. were removed to Rome in 1892 and placed in the basilica of S. Giovanni in Laterano-and the Virgin's wedding -ring; and at the north-east corner is a sitting statue of Pope Julius III. by Vincenzo Danti, erected in 1555 hy the people of Perugia in gratitude for the restoration of their civic privileges. On the decoration of the Sala del Cambio, or old exchange, Perugino put forth the full force of his genius. Dfost of the movable paintings have since 1863 been collected in the Pinacoteca Vannucci, established in the Palazzo del Municipio; besides a considerable number of pieces by Perugino, there are specimess of Niccolo Alunno, Bonfigli, Pint uricchio, \&ec. A very interesting and important exhibition of Umbrian art was held bere in 1907. The pictures, the needlework with some splendid pieces of cmbroidery from S. Francesco at Assisi, the vestments of Pope Benedict XI., and the majolica of Perugia and Deruta a village 10 m . south, were especially noteworthy (sce U. Grobi. L'Arle umbra alla mostra di Perugia, Bergamo, 1g08). Tbe illuminated MISS. of the communal library, the cathedral and the church of S. Pietro, from the $\boldsymbol{p}^{\text {th }}$ century onwards, were alo exhibited.

The formation of the Pinacoteca Vannucci has impaired the interest of se veral churches but in others it remains undiminished. San Domenico, a Gothic edifice originally designed by Giovangi Pisano but rebuilt in 1614, contains the monument of Pope Benedict XI. (attributed, but probably wrongly, to Giovasni Pisano by Vasari), and in its east front a Cothic window with stained glass hy Fra Bartolommeo of Perugia (1441). San Pietro de' Cassinensi (outside the Porta Romana) is a basilio
with nave and aisles, founded in the beginning of the arth century by San Pietro Vincioli on the site of a building of the 6th centwry, and remarksble for its conspicuous spire, its ancient granite and marble columns, its walnut stall-work of 2535 by Stefano de' Zambelli da Bergamo, and its numerous pictures (hy Perugino, \&e.). The oratory of S. Bernardino has an early Renaissance polychrome façade, richly sculptured, of 1457-1461, by Agostino d'Antonio di Duccio of Florence. S. Severo contains Raphael's firat independent fresco (1 505), much damaged by restoration. The circular church of S . Angelo, with sixteen antique columns in the interior, probably dates from the middle of the 6th century. The university dates from 1307, and has faculties of law, acience and medicine; it had 318 students in 1903-1903. It contains an important museum of Etrustan and Roman antlquities. Throe miles to the S.S.E. the Etruscan necropolis of the ancient city was discovered in 1870. The Jarge tomb of the Volumni (3rd century s.c.) hewn in the rock, with lts carved cinerary urns, is interesting.

The ancient Perusis first appears in history as one of the twelve confederate cities of Etruria. It is frat mentioned in the account of the war of 370 or 309 s.c. between the Etruscans and the Romans. It took, however, an important part in the rebeltion of 295, and was reduced, with Vulsinii and Artctium, to seek for peace in the following year. In 216 and 205 it assisted Rome in the Hannibalic war, but afterwards it is not mentioned until 41-40 8.c., when L. Antonius took refuge there, and was reduced by Octavian after a Jong siege. A number of lead bullets used by slingers have been found in and around the city (Carpus inser. tat. xi. 1212). The city was burnt, we are told, with the exception of the temples of Vulcan and Juno -the massive Etruscon terrace-walls, naturally, can hardly have suffered at all-and the town, with the territory for a mile round, was allowed to be occupied by whoever chose. It must have been rebuilt almost at once, for several bases exist, inscribed Awgusto sacr(wm) Perusic rentitula; but, as we have seen, it did not become a colony until a.d. $\mathbf{1 5 1 - 2 5 3}$. It is hardiy mentioned except by the geographers until the middle of the 6th century, when it was captured by Totias after a long siege. In the Lombard period it is spoken of as one of the principal cities of Tuscia. In the gth century, with the consent of Charles the Great and Louis the Pious, it passed under the popes; but for many centuries the city continued to maintain an independent life, warring against many of the neighbouring lands and cities-Foligno, Assisi, Spoleto, Montepulciano, \&c. It remained true for the most part to the Guelphs. On various occasions the popes found asylum within its walls, and it was the meeting-place of the conclaves which clected Honorius 11. (1124), Honorius IV. (1285), Celcstine V. (1294), and Clement V. (1305). But Perugia had no mind simply to subserve the papal interests. At the time of Rienzi's unfortunate enterprise it sent ten amhassadors to pay him honour; and, when papal legates sought to coerce it by foreign soldiers, or to exact contributions, -they met with vigorous resistance. In the 85 th century power was at last concentrated in the Baglioni family, who, though they had no legal position, defied all other authority. Gian Paolo Bagtioni was lured to Rome in 1520 and beheaded by Leo X.; and in 1.334 Rodolfo, who had slain a papal legate, was defeated by Pier Luigi Famese, and the city, captured and plundered by his soldiery, was deprived of its privileges. The citadel was begun six years later "ad coercendam Perusinorum audaciam." In 1797 Perugia was occupied by the French; in 1832, 1838 and 18 j4 it was visited by earthquakes; in May 1849 it was seized by the Austrians; and, aftor a futife insurrection in 1859, it was finally united, along with the rest of Umbria, to Piedmont, in 1860 .
See G. Conestabile, I Monnmenti di Perwia efrusca e pomana (Perugia, 185s); M. Symonds and L. Duff Gordon, Perugia ("Medieval Towns Series "), (1898): R. A. Gallenga Stuart, Perugia (Bergamo, 1905; W. Heywood, Hist. of Perugic (1910). (T. As.)

PERUGINO, PIETRO ($1446-1524$), whose correct family name was Vavntect, Italian painter, was born in r446 at Citta della Pieve in Umbria, and.Delongs to the Umbrian achool of
painting. The name of Pérugino came to him from Perugin, the chief city of the neighbourhood. Pietro was one of eeveral children born to Cristoforo Vannucci, a member of a respectable famity setuled at Cittid della Pieve. Though respectable, they seem to have been poor, or else, for some reason or other, to have left Pietro uncared for at the opening of his career. Before he had completed his ainth year the boy was articled to a master, a paintcr at Perugia. Who this may have been is very uncertain; the painter is spoken of as wholly mediocre, hut sympathetic for the great things in his art. Benedetto Bonfigli in generally surmised; if he is rejected as being above mediocrity, either Fiorenzo di Lorenzo or Niccold da Foligno may possibly have been the man. Pietro painted a litule at Arezro; thence he went to the headquarters of art, Florence, and frequented the famous Brancacci Chapel in the church of the Carmine. It appears to be sufficiently eatablished that he studied in the atelicr of Andrea del Verrocchio, where Leonardo de Vinci was also a pupil. He may have learned perspective, in which he parlicularly excelled for that period of art, from Piero de' Firanceschi. The date of this frat Florentine sojourn is by no means settled; some authorities incline to make it as early as $\mathbf{8 4 7 0}$. while others, with perhaps better reason, postpone it till 8479. Pietro at this time was extremely poor; he had no bed, but slept on a chest for many mosths, and, bent upon making his way, resolutely denied himself every creature comfort.
Gradually Perugino rose into notice, and became famous not only throughout Italy but even beyond. He was one of the earticst Italian painters to practise oil-painting, in which he evinced a depth and smoothaess of tint, which elicited much remark; and in perspective he applied the novel rule of two centres of vision. Some of his carly works were extensive frescoes for the Ingesati fathers in their convent, which was destroyed not many years afterwards in the course of the siege of Florence; he produced for them also many cartoons, which thay executed with brilliant effect in stained glass. Though greedy for gain, his integrity was proof against temptation; and an amusing anecdote has survived of how the prior of the Ingesati doled out to him the costly colour of ultramarine, and how Perugino, constantly washing his brushes, obtained a surseptitious hoard of the pigment, which he finally restored to the prior to shame his stingy suspiciousness. A good specimen of his early style in tempera is the circular picture in the Lousvre of the "Virgin and Child enthroned between Saints."

Perugino returned from Florence to Perugia, and thence, towards 1483, he went to Rome. The painting of that part of the Sixtine Chapel which is now immortalized by Michelangelo's "Last Judgment "was assigned to him by the pope; he covered it with frescoes of the "Assumption," the "Nativity," and "Moses in the Bulrushes." These works were ruthlessly destroyed to make a space for his successor's more colossal genius, but ot her works by Perugino still remain in the Sixtine Chapel; "Moses and Zipporah" (often attributed to Signorelli), the "Baptism of Christ," and "Christ giving the Keys to Peter." Pinturicchio accompanied the greater Umbrian to Rome, and was made his partner, receiving a third of the profits; be may probabiy have done some of the Zipporah subject.

Pietro, now aged forty, must have left Rome after the completion of the Sixtine paintings in 1486, and in the autumn of that year he was in Florence. Here he figures by no means advantageously in a criminal court. In July 1487 he and another Perugian painter named Aulista di Angelo were convicted, on their own confession, of having in December waylaid with staves some one (the name does not appear) in the street near S. Pietro Maggiore. Perugino limited himself, in intention, to assault and battery, but Aulista had made up his mind for murder. The minor and more illustrious culprit was fined ten gold florins, and the major one exited for life.
Between 1486 and 1499 Perugina resided chiefly in Florence, making one journey to Rome and several to Perugia. He was in many other parts of Italy from time to time. He had a regular shop in Florence, recesved a great number of commiasions, and continued developing his practice as an oil-painter, the
system of superposed layers of colour being easentially the same as that of the Van Eycks. One of his most celebrated pictures, the "Pieta". in the Pitti Gallery, belongs to the ycar 1495. From about 1498 he became increasingly keerr after money, frequently repeating his groups from picture to picture, and leaving much of his work to journeymen. In 1499 the gild of the cambio (money-changers or bankers) of Perugia asked him to undertake the decoration of their audience-hall, and he accepted the invitation. This extensive scheme of work, which may have been finished within the ycar 1500 , comprised the painting of the vault with the seven planets and the signs of the rodiac (Perugino doing the designs and his pupils most probably the exccutive work) and the representation on the walls of two sacred subjects-the "Nativity "and "Transfiguration" -the Etcrnal Father, the four virtues of Justice, Prudence, Temperance and Fortitude, Cato as the emblem of wisdom, and (in life size) numerous Ggures of classic worthies, prophets and sibyls. On the mid-pilaster of the hall Perugino placed his own portrait in bust-form. It is probable that Raphacl, who in boyhood, towards 1406, had been placed by his uncles under the tuition of Perugino, bore a hand in the work of the vaulting. It may have been about this time (though some accounts date the event a few years later) that Vannucci married a young and beautiful wife, the object of his fond affection; be loved to sce ber handsomely dressed, and would often deck her out with his own hands. He was made one of the priors of Perugia in 1501.
While Perugino, though by no means stationary or unprogressive as an executive artist, was working contentedly upon the old lines and carrying out the ancient conceptions, a mighty wave of new art flooded Fiorence with its rush and Italy with its rumour. Michelangelo, twenty-five ycars of age in 1500 , following after and distancing Leonardo da Vinci, was opening men's eyes and minds to possibilities of achievement as yet unsurmised. Vannucci in Perugia heard Buonarroti bruited abroad, and was impatient to sce with his own cyes what the stir was all about. Ia 1504 he allowed his apprentices and assistants to disperse, and returned to Florence. Though not openly detracting, he viewed with jealousy and some grudging the advances made by Michelangelo; and Michelangelo on his part replied, with the intolerance which pertains to superiority, to the faint praise or covert dispraise of his senior and junior in the art. On onc occasion, in company, he told Perugino to his lace that he was "a bungler in art " (goffo nell' arte). Vannucci brought, with equal indiscretion and ill success, an action for defamation of character. Put on his mettle by this mortifying transaction, he determined to show what he could do, and he produced the chef-d"cutre of the "Madonna and Saints" for the Certosa of Pavia. The constituent parts of this noble work have now been sundered. The only portion which remains in the Certosa is a figure of God the Father with cherubim. An "Annunciation" has disappeared from cognisance; three compartments-the Virgin adoring the infant Christ, St Michnel, and St Raphacl with Tobias-are among the cboicer treasures of the National Gallery, London. The current story that Raphael bore a hand in the work is not likely to be true. This was succeeded in 1505 by an "Assumption," in the Cappella dei Rabatta، in the church of the Servi in Florence. The painting may have been executed chicfly by a pupil, and was at any rate a failure: it was much decried; Perugino lost his scholars; and towards 1506 he once more and finally abandoned Florence, going to Perugia, and thence in a year or two to Rome.
Pope Julius II. had summoned Perugino to paint the Stanza in the Vatican, now called that of the Incendio del Borgo; but he soon preferred a younger competitor, that very Raphael who had been trained by the aged master of Perugia; and Vannucci, after painting the cciling with figures of God the Father in diferent glories, in five medallion-subjects, found his occupation gone; be retired from Rome, and was once more in Perugia from 1512. Among his latest works one of the best is the extensive altar-piece (painted between 1512 and 1517) of S. Agostino in Perugia; the component parts of it are now dispersed in various gelleries.

Perugino's last frescoen were painted for the monastery of S. Agnese in Perugia, and in 15^{22} for the church of Castello di Fortignano hard by. Both series have disappearod from their places, the second being now in the Victoria and Albert Museum. He was still at Fontignano in 1524 when the plague broke out, and he died. He was huried in unconsecrated ground in a ficld, the precise spot now unknown. The reason for so obscure and unwonted a mode of burial has been discussed, and religious scepticism on the painter's own part has been assigned as the cause; the fact, however, appears to be that, on the sudien and widespread outbreak of the plague, the panic-atruck local authorities ordained that all victims of the disorder should be at once interred without any waiting for religious rites. This leads us to speak of Perugino's opinions on religion. Vasari is our chicf, but not our sole, authority for saying that Vannuci had very little meligion, and was an open and ohdurate disbeliever in the immortality of the soul. For a reader of the present day it is easicr than it was for Vasari to suppose that Perugino may have been a materialist, and yet just as good and laudable a man as his orthodox Catholic neighbours or brother-artista; still there is a strong discrepancy between the quadity of his art, in which all is throughout Christian, Catholic, devotional, and even pietistic, and the character of an anti-Christian contemner of the doctrine of immortality. It is difficule to reconcile this discrepancy, and certainly not a little difficult also to suppose that Vasari was totally mistaken in his assertion; be was born twenty ycars before Perugino's death, and must have talked with scores of people to whom the Umhrian painter had been well known. We have to remark that Perugino in 1494 painted his own portrait, now in the Uffizi Gallery of Florence, and into this be introduced a scroll lettered "Timete Deum." That an open disbeliever should inscribe himself with "Timete Deum" scems odd. The portrait in question stows a plump face, with small dark eyes, a short but well-cut nose, and sensuous lips; the neck is thick, the hair bushy and frizzled, and the general air imposing. The later portrait in the Cambio of Perugia shows the same lace with traces of added years. Perugino died possessed of considerable property, leaving three sons,
Among the very numerous works of Perugino a fow not already named require mention. Towards 1496 he painted the "Crucfxion," in S. Maria Maddalena dei Pazzi, Florence. The attribution to him of the picture of the marriage of Joseph and the Virgin Mary (the "Sposalizio") now in the museum of Caen, which served indisputably as the original, to a great extent, of the still more famous "Sposalitio"" which was painted by Raphael In 1504, and which forms a leading attraction of the Erera Gallery in Milan, is now questioned, and it is assigned to Lo Spagna. A vastly finer work of Perugino's is the " Ascension of Christ," which, painted a littler earlier for S. Pietro of Perugia, has for years past been in the museum of Lyons; the other portions of the same altar-piece are dispersed in other galleries. In the chapel of the Disciplinati of Citta delta Pieve is an "Adoration of the Magi," a square of 21 ft . containing about thirty fife-sized figures; this was executed, with scarcely credible celerity, from the 1st to the 25th of March (or thercabouts) in ${ }^{1505}$, and must no doubt be in, great part the work of Vannucci's pupils, In 1507, when the master's work had for years been in a course of decline and his performances were generally weak, he produced. nevertheless, one of his best pictures-the "Virgin between St Jerome and St Francis," now in the Palazzo Penna. In S. Onofrio of Florence is a much lauded and muchdebated fresco of the "Last Supper," a careful and blandly correct but not inspired work; it has been ascribed to Perugino by some connoisseurs, by others to Raphacl; it may more probably be by tome different pupil of the Umbrian master.

Authorrties.-In addition to Crowe and Cavalcaselle, see Di Pietro Peragino e degli scolari (1804); Merzanotlc, Vita, \&cc. di Pietro Vannucci (1836); Mariotti, Lellere pilloriche Perugine (1788); Claude Phillips (in The Portfolio) (1893): G. C. Williamson, Perugino (1900 and 1903).
(W. M. R.)

PERUKB, an artificial head of hair, a wig. The word is from Fr. perruque, an adaptation of Ital. perruce or parrucce. This is usually taken to be from Ital. pelo, hair; Lat. pilus. Span. peluca, wig, and Sardinian pilucca, lock or tuft of hair, support this view. In the 17th century the English forms which the French word took, such as perruck or perag, were corrupted into pervyke, and chence into percwyk, percwig, and lastly "periwig," which again was shortened into "wig," the
common term for all types of artificial heads of hair. Perinig is sometimes confined to the heavy full-bottomed wigs worn from the reign of Charles II. to the introduction of the light, tailed wig of the 18th century.
PERUZZI, BALDASSABE ($148 \mathrm{~s}-1536$), Italian architect and painter of the Roman school, was borm at Ancajano, in the diocese of Volterra, and passed his early.life at Sicna, where his father resided. While quite young Peruzzi went to Rome, and there studied architecture and painting; in the latter be was at first a follower of Perugino. The choir frescods in Sant' Onofrio on the Janiculan Hill, utsually uattributed to Pinturicchio, are by his hand. One of the first works which brought renown to the young architect was the villa on the banks of the Tiber in Rome now known as the Farnesina, originally built for the Sienese Agostino Chigi, a wealthy banker. This villa, like all Peruzzi's works, is remarkable for its graceful design and the delicacy of its detail. It is best known for the frescoes painted there by Raphael and his pupils to illustrate the stories of Psyche and Galatea. One of the loggie has frescoes by Peruzai's own hand-the story of Medusa. On account of his success Peruzzi was appointed by Leo X. in 1520 architect to St Peter's at a salary of 250 scudi; his design for its completion was not, however, carried out. During the sack of Rome in 1527 Peruzri barely escaped with his life, on condition of his painting the portrait of Constable de Bourbon, wbo had been killed during the siege (see Vasari). From Rome he escaped to Siena, where be was made city architect, and designed fortifications for its defence, a great part of which still exist. Soon afterwards he returned to Rome, where he made designs for a palace for the Orsini family, and builk the palaces Massimi and Vidoni, as well as others in the south of Italy. He died in 1536, and was baried by the side of Raphael in the Pantheon.

Peruzzi was an eager student of mathematics and was also a fair classical scholar. Like many of the great artists of his time, he was remarkable for the varied extent of his knowledge and skill. A most able architect, a fair painter, and a scientific engineer, he also practised minor arts, such as stucco-work in relief, sgraffits, and the decorative painted arabesques which the influence of Raphael did so much to bring into use. His best existing works in fresco are in the Castel di Beicaro and the church of Fontegiusta in Siena. For Siena Cathedral he also designed a magninicent wooden organ-case, painted and gilt, rich with carved arabesques in friezes and pilasters; be also designed the high altar and the Cappella del Battista.
His chief pupil was the architect Serio, who, in his work on architecture, gratefully acknowledges the great debt he owed to Peruzzi's instruction. The English National Gallery possesses an interesting drawing by his hand. The subject is the "Adorntion of the Magi," and it is of special value, because the heads of the three kings are portraits of Michelangelo, Raphecl, and Titian. The Ufizi and the library at Siena contain a number of Peruzzi's desigas and drawings, many of which are now of priceless value, as they show ancient buildings which have been destroyed since the r6th century.

Authorrtiss. - Vasari, Vila di Boddassare Peruzzi (Milanesi's ed. 1882), iv. 489; Milizia, Memorie degii architetti (1781, i. 210-215); Della Valle, Lettere senesi (1782-1786); Gaye, Carteggio inedito s' artisli (1839-1840); Lanzi, Storia pillorica (1804); and Platner, Besckreibung der Sledt Rom (1830-1842).

PERVIGILIUM VEAERES, the Vigil of Venus, a short Latin poem. The author, date, and place of composition are unknown. The poem probably belongs to the and or 3rd century A.D. An article signed L. Raqueltius in the Classical Revice (May 1905) assigns it to Sidonius Apollinaris (gth cent.) It was written professedly in early spring on the eve of a three-nights' festival of Venus (probably April 1-3). It describes in poetical language the annual awakening of the vegetable and animal world through the goddess. It consists of ninety-three verses in trochaic septenarii, and is divided thto strophes of unequal length by the refrain:
"Cras amet qui nunquam amavit; quique amavit cras amet."

[^25]Editio princepte (15y7); modern edlaiona by F. Bucheler (8859), A. Riese in Andhologin latina (1869), E. Bahrens in Uzedierte lateinh ische Gedichte (1877); S. G. Owen (with Catullus, 1893). There are translations into English verse by Thomas Stanley (1651) and Thomas Parnell, aunbor of The Hermit; on the text see J. W. Mackail in Journal of Philology (1888), vol. xvii.

PESARO (anc. Pisaurum, q.v.), a city and seaport of the Marches, Italy, the capital of ibe province of Pesaro and Urbino, situated on the coast of the Adriatic 37 m . N.W. of Ancona by rail, on the right bank of the Foglia, the ancient Pisaurus. The ground on which it is built is only from 10 to 40 ft . above the sca, but it is surrounded by hills-on the E. by Monte Ardizio, on the W. by Monte Accio or San Bartolo, which derives one of its names from the tradition that the Roman dramatist L. Attins was born and buried on the spot. Upon this hill stands the Villa Imperiale, the foundation stone of which was laid by the emperar Frederick III., built by the Sforza, and decorated with fine stucco ceilings and wall paintings and pavements of majolica plaques. A new palace was begun in 1530 by the Genga for Elconora Gonzaga, but never finished. The city walls were in 1830 transformed into a public promenade. Besides the ancient cathedral of the Annunciation (restored since 1860) with a ${ }^{2}$ th-century mosaic pavement, there are a number of smaller churches, several with Gothic portals. One of tbese, the church of San Francesco, now used as a cathedral, contains the "Coronation of the Virgin" by Giovanni Bellini, the largest and most important of his works outside Venice. The most conspicuous buiidings are the prefccture (a palace originally erected in 1455-5465 by the Dalmatian architect Luciano da Laurana for the Sforza, and restored by Francesco Maria della Rovere in the r6ih century, the Rossini theatre (opened in 1818), the fortress of Rocca Costanzia (built by Costanzo Sforza in 1474, Laurana being the architect), and the large lunatic asylum. The composer Gioacchino Rossini, who was a native of Pesaro, left all his fortune to found a masical lyceum in the city, and his statue by Marochetti (1864) stands near the railway station. The Olivieri library (established by the antiquary of that name, author of Marmora pisaurensia, \&c.) contains about 14,000 volumes, MSS. of Tasso, \&c., inscriptions and various antiquities, and a very fine collection of majolica (one of the best in ltaly) from the old Urbino and other manufactories. The Museo Mosca, left hy ils owner to the town, contains important collections of faience, furniture, 8 cc . Among the industries of Pesaro are the growing, spinning and weaving of silk, tanning, ironlounding, and the manufacture of glass and pottery. It is also the centre of a rich agricultural district. The harbour is of no great importance, but there is a small export trade in wine, Olives, silk and glass. Pop. (1901), 14,768 (town); 24,823 (commune).
Destroyed by Vitiges the Goth, the town was restored and strengthened by Belisarius, and afterwards along with Ancona, Fano, Senigallia, and Rimim formed the Pentapolis Maritima. In the course of the $1^{\text {th }}$ century Pasaro was sometimes under the government of the popes, sometimes under that of the emperors; but the Malntesta family, which first took root in the city about 1285 , gradually became the real masters of the place. In 1445 they sold their rights to Francesco Sforza; and in 1512 , through the influence of Julius II., the Sforza were supplanted hy his nephew Francesco Maria, duke of Urbino. Leo X. took the city away from Francesco and gave it to Lorenzo de' Medici; hut on Lorenzo's death Francesco was restored and Pesaro became the ordinary residence of the dukes of Urhino till the death of Francesco Maria II. in 1631, when it reverted to the States of the Church. It has formed part of the present kingdom of Italy since $\mathbf{2 8 6 0}$. Terenzio Mamiani della Rovere, poet and statesman, was born at Pestro in 1800.

PESCADORES (i.e. fishers,) a group of islands (called by the Japancse Hokd 16 or Hoko Gwuto) lying 30 m . west of Formosa, from which they are separated by the Pescadores Channel, about the tropic of Cancer. The islands number 48 (21 inhabited), have a coast-line of 98.67 miles, a total area of $85 \cdot 50$ sq. m., and a population of about 55,000 , ptincipally Chinese. Flat and with unproductive soil, they are swept during one
half of the year by violent N.E. winds, and also tie full in the path of the numerous typhoons that rush up the Strait of Formosa. Meteorological observations taken by the Japanese during a period of threc years show that the annual average number of stormy days is 237. The anchorage is at Mako (Makyd or Makun) on the principal island of Penghu. The chief industry is fishing (whemce the old Spanish name which has come into general use) and dried fish are exported.

PESCARA, FBRNANDO FRANCESCO DAVALOS, Marquis or ($5489-1525$). Italian condotlicre, was born at Naples, his family being of Spanish origin. Rodrigo (Ruy) Lopez Davalos, his great-grandfather, a noble of Toledo, who had taken an active part in the civil wars of Castile in the reign of John II. (1407-1454), had been driven into exile, and died at Valencia. Inigo (Ignatius), his son, entered the service of Alphenso of Aragon and Naples, followed his master to Italy, and there, making an advantageous marriage with a lady of the lamily of Aquino, was created marquis of Pescara. His son Alphonso, who succeeded him in the marquisate, marricd a lady of the Sicilian branch of the Spanish family of Cardona, and when he was treacherously killed, during a French invasion of Naples, his only son Fernando, or Ferrante, was a child in arms. At the age of six the boy was betrothed to Vittoria Colonna (q.s.), daughter of the general Fabrizio Colonna, and the marriage was celebrated in 1509 . His position as a noble of the Aragonese party in Naples made it incumbent on him to support Ferdinand the Catholic in his Italian wars. In 1512 he commanded a body of light cavalry at the battle of Ravenna, where he was wounded and taken prisoner hy the French. Thanks to the intervention of one of the foremost of the French generals, the Italian J. J. Trivulzio, who was his connexion hy marriage, he was allowed to ransom himself for 6000 ducats. He commanded the Spanish infantry at the battle of La Morta, or Vicenza, on the 7 th of October 1513 . It was on this occasion that he called his men before the charge to take care to step on him before the enemy did if he fell. From the battle of Vicenza in 1513 , down to the battle of La Bicocca on the 29th of April 1522, he continued to serve in command of the Spaniards aud as the colieague ralher than the subordinate of Prosper Colonna. It was only by the accident of his birth at Naples that Pescara was an Italian. Ife considered himsclf a Spaniard, spoka Spanish at all times, even to his wife, and was always surrounded by Spanish soldiers and officers. His opinion of the Italians as fighting men was unfavourable and was openly expressed. After the battle of La Bicocca Charles V. appointed Prosper Colonna commander-in-chief. Pescara, who considered himself aggrieved, made a journey to Valladolid in Spain, where the emperor then was, $t 0$ state his own claims. Charles V., with whnm he had long and confidential interviews, persuaded him to suhmit for the time to the superiority of Colonna. But in these mectings he gained the confidence of Charies V. His Spanish deseent and sympathies marked him out as a safer commander of the imperial troops in Italy than an Italian could have heen. When Francis I. invaded Italy in 1524 Pescara was appointed as licutenant of the emperor to repel the invasion. The dificulties of his position were very great, for there was much discontent in the army, which was very ill paid. The tenacity, patience and tact of Pescara triumphed over all ohstacles. His influence over the veteran Spanish troops and the German mercenaries kept them loyal during the long siege of Pavia. On the 24th of February 1525 he defeated and took prisoner Francis I. by a brilliant attack. Pescara's plan was remarkable for its audacity and for the skill he showed in destroying the superior French heavy cavalry by assailing them in flank with a mixed force of harquebusiers and light horsc. It was believed that he was dissatisfied with the treatment he had received from the emperor; and Girolamo Morone, secretary to the duke of Milan. upproaehed him with a scheme for expelling French, Spaniards and Germans alike from Italy, and for gaining a throne for himself. Pescara may have listened to the tempter, hut in act he was ioyal. He reported the offer to Charles V. and put Monone into prison. His health however had begun to give
way under the strain of wounds and exposure; and be died at Milan on the 4 th of November 1525 . Pescara had no children; his title descended to his cousin the marquis del Vasto, also a distinguished imperial general.
Authorities. - The life of Pescara was written in Latin by Paolo Giovio, and is included in the vise illustrixm virorum, printed at Basel 1578. Giovio's Latin Life was tranalated by L. Domenichi, the translator of his quher works, and published at Florence, 1551. The Spanish Historia del fortissimo y prudentissimo capilan Don Hernando de Apolos, by El Macstro P. Vallés (Antwerp, 1553), is also a translation of Giovio. See also Mignet, Rimalife de Francois Ir at de Charles Quint (Paris, 1875), which gives references to all auhhorities.
(D. H.)
pescara, a river of Italy, formed by the confluence of the Gizio and Aterno, and flowing into the Adriatic at the small town of Pescara. This town occupies the site of the ancient Aternum, the terminus of the Via Claudia Valeria, and up to 1867 a fortress of some importance. The railway from Sulmona follows the Pescara valley and joins the coast line to Brindisi at Pescara. In this valley, 22 m . from the sea, was the site of the ancient Interpromium, a town helonging probahly to the Paeligni; and not far off is the very fine Cistercian abbey church of S. Clemente di Casauria, founded by the emperor Louis II. in 87r. The present building belongs to the 1 th century. The sculptures of the portals; the pulpit, the Paschal candeiabram, \&c., and the bronze doors of this period are important. The chronicle of the abbey, of the end of the sath century, is in the Bibliotheque nationale at Paris.
See V. Bindi, Monumenti degli Abruszi (Naples, 1889), pp. $40589 q$-; P. L. Calore in Archivio slorico dall' arte (Rome, 1891), iv. 9 sqq.

PESCHIERA SUL GARDA, a fortress of Venetia, Italy, in the province of Verona, on an island in the Mincio at its outlet from the lake of Garda, 77 m . by rail E. of Milan. It was one of the famous fortresses of the Quadrilateral, the chief bulwark of the Austrian rule in Italy until 1860 (Mantua, Legnago and Verona being the other three) and has played a prominent part in all the campaigns conducted in north Italy, more especially during the Napolconic wars. It was taken by the Piedmontese from the Austrians, after a gallant defence hy General Rath lasting six weeks, on the 30 oth of May 1848, and sance that date has been in Italian hands.

PRSCIA, a town of Tuscany, Italy, in the proviece of Lucca, from which it is 15 mm . E.N.E. by rail, 203 ft . above sea-level. Pop. (1901), 12,40 (town); 18,000 (commune). The cathedral, restored in 1603 , contains the fine chapei of the Tutini lamily, built for Baldassare Turini (d. 1540) by Gluliano di Baccio of Florence, with his tomb by Raffaello da Montelupo. The town also has some huildings by Lazzaro Buggiano, the pupil and adoptive son of Brunclleschi. It has silk and paper manufactures.
PESETA, a silver coin and unit of value, the Spanish equivalent of the French, Belgian and Swiss franc, the Italian lire and the Greck drachma in the Latin monctary union. The peso (Lat. pensum, weight), of which pescte is a diminutive, was a Spanish coin of gold, peso de oro, or silver, peso de plata, once current in Spain and her colonies, and now the name of a silver coin of many South American states. The peso is also the name of the Mexiean dollar.

PESHAWAR, a city of British India, the capital of the North-West Frontier Province, giving its name to a district. The city is situated near the left bank of the river Bara, II m . Irom Jamrud at the entrance of the Khyber Pass, the railway station being 1588 m . north-west of Calcutta; pop. (1901), 95,147. Two miles west of the native city are the cantonments, forming the principal military station of the North-West Frontier Province. Peshawar lies within a horseshoe ring of hilts on the edge of the mountain barrier which separates India from Afghanistan, and through it have passed nearly all the inveders trom the north. The native quarter is a huddle of flat-soofed houses within mud walls, crowded along narrow, crooked alleys; there is but one fairly wide strect of shops. Here for many centuries the Peoindahs, or Aighan travelling merchants, have hrought their caravans from Kabul, Bokhare and Semartand every autuman. They
bring horses, wool, woollen stufis, silks, dyes, gold-thredd, fruits, precious stones, carpets and poshtins (sheepskin ciothing), Gghting and buying their way to the British border. where, leaving their arms, they are free to wander at will to Delhi, Agra and Calcuttas The chief speciality of Peshawar consists of bright-coloured scarves called lungis; wax-cloth and ornamental needle-work are also local products, as well as knives and small arms.

The district of Peshatalar has an area of a6ir sq. m.; pop. (1901), 788,707, showing an increase of 10.8% in the decade. Except on the south-east, where the Indus flows, it is encircled by mountains which are inhabited by the Mohmand, Utman Khel and Áridi tribes. The plain consists of alluvial deposits of silt and gravel. The district is naturally fertile and well watered, and is irrigated by the Swat River Canal. The principal crops are wheat, barley, maize, millets and oil-seeds, with a little cotton and sugar-cane. Peshawar also produces a fine variety of rice, known as "Bara rice," after the river which irrigates it. The North-Western railoway crosses tbe district from Attock, and has been extended from Peshawar city to Jamrud for military purposes. The district is chiefly inhabited by Pathans; there are some Hindus engaged in trade as bankers, merchants and shop-keepers.
In early times the district of Peshawar seems to have had an essentially Indian population, for it was not till the rgth century that its present Pathan inhabitants occupied it. Under the name of Gandhara it was a centre of Buddhism, and especially Graeco-Buddhism. Rock-edicts of Asoka still exist at two places; and a stupe excavated in 1909 was found to contain an inscription of Kanishka, as well as relics believed to be those of Buddha bimself. The last of the Indian Buddhist kings was conquered by Mabmud of Gharni in soog. The Mogul emperors always lound difficulty in maintaining their authority over the Afghan border tribes, who finelly established their independence during the reign of Aurangzeb. Peshawar was a favourite residence of the Afghan dynasty founded by Ahmed Shah Durrani, and bere Mountstuart Elphinstone came as ambassador to Shah Shujah in 1809 . A few years later Ranjit Singh crosed the Indus, and after much hard fighting Sikh authority was firmly establisbed under General Avitabile in 1834. In 1848 the whole of the Punjab passed to the Britisb. During the Mutiny, after the sepoy regiments had been disarmed, Peshawar was a source of strength rather than of danger, though Sir John Lawrence did at one time contemplate the necessity of surrendering it to tbe Afghans, in order to preserve the rest of Northern India.
PLAHIN, or PISHIN, a district of Baluchistan. Area 2717 sq. m. Pop. (1901), 50,200. It consists of a large plain surrounded on three sides by hills, which formeriy belonged to Afghanistan but was ceded to the British by the treaty of Gandamak in 1879 . This plain is of considerable strategic importance, as it forms the focus of a great number of routes leading from Sind and the Punjab frontier districts to Kandahar, and is intersected by the Sind-Peshin railway. The agricultural wealth of Peshin, and consequently its revenues, have increased greatly under British administration.
PESHITTO, or Peshito (i.e. " simple '), the standard version of the Bible in the Syriac language. It was long supposed to be the original Syriac version, but is now generally recognized as representing a revision made by Rabbula, bishop of Edessa, early in the 5th century, an attempt at standardizing the Syriac text sucb as Jerome had made for tbe Latin in his Vulgate. (See Bible.)

PESHWA (Persian for "leader," "guide"), the title of the head of the Mahratta confederacy in India. Originally the peshwa was only prime minister, but afterwards be supplanted his master and became chief of the state, founding an hereditary dynasty, with the capital at Poona. The last peshwa, Baji Rao, came into collision with the British, and was dethroned in 1818. His adopted son, Nana Sahib, took a leading part in the Mutiny of $\mathbf{8 5} 57$, in revenge for being deprived of what he considered his righte.

Preantilsi (from Lat. pessimus, worst), a word of modern colnage, ${ }^{2}$ denoting an attitudo of hopelessness towards life, a vegue general opinion that pain and evil predominate in buman affairs. It is the antithesis of "optimism," which denotes the view that on the whole there is a balance of good and pleasure, or at least that in the long run good will triumph. Between optimism and pessimism is the theory of " meliorism," according to which the world an the whole makes progress in goodness. The average man is pessimist or optimist not on theoretical grounds, hut owing to the circumstances of his life, his msterial prosperity, his bodily health, his general temperament. Perhaps the most characteristic example of unsystematic pessimism is the language of Eccesiastes, who concludes that " all is vanity."
Pessinism and optimism have, however, been expressed in systematic philosophical forms, a brief summary ondy of which need here be given. Such systems have been elaborated chiefly by modern thinkers, but the germs of the ideas are found widely spread in the older Oriental philosophies and in pre-Christian European thought. Generally' speaking, pessimism may be found in all pantheistic and materialistic systems. It is important, bowever, to point out an essential distinction. The thinker who sees man confronted by the infinite non-moral forces presumed by natural pantheism inevitably predominating over the finite powers of men may appear to the modern Christian theologian or to the evolutionist as a bopeless pessimint, and yet may bimself have concluded that, though the future holds out no prospect save that of annihilation, man may yet by prudence and care enjoy a considerable mensare of happinesa Peasimism, therefore, depends upon the individual point of view, aad the term is frequently used merely ina condemnatory sense by toostile critics. The attitude of 2 man who denies the doctrine of immortality and rejoices in the denial is not strictly pessimistic. A Cbristian again may be pessimistic about the present; he must logically be optimistic about the future-a teleological view of the universe implies optimism on the whole; the agnostic may be indifferent to, or pessimistic, regarding the future, while exceedingly satisfied with life as he finds it.
This complex view of life is exemplified by Plato, whose general theory of idcalism is entirely optimistic. In analysing the world of phenomena he necessarily takes a pessimistic view because phenomena are merely imitations more or less removed from reality, i.e. from the good. Yet the idealistic postulate of a smmmans bonum is in result optimistic, and this view predominated among the Stoics and the Neoplatonists. The Epicureans, on the other hand, were empirical pessimists. Man is able to derive a measure of anjoyment from life in spite of the nonexistence of the orthodor gods; yot this enjoyment is on the wbole negative, the avoidance of pain. A similar view is that of the ancient sceptics.

Oriental pessimism, at least as understood by Europeans, is best exemplified in Buddhism, which finds in bumen life sorrow and pain. But all pain and sorrow are incidental to the human being in his individual capacity. He who will cast aside the "Bonds," the "Intoxications," the "Hindrances," and tread the Noble Eight fold Path (see Budonsw) whicb leads to Nirvana, will attain the ideal, the "Fruit of Arahatship," which is described in terms of glowing praise in the Pali bymns. This, the original doctrine of the Buddha, though not adopted in the full sense by all bis followers, is in fact at least as optimistic as any optimism of the West. To call it " pessimism " is merely to apply to it a characteristically Western principle according to whicb happiness is impossihle without personality. The true Buddhist on the contrary looks forward witb enthusiasm to this absorption into eternal hliss.

In Europe on the whole the so-called pessimistic attitude was commoner in the Teutonic nortb than in the Mediterrenean basin. But even here the hopefulness as regards a future life, in which the inequalitles of the present would be rectified, compensated for tbe gloomy fatalism witb which the present was
${ }^{2}$ The earliest example given in the New English Dictionary is in S. T. Coleridge'i Lethers'(1794).
regarded. The advent of Christianity, with its categorical assertion of future happiness for the good, to a large extent did away with pessimism in the true sense. In Leibnitz we find a philosophic or religious optimism, which saw in the universe the perfect work of a God who from all possihilities selected the best. Kant, though pessimistic as regards the actual man, is optimistic regarding his moral capacily. To Hegel similarly the world, though evil at any moment, progresses by conflict and suffering towards the good.

Passing over the Italian Leopardi we may notice two leading modern pessimists, Schopenhauer and von Hartmann, Schopenhauer emphasizes the pessimistic side of Hegel's thought. The universe is mercly blind Will, not thought; this Will is irrational, purposcless and therefore unhappy. The world being a picture of the Will is therefore similarly unhappy. Desire is a state of unhappiness, and the satisfaction of desire is therefore mereiy the removal of pain. Von Hartmann's doctrine of the Unconscious is in many respects similar to Schopenhauer's doctrine of the Will. The Unconscious which comhines Will and Rcason is, however, primarily Will. The workings of this Win are irrational primarily, but, as in its evolution it becomes more rationalized and understands the whole meaning of the Weitschmerz, it ultimately reaches the point at which the desire for existence is gone. This choice of final not hingness differs from that of Schopenhauer in being collective and not individual. The pessimism of Schopenhauer and Hartmann does not, however, exclude a certain ultimate mysticism, which bears some analogy to that of Buddhism.
Pessimism is naturally connected with materialist, optimism with idealist, views of life. The theorics of the modern evolutionist school, however, have introduced into materialistic theory a new optimistic note in doctrincs sucb as that of the survival of the fittest. Such doctrines regard the progress of humanity as on the whole tending to the greater perfection, and are markedly optimistic in contrast with earlier theorics that progressive differentiation is synonymous with progressive decay. Similarly the cynical contempt which Nietzsche shows for morality and the conventional virtues is counterbalanced by the tbeory of the Obermeasch, the highest type of manhood which by struggle has escaped from the ordinary weaknesses of normal humanity.
Sce James Sully, Pessimism: A History and a Criticism (1877): Caro. Le Pessimisme au xix siede (1878); Salcus, The Anatomy of Negalion (1886): Tulloch. Modern Theories on Philosophy and Religion (1884); William james, The Will to Believe; Dühring, Der Werlh des Lebens (1865); Meyer, Welledend and Wellsehmers (1872); E Pileiderer, Der moderne Pessimismns (1875): Agnes Taubert (Hartmann), Der Pessimismus und seine Cegner (18i3); Gass, Oplimismus und Pessimismus (1876); Rehmke, Die Phitos, des Welisehmerzes (1876): Huber. Der Pessimismus (1876); von Goli her, Der moderue P. (1878); Paulsen. Schopexhauer, Ilamlet, Mephislopheles (1900); Kowalcwski. Siudien zur Psychologie des P. (1904).
pessinus (Meogivous, Meacoôs), an ancient city of Galatia in Asia Minor, situated on the lowest southern slope of Mt Dindymus, on the left bank of the river Sangarius, not far from its source. The ruins, discovered by Texier, lie round the village of Bala-Hissar, 8 or 9 m . S.E. of Sivri-Ifissar. They include a thealre in partial prescrvation, but they have been mostly carried off to Sivri-Hissar, which is largely built out of them Originally a Phrygian cily, probably on the Persian "Royal Roud," it became the capital of the Gallic tribe Tolistobogii and the chici commercial city of the district. It contained the most famous sanctuary of the mother of the gods (Cybele), who here went by the name of Agdistis, and was associated with the god Attis, as elsewhere with Sahazius, \&c. Her pricsts were also princes, who bore rule not only in the city the coinage of which, beginning about 100 s.c., was for long issucd by them) but also in the country round, deriving a large revenue from the temple estates; but in the time of Sirabo (A.D. 19-20) their privileges were much diminished. The high-pricst always borc the god's name Attis. In the crisis of the sccond Punic War (205 B.c.), when the Romans lost faith in the efficacy of their own religion to save the state, the Senate, in compliance with an oracle in the Sibylline books to the effect that the forcign
foe could be driven from Italy if the Idacan Mother (Cybele) were brought from Pessinus to Rome, sent ambassedors to the town, who obtained the secred stone which was the symbol of the goddess and brought it to Rome, where the worship of Cybele was established. But the goddess continued to be worshipped in her old home; her priests, the Galli, went out to welcome Manlius on his march in 189 B.c., which shows that the town was not yct in the hands of the Tolistobogii. Soon after this a splendid new temple of the goddess was built by the Pergamenian kings Some time before 164 B.c. Pessinus fell into the power of the Gauls, and the membership of the priestly college was then equally divided between the Gauls and the old pricstly familics. Like Ancyra and Tavium, Pessinus was Romanized first and Hellenized afterwards. Only about a. d. 165 did Hellcnic ways and modes of thought begin to be assumed; before that we find a deep substratum of Celtic feeling and ways, on which Roman elements had been superimposed without filtering through a Hellenic medium. Christianity was introduced late; it cannot be tracod before the th century. When. Galatia was divided into two provinces (A.D. 386-395) Pessinus was made the capital of Galatia Secunda or Salutaris, and it became a metropolitan bishopric. After tbe 16th century it disappears from history, belng supplanted, from the beginning of the period of Saracen invasion, by the impregnable fortress Justinianopolis (Sivri-Hissar), which became the capital and the residence of the bishop, tbenceforward called "arch. bishop of Pessinus or of Justinianopolis."
(J. G. C. A.)

PESTALOZZI, JOHANN HEINRICH (1746-1827), Swiss educational reformer, was born at Zürich on the 12th of January 1746. His falher died when be was young, and he was brought up by his mother. At the university of Zurrich be was associated with Lavater and the party of reform. His earliest years were spent in schemes for improving the condition of the people. The death of his friend Bluntschli turned him however from politics, and induced him to devote himself to education. He marricd at twenty-three and bought a piece of waste land at Neuhol in Aargau, where he attempted the cultivation of madder. Pestaloxzi knew nothing of business, and the plan failed. Before this he had opened his farm-house as a school; but in 1780 he had to give this up also. His first book published at this lime was The Encuing Hours of a Hermil (1780), a series of aphorisms and reflections. This was followed by his masterpicce, Leonard and Gerfrude (178 I), an account of the gradual ruformation, first of a bousehold, and then of a whole village, by the efforts of a good and devoled woman. It was read with avidity in Germany, and the name of Pestalozzi was rescued from obscurity. The French invasion of Switzerland in 1798 brought into relief his truly heroic character. A number of children were left in Canton Unterwalden on the shores of the Lake of Lucerne, without parents, home, food or shelter. Pestalozzi collected a number of them into a deserted convent, and spent his energies in reclaiming them. During the winter he personally tended them with the utmost devotion, but in June 1799 the huilding was required by the French for a hospital, and his charges were dispersed. In 1801 Pestalozis gave an exposition of bis idcas on education in the book How Gertrude teaches her Children. ifis meithod is to proceed from the easier to the more difficult. To begin with observation, to pass from observation to consciousness, from consciousness to speech. Then come measuring, drawing, writing, numbers, and so reckoning. In 1799 he had been enabled to establish a school at Burgdorf, where he remained till 1804. In 1802, he went as deputy to Paris, and did his best to interest Napoleon in a scheme of national education; but the great conqueror said that he could not trouble himself about the alphabet. In 1805 he removed to Yverdun on the Lake of Neuchatel, and for twenty years worked steadily at his task. He was visited by all who took interest in cducationTalleyrand, Capo d'Istria, and Mme de Stael. He was praised by Wilhelm von Humboldt and by Fichte. His pupils included Ramsaucr, Delbrick, Blochmann, Carl Riter, Frobbel and Zeller. About 1815 dissensions broke out among the teacbers of the school, and Pestalozzi's last ten years were
chequered by weariness and sorrow. In 2825 he retired to Neuhof, the home of his youth; and after writing the adventures ol his life, and his last work, the Suom's Song, he died at Brugg on the 17th of February 1827. As be said himself, the real work of his life did not lie in Burgdorf or in Yverdus. It lay is the principles of education which he practised, the development of his observation, the training of the whole man, the sympathetic application of the teacher to the taught, of which he left an example in his six months' labours at Stana. He had the deepest effect on all branchen of education, and his infleence is far from being exhausted.
Pestalozri's complete works were published at Sututgart in 18191828, and an edition by Seyffarth appeared at Berlin in 1881. Volumes on his life and teaching have been written by De Guimps (1889), Barnard (1862), Krisi (i875) and Pinloche (1901).

PETALITB, a mineral species consisting of lithium aluminium silicate, $\mathrm{LiAl}\left(\mathrm{Si}_{4} \mathrm{O}_{6}\right)$, The monoclinic crystals approach spodumene (g.v.) in form, which is also a lithium aluminium silicate with the formula $\mathrm{LiA}\left(\mathrm{SiO}_{3}\right)_{2}$. There is a perfect cleavage parallel to the hasal plane, and the mineral usually occurs in platy cleavage masses; on this account it was named, from Gr. xitahav (a leaf). The hardness is $6 \frac{1}{2}$ and the specific gravity $2 \cdot 4$ (that of spodumene being 3.16). The mineral is colourless or occasionally reddish, varies from transparent to translucent, and has a vitreous lustre. It was discovered in 1800 as cleavage masses in an iron mine on the island of Uts in the Stockholm archipelago, where it is associated with lepidolite, tourmaline (rubellite and indicolite) and spodumene. A variety known as "castor " is found as transparent glassy crystals associated with pollur (q.p.) in cavities in the granite of Elba.
(L.J.S.)

PETARD (Fr. platd, peter, to make a slight explosion), a device formarly used by military engincers for blowing in a gute or other barrier. It consisted of a small metal or wooden case, usually of sugar-loaf shape, containing a charge of powder and fired by a fuse.
PETAU, DENFS ($5583-1652$), Jesuit scholar, better known as Dionysius Petavios, was born at Orleans on the aist of August 1583 . Educated at Paris University, he came under the infuence of Isaac Scaliger, who directed his attention towards the obscurer fathers of the Church. In 1603 he was appointed to a lectureship at the university of Bourges, but resigned his place two years later, in order to enter the Society of Jesus. For many years he was professor of divinity at the College de Clermont, the chief Jesuit establishment in Paris; there be died on the inth of December 1652. He was one of the most brilliant scholars in a learned age. Carrying on and improving the chronological labours of Scaliger, he published in 1627 an Opws de doctrina temporum, which has been often reprinted. As abridgment of this work, Rationarium temporum, was translated into French and English, and has been brought down in a modern reprint to the year 1849 . But Petau's eminence chiefly rests on his vast, but unfinished, De theologicis dogmatibus, the first systematic attempt ever made to treat the development of Christian doctrine from the historical point of view.
PEICRENEAS, or Patzinars, a barbarous people, probably of Turkish race, who at the end of the gth century were, driven into Europe from the lower Ural, and for about 300 years wandered about the northern frontier of the East Roman Empire. (See Tupes).
PETER (Lat. Pelrus from Gr. xtrpos, a rock, Ital. Pietro, Piero, Pier, Fr. Pierre, Span. Pedro, Ger. Peter, Russ. Petr), a masculine name, derived from the famous surname beatowed by Christ upon his apostle Simon ("Thon art Peter and upon this rock will I build my church," Matt. xiv. 17-19). The name has consequently been very popular in Christian countries. It is noteworthy, however, that, out of deference to the "prince of the apostles" and first bishop of Rome, the name has never bcen assumed by a pope. The biographiea which follow are arranged in the order: (I) the apostle; (2) king; (3) other eminent men.
PETMR, ST, the chicf of the Twelve Apostles. He is known also by other names: (a) "Simon" ($\mathrm{El} / \mathrm{m}_{\mathrm{u}} \mathrm{y}$) in Mark four times and Luke seven times. This use is only found in parrative
before the story of the mission of the apostles: it is also found in speeches; Mat thow once, Mark once and Luke twice. (b) "Simon who is called Peter" is found in Matthew twice and Acts four times. (c) "Simon Peter" is found in Matthew once, Luka once, John seventeen times (and perhaps also in a Peter i. I, where the text varies between Simon and Symeon. (d) "Peter" is found in Matthew nineteen times, Mark eighteen times, Luke sixteen times, Acts fifty-one times, John fifteen times, Galatians twice, I Peter once (e) "Cephas" is found in John once, Galatians four times, i Corinthians four times. (f) Symeon (Eupein) is found in Acts once. It appears that the apostle had two names, each existing in a double form-Greek and Hehrew, Symeon (to the scund into Simon, and Cephas (upr) which was Graedized according to the meaning into Peter (IHETpos). Symeon and Simon are both well-known names in Aramaic and Greek respectively, but Ccphas and Peter are previously unknown. Symeon was no douht his original Aramaic name, and the earliest gospel, Mark, which has some claim spectally to reproduce Petrine tradition, is careful to employ Simon until after the name Peter had been given, and not then to use it again. The Gospels agree in regarding Cephas or Peter as an additional name, which was given by Christ. But they differ as to the occasion. According to Mark iii. 13 sqq. it was given on the occasion of the mission of the Twelve. According to John i. 42 it was given at his first call. According to Matt. rvi. 13 sqq. it was given after the recognition of Jesus as Messiah at Caesarea Philippi. This last account is the only one which describes any circumstances (for a further discussion see 53 (2) below).

According to the Gospels Peter was the son of John (Twhems, John i. 42, xxi. 15 seq .) or Jonas ('L $\omega \mathrm{y}$ as, Matt. xxvi. 27). According to Mark i. 29 he was a fisherman of Capernaum, but John i. 44 describes him and his brother Andrew as of Bethsaida. From Mark i. 30 he is seen to have been married, and 1 Cor. ix. 5 suggests (but another interpretation is possible) that his wife went with him on his missionary journcys. In I Pct. v. 13 Mark is referred to as his son, hut this is usually interpreted of spiritual kinship. According to legend (Acta Ncres ct Achillei, and Acta Philippi) he had a daughter Petronilla, hut there is no reason for thinking that this is historical.

The Gospel narratives are unanimous in describing Peter as one of the first disciples of Christ, and from the time of his call he seems to have been present at most of the chicf incidents in the narrative. He formed together fhetory m with the sons of Zebedee to some extent an inner motbo circle within the Twelve, and this favoured group Resurroois specially mentioned as present on three occasions 4 too.
The raising of she daughter of Jairus (Mark v. 28-43; Matt. ix. 18-36; Luke viii. 4I-56), the transfiguration (Mark ix. 2 sqq.; Mall. xvii. I s9q.; Luke ix. 28 sqq.) and the scene in the Garden at Gethsemane (Mark xiv. 32 Bqq.; Matt. xxvi. 36 sqq.). He is also specially mentioned in connexion with his call (Mark i. 16-20; Matt. iv. I8 sq9.; Luke v. I sq9.; John i. to sqq.); the healing of his wife's mother (Mark i. at sqq.; Matt. viii. 14 s 99 ; ; Luke Iv. 38 sq9); the mission of the Trelve Apostles (Mark iii. 13 sqq.; Matt. x. 1 sqq;i Luke vi. 12 sqq.); the storm on the Lake of Galilee (Mark vi. 45 sq9.; Matt. siv. 22 sqq; John vi. 16 eqq.); the Messianic recogaition at Caesares Philippi (Miark vil. 27 sqq; Matt. xvi. 16 sq9; Luke ix. 18 sqq .); the incldent of the payment of tribute by the coin found in the fish caught by Peter (Math. avii. 25 sqq.) and with various questions leading to perables or their explanations (Mark xiii. 36 sqq.; buke xii. 4I; Matt. xviii. as sq9.; Mark x. 28; Matt. xix. 27; Luke xviii. 28). In the week of the Passion he appears in connexion with the incident of the withered fog-cree (Mark xi. 21; Matt. xxi. 20); as introducing the eschatological discourse (Mart riii. 3 sqq.); and as prominent during the Last Supper (Luke xxii. 8 sqq-i Jobn xiii. 4 sqq.; Mark xiv. 27 sqq; Matt. xxvi. 3 sg9.). He
was present in Gethsemane, and tried to offer some resistance to the arrest of Jesus (Mark xiv. 47; Matt. xxvi. 51; Luke xxii. 50; John zviii. 10). After the arrest he followed the Lord to the scene of the trial, but denied him and fied. The message of the young man at the tomb (Mark rvi. 4) was especially addressed to Peter and it is clear that the genuine conclusion of Mark must have contained an account of an appearance of the risen Lord to him.

Out of this mass of incidents the following are central and call for closer critical consideration.

1. The Coll of St Peter.-(Mark.i. 16-20; Matt. iv. 18-22; Luke v. I-II; John i. 40-42). The account in Matthew is practically identical with that in Mark and is no doubt taken from the Marcan source, but Luke and John have different traditions. The main points are as follows: according to Mark, at the beginning of the Galilean ministry Jesus saw Peter and Andrew fishing. He called them, and they joined bim. After this he went with them to Capernaum, preached in the synagogue, and healed Peter's wife's mother. Luke, who certainly used Mark, has pertly rearranged this narrative and partly rejected it in favour of a different version. According to him the visit to Capernaum and the healing of the wife's mother preceded the call of Peter, and this was associated with a tradition of a miraculous draught of fishes. The advantage of the Lucan reconstruction, so far as the first part is concerned, is that it supplies a reason for Peter's ready obedience, which is somewhat difficult to understand if he had never scen Jesus before. But it seems probable that this is the motive which led to the redactorial change in Luke, and that the Marcan account, which is traditionally connected with Peter, ought to be fotlowed. With regard to the narrative of the miraculous draught of fishes, the matter is more complicated. Lake obviously preferred this narrative to the Marcan account, but the fact that the same story comes in John xxi. suggests that there was an early tradition of some such incident of which the actual occasion and circumstances were undetermined. Luke preferred to connect it with the call of Peter, the writer of John x xi. with his restitution: probably both are of the nature of redactorial guesses, and the Marcan account must be regarded as preferable to either. The Johannine account of the call of Peter is quite different. According to this it took place immediately after the baptism of Jesus, in Judaea not in Galilee. It is connected with the giving of the name Peter, which in Mark was nol given until much later.
2. The Confassion of Peter at Caesarea Philippi--(Mark viii. 27-33; Matt. xvi. 13-23; Luke ix. 18-22). According to Mark, Peter, in answer to the question of Jesus, recognized that He was the Messiah, but protested against the prophecy of suffering which Jesus then added. This narrative is followed, with the exception of the last part, by Luke, who as usual is inclined to omit anything which could be regarded as derogatory to the Apostles. Matthew also uses the Marcan narrative, but adds to it a new section from some other source which suggests that the name of Peter was conferred on this occasion-not, as Mark says, at the first mission of the Twelve-and confers on hlm the keys of the kingdom of heaven and the right of binding and loosing. This must be probably ${ }^{2}$ interpreted as a reference to the prophecy concerning Eliakim in Isa. xxii. 22, and to technical use of the words "binding" and "loosing" by the scribes in authoritative decisions as to the obligations of the law. It thus confers on Peter a position of quite unique authority. It must, however, be noted that the power of binding and loosing is given in Matt. zviii. 18 to the whole body of disciples. This scems to be an alternative version, also found only in Matthew. The question of the bistorical character of the Matthacan addition to the Marcan narrative is exceedingly difficult; but it
${ }^{1}$ See, however. A. Sulzbach's artlcle in the Zeitschr. f. N.T. Wiss. (r903), p. 190. He thinks there is an allusion to a room in the Temple where the great key was kept: this room was called Kephan, because the key was placed in a recess closed hy a soone. There is also a valuable article hy W. Kohler in the Archis fur Redicionswoiss. treating the question of the keys from the point of view of comparative religion
is hard to think that if it were rcally authentic it would have been omitted from all the other gospels, and it perhaps belongs to the litule group of passages in Matthew which seem to represent early efforts towards church legislation, rather than a strictly historical narrative. Besides it is noticeable that in one other point Matthew has slightly remodelled the Marcan narrative. According to the latter Jesus asked, "Whom say men thrt I am?" and Peter replied "the Messiah," without qualification. But in Matthew the question is changed into "Whom say men that the Son of Man is?" and, whatever may be the original meaning of the phrase "the son of man" it cannot be doubted that in the gospels it means Messiah. Thus the simple answer of Peter in Mark would be meaningless, and it is replaced by "The Messiah, the son of the living God," which is no longer a recognition of the Messiahship of Jesus (this is treated in Matthew as an already recognized fact, cf. x. 23, xii. $40, \& c$.), but is a definition and an exaltation of the nature of the Messiah.
3. The Conduct of Peter after the Beirayal.-The consideration of this point brings one into touch with the two rival traditions as to the conduct of the disciples after the betrayal and crucifixion of the Lord-the Galilcan and the Jerusalem narratives. There is one incident which must in any case be accepted as it is found in both narratives. This is the denial of Peter. It appears that Peter did not stay with the disciples and neither returned home immediately to Galilee (according to the Galilean tradition) nor sought hiding in Jerusalem (according to the Jerusalem tradition), but followed the Lord at a distance and was a witness of at least part of the trial before the Sanhedrim. He was detected and accused of being a disciple, which he denied, and so fulfilled the prophecy of Jesus that he would deny Him before the cock crowed.
But putting this incident aside, the Galilean and Jerusalem traditions do not admit of reconciliation with one another. The former is represented by Mark. According to it the disciples all fled after the betrayal (though Peter waited until after the denial), and afterwards saw the risen Lord in Galilee. The details of this narrative are unfortunately lost, as the genuine conclusion of Mark is not extant. But Mark xiv. 28 and xvi. 7 clearly imply a narrative which described how the disciples returned to Galilee, there saw the risen Lord, and perhaps even how they then returned to Jerusalem in the strength of their newly recovered faith, and so brought into existence the church of Jerusalem as we find it in the Acts. It is also clear from Mark xvi. 7 that Peter was in some special way connected with this appearance of the, risen Lord, and this tradition is confirmed by I Cor. xv. 5, and perhaps by Luke xxiv. 34 .

The Jerusalem narrative is represented especially hy Luke and John (excluding John xxi. as an appendix). According to this the disciples, though they fled at the betrayal, did not return to their homes, but remained in Jerusalem, saw the risen Lord in that city, and stayed there until after the day of Pentecost. Attempts to reconcile these two narratives seem to be found in Matthew and in John xxi.

Ohviously the choice which has to be made between these traditions cannot be adequately discussed here: it must suffice to say that intrinsic and iraditional probability seem to favour the Galilean narrative. If 80 , one must say that after the denial Peter returned to Galilee-prohahly to resume his trade of fishing-and he there saw the risen Lord. This appearance is referred to in I Cor. xv. 5, and was cettainly described in the lost conclusion of Mark. An account of it is preserved in John zxi., but it is here connected-probably wrongly-with a miraculous draught of fishes, just as the account of his call is in Luke.

Immediately after the resurrection there is a missing link in the history of Peter. We know that he saw the risen Lord, and, acconding to the most probable view, that this was in Galiee; but the circumstances are unknown, and we have no account of his return to Jerusalem, as at the beginning of the Acts the disciples are all in Jerusalem, and the writer, in contradiction to the Marcan or Galilean narrative, assumes that they had never left it. The first part of the Atts is largely concerned wifs

Elician Eficr 18 Avtampertar exurlate 6
 Aderiont
the work of Peter. He appears as the recognised leader of the Apostles in their choice of a new member of the Twelve to take the plece of Judas Iscariot (Acts i. 15 sqq.); on the day of Pentecoat he seems to have played a prominent part in explaining the meaning of the scene to the people (Acts ii. 14 aqq.); and soon afterwards was arrested by the Jews on the charge of being a ringleader in the disorders caused by the healing of the lame man at the "Beautiful" gate of the temple, but was released. After this he appears as the leader of the apostles in the story of Ananias and Sapphira, who perished at his rebuke for their duplicity (Acts v. $\mathbf{x - 1 I}$). The last episode of this period is anotber arrest by the priests, which ended in his being scourged and released (Acts v. 17 sqq.).
After this Peter's attequition was directed to the growth of Christianity in Samaria, and be and Jobn made a journey of inspection through that district, laying hands on those who had been baptized in order that they might receive the Hoły Spirit. Here Simon Magus ($q . v$.) was encountered. He was a magician wbo had been converted by Pbilip and baptized; he desired to obtain the power of conferring the Spirit, and offered Peter money for this purpose, hut was indignantly repulsed. After this Peter and John returned to Jerusalem.
During the following stay in Jerusalem, the duration of which is not defined, Peter was visited by Paul (Acts ix. 26-29, Cal. i. 18), and a comparison of the chronological date afforded by Gal. i. and ii. points to a year not earlier than 33 (Harnack) or later than 38 (C. H. Turner) for this meeting. According to Galatians, Paul saw none of the epostles on this occasion except Peter and James: it is therefore probable that none of the others were then in Jerusalem.
After this Peter made another journey, visiting especially Lydda, Joppa and Caesares. His stay at Lydda was marked by the healing of Aeneas (Acts ix. 32-4) and at Joppa by the resuscitation of Tabitha or Dorcas. While at Joppas he stayed with Simon the tanner, and thence was surnmoned to Caesarea to Cornelins tbe centurion. He hesitated whether to go, hut was persuaded by a vision and the injunction to call nothing unclean which God bad cleansed. Cornellus was accordingly baptized. This is an important incident, as being the first admission of a Gentile into the church : hut he was already " Godfearing," фopobuevos rdy \#ebp (Acts x. 1), which probebly denotes some sort of connexion with the Jewisb synagogue, though it is difficult to say exactly what it was. After this incident Peter returned to Jerasalem. The members of the Charch were somewhat shocked at the reception of a Gentile: their view apparently was that the only road to Christianity was through Judaism. They were, however, persuaded by Peter's speech (Acts xi. $4-17$); but it is uncertain bow far their concession went, and in the ligbt of subsequent events it is probebla that they still regarded circumcision as a necessary rite for all Christians.
After the retura of Peter to Jerusalem tbe most important events were the famine at Jerugalem, and the persecution of the Church by Herod. During the latter Peter was put in prison (Acts xii. 3 sqq.), but was released by an angel; he first went to the house of Mary, the mother of John Mark, and afterwards went to " another place." This expression has been interpreted to mean another town, and even to be an implied reference to Rome. This last suggestion, improbable though it be, is historically important. The persecution of Herod seems to have been in his last year, which was prohably A.D. 43-44. There was a marked tendency to make the duration of Peter's episcopate at Rome twenty-five years: and a combination of this tendency witb the explanation that the Itepos torros was Rome probahly is the origin of the traditional dating of the martyrdom of Peter in A.D. 67-68. There is, bowever, $n 0$ justification for this view, and itepos roros need not mean more than another house in Jerusalem.
The famine referred to in Acts xi. 27 sqq- prohably began before the death of Herod, but it continued after bis death, and the relief sent by the church at Antioch to Jerusalem throagh Paul and Br rnabas probably arrived about the year 45. It is wot stated in the Acts that Peter was present, and it is therufore
usuanly adoumed that he was absent, but Sir W. M. Ramsay has argued in his Se Paul the Traveller that the visit of Paul to Jerusalem with the famine relief is the meeting between Paul and Peter referred to in Gal. ii. as the occasion of an agreement between them as to the preaching of the gospel to Jews and Gentiles. This view is not generally accepted, but it has the great advantage of avoiding the difficulty that otherwise Paul in Gal. ii. I sqq. must describe as his second visit to Jerusalem what was really his third. According to Ramsay, then, Peter was present during the famine, and made a private agreement witb Paul that the latter should preach to the Gentiles, and so far Gentile Christianity was recognized, but the conditions of the intercourse between Gentile and Jewish Christians were not defined, and the question of circumcision was perhaps not finally settled. According to the more popular view the description in Gal. ii applies to Acts xv. the so-calied council of Jerusalem. This council met after the Girst missionary journey (c. A.D. 49) of Paul to discuss the question of the Gentiles. Peter, who was present, adopted the view that Gentile Christians were free from the obligation of the law, and this view was put into the form of the so-called Apostolic decrees by James (Acts Iv 23 sqq.).
The next information which we have about Peter is given in Gal. ii. II sqq. According to this he went to Antioch and at Eirst accepted the Gentile Christians, but afterwards drew back and was rebuked by Paul. On the ordinary interpretation this must have taken place after the council, and it is exceedingly difficult to reconcile it with the attltude of Peter described in Acts xv., 80 that Mr C. H. Turner thinks that in this reapect the account in Cal. ì. is not chronological, and places the visit of Peter to Antioch before the council. If however, we take the theory of Sir W. M. Ramsay the matter is simpler. We tbus get the compact between Paul and Peter during the famine, tben a visit of Peter to Antioch, during which Peter first adopted and afterwards-drew back from the position which he had agreed to privately.

This vacillation may.then have been one of the causes which led up to the council, which may have been held before, not, as is usually thought, after the sending of the Epistle motary to the Galatians. For this we have no knowledge atherthe of details for which the same certainty can be claimed. Comel/ of There ate, however, various traditions of importance. The following points are noteworthy. I Cor. i. 12 suggests the possihility that Peter went to Corinth, as there was a party there which used his name. It is, however, possible that this party had merely adopted the principles which, as they had been told, perhaps falsely, were supported hy the leader of the Twelve. Dionysius of Corinth (c. 170) states that Peter was in Corinth. This may represent local tradition or may be an inference from 1 Cor. i. 12. I Peter suggests a ministry in the provinces of Asia Minor. There is, of course, nothing imprabable in this, and even if I Peter be not authentic, it is early evidence for such a tradition, but it is also possible that Peter wrote to converts whom be bad not personally made: This tradition is found in Origen (Eus. H.E. iii. 1), Epiphanius (Haer. xxví., vi.), Jerome (De Vir. ill. 1) and other later writers; but it is possible that it is merely an inference from the cpistle. Early tradition connects Peter with Antioch, of which be is said to have been the first bishop. The first writer to mention it is Origen (Hom, vi. in Lucom), but it is also found in the Clementine Homilics and Recognitions (Hom. 20, 23; Recog. 10, 68) and probably goes back to the liste of hishops which were drawn up in the and century. Other important references to this tradition are found in Eus. H.E. iii. 26, 2; Apost. Const. vii. 46; Jerome, De Vir. ill. 1; Chronicon paschalo; and Liber pontificalis. The tradition of work in Antioch may well be historical. Otherwise it is a rather wild claboration of Gal.ii. II. The most important and widespread tradition is that Peter came to Rome; and thougb this tradition has often been bitterly attacked, It seems to be probable that it is at least in outline quite historical. The evidence for it is eartier and better than that for any other tradition, though it is not quite convincing.
The earliest witness to a residence of Peter in Rome is probably

I Peter, for (see Perme, Erismes 0n) it is probable that the reference to Babylon ought to be interpseted as meaning Rome. If so, and if the epistle be genuine, this is conclusive evidence that Peter was in Rome. Even if the epistle be not genuine it is evidence of the same tradition. Nor is corrobontion lacking: Clement (c. A.d. 97) refers to Peter and Paul es martyrs (I Clem. $5-6$) and says that "To these men . . . there was gathered a great company of the elect who . . . became an cxample to us." This points in two ways to a martyrdom of Peter in Rome, (1) becaure Peter and Paul are co-ordinated, and it is gencrally admitted that the latter suffered in Rome, (2) because they seem to be joined to the great company of martyrs who are to be an example to the Church in Rome. Similarty Igaatius (c. A.D. 115) says to the Romans (Rom. iv.), "I do not command you as Peter and Paul." The auggestion obviousiy is that the Romans had been instructed by these Apostics. By the end of the and century the tradition is genernlly known: Irenaeus ($3,1,1$), Clement of Alexandria (comment. on 2 Peter), Origen (Hom. vi. in Lecoms), Tertullian (Scorp. 15, and several passages) are explicit on the point, and from this time oawards the tradition is met with everywhere. There is also a tradition, found in Irenaeus ($3,1,1$) and in many later writess, and supported by 1 Pet. v. 13, and by the statciments of Papias (Eus Z.E.E. 3, 39, 15) that Mark acted as Peter's assistant in Rome and that his gospel is based on recollections of Peter's teaching.
This evidence is probably sufficient to establish the fact that Peter, tike Paul, had a wide missionary career ending in a violent death at Rome, though the details are not recoverable. The chronological question is more difficult both as regards the beginning and the end of this period of activity.
The Acts, in describing the risits of Peter to Samaria, Joppa, Lydda and Caesarea, justify the view that his missionary activity began quite early. Gal, ii. II and I Cor. ix. 5 show 7wo Climealero Whor Mhatosery Wort that Acts minimizes rather than exaggerntes this activity; the Antiochian tradition probably represents a period of missionary activity with a centre at Antioch; similarly the tradition of work in Asia is possibly correct as almost certainly is that of the visit to Rome. But we have absolutely no evidence justifying 2 chronological arrangement of these periods. Even the silence of Paul in the epistles of the captivity proves nothing except that Peter was not then present; the same is true of a Tim. even if its authenticity be undoubted.
The evidence as to the date of his death is a little tuller, but not quite satisfactory. The carliest direct witness is Tertullian, who definitely states that Peter sufficred under Nero by crucifixion. Origen also relates the latter detail and adds that at his own request Peter was crucified head downwards. Probably John xxi. 18 seq. is a still earlier reference to his crucifixion. Fulter evidence is not found until Eusebius, who dates the arrival of Peter at Rome in 43 and his martyrdom twenty-five years later. But the whole question of the Eusebian chronology is very confused and difficult, and the text of the Chronicom is mot certain. The main objection to this date is based partly on general probability, partly on the language of Clement of Rome. It is more probable on general grounds that the martyrdom of Peter took place during the persecution of Christians in 64, and it is urged that Clement's language refers to this period. It is quite possible that an error of a few yeara has crept into the Eusebian chronology, which is probably largely based on early episcopal lists, and therefore many scholars are laclined to think that 64 is a more probable date than 67 . As a rule the discusion has mainly been between these two dates, but Sir W. M. Ramsay, in his Churck in the Roman Empire, has adopted a different line of argument. He thinks that I Peter was written C. A.D. 80, but that it may nevectheless be Petrine; therefore he lays etress on the fact that wherean the tradition that Peter was in Rome is early and probably conrect, the tradition that he was martyred under Nero is not found until much later. Thus he chinks it possible that Peter survived until c. 80, and was martyred under the Flavian emperors. The weak point of this theory is that Clement and Ignatims bran Peter and Paul
together in a way which seems to suggest that thoy perished, if not together, at lenst at about the same time. If this view be rejected and it is necessary to fall back on the choice bet ween 64 and 67, the problem is perhaps insoluble, but 64 has somewhat more intrinsic probability, and 67 can be explained as due to an artificial symem of chronology which postulated for Peter an episcopate of Rome of twenty-five years-a number which comes 50 often in the early episcopal lists that it neems to mean little more than "a long time," just as "forty years" does in the Old Testament. On the whole 64 is the most probable date, but it is very far from certain: the evidence is insufficient to justify any assurance.

For further information and discussion aee especially Harnack's Chroncologie, and Bichop Chase's article in Hastingt's Dictionary of the Bible. The latter is in many way: the moot complete atatement of the lacts at present published.

Caius, who lived in the beginning of the 3rd century (see Eus. H. E. 2, 25), stated that the robrava (i.c. probably the burial place, not that of execution) of Peter and Paul were on the Vatican. This is also found in the Acta Petri, The orave 84 (in the Lib. Ponl. ed. Duchesne, p. 52 seq., 118 sqq.). From this place it appears that the relics (whether genuibe of not) were moved to the catacombs in A.D. 258 (cf. the Dopositis martynwm, and see Lightfoot's Clemení, i. 249); hence anose the tradition of an original burial in the catacombs, found in the Hieronymian Martyrology.

For farther information and investigations see Duchesne, Liber pendificadis: Lipsius, Dis Apokr. Apostedeesch.; and Erbea "Die Todestage der Apostel Paulus u. Petrus," in Texde nind Unier. suchungen, N.F., iv. I.
(K. L.)

PEIRR I, called "the Great " (1672-1735), emperor of Russia, son of the taser Alexius Mikhailovich and Natalia Naruishkins, was born at Moscow on the 30th of May 1672. His earliest teacher (omitting the legendary Scotchman Menzies) was the dyak, or clerk of the council, Nikita Zotov, subsequently the court fool, who taught his pupil to spell out the liturgical and devotional books on which the children of the tsar were generally brought up. After Zotov's departure on a diplomatic mission, in 1680, the lad had no regular tutor. From his third to his tenth year Peter shared the miseries and perils of his lamily. His very election (1682) was the signal for a rebellion. He siem one of his uncles dragged from the palace and butchered by a savage mob. He saw his mother's beloved mentor, and his own best friend, Artamon Matvyeev, torn, bruised and bleeding, from his retainiog grasp and hacked to pieces. The haunting memories of these horrors played havoc with the nerves of a supersensitive child. The convulsions from which he suffered 30 much in later years must be partly attributed to this violent shock. During the regency of his half-sister Sophia (1682-1689) he occupied the subordinate position of junior taser, and after the revolution of $\mathbf{1 6 8 9}$ Peter was still left pretty much to himasell. So long as he could indulge freely in his favourite pastimes-shipbuilding, ship-aailing, drilling and sham fight- he was quite content that othera should rule in his name. He now found a new friend in the Swiss adventurer, Frangois Lefort, a shrewd and jovial rascal, who not only initiated him into all the mysteries of profligacy (at the large house built at Peter's expense in the German settlement), but tanght him his true busimess as a ruler. His mother's attempt to wean her prodigal son from his dangerous and mostly disnepatable pastimes, by forcing him to marry the beautiful but stupid Eudosia Lopukhina (Jan. 27, 1689), was a disastrous failure. The young couple were totally unsuited to each other. Peter practically deserted his unfortunate comsort a little more than a year after their union.
The death of his mother (Jan. 25, 1694) left the young tsar absolutely free to follow his natural inclinations. Tiring of the great lake at Pereyasiavl, he had already seen the sea for the first time at Archangel in July 1683 , and on the Ist of May r694 returned thither to launch a ship built by himself the year befone. Shortly afterwards he nearly perished during a storm in an adventurons voyage to the Solovetsky Ihands in
the White Sea. His natural bent was now patent. From the first the lad had taken an extreordinary interest in the technical and mechanical arts, and their application to military and naval science. He was taught the use of the astrolabe (which Prince Yakov Dolgoruki, with intent to please, had brought him from Paris) by a Dutchman, Franz Timmerman, who also instructed him in the rudiments of geometry and fortifications. He had begun to build his own bonts at a very early age, and the ultimate result of these pastimes was the creation of the Russian navy. He had already surrounded himself with that characteristically Petrine institution "the jolly company," or "the company," as it was generally called, consisting of all his numerous personal friends and casual acquaintances. "The company" was graduated into a mort of mock hierarchy, political and eoclesiastical, and shared not only the orgies but also the labours of the Isar Merit was the sole qualification for promotion, and Peter himself set the example to the other learners by gradually rising from the ranka. In 1695 he had only advanced to the poot of "skipper" in his own navy and of "bombardier" in bis own army. It was, bowever, the disreputable Lefort who, for the sake of his own interests, diverted the young tsar from mere pleasure to serions enterprises, by permuading him first to undertake the Azov expedition, and ther'to go abroed to complete his education.
By this time the White Sea had become too narrow for Peter, and he was looking about him for more hospitable waters. The Balic was a closed door to Muscovy, and the key to it was held by Sweden. The Caspian remained; and it had for long been a comonon saying with foreign merchants that the bett way of tapping the riches of the Orient was to eccure possession of this vast inland lake. But 80 long as the Turks and Thatars made the surrounding steppes uninhabitable tbe Caspian was a possession of but doubtfut value. The first step making for security was to build a fleet strong enough to provide against the anarchical condition of those parts; but this implied a direct attack not only upon the Crimean khan, who was mainly responsible for the conduct of the Volgan hordes, but upon the khan's surerain, the Turkish multan. Neverthelcss Peter did sot hesitate. War agninst Turkey was resolved upon, and Azov, the chief Turkish fortress in those regions, which could be approached by water from Moscow, became the Russian objective. From the Bih of July to the a aud of Septomber 1695 the Mnscovites attempled in vain to capture Azov On the and of November Peter re-enteged Moscow. His first military expedition had ended in unmitigated disaster, yet from this disaster is to be dated the reign of Peter tbe Great.
Immediately after his return he sent to Austia and Prussia for as many sappers, miners, engineers and carpenters as moncy could procure. He meant to build a fleet strong emough to prevent the Turkish fleet from relieving Azov. The guands and all the workmen procurable were driven, forthwith, in bends, to all the places among the forents of the Don to fell timber and work day and night, turning out scores of vesseis of all kinds. Peter himself lived among has workmen, himself the most strenucus of them all, in a small two-roomed wooden hut at Voronech. By the middle of April t wo warships, t wentythree galleys, four fireships and numerous stmaller craft were sufely launched. On the zord of May "the sca caravan "sailed from Voronesh, "Captain Peter Alelesyeevich" commanding the galley-fotill from the galley "Principium," built by his own hand. The new Russian fleet did all that was required of it by preventing the Turka from relieving Azov by water, and on the 18th of July the fortress surrendered. Peter now lelt able to advance along the path of progress with a quicker and a firmer step. It was resolved to consolidate the victory by establishing a new maval station at the head of the Sen of Azov, to which the name of Taganrog was given. But it was necessary to guarantee the future as well as provide for the present Turkey was too formidable to be fought single-handed, and -it was therefore determined to send a grand embascy to the principal western powers to solicit their co-operation against the Porte. On the roth of March 1697 this embessy, under the'
leadership of Lefort, set oat on its travel. Peter attached himself to it as a volunteer sailorman, "Peter Mikhailov," so as to have greater facility for learning ship-building and other technical sciences. As a pooitical mission it failed utterly, the great powers being at that period far more interested in western than in eastern affaiss. But personally Peter learnt nearly all that he wanted to know-gunnery at Konigsberg, shipbuilding at Saardam and Deptiord, anatomy at Leiden, engraving at Amsterdam-and was proceeding to Vonice to complete his knowiedge of navigation when the revolt of the stryedtsy, or musketeers (June 1698), recalled him to Moscom. This revolt has been greatly exaggerated. It was sappressed in an hour's time by the tsar's troops, of whom only one man was mortally wounded, and the horrible vengeance (SeptemberOctober 1698) which Peter on his return to Ruasis wreaked upon the captive musketeers was due not to any actual fear of these antiquated warriors, but to his consciousness that behind them stood the reactionary majority of the nation who secretly sympathized with, though they durst not ascist; the rebels.

Peter's foreign tour had more than ever convinced him of the inberent superiority of the lorelgner. Imitation had necessarily to begin with erternals, and Peter at once fell foul of the long beards and Oriental costumes which symbolized tbe arch-conservatism of old Russia. On the 26th of April 1698 the chief men of the tsardom were assembled round his wooden hut at Preobrarhenskoye, and Peter with his own hand deliberately clipped off the beards and moustaches of his chief boyars. The whas of the $15 t$ of September 1698 allowed as a compromise that beards should be worn, but a graduated tax was imposed upon their wearers. The wearing of tbe ancient costumes was forbididen by the whas of the 4th of Jinuary 1900 ; thenceforth Saxon or Magyar jackets and French or German hose were prescribed. That the people themsclves did not regard the reform as a trife is plain from the numerous rebellions against it By the ukat of the zoth of December 1699 it was next commanded that henceforth the new year should not be recioned, as heretofore, from the rst of September, supposed to be the date of the creation, but from the first day of January, anno domini.
The year 1700 is memorable in Russian history as the startingpoint of Peter's long and desperate struggle for the hegemony of the north. He had concluded peace with the Porte (June 13, 1700) on very advantagcous terms, in order to devote binself wholly to a war with Sweden to the end that Russia might gain her proper place on the Balic. The possession of an ice-free scaboard was essential to her natural development; the creation of a feet would follow inevitably upon the acquisition of such a scaboaid; and she could not hope to obtain ber due share of tbe trade and commerce of the world till she possessed both. All the conjunctures seemed favourable to Peter. The Swedish government was in the hands of an untricd lad-of sixteen; and the fine fiects of Denmark, and the veteran soldiers of Saxony, were on the same side as the myriads of Muscovy. It seesned an easy task for such a coalition to wrest the coveted spoil from the young Charles XII.; yet Peter was the oniy one of the three conspirators who survived the Twenty-one Years' War in which they so confidently embarked during the suramer of 1 for. He was also thic only one of them who got anything by it Charles's " immersion in the Polish bog " (1702-1707), as Peter phrased it, enabled the tsar, not without considerable expense and trouble, to conquer Ingria and lay the foundalions of St Petetsburg. In these early days Peter would very willingly have made peace with his formidable rival if he bad been altowed to retain these comparatively modest conquents. From 1707 to 1709 the waron his part was purely defensive; Charles woold not hear of peace till full restitution had been made and a war indemaity paid, while Peter was fully resolved to perish rather than surrender his "paradiec," Petersburg. After Pultava (Jane 26, 1709). Peter, hitherio commendably cautions even to cowardice, bat now puffed up with pride, rashly plunged into as foolhandy an enterprise as ever his rival ergaged in. The camplign of the Pruth (March to July sixis) must have been fatal to the

Imar but for the Incalculablo beimviour of the ommipotent grand Yravef, who let the Rumaian army ge at the very instant when it Wy hrlpleme it the hollow of his hand. Even so, Peter, by the pwaip of the Pruth, had to sacrifice all that he had gained by tho Asoy expedition fifteen years previously. On receiving the Itiliags of the conclusion of the peace of Nystad (Augost $10,1731)$, Peter deciared, with perfect justice, that it was ithe moat profitable peace Russia had ever concluded. The gala to Russia was, indeed, mach more than territorial. In surrondering the pick of her Bahic provinces, Sweden had wurrendered along with them the hegemony of the north, and all hor preteasions to be considered 2 great power.

The Great Northern War was primarily a training school for a backward young nation, and in the sccond place a means of multiplying the material resources of a nation as poor as she was backward. During the whole course of it the process of internal domestic reformation had been slowly but unceasingly proceeding. Brand-new institutions on Western models were gradually growing up among the cumbrous, antiquated, wornout machinery of old Muscovy; and new men, lize Menshitov, Goloykin, Apraksin, Osterman, Kurakin, Tolstoy, Shafirov, Prokopovich, Yagusahinsky, Yavorsky, all capable, audscious, and brimful of new ideas, were being trained under the eye of the great regenerator to help him to carry on his herculean task. At first the external form of the administration remained much the same as before. The old dignities disappeared of their own accond with the deaths of their holders, for the new men, those nearest to Peter, did not require them. "The Administrative Senate " was not introduced till i731, and only then because the interminable war, which required Peter's prolonged absence from Russia, made it impossible for him to attend to the detaik of the domestic administration Still later came the "Spiritual Department," or "Holy Synod" (January 1721), which superseded the ancient patriarchate. It was established, we are told, "because simple folks cannot distiaguish the spiritual power from the sovereign power, and suppose that a supreme spiritual pastor is a second sovereign, the spiritual authority being regaeded as higher and better than the temporal." From the first the regenerator in his akeases wes careful to make everything quite plain. He was always exphaining why he did this or that, why the new was better than the old. and so on; and we must recollect that these were the first lessons of the kind the nation had ever received The whole system of Peter was deliberately directed against the chucl ovils from which old Muscovy had always suffered, such as dissipation of energy, dislike of co-operation, absence of responsibility, lack of initiative, the tyranny of the family, the insignifcance of the individual. The low social morality of all classes, even when morality was present at all, necessiuated the regencration of the nation against its will, and the process could therefore only be a violent one. Yet the most enlightened of Peler's contemporariss approved of and applauded his violence, some of them firmly beljeved that his most energetic measures were not violent enough. Thus Ivan Poroshkov, Peter's contemporary, the father of Russian political economy, writes as follows. "If any land be over-much encumbered with weeds, corn cannot be sown' thereon unicss the weeds first be burned with fire In the same way, our ancient inveterate evils should also be burnt with fire." Peter himself carried this principle to its ultimate limits in dealing with his unfortunate son the Tsarevich Alexius ($q \geqslant$). From an ethical and religious point of view the deliherate removal of Alexius was an abominahle, an inhuman crime: Peter justified it as necessary for the welfare of the new Russia which he had called into existence.

The official birthday of the Russian empire was the 22nd of October 1721, when, after a solemn thanksgiving scrvice in the Troitsa Cathedral for the peace of Nystad, the tsar procerded to the senate and was there aoclaimed: "Father of the Fatherland. Peter the Great, and Emperor of All Russia " Some Ruscians would have preferred to proclaim Peter as comperor of the East; but Peter himself adopted the more patriotic title.

Towards the end of the reign the question of the saccession to the thronc caused the emperor some anxiety. The rightful heir, in the natural order of primogeniture, was the lincle grand duke Peter, son of the Tsarevich Alexius, a child of six; bat Peter decided $t 0$ pass him over in favour of his own beloved consort Calherine. The ustav, or ordinance of 1722, heradded this unheard-of innovation. Time-honoured custom had hitherto reckoned primogeniture in the male line as the best tinle to the Russian crown, in the astay of 1722 Peter denounced primogenitura in general as a stupid, dangerous, and even unkriptural practice of dubious origin. The ustap was but a prelimimary step to a still more sensational novelty. Peter had resolved to crown his consort empress, and on the 15 gh of November 1723 he issued a scoond mianifesto explaining at some length why he was taking such an unusual step. That he should have considered any explanation necessary demonstrates that he felt himself to be treading on dangerous ground. The whole nation listened aghast to the manifesto. The coronetion of a woman was in the cyes of the Rusionn people a scandalous innovation in any case, and the proposed coronation was doubly scandalous in view of the base and disrepalabie origin of Catherine herself (see Catireane 1.). But Feter had his way, and the ceremony took place at Aloscow with extraordinary pomp and splendour on the 7th of May 1724.

Duting the last four years of his reign Peter's policy was predominantly Oriental. He had got all he wanted in Eucope, but the anarchical state of Persia at the beginaing of 1722 opened up fresh vistas of conquest. The war which lasted from May 1722 to September 1723 was altogether succeasful, resulting in the acquisition of the towns of Bako and Derbent and the Caspian provinces of Gilan, Mazandaran and Astarabad. The Persian campaigns wore out the feeble bealth of Peter, who had been ailing for some time. A iong and fatiguing tour of inspection over the latest of his great public works, the Ledoga Canal, during the autumn of 1724 , brought back another atiack of his paroxysms, and he reached Petersburg too ill to rally again, though he showed himself in public as late as the $16 \mathrm{th}^{\mathrm{h}}$ - of Jamuary 1725. He expired in the arms of his consort, after terrible suffering, on the 28 h of January 1725.

Peter's chim to greatness rests mainly on the fact that from first to last he clearly recognized the requirements of the Russian mition and his own obligations is its ruler. It would have materially lightened this task had be placed intelligent foreigners at the head of every department of state, allowing them gradually to train up a native bureaucracy. But for the sake of the independence of the Russian nation he resisted the temptation of taking this invittng but perilous short-cut to greatmess. He was determined that, at whatever cost, hardship and inconvenience, Russia should be ruled by Russians, not by foreigners; and before his death he had the satisfaction of seeing every important place in his empire in the hands of capable natives of his own training. But even in his most sweeping reforms he never lost sight of the idiosyncrasies of the people. He never destroyed anything which he was not able to replace by something better. He possessed, toa, something of the beroic nature of the old Russian bogatuirs, or demigods, as we see them in the skazki and the builismi. His expansive nature loved width and space. No doubt this last of the bogaluirs possessed the violent passions as well as the wide views of his prototypes. All his qualities, indeed, were on a colossal scale. His rage was cyclonic: his hatred rarely stopped short of extermination. His banquets were orgies, his pastimes convulsions. He lived and he loved like one of the giants of old. There are deeds of his which make humanity shudder, and no man equally great has ever descended to such depths of cruelty and treachery. Yet it may generally be allowed that a strain of nobility, of which we occasionally catch illuminating glimpses, extorts from time to time an all-forgiving adaniration. Strange, too, as it may sound, Peter the Great was at heart profoundly religious Few men have ever had a more intimate persuasion that they were but instruments for good in the haads of Cod.

Bieliography.-Letters and Papers of Peter, the Great (Rus,) (St Petersburg: 1887, \&c). S M. Solovev, History of Russua (Rus.). vols xiv.-xviii (St Petersburg, 1895, \&tc), A Brueckner, Die Europasictung Russlames (Gorha, i888). R Nisber Rain, The Pap phls of Peter the Great, chs i.-iv. (London. 1897), and -The Firs Romamous, chs vi -xiv. (London. 1905). E. Schuyler, Life of Peter the Greal (London, 1884): K Waliszewski, Pierre Le Crand (Paris, 1897); V. N Aleksandrenko. Ressian Diplomatic Agents th London in the 2Dith Century (Rua.) (Warsaw, 1897-1899: German ed., Guben, 1898); S. A Chistyakov, Hustery of Peler the Great (Rus.) (S? Petershurg, 1903): S. M Solovev, Public Readirps en Peter the Great (Rus.) (S: Petersburg, 1903); Documends relating to the Great Northern War (Rus.) (St Petersburg, 1892, \&c.).
(R. N. B.)

PETES 11. (1735-1730), emperor of Russia, only son of the Tsarevich Alexius, was born on the 18th of October 1715. From his childhood the orphan grand duke was kept in the strictest seclusion. His grandfather, Peter the Great, systematically ignored him. His earliest governesses were the wives of a tailor and a vintner from the Dutch settement; a sailor called Norman taught him the rudiments of navigation; and, when he grew older, he was placed under the care of a Hungarian refugee, Janos Zeikin, who seems to have boen a conscientious teacher. During the reign of Calberine 1. Peter was quite ignored; but just before her death it became clear to those in power that the grandson of Peter the Great could not be kept out of his inheritance much longer The majority of the nation and three-quarters of the nobility were on his side, while his uncle, the emperor Charies VI , through the imperial ambassador at St Petersburg, Rabutin, persistently urged his claims The matter was arranged between Menshikov, Osterman and Rabutin, and on the $18 t h$ of May 1727 Peter 14 , acoording to the termes of the supposed last will of Catherine I, was prociaimed sovereign autocrat. The senate, the privy council and the guands took the oath of allegiance forthwith. The education of the young prince was wisely enlrusted to the vice-chancellor Osterman. Menshikov, who took possession of Peter IL. and lodged him in his own palace on the Vasily island, had intended to marry Peter to his daughter Maria; the scheme was frustrated by his (all (Sept. 21, 1727); but Peter only fell into the hands of the equally unscrupulous Dolgoruki, who carried him away from Petersburg to Moscow. Peter's coronation was celebrated at that city on the 25th of February 1728 He was betrothed to Catherine, sccond daughter of Alcxis Dolgoruki, and the wedding was actually fued for the 3oth of January 1730; but on that very day the emperor died of small-pox.
PETER IIL ($177^{28-1762), ~ e m p e r o r ~ o f ~ R u s s i a, ~ o n l y ~ s o n ~ o f ~}$ Charles Frederkck, duke of Holstein-Gottorp, and of Anne, eldest surviving daughter of Peter the Great, was born at Kicl on the 2sst of February -1728. In December 1741 he was adopted by his aunt, Elizahech Petrovna, as soon as she was safely established on the Russian throne, and on the $18 t h$ of November 174: was received into the Orthodox Church, exchanging his original name of Karl Peter Ulrich for that of Peter Fedorovich. On the 21st of August 1745, by the command of his aunt, he married the princess Sophia Augusta Frederica of AnhaltZerbst. Who exchanged her name for that of Catherine Aleksyeevna. The union between a prince who physically was something less than a man and mentally little more than a child, and a princess of prodigious intellect and an insatiable love of enjoyment, was bound 10 end in a catastrophe. But there is no foundation for the stories of Peter's negioct and brutality. It took the spouses five years to discover that their tastes were divergent and their tempers incompatible. Even when Peter III. sacceeded his aunt on the 5th of January 1762, he paid off all the debts that Catheripe had contracted without inquiring what they were for. On her biribday, in Apsil, he made her a present of domains wortb $\{20,000$ per annum, though be had already readjusted ber eatahlishment on a truly imperial scale. A great deal has been made of Pcter's infidelity towards his consort; but the only one who really suffered from his licisos with the ugly, stupid and vixenish countess Elizaboth Vorontsdiva was the unfortunate emperor. So far from being scandalized by che juxtaposition of "Das Friulein" in the Winter Palace,

Catherine accepted it as a mauler of course, provided that her own relations witb the handsome young guardsman, Gregory Orlov, were undisturbed. Nor was Peter's behaviour to his consort in public of the outrageous character we have been led to suppose Peter, in fact, was too good-batured and inconsequent to pursuc, or even premeditate, any deliberate course of ill treatment. No personal wrongs, but the deliberate determination of a strong-minded, capable woman to snatch the reins of government from the hands of a semi-imbecile, was the cause of Peter's overthrow, and his atupendous blunders supplied Catherine with her opportunity. Peter's foreign policy was the absolute reversal of the policy of bis predecessor He had not been on the throne for two months when he made pacific overtures to the wellnigh vanquished king of Prussia, whom he habitually alluded to as "the king my master." Peter's enthusiastic warship of Frederick reaulted in a peace (May s) and then (June 19) in an offensive and defensive alliance between Russia and Pruacia, whereby Peter restored to Prussia all the territory won from her by Russia during the last five years at such an enormouss expense of men and money, and engaged to defend Frederick against all his enemies. This was followed up by a whole series of menacing rescripts addressed hy Peter to the court of Vienma, iz which war was threatened unless Austria instancly complied with all the demands of the king of Prossia. Finally he picked a quarrel with Denmark for nol accepting as an Iltimatum the terms to be submited by Russia to a pence conderence to meet at Berlin for the purpose of adjusting the differences between the iwo powers. On the 6th of July the Russian army recelved orders to invade Denarark by way of Mecklenburg This advance was only arrested, when the opposing forces were almost within touch of each other, hy the tidings that a revolution had taken place at St Petersburg, and that Peter 111. was already a prisoner in the hands of his consort. The coup d'tat of the oth of July 1762 properly belongs to the history of Catherine LI. (qu.). Here anly a few words must be said as to the mysterious denth of Peter at the castle of Ropsta, to which he was removed immedialely after his surrender. Here he remained from the evening of the 9 th to the afternoon of the 18 th of July. At first Catherine and her counseliors could not make up their minds what to do with "the former emperor." Imprisonment in Schlussciburg for life, or repatriation to Holstcin, were proposed only to be rejected as dangerous. The Orlovs had even stronger motives than Catherine for suppressing the ex-emperor, for Gregory Orlov aspired to win the hand as well as the heart of his imperial mistress, and so long as Catherine's hwiul husband lived, even in a pricon, such a union would be impossible. Tbe availatile evidence points to the irresistible conclusion that on the afternoon of the 18th of July 1762, Peter Ill., witb his consort's connivance, was brutally murdered at Ropsha by Alexius Orlov, Theodore Baryatinski, and several other persons still unknown. See R N Bain, Peter III., Emperop of Russia (London, 1902): V A. Bilbasov, History of Catherine If. (Rus.), vol. i. (Berlin, 1900).
(R. N. B.)

PETER (PEDro), the name of several Spanish kings.

Perte I., king of Aragon (d. 1104), son of Sancho Ramircz, the third in order of the hiscoric kings of Aragon, belonged to times anterior to the authentic written history of bis kingdom; and litule is known of him save that he recovered Huesca from the Mahommedans in rog6.

Peter II., king of Aragon (1174-izi3), son of Alphonso II. and his wife Sancia, daughter of Alphonso VIII. of Castile, was born in 1174 . He had a very marked and curious personal character. As sovereign of lands on both sides of the Pyrenees, he was affected by very different influences. In his character of Spanish prince he was a crusader, and he took a distinguished part in the great victory over the Almohades at the Navas de Tolosa in 1212. But his lands to the north of the Pyrenees brought him into close relations with the Albigenses. He was a favourer of the troubadours, and in his ways of tife he indulged in the laxity of Provençal morals to the fullest extent. We are told in the chronicle written by Desclot soon after bis time
that Peter was only trapped into cohabiting with his wifte by the device which is familiar to readers of Measure for Measure In the year after the batile of the Navas de Tolosa he took up arms against the crusaders of Simon of Montfort, moved not by sympathy with the Albigenses, but by the natural political hostility of the southern princes to the conquering intervention of the north under pretence of religious zeal. His son records the way in which he spent the night before the battle of Muret with a crudity of language which defies translation, and tells us that his father was 100 exhausted in the morning to stand at Mass, and had to be difted into the saddle by his squires. Peter trone the less showed the greatest personal valour, and his body, recognizable by his lofty stature and personal beanty, was found on the field after the rout (Sept. 12, 1213).

See Chromicle of James I. of Aragos, translated by I Forster (London. 1883); and Lofe and Timer of James the First the Canqueror, by F. Darwin Swilt (Ox(ord, 1894).

Preze III., king of Aragon (1236-1 286), son of James the Conqueror, and his wife Yolande, daughter of Andrew II. nf Hungary, was born in 1236. Having married Constance, daughter of Manfred of Beneventum, he came forward as the representative of the claims of the Hohenstaufen in Naples and Sicily against Charles, duke of Anjau. Peter began the long strife of the Angevine and Aragonese parties in southern Italy. His success in conquering Sicily earned him the surname of "the Great" He repelled an invasion of Cataloniz under. taken by the king of France ln support of Charles of Anjou, and died on the 8 th of November 1286.

For the personal character of Peter 111 ., the beat witness is the Chronude of Ramonde Muntancz-reprinted in the origimal Catala by R. Lanz. Literarischer Verets im Shultgart, vol vit. (i8q4), and in French by Buchnn, Coll des chroniques naltonales (Paris, 18241828). See also O. Cartellieri, Peter pon Aragon and due Sushan. ische Vesper (Heidelberg, 1904).

Petrer IV., king of Aragon (d. 1387), son of Alphonso IV. and his wife Teresa d'Enteca, is known as "The Ceremonious" and also as " he of the dagger." He acquired the first title by the rigid etiquette he enforced, as one means of checking the excessive freedom of his nobles. The second name was given him because he wounded himself with his dagger in the act of cutting to pleces the so-called "charter of the Union," which authorised the rebellions of his nobles, and which he forced them to give up, after he had routed them at the battle of Epila in 1348. Of no man of the 14 th century can it be more truly said that his life was a warfare on carth. He had first to subdue his nobles, and to reannex the Balearic Islands to the crown of Aragon. When he had made himself master at home, he had to carry on a long and fierececontest with his namesake Peter the Cruel of Castile, whech only terminated when Henry of Trastamara succeedell, largely with Aragonese help, in making himself king of Castile in 1369 . Peter succeeded in making himself master of Sicily in 1377, but ceded the actual possession of the island to his son Martin. He was three times married to Mary, daughter of Philip of Evreux, king of Navarre, to Eleanor, daughter of Alphonso IV. of Portugal, antl to Eleanor, daughter of Peter II of Sicily, his cousin. The marriage of his daughter by his third marriage, Eleanor, with John I. of Castile, carried the crown of Aragon to the Castilian line when his male representatives became extinct on the death of his son Martin in 1410 .

See Zurita, A noles de Aragon (Saragossa, 1610).
Peter, "the Crucl," king of Castile (1333-1360), son of Alphonso XI. and Maria, daughter of Alphonso IV. of Portugal, was born in 1333. He carned for himsclf the reputation of monstrous cruelty which is indicatd by the accepted titte. In later ages, when the royal authority was thoroughly established. there was a reaction in Peter's favour, and an alternative name was found for him. It became a lashion to speak of him as El Justiciero, the executor of justice Apologists were found to say that he had only killed men who themselves would not submit to the law or respect the rights of others. There is this amount of foundation for the plea, that the chronicler Lopez de Ayala, who fought against him, has confessed that the
king's fall was regretted by the merchants and traders, who enjoyed security under his rule. Peter began to reign at the age of sixteen, and found himselt subjected to the contral of his mother and hir favourites. He was immoral, and unfaithful to his wife, as his father had been. But Alphonso XI. did not imprison his wife, or cause her to be murdered. Peter certainly did the first, and there can be lit tle doubt that he did the secood. He had nol even the excuse that he was pasaionately in love with his mistress, Maria de Padilla; for, at a time when he asserted that he was married to her, and when he was undoubiedly married to Blanche of Bourbon, he went through the form of marriage with a lady of the family of Castro, who bore him a son, and then deserted her. Maris do Padilia was onty the one hady of his harem of whom be never bocame quite tirad At first he was controlled by his mother, hut emancipated himself with the encouragement of the minster Albuquerque and became attached to Marfa de Padills. Mariz turned him against Albuquerque. In 1354 the king was practically coerced by his mother and the nobles into marrying Blanche of Bourben but deserted her at once. A period of turmoll followed in which the king was for a time overpowered and in effect imprisoned The dissensions of the party which was striving to coerce him enabled him to escape Irom Toro, where he was under observatios to Segovla. From 1356 to 1366 he was maxter, and was engraed in continual wars with Aragon, in which he showed neilber abulity nor daring. It was during this period that he perpetraed the series of murders which made him odious. He confided is nobody save the Jews, who were his tax-gatherers, of the Mahommedan guard he had about him. The profound batred of the Christians for the Jews and Mudejares, or Mahommedams sctiled among them, datos from the years in which they were the agents of his unbridled tyranny. In 1366 he was asaniled by his bastard brother Henry of Trastamara at the head of a bost of soldicrs of fortune, and fled the kingdom withoat dering to give bat lle. Aimost his lest act in Spein was to murder Suero. the archbishop of Santiago, and the dean, Peradvares Peter now took refuge with the Black Prince, by whom he was restored in the foliowing year. But he disgusted his ally by his faithlessness and ferocity. The health of the Black Prince broke dowth and he Iteft Spain. When thrown on his own resources, Peter was soon overthrown by his brother Henry, with the aid of Bertrand du Gucsclin and a body of French free companions He was murdered by Henry in du Guesclin's tent on the aynd of March 1369. His daughters by Mlaria de Padilla, Constance and Isabella, were respectively married to John of Gaunt, and Edmund, duke of York, sons of Edward III., king of England
The great original but hostite authority for the life of Peter the Cruel is the Chronule of the Chrancellar Pero Lopez de Ayala (Madrid 1779-1780). A brilliantly written Life is that by Prosper Merimet. Hisi. de Don Pedre l., roi de Castille (Paris, 1846).
(D. H.)

PETER DES ROCHES (d. 1238), bishop of Winchester unde John and Henry III., and conspicuous among the foreign favourites to whom these sovereigns owed much of their unpopularity. was a Poitevin by extraction. He received the office of chamberlain towards the close of Richard's reign, and under Richard's successor became an influential counsellor. In 1205 , doubtless through John's Influence, he was elected to the see of Wincbester His clection was disputed but, on appeal, confirmed by Pope Innocent III., who honoured Peter by consecrating him if person. None the less, the new bishop stood by his royal patroe during the whole period of the interdiet. In 1213 he was made justiciar in succession to Geoffrey Fitz Petcr. This promotion was justified by the fidelity with which Peter supported tbe king through the barons' war. At the battle of Lincoln ($1: 15^{-1}$ Peter led a division of the royal army and carned some distipction by his valour; but he played a secondary part in the government so long as William Marshal held the regency After Narshal's death (r219) Peter led the baronial oppositic: to Hubert de Burgh, with varying success. At first the justiciar was successful. In 1221 Peter meditated going on crusade. 1223-1224 saw his party broken up by Hubert's emergetic measures; In 1227 was himself dismissed from his office and
twried his back on England to join the crusade of the emperor Frederick II. He was absent from England until 1231; but in the meantime enhanced his repatation both as a soldier and diplomatist. After the fall of De Burgh be kept in the background, but offioes and honouss wert beaped on his dependants, especially on his nephew, Peter des Rievauly, and ut ber t'oitevins. This foreign party triumphed over the revolt which was beackel by Richard Marshal in 1233 . But the primate, Edmund Rich, voiced the general feeling when he demounced Petter as a mischief maker, and demanded that be shoukd be dismissed from court. The king complied, and threatencd the bishop with charges of malversation. Peter was however permitted to leave the country with a pardon (1235); be conciliated Gregory IX. by rendering efficient aid in 2 war with the citizens of Rome (2235); and in the next year returned without molestation to his see. He was invited to go as the king's envoy to the coun of Frederick 11., but rufusel apparently on the score of ill health. His pablic reconciliation with $D e$ Burgh (1236), effected through the mediation of the papal legale, provided a dramatle close to their long rivalry, but had no political significance, since both were now living in retirement. Peter died in 1238 , and was burkd at Winthester. He wras undoubledly a man of a winning personality, a good diplomet and financier, a statesman whose unpopolarity was due in some measure to his frecdomifrom the insularity of the Englishmen, agoinst whom be matched himself. Hut his name is associated with a worthless clique of lavourites, and whth the first steps which were caken by IIenry III. to establish a feeble and corrupt autocracy.

See C. Petit Dutaillis, l'ie et rème de Lowis VIJI. (Paris, 1894); Lecointre Dupont, Prerre des Roukes (Puitiors, 1HGt): Stulbbs's Comsfitutronal History of Endand. wul. ii: ;H. W. C. D.vis, Eingland under ake Normuns and Angevins (1905); T. F. Tout in the Polticul llistory of England, vol. iii. (1905).
(H. W. C. D.)

PETER LOMBARD ($c .1100-c .1160$), bishop of Paris, better known as Mfagister sententionum, the son of obscure parents, *as born about the beginning of the i2th century, at Novara (then reckoned as belonging to Lombardy). After receiving his education at Bologna, he removed to France, bearing a recommendation 10 Bernard of Clairvaux, who first placed him under Lotolf at Reims, and afterwards sent him to Paris with letters to Gilduin, the abbot of St Victor. Hle soon became known as a teacher, and obtained a theological chair in the cathedral school. His lamous textbook, the Scuteniac, was written between 1445 and 1150 . On the 29th of June 1159 he became bishop of Paris. The accounts of his bishopric are satisfactory. There is a charge that he was guilly of simony, having received his office through the favour of Philip, brother of Louis VII., his former pupil. The date of his death is uncertain. According to one account he died on the zoth of July 1160, and as Mlaurice de Sully became bishop that yrar the statement seems probable. Yet there is evidence for a later date, and he may have been set aside for simony.

His famous theological handbook. Sententiarum libri quatuoy, is, as the titte implies, primarily a collection of opinions of the Gathers, "sententiae patrum." These are arranged, professedly on the bacis of the aphorsm of Augustion, Lombard's favourite authority. shat " omais dortrian vel repum est vel signorum." into four books. of which the first treats of God. the second of the creature. the third of the incarnation, the work of redemption, and the virtues, and the fourth of the acven sacraments and eschatology. The Sewtentiae show the influence of Abelard. both in method and arrangenpent. buz lack entirely the daring of Sic et Nom. Compared mub that book they are tame. Cratian's Conrondia discordantium caronkm. as he called his Decretum, was another strong influence, Lombard doing in a sense for theology what Gratian did for the canon law. The influence of liugh of St fictor is also marked. The relatinn to the "sentences "of a Gandulph of Bologna (still umpublished) has not been established. The most ingportant thing in the book was is crystallization of the doctrine concerning the sacramental system. by the definite assertion of the doctrine of the seven sacraments, and the acceptance of a definition of sicrament. not merely as "a sign of a sacred ching:" but asitself "capable of conveying the grace of which it is the sign." The sentences soon attained immense popularity. ultimately becoming the text-book in almost every theological school, and giving rise to endless commentaries, over 180 of these being written in England. In i 300 the theological profewsors
of Paris agreed in the resection of aixteen propositions taken from Lombard, but their deciion was far from obsaining usiveral currency.
Besides the Sententioe. Lombard wrote numerous commentaries (e.e. on the Psalms. Canicks, Job, the Gospel Harmony. and the Puuline Epia(kx), wermons and kettern, which still exist in MS. The Glossar sem commemarias is psalmes Davidis, were frut published at l'aris in 4533 .
Lomlarrl's eculincted works have been published in J. P. Migne's Putrolngle luture. Tome 19i and 192. See also Denife and Chatelain. Churlularinm neriocrsitatis parisicnsis, Tome i. (Paris, 8889): Protois, Plirye Lnmbiard, son dpogme, sa vie, ses ecrits, son infuence (Paris, iNst): Kupsl, Atrus Lambend in seimer Sellang sur Philosophie des Muthultres (Leiprig. 1897): A. Harnack Dogmemgeschichte, Bd. iii. (18y): Fing trans. 1894-1890); and the article in Herzog-Hauck's Kadl'rcydopodic, Bu. xi. (Leipzig, 1902).
PETER OF AIGUEBLANCHE (d. 1268), bishop of Hercford, belonget to a nohle family of Savoy and came to England in 1236 with his master, William of Savoy, hishop of Valence, being in attendance on Elcanor of Provence, the bride of Heary III. A year or two later he is lound residing permanently in England as a member of the king's court; before 1239 he was archdeacon of Salop, and in 1240 he was chosen bishop of Hereford. In 1255 l'eter acted as Henry's principal agent in the matter of accepting the kiagdom of Sicily from Pope Alexander IV. for his son Ealmund, and his rapacious and dishonest methods of raising moncy for this foolish enterprise added not a little to the unpopularaity which surrounded the king and his forcign favouritus. When civil war hroke out between Henry and his barons the blshop remained loyal to his master, and whilst residing, almost for the first time, at Hereford he was taken prisoner in May 1263 - He was, however, released when the king and his enemics came to terms, and after a stay in Framce he retired to Savoy, where be died on the 27th of November 1268.

See F. Mognier. Les Savopards an Angleterre am XIII' sidele ef Pierre di Aignedlawike (Chambery, s8go).
Fister 0F Blots [Petrus Blesensis] (c. 1135-c. 1205), French writer, the son of noble Breton parents, was born at Bloís. He studied jurispradence at Bologna and theology in Paris, and in 1167 he went to Sicily, where he became tutor to the young king William II., and keeper ol the royal seal (sigittarins). But be made many enemies and scon asked permission to keave the country; his request was granted and about 1 i 70 he relurned to France. After spending some time teaching in l'aris and serving Rotrou de Perche, archbishop of Rouen, as sceretary, Peter entered the employ of Henry II. of Engiand about 1173 . He quickiy became archdeacon of Bath and soon afterwards chancellor, or secretary, to Richard, archbishop of Canterbury, and to Richard's successor, Baldwin, being sent on two occasions to Italy to plead the cause of these prelates before the pope. After the death of Henry II. in 1189 , he was for a time secretary to his widow, Eleanor, in Normandy; be obtained the posis of dean of Wolverhampion and archdeacon of London, but he appears to have been very discontented in his Later ycars. He died some time after March 1204.

Peter's writings fall into four classes, letters, treatises, sermons and poems. Ilis Epistolae, which were collected at the request of Ilenry II, are an important, source for the history of the timp: they are adilressed to llenry 11 , and to various prelates and scholars including Thomes Becket and John of Salisbury. His treatises include De Ieroso:"ymtana peregrimatione acceleranda, an exhortation to take part in the shird crusade, and Dialogus inter regem Henricmw 1I. ct abtutem Bencerallexsew ; his extant sermons number 65 and his pocers are unimportant. Peter's works have been printed in several colkrtions, including the Patrologic of J. P. Migne and the Historiae francorxm scriptores of A. Duchesne. Of separate edirions the lexat are those by Pierre de Couscainville (Pais, 1667) and J. \mathbf{A}. Gilus (Oxford. $8846-1847$).

See the Histoire diltraire de la France. Tome xv.: W. Stubbs. Lentures on Mfediecal and Moderm Hintory (Oxford, 1886); Sir T. D. Hardy. Descriptive Catalogue of Materials relating to the History of Creal Brilain (1862-1867). and C. L. Kingsford in vol. xlv. of the Dictionary of Netional Blognaphy (1896).

PETER OF COURTENAY (d. 1219), emperor of Romania (or Constantinople), was a son of Peter of Courtenay (d. 1183), and a grandson of the French king, Louis VI. Having, by a first marriage, obtained the counties of Nevers and Auxerre, he took
for his second wife, Yolande (d. 1219), a sister of Baldwin and Fenry of Flanders, who wero afterwards the first and sccond emperors of the Latin Empire of Constantinople. Peter accompanied his cousin, King Philip Augustus, on the crusade of 1190 , fought against the Albigenses, and was present at the battle of Bouyines in 1214. When his brother-in-linw. the emperor Henry, died without sons in 1216, Peter was chosen as his successor, and with a small army set out from France to take possession of his throne. Consecrated emperor at Rome, in a church outside the walls, by Pope Honorius III. on the gth of April 1217, he borrowed some ships from the Venetians, promising in return to conquer Durazzo for them; but he failed in this enterprise, and sought to make his way to Constantinople by land. On the journey he was scized by the despot of Epirus, Theodore Angelus, and, after an imprisonment of two years, died, probably by foul means. Peter thus never governed his empire, which, however, was ruled for a time by his wile, Yolande, who had succceded in reaching Constantinople. Two of his sons, Robert and Baldwin, became in turn cmperors of Constantinople.

PETER OF DUISBURG (d. c. 1326), German chronicler, was born at Duisburg, and became a priest-brother of the Teutonic Order. He wrote the Chronicon lerrae Prussicc, dedicated to the grand-master, Werner of Orseln, which is one of the chief authorities for the history of the order in Prussia. There is a rhyming translation in German by Nicholas of Jeroschin, which, together with the original, is published in Bd. L. of the Scriplores rcrum prussicarum (Leipzig, 1861).

See M. Toppen, Geschichic der preussischen Historiographic (Berlin, 1853): and W. Fuchs,-Peter von Duisburg und das Chronicon olivense (Konigsberg, 1884).

PETER Of MARICOURT (13 th century), a French savant, to whom his disciple, Roger Bacon, pays the highest tribute in his opus tertium and other works. According to Bacon he was a recluse who devoted himself to the study of nature, was able to work metals, invented armour and assisted St Louis in one of his expeditions more than his whole army. According to Emile Charles (Roger Bacon sa pie, sessoutroges, ses doitrincs, 1861), Peter of Maricourt is the Pierre Pérégrin (or Pèlerin) de Maricourt (Méharicourt in Picardy), known also as Petrus Peregrinus of Picardy, one of whose letters, De magncte, is panly reproduced in Libri's Hist. des sciences mathenatiques en Italie (1838), ii. 70-71. 487-505.

PETER OF SAVOY (c. 1203-1268), earl of Richmand, younger son of Thomas I. (Tommaso), count of Savoy, was born at Susa. After spending some years as an ecclesizstic he resigned his preferments, and in 1234 married his cousin Agnes, daughter and heiress of Aymon II., Iord of Faucigny. Accrpting an invitation Irom the Enplish king. Henry 111., who had married his niece, Eleanor of Provence, Pet cr came to England in 1240, and was created earl of Richmond, recciving also large estates and being appointed to several important offices. During several visits to the continent of Europe Peter had Largely increased his possessions in Vaud and the ncighbourhood, and returning to England in 1252 he became associatod with Simon de Montfort, retaining at the mame time the king's friendship. Having been employed by Henry 10 negotiate wilh the pope and with Louis IX. of France, he supported Earl Simon in his efforts to impose restrictions upon the royal power; but, more moderate than many members of the baronial party, went over to Henry's side in 1260 , and was consequently removed from the council. In 1263 be Jeft England, and when his nephew, Boniface, count of Savoy, died in the same year he assumed the tiele of count of Savoy. This was also claimed by another nephew. Thomas; but Peter compelied the inhabitants of Turin to submit to him and secerred possession of the county. He died on the $16 \mathrm{th}^{\text {h }}$ or 17 th of May 1268 , leaving an only child, Beatrice (d. 1310). Peter gave to the castle of Chillon its present form, and his name to the Savoy palace in London. He has been called le petit Charlemagne, and was greatly praised for his valour and his wisdom.

See L. Wurstemberger, Peler der Zweile, Graf won Sawoen (Zarich,
1858): F. Murxier, Les Senoyands en Andeftrre (Chambety, 1890); and C. Bemont, Simow de Monifart (Paris. 1884).

PETER THE HERMIT, a pricst of Anviens, who mey, as Anna Comnena says, have attempted to go on a pilgrimage to Jerusalem before 1006, and have been prevented by the Turks from reaching bis destination. It is uncertain whet hor he was present at Urban's great sermon at Clermont in ro95; but it is certain that he was one of the preachers of the crusade in France after that sermon, and his own experience may have helped to give fire to his eloquence. He soon leapt into fame as an emotional revivalist preacher: his very ass became an objeet of popular adoration; and thousands of peasants eagerly took the cross at his bidding. The crusade of the paufercs, which forms the first act in the first crusade, was his work; anul he himself led one of the five sections of the paupcres to Constantinople, starting from Cologne in April, and arriving at Constantinople at the end of July rog6. Here he joined the only ot her section which had succeeded in reaching Constantinopte-that of Walter the Penniless; and with the joint forces, which had made themselves a nuisance by pilfering, be crossed to the Asiatic shose in the beginning of August. In spite of his wranings, the peraperes began hostilities against the Turks; and Peter seturned to Constantinople, either in despair at their reckkssness, or in the hope of procuring supplics. In his absence the army was cut to picces by the Turks; and he was left in Constantinople without any followers, during the winter of 1096-1097, to wait for the coming of the princes. He joined himself to their ranks in May 1097, with a litele following which he seems to have collected, and marched with them through Asia Minor to Jerusilem. But he played a very subordinate part in the history of the first crusade. He appears, in the beginning of iogs, as attempting to escape from the privations of the siege of Antioch-showing himself, as Guibert of Nogent says, a "fallen star." In the middle of the year he was sent by the princes to invite Kerbogha to settle all differences by a ducl; and in 1000 he appears as treasurer of the alms at the siege of Arca (Aauch), and as leader of the supplicatory processions in Jerusilem which precaled the battle of Ascalon (August). At the end of the year he went to Laodicea, and sailed thence for the West. From this time he disappears; but Albert of Aix records that be died in 1151, as prior of a church of the Holy Sepulchre which he had founded in France.
Legend has made Peter the Hermit the author and originator of the first crusade. Il has told how, in an early visit to Jerusalem, briore soyb. Christ appeared to him in the Church of the Supulchre, and bade him preach the crusade. The legend is without any basis in fact, though it appears in the pages of William of Tyre. Its ongin is, however, a matler of some interest. Iton Sybel, in his Geschichte des ersten Nirencimges, suggests that in the camp of the pauperes (which existed side by side with that of the k nights, and grew increasingly large as the cruside told more and more heavily in its progress on the purses of the crusaders) some idolization of Peter the Hermit had alrcady begun, during the first crusade, parallel to the similar glorification of Godirey by the Lorralners. In this idolization Peter naturally became the instigator of the crusade, just as Codifrey became the founder of the kingdom of Jerusalem and the legislaror of the assizes. This version of Peter's carecr seems as old as the Chansan des chtiff, 1 poem which Raymond of Antioch caused to be composed in honour of the Hermit and his followers, soon after ${ }^{21} 30$. It also appears in the pages of Albert of Aix, who wrote somewhere about 1130; and from Albert it was borrowed by William of Tyre. The whole legend of Peteris an excellent instance of the legendary amplification of the first crusade-an amplification which, beginning during the crusade itself, in the "idolizations" of the difictent camps (idolo castrorwm, if one may pervert Bacon), soon developed into a regular saga. This sagn found its most piquant beginning in the Hermit's vision at Jerusalem, and there it accordingly beganalike in Albert, followed by William of Tyre and In- the Chansow des chetifs, followed by the later Chanson d'Anfioche.
The original authorities for the story of Peter the Hermit are: for the authentic Pecer, Anma Commena and the Gesm Froncorwem;
for the legendary Peter, Albert of Aix. The whole carcer of the Hermit has been thoroughly and excellently discussed by H. Hagedmeyer, Peter der Hercmite (Leipzig, 1879).
(E. Br.)

PETBR THB TILD BOY (\&. 1725-1785), \& Hanoverian imbecile of unknown parentage, who, having been lound living wild in the woods near Hanover in 1725, was brought to England by order of Gtorge I., whose interest had been aroused in the unfortunate youth. An extraordinary amount of curiosity and speculation concerning Peter was excited in London, and the craze was the subject of a biting satire by Swift, and of another entitled The Most Wonderful Wonder that ever appcared to the Wouder of the British Nation, which has been attributed to Swift and Arbuthbot; Defoe also wrote on the subject, and Lord Monboddo in his Origin and Progress of Language presents the idiot Peter as an illustration of his theory of the evolution of the human species. He lived to an advanced age, was seen by Lord Monboddo in 1782 , and died in 1785 .
See Henry Wilson, The Book of Wonderful Characters (London, 1869).

PETER, EPISTLPS OF, the two books of the New Testamant traditionally ascribed to the apostle Peter.

I Peter

This epistle is addressed to "the elect who are sojourners of the Dispersion [Diaspora] in Pontus, Galatia, Cappadocia, Asia and Bithynia." The "Diaspora" was the name generally given to the Jews who were "scattered abroad." This suggests that the letter was intended for Jewish Christians in the provinces mentioned. But i. 14, 18; ii. 9, 10; iv. 3 point rather to Gentile Christians, and it is better to take this view, and interpret the " Diaspora "metaphorically as referring to the isolated position of Christians among the heathen. The general impression made by the epistle is that the central idea was to strengthen the courage of the recipients, who were likely to undergo persecution, and to enjoin on them conduct which would remove all reasonable excuse for thinking that Christianity ought to be regarded as a crime.
Ch. i. 3-12 is an introduction of praise to Cod that he had caused the recipients of the epistle to be born again to the fiving hope in a glorious salvation. The rest of the epistle may be divided into three pars: (a) i. 13-ii. 10, mainly hartatory injunctions tn live holy lives in accordance with this new birth, and to grow up as God's people in communion with Christ ; (β) ii. It-iv. 6. particular directions as to the line of conduct to be pursued towards the Gentiks and towards those in authority, with special relerence to the pelations of slaves to masters, of wives and husbands to each other, and of Christians to one a nother; to the first of these a passage is appended dealing with the sufferings of Christ as an example (fi. 21-25), and the whole is completed by an exhortation to meekness and patience in suffering, in the light of the sufferings of Christ and the blescings given by them both to the living and to the deadi (γ) iv. $7-\mathrm{v}$. Int his less cohesion. It begins with exhortations not to forget prayer and tove, then the believers are wamed to be carcful to suffer only as Christians, not as breakers of the laws. The elders and the younger men are reminded of their duties to the coramunity and to one another. The whole is brought to a close with an exhortation to all to fight manfully against the devil and to trust in God.

Date and A uthorship. -These two questions are so closely connected that they cannot be considered separately. The external evidence of tradition is that the epistle was written by St Peter. This can be traced back to Irenacus (iv. 9, 2) and Clement of Alexandria (Strom. iii. 18, 110), and it is thought by many writers that 2 Pcter iii. 1 , even if it be not itself Pctrine, is good evidr-ce that the writer regarded I Peter as apostolic. Evidence for its use, without mention of jts name, may be found in Polycarp, but probably not in the other apostolic fathers (cf. The N.T. in the Apostolic Fathers, Oxford, 1905, p. 137). It is, however, possible that Papias made use of it. It is doubtful whether Justin Martyr used it, but probable that it was known to Theopbilus of Antioch, It is not mentioned in the canon of Muratori. Thus external evidence, though unanimous in favour of the Petrine authorship, is not sufficient to settle the question. The internal evidence consists of (a) evidence bearing on the date in connexion with the persecution of Cbristians, (f) evidence establishing the relation of the epistle to otber

docoments in early Chriatian history, and (γ) evidence conceraing

 St Peter personally.(c) It is clear from t Peter i. 6, ii. 12, iv. 12-19, v. 9, that the epistle was written during a cime of persecution. The question which is doubtful is to which persecution the description best applics. The traditional opinion was that the persecution referred to was that under Nero. But it has been argued that the Neroine persecution according to Tacitus (Amn. xv. 44) was not a perweculion of Christians as such, but was rather the result of false seccusation. Moreover there is no proof that there was any persecution of Christians at this time outside Rome, and I Peter alludes to pursecution in the provinees of Asia Minor. Therefore many critics have felt obliged to bring the epistle into connexion with the epistle of Pliny to Trajan, written c. 112, and asking for advice as to the procedure to be followed in trials of Christians. This is the carliest evidence which implies organized persecution in the provinces in question, and therefore Holtzmann, Weizsacker and phers regard this as fixing the date of the epistle in the beginning of the 2nd century and excluding the Pecrine authorship. Against this view il may be argued that the epistle describes the beginning of persecution. The writer st:ll bopes that Christians will not be obliged to suffer "for the name" and is clearly aware of false accusations of crime. On the other hand Pliny's letter implies a time when Christianity was in itwelf a crime and was recognized as such. Thus it is urged, probably correctly, that the epistle belongs to the beginning of a period of which Pliny's letter marks a later development, and we can only sany that $c, 112$ is the terminus ad quem. The terminus a quo is more difficult to find. We do not know with certainty when Christianity became a recognized offenee, and scholars have supported various hyporheses. T. Mommsen, Hardy and Sanday think that even under Nero it was criminal to be a Christian: Neumann thinks that this was first the case under Domitian: Sir W. M. Ramsay believes that this attitude was one of ahe results of the Jewish War of $\mathbf{7 0}$. and ascribes it to Vespasian. If the Domitianic date be adopted the Perrine authorship is almost excluded, and is is difficult to reconcile the traditional date of St Peter's mariyrtom with Ramsay's theory.
(β) The relations of t Peter to other books in early Christian literature is shown in the following table:-

From this table it is sufficiently plain that I Peter is closely connected with Romans, Ephesians, James and Polycarp. The majnrity of scholars are agreed that in the case of Romans the dependence is on the side of 1 Peter. and in the case of Polycarp on the side of Polycarp. There is less agreement as to Ephesians and James, though in the former case the general opinion favours the dependence of 1 Petcr, in the latter case its priority. In England, however, the priority of James has been supported by Mayor and Hort. In the light of the established use of Romans it is possible that i Peter also used other Pauline epistles and some scholars have seen special traces of the influence of 1 Cor, and Gal. (for a list of these of. Holetmann, Einkitunf in das N.T., 3, p. 314). It has been argued that the use of the Pauline episties' is improbable for Peter, but this is a subjective argument which is not decisive.
(r) According to tradition Peter was martyred in Rome, and it is probable that this was in the Neroine persecution. If this be so. the year 64 is the terminus ad guem of the letter, if it be authentic. Ramsay, however, thinks that Peter may have survived this persecurion and suffered at the beginning of the persecutions which, he thinks, were initiated by the flavian emperors (ace Persa, ST: $\mathbf{I S}_{5}$, 4 and 6).

The whole question of authorship and date is thus a complex of smaller problems, many of which do not seem to admit of any definite answer. If St Paul's epistie to the Ephesians be genuine, and it were really known to the writer of 1 Peter, and if Peter were martyred in 64, the theory of Petrine authorship demands that it was written by Peter between 59 and 64 . On the Petrine hypothesis this is the most probable view. The weak point is that it assumes a great spread of Christianity in the provinces of Asia Minor outside the activity of Paul, and that the official persecation of Christians as such began throughout 'the Roman Empire under Nero, lor netther of which is there
corroborative evidence. On the non-Petrine hypothesis a date is demanded some time before the letter of Pliny; this suits the internal evidence better than any possible on the Petrine hypothesis, but it fails to explain the really considerable and early evidence for the Pctrine authorship, and necessitates some purely hypothetical suggestion, such as Harnack's view that the epistle was originally anonymous, and that the opening and closing sentences (i. I sqq., v. 12 sqq.) were added between A.D. 150 and 175, perhaps by the writer of 2 Peter.

The Proocrance of the Epistle.-This is defined in i Peter v. 13 as Babylon. It has sometimes been argued that this is Babylon in Mesopotamia, in which there were, until the time of the cmperor Caius, many Jews; but no good tradition connects St Peter with the evangelization of Mesopotamia, and this district would have had little in common with the Gracco-Roman world of Asia Minor. Another suggestion is that the Egyptian Bahylon is meant (Old Cairo); but in the ist century this was probably mercly a fortress. Thus there is an overwhelming weight of opinion in favour of the view that Rome, the Babylon of Apocalyptic literature, is intended. This also agrecs with the tradition in 2 Tim. iv. 11, which (cf. I Pet. v. 13) suggests that St Mark was in Rome.

Reception in the Canon.-1 Peter seems to have been the earliest of the Catholic epistles to obtain recognition. By the year 200 it was accepted cverywhere except in two places-the church of Edessa, which did not receive the Catholic epistles until the sth century, and, if the canon of Muratori is to be trusted, the church of Rome. It should, however, be noted that Zahn emends the text of the Muratorianum (rather violently) so as to include the epistle (see also Bible: Ncw Testament Canon.)
1 The Theology of i Peter.-The simplicity of the the ology is mart ed, and affords an argument for an carly dape. Jesus is the Mle ah of whom the prophels had spoken, and the "Spirit of Chrity is idenified with the spirit which was in them. Itis suff-ring for sin had rescued the elect, and was also an example for Christian to Iollow. After his dath he preached to the " spirits in prisur." The source of Christian life is on the one hand Ixtief in Gud who raised the Messiah from the dead, and on the other hand baptism which "saves . . . through the resurrection of Jesus Clirist." The members of the community are " a royal pristhood, a holy natic $\boldsymbol{n}^{\prime \prime}$ is.e. inherit the promisex made to the Jews. Dut this mhatiance is bound up with the strongly exchatological doctrine than Christians are strangers in the world, the end of which is at hand.

The Church Organizalion of I Peter.-This also is very simple and primitive, and clonely based on the jewish model. The leadere are calied presbyters or elders, and their duty is to act as shepherds to the flock. Beyond this there is no sign of a developed organization: each is to act in accordance with ahe gife (x dporama) which he has received. There is no 1 race of a specially set apart ministry cither for the service of the community or for taaching. as to which the only limitation given is "It any man speak let him speak as the oracles of God," i.e. probably, in accordance with the Old Testament.

2 Peter

This epistle may be divided into five parts. (1) The writer who describes himself as "Simon (var. Iect. Symcon) Peter, a servant and apostle of Jesus Christ," exhorts his teaders to become perfect in knowledge and virtue, so as to enter the kingdom of Christ (i. 3-11). (2) He then explains his desire once more 10 testify to the power of Jesus, and bases his testimony partly on his own experience in the Holy Mount (apparently a reference to the Transfiguration), and partly on the "word of prophecy" (i. 12-21). (3) The meation of prophecy leads him to deal with the question of lalse prophets, who are accused of false doctrine and immoral practices. In this section is incorporated almost the whole of the cpistle of Jude (ii. 1-22). (4) He then discusses a special feature of the false teaching, viz. doubts thrown on the Parousic, the certainty of which for the future he defends (iii. 1-13). Finally he warns his heaters that they must be found spotless at the Parousia, and emphasizes the agreemeat of his teaching with St Paul's (iii. 14-18).

The main object of the epistle is to be seen in the attack made on the false teachers, and in the defence of the certainty of the Parousia of the Lord.

Authorship.-The traditional view is that it was written by St Peter from Rome after 1 Peter. This view is however untenable for the following reasons. (1) The epistle is not quoted by any writer of the and century, and Origen, who is the first to mention it as Petrine, admits that its authorship was disputed. (2) The style and language differ greatly from that of I Peter: this argument may however fairly be met by the suggestion that it is improbable that he wrote Greek with ease, and that he may have used a variety of amanuenses. (3) The growth of immorality and false teaching to which it witnesses scems irreconcilable with a very primitive period of church life. (4) It has incorporated the greater part of Jude in a whote. sale manaer difficult to rcconcile with aposiolical authorship. (s) It seems to attribute a position of scriptural authority to the Pauline epistles, and this is improbable either in the mouth of Peter, or during the ist century.

Any one of these arguments would be weighty by itself; in combination they form an irresistible cumulative argument against the Petrine authorship of 2 Peter.

Dofe.-If the Petrine authorship be abandoned, the termims ad gucm of the epistle is its use by Origen (or, just possibly, by Clement of Alexindria), and the lcrminus a quo is fixed by the following considerations: (1) the activity of an immoci Gnosticism; (2) the altainment by the Pauline epistles of great authority, and their perversion by beretics; (3) the use made of the cpistle of Jude.

It is difficule to define the cxact dateto which these indications point, hut there is a general agreement that it must be sought in the ind century, and perhaps the decades immediately betore and after the year A.D. 150 are the most probable.
Place of Origin. - There is hardly any evidence on this point: but the most probable place scems to be Egypt, as the leiter has points of connexion with Philo, Clement of Alexandria and the Apocalypse of Peter, and seems first to have been wed in the church of Alcxandria. It should however be noted that Deissmann argues on lexical grounds in favour of Asia Minar (Bibd Stud. pp. 277-284).

Retation to olber Early Christion Documents.-The documents with which 2 Peter has the greatest affinities are the epistle of Jude, and the Apocalypse of Peter, of which a Iragment was found in Akhmim in 1802 by M Bouriant. In each case the affinity is very close, and is capablc of more than one explanation. Roughly speaking 2 Peter ii. reproduces Jude: it is possilde therefore cither that Jude is an epitome of 2 Peter or that the writer of 2 Petcr used Jude. The former hypothesis has a fir supporters, notably T. Zaho and Spitta, but most writers are cmphatic in thinking that 2 Pcter has incorporated Jude, and this view is almost certainly correct (see Jepe, Epistie of). The connexion with the Apocalypse of Peter is more complicated: the cvidence of a comparison between the two documents (which is made in full in F. H. Chase's article in Hastings's Dictionery of the Bible) is to show that either one document is deperded on the olher, or both were written by the same person, or beth come from the same circle. Of these theories there is least to be said for the dependence of the Aporalypse on 2 Peter, and perhaps most lor the dependence of 2 Peter on the Apocalypse.

Receplion in the Caran.-2 P'eter was the last of the Cacholic epistles to be accepted as canonical. It was first regarded as such in Alcxandria, perhaps originally in connex:on with the Apocalypse of Peter rather than with I Peter. Thence it passed into the canon used by the church of Constantinople, in the ath contury made its way into the Roman canon, and in the 6th whes accepted last of all by the Syria church (see also Bisle: Ner Tcstamen Canon).

The Theolony of a Peter.-The theolony of the epistle is apecinily marked by two characteristicg-its high Christology and its eschato logical character. Christ is referred to as "our Cod and Saviour." and the fatherhood of God is apparently only regarded as referring ta the Divine Son. The work of Christ was the redemption al the elect. and this redeanption awalts its coasommation in utse Parousia. This is the central point of the teaching of the epistie and is obviously directed against that of the false prophets. The writer looks forward to the destruction of the present world by fire.

When the wicired, whether angela of men, who have boen reworved for judgment will be finally condemned, and anew era of happinesa for the elect will begin.

Chmech Organization. - There is very little in a Peter which throws light on church organization. From his silence it would appent that the mondrchial epssopacy did not yet exias in the churth to which the writer belonged, and perhaps the propheta were still the chiel guides, but the argument from silence cannot be pressed. In any case the growth of false and immoral prophets, which ultimately Led to the obsolescence and suppression of this order, was lar advanced and was one of the reasons which led to the writing of the epistle.

Authoritizs,-Besides the books and articles already mentioned the following are important: F. H. Chase, "Peter" and "Epistles of Peter " in Hastings's Dich. Bible; P. W. Schmiedel, "Sinon Peter" in the Ency. Bib.: Lightfoot, S. Clement of Rome, I, 201-315 and If, 4Rt-502 ; Harnack, Aluhr. Lith. and Chromologie I (the rivyant eections). The relevant sections in the Introductions of Holtzmann, T. Zahn, Julicher, Salmon, Weiss and Moffat. The commentarics of Bigg, Mayor, F. Spitta. Kuhl (in Meyer's Commsmtary), von Sodea (in Holtzmann's Commentary), and Wciss.
(K. L.)

PELERBOROUGE, a town and port of entry of Ontario, Canads, and capital of Peterborough county, situated 70 m . N.E. of Toroato, on the Otonabee tiver and the Grand Trunk and Canedian Pacific railways. Pop. (rgor), tr,2sg. The five falls of the Oconsbee at this point, with total descent of 50 ft., furnish power for a large and increating number of mamefacturing establishments, whilst its canalimation as part of the Trent canal gives commumication with Lake Oatario and Georgian Bay. Peterborough has an electric railway, and contains important manufnctories of electrical machinery and supplies, iron and steel tridges, agricultural implements and condage, saw, flour and woollen mills.

PEIEREOROUAE, e city and municipal and parliamentary borough of Northamptomahire, England, 76 m . N. from London by the Great Northern raikwas; served also by the London \& North Western, Great Eastern and Midland railwaya. Pop. (1891), 25,171; (r90x), 30,872. It is built chiefly along the river Nene, on the north side, and on the western border of the Fen country.

The cathedral of St Peter is tha thitd church chat has occupied the site; the first, founded snder Pends, king of the Mercians, about 656, was entirely destroyed by the Danes in 870 , and the second, founded in King Edgar's reign, was accidentally burnt in 1116. The present building, founded in the following year, was, inclusive of the west front, 120 years in building, being consecrated on the 4 th of October 1e57. It embraces in all, however, eight periods of conatruction, and in no other building can the transition be better studied through the various grades of Norman to Barly English, while.the Later addition is an admirable example of Perpendicular.

The erection proceeded at usnal from ent to went. and, while an increase in elegance and elaboration is observable in the later parts, the character of the earlier buildings was so carefully lept in mind that no sense of incongruity is produced. A series of uniform Decorated windows wrere added throughout the church in the I4eh century, and their effect is rather to enhance than detract from the unity of design. The choir, early Norman, terminating in an apte, was founded in 1117 or 1118 hy John de Sais or Sez, and dedicated In 1140 or 1143 ; the aisles of both transepts and the whole of the couth transept were bullt by Martin of Bec, $1140-1155$; the remaining portions of the tramsepts and the central tawer, of three stories, were completed by William de Waterville, 1155-1i75; the nave, bate Norman, was completed hy Ahbot Benedict, $1177-1193$, who added ebeautiful painted roof of wood: the western transepts, transitional Norman, were the work of Abbot Andrew, II93-I200; the western front, actually a vast portico of three arches, the unigue feature of the building, and one of the finest apecimens of Early Enclich extant, must have been built between 1290 and 1250 , during which period there were several ahbots; but there exists no record of its reconstruction. The lady chapel, built parallel with the choir by William Parys, prior, was consecrated in 1290 ; the bell-tower was erected by Abbot Richard between 1260 and 1274 ; the eouth-west opire, the pinnacles of the flanking tower of the west portal, aad the enlargement of the windows of the nave and aisles were the work of Henry de Morcot in the beginning of the isth century: the "new building" or eastern chapel in the Perpendicular style, begun in 1438, was not completed till 1528. In 154s the church was converted into a cathedral, the ahbot being made the first bishop. The extreme length of the buitding is 475 ft., and of the nave 211 ft . the breadth of the west front being $566 ;$ the height of the central tower, as recontructed in the 14th century, was ygo, that of the
spires and tower of the wrent front is ygh it. In I64s the building was defaced by the soldiers of Cromvell, who destroyed nearly all the brasses and monuments, bumt the ancient recorda, levelled the altar and screen, defaced the windows, and demolished the cloisters. To obtain materials for repairs the lady ehapel was taiken down. In the latter part of the $18 t h$ century the church was repaved. In 1831 a throve, tells and choir-acreen were erected and other restorations completed. On account of the insecure state of the central tower in 1883 it was taken down; and its reconstruction, exactly as it stood with the exception of the four comer turrete added early in the 19th century, was completed in 2886 . The choir was reopened in 1889 after being cloned, for thorough retoration, for six years.

In 1895 the restoration of the west front and other parts was begun in the face of considerable adverse criticism; but the work was carried on with the utmost care. During the carrying out of this work many intereatins dincoveries were made, tho most inportint being the site of the cruciform Saxon church. enclosed within a crypt under the south transept. Catherine of Aragon was interred in the cathedral in 1536, and Mary Queen of Scots in 1587, but the body of the Scottish queen was removed to Westminster Abbey in 1612. Both interments were mperintended by Robert Scarlett the sextom. commonly known as "Old Scarlett," whome port rait, a copy of the original, hangs in the west transept. He died in 1594 at the age of 98. Of the monastic buildings there are some interesting remains. The cathedral is approached by a Norman gateway, above which in the chapel of St Nicholan, built by Abbot Benedict, and now uned as the music achool and on the left the chapel of St Thoman a Becket, buitt by Abbot Ashton in the 15 th century as it stands, but originally Norman. The gateway to the bishop's palace, formerly the abbot's house, was Buile by Abbot Godirey de Croyland in 1319, and the desnery gate by Abbot Kirton about 1520. One of the canonry houtes is formed partly from a hall of the 13 th century.

Peterborough is fncluded for civil purposes in the parish of St John the Baptist, but for ecclesiastical purposes it is divided Into four, the additional parishes being St Mary's Boongate (1857), St Mark's (1858) and St Paul's (1869). The old parish church of St John originally stood to the east of the cathedral, but was rebuilt on Its present site in the centre of the city (140r-1407) In Perpendicular style. The educational establishments include the Henry VIII. grammar or chapter school, which used the chapel of St Thomas 1 Becket until $\mathbf{3 8 5}$; the St Peter's training college for schoolmasters for the dioceses of Peterborough, Ely and Linooln, erected from designs of Sir Cilbert Scott (I864); and Deacon's and Ireland's charity school, established in xyex for the clothing and educating of twenty poor boys. The principal publie building is the market house (1671), used as a town-hall. The modetn prosperity and rapid growth of the town are chiefly dte to the trade caused by the junction of so many rallway lines. Adjoining the town are extentive works and sheds connected with the Great Northern and Midiand railways. The principal manufacture Is that of agricultural implements. The parliamentary borough returns one member (since-2885). The municipal borough, incorporated in 1874, is under a mayor, 6 aldermen and 18 councillors. Area, 3878 acres. The soke or liberty of Peterborough, with a population of 41,122, constitutes a separate administrative county ($\mathbf{1 8 8 8}$). The diocese of Peterborough includes the whole of Rutland, nearly all Leicestershire and Northamptonshire, and small portions of Derbyshire and Huntingdonshire.

Peterborough (Burgh, Burgus sawcti Petri) is proved by its original name Medehamstede to have been a Saxon village before 655 when Saxulf, a monk, founded the monastery on land granted to him for that purpose by Penda, king of Mercia. Its name was altered to Burgh between 99: and 1005 after Abbot Kenulf had made a yall round the minieter, but the town does not appear to have been a borough until the 12 th century. The burgeses received their first charter from "Abbot Robert," probably Robert of Sutton ($1262-1273$). Until the Igth century the dean and chapter, who succeeded the abbot as lords of the manor, appointed a bigh bailiff, and the constables and other borough officers vere elected at their court leet, but the borough was incorporated in 3874 under the government of a mayor, 6 aldermen and 18 councillors. Among the privileges claimed by the abbot as carly as the r3th century was that of having e prison for felons taken in the soke and borough. In 2576 Bishop Scamble sold the lordship of the hundred of Nassaburgh, which is coextensive with the soke, to Queen Elisabeth, who
geve it to Lord Burghley, and from that time until the rgth century he and his descendants, marquesses of Exeter, had a separate gaol in Peterborough for prisoners arrested in the soke. The trades of weaving and wooloombing were carried on in Peterborough in the 14th century. The abbot formerly held four fairs, of which two, one called St Peter's fair, granted in 1189 and now held on the second Tuesday and Wedncsday in July, and the other called the Bridge fair, granted in 1439 and hetd on the first Tuenday, Wednesday and Thursday in October, still sarvive and were purchased by the corporation from the ecclesiastical commissioners in 1876. Peterborough sent two members to parliament for the first time in 1547.

PETBRBORODGE AND MONTOUTH, CHARLES MORDAUNTY Eare or (c. 1658-1735), English soldicr and statesman, was born about 1658. His father, John Mordaunt, was created Viscount Mordaunt of Avalon and Baron Mordaunt of Reigate, Surrey, in $1659 ;^{1}$ his molher was Elizabeth, the daughter and sole heiress of Thomas Carey, the second son of Robert Carey, rst earl of Monmouth. ${ }^{2}$ He matriculated at Christ Church, Oxford, on the inth of April 1674. When about sixteen years of age he joined Sir John Narborough's fleet in the Mediterranean, and won his first distinction in arms in the destruction of the dey's fleet under the very guns of Tripoli. His fatherdied on the 5 th of June 1675, and Charies Mfordaunt succeeded to the peerage as Viscount Mordaunt. On his relum from the second expedition to Tangier he plunged into active political life is 2 mealous Whig and an unswerving opponent of the duke of York. But his continued hostility to James II. Corced him to repair to Holland in 1686, when be proposed to William of Orange to invade England. The dispositioh of the cold and cautious William had little in common with the fierce and turbulent Mordaunt. His plan was rejocted, though the prudent prince of Orange deemed it judicious to retain his services. When William sailed to Torbay his friend accompanied him, and wben the Dutch prince was saiely established on the throne of England honours without stint were abowered apon Lord Mordaunt. He was sworn of the privy council on the 14 th $^{\text {th }}$ of February 1689, on the 8th of April of the same year appointed first lord of the treasury, and a day later advanced in the peerage by creation as carl of Monmouth.
In leas than a year he was out of the treesury, but he still remained by the persen of his monarch and wes with him in his dangerous paseage to Holland in January 16gi. He was one of the eighteen peers who aigned the protest against the rejection, on the 7th of December 169s, of the motion for the appointment of a committee to inquire into the conduct of the war, and although William had refused his consent to a bill for triennial parliaments in the previous session, Lord Monmouth did not ahrink from reintroducing it in December 1693. This bid to a disagreement with the copurt, though the finil breach did not take place until January 16g7, when Monmouth, was accused of complicity in Sir John Fenwick's conspiracy and of the use of "undutiful woeds" towarda the ling. Ho was committed to the Tower, ataying in confinement until the 3oth of March r6g7, and deprived of his employments. Some consolation for these troubles came to him on the roth of June of the same year, when he succeeded to the carliom of Peterborough, hy the death of his ancle Benry Mordaunt, and earl.
The four years after hia release from the Tower were mainly passed in retirement, but on the accesslon of Arme the plunged into political life again with avidity. His fiast act was to draw down on himself in February 1702 the censurs of the House of Commons for the part which he took in the attempt to secure the return of his nomitee for the borough of Malmabbury. Through the fear of the ministry that his reules spirit would drive him into opposition to its meagures it he etayed at home, he whs appointed early in 1705 to command an expedition of
${ }^{2}$ A barciny of Mordaunt by writ had erimed in the family since 1529, and the viecount was the mecond con of the fifth of these barona, who in 1628 was created earl of Feterborough, the elder son Henry being second earl.
1 Cr. 1626 . Thla peerage became extinct in 166 on the death of the and eari.

English end Dutch troops in Spain. He was created the sole commander of the land forces in April 1705 and joint-commander with Sir Cloudesley Shovel of the feet on the 1st of May, after be had been reinstated a member of the privy council on the 29th of March. He arrived at Lisbon on the zoth of June 7705 , sailed for Barcelona (Aug. 1705) on an expedition for the conquest of Catalonia, and began to besiege that town. For nome weeks the operations were not prosecuted with vigour and Peterborough urged that the fleet should transport the troops to Italy, but the energetic counsels of the Archduke Charles at last prevailed and by the 14th of October the city fcll into his hands. On the 34th of January 1706 he entered Valencia in triumph, hut these movements had weakened the garrison at Barcelona, which was now besieged by a superior French force under Tesst. The garrison, commanded by the archduke, defended their positions with great hravery, but would have been obliged to surrender had not the fleet of Sir John Leake, answering the sppeals of Charles but contrary to the original orders of Peterborough, come to their assistance on the 8th of May, whercupon the French Faised the siege on the irth of May. It is difficult to understand the action of Peterboroush during this campaign, unlens on the supposition that he was out of sympethy with the movement for placing an Austrian prince on the throne oi Spain. When Charies determined upon uniting with Lord Galway's troope and marching to Madrid, the advice of Peterboroagh again hindered his progres. At first he urged an advance by Valencia as ampplies had there been collected, then he withdrewthis statement; afterwards he delayed for some weeks to join Galway, who was in need of succour, but ultimately reached the ciamp on the 6th of August. The leaders of the army differed in their views, and Lord Peterborough was recalliod to England to exphin his coaduct (March 1707).

On his return to Engiand in Auguast he allied himself with the Tories, and received his reward in being contrasted, much to his advantage, with the Whig victor of Blenheim and Malplaquet. The differences between the thieo perrs, Peterborongh, Calway and Tyrawiey, who had served in Spain, formed the anbject of angry debates in the Lords, when the majority declared for Peterborough; after some ferry speeches the resolution that he had performed many great and eminent mervices was carried, and votes of thanks were passed to him without any division Oanaary and February 1708). His new friends weme mot desirous of detaining him long on English soil, and they sent him on a mission to Viema, where he charncteditically engaged the ministry in pledges of which they disapproved. His resentment at this disagreement wiss softened by the compmand of a cavalry regiment, and by his appolntenent as a Knight of the Garter (Aug. 3 and 4, 1713). With the accession at George I. Lord Peterborough's influence was gone. Wom out with suffering, be died at Jisbon on the agth of October 1735. Ifis remains were brought to England, and buried at Turvery in Bedfordshire on the arst of November.

Lord Peterborough was short in stature and spare in habit of body. His activity knew no bounds. He was said to have seen more kings and postitions than any man in Europe, and the whole point of Swift's lines on "Mordanto" consisted in a description of the speed with which he hastened from capital to capital. He was eloquent in debate and intrepid in war, but his influence in the senate wes ruined through his inconsistency, and his visour in the field was wasted through his want of union with his colleagues. His first wife, Carey, daughter of Sir Alerander Fraser of Dores, Kincardineshire, died on the $13^{\text {th }}$ of May 1709 , and was buried at Turvey. Some years later (1725) be secretly married Ansstasia Robinson (c. 1695-1755), a famous dramatic singer (from 2714) of great beauty and sweetness of disposition, daughter of Thomas Robinson (d. 1722), a portrit painter; hut she was at first unrecognized as his wife, and lived apart from him (regarded merely as his mistreas) with ber two sisters at Parson's Green. She remained on the operatic stage, till 1724 . It was only a few months before hif death that (after a tecond marriage ceramony) ahe
was introduced to society as the countess of Peterborough. He had a son John ($1681-1710$) who predeceased him, and was cherefore succeeded in the title by his grandson Charles (17101779), whose son Charles Kenry (3758 -1814), sth earl, died unmerried, the honouris becoming extinct, except for the barony of Mordaunt which passed to a collateral branch and fell into abeyance in 1836 .

Bralsograrizy.-The bent accounts of the caveer of Peterborough are in the life by Williana Scebbing (i890), and the War of ane Succession in Spain, by Colonel the Hon. Arthur Parnoll (1905). The earlier lives are founded on the memoir of Captain George Carleton (1728), which was analymed by Colonel Parnell, and ditmissed as a fictitious nastrative inspired by Swift, in the Engs. Fist. Res. (1891), vi. 97-131).

PETRRHEAD, a municipal and police burgh, and seaport of Aberdeenshire, the most easterly town in Scocland. Pop. (I901), 12,794 It is situated about 33 m . by road E.N.E. of Aberdeen and 44 m . by rill, via Maud Junction, on the Great North of Sconland railway, from which there is a branch line. The town is huilt of the red granite for which it is famous, and the quarrying of which for home and foreign use constitutes an important industry. Among the principal berildings are the town-house (1788), with a spire 125 ft . high, and the Arbuthnot museum and art gallery. In fromt of the town-hall is a statue to Field Marshal Keith (born at Inverugie Cestle, 2 m . north-west, in 8696), which was presented to the burgh in 1868 by William I. of Prusais, afterwards German emperor. Peterhead is one of the Elgin district group of parliamentary burghs, with Banff, Cullem, Edgin, Inverurio and Kintore. It formerly had an extensive trade with the ports of the Ballic, the Levant and America, and was once a sub-port to Aberdeen, but was made independent in 8832 . It whs also for a long period the chief seat of the Greenland trade, but the Arctic seal and whale firhery is now extinct. The north and south harbours lie between the town and Keith Inch-a suhurb at the extremity of the peninsula on part of which the town is built-and the isthmus dividing them is pierced by a canal crosed by an iron swing-bridge. In the north harbour are two graving docke. A third harbour has been bailt, the area of the three basins amoupting to ar acres. In addition to the granite quarrying and polishing, the leading industrics are ship-and boat-buiding, agricultural implement works and woollen manufactures. The herring fleet possesses more than 600 boats and the annual catch averages nearly $\{200,000$. About a mile to the sonth in the convict prison for Scotland. Since 1886 the prisoners have been employed upon the construction of a vast harbour of refuge, for which the hreakwater extends from Boddam Point northwards across the bay. This great undertaking (intended to be completed in 19as) was designed by Sir John Coode (d. 2892). Peterhead is the terminus of a cable to Norway. About 6 m . south of Peterhead are the famous Ballers, or Roarers, of Buchan, an enormous rocky cauldron into which the waves pour through a natural arch of granite, with incredible violence, in a storm.
The town and lands belonged of old to the Abbey of Deer, built in the $3^{\text {th }}$ century by William Comyn, eatl of Buchan; but when the abbey was erected into a temporal lordship in the Gamily of Keith the superiority of the town passed to the eart marischal, with whom it continued till the forfeiture of the caridom in 1716. The town and lands were parchased in 1770 by a fishing company in England and, on their fallure, by the Merchant Maidens' Hospital of Edlnburgh for f3000, who are still the overlords. Peterhead, made a burgh of barony in 1593 by George Keith, fifth earl marischal, was the scene of the landing of the Pretender on Christmas Day 1715.
PrtBRHOF, a town of Russia, in the government of St Petersburg, 18 m . W. of the capital, on the south coast of the Gull of Finland. It was founded $\ln 1721$ and has grown up round the palace buitt by Peter the Great In 1730; pop., 11,300. Peterhof is almost exclusively a residential town. but gem-cutting and the manufacture of agricultural Implements are carried on. The palace has undergone alterationis and additions, e.g. by Cetharine II., but retains a distinct Petrine stamp. It fit buik
on a height 50 ft : above the ses, and contains portrites of the Russian imperial family and other pictures. A statue of Peter the Great was set up near the palace in 1883, and one of Francis I. of France in 1896, a gift from the town of Havre to Nicholas II. Peterhof is connected with Oranienburum on the west and with Stryelna on the east hy series of gardens and villas.
 cartographer, was bon at Bleicherode, near Nordhausen, on the $88 t h$ of April 1832. At the age of seventeen he entered the Geographical School of Art in Potsdam, and in 1845 proceeded to Edinhurgh to assist Dr Keith Johnston in the production of an Eaglish edition of the Physical Allas of Berghaus. In 1847 he came to London, and puhlished among other works, an account of Barth's expedition to Central Africa (1855). In 8854 he became director of the geographical institute of Justus Perthes in Gotha, and editor of the well-known Petermanns Milleitumgen. His work did much towards elucldating the geography of the interior of Africa and of the North Polar regions. Queen Victoris, at the suggestion of Bunsen, appointed him physical geographer-royal. Petermann died hy his own hand at Gotha on the 25th of September 1878.

PETERES (or Peter), HU日R (598 -1660), English Independent divine, son of Thomas Dyckwoode, alias Peters, descended from a family which had quitted the Netherlands to escape religions persecution, and of Martha, daughter of John Treffry of Treffry in Commall, was baptized on the 2gth of June 1598 , and was educated at Trinity College, Cambridge. Having crperienced conversion, be preached in Essex; returning to London he took Anglican orders and was appointed lecturer at St Sepuichre's. He entertained, however, unorthodox opinions, and eventually left England for Holland. He visited Gustavur Adolphus in Germany aboat 1632, and afterwards became the minister of the English church at Rotterdam. Here his unorthodox leanings again attracted attention, and Peters made a further move to New England. He was connected with John Winthrop through his wife, and had already formed several friendships with the American colonists. He arrived at Boston in October 1635 and was given charge of the church at Salem. He took i leading part in the affairs of the colony, and interested himself in the founding of the new calony in Connecticut. In 764 I he returned to England as agent of the colony, but soon became involved in the poltical troubles which now began. He became chaplain to the forces of the adventurers in Ireland, and served in 1642 in Lord Forbes's expedition, of which he wrote an account. On his return he took a violent part in the campaign against Laud, and defended the doctrines of the Independents in a preface to a tract by Richard Mather entitled "Church Government and Church Covenant discussed . . ." (1643). He gained grent- reputation as a preacher by his discourses and exhortations at public executions, and as army chaplain. In the latter capacity he accompanied Lord Warwick's naval expedition to Lyme in 1644 and Fairfax's campaigns of 1645 and 1646 , when his eloquence is said to have bad a marvellous effect in inspiring the soldiers and winning over the people. At the conchusion of the war, Feters, though greatly disliked by the Presbyterians and the Scots, had atcained great faftuence as leader of the Independents. In his pamphlet. "Last Report of the Enclish Wars" (1646) he urged religious toleration, an alliance with foreign Protestants, and an active propagation of the gospel. In the dispute between the army and the parliament he naturally took the side of the former, and after the scizure of the king by the army in June $\mathbf{8} 647$ had tinterviews with Charles at Newmarket atd Whidsor, in which he favourahly impressed the latter, and gave advice apon the best course to pursue: He performed useful services in the second Civil War, procured guns for the besiegers at Pembroke, raised troops in the amidends, and arranged the surrender of the duke of Fismition at Uitoxeter. Though at the Restoration he denied any complicity in the king's death, it is certain that in his sermons he justified and supported the triad and sentence. In August he accompanied Cromell to- Iruland, and was present at the fall of wexford.
while later he matisted the campaign by superintending from England the despatch to Cromwell of supplies and reiniorcements, and was himself destined by Cromwell for a regiment of foot. In 1650 he was in South Wales, endesvouring to bring over the people to the cause, and subsequently was present at the battle of Worcester. At the conclusion of the war Peters was appointed one of the preachers at Whitchall and became a person of infuence. Parliament had already voted him an annuity of $£ 200$, and Laud's library or a portion of it had been handed oyer to him in 1644. He was one of the committee of twenty-one appointed to suggest legal reforms, and he puhlished his ideas on this subject, which included a register of wills and land titles and the destruction afterwards of the ancient records, in his tract, "Good Work for a Good Magistrate" (in 1651), answered by R. Vaughan and Prynne. He strongly disapproved of the war witb Halland, and his interference brought upon him some sharp reprimands. In July 1658 he was sent to Dunkirk to provide apparently for the spiritual wants of the garrison. He preached the funeral sermon on Cromwell, and after the latter's death took little part in political events, though strongly disapproving of the removal of Richard. He met Monck at St Albans on the latter's march to London, hut met with no iavour from the new powers, being expelied from his lodgings at Whitehall in January 1660. On the xith of May his arrest was ordered. On the 18th of June he was excepted from the Act of Indemnity and apprehended on the and of September at Southwark. He sent in a defance of himself to the Lords, denying any share in the king's death. He was, however, tried on the 13th of October and found guilty of high treason. His execution took place at Charing Cross on the 16th of October, when he behaved with great fortitude, and was undismayed by the mangling of the body of John Cook, his fellow sufferer, upon which he was forced to look. Before his death he wrote "A Dying Father's Last Legacy" to his only child, Elizabeth, in which he gave an marrative of his career.
His death was viewed with greater rejoicings than perhaps attended that of any of the regicides, which is the more surprising as Peters possessed many amiable qualitics, and several acts of kindness performed by him on behalf of individual Royalists are recorded. But he had incurred great unpopularity by his unrestrained speech and extreme activity in the cause. He was a man, however, of a rough, coarse nature, without tact or refinement, of strons animal spirits, undeterred by difficulties which beset men of higher mental capacity, whose energies often outran his discretion, intent upon the realities of life and the practical side of religion. His conception of religious controversy, that all differences could be avoided if ministers could only pray together and live together, is highly characteristic, and shows the largeness of his personal sympatbies and at the same time the limits of his intellectual imagination. Peters married (x) Elizabeth, daughter of Thomas Cooke of Pebmarsh in Essex and widow of Edmund Read, and (2) Deliverance Sheffield, by whom he had one daughter, Elizabeth.

PETBRA, KARL (1856), German traveller in Africa, one of the founders of German East Africa, wras born at Neubaus on the Elbe on the a7th of September 1856, the son of a Lutheran clergyman. He studied at Güttingen, Tübingen and Berlin, and in 1879 was awarded a gold medal hy the Berlin University for his Erieden zw Venedig. After visiting London to study English principles of colonization, he returned to Bertin and promoted the German Colonization Society (Dewdsche Kolovialzercin). In the autumin of 1884 he proceeded with two companions to East Africa, and concluded in the name of his society treaties with the chiefs of Useguha, Nguru, Usagara and Ukami. Returning to Europe early in 1885, he formed the German East Africa Company, which speedily obtained an imperial charter. The story of this enterprise, the first step in the formation of a German colony in East Africa, is told under Arerca, 8 5. In 1888 Peters undertook an expedition from the east coast of Africa, avowedly for the relief of Emin Pasha. Thia expedition was not sanctioned by the Germen goveroment and was regarded
by the British muthorities as a filibustering exploic. One of its objects was to ertend the sphere of German infuence, and, reacking Uganda carly in 1890 , Peters concluded a treaty with the king of that country in favour of Germany. He left Uganda hastily on the approach of a representative of the British East Africa Company, and on reaching Zanzibar leamed that his treaty was useless, as an agreement had been come to between Germany and Great Britain wherehy Uganda was left in the Bricish sphere. On his return to Germany Peters wras received with great honours, and in $\mathbf{1 8 9 x}$ published an account of his expedition entitled Die deulsche Emin Pasha Expedition, which was translated into English. In 18 gy be went out again to East Africa as imperial high commissioner for the Kilimanjaro district, and in 18ga was one of the commissioners for delimiling the AngloGerman boundary in that region. In. June $\mathbf{8 8 9 2}$ accusations were brought against him of excesses in his treatment of the natives, and after three investigations had been held he was, in 1897, deprived of his commission for "mistrse of offcial power." (He was regranted his title of imperial commissioner in 1906.) During 1893-1895 Petors was employed in the colonial office at Berlin. In 1896 be removed to London, where be occupiod himself in echemes for exploiting perts of Rhoderia and Portuguese East Africa. In the intereats of a company he formed, Peters explored the Fura district and Macombe's country on the Zambexi, where in 1899 be discovered ruins of ancient cities and deserted gold mines. He returned in 1901 and gave an account of his explorations is The Elderede of the Ancients (1902). In 1905 he again visited tho regfon between the Zambezi and Sabi riven.

Besides the books already mentioned and come maller treatises Peters published a philomophic work entitled Willempoth wad Wots quille (1883), and a disquisiicon on early gold production eatitled Das goldene Ophir Salonsos (1895), translated into English in 1898.
PEYERSBURG, a city and port of entry of Virginia, U.S.A., on the Appomattor river, af the head of navigation, about 11 m . from its mouth, and $23 \mathrm{~m} . \mathrm{S}$ of Richmond. Pop. (1890), 22,680; (1900), 21, 810 , (10,751 negroes); (1910), 24,127. It is served by the Atlantic Coast Line, the Seaboard Air Line and the Norfolk \& Western railways. The river, which is here apanned hy two steel hridges and one frame bridge, is navigable to this point for vessels of 8 ft draught at mean bigh water, and has been greatly improved by the Federal government, which in 1909 was engaged in deepening the whole chansel to 12 ft . at mean high water and in excavating at Petersburg a new chanpel into which to deflect the river. In and about the city there is much of historic and scenic interest. At Blandiord, a subarban hamlet, is the picturesque old Blandford church, erected about 1734. Petersburg has two pnblic parks, and among its instituLions are a home for the sick (2886), an orphamage for girls and another for negroes, the state central hospital for the inmane (negroes), the soutbern female college (non-aectarian, 1863), the university school for boys, the Bishop Payne divinity school (Protestant Episcopal) for negroes, and the Virgmia normal and industrial institnte (opened in 1883), also for negroes. There are two national cemeteries near PetersburgPoplar Grove (about 4 m . south), containing about 6200 graves, and City Point (about 9 m . east), containing about 5200 graves: and in Blandford cemetery there are about 30,000 graves of Confederate dead. In this cemetery General William Phillips is buried, and there is a monument to Captain McRae, commander of the "Petersburg Volunteers," whose bravery in $1812-18 \mathrm{r} 3$ prompted President Madison to call Petershurg the "Cockade City." The falls above the city furnish abundant water-power, and the city has various manufactures. The factory product was valued at $\$ 5,890,574$ in 1905 , 15.3% more than in 1900 ; in both 1900 and 1905 Petersburg ranked fourth among the cities of the state in the value of factory products. From Petersburg are shipped quantities of trunks and bags, peanuth, tobacco and cotton. In 1909 the foreign trade, wholly imports, was valued at $\$ 360,774$. The city was formerly in Chesterfield, Din widdie and Prince Georpenchent but is now independent of counly governonent.

An ladian viliago formerty stood on or near the site of the present city, and Fort Henry was buile here by the whites in 1645. Petersburg was founded in 1733 by Colonel William Byrd ($1674-1744$) and Peter Jones, and was named (first Peter's Point, and then Petersburg) in honour of the latter; in 1748 it was incorporated as a town. On the 25th of April 178 t a skirnish was fought in front of Petersburg between a British force of about 3000 under General William Phillips ($\mathbf{1 7 3 1 7}$ 1-1781) and about onethird of that number of American militia under Baron Friedrich Wilhelm von Steuben; the Americans were defeated, and the British occupied the town. In the following month the British again entered Petersburg (General Phillips dying here on the 13th $^{\text {th }}$), but they were scon dislodged hy Lafayette who shelled the town. General Winfield Scolt was born near Petersburg, and practised law here for two years before he entered the army. Petersburg was chartered as a city in 1850 .

Petrrssurg Canpaign ($\mathbf{8 6 6 4 - 6 5 \text {). The name of Peters- }}$ burg is associated with operations in the American Civil War, which formed the sequel of the Wilderness Campaign (gs.) and the last act in the struggle between the armies of Grant and Lee for supremacy. Petersburg (see above) and Richmond, Virginia, connected hy rail and covered north, east and south hy forty miles of entrenchments, formed the salients of a vast fortress, into which reinforcements and supplies could be poured from the rear by means of the James Canal, the Virginia Central, the Lynchhurg, the Danville and the Weldon railroads-the latter bringing up to Petersburg from Wilmington $\mathbf{2} 25 \mathrm{~m}$. distant) the cargoes of blockade ranners. Petersburg became a strategic point as soon as Grant determined to carry the army of the Potomac-defeated at Cold Harbor on the Chickabominy (see Widereness Cauphion)-south of Richmond, and, being joined by Butler's Army of the James (momentarily checked in the Bermuda Hundred Peninsula hy a amall army under Beauregard), to operate from the east, depending on the James river, as his line of supply, whle the policy of the Confederate president was to employ Robert E. Lee's army to protect his capital. Petersburg was nearer than Richmond to the navigable part of the James River-City Point is only 10 m. distant-and the capture of Petersburg would involve the fall of Richmond and the capitulation or flight of Lee's army.

As early as the gth of June 7864, while the main armies were still north of the James and Petersburg was garrisoned by a brigade under General Wise, a Federal expedition from the Army of the James approached the city. General Gillmore on the City Point road discovered strong earthworks, and General Kautz attacking on the Jernalem Plank road experienced a repuise: the total force of the Federals was 4500 , and Wise's brigade (2400) had been quickly reinforced from Beauregard's central posifion at Bermuda Hundred. A week later a more seriousiatiempt was made to break through the defences, while General Lee's main army was detained north of Richmond. Grant detached the II. and XVIII. corps under Generals Smith and Hancock, who were to unite and operate along the City Point railroad and capture the outer line of works about 2 m . from Retersburg while a demonstration was made along the Norfolk milroad by cavalry under Kautz. On the 1 gth of June Smith atacked and captured five redans before Hancock came up, and when next day Burnside's corpe (IX.) arrived and General Meade assumed control of the three corps, he attacked again at 6 p.m. On the 17 th of June Warren's (V.) corpe arrived, and Meade made a third assault with two corps (V., IX.). On the 18th of June the attack was renewed with three corpe (II., V., IX.) late in the afternoon, and the results of the four days fighting were so far satisfactory that ground was won which could be entrenched and held against any sortie of the Petersburg garrison. Probably on the $\mathbf{1 8 t h}$ of June the town of Petersburg might have been captured by Meade, for at this crisis General Lee was in temporary eclipse. For four days Lee had refused to credit any report to the effect that Grant was crossing the Jumes: his cavalry could not ascertain that the enemy in his
front at Malvern frill (VL. corpe and Wilson's cavalry division), despite its menacing attitude towards Richmond, was only a flant guard for a movement to the south.

It was late on the 17th of June when General Beauregard, who bad for three cays valianuly held his main lines south of Richmond with some 14,000 infantry against three Federal corps, succeeded in convincing Ceneral lee that the main army was again (as in 1862 on the Chickahominy) in the wrong place at the wrong' time. But when at last the Confederate leader was aroused to a sense of his danger he soon filled every road with divisions marching to save Petersburg: they marched all night; theyslept in the trenches on arrival, and on the igth of June these reinforcements convincedGeneral Meade tbat his main attack between the Appomattor river and the Jerusalem Plank roed was delivered a day too late. At a cost of 10,000 casualies Meade had gained half a mile of ground, but the Confederates in falling back had concentrated, and now that the new plan of operations was exposed and the main bodies were again face to face the power of defensive tactics reasserted itself.

Yet June was not to close without adding some 8000 men to. the Federal casualties, for in addition to daily losses hy sharpshooting along the front, over 5000 men fell or were captured in operations directed against the southern railrosds. Grant had resolved to deprive his enemy of these lines of supply: his plan was to prolong his line of investment westward and construct redouhts (such as Fort Davis, Fort Steadman and Fort Sedgwick) as a continual menace to the Confederate garrison and a defence against sorties, while his cavalry and portions of five corps (II., V., VI., IX. and XVIII.) engaged in enterprises which it was hoped would tempt General Lee to fight outside his works. A decisive victory in the field, a successful assault on the defences between Richmond and Petersburg, or the complete destruction of the railroads, would precipitate disaster to the South, and of these three methods the last would be the surest in its effects. But such a method was necessarily slow. General Wilson's cavalry (5500) destroyed 30 m . of the Lymchburg or South Side railroad, and 30 m . of the Danville railroad, together with Burkesville Junction and Ream's Station on the Weldon raitroad; hut Wilson was caught by the Confederate cavalry 100 m . from Petersburg and escaped only hy destroying his wagons and limbers and abandoning twelve guns. Even the Virginia Central railroad conld not be held by the Federals after Sheridan with the main body of the cavalry had been called back to White House on the Pamunkey to escort a great convoy.

By the end of June the whole of the rival forces were concentrated about the Richmond-Petersburg defences, and General A. P. Hill had already sallied out on the 2 rst of June to drive the II. corps from the Weldon railroad. Federal policy and Federal strategy, surmounting the crisis of Cold Harbor, were, however, at last in unison. Grant bad a free hand in respect both of his dispositions and his resources in men and money, and had resolved to use unsparingly the resources placed at his disposal. Early in July Grant, hqwever, fourd himself compelled to detach a corps (VI.) to strengt ben the garrison at Washington, for General Barly had frustratod Hunter's attempt against Lynchburg (see Shemandoni Valley), driving Hunter into West Virginia, and then, pushing down the Shenendoah and ecross the Potomac, had arrived within a day's march of the Federal capital. This operation chécked Grant's enterpises about Petersburg and restricted the Federal front to the ground east of the Weldon trilroad.
On the isth of July Grant resolved to weaken the enemy on his front by a demonstration north of the James, and accordingly moved a corps (II.) and two cavalry divisions across the river to Malvern Hill under cover of Foster's corps (X.). But Lee possessed the inner line, and the Federal detachment found two cavalry divisions in tits front, and the Richmond defences had been strengthened hy three divisions of Infantry. The expedition then returned to take part in a fresh enterprise, which ended disastrously to the Federals. A Confederate redan faced Burnside's IX. corps 100 yds. distant, and this strong work was
to be destroyed by mining opertidones. The mine was fired and produced a crater 150 ft . jong, 60 ft . wide and 25 ft . deep; into which the Federals poured (ree Forimicaiton and Siececraft). But the troops could be got no farther before the Confederate counter-attack was upon them, and Burnside's corps lost 4300 men.

In August Sheridan was detached to operate against General Early in the Shenandoah Valley, and in order to prevent Lee reinforcing Early another demonstration against Richmond was planned. But Lee again strengthened his left and the result of the fighting was a loes to the Federals of neariy 3000 men. Meanwhile another attack on the Weldon railroad by Warren's corpe was met by General A. P. Hill on the 20kh of August, and the possession of the railroad cost the Federals 3000 men. A (urther attempt on this railroad by Hancock's II. corps and Grege's cavalry division at a prite 3 m . south of Ream's Station was foiled by A. P. Hill, now aided by Hampton's two cavalry divisions, and the Fedcrals tere lost 2372 men and nine guns. The Confederates therefore still retained possession of the railroad to a point within one day's bauling by wagon to Petersburg. During September another Federal enterprise north of the James with two corps (X and XVIII.) resulted in the capture of Fort Harrison near Chaffin's Bluff, and when Gencral Lee reinforced his left and counter-attacked his troops were repulsed with heavy loss. The Federals lost over 2000 men and failed in the attempt to take Fort Gilmer Confederate gunbaats below Richmond aiding in the delence. While this operation was in progress on the Confederate left under General Grant's personal supervision General Lee was apprised of attacks on his extreme right at Peebles Farm by four divisions, which captured a Confederate redoubt covering the junction of two routes to the south-west. General A. P. Fill prevented a further advance of the enemy by a vigorous couater-attack which caused Warren and Parke (IX.) a loss of 2000 men, of whom nearly three fourths allowed themselves to be captured; for the ranks, since the losses of the May battles, had been swumped with drafted and substitute recruits of poor quality and almost insignificant training. The Federals had, however, by these operations pushed their entrenchments beyond the Weldnn railroad westward and eatablisbed new works within a mile of the Confederste right. A minor engagenent north of the James on the 7th of October between the Confederates and troops of the Army of the James was writhout result. At the end of the month, however, Genera! Grant resolved to make a serious effort to bring the South Side railroad within his lines and deprive the enemy of this important linc of supply. Parke (IX.), Warren (V.) and Hancock (II.) took each some II,000 infantry with four days' rations on pack animals. Gregg's cavalry (3000) were attached for the operation, and both Grant and Meade accompanied the troopa. General A. P.'Hill encountered this force with three divisions (14,000) and Hampton's cavalry (5500), and he contrived to hold two corpe with one division and attack Hancock (II.) with his main body. The Federals were stopped when 6 m . from the railway, and Hancock lost 1500 men at Hatcher's Run on the 27th of October.

General Lee meanwhile had been called to Chaffin's Bluff, where 3 arain Butler was demonstrating with the Army of the James (X. and XVIII.) on the approaches to Richmond. But General Longstreet signalixed his return to duty with the Army of Northern Virginia by driving Butler off with a loss of over 1000 men (action of Fair Oaks, Oct. 27). General Warter ia December contrived to evade A. P. Hill and destroy the Weldon railroad at a point on the Meherria river 40 m . from Petersburg.

There seemed now little to tic Lee to the lines he had so painfully comstrueted, for his army was without coffee, tea or sugar and though of loreign mear they had 31 million rutions and of bread 24 million rations in reserve, the troops lived ehiefly on corn-bread. A. P. Hill on the right held oa from Hatcher's Run to Fort Gregg. whence Gordon and Anderson prolonged to the left as lar as the Appomattox River, and Longstreet continued the line northwards along the Bermuda front acrose the James as far at White Oak Swamp (37 m . is ally. The winter was very severes, and the continual
trench-mork and outpost duty overtaned the patriotion of Lee's' 50.000 infantry and etlmulated desertion. Supplies vere beaght in by wagons, as the rolling stock on the railways was worn and on the sth of February 1865 General Creag moved out to the Boydton Plank road to intercept the Confederate convoys. He was supported by Warren, while Humphreys'm (II.) corps connected the detachment with the left of the Federal entrenchments. Gregg failed to locate the wagons, and General Lee, heariay of the expedition, sent out A. P. Hill and Gordon, who drove him back with a loss of 1500 men. Sheridan, after driving Early from the Valley in October, dostroyed the milways about Staunton, Charlottesvilk, Condonsville and Lynchburg, and even rendered the Janes Canal useless as a line of supply.

Grant recalled Sheridan to the main army in March, and at the end of the month prepared for a turning movement westward with the object of drawing Lee out of his lines. General Lee had anticipated such an attempt, and had resolved to abandon his lines and unite with Johnston in North Carolina. but the roads were pot

 to gain time that he now ventured upos a boid ofitative etrolsteanight attack upon astrand point in the Federal right called Fort Stedman-ahe tucgets of which might caume Gramt to call in the detachments on his left and so facilitate the proposed movement of the Confederates towards Danville. Gememal Gordon was eelected to conduct the operation and his corpa wan strongly reinforcod for the occarion. The appooing lipes eant of Peternburg were ony rgo yds. and the sentries of each ide 50 yds, apart. Cordon's men dashed acront the intervening space at 4.30 a . m. on the asth March, surprised the gerrison and occupied Fort Stedman, but when daylight brolse and the Federal guns could be brought to bear the fort was found to be untenabie. Parlet's corps (X.) recaptured the work at a cost of 1000 men, and Gordon fell back, leaving mearly 2000 men in the hands af the Federals. The encounter would have proved a more desperatio oue if minformentents on both ridea had arrived in time, but Gordon had cut the telegraph which connected Fort Stedman with Grant's headquarters at City Point, end the Confederate train wervice hroke down and. dalayed the arrival from Bichmond of reinforcement for Gordon. Meanwhile, 6 m. wentvard, Humphreys' corps (II.) attacked A. P. Hill's defences and gained some local success, seizing the Confederate picket line between the Weldan railroad and the Boydton Plank road, which was at once occupied and strengthened by the Federals. The Federals
had resolved to attempt. Grant meanwhile had ordered Wamen to tupport Sheridan in an metack on Pickett at daybreak. Sheridan advanced oa the Ist of April and at 3 p.m. iesued hit ordere for attack, expltining vertally e diagram be had prepared for the uee of divisional commanders. Piclrett held a front of a m. with a division of cavalry an either flank and Roseer's cevalry guarding the bagrage behind Hatcher's Rum, and when attacked at 4 pom. he was with Rooter it m. is tear. Before Pickett was made aware of a hattle being in progreas his left was dastroyed. General Lee seems to have mede no arrangements to support Pickett in this direction. Picketf's right was defended by W. H. F. Lee ageinst the attacls of Custer's cavalry division. The potition was Grally carried by Sheridas's cavalry under Devin dismounting and storming the eatrenchments frontally, taking three guns and 100 prisoners Warren't corpa claimed to have captured a battery and 3244 prisoners. Yet Sheridan wan diaktisfied with Warren's conduct of the battle and deprived bim of his command. Pickett's moused brigades were rallied at the South Side railroed and incorported with General Anderson's command. But the Confederates. had lost White Oate road, and unlese General Lee was capahle of a.vigorous couateratrolee on his extreme tight it was evident he must also lone the South Side railsoad. Grant, Tearing ouch an enterprise, at ance reinforced Sherldan and ordered Humphrey' corps (II.) to attack in his front if necoseary to prevent Lee moving troops

Lost 2000 men and the Confederates perhaps twice as many on the 25th of March.

At this time Sherman visited Grant at City Point and proposed to move at the and of ten daye on Burkesvilla Junction and so cut off Lee from Danville and Lynchburg; it was while Sherman was preparing for this operation that Grant finished the campaign, Secure behind Lis formidable entrenchments, Grant had no fear for his bate on the Jamee river. alad trangferred large bodiee of troops to his left without Lee's knowledge. Sheridan was instructed on the 2gth of March to gain the enemy's right and rear, moving by Dinwiddic Court-Houseand across Hatcher's Run. But the Confederates were on the alert; A. P. Hill extended his right, and Fitzhugh Lee's cavalry was brought to Sutherland Station. Sheridan had already encountered the cavalry divisions of W.H.F. Lee and Rosser on the south side of Stony Creek. Warren's corps, moving up the Quaker road, met a force under R. H. Anderson and drove it back to its works on White Oak road. Sheridan got into a flat couatry of dense forest, tangled nodergrowth. streams and swampa, and the soil of clay and sand was impassable for wagons and funs until he had corduroyed the route. On the 29t hol March General Lee perceived that the object of Grant was to seize the routes south of the Appomattox river, by which a movement south-west could be made to unite with Johnston's army, and he endeavoured to cover these roads, including the South Side raifwray, without losing his hold upon his works about Richmond and Petersburg, but in such a contest it was evident that numbers must prevail.

Sheridnn's cavalry had reached Five Forks on the White Oak road on the 31 st of March, and on his right Humphreys and Warren (1I. and V.) heid the Confedcrates to their works aions Hatcher's Run astride the Boydton Plank road; yet General Lee was able to concentrate his three cavalry divislons, and supported them by Pickett's five infantry brigades. Sheridan was attacked and driven gouth as far as Dinwiddie Court-Houme; but Humphreys and Warren held their ground (action of White Oak Ridge) at a cost of 2000 men Pickett and the cavalry fell back to Five Forks during the night and hastily entrenched, for he had been ordered by General Lee to defend this positian: since the Boydton Plank road could no longer be held. the postession of White Qak road and the South Side railway bocame necemary for the Bank movement which Lee
westward, but Lee made no effort, and so Sheridan was free ta operate farther in the direction of the enemy's right and rear, while Humphreys held the enemy in his front. Sheridan remained inactive for a few daya, and Lee hoped still to gain time for the roads to dry before evacuating his line and ramoving his atores and emmunition by wagons towards Lynchburg.

But a crigis was approaching. Sheridan's success at Five Forios induced Grant to deliver a general atsault on the and of April. The Confederate lines were bombarded all night, and on the and of April with Wright's corps (VI.), Grant attacked the weakest part of Lee's line and broke through, losing 1100 men in fifteen minutes. A. P. Hill was killed and his corps broke and was cut off from Petersburg. At the same time Parke's corps (IX.), on the right of the VI., attacked the eastern front near Fort Stedman but was repulsed by Goneral Gordon; then Humphreys' corpe (II.) on the left attacked a Confederate division under General Cook and forced it to retreat to tbe South Side railroad, where at Sutherland Station a final attack dispersed it. Wright, supported by General Ord (commanding the army of the James), afterwards won the strong redoubts called Fort Whit worth and Fort Gregg and thus in a day the Comederate right had been destroyed from Five Forks to a point some two or three miles west of the Weldon railroad; 10 m . of works had been abandoned, and if Grant had been able to press his advantage at once the campaign must have ended. But Grant was not aware of the enemy's plight, and so sesolved to wait until the morrow before completing his victory.

Meanwhle Lee perceived that the hour had come at last wheu Richmond must fall, and at $3 \mathrm{p} . \mathrm{m}$. he had issued orders for the march of the remaine of his army to Lynchbury via Amelia Court-House, a march which evidently must partake of the character of a forlora hope, hastily planned, ill prepared and undertaken hy troops whom the disasters and hardships of the past aix months had weakened physically and morally. Yet if General Lee had negotiated a peace on the and of April military history would have lost one of the finest examples of the stratetic pursuit. Leeis. proposed movement involved the transfer of the army and its baggage 100 祭. on bad roads across the front of at enemy, and nothing but mischance could prevent the Federals intercepting Lee's columns by a shorter coute and aeixipg the South Sife railroad. on which anpplien
were to be forwarded from Lyachburg to meet the retreating army at Appomattox Station, Yamplip's Station or Farmville Station. The Appomattox River must be croved two or three times at its bends. Various creeks and swrapa must be bridged, and the bridges destroyed after croasing. The wagons must move on separate roads to as to be covered by the columns during marehes and combats and the infantry were to follow the artillery on the ronds Longstreet, Gordon and Mahone's division from Richmond all crossed the Appomattox at Goode's Bridge. Ewell from Richmond crossed the Appomattox by the Danville reilroad bridge sorth of Goode's Bridge. Anderson commanded the flank, guard which moved south of the Appomattox with Fitzhugh Lee's cavalry. Lee gained a day's start by moving at 8 p.m. for Grant was making preparationa to atrack the entrenchments next day (April 3), but the start was lont in waiting for President Davis and tha government to escape from Richmond. Sheridan's cavalry pot in touch with Lee's flank-guard early on the 3rd of April near Namosine Creek, and ot nightall the Fedcral advance-quard was at Deep Crefk. On the 4th of April Sheridan reached the Danville railroad at Jetersville, and on the 3 th of April, when Lee had halted at Amelia Court.House on the railroad to get supplies, the Federala had threa corpes (II.. V., VI.) in aupport of Sheridan B m. nearer than Lee to Seilor's Creek, the point where he must again ctome the Appomattox.

Interception was now a fak accempli, though ncither side suspected it. Lee was unaware of the cnemys proximity, and Grant believed that Lee would remain at Amclia Court-House, but Lee moved west. croming Flat Creek at zunsct on the sth of April, to the Lynchburg railroad (Longstreet, marching all night, reached Rice's Station at sunrise on the bth of April). while the Federals moved northwards on the same day to alleck Lee at Amelia Court-House, and on discovering Lee's evasion the throe Federal corps effected a wheel to the left and adyanced on Deatonsville after bridging Flat Creek Meanwhile the Pederal ca valry under H. E. Davics had located a convoy at Painesville, dispersed lis escort (Gary's cavalry) and burned the wagons, but had in turn been attacked by Fitahugh Lec's cavalry at Amelia Springs and driven back on the main body at Flat Creek. Fitzhugh Lee bad shen marched to join Longstrect at Rice's Station. The rearguard of Lex's army was Cordon's command, which was at Amelia Springs after Ewell's command had passed through at 8 a.m on the 6th of April. Lee's army stretched out for 15 m ., a and when its advance-guard was at Rico's Station its rearguard was still at Amelia Court-House. Rice's Station is 62 m . from Lymeh. burg. Here Longstreet waited all day for Anderson, Ewell and Gordon to clove up, aad then at night he moved 8 m. to Farmville Station (68 m . south-west of Richmond), where 80,000 rations had been railed from Lynchburg; then Longutreet crosaed the Appomattox. and on the 7 th of April moved forward towards Lynchbures. covered by Fitzhugh Lee's cavalry. Meanwhile the remainder of Lee's army had been practicnlly dessroyed within a few miles of the point where Longstreet had halted. Sheridan's cavalry and two corpe (II., VI.) had caught the commands of Anderson, Ewell and Gordon, entangled with the traias of the army attempting the passage of Sailor's Creek; and General Ord would even have attacked Longatreet (whom he had located late at night) had his march been delayed.
Complete disorganization and demoralization weem to have taken bold of the Confederates on this fatal day, and Ceneral Lee was once more in eclipre. The Federal cavalry headed the column the infantry attacked It; and Ewell became the victim of tactical envelopment after Anderson had been defeated and Gordon had failed to save the trains of the army. Sorrender or massacre being the alternatives, Ewell surfendered, and here in fact the career of the army of Northern Virginia ended, as Grant plainly saw. for at $5.30 \mathrm{p} . \mathrm{m}$. he addressed a demand to Lee for his capituiation. But Lee clung to his diminished forces for another 48 hours, Longstreet in crossing at Farmville had burnt the bridges and thus delayed Ord in pursuit: but Gordon and Mahone, who had crossed tt High Bridge (the railroad bridge), failed to check Humphreys' corps (II.), and so were compelled to take up a position of defence on the porth bank until darkness enabled them to slip away. Gencral Lee was with this remnant of the army. Meanwhile Sheridan with the cavalry and two corps (V., XXIV.) had hastened along the South Side railroad, seizing the supplies waiting for Lee at Pamplin's Station, and then moving on another is m . to Appormattox Station. At nightrall he found that he was astride tbe enemy's line of operation. which was also his line of supply, and mo General Lee would be compelled to give battle or capitulate on the morrow.
General Lee, quitting Farmvilie heights on the night of the 7tb of April changed the order of march during the next day, so that Gordont (8000) was in tbe van and Longatreet ($\mathbf{I} 5,000$) fumished the rearguard. Emell's corpe was now represented by 300 effectives. The cavalry still numbered some 1600 sabrea Leect column wis pursued along the Lyachbury Road by two Federal Corps (II.. VI.). Which marched 26 m . in 88 hours, and at midnight halted within 3 m. of Longstreet, who had entrenched near Appomattox CourtHouse, facing eart and covering the road on which Gordon's corps and the cavalry was to press forward to Lynchburg at daylight. But Gordon oo the morming of the geh of April found Sheridan's cavalry in his front, and in accondance with plans made overnight he commenced an attack, driving the Federals beck antil be encountered
at 10 a.m. two corpe of lefantry (V., XXIV.) andar Ceacral Ont who had marched 29 m . in order to mupport Sberidan at the crinit; and when at the mane moment Longyercet was threatened by Humphryy and Wright (II., VI.) the ditustion had arisex which Ceneral Lee coasidered world jumairy surrender, an eweat which had been anticipated on both aides an the reault of the fighring about Farmuille on the 6th and 7th of April.

The cloaing operations from the 29th of March to the gth of April were all in favour of the Federalh, but, nevertheleme the hirtorina counts their lowes during this period as nearly 10,000 in the five corps and cavalry which constituted General Grant's feld anmy. On the gth of Xprih, at the Appomattox Court-Houte, the two Leaders exchanged formal documenta by which 2863 officers and 25,494 enlisted men were paroled, all that remained in the fekd of sorne 55,000 Confederatea whe were drawing raticas on the 30th of February an the army of Northern Virginin.
(G. W. R.)

PETKRSMIELD, a market town in the Petersfield paria. mentery division of Hampshire, England, 55 m .5 .W. from London by the London South Wentern railway. Pop. of urban district (1901), 3265. The church of St Peter retains some ornate Norman work. The picturesque market-place contains an equentrian stalue of, William III.

Ecclesiestically a chapelry of Buriton, Petemsield (Peterfelde) owes itstorigin as a borough to the charter gramted by Wrlian, earl of Gloucester, in the reign of Henry II. and confirmed hater by his widow, Hawise. Petersfield is not mentioned in Domesday, but it was probably then included in the manor of Mapledurhax It was a mesne borough possessing by its first charter the liberties and customs of Winchester together with a merchant gild. These grants were confirmed by John in 1198 and in 1415 Heary V. in addition freed the burgesses from an tolk No charter of incorporation has been found. Gradually privilages and rights other than those of a mesne borough were usurped by the mayor and burgesies, but were recovered by a suit brought against them by Thomas Hanbury, owner of the borough, in 1GII. A mayor continued to be elected wril 1885. Petersfield was represented in parliament in 1307. No return was then made until $1552-1553$, from which date two members were regularly returned. In $\mathbf{5 8 3}$ the number was reduced to one, and in 1885 the representation was merged in that of the county. Three-day fairs at the feasts of St Peter and St Andrew were granted in $\mathbf{3 2 5 5}$. In 1892 the summer fair then held on the roch of July was abolished. The autump fair now held on the 6th of October is for both business and pleasure. The market, which dates from before 1373, formedy held on Saturday, is now held on alternate Wednesdays. In the roth century Petersfield had important cloth and leather manufactures.

PATER'S PBRGE, Rome Scot, or Rom-rion, a tax of a peany on every hearth, formerly paid annully to the popes; mon represented by a voluntary contribution made by the devoat in Roman Catholic churches. Its date of origin is doubtfal The first written evidence of it is contained in a letter of Canase (ro3n) sent from Rome to the Endlish clergy. At this time it appears to have been levied on all families possessed of land worth thirty pence yearly rental, out of which they paid one penny. Metthew Paris says the tax was instituted by Ofta, king of Mercia (757-796) for the upkeep of the English school and hostel at Roma. Layamon, however, declares that Inm, king of Wessex (688-725), was the originator of the iden. At the Norman Conquest it appears to have fallen into arrears for a time, for William the Conqueror promised the pope in 10 ,t that it should be regularly paid. By a hull of Pope Adrian IV. the tax was extended to Ireland. In 1213, Innocent III. cereplained that the bishops kept 1000 marks of it, only forwardirs 300 to Rome. In 1306 Clement V. exacted a penny from each houschold instead of the f201, 9s at which the tar appears to have been then fixed. The threat of withholding Petcr; pence proved more than once a useful weapon against reci'atrant popes in the hands of English kinga. Thus in 1366 and for some years after it was refused on the ground of the pope's obstinacy in withholding his consent to the statute of praemurire During the rolh century the custom of Peter s pence was introduced into Poland, Prasala and Scandinavin, and in the itth century Gregory VII. attempted to exict it from France and

Spoin. The tax was fainly regularly paid by the English tuntil 1534 , when it was abolished by Henry VIII.

PLiLRWARDEIF (Hung. Peteroarad, Serv. Pelrooaradim), a royal free town and fortress of Hungary in the county of Syrmia, Croatia-Slavonia; situated on a promontory formed by a loop of the Danube, 62 m . N.W. of Belgrade hy rail. Pop. (1900), 5019. It is connected with Neusatz on the opposite bank by a hridge of boats, a railway bridge and a steam ferry. The fortifications conslst of the upper fortress, on a lofty serpentine rock rising abruptly from the plain on three sides, and of the lower fortress at the northern base of the rock. The two fortresses can accommodate a garrison of 10,000 men. In the bower fortress is the town, with a military hospital, and an arsenal containing trophies capturred from the Turks. Peterwiardein, the "Gibraltar of Hungary," is believed to represent the Roman Acwmincum, and received its present name from Peter the Hermit, who here in rog6 marshalled the levies of the first crusade. It was capt ured hy the Turks in 1526 and relained by them for 160 years. In 1716 it witnessed a signal defeat inflicted on the Turks by Prince Eugene. During the revolutionary struggles of 1848-49 the fortress was held by the insurgents for a short time.
FisyHERICK, JOHIN ($1813-1882$), Weish traveller in East Central Africa, was born in Glamorganshire, and adopted the profession of mining engineer. In 18;5 he entered the service of Mehemet Alf, and was employed in examining Upper Egypt, Nubia, the Red Sea coast and Kordolan in an unsuccessful search for conl. In 1848 Petherick left the Egyptlan service and established himself at El Obeid, the capital of Kordofan, as a trader, dealing largely in gum arabic. He was at the same time made British consular agent for the Sudan. In 1853 he removed to Khartum and became an ivory trader. He travelled extensively in the Bahr-el-Ghazal region, then almost unknown, exploring the Jur, Yalo and other affuents of the Ghazal. In 1858 he penetrated to the Niam-Niam country. His additions to the knowledge of natural history were considerable, among his discoveries being the Cobus maria (Mrs Gray's waterbuck) and the Baloeniceps rex (white-headed stork). Petherick retumed to England in 1859 where he made the acquaintance of J. H. Speke, then arranging for his expedition to discover the source of the Nile. While in England Petherick martied, and published an account of his travels. He returned to the Sudan in 1861, accompanied by his wife and with the rank of consul. He was entrusted with a mission by the Royal Geographical Socicty to convey to Gondokoro relief stores for Captains Speke and Grant. Petherick got boats to Gondokoro in 1862, hut Speke and Grant bad not arrived. Having arranged for a native force to proceed south to get in touch with the absentees, a task successfully accomplished, Mr and Mrs Petherick undertook another journey in the Bahr-el-Ghazal, making important collections of plants and fishes. They regained Gondokoro (where one of their boats with stores was already stationed) in February 1863, four days after the arrival of Speke and Grant, who had meantime accepted the hospitality of Mr (afterwards Sir) Samuel Baker. The charge that Petherick falled to meet his engagement to those travellers is unsubstantiated. A further charge that Petherick had countenameed and even taken part in the slave trade was subsequently shown to have no foundation (Petherick in fact had endeavoured to stop the traffic), hut it led Earl Russell, then secretary for foreign affairs, to abolish the Brit ish consulate at Khartum (1864). In 1865 the Pethericks returned to England; and in 1869 published Trovels in Centrat Africa and Explarations of the Western Nile Tribularies, in which book are set out the details of the Speke controversy. Pet herick died in London, on the 15 th of July 1882.
PEIION DE VILLENEUVB, JEROMB (1756-1794), French writer and politician, was the son of a procurcur at Chartres. He became an avocat in 1778 , and at once began to try to make a name in literature. His first printed work was an essay, Sur les moyens de prtsenir l'infonticide, which failed to gain the prize for which it was composed, hut pleased Brissot so much that he printed it in vol: vii. of his Bibliotkegue ghildsoplique
des Iegislatewrs. Petion's next works, Les Lois etoiles, and Esjas sur le marioge, in which he advocated the marriage of priests, confirmed his position as a bold reformer, and when the elections to the States-General took place in $\mathbf{5 7 8 9}$ he was clected a deputy to the Tiers Etat for Chartres. Both in the assembly of the Tiers Etat and in the Constituent Assembly Pétion showed himself a radical leader. He supported Mirabeau on the 23rd of June, attacked the queen on the sth of October, and was elected president on the 4th of December 1790. On the rsth of June 179r he was elected president of the criminal tribunal of Paris. On the 21st of June 1791 he was chosen one of three commissioners appointed to bring back the king from Varennes, and he has left a fatuous account of the journey. After the last meeting of the assembly on the 30 th of September 1791 Robespierre and Petion were made the popular heroes and were crowned by the populace with civic crowns. Petion received a still further prool of the affection of the Parisians for himself on the 16th of November 179r, when he was elected second mayor of Paris in succession to Bailly. In his mayoralty he exhibited clearly his republican tendency and his hatred of the old monarchy, especially on the zoth of June 1792, when he allowed the mob to overrun the Tuileries and insult the royal family. For neglecting to protect the Tuileries he was suspended from his functions by the Directory of the department of the Seine, hut the leaders of the legislative Apsembly felt that Petion's cause was theirs, and rescinded the suspension on the 13th of July. On the 3rd of August, at the head of the municipality of Paris, Pétion demanded the dethronement of the kingHe was elected to the Convention for Eure-et-Loir and became its first president. L. P. Manuel had the folly to propose that the president of the Assembly should have the same authority. as the president of the United States; his proposition was at once rejected, hut Pétion got the nickname of "Roi Pétion," which contributed to his fall. His jealousy of Robespierre allied him to the Girondin party, with which he voted for the king's death and for the appeal to the people. He was elected in March 1793 to the first Committee of Public Safety; and he attacked Robespierre, who had accused him of having known and having-kept secret Dumouriez's project of treason. His popularity however had waned, and his name was among those of the twenty-two Girondin deputies proscribed on the and of June. Pétion was one of those who escaped to Caen and raised the standard of provincial insurrection against the Convention; and, when the Noman rising failed, he fled with M. F. Guadet, F. A. Buzot, C. J. M. Barbaroux, J. B. Salle and Louvet de Couvral to the Gironde, where they were sheltered hy a wigmaker of Saint Emilion. At last, a month before Robespierre's fall in June 1794, the escaped deputies felt themselves no longer safe, and deserted their asylum; Louvet found his way to Paris, Salle and Guadet to Bordeaux, where they were soon taken; Barbaroux committed suicide; and the bodies of Petion and Buzot, who also killed themselves, were found in a field, halfeaten hy wolves.
See Memoires indits de Petion at memoires de Buzot et de Bar: baroux, accompagnés de notes indedites de Buzod et de mownoreux docu: ments inddits sur Barbaroux. Buzon, Brissol. Elc., protedes d'yma introduclion par C. A. Dauhan (Paria, 1866); CEsures de Pétiow (3 vols, 1792); F. A. Aulard, Les Orateurs de la Constilmante (Paris. 1882).

PETIS DE LA CROIX, FRANCOIS ($1653-1713$), French Orientalist, was born in Paris in 1653 . He was son of the Arahic interpreter of the French court, and inherited this office at his father's death in 1695, afterwards transmitting it to his own son, Alexandre Louis Marie, who also distinguished himself in Oriental studies. At an early age he was sent by Coibert to the East; during the ten years he spent in Syria, Persia and Turkey he mastered Arabic, Persian and Turkish, and also collected rich materials for future writings. He served a short time as secretary to the French ambassador in Morocco, and accompanied es interpreter the French forces sent against Aggiers, contributing to the satizfactory settlement of the treaty of peace, which was drawn up by himself in Turkish and ratified in 1684. He conducted the negotiations with Tunis and Tripoli
he 1685, and those with Monoceo in 1687; and the zeal, lact and lioguiatic knowledge be manifested in these and other transuctions with Eastern courts were at last rewarded in 8692 by his appointment to the Arabic chair in the Collige Royal de France, which he filled until his death in 1713.
He published Combes tures (Paria, 1707), and Les Mille at ma jours (s vols., Paris, 1710-1712); an Armenian Dictionary and an Accouns of Eelnopla. But the lasting monument of his literary fame is his ewcellent French vertion of Sharaf-uddin 'Ali Yazdi's Zafdrmdma or History of 71 mirir (completed 828 A.M. ; A.D. 1425), which was given to the world nine years after his death (4 vols. Paris, 1722; Eng. trans. by J. Darby, London 1723). This work, one of the rare specimens of a lairy critical history Persia can boast of, was compiled under the auspices of Mirain brahim Sultsa, the son of Shati Rukh and grandson of she great Timuir. The only error committed by Petis de la Croix in his otherwise very correct translation is that he erroneously ascribed the important share which Ibrahim Sultion had in the Zafarmama to Timar himself.

PETMT, SIR DIRBHAT MANEGKII, Bait. (1823-1901), Parsee philanthropist, was bom on the 3oth of June 1823. As broker to European firms he amassed a large fortume during the period of speculation in Bombay at the time of the American Civil War. In 1886 he became a member of the governorgeneral's legislative council. He devoted his wealth to philanthropic objects, among the public and private charities which he endowed being the Towers of Silence and fire temples of the Parsees, a hospital for animals, a college for women, and the Petli hospital. He was knighted in 1887, created a baronet in 1890, and died in February 1901.

PETIT DB JULLEVILLE, LOURS (1841-1900), Freneb scholar, was born in Paris on the 18th of Juiy 1841. Educated at the Ecole Normale Suptricure, and at the French school at Athens, he received his doctorate in literature in $\mathbf{1 8 6 8}$. After holding various posts as a teacher he became professor of French medieval literature and of the history of the French language in the university of Paris in 1886. He died on the $\mathbf{2 8 4}$ of August 1900.
fis most important worka are: Histovire du blidere en Framce, inctuding Les 1 Yastines (2 vols, 1880); Les Comodicens en Framce am moyen Age (1885); La Comedic et les, maurs en France ase mayem Cge (1886); Reperioire du thedert comique en France an moyen Age (1886); and Le Thbitre en Pratice histoire de is timerahre drawotique depnis ses oricines juspe à nos jowrs (1889). Petit de Jullevitie was also the peneral editor of the Histoire do la laugse et de la bilterature francaise (8 vols.n $1896-1900$), to which be fimself contributed some valuable chapters.

PEITIIOX (Lat. for "sceking" or "praying", a term meaning generally a prayerful request, and in its more important constitutional aspect an application for redress by a person aggrieved to an authority capable of relieving bim. It may be made in the United Kingdom to the Crown or its officers, or to cither house of parliament, or in certain cases to courts of justice.

Petitions to the Crown.-The right of petitioning the Crown was recognized indirectly as early as Magna Carta in the famous clause, Nulli vandemus, nulli negobimus auf differemus, recium od justitiam (25 Edw. I. C. 29), and directly at various periods later, e.s. in the articles of the Commons assented to by Henry IV., by which the king was to assign two days in the week lor petitions (Rod. Porl. 8 Hen. IV., p. 585). The case of the seven bishops in 1688 confirmed the right, and finally the Bill of Rights in 1689 declered "that it is the right of the subjects to petition the king, and all commitments and prosecutions for such petitioning are illegal." Petitions to the Crown appear to have been at first for the redress of private and local grievances, or for remedies which the courts of law could not grant (May, Parl. Pr., irth ed., 522). As equity grew into a system, petitions of this kind not seeking legislative remedies tended to become superseded by bills in chancery. Statutes were originally drawa up by the judges at the close of the session of parliament from the petitions of the Commons and the answers of the Crown. Under this system of drafting it was lound that the tenor of the petition and answer were not always stated correctly. To obviate this inconvenience demands for legislation came in the reign of Henry V1. to be drawn up in the form of bills which the Crown could accept or reject, but could not alter (see Auson, Low and Custom of tho

Constitulion, 3 nd. ed., vol. I. P. 24s). In the atme reism the words " by authority of parliament " were added to the mords of enactment, and from the time of Henry VIL public legishation has been by bill and not by petition. A relic of the old form of statute founded upon petition still remains however in the preamble of Appropriation Acts and other statutes creating a charge upon the public revenue. It nuDs thus: "We, your majesty's most dutiful and loyal subjects, the Commons of the United Kingdom . . . do most bumbly beseech your majesty that it may be enacted; and be it eascted," \&ce., from this point following tbe enacting words common to all statutes. The Crown may refer pelitions presented to it to be adjudicated upon by a delegated authority. This course is pursued in the casc of claims to peerages and offices of bonour, which are referred to the House of Lords, and by that house to its comsnittee for privileges, and in the case of petitions to the Crown in council, wbich are usually referred to the judicial committee. The Crown may delegate the power of receiving pelitions in the first instance.

Petilions to Parliament.-Petitions to either house of the legishatuce seem to have been later in origin than petitions to the Crown. They are not seferred to in the Bill of Rights, but the right of petition is a convention of the constitution, Petitions to the Lords or the whole parlizment can be traced back to Henry III. No petition to the Commons has been lound earlier than Richard II.; but from the time of Henry IV. petitions to the Commons have been freely made. The political importance of petitioning datcs from about the reign of Charles 1 . The development of tbe practice of petitioning had proceeded so far in the reign of Charles II. as to lead to the passing in 8662 of an act (I3 Car. II. c. 5) against "tumultuous petitioning." which is still on the statule book. It provides that no petition or address shall be presented to the king or either house of parliament by more than ten persons; nor shall any one procure above twenty persons to consent or set their hands to any potition for alteration of matters established by law in church or state, unless with the previous order of three justices of the county, or the major part of the grand jury. And in 1817 (57 Geo. III. c. 19, s. 23) metings within a mile from Westminster Hall for the purpose of considering a petition to hoth bouses or either house of parlia. ment while either house is sitting were declared to be unlawful assemblies. Up to 1688 petitions to either house usually dealt only with some specific grievance. From that time dates the present practice of petitioning with regard to general measures of public policy. Petitions to the Houses of Lords or Commons must be framed in the form prescribed by the standing orders, must be properly superscribed, and must conclude with a prayer (May, Parl. Pr., 1 ith ed., 524, 525). They may be sent free by post to members of either house if they fulfil certain conditions as to weight, dec, (loc. cif. p. 531).

Petitions to the Commons must be in writiog, must contain nane but genuine signaturcs, and must be free from disrespectlul language or imputations upon any tribunal or constituted authority. They must be prescnted by a member of the house, except petitions to the House of Commons Irom the corporation of London, which may be preserted at ihe bar by the sherififs, and from the comporation of Dublin, which may be presented by the lord mayor. There is no means of compelijing a member to presertt a petition. The rules at to petitions to the House of Lords are similar. Tine ford wo presents \& petition is required to read it to see whether in form and contents it is fit for presentation. In the Lords receivers and triers of petitions from Great Britain and Ireland and Irom Gascony and the lands and countries beyond the sea were appoined unth 1886, though their functions had long been obsolete. Applications for leave so tring before cither botene bille for private of local and personal matters must under the stioding ordera of both bouses be made by petition; and the some rule oblains as 10 applications for leave to be heard in opposition to such bills.
See Clifford, Hitlopy of Private Boll Legislation (1887); May, Parl. Pr., (1sth ed.), c. xivy.

Petitions to Courts of Justice.-Strictly speaking, these are an indirect mode of petitioning the Crown, for in the theory of English law the Crown is the fountain of justice. But it is more convenient to treat them separately, as they now form a part of the practice of the courts. Appeals to the House of Londs and the privy council are proseculed by petition of appesi. _The
ariginal jurisdiction of the privy council to deal with petitions is confined to proceedings under certain statutes, such as the Endowed Schools Acts, the Public Schools Acts, the Universities Acts and the Patents Acts. In most cases the petitions are referred to the judicial committee of the council. Petitions may be addressed to the lord chancellor in a few instances, es. for the removal of cortoners or county court judges. The Howse of Lords at one time claimed original jurisdiction in civil and criminal matters. As to civil matters the claim is abandoned; as to criminal matten it is now limited to impeachment for crime by the Commons on the trial for treasom or felony of persons having privilege of peerage.
The mont important use of petitions in England is in the Figh Court of Justice. In the chancery division petitions are presented cither as interlocutory proceedings in the course of an action, or as original proceedings where no fitigation existo-as being a more speedy forma of remedy than an action. The cases in which a petition is admissible and the procedure therein, are in the main regulated by orders 52 and 55 of the rules of the supretme court. Evidence in support of petitions is usually by affidavit. Petitions in the course of an action are presented to the court in which the action is brought. Examples of original petitions are those under the Lands Clauses Acts, the Trustee Acts and the Compmnies Acta. For many proccedings umder thene acte a simpler and cheaper form of proceeding by wamons has been rubatituted for that by petition. The matters above-mentioned are usually dealt with by the chancery division as successor of the court of chancery. Petitions are also in use in other courts having equitable juristiction. e.g. the chancery courts of the conmtics palatine of Lancaster and Durham and the county courts as to cascs lalling within if 67 of the County Courts Act 1888 , and as to cases within county court juriediction under the Settled Land Acts or the Guardianship of Infants Act 1886 (County Court Rules, 0 . 38). In 2 few cascs petitions may be brought by way of appeal, e.f. Under the Charitable Trust: Act 1860 . In the king's berch division the only use of petitions appeare to be to initiate proceedings in bankruptry. Leave to pre in formA pouperis used to be given on petition but is now usually dealt with summarily. In the probate, \&ec. division proceedings in matrimonial causes, \&c., are begun by petition, but the course of the proceedinge closely resembles those of an ordinary action.

Secolend-In Scocland petitions in the Court of Session are cither original or in a pending action. Original petitions are presented to one of the divisions of the inner house, unless they relate to matters mentioned in 20 a 21 Vict. c. 56 , 5.4, when they are brought before the junior lord ordinary, or salless, by apecial statutory provision, they mey be brought before any lord ordinary, as in the case of pecitions under the "Conjugal Rights (Scothand) Amendment Act 1861." or the Trusts (Scotland) Act 1867. A petition and complaimf is a process of a quasi-criminal nature by which certain matters of mummary and exraordinary jurisdiction are brought under the notice of the Count of Semion. It lics against magistrates and officers of the law for breach of duty against partios guitty of contempt of court. \&c. The concurrence of the flord advocate is necessary to a petition and complaint (see Macicay, Court of Session Practice, ii. 439).
Irelamd-The linw of Ireland as to peritions is in aubstance the anme as that of England with certain differences of detail as to the cases in which petitions may be made to courts of justice.

United Slates.- In the United States before the Civil War questions arose as to the right of petitioning Congrew, particularly with reference to petitions for the restriction of elavery which at that tinate was contended to be a matter of state and not of federal concera (see Cooley, Constimuional Limitations, 6th ed., 1890, 426). The right of petitioning the Unted States government is now secured by the first amendment to the United States constitution (ratified ia 1789-1791), which providee that "Cousrese shall make no hw abridgipg - . the right of the people peaceably to ascermble and to petition the government for a redress of grievances." in the view of the Supreme Court this amendment "assumes the existence of the right of the people to aspemble for hawfulpurpores and protects it stainat encroachmeat by Cosgrems. The right was not croated by the aumendment: ncifher was its continuance guranteed except 23 againat congressional interference. For their protection in its enjoyment. therefore, the people must look to the states. The power for that purpose was originally placed there, and has never been aurrendered. The right of the people perceably to ameraille for the purpose of petitioning Congress for a redress of grievances, or for anything else connecied with the powers or duties of the national government is an attribute of national citizenchip. and as wuch under the protection of and guaranteed by the Unired Seates. The very idea of a government republican in form implics a reght on the part of its cinizeas to meet pancenbly for congultation in respect to public affairs and so petition for a redres of grievances" (U.S. v. Cruidihank, 1875: 92 U.S. 542، 552).
X Bill of Riphts is incorporated in the constitutions of many wates of the Union, and mande part of the mupreme laviof
the states (nee Howgh, American Constistitions, it. 571). Petitiona can be presented to the federal or state cours of justice under much the same circumstances as in England. "It is a general rule it such cases that an affidavit should be made that the facts therein contained are true as far as known to the petihioner, and that those facts which he states as knowing from oabers he believes to be true ${ }^{\text {" }}$ (Bonvier, Law Dich).

British Passessions.-There is a right of petition to the king for the review of decisions (in matters criminal or civil) of courts of juatice in the Channel Istands or Isec of Man, and in all other perta of the emples oneaide the British istands and of Britimp courts in forcign countrics. This right is cut down by imperial on colonial logination in the case of Canada and Australia, see Tarring, Lasp Redating to Colonies (3nd ed., 1906) c. v.

The term Patition of Right, in English law, is used in two senses. (1) It denotes the statute of 1625 (3 Car. I. c. i), a parliamentary declaration of the liberties of the people. (2) It also and more usually is employed to describe a mode of prosecuting a claim by a subject against the Crown, said to owe its origin to Edward I Pecition of right in this sense lies (a) to obtain restitution of real or personal property of the subject which has found its way into the hands of the Crown, or compensation if restitution cannot be made; (b) to recover damages for breach of a contract made on behalf of the Crown, whether the breach is due to the acts or the omissions of servants of the Crown. Where the Crown is in possession of property of the suppliant, and the title of the Crown appears by record, as by inquest of office, the remedy is somewhat differemt and is called monstrans de droil. Petition of right does not lie in respect of engagements in the naval, military or civi service of the Crown, which are as a general rule made "during pleasure," nor for breach of public duly, e.g. failure to perform treaty obligations, nor for trespass or negligence or other torts by Crown servants. Where such acts are wrongful the remedy is by action against the official as an individual and not in his official capacity (Ratcigh v. Goschen, 1898, L.R. 1 ch. 73).
The procedure on a petition of rieht is either at common $\mathbf{q w}$ or by statute At comman law the petition weat through its earliest stages in the chancery. It suggests such a right as controverts the title of the Crown, and the Crown endorses upon the petition Soit droit fail al partie Thereupon a commistion is imened to inquire into the trut hof the suggention. Atter the return to the comanission, the attorney-gencral pleads or demurs, and the merits are then dotermined as in actions between subject and subject. If the right be determined against the Crown, judgment of amooeas mames is given in lavour of the suppliant. The Petition of Right Act 1860 (23 \& 24 Vict. c. 34 . extended to Ireland in 1873, 36 \& 37 Vict. c.69). preserves to the muppliant his right to proceed at common law, but gives an alternative remedy. The procedure is regulated by the act of 1860 , and as to England also by rules made under that act on the 1st of February 186z. The petition is left with the secretary of state for the bome department for the conalderation of hia majexty. who if be thinks fit grants his fiat that right be dose The fiat \% mealed in the bome office and issued to the suppliant who files it in the central office of the High Court of Justice, and a scaled copy is served upon the solicitor to the treasury, with a demand for a piea or antswer on behalf of the Cromn. The anbeoquent proceedings inchuding thoee as to disclosing relevant documenta are amimilated as far as possible to those in an ordinary action. A judgment in favour of the suppliant is equivalent to a judgment of amoveas manus ouster k main. Costs are payable to and by the Crown. A petition of right is usually tried in the chancery or king's bench divisions; but where the subject-matter of the petition arises out of the exercise of belligerent righty on hehalf of the Crown. or would be cognizable in a prize court it the matter were in dispute bet ween private persons, the muppliant may at his option intituke his petition in the admiralsy divispon, and the lord chancellor mayy direet the prosecution in that division of petirtions of right under the act of 1860 even when they are not 0 intituled (27 \& 28 Vict. c. 25, 8. 52).
The law as to petition of right applies to Ireiand but not to Scorland, and a right to prenertt such a petition appears to exist in colonites whose lave is based on the common haw of Engiand. But in many colonies legindation has been paesed with reapect to suite against povernment which makes it unnecesany to resort to a petition of right.

PETITIO PRNCIPIL or BEGCNG THE QuEstion (Gr. to bo

 this fallacy belongs to the language of disputation, when the questioner mecks (pedi) ta get him advcrsary to admit the very maller in question. Hence the word friacipixm gives a wrong imprescion, for the fallacy consists not in secking for the
admisslon of a princigle which will confute the particular pro-position-a perfectly legitimate form of refulation-but in luring the adversary into confessing the contradictory. In the ordinary use, however, "begging the question "consists in assuming in the premises the conclusion which it is desired to prove.
PETITOT, JEAN (1608-1691), French-Swiss enamel painter, was born at Geneva, a member of a Burgundian family which had fled from France on account of religious difliculties. His father, Faulle, was a wood carver; his mother's name was Elicnette Royaume. Jean was the fourth son, and was apprenticed to a jeweller goldsmith named Pierre Bordier, with whom he struck up a close friendship. The two friends, dissatisfied with the progress they made in Geneva, went into France, and after working for a while with Toutin came to England with letters of introduction to Turquet de Mayern, physician to Charles 1. who presented them to the king, for whom they made a St George for the badge of the order and carried out many commissions for portraits; a mongst others preparing two large ones representing Rachel de Ruvigny, countess of Southampton, now at Chatsworth, and Mary Vilifers, duchess of Richmond and Lennox, dated 1643, at one time in the possession of the Crown and now in the Pierpont Morgan collection. On the cxeculion of the king, Petitot left England for Paris with the royal houschold, Bordier remaining in England and carrying out certain important commissions for Cromwell and the parliament. On reaching Paris, Petitot entered into partnership with a goldsmith, Jaeques Bardier, a cousin of Pierre, and it seems probable from recent research in contemporary documents that the enamel porraits attributed to Petitot were really the work of the two partners collaborating, the actual drawing being the work af Prtitot, while for the enamel process Bordier was mainly responsible. The two painters were given apartments in the Louvre, received aumerous commissions from Louis XIV., and painted portraits of almost every person of importance in his brilliant court. The friendship between the two lasted for thirt y-five years, and was only put an end to by Bardicr's death. The enameliers rendered special political services in France for the republic of Geneva, and were practicaliy regarded as the official representatives of the republic, receiving warm thanks from the Syndics for their diplamatic work. On the revocation of the Edict of Nantes, 1685, pressure was brought 10 bear upon Petitot that he should change his religion. The king protected himr as ling as possible, and when he was arrested, with his niece, Anne Bordier, sent Bossuet, bishop of Meaux, to convince the old man of the error of his ways. Eventually, in poor health and great despair, Petitot placed his signature to an act of abjuration, and Louis XIV, unwiling to acknowledge the true reason for the imprisonment of Petitot and for his liberation, informed one of his sons, who came to thank him far the pardon given to his fathet, that he was willing to fall in for once with "the whim of an old man who desired to be buried with his anceslors." In 1087 therefore Petitot left Paris to return to Geneva, and, after a long and tedious inquiry, was absolved by the consistory of the church of Geneva from the crime of which they considered he had been guilty. and received hack to the Huguenot communion in the church af St Gervais. In Geneva he received a very important commission from John Sobieski, king of Poland, who required port raits of himself and bis queen. This was foliowed by numberfess other commissions which the painter carried out. He died of paralysis on the 3rd of April 1691, while in the very act of painting on the enamel a portrait of his faithful wife.

Petitot married in 1651 Marguerite Cuper, and Jacques Bordier married in the same year her younger sister Anne Madelcine. He had seventeen children, and for their benefit wrote out a little octavo volume containing some genealogical information, two delightful portraits, one of himself and one of his wife, and many pages occupied with prayers, meditations and religious advice. He also prepared a second manuscript valume of prayers and meditations for the nse of his family, and from these two books and the records of the Huguenot societies of France and England information has been obtained respecting the painter and his family.

Of the works of fectit ot the most important collection is in the Jencs Bequest at the Victorin and Abert' Museum: There are many in the Louvre, sisteen at Chantilly, eventecn at Windsor, and others in the collections of Earl Bcauchamp, the dule of Rut$\mathbf{1}$ and, the duke of Richnond, the carl of Dartrey, Mr Alfred de Ruthischild and the hite Baroness Burdett-Coutts. Amongrt Lurd Dartrey's examplo ane portraits of Petitot and of his son, and two of the wife of Jen Petiot the younger. A sccond portrait of the artist belongs to the queen of Holland, and another is in the collection of the Late Mir Strochlin of Geneva. In Mr Pierpont Murgan's collection thure are many exceedingly fine examples, but cspecially thrse drawings on paper, the only three which appear to have survived, and the targe cigned miniature of the duchess of Richsnond already mentioned, the largeat work Pctitot ever executed save the one at Chatsworth.
See Pettuat et Bordicr. by Ernest Strochlin (Geneva, 1905): "Some Now Information respecting Jean Petitot" by G. C. Williamson, Nincteenth Contary and Afler (January 1908), Pp. 98-110; the privately printed Catalogue of the Collection of Mr J. Pierpond Morgan, vol. iii.: The llistory of Porlrail Miniatures, by G C. Williamson, voi. ii. (London, 1ga4).
(G.C. W.)

PETHOT, JBAM LOUIS ($1652-c .1730$), French enamel painler, was the eldest son of Jean Petlot (g.v.), and was instructed in enamelling hy his father. Some of his works so closely resemble those of the elder Fetitot that it is difficult to distinguish between them, and he was really the only serious rival his father ever had. He setted for a while in London, where he remained till 1682, and painted many enamel portraits of Charles II. In 1682 he removed to Paris, but in 3695 was back again in London, where he remained until the time of bis death
His portrait by Mignard is in the muscum at Geneva, and another in enamel by himself in the collection of the cart of Darrey, who also owns two of his wife. Madeleine Bordicr, whom he married in 1683. Anolher portrait believed to represent him is in the cotlection of Mr Pierpont Morgan.
(G. C. W.)

PETITS-CHEVAUX (Fr for " little horses"), a gambling game played with a mechanical device consisting of a board perforated with a number of concentric circular slits, in which revolve, eacb independently on ils own axis, Ggures of jockeys on horseback, distinguished by numbers or coiours. The bystanders having staked their money according to their choice on a board marked in divisions for this purpose, the horses are started revolving rapidly together by means of mechanism attached to the board, and the horse which stops nearest a marked goal wins, every player who has staked on that horse receiving so many times his slake. Figures of rallway tralns and other objects sometimes take the place of horses. In recent years there has been a tendency to supplant the petits chevamx at Frencb resorts by the bomle or ball game, on the same principle of gambling; in this a ball is rolied on a basin-shaped table so that it may eventually setule in onc of a number of shallow cups, each raarked witb a figure.

PETO, SIR SAMUEL MORTON, BART. ($1809-1889$), English contractor, was bornat Woking, Surrey, on the $4^{\text {th }}$ of August 1800, and was at an early age apprenticed to his uncle, a London buidder, who on his dealh in 1830 bequeathed the business to Peto and another nephew, Thomas Grissell. The part nership between Peto and Grissell hasted till 1846, amonget the many London buildings erected by the firm being the Reform Club, the Lyceum and St James's theatres, and the Nelson column. Peto afterwards entered into partnership with Edward Ladd Betts (1815-1872), and between 1846 and 1872 Messrs Peto \& Betts carried out many large railway contracts at home and abroad, notably the more important portions of the South-Eastern and of the London Chatham \& Dover lines, and, in conjunction with Thomas Brassey, the Grand Trunk railway of Capada, and the London Tilbury \& Southend railway. In 1854-18s5 Peto and Brasscy constructed a railway in the Crimea between Balaciava and the British entrenchments before Sebastopol. charging the British government only the actual out-of-pocket expenscs, and for his gervices in this matter Peto was in 8855 made a baronct. Peto entered pariament as a Lilseral in 8847 , and. with a few years' interval, continued there till 1868, when, his firm having been compelled tn suspend payment in the financial crisis of 1866, he was forced to resign his seat, though both Mr Disraell and Mr Cladstone publicty eulogised his personal character. He died on the $13^{\text {th }}$ of November 888.
 was born at Kis-Körösb, Pest county, on New Year's Day, 1823 . The family received its diploma of nobility from the emperor Leopold in 1688, but the ultra-patriotic Alexander early changed the old family name, Petrovics, which pointed to a Croatian origin, into the purely Magyar form of Petofi. The led's eariy days were spent at Felegybsz and Szabadszallis, the mosit Hungarian parts of Hungary, where he gol most of his catly education, including a good grounding in Latin. German be learnt subsequently at Pesth, and French he taught himself He began writing verses in his wellith year, while a student at the Aszod gymnasium, where he also displayed a strong prodilection for the stage, to the disgust of his rigorous facher, who formally disowned his son, early in 1839 , for some trifing peccadillo, and whose tyrannlcal temper became downright furious when a series of mislortunes ruined him utterly in a 840 . For the next three years Petofi led the wretched life of a strolling player, except for 2 bricl interval when, to escape starvation, he enlisted as a common soldier in an infantry regiment. During the greater part of $\mathbf{x} 842$ we find him a student at the Calvinist College at Phpd, where he made the acquaintance of young Jokai, and wrote the poem "Borozb," which the great critic Bajza at once inserted in the leading literary review, the Athencerm (May 22, 1842). In November of the same year the restless poet quitted Paps to join another travelling troupe, playing on one occasion the Fool in King Lear, and after wandering all over Hungary and suffering incredible hardships; finally settled down at Peslb (1844), where for a time he supported himself by all sorts of titerary hack-work. Nevertheless, in the midst of his worst privations he had read voraciously, and was at this time profoundly influenced by the dominant Romanticism of the day; while, through Tleck, he learnt to know and value the works of Shakespeare. His first volume of original poems was published in 5844 by the Society Nemzeti Kor, through the influence of the poet Vorosmany, when every publisher had refased his MS., and the seventy-five florins which he got for it had become a matter of life or death to lim. He now became a regular contributor to the leading papers of Pesth, and was reconciled to his parents, whom he practically supported for the rest of their lives out of his literary earninga. His position, if not exactly brilliant, was now at least secure. The little volume published by the Nemzeti Kor was followed by the parody, 1 Helystg Kalapdesa (1844); the romantic epic Jdnos Víta (1844); Ciprislombok Elelke Slijiard, a collection of prassionate elegies over his lost love, Etelke Csapo (1845); Uti Jequyclek, an imitation of Heine's Reisebilder (1845); Sxerdem Gyongyel (x 845); Falkot (1846); Szerdime ds hasassdige (x 846) and many other volumes. The first edition of his collected poems appeared in $\mathbf{x 4 4 7}$. Petठfi was not yet twenty-five, and, despite the protests of the classicists, who regarded him with cold distike, the best beads in Hungary, poets like Vordsmarty and critics like Szcmere, already paid him the homage due to the prince of Magyw lyrical pocts. The grent public was enthusinatic on the same side, and posterity, too, has placed him among the immortals. Petofis as simple and genuine a poet of nature as Wordsworth or Christian Winther, and his crotics, inspired throughout by an noble idealism, have all Byrons force and fervour, though it is perkaps in his martial songs that Petrif's essentially passionate and defiant genius asserts itself mose triumphantly. On the 8 ih of Seplember 1847 Pecifin married Julia Szendrey, who bore him a son. When the revolutiormary war broke out, he espoused the tenets of the extreme democratic faction with a heat and recklesances which estranged many of his friends. He took an active part in the Transylvanian campaigns of the heroic Bem; rose by sheer valour to the rank of manjor; was shin at the battio of Sogesevir (July 31, 8849), and his body, which was never recovered, is supponed to have been boried io the common grave of the fallen honveds in the churchyard of Feheregyhiz. The first complete edition of Persfis poems appeared in $x 874$. The bert ertical odition in that of Harac, re94. There are pumerous indifferent German transiations.

PeTosicix, $=$ city and the county-seat of Bmarict county, Michigan, U.S.A., on Little Traverse Bay, an arm of Laka Michigan, at the moulh of Bear Creck, in the north-west part of the lower peninsula. Pop. (1890), 2872; (1900), 5285 , of whom 856 were foreign-born; ($\mathbf{x 9 9 4}$) 5×86; (19ro), 4778. It is served by the Pere Marquette and the Grand Rapids \& Indiana raiways and by steamboat lines to Chicapo. Detroit, Buffalo and other lake ports. Beas Creek furnishes conssiderable water-power, and amoge the manufactures are lumber, paper, kenther and foundry and machineshop products. Petoskey was settiod about 1874 , was incorporated 23 a village in 8879 , was chartered as 2 cily in 1895, and in 1902 repplaced Harbor Springs as county-seat. It was named after an Ojibwa Indian chief.
PETRA (n) Hérpe = the rock), a ruined site, $30^{\circ} 19^{\prime}$ N. and 35° 3^{\prime} E., lying in 2 basin among the mountains which form the castern lank of Wadi el-Ariba, the great valley running from the Dead Sea to the Gulf of 'Akiba. The descriptions of Strabo (xvi. p. 779), Pliny (N.H. vi. 32) and other writers leave no doubt as to the identity of this site with the famous capital of the Nabataeans ($\rho, 0$.) and the centre of their caravan trade. Walled in by towering rocks and watered by a perennial stream, Petra not only possessed the advantages of a fortress but controlied the main commercial routes which passed through it to Gaxa in the west, to Bostra and Damascus in the north, to Elath and Leuce Comè on the Red Sea, and across the desert to the Persian GuIf.
From the 'Aratia travellers approach by a track which leads round Jebel Harlan (Mt Hor) and enters the ploin of Petra from the south; it is just possible to find a way in from the high plateau on the north; but the most impressive entrance is from the east, down a dark and natrow gorge, in places only 10 or 12 ft . wide, called the SLL, i.e. the shart, a split in the huge sandstone rocks which serves as the waterway of the Wadi Mosi. Near the end of the defile stands the most elaborate of the ruins, el- f (tazne or "the Treasury of Pharaoh," not built but hewn out of the cliff; a little farther on, at the foot of the mountain called en-Nejr. comes the theatre, so placed as to bring the greatest number of tombs within view; and at the point where the valley opens out into the plain the site of the city is revealed with striking effect. Almost enclosing it on three sides are rose-coloured mountain walls, divided into groups by deep fissures, and lined with rockcut tombs in the form of towers. The stream of Wadi MOss crosess the phin and disappears among the mountains opposite; on cither bank, where the ground is feirly level, the city was builh, covering a space of about it sq. m. Among the ruins on the south bank stand the fragments of a temple called \$ayr Fir'aun of late Roman date; fust beyond this rives a rocky height which is assunily regarded as the acropolis.
A position of such matural strength must hive been ocexpied. early, but we have no incans of teling exactly when the hisiory of Petre began; the evidence seems to show that the city was of relatively hate foundation, though a sanctuary (see below) may have existed there frota very ancient times. This part of the country was assigned by tradition to the Horites, i.e. probably: "eave-dwellers," the predecessors of the Edomites (Gen. xiv. 6; zexvi. 20-30; Deut. ii. \mathbf{x}); the habits of the original natives may have influenced the Nabatacar custom of burying the dead and offering worship in half-excavated caves. But that Petra itsedf is mentioned in the Old Testament cannot be affirmed with certainty; for though Petra is usually identified with Sela ${ }^{-2}$ which also means "a rock," the reference in Judiges i. 36; Isa. wi. 1 , yiil. 11; Obed. 3, is far from clear. 2 Kings siv. 7 seems to be more explitit; in the perainel passage, hawever, Sela is understood to mean imply "the roct" (2 Chr. crov. in, sot LXX). Hence many authorities doubs whether any town nemod Sech is mentioned in the OXd Tentament? What, then, did the Semitic

[^26]inhabitants call their city? Eusebius and Jerome (Onom. sacr. 286, 71. 145, 9; $228,55.287,94$), apparently on the authority of Josephus (Ane. Iv. 7, 1; 4, 7), assert that Rekem was the native name. But in the Aramaic versions Rekem is the name of Kadesh; Josephus may have confused the two places. Somethenes the Aramaic versions give the form Rekem-Geyn, which recalls the name of the village El-ji, south-east of Petra; the capital, however, would hardly be defined by the natine of a neighbouring village. The Semitic name of the city, if it whas not Seia', must remain unknown.' The passage in Diodorus Siculus (xix. 94^{-97}) which describes the expeditions which Antigonus sent against the Nabatacans in 312 B.C. is generally understood to throw some light upon the history of Petra, though it must be admitted that the petra referred to as a natural fortress and place of refuge cannot be a proper name, and the description at any rate implies that the town was not yet in existence. Brtinnosp thinks that "o the rock" in question was the sacred mountain en-Nejr (above); but Buht sugzests a conspicuous height about 16 m . notth of Petra, Shobak, the Mont-royal of the Crusaders. ${ }^{1}$ More satisfactory evidence of the date at which the carliest Nabataean settlement began is to be ohtained from an examination of the tombs. Two types may be distinguished broadly, the Nabataean and the Graeco-Roman. The Nabataean type starts from the simple pylon-tomb with a door set in a tower crowned by a parapet ormament, in imitation of the front of a dwelling-house; then, after passing through various stages, the full Nabataean type is reached, retaining all the native leatures and at the same time exhibiting characteristics which are partly Egyptian and pertly Greek. Of this type there exist ciose parallels in the tomb-towers at cl-Hiejr in north Arahia, which bear long Nahatacan inscriptions,' and so supply a dato for the corresponding monuments at Petra. Then comes a series of tombfronts which terminate in a semicircular arch, a feature derived from north Syria, and finally the elaborate Iaçades, from wbich all trace of native style has vanished, copied from the front of a Roman temple. The exact dates of the stages in this development cannot be fixed, for strangely enough few inscriptions of any length have been found at Petra,' perhaps because they have perished with the stucco or cement which was used upon many of the buildings. We have, then, as evidence for the carliest period, the simple pylon-tombs, which belong to the pre-Hellenic age; how far back in this stage the Nabataean settloment goes we do not know, but not larther than the 6th century B.C. A period follows in which the dominant civilization combines Greek, Egyptian and Syrian elements, clearly pointing to the age of the Ptolemies. Towards the close of the and century B.c, when the Piolemaic and Selcucid kingdoms were equally depressed, the Nabatacan kingdom came to the front; under Aretas III. Philhellene, c. 85-60 8.c., the royal coins begin; at this time probably the theatre was excavated, and Petra must have assumed the aspect of a Heilenistic city. In the long and prosperous reign of Arelas IV. Philopatris, 9 A.C.-A.D. 40 , the fine tombs of the el-Hejr type may be dated, perhaps also the great High-place. Then the city became more and more Romanized. In a.d. jo6, when Cornelius Palma was governor of Syria, "Arabia belonging to Petra,"'s was absorbed into the Roman Empire, and the native dynasty came to an end. But the city continued to flourish. It was visited in a.p. 135 by Hadrian, and stamped Adriand Petra on its coins in gratitude for the omperor's benefactions; the superb Hazne, probably a temple for the worship of Isis, and the Derr, which resemhlea the Hazne in design, belong to this pariod. A century later, in the time of Alerander
${ }^{1}$ Yakut gives the name Sal' to a fortress in Wadi Mant, Noldeko; ZDHG. xxv. 259 seq. (187t).
${ }^{2}$ Brünnow, Du Prop, Arebia, i. 190; Buhl. op. cit. p. 34
© CIS. Ii. 197-226; Cooke. North-Semitic Inscrippions. 78-91, \&c.

- Four important Nabat. inacrr. have been found, of which chree are dated, viz. NSI: p. 250, m=CIS, fi. 349, 16 th yetir of Arecte III, i.a B.c. 70, so also CIS. ii. 44*; NSI. 94 and 95 CIS. ii. 350 and 354 . the latter dated the 2gth year of Aretas $\mathbf{I V}$., i.e. a.ti. 20 . The other Nabat. inscre. ere mostly grafti, scratched on the rocks by visleors or wornhippert at the holy placta; CIS. iii. $355-441,444-464$.

This is the meaning of Arabia Petraes. Dio Case lxviii. 14.

Severus (A.D. 212-235), when the city was at the height of ita splendour, the issue of coinage comes to an end, and there is no more building of sumptuous tombs, owing apparently to some sudden catastrophe, such as an invasion by the neo-Persian power under the Sassanid dynasty. Mcanwhile as Palmyra (A. A.D. 130-270) grev in importance and attracted the Arabian trade away from Petra, the latter declined; it seems, however, to have lingered on as a religious centre; for we are told by Epiphanius (c. A.D. 315-403) that in bis 'ime a feast was held there on the 2sth. of December in honour of the virgin Chaabou and her offispring Dusares (Haer. 51).
The chief god of Petra was Dhu-shara (Dougdpros), i, e. the lord 2 or owner of Shard; ${ }^{4}$ he was worshipped under the form of a black rectangular stone, a sort of Petraean Ka'aba (Suidas Lex. s.e. Eebs "Apms, and cf. Epiphan. above). Associated with Dhu-shard was Allit, the chief goddess of the ancient Arabs. Sanctuary chambers may be seen at various points in the site of Petra, and many places of sacrifice open to the sky are met with among the tombs, marked by reranins of altars. But most eminent of all was the great High-place which has recentily been discovered on en-Nejr (or Zibb 'afas). It consists of a rock-hewn altar of burnt-ofering with a place for killing the victims beside it and a shallow court, perhaps intended to hold water, in front: the most complete specimen of an ancient Semitic sanctuary that is known.? Not far off are two obelisks cut out of the solid rock which has been removed to the level of their bases; these were either idols of Dhà-shara and Allāt, or more probably were designed to mark the limits of the baram of the sanctuary. West of the obelisks are three other places of sacrifice; and on the rocks below worshippers have carved their names (CIS. ii. $\mathbf{3 9 0 - 4 0 4}$). En-Nejr, with the theatre at its foot, must have been the sacred mouniain, the original sanctuary of Petra, perhaps "the very high mountain of Arabis called Dusare after the god Dusares" referred to by Steph. Byz. (s.s. Aovadpy). Christianity found its way into Petra in early times; Athanasius mentions a hishop of Petra (Ilerpain dib "Apafias, ad Anliock. 10) named Asterius; at least one of the tombs (the "tomb with the urn") was used as a church; an inscription in red paint records its consecration "in the time of the mast holy bishop Jason" (A.D. 447). The Christianity of Petra, as of north Arabia, was swept away by the Mahommedan conquest in A.D. 629-632. Under the Latin kingdom Petra was occupied by Baldwin I. and formed the second gief of the basony of Krak with the title Chiteau de la Valée de Moyse or Sela; it remained in the hands of the Franks till ax89; fragments of the Crusaders' citadel are still standing near the High-place an cn-Ncjr.

The ruins of Petra were an object of curiosity in the middle ages and were visited by the Sultan Bibars of Egypt towards the close of the 13th century. The first European to describe them was Burckhardt (i812). All former descriptions are now superseded by the magnificent work of Brinnow and Domassewekl, Die Proo wincie Arabua (1904). Who have minutely surveyed the thole wite classified the tombs, and compiled the accounts of carlier investigations: and by the independent researches of Dalman. Petra and serne Felsheilighmer (1908) , and of Musil, Arabia Petraca (i907-1908). The Corpus. Znscr. Sem. ii. yos sqq., should be consulted, and the dexcriptions in Baedeker-Socin': Palesting (yth edition), and Rerue brblyque for 1897, 28921 1903.
(G. A. C. ${ }^{-}$)

PETRARCH (r304-r374). Francesco Petratce, the great Italian poet And ifrat true reviver of learning in medieval Europe, was bom at Arezio on the zoth of July ryaf. His father Petracoo held a poot of notary in the Florentine Rolls Court of the Riformagioni; but, having espoused the same cause as Dante during the quarrels of the Blacks and Whites, Petracco was expelled from Fiorence by that decree' of the tyth of Janvary 1302 which condemned Dante to Fifetong exile. Whih his wife he
-The whole range in which Petra lies is called Jebel csh-Sharit. ber it is doubrful whether the name of the god was derived from that of the mountain, see Ed. Meyor، loc. Hil. p. 268 and Cooke. NSI. p. 228.
${ }^{1}$ First mentioned by E. L. Wilson (1891) " rediscovered by 6. L. Robinson (1900). described by S. I. Curtis, P. E. F. O. S\& 1900. aod Savignac. Rev. bibt. (1903); with full plan and phovegraphs).
trook refuge in the Ghibelline townehip of Arezzo; and it was here, on the very night when his father, in company with other members of the White party, made an unsuccessful attempt to enter Florence by foree, the Francesco first caw the light. He did not remain long in his birchpleoce. His mother, baving obtained permission to return from banishment, settlod at Inciss, a little village on the Arno above Florence, in February 1305. Hera Petrarch spent seven years of boybood, acquiring that pure Tuscan idion which afterwands he used with such consummate mastery in odo and sompal. Here too, in 1307, his brother Gherardo was borm dn inıa Petracco set up a bouse for his family at Pisa; but soon afterwarde, finding no scope there for the exercise of his profession as jurist, he removed them all in 2313 to Avignon. This was 2 step of no small importance for the future poet-ccholar. Avignon at that period siill belonged to Provence, and owned King Robert α Naples as sovereign. But the popes had mado it their residence after the insults ofered to Bonifeco VIII. at Amagni in 1303 Avignon was therefore the cantre of that varied society which the high pontiffs of Christendom have ever gathered round them. Nowhere else could the youth of genius who was destined to impress a cosmopolitan stamp on medieval culture and to begin the modern era have grown up under conditions more favourable to his tack. At Incisa and at Pisa hehad learned his mother-tongue. At Carpentras, under the direction of Convennolo of Prato, he studied the humanities between the years $x 315$ and 1319 . Avignon, at a distance from the party strife and somewhat parochial politics of the Lialian commonvealths, impressed his mind vith an ideal of civility raised far above provincial prejudicas
Petrarch's real name according to Tuscin usage was Francesco di Petracoo. But he alered th's patronymic, for the sake of euphony, to Potrarca, proving by this alight change his emancipation from usseges which, had be dwelt at Florence, would most probably have been imposed oa him. Pelracoo, who was very anrious that his eldest son should become an eminent jurist, sedt him at the age of fifteen to study hw at Montpeclier. Like Ovid and many other poets, Potrarch felt no inclination for his father's profession. His intellect, indeed, was not incapable of understandiag and admiring the pajestic edifice of Roman law; bat he shrank with disguse from the illiberal lechnicalities of practice. There is an aulbentic story of Petracco's finging the young student's books of poetry and rbetoric upon the fire, but saving Virgil and Cicero half-burned from the flames at his son's passionata entreaties. Notwithstanding Petrarch's firm determination to make himself a scholar and a man of ketters rather than a lawyer, he so far submittod to his father's wishes as to remove about tha year 1323 to Bologna, whuch was iben the headiquarters of juristic learning. There be stayed with bis brother Gherardo uotil 1326, whon his father died, and be retorned to Avignon. Banistument and change of phace had slready diminished Pelmeco's fortuno, which was never large, and a fraudulent administration of bis estate after his death left the two heirs in almost complete destilution. The most precious rempant of Petrarch's inheritance was a MS. of Cicero. There remained no course open for hire but to take ordeas. This be did at once on has arrival in Provence; and we have good reason to believe that he advaoced in due time to the rank of priest A great Roman noble and ecclesiastic, Giacomo Colonna. afterwards bishop of Lombes, now befricnded him, and Pecrarch lived for some yeass in partial dopendence on this patron.
On the Ghh of April a 327 , happoned the most famons event of Petrarch's history. He saw Laura for the first time in the church of SL Clara at Avignon. Whe Laura was remains wosertain still That she was the daughter of Audibert de Noves and the wife of Hugb de Sade rests partly on tradition and partly on documents which the abbt de Sade profersed to thave copied from onginals in the rBth century Nothing is now extant to prove that. if this lady really exisled, she was the Laure of the Camoniera While there are reasons for sucpectiag that the abbe, wath either the fibricator of a romance flatering to hus own family, or the dupe of some previous impostor. We may, however, reject the scoptical hypochesis that Lavin was a mare figment of Potrach's
fancy; and, if we sccept her personal reality, the poems of her lover demonstrate that she was a married woman with whom he enjoyed a respectiful and not very intimate tricndship.
Petrarch's inner life after this date is mainly occupied with the passion which ho celebrated in his Italian' poems, and with the friendships which his Latin epistles dimly reveal to us Besides the bishop of Lombez he was now on termis of intimacy with another member of the great Colonna family, the cardinal Giovanni. A German, Ludwig, whom he called Socrates, anda Roman, Iello, who received from him the classic name of Lacllius, were among his best-loved associates. Avignon was the chief seat of his residence up to the year of 1333, when he became restless and undertook his first long journey. On this occasion be visited Paris, Ghent, Liége, Cologne, making the acquaintance of leaned men and copying the manuscripts of classical authors. On his return to Avignon he engaged in public affairs, pieaded the cause of the Scaligers in their lawsuit with the Rossi for the bordship of Parma, and addressed two poetical epistles to Pope Benedict XIIL , upon the restoration of the papal see to Rome. His cloquence on behalf of the tyrants of Verona wes successful. It won him the friendship of their ambassador, Azzo di Correggio -a fact which subsequently influenced his fife in no small measure. Not very long after these events Petrarch made his first journey to Rome, a journey memorable from the account which be has left us of the impression he received from its ruins.
It was some time in the year 1337 that he established himself ai Vaucluse and began that life of sofitary study, beightened by communion with pature in ber loneliest and wildest moods, which distinguished him in so remarkable a degree from the common herd of medieval scholars. Here he spent his time partly among books, meditating on Roman history, and preparing himself fot the latin epic of Africa. In his bours of recreation he climbed the hills or traced the Sorgues from its foumtain under those tall limestone cliffs, while odes and sonnets to Madonna laura were committed from his metnory to paper. We may also refer many of his most important treatises in prose, as well as a large portion of his Lalin correspondence, to the leisure he enjoyed in this retreat. Some woman, unknown to us by name, made him the father of a son, Giovanni, in the year 1337; and she was probably the same who brought him a daughter, Francesca, in 1343. Both children were afterwards legilimized by papal bulls. Meanwhile his fame as a poet in the latin and the vulgar tongues steadity increased, until, when the first draughts of the Afrud began to circulate about the year 1339, it became manifest that no one had a better right to the laurel crown than Petrarch. A desire for glory was one of the most decply-rooted passions of his nature, and one of the points in which be most strikingly anticipated the bumanistic scholars who succeeded him. It is not, therelore, surprising to find that he exerted his influence in several quarters with the view to obtaining the honours of a public coronation. The result of his intrigues was that on a single day in 1340, the $\mathbf{1 3 t}$ of September, he received two invitations, from the university of Paris and from King Robert of Naples respectively. He chose to accept the latter, journeyed in February 1341 to Naples, was honourably entertained by the king, and, after some formal disputations on matters touching the poel's art, was sent with magnificent credentins to Rome. There, in the month of April, Petrarch assumed the poet's crown upon the Capatol from the hand of the Roman senator amid the plaudits of the peopic and the patricians. The oration which he delivered on this occasion was composed upon these words of Virgil:-

*Sed me Parmass deserta per ardua dulcis
 Raptat amor."

The ancient and the modern eras met together on the Capitol at Petrarch's coronation, and a new stadium for the human spirit, that which we are woat to style Renaissence, was opened.
With the coronation in Rome a fresh chapter in the biography of Potrarch may be said to have begun. Henceforth he ranked as a rhetorician and a poet of European celebrity, the guest of princes, and the ambassador to royal courts. During the spring months of 1341 his friend Azzo di Correggio had succeeded in frecing Purma from subjugation to the Scaligers, and was laying
the foundations of his own tyranny in that city. He invited Petrarch to attend him when he made his triumphal entry at the end of May; and. from this time forward for a considerable period Parma and Vaucluse were the two headquarters of the poet. The one be called his Transalpine, the other his Cisalpine Parnassus. The events of the next six years of his life, from May 134 to May 1347, may be hriefly recapitulated. He lost his old friend the bishop of Lomber by death and his hrother Cherardo by the entrance of the latter into a Carthusian monastery: Various small benefices were conferred upon him; and repeated offers of a papal secretaryship, which would have raised him to the highest dignilies, were made and rejected. Petrarch remained true to the instinct of his own vocation, and had no intention of sacrificing his studies and his glory to ecclesiastical ambition. In January $: 343$ his old friend and pat ron Robert, king of Naples, died, and Petrarch was sent on an embassy from the papal court to his successor Joan. The notices which he has left us of Neapolitan societ y at this epoch are interesting, and, t was now, perhaps, that be met Boccaccio for the first time. The beginning of the year 1345 was marked by an event more interesting in the scholar's eyes than any change in dyrisales. This was no less than a discovery at Verona of Clcero's Familiar Letters. It is much to be regretted that Petrarch found the precious MS. so late in life, when the style of his own epistles had been already modelled upon that of Seneca and St Augustine.

In the month of May 1347 Cola di Rienai accomplished that extraordinary revolution which for a short space revived the republic in Rome, and raised this enthusiast to titular equality with kings. Petrarch, who in politics was no less visionary than Rienzi, hailed the advent of a founder and deliverer in the self-styled tribune. Without considering the impossibility of restoring the majesty of ancient Rome, or the absurdity of dignitying the medicval Roman rabble by the name of Populus Romanus, he threw himself with passion into the republican movement, and sacrificed his ofd friends of the Colonna family to what he judged a patriotic duty.

Petrarch huilt himself a house at Parma in the autumn of 134%. Here he hoped to pursue the tranquil avocations of a poet honoured by men of the worid and men of letters throughout Europe, and of an idealistic politician, whose effusions on the questions of the day were read winh pleasure for their styie. But in the course of the next two years this agrecable prospect *as overclouded by a series of calamities. Laura died of the plague on the 6tb of April 1348 . Francesco degli Albizzi, Mainardo Accursio, Roberto de' Bardi, Sennuccio del Bene, Luchino Visconti, the cardinal Giovanni Colonna and several other friends lollowed to the grave in rapid succession. All of these bad been intimate acquaintances and correspondents of the poet. Friendship witb him was a passion; or, what is more true perhaps, he needed friends for the maintenance of his intellertual activity at the highest point of its effectiveness. Therefore be felt the loss of these men acutely. We may say with certainty that Laura's death, accompanied by that of so many distinguished associates, was the turning-poin in Petrarch's inner life. He kegan to think of quitting the world, and pondered a plan for establishing a kind of tumanistic convent, where he might dedicate himsell, in the company of kindred spirits, to still everer studies and a closer communion with God. Though nothing came of this scheme, a marked change was henceforth perceptible in Petrarch's Literary compositions. The poems written In Morte di Madonna Lawra are graver and of more religious tone. The prose works touch on retrospective topics or deal with subjects of deep meditation. At the same time his renown, continually spreading, opened to him ever fresh relations with ltalian despots. The noble houses of Conzaga at Mantua, at Carrara at Padua, of Este at Ferrarn, of Malat esta at Rimini. of Visconti at Milan, vied with Azzo di Correggio in entertaining the illustrious man of let ters. It was in vain that his correspondents pointed out the discrepancy between his professed zeal for Italian liberties, his recent enthusiasm for the Roman republic, and this alliance with tyrants who were destroying the freedom of the Lombard cities. Petrarch remained an incurable rhetori-
cian; and, while he stigmitised the despots in his ode to Italy and in his episties to the emperor he aceepted their hospitality. They, on their part, seem to have understood his temperament, and to have agreed to recognize his political theorites as of $n 0$ practical importance. The tendency to honour men of letters and to patronize the arts which distinguished Italian princes throughoul the Renalatance period firtit manfested itsell in the attitude assumed by Visconki and Carrarasi to Petrarch.
When the jubilee of 1350 was proclaimed, Petrarch made a pilgrimage to Rome, pasoing and returning through Florence, where he established a firm frieadship with Boccaccio. It has been well remarked that, while all his other friendehips are shadowy and dim, this one alone stands out with clearness. Each of the two friends had a ditinguished personality. Each played a foremost part in the revival of learning. Boccacelo carried his admiration for Petrarct to the point of worship. Petrarch repaid him with sympathy, counsel in literary studies, and noral support which helped to elevate and purify the younger poet's oversensuous nature. It was Bocenccio who in the spring of 1351 brought to Ietrarch, then resident with the Carrara family at Padua, st invitation from the seignioty of Florence to accept the rectorship of their reeently founded univerwity. This was accompanied by a diploms of realoration to his rights as citizen and testitution of his patrimony. But, flattering wis was the offer, Petrarch dedined it. He preferred his literary leinure at Vaucluse, al Parma, in the courts of princes, to a post whid would have brought him into contact with jealous priors and have reduced him to the position of the servant of a commonwialh. Accordingly, we find him journeying again in 1351 to Vaucluse, again refusing the office of papel secretary, again planning visionary reforms for the Roman people, and beginning that curious fragment of an autobfography which is k nown as the Epirde to Posterily. Early in 1353 he left Avignon for the last time, and entered Lombar Jy by the pass of Mont Genevre, making his way immediately to Milan. The archbishop Giovanni Visconti wes at this period virtually deapot of Milan. He induced Petrarch, who had long been a friend of the Visconti family, to establish himself at his court, where he found employment for him as ambassador and orator. The most memorable of his diplomatix missions was to Venice in the autumn of 1353. Towards the close of the long struggle between Genola and the republic of St Mark the Gencese entreted Giovenni Viscontl to mediale on their behalf with the Venetians. Petrarch was entrusted with the office; and on the 8 th of November he delivered a studied oration before the doge Andrea Dandolo and the great councl His cloquence had no effect; but the orator entered into relation: with the Venetian aristocracy which wese alterwards extended and confirmed. Meanwhile. Milan continued to be his place of residence. After Giovanni's death he remalned in the court of Bernabo and Galeazzo Visconti, dosing bis eyes to their cruehies and exactions, serving them as a diplomatist, making speeches for them on ceremonial occasions, and partaking of the splendid hospitality thry offered to emperors and princes. It was in this capacily of an indefrendent man of letters, highly placed and favoured at one of the 'most wealihy courts of Europe, that be addressed epistles to the emperor Charles IV. upon the distracted state of Italy, and entreated him to resume the old Gbibelline policy of Imperial interference. Charles IV. passed through Mantua in the autumn of 1354. There Petrarch miade his arquaintance, and, finding him a man unfil for any noble enterprise, declined attending tim to Rome. When Charles returned to Cermany, after assuming the crowns in Rome and Milan, Petrarch addressed a letter of vebement invective and reproach to the emperor who was so negligent of the dutics imposed on him by his high office. This did nol prevent the Visconti sending him on an embassy to Charles in 1356 . Petrarch found him at Prague, and, tifer pleading the cause of his masters, was despatched with honour and the diploma of count palatine. His studem's life at Mllan was again interrupted in 1360 by a mission on which Galeazso Visconti sent him to King John of France. The tyrants of Milan were aspiring to royal alliances; Cian Galcasmo Vicconti had been maxried to labelth of Frasces

Violaate Visconti, a few yeans later, was wedded to the English duise of Clarence. Petrarch was now commissioned to congratulute King John upon his liberation Irom captivity to England. This duty performed, he returned to Milan, where in 136 r be received news of the deaths of his son Giovanni and his old friend Socrates. Both had been carried off by plague.
The remaining years of Petrarch's life, important as they were for the furtherance of humanistic studies, may be briefly condensed. On the irth of May 1362 he settled at Padua, from the ncighbourhood of which he never moved again to any great distance. The same year saw him at Venicc, making a donation of his library to the republic of St Mark. Here his friend Boccaccio introduced to him the Greek teacher Leontius Pilat us. Petrarch, who possessed a MS. of Homer and a portion of Plato, never acquired the Greek language, although be attempted to gain some little knowledge of it in his later years. Homer, he said, was dumb to hime while he was deai to Homer; and he could only approach the Iliad in Boccaccio's rude Latin version. About this period he saw his doughter Francesca happily married, and undertook the education of a young scholar from Ravenna, whose sudden disappearance from his houschold caused him the deepest grief. This youth has been ideniified, but on insufficient grounds, with that Giovanni Malpaghini of Ravenna who was destined to form a most important link between Petrarch and the humanists of the next age of culture. Gradually his oldest friends dropped off. Azzo di Correggio died in 1362, and laclius, Simonides, Barbato, in the following year. His own death was reported in 136 ; but he survived another decade. Much of this last stage of his life was occupied at Padua in a controversy with the Averroists, whom he regarded as dangerous antagonists both to sound religion and to sound culture. A curious treatise, which grew in part out of this dispute and out of a previous duel with physicians, was the book U pon kis oun Ignorance and likat of many ofthers. At last, in 1369, tired with the bustle of 2 town so big as Padua, be retired to Arqua, a village in Euganean hills, where be continued his usual train of literary occupations, employing several secretarics, and studying unremituingly. Ail through these declining years his friendship with Boccaccio was maintained and strengthened. It rested on a solid basis of mutual affection and of common studies, the different temperaments of the two scholars securing them against the disagreements of rivalry or jealousy. One of Petrarch's last compositions was a Latin version of Boccaccio's story of Grisclda. On the 18th of July 1374 his people found the old poet and scholar dead among his books in the library of that little house which looks across the hills and lowlands sowards the Adriatic.
When we attempt to estimate Petrarch's position in the history of modern culture, the first thing which strikes us is that he was even lest eminent as an Italian poet than as the founder of Humanism, the inaugurator of the Renaiscance in Italy. What he achieved for the modern world was not merely to bequcath to his Italian imitators masterpieces of lyrical art unrivalled for perfection of workmanship, but also, and far more, to open out for Europe a new sphere of mental activity. Standing within the threshold of the middle ages, he surveyed the kingdom of the modern spirit, and, by bis own inechaustible industry in the field of scholarship and sudy, he determined what we call the revival of learning. By bringing the men of his own generation into sympathecic contact with antiquity, he gave 2 decisive impulso to that European movement which restored freedoms, self-consciousness, and the faculty of progress to the human intellect. He was the first man to collect libraries, to accumulate coins, to advocate the preservation of MSS. For him the autbors of the Greek and Latin world were living menmore real, In fact, than those with whom he corresponded; and the rhetorical epistles he addressed to Cicero, Seneca and Varro prove that he dwelt with them on terms of sympathetic intimacy. So far-reaching were the interesta controlled ly him in this capacity of humanist that his achievement as an Italian lyrist seems by comparison insignificant.
Petrarch's ideal of humanism was essentially a noble one. Hie regarded the orator and the poet ats teachers, bound to
complete themselves by education, and to exhibit to the world an image of periected personality in prose and verse of atudied beauty. Self-culture and self-effectuation seemed to him the highest aims of man. Everything which contributed to the formation of a free, impassioned, liberal individuality he regarded as praiseworthy. Everything which retarded the attainment of that end was contemptible in his eyes. The authors of antiquity, the Holy Scriptures and the fathers of the Church were valued by him sa ane common source of intellectual colightenment. Eminently religious, and orthodox in his convictions, he did not seek to substitute a pagan for the Christian ideal. This was lefk for the scholars of the 15 th and 16 th centuries in Italy. At the same time, the Latin orators, historians and poets were vencrated by him as depositories of a tradition only second in importance to revelation. For him there was no schism between Rome and Galilee, between classical genius and sacred inspiration. Though the latter took the first rank in relation to man's eternal welfare, the former was mecessary for the perfection of his intellect and the civilization of his manners. With this double ideal in view, Petrarch poured scorn upon the French physicians and the Italian Averroists for their illiberal philistinism, no less than for their materialistic impiety. True to his conceplion of independent intellectual activity, he abstained from a legal career, refused important ecclesiastical office, and contented himself with paltry bencfices which implied no spiritual or administrative duties, because he was resolved to follow the one purpose of his life-sclf-culture. Whatever in literature revealed the hearts of men was infinitcly precious to him; and for this reason he professed almost a cult for St Augustipe. It was to Augustive, as to a friend or a confessor, that he pouned forth the secrets of his own soul in the book De conicen pha musedi.

In this effort to realize his truest self Petrarch was eminently successful. Much as he effected by restoring to the world a sound conception of learning, and by rousing that genuine love and cariosity which led to the revival, he did even more by impressing on the age his own full-formed and striking personality. In all things he was original. Whether we regard him as a priest who published poem after poem in praise of an adored mistresc, as a plebeian man of letters who conversed on equal terms with kings and princes, as a solitary dedicated to the love of nature, as an amaleur diplomatist ireating affains of state with porapous cloquence in missives sent to popes and emperors, of again as a traveller eager for change of scene, ready to climb mountains for the enjoyment of broad prospects over spreading champaigns; in all these divers manifestations of his peculiar genius we trace some contrast with the manners of the 14 th century, some emphatic anticipation of the 16 th . The defects of Petrarch's character were no less striking than its qualities, and were indeed their complement and counterpart. That vivid conception of intellectual and moral sell-culture which determined his ideal took the form in actual life of all-absorbing egotism. He was not content with knowing hirnelf to be the leader of the age He claimed autocracy, suffered no rival near his throne, brooked mo contradiction, demanded uncopditional submissiop to his will and judgment. Petrarch was made up of contradictions. Praising solitude, playing the bermit at Vaucluse, he only loved seclusion as a contrast to the society of courts. While he penned dissertations on the futility of fame and the burden of celebrity be was trimming his suils to catch the breeze of popular applanse. No ane professed a more austere morality, and few medieval writers indulged in creder satire on the female sex; yet he passed some years in the-society of a concubine, and his living masterpiece of art is the apotheosis of chivalnous passion for a woman. These diaconds of an andecided nature displayed themseives in his politiced theorion and in his philosophy of conduct. In one mood be was fain to ape the aptique patriot; in another he affected the monastic saiat. He was clamorous for the freedom of the Roman peoplel yet at one time the called upon the popes to re-entablish themselves is the Etermal City; at anather he besought the emperor to make it his headquarterst at a third he hailed in Riensi the founder of a new republic. He did not perceive that thl these planas were
incompatible. His relations to the Lombard nobies were equally at variance with his professed patriotism; and, while still a housemate of Visconti and Correggi, he kept on issuing invectives against the tyrants who divided Italy. It would not be difficult to multiply these antitheses in the character and the opinions of this singular man. But it is more to the purpose to remark that they were harmonized in \& personality of potent and enduring force.

The point to notice in this complex personality is that Petrarch's ideal remained always literary. As philosopher, potitician, bistorian, essayist, orator, he aimed at lucid and harmonious expression-not, indeed, neglecting the importance of the material he undertook to treat, but approaching his task in the spirit of an artist rather than a thinker or a man of action. This accounts'for his bewidering versatility, and for his apparent want of grasp on conditions of fact. Viewed in this light Petrarch anticipated the Italian Renaissance in its weaknessthat philosophical superficiality, that tendency to ornate rhetoric, that preoccupation with stylistic trifles, that want of profound conviction and stern sincerity, which stamp its minor literary products with the note of mediocrity. Had Petrarch been possessed with a passion for some commanding principle in politics, morality or acience, instead of with the thirst for selfglorification and the ideal of artistic culture, it is not wholly Impossible that Italian humanism might have assumed a manlier and roore conscientious tone. But this is not a question which admits of discussion; for the conditions which made Petrarch what he was were already potent in Italian society. He did but express the spirit of the period be opened; and it may also be added that his own ideal was higher and severer than that of the illustrious humanists who followed him.

As ani author Petrarch must be considered from two points of view-first as a writer of Latin verse and prose, secondiy as an Italian Iyrist. In the former capacity he was speedily outstripped by more fortunate scholars. His eclogues and epistles and the epic of Africa, on which he set such store, exhibit a comparatively limited command of Latin metre. His treatises, orations, and lamiliat letters, though remarkable for a prose style which is eminently characteristic of the man, are not distinguished by purity of diction. Much as he admired Cicero, it is clear that he had not freed himself from current medieval Latinity. Seneca and Augustine had been 100 much used by him as modets of composition. At the same time It will be conceded that he possessed a copious vocabulary, a fine car for cadence, and the faculty of expressing every shade of thought or feeling. What he -lacked was that insight into the best clussical masterpleces, that command of the best classical dictlon, which is the product of successive generations of scholarship. To attain to this, Giovanni da Ravenna, Colluccio Sahutato, Poggio and Filelfo had to labour, before a Poliziano and a Bembo finally prepared the patb for an Erasmus. Had Petrarch been born at the close of the 1 gth instead of at the opening of the rath century there is no doubt that his Latinity would have been as pure, as versatile, and as pointed as that of the witty stylist of Rotterdam.

With regard to his Italian poetry Petrarch occupies a very vifferent position. The Rime in Vida a Morte di Madonnc Laura cannot become obeofete, for perfect metricul form has here been married to language of the choicest and the purest. It is true that even in the Cansoniere, as Italians prefer to call that collection of lyrics, Petrarch is not devoid of faults belonging to his age, end sffectations which have imposed themselves with disastrous efiect through his authority upon the literature of Europe. He appealed in his odes and sonnets to a restricted audience already educated by the chivalrous love-poetry of Provence and by -Italian initations of that style. He was not careful to exclude The commonplacse of the school, nor anxious to finish a work of tife wholly free from fashfonable graces and from contemporary conceita. There is therefore a certain element of artificiality in his treatment; and this, since it is easier to copy defects than excellencies, has been perpetuated with wearisome monotony by versifiers who chose hirn for their model. But, after making due eltowace for pecmiliarities, the abese of which has brought
the name of Petrarchist into contempt, we can agree with Shelley that the lyrics of the Conzoniere "are as spells which anseal the inmost enchanted fountains of the delight which is the grief of love." Much might be writter about the peculiar position held by Petrarch between the metaphysical lyrists of Tuscany and the more realistic amorists of succeeding generations. True in this respect also to his anticipation of the coming age, he was the first Italian poet of love to free himself from allegory and mysticism. Yet he was far from appronching the analysis of emotion with the directness of a Heine or De Musset. Though we believe in the reality of Laura, we derive no ctear conception either of her person or her character. She is not so much a wothan as woman In the abstract; and perhaps on this very account the poems written for her by ber lover have been taken to the leart by countless lovers who came after him. The method of his art is 50 generalizing; whlle his feebing is 50 natural, that every man can see himsell reflected in the singer and his mistress shadowed forth in latura. The same criticism might be passed on Petrarch's descriptions of nature. That he felt the beauties of nature keenly is certain, and he frequently touches them with obvious appreciation. Yet he has written nothing so characteristic of Vaucluse as to be inapplicable to any solitude where there are woods and water. The Cansonicre is therefore one long melodious monody poured from the poct's soul, with the indefinite form of a beautiful woman seated in a lovely landscape, a perpetual object of delightful contemplation. This disengagement from local circumstance without the sacrifice of emotional sincerity is a merit in Pctrarch, but it became a fault in his imitators. Lacking his intensity of passion and bis admirable faculty for scixing the most evanescent shades of difference in feeling, they degenerated into colourless and lifcless insipidities made insupportable by the frigid repetition of tropes and conceits which we are fain to pardon in the master
Petrarch did not distinguish himself by love-poetry alone in the Italian language. His odes to Ciacomo Colonna, to Cola di Ricnzi and to the princes of Italy display him In another light. They exhibit the oratorical fervour, the pleader's cloquence in its most perfect lustre, which Petranch possessed in no less measure than subjective passion." Modern literature has nothing nobler, nothing more harmonious in the declamatory style than these three patriotic effusions. Their spirit iiself is epoch-making in the history of Europe. Up to this point Italy had scarcely begun to exist. There were Florentines and Lombards, Guelfs and Ghibellines; hut even Dante had scarcely conceived of Italy as a nation, independent of the empire, inclusive of her several component commonwealths. To the high conception of Italion nationaffty, to the belief in that spiritual unity which underlay her many disconds and divisions, Petrarch attained partly through his discingagement from civic and local. partisanship, partly through his large and liberal ideal of culture.

- The materials for a tife of Petracch are afforded in abundance by his leteers, collected and prepared for publication under his own eyen. These are divided into Familiar Correspendence. Contespond. ence is Old Age, Disers, Lellers and Letlers vilhont a Tille: to which may be added the curious autobiographical fragment entitled the Epistle to Positerity. Next in importance rank the epistles and eclogues in Latin venc, the Italian poems and the rhetorical addremes to popes, emperors Cola di Ricnzi and mome getat men of antiquity. For the comprehension of his character the ireaise D_{e} contemplu ar undi, addressed to St Augustine and styled his Secret. is invaluable. Without attempting a complete list of Petrarch's works, it may be well to illastrate the extent of his erudition and bis ectivity as a writer by a bricf conumeration of the moot int portant. In the eection belonging to moral philosophy, we find De remedias ulrimsque forlunce. a treatise on human happiness and unhappiness; be vita solitaria, a pancgirde of solitude; De ptio retigiosorrm, a similar essay on monastic tife inspired by a vish to his brother Gherando in his convent near Marneiles. On historical subjects the most considerable are Rerum memarandarwim libri, a miscellany from a student's commonplace-book, and De piris illustribus, an epitome of the blographies of Rotnan worthies Throe polemieal works require mention: Contwe cyjusdam anomyma
 libri, and Do swi ipsims et mullormm iguorantio-controversial and mancastic compositions, which grew out of Petrarch's quarrels with the physicians of Avgmon and the Averroists of Padian. In this omenexion it might atho bo well to mention the remarisable
gatires on the papal conirti included in the Epistolee wine dibut. Five public orations have teen prescrved, the mort weighty of which, in explanation of Peqrarch's conception of literature, is the epeech deliverod on the Capitol apon the. occation of his coronation. Amons his Latin poerns Africa, an epic on Scipio Aricatus, talees the firse place. I welve pecloguas and three books of tipivier in verse clove the list. in Italian we pousess the Canronjere, which includes odes and sonnets writtert for Laura during her fifetime. thooe written for ber diter fret death; and a miacellametue tection containing the three patriotic codes and throe famous pootical invectives against the pepal court. - Besides these lytical compositions are the semi-tpical or illegorical Trions-Triumphs of Love, Chastity, Death, Fame, Time and Divinity, written in terma rima of amooth and IImpid quality. Though these Triumphas as a whole are defcieat in pomic inspiration, the socond canto of the Trioufo delle merth, in which Petrexch describes a vision of his dead love Laura, in justly famous for reserved passion and pathos tempered to a tranquil harmony.

The complete bbliography of Phetrath formas ai cinsiderable volume. Such a werf was attermpted by Dotmenice Rustesti
 of 1581 in folio, as the basis for all subsequent coditions of his collected works. Among editions of the Canzoniere special mention may be made of those of Marsand (Padua, 1820), Leopardi in le Monnier's collection Mentioa (18gs), and Cuxdini (18yg). Nor muse Fracumetion Itaian verwon of the Lellegs (publishod in 5 vola by Le Monnier) be meglected. De Sade's Lifa of the poct (Amaterdam, 1764-1767) marks an epoch in the history of his numerous biographies; but this is in many important points untrustworthy. and it has trea-superseded by Cusurv Koerting's exhametive volume on Potrurcas Lebas wind Werke (Leipaig. 1978). Geors
 contains a well-digested estimate of Petrarch's relation to the revival of learning. Mexiere's Petrarywe (IB68) is a monograph of merit. English readers may be referved to a litite book on Petmurth by Hemry Reove, and to vole ii. and iv. of Symord's Renaissuncen is Ituty. See aloo Maud F. Jerrold, Framcesco Petrarce, poal and humamise (1909).
(J. A. S.)

FITRE, SIR EDWARD (:635-1699), Jesait confessor of Ring James II. of England, was boen in Paris. Ho was the son of Sir Francia Petre, Bart., ol Cranham, head of a gunior branch of the family of the Barons Petre, and his wife Elizubeth Gage, diaghter of Sir John Gage, both strong Roman Catholics. In 1649 he whs sent for his education to the Jesuit College at St Omer, and he entered the order undor the name of Spemoci in 1652, but did not receive the fuil orders till 1671. In 7679 tho succeeded his elder brother in the thtle and family cestates.' On the accession of James II. in 1685 he was chosen as confessor by the king, who looked upon him as " a resolute and undertaning man." Daring the whole of the king's reign retre was one of his edvisers who did the most to encourage him in the policy which ended by produciog the revolution of 1688 . The king contemplated making him archbishop of York, as the see was then vacant, but the pope, Innocent XI., who whs not friendly to the order, would not grant \& dispensation to hold it, and even directed Petre's superiors to reboke him for his excessive ambition. In 1687 he was made privy councillor. Whea the revohution broke out Petre was compelled to fiee disguised as a momen. After his fight he bad no further' relations whith Jemes II. After a visit to Rome, he became head of the Jesuit College at St Omer in 1695; from whence he was trensferred to Walten in Flanders in t6g7. He died on the 1 gth of Mas 1699. A younger brother Charles (1644-17t2) was also a member of the onder.
PETRE, EIR MLHAT (e. 1505-1572), Engtion politician, was a son of John Petre, a Devon man, and was eductited af Exeter College, Oxford, afterwards becoming a fchow of All Souls' Colicge. He entered the puhlie service in early life, owing his introduction therein doubtless to the fact that at Oxford he had been tutor to Anne Boleyn's brother, George Boleyn? Viscount Rochford, and began his official curcer by serving the English government abroad. In i536 he was made deproty, or proctor, for the vicar-generti, Thomas Cromwell, and airsuch he presided over the convocntion which met in funt of this year In 1543 Petre was knighted and was appointed a seeretary of state; in 1545 he was sent as ambassador to the emperor Charles V. A very politic man, he retained his positiont under Edward VI. and also under Mary, forsaking the protector Somerret at the right moment and winoing Mary's goodwill by'

Gavouriag her marriage with Philip II. of Spain. He resigned his secretaryship in 5 557, but took come part in public business under Elisebeth until his death at his residence, Ingatestone, Fsacr, on the izth of Januery 1572.

His mon John Petre (1549-1613) was crested Baron Petre of Wriule in akos. The and baron, was his son Willian (as7s1637), whose grandion was William, the 4th baron (c. 1626 168in). Denounced by Titus Oates as a papia, the lapt napyed was arrested with other Roman Catholic neblemen in 1678 and nemained without trial in the Tower of London until his death. Its hrother John ($1699-1684$) was the gth iord, and the fittert nephew, Robert (i689-1713), was the 7 th lord. It was Robert's action in euttling a lock of hair from a hay's hend which led Pope to write his poem" "The Rapeof the Lock." The Petres have beet consistently attiched to the Roman Catholic faith, Wilian Joseph, the $13^{\text {th }}$ baron (1847 -1893), being a priest of the Roman church, and the barony is still (191t) ir exbteme.. One of the rit baron's grandsons was William Petre (160y-1677), who transIated the Flos sanctoraw of Pedro de Ribadeineira as Lives of dis Saints (St Oder, 1699; Londoa, 1730).
See Genemogioal Collections illustrative ate Fistory of Roman Calhofir Families of Englated, vol. i., edited by J. J. Howard and H. F. Burke

Pistrel, the general name of a group of blrds (of which more than 100 species are recognized), derived from the habit which some of them possess of apparently waiking on the surface of the water is the apostic St Peter (of whose name the woitd is a diminutive form) is recorded (Matt. xiv. 29) to have done. The petrels, all of which are placed in the family Procellariddoe, were formerly associated with the Laridae (sce Gult), but they are now placed as the soie members of the suborder Twbinares (the name denoting the characteristic tubular structure of their nostrils) and of the order Pracellariiformes (see Brpd). They are subdivided Into four groups or subramilies: (r) Pelecavoidinae (or Hafodrominae), containing some three or four species knowh as diving-petrels, with habits very different from others of the family, and almost peculiar to high southern latitudes from Cape Horn to New Zealand; (2) Procellariinae, or petrels proper (and shearwaters); (3) Dyomedeince, or alhatrosses (see Mallemuex); and (4) Occonifinoe, containing small sooty-black birds of the genera Cymodroma, Pealea, Pelogodroma, Carrodia and Oceanites, the distinctive nature of which was first recognized by Coues in 1864.
Petrels are archalc oceanre forms, with great powers of fight, dispersed throughout all the seas and oceans of the world, and some species apparently never resort to land except for the purpose of nldification, though nearly all are liabie at times to be driven ashore, and often very far inland, by gales of wind.' It would also seem that during the breeding season many of them are wholly nocturnal in their habits, passing the day in holes of the ground, or in ciefts of the rocks, in which they generally nestle, the ben of each pair laying a single white egg, sparsely speckled in a fow species with fine reddish dots. Of those species that frequent the North Attantic, the common StormPetrel. Procellaria pelagica, a littie hird which has 10^{-}the ordinary eye rather the look of a Swift or Swallow, is the "Mother Carey's chicken " of sailors, and is widely believed to be the harbinger of bad weather, but seamen hardiy discriminate bet ween this and others neurly resembling it in appearance, such as Leach's or the Fork-talled Petrel, Cymochored lexcorrhon, a rather larger but less common bird, and Wilson's Petrel. Ocetrites occanicus, the type of the Family Occanitidae mentioned above ${ }_{2}$ which is more common on the Ametican side. But tit is in the Sowliem Ocean that' Petrels most abownd, both as sperics and as individuals. The Cape-Figeon or Pintado Petrel, Dagtion capomsw, is one that has long been well known to mariners and other wayfaress on the grent waters, while those who voyase to or from Australia, whatever be the route they take, are
© Thus Oestrelala hacrilato, the Capped Petrel, aperts whooe proper home seems to be Guadeloupe and mone of the neffibouring Frest-Indian ishminds, has octentred id the State of New 'fort, neat Hoalogne, tri Norfolle, and in Hungary (Ibis; yovi, preoc)
certain to meet. Whth many more species, some, ts Ossijregs giganten, as large as Albatromes, and several of them called by anilors by a variety of choice mames, generally having reference to the strong smell of musk emitted by the birds, among which that of "Stink-pot" is not the most opprobsions. None of the Petrels are endowed with any brilliant colotring-mootyblack, grey of various tints (one of which. is often called ${ }^{\omega}$ Mue " ${ }^{\text {M }}$, and whice being the oaly hues the plumage exhibits.
The airstribution of the veveral speciee of Petreis in the Souchem Ocean han beem treated by A. Milse-Edwards in the Ammalas des

(X. N.$)^{2}$

PETRIE, GEORGE (1790-1866), Irish antiquary, was the son of James Petric, a native of Aberdeen, who had settled in Dublip as a portrait and ministure peinter. He was born in Dublin in Jenuary 1790, and was educated as as artist. .Besides attaining considerable reputation as a painter of Irish landscape, be devoted much time to the illustration of the antiquities of the country. In 1828 he was appointed to conduct the antiquarian and historical section of the ordnance survey of Ireland. In 1832 he became editor of the Dublis Penny Journal, a periodical designed to diaseminate information among the masses, to which he contributed numerous articles on the history of the fine arts in Ireland. Petrie may be regarded as the first scientific investigator of Irish archacology, his contributions to which are also in themselves al much importance. His Essay on Rowed Towers, for which in 1830 he received the prize of the Irish Academy, still ranks as a standard work. Among his other contributions to Irish archacology are his Resay on the Military Archilecture of Ireland and his History and Amiquilies of Tara Hill. He died on the 17 th of January 1866.
Sec the Life and Labours in Art and Archacolegy of Ceorge Pctric, by William Stokes (1868).

PETRIE, WILLUA EATTHET FUMDERS (1853English egyptologist, was born at Charlton on the 3rd of June 1853 , being the son of Willimm Petrie, C.E. His mother was the daughter of Captain Matthew Flinders, the Australian explorer. He took an early interest in archaeological research, and hetween 1875 and 1880 was busily engaged in studying ancient British remains at Stonebenge and elsewhere; in 1880 he published his boak on Stonchenge, with an account of his theories on this subject. He was also much interested in ancient weights and measures, and in 1875 published a work on Inductive M Cetrology. In 188i be began a long series of important surveys and excavations in Egypt, beginning with the pyramids at Giza, and following up his work there by excavations at the great temple at Tanis (1884), and discovering and exploring the long-lost Greek city of Naucratis in the Delta (1885), and the towns of Am and Daphnae (1886), where he found important remains of the time when they were inhabited by the Pharaohs. Between 1888 and 1890 be was at work in the Fayum, opening up Hawara, Kahun and Lachish; and in 1891 he discovered the ancient temple at Meduf. Much of this mork was done in connexion with the Palestine Exploration Fund. By this time his reputation was established. He published in 1893 his Ten Years' Digaings in Esyff, was given the bonorary degree of D.C.L. by Oxford, and was appointed Edwards Professor of Egyptology at University College, London. In 1894 be founded the Egyptian Research Account, which in 1905 was reconstituted es the British School of Archacoloty in Egypt (not to be confused with the Egypt Explaration Fund, founded 1892). Perhaps the most important work which the School has accomplished has been the inyestigation of the site of Memphis (q, v.)

The ertent as well as the chronolapical order of Profmere Petrie's excevadons may best be chown by a list of his works.
Wonzs.-Hia chief general wrorks on Esyptian cubjects are,

 Dymury (1900): Royal Tombs of the Earliest Dymasties (1901): Afynes and Irrodit Citias (1906): Religion of Ancient Eop (1go6): Porsonal Raigion in Egy (igo8). On particular sites Pyramids and Tames of Gind (IE61); Tamis I. (1885); Nanmatis 1. (1886);

 Diospolis (1901): ALdee I: (1902): Abydes II. (1903); Ei metye (rgou): Eeypions in Simad and Resparches in Simei (1906); Gisoli amd Réfen (1907); ALluribis (1908): Mamphis and Qwrmel (1909).
Pattiod (also called Cha-cliong-sao), a town and port of Siam, in the division of Pachim, about 45 m . E. of Bangkok. It is the centre of that: part of southern Siam which is watered by the Bang Pakong River. It is brik on low-lying, awamps groand, about 10 m . from the mouth of the above river. The population is about to,000, mixed Slamese and Chinesc, the fatter slightly predominating Rice-mills give employment to a large number of indentured Chinese coolies, but the inhshitants are chiefly engaged in agriculture. A rallway connecting with Bangkok was opened in the spring of 190%.
PRTROIES, a town apd port of entry in Lambion county, Ontario, Camada, situated 42 m . W. of Loadon of Bear Creek. at affivent of Sydenham Rtver, and on the Grand Trunk and Michigan Central railways. Pop. (1901), 4135. It is in the midst of the oil region of Canada, and numerous wells in the vicinity have an aggregate output of about $30,000,000$ gallons of crode oil per annum, mech of which ha refined in the town.

PETROLESTI (Lat. petra, rock, and desw, ofi), a term which. in its widest sense, embraces the whole of the hydrocarbons, gasoous, liquid and solid, occurring in nature (see Bromen). Here the application of the term is bimited to the liquid which is so important an article of commerce, though references wil also be made to natural gas which accompanies petroleum. Descriptions of the solid forms will befound in the articles on asphalt or asphaltum, albertite, elaterite, gilsonite, halchettite and ozokerite. Particulars of the shales which yield ofl on destructive distillation are given ta the article on paraffin.

Ancient Histery.- Petroleum was collented for une in the most remote age of which we have any records. Herodetus deacribes the oil pits near Arderiocm (near Babyion), and the pitch spring of Zacynthus (Zante), whilst Staba, Dipucorides and Pliny mention the ust of the oil of Asrigentum, in Sicily, for iflumination, and Plutarch refers to the poxpolcum found near Ecbatana (Keckuk). The ancient recoeds of China and Japan are stid to contain many allusions to the use of matural gas for lighing and heating. Petroleun ("burning water ") was known in Japan in the th century, whilst in Europe the gas springs of the north of Italy led to the ndoption in 1226 by the municipality of Salsornaggiore of a salamander surrounded by flames as its emblem. Marco Polo refers to the oil springs of Baku towards the end of the isthcentury; the medicisal preperties of the oil of Tegernsee in Bavaria gave it the name of "St Quirinura's Oil " in 1436; the oil of Pechelbronn, Elsass, was discovered in 4498 , and the "earthbalsapm " of Galicia was known in 1506 . The earliest mention of American petroleam occurs in Sir Walter Raleigh's account of the Trinidad pitch-lake in 1595; whilst thirty-seven years hater, the account of a visit of a Franciscan, Joseph de la Rocbe d'Allion, to the oil springs of New York was published in Sagard's Histoire de Caneda. In the sgh century. Thomas Shirley brought the natural gas of Wigan, in Shropehire, to the notioe of the Royal Society. In 1724 Hermann Boernaave referred to the oleum terrace of Burma, and "Barbados tar" was then well known as a mediciall agent A Russiap traveller, Peter Kalm, is his work on America, puhlished in 1748, showed on a map the oil springs of Pennsylvenia, and about the same time Raicevich referred to the "liquid bitumen" of Rumanin
Maders Davelopment and Industrial Progress.-The first commercial exploitation of importance appears to have been the distillation of the oil at Alfreton in Derbyshire by James Young. who petented his process for the manufacture of paraffin in 1850. In 1853 and 1854 patents for the preparation of this substance from petroleum were obtained by Warren de is Rue, and the process was applied to the "Rangoon oil" brought to Great Britain from Yenangyaung in Upper Burma. The active growth of the petroleum industry of the United States began in 1859, though in the early part of the century the pefroleum of Lates Seneca, N.Y., was used as an embrocation under the
name of "Seneca oit," and the "American Modicinal Oil" of Kentucky was largely sold after its discovery in 1829. The Pennsylvania Rock Oil Company was formed in 1854, hut its operatinns were unsuccessful, and in 1858 certain of the members founded the Seneca Oil Company, under whose direction E. L. Drake started a well on Oil Creek, Pennsylvania. After drilling had boen carried to a depth of 69 foet, on the $28 t \mathrm{th}$ of August 1859, the tooks suddenly dropped into a crevice, and on the following day the well was found to heve "struck oil." This well yielded 25 barrels a day for some time, but at the end of the year the output was at the rate of 15 barrek. The production of crode petroleum in the United States was officially reported to have been 2000 barrels in 1859, 4,215,000 barrels in 1869, 19,914,146 barrels in 1879, 35,163,513 barrels in 1889, $57,084,428$ barrels in 1899, and $126,493,936$ barrels in 1906. From Oil Creek, development spread first over the eastern United States and then became general, subsequently embracing Canada (1862), recently discovered fields being those of Illinois, Alberta and California ($44,854,737$ batrels in 1908).

For abott to years Pennsylvania was the one great oil producer of the world, but since 1870 the industry has spread all over the globe. From the time of the completion on the Baku field of the first flowing well (which was unmanageable and resulted in the lose of the greater part of the oil), Russia has renked second in the list of producing countries, whilst Galicia and Rumania became prominent in 2878 and 1880 respectively. Surnatra, Java and Borneo, where active development began in 1885, 1886 and $\mathbf{1 8 9 6}$, hid fair to rank before long among the chief sources of the oil supplies of the world. Similarly, Burma, where the Burmah Oil Company have, since 1890 , rapidly extended their operstions, is rising to a position of importance. Oil fields are being continually opened up in other parts of the world, nd whilst America still maintains her position as the largest petroleum producer, the world's supplies are now being derived from a steadily increasing number of centres.

Physical and Chemiead Properties.-Although our information respecting the chemical composition of petroleam has been slmost entirely gained since the middle of the 18th century, a considerable amount of empirical knowledge of the gubstance was possessed by chemists at an earlier date, and there was much speculation as to its origin. In his Syba sytharwen (1627), Francis Bacon states that " the original concretion of bitumen is a mixture of a fiery and watery substance," and observes that flame "attracts" the naphtha of Babylon "afar off." P. J. Macquet (1764), T. O. Bergman .(1784) Charles Hatchett (1798) and others abso expressed views with regard to the constitution and origin of bitumens. Of these early writers, Hatchett is the most explicit, the various bituminous substances being by him classified and defined. Jacob Joseph Winterl, in 1788, appears to bave been the first to examine petroleum chemically, but the earliest systematic investigation was that carried out by Professor B. Silliman, Jun., in 1855, who then reported upon the results which be bad obtained with the "rock oil or petroleum" of Venango county, Pennsylvania. This report has become a classic in the literature of petroleum.

The physical properties of petroleum vary greatly. The colour ranges from pale yellow through red and brown to black or greenish, while by reflected light ft is, in the majority of cases, of a green hue. The specific gravity of crude petroleum appears to range from 775 to 1.06 , and the flash point from below o° to $370^{\circ} \mathrm{F}$. Viscosity increases with density, hut oils of the same density often vary greatly; the coefficient of expansion, on the other hand, varies inversely with the density, but bears no simple relation to the change of fluidity of the oil under the infuence of heat, tbis being most marked in oils of paraffin base. The calorific power of Bakn oll appears to be highest, white this on is poorest in solid hydrocarbons, of which the American petroleums contain moderate quantities, and the Upper Burma oils the largest amount. The boiling point, being determined by the character of the constituents of the oil, necessarily varies greatly in different oils, as do the amounts of distillate obtained from them at specified temperatures.

Even prior to the discovery of petroleum in commercial quantities, a number of chemists had made determinations of the chemical composition of several different varieties, and these Investigations, supplemented by those of a later date, show. that petroleum consists of about 84% by weight of carbon with 12% of hydrogen, and varying proportions of sulphur, nitrogen and orygen. The principal elements are found in various combinations, the hydrocarbons of the Pennsylvania oils being mainly paraffins ($q . v$.), while those of Caucasian petroleum belong for the most part to the maphthenes, isomeric with the olefines (q.e.).

Parafins are found in all crude oils, and olefines in varying proportions in the majority, while acetylene has been found in Baku oil; members of the benzene group and its derivatives, notably benzene and toluene, occur in all petroleums. Naphthenes are the chief components of some cils, as already indicated, and occur in varying quantities in many others. Certain crude oils have also been found to contain camphenes, naphthalene and other aromatic hydrocarbons. It is found that transparent oils under the infuence of light absort oxygen, becoming deeper in colour and opalescent, while strong acidity and'a penetratint odour are developed, there changes being due to the formation of various scid and phenylated compounds, which are also occasionally found in fresh oils. The residues from petroleum distillation bave been shown to contain very dense solids and Fiquids of high specific gravity, having a large proportion of carbon and possessed of zemarkable flucescent propertiet.

Natural gas is found to consist mainly of the lower peraffins, with varying quantities of carbon dioxide, carbon monoxide, hydrogen, nitrogen and oxygen, in some cases also sulphuretted hydrogen and possibly ammonia. This minture dissolves in petroloum, excaping when the oil is stored, and conversely it invariably carries a certain amount of witer and oil, which is deposited on compression.

Occurrence.-Bitumen is, in its various forms, ope of the moot widely-distributed of substances, occurring in attata of every geological aye, from the lowest Aruhean rocks to thoee now it procest of deposicion, and in greater or less quancity throughout both bemispherts, from Spititergen to New Zoatwh, and from California to Japan. The occurrence of commercisily valuable petroleum is, however, comparatively limited, hitherto exploited deposits being confined to rocksy younger than the Cambrian amd older than the Quaternary, while the majority of doveloped oilfrelds have boen discovered north of the equator.
The main requisites for a productive oif or gas field are a porons reservoir and an impervious cover. Thus, while the mineral may be formed in a stratum other than that in which it is found, though in many cases it is indigenons to it, for the formation of a natural reservoir of the fuid (whether liquid or gas) it is nectemary that there should be a suitable porous rock to contain it. Such a rock is typically exemplified by a coarse-grained sandstone or cont glomerate, while a timestone may be naturally porous, or like the Trenton limestone of Ohio and Indiaua, rendered so by its conversion into dolomite and the consequent production of cavaties due to shrinkage-a change occurring only in the purer limestontes Similarly it is pecessary, in view of the hydrontatical relations of water and mineral oils, and the volatile character or the latter, that the poroua stratum should be protected from water and ait by an overlying shale or other impervious deposit. Water, often salinc or sulphurous, is also found in these prorous rocks and roplaces the oif as the latter is withdrawn.
In addition to these two peosesary factors, structural conditione play an importas part in determining the accumalation of oil and gac. the main supplies have been obtained from otrata unbrokea and comparatively undisturbed, but the cocurrence of anticlinal or terrace attucture, however atightly markod or limited in extent, exerts a powerful influence on the creation of reservoirt of petroleumn. These fectonic arches often extend for long dio tances with great regularity, but are frequently croved by subsidiary antidines, which themselves play 2 not vinimportant part in the aggretation of the oil. Owing to difference of density the oil and water in the anticlines ceparate into two layurs, the upper conslsting of oil which fills the anticlines, while the water remains in the nyocines. Any gas which may be present rives to the sumanits of the anticlines. When the slow folding of the strata is accompanied by a gradual local deacent. a modified or "arrestied" anticlinal structure, known as a "terrace" is produced, the upheaving action at that part being sufficient only to arrex the descent whith would otherwise occur. The terraces may thus be. regarided as flat and extended anticlipes. They meed mot be morimontal, and sometimes have a dip of a few feet per mile, as is the cateo of the Ohio and Indians ail frelds, where the amontr varies from
one to ten feet．These slight differences in level，however，are Sound to have a mott powerful effect in the direction already mentioned．

It is evident that accurate knowledge of the character and structure of the rock－formations in petroliferous territories is of the greatest importance in enabling the expert to select favourable sites for drilling operations：bence on well－conducted petroleum properties it is now customary to note the character and thickness of the strata perforated by the drill，so that a complete section may be prepared from the recorded data．In some cases tbe depths are stated with reference to sea－level，instead of being taken from the surface，thus greatly facilitatlog the utilization of the records．
Oil and gas are often met with in drilied wells under great pressure， which is highest as a rule in the deepent wells．The closed pressure in the Trenton limestone in Oho and Indiana is about $200-300 \mathrm{Hb}$ ． per sq．in．，alihough a much higher pressure has been registered in many wells．The gas wells of Pennsylvania indicate about double the pressure of those drilled in the Trenton limestone． 600－800 W．not being unusual，and even 1000 bo having been recorded．The extremely high pressure under which oil is met with in wells drilled in some parts of the Russian oil felds is a matter of common knowledge，and a fountain or spouting well resuleing therefrom is one of the＂sights＂of the country A lamous lountain in the Groznyi oil field in the northern Caucosus，which began to How in August 1895，was estimated to have thrown up during the first three days $1,200,000$ poods（over $4,500,000$ gallons，or about 18,500 tons）of oil a day it flowed continuously，though in gradually diminishing quantly，for fifeeen mulths；afterwards the flow bocame intermittent．In April 1897 there was still an occasional outburst of oil and gas．

Three theories have been propounded to acoount for this pressure：－

I．That it results from the weight of the overlying strata．

2．That it is due tn water－presure，as in artelian wells（＂＇hydro－ static＂or＂artesian＂theory）．
3．That it is caused by the compressed condition of the gradually sccumulating gas．
Of these the first has been proved unterable，and while in some instances（e．e．certain wells in Ohio），the second has held good， the third appears to be the most widely applicable：

The conditions of formation and accumulation of petroleum point to the fact that the principal oil fields of the world are merely reservoirs，which will become exhrusted in the course of years，as in the case of the decreasing yield of certain of the American felda． But new deposits are continunlly being exploited，and there may be others as yet unknown，which would entirely alter any view that might be expreseed at the present time in regard to the probable duration of the world＇s supply of oil and gas．
As already stated，every one of the great grological aystems appears to have produced some form of bitumen，and in the follow－ ing table an attempt has been made to clamify on this basis the various localities in which petroleum or natural gas has been found in large or small quantities：－

Recent，－Lancashire（Down Holland Moss），Holland，Sweden， Sardinia，Kaluga（Russia），Red Sea，Aredirerranean．

Pleisloceme．－Schleswig－Holsecin，Minnesota，Hinois，Loulsiana．
Pliocenc．－Spain，Italy，Albania，Croatia，Hungary．Hewe， Hanover．Transcaspia，Aigeria，Florida，Alabama，California， Mexico，Peru，Victoria，New Zealand．

Miocene．－France，Switzeriand，Spain，Italy，Sicily，Grecce， Rumania，Turkey－in－Europe，Styria，Slavonia，Hungary，Transyl－ vaaia，Galicia，Lower Austria，Württemberg，Brandenberg．West Pruseia，Crimea，Kuban，Terek．Kutais，Tiflis，Elizaberpol，Siberia， Tranecaspia，Mesopotamia，Persia，Assam，Burma，Anam．Japan． Philippine Íslands，Borneo．Sumatra．Java．Algeria，Egypt，British Columbia，Alaska，Washington，Caiifornia，Colorado．Texas， Louisiana，Barbados，Trinided，Venezucla，Peru，South Australia， Victoria．New Zealand．

Olfgocene，－France，Spain．Greece，Rumania，Hungary，Transyl－ vania，Galicia，Bavaria．Eleass，Rhenish Bavaria，Hesse，Saxony， Crimea，Daghestan，Tiffis，Baku，Alaska，California，Florida．
Eocese－Devonshire（retinasphait），France，Spain，Italy，Asia Minor，Montencgro，Bosnia and Herzegovina，Rumania，Datmatia， Istria，Hungary，Transylvania，Galicia，Moravia，Bavaria，Elsass， Kistais，Armenia，Persia，Baluchistan，Afghanistan．Punjab， Assam．Sumatra，Algeria．Egypt，Maryland．Colorado．Utah， Nevada，California，Louisiana，Texas，Cuba，Colombia，Brazil．

Crelacoous，－Holland，France，Swierctand，Spain，Italy，Sicily． Grecoe，Hungary，Silesia，Moravia，Westphalin，Brunswick，Hanover， Schleswis－Holstein，（German）Silesia，Yoland，Kutais，Uralsk， Turkestan，Araxnia，Syria，Arabia，Persia，Tunis，Egypt，West Alrica，British Columbia，Alberta，Assinitoia；Athabasca，Manitoba． New Jersey，South Dalota，Washington，Montana，Okiahoma． Utah．Wyoming，Colorado，California，New Mexico．Arkansas， Texas，Louisiana，Mexico，Hayti，Trinidad，Colombia，Argentina［！］． New Zcaland．

Noocomian－－Sussex．France，Switzerland，Spain，Hungeiry． Transyvanie，Bukowina，Galicia，Hesse，Baden，Hanover，Bruns－ wick，Callornia，Texas．Mexico，Bolivia，Argentina．

Land，Spain，Italy，Lower Austris，Baden，Elsaw，Hease，Hanover． Brunswick，Sizran．Ty．⿰亻⿱丶⿻工二十⿴⿱冂一⿰丨丨丁口𧘇，Sibera，Persa，Madagascar，Alaska， Wyoming，Colorado，Mexico，Argentena

Tradsic．－Yorkahire，Scafiordshare．France，Portugal，Spain， Italy，Montencgro．Upper Austra，Tyrol，Bavara，Wurtiemberg． Baden，Elsass，Lothringen，Rhenush Bavaria，Rhensh Prussia， Flanover，Brunswick，Sweden，Spitzbergen，Punjab，China，Trans－ vanl，Cape Colony，Connecticut，New jersey，Virgina，North Caro－ lind，Wyoming，Argenuna，New South Wales，Oucensland．

Permian．－Yorkshire，Denbugh，Morava，Bohemia，Baden． Saxony．Volozda，Ala，Kazan，Simbirsk，Samara，Kansas，Wyoming． Oklahoma，Texas（Permo－Carboniferous）
Carbonaferous－Scotland．North of England，and Midlands， Waks，France，Belgium，Carniola，Moravia，Elsast，Saxony，Perm， Sizran，China，Cape Colony，Nova Scoun，Newloundland，Pennsyl： vania，West Virginia，Ohio，Mıchigan．Indiana，Illnois，Iowa， Missouri，Tennessee，Kentucky．Alabama，Kansas，Arkansa， Colorado，Oklahoma，Tasmanıa，Victona（Permo－Carboniferous）， West Australia（Permo－Carbonilerous）
Devoman．－Scotland，Devonshire，Spain，Hanover，Archangel， Vitebsk，Athabasca，Mackenzic，Ontario，Quebec，New Brunswick． Newfoundland，New York，Pennsylvania，West Virginia，Ohio， Michigan，Wisconsin，Kentucky．
Sulursan．－Shropshure．Walos Bohemia，Sweden．Esthonia， Mantoba，Ontario．Quebec．Newfoundland，New York，Pennsyl－ vania［！］．Oho，Michigan．Indiana，tlinois，Minnesota．Teanessee， Kentucky，Ceorgia，Alabama，Oklahoma，New Mexico，New Caledonia．

Cambratu－Shropshire，New York．
Archeon．－France，Norway，Sweden，Ontario．
In this list，while certain occurrences in rocks of undeterniined age in little－known regions have been omitted，many of those included are of merely academic interest，and a stimi larger number indicate fields supplying at prevent only local needs．All have been arranged in geographical order without reference to productive capacity or importance．It should be pointed out that the deposite which have been hitherto of chief commercial importance occur in the old rocks（Carboniferous to Silurian）on the one hand，and in the comparatively new．Tertiary formations on the other，the intermediate periods yielding but little or at any rate far kew abundantly．

Origin．－The question of the origin of petroleum（and natural gas），though for the first half of the soth century of little more than academic interest，has engaged the attention of naturalists and othera for over a hundred yeara．As early ns 1804 ．Humboldt expressed the opinion that petroleum was produced by distillation from deep－seated strata，and Kar！Reichenbech in 1834，suggested that it was derived from the action of heat on the turpentine of pine－trees，whilst Brunet．in 1838 ，adumbrated a similar theory of origin on the ground of certain laboratory experiments．The thoories propounded may be divided into two groups，namely，thone ascribing to petroleum an inorganic origin，and those which regard it as the result of the decomposition of organic matter．
M．P．E．Berthelot was the first to suggest，in 1866 ，after con－ ducting a scrics of experiments，that mineral oil was produced by purely chemical action，similar to that employed in the manu－ facture of acctyleme．Other theories of a like nature were brought forward by vatious chemists，Mendelécf．for example，ascribing the formation of petrofeum to the action of water at high tempera－ turcs on iron cartide in the interior of the earth．
On the other hand，an overwhelming and increasing majority of those who bave studied the natural conditions under which petroleu ma occurs are of opinion that it is of organic origin．The carlier sup－ porters of the organic theory held that it was a product of the natural distillation of coal or carbonaceous matter：but though in a few instances volcanic intrusions appear to have converted coal or allied substanoes into oil，it seems that terrestrial vegetation does not gencrally give rise to petroleum．Among those who have considored that it is derived from the decomposition of both animal and vegetable marine organisms may be mentioned J．P．Lesley． E．Orton and S．F．Peckham，but others have held that it is of exclusively animal origin．a view supported by such occurrences as those in the orthoceratities of the frenton limestone，and by the experiments of C．Engler，who obtained a liquid like crude petroleum by the distiliation of menhaden（fish）oil．Similarly there is a difference of opinion as to the conditions under which the organistrs have been mineralized，some holding that the procses has taken place at a high temperature and under great pressure；but the lack of practical evidence in nature in support of these viens has led many to conclude that perroleum，like coal，has been formed at moderate temperatures，and under pressures varying with the depth of the containing rocks．This view is supported by the lact that petrolcum is found on the Sardinian and Swedish coasts as a produser of the decomposition of sea weed，heated only by the sun． and under atmospheric pressure．
Consideration of the evidence leads us to the conclusion that． at least in commercinily valuable deposits，mineral oit has generally been formed by the decomposition of marine organisms，in some cases animal．in others vegetable，in others hoth，under practically normal conditions of temperature and pressure．
 adopted for the collection of petroleum appeters to have consisted in tert skimming the oil from the suriace of the water upoos methen: which it had accumulated, and Profeser Levey stites that at Paint Creek, in Johmoon oounty. Kentucty. a Mr George and others were in the habit of collecting oil from the sends, "by making shallow canaly 100 or 200 ft . long, with an upnght board and a reservoir at orie end, from which they obtained as much as 200 barrels per year by otirring the sande with an pole." It is said that at Echigo in Japan, old wells, supposed to have been dug several hundred years ago, are exibtent, and that a japanese bistory-called Kohushirsyabze, statee that "burning water" whe obrained in Echigy about A.D. 615

The petroleum industry in the United States may be concidered to date from the year 1859, when the firxt well avowedly driled me Uanoe for the propeduction of oil wag completed by E. L. Drake neveliod The present method of difling hase been evolved from ing brine and water. The drilling of petrolkum welle is crarried on by individuals or companiea, either on hads owned by them, or on propertics whowe owners grant lemses, usually on condition that a certain number of wells shall be suak within a stated period, and that a portion of the oil obexined (usually from onetentil to one-fourth) shall be appropristed as royalty to the leneor. Such lenesa are often transferred at a larger noyaley, especially after the teritory hat been proved productive. The wild-cat "e wella, suak by speculators on untested territory or on thade which had not previously proved productive, playod an important part in the carlier mapping out of the petroleum fielde. To diaconrage the sinking of wells on land immediately adjoining productive teritory, it has been usual to drill along the horders of the land as far as practicable, in order to first obtain the oil which might otherwise be mieed by others; and on nccount of the small aree often controiled by the operator. the number of welle drilled hate frequeatly been far in excesen of the number which might reseonably be cunk. Experience has proved that in mome of the cill felds of the United Staten one well to Eve acres is an close as they should be driled.

After the efection of the site, the firat operation consita in the erection of ehe rig. The chicf portion of chis ris is the derrick, ion phich conciste of lour trong uprights or leys held in Owatith position by ties and bracen, and rexting ont strong mamory. For driling the deeper pells, the derrick on acopunt of the length of the "Pering" of drilting toote lo manilly at leant 70 ft. high. about 20 ft . wide at the base, and 4 ft . wide at the surnmit. The whole derick is aet up by leyha, mo mortices or tenons being used, and thus the complete ris may be readily taken down and eet up on a mew site. The mamoe-poot, which supports the valkin beam, and the jack-posts, are dove-tatiod and teyed into the silla. The mamoos-poos placed fluch with one side of the main sill, the band-wheel jack-post being fioch with the other wide, so thme the walking beam, which impurte motion to the aring of zooks, works parallel with the main will.
The boiler generally used is of the locomotive type and is mundly stationary, though rometimes a portable forrat is preforsedi it it Either eer in the firat instance at some diatanct from, the engise and Fell, or in eubsequently. nemoved sufficiently far away before the drill enters the oil-bearing formation, and until the cill and gas are under control, in order to minimize the rink of fire. A larye boiler frequently mupplies the engines of woveral wella. The engive, which is provided with reversipg gear, is of 12 or 15 horme-power and morion is communicated through a belt to the band-wheel, which operstes the malling beam by meane of a crank. The throetle-value is opened or closed by twraing a grooved vertical palley by means of an endiess cord. culled the telegrpph, paaning round another pualley fixed apon the "Meadeche-poat," and is thus under the control of the driller morkinst in the derrici. The head-ache-post is a verical woodea beam placed on the main dill directly below the wrilling-beam, to sective the welgta of the latter in cace of breatage of connexions. The poition of the reversing link is altered by means of a cord, pasing over two pulleyra fixed reopectively in the engine-hpme and on the demick. At one end of the band-wheel shalt is the bull-rope pulley, and upon the other end is a crank having six holes to receive a moveble wrist-pia, the length of stroke of the waltint-beam being thus adjusted. The revolution of the bull-wheels is chected by the ure of a powerful bund-brake.

The band-wheed communicates motion to the walking-beam, while drilling is in progrens, through the crank and a connectingrod known as the pitman; to the bull-wheels, while the tools are being raised. by the bull-rope; and to the sand-pump reel, by a friction puiley, while the sand-pump is being used. It is therefore mecemary that the machinery should be so arranged that the conpexions may be rapidly made and broken. The sand-pump reel is met in motion by preming a lever, the reei being then brought into contract with the face of the band-wheel. The sand-pump desoends by gravitation. and its fall is checked by pressing back the lever. $t 0$ ast to throw the reel against a post which serves as a tratio.

The drilling toole ase mapended by an uncarrod mania rope, a in in dimmeter, pasing from the bull-wheel shait over a grooved wheel known at the crown-pulley, at the summis of the derrick The atring of dralling tools consints of two Dritry parts eaperated by an appliance lonown in the lars 700k. This piece of apparatus was introduced by Willimm Marrie in 1831, and consists of a long double link with clowely-fitaing jaws which, honever. lide freely up and down. It may be compered to a couple of clongated and flattened links of chain. The links are aboit 30 in. long and are interponed between the heavy iron augerthen ctrryits the bit and the upper rod, known as the sintrer-bara Their principal une is to give a sharp jar to the drill on the upstroks to that the bit is dislodged if it has become jammed in the nock In addition to the applinnces mentioned the tools compriat retmer! to enlacge the bore of the well, the winged-aubstitute which is fitted above the bit to prevent it from glancing off, and ebove the round reamer to keep it in place, a temper-screw with clampe and wenches. Sand-pumps and bailers are also required to rectove detritus, water and oil from the bore-hole.

The action of the jars and temper-acrew has been described by John F. Cartl an follows: "Suppose the tools to have been just run to the bettom of the well, the jars closed and the cable slack. The men now take hold of the buli-wheels and draw up the slack until the vinker-bar rises, the "play" of the jars allowing it to come up is in. without disturbing the auger-atem. When the jars come together they slack back about 4 in. 4 and the cable is in position to be ciamped in the temper-ticrew. If now the vertical movement of the wralling-beam be 24 in ., when it starts on the up-stroke the anker-bar rises 4 in , and the croancheads come together with a gmart blow, then the auger-atem is pieked up and lifted 20 in. On the down-strake, the auger-stem falls 20 im ., while, the finkerbar goes down 24 in . to telescope the jars for the next blow comiag tp. A diliful driller nevpr allowa bis jars to strike on the downctrolce, they are only used to jar down when the tools stici on some obstruction in the well before reaching the bottom, and in fishing operations. As unskilful workman sometimes ' loses the jar' and works for hours without wocomplishing anything. The tools may be atmoding at the bottom while be is playing with the slack of the cable or they may be swinging all the time aeveral feet from the bottom. As the jar works of, or grows more feeble, by reason of the downard advance of the drill, it is 'tempered 'to the proper strenget by letting down the temper-screw to give the jars more play. The temper-acrew lorma the connecting link between the walcing-beam and cable, and it is 'let out gradually to regutate the play of the jars as fart as the drill penctrates. When its whole length is run down, the rope clamps play very near the well-mouth, The toois are then withdrawn, the well is sund-pumped, sind preparations are ande for the next 'run.'

The ordinary eand-pump or bailer, consists of a plain cylinder of light galvanised iron with a bail at the top and a stem-valve at the bottom. It is usually about 6 ft . in length hut is sometimes as much as 15 or 20 ft., and as its valve-stem projects downwards beyond the bottom, it empties iteell when rested upon the bottom of the wast-troush.

The operation of drilling is irequeatly interrupted by the occusreace of an accident. which necessitates the use of fishing tools, If the frhing operation is unsuccessful che well has to be abandoned often after months of labour, unless it is found possible to drin past the tools which have been lost. In readiness for a fracture of the drilling tools or of the cable, special appliances known as Gishing tools are provided. These are so numerous and varied in corm that a description would he impossible within the scope of this article. The fishing cools are generally attached to the cable, and are used with portions of the ordinary string of tools, but come are fitted to pump-rode or tubing, and others to specinl rods.

The drilling of a well it commonly carried out under contract, the producer erecting the derrick and providing the engine and boilet white the drilling contractor finds the tools and is remonsible for accidents or feilure to complete the ardane the tel. The drilling "crew' consists of two drillers Way and two tood-dreserra, working in pairs in two "toure (noon to midnight and midnight to noon).

The earlier wells in Pennsylvania consisted of three sections, the firet formed of surface clays and gravels. the second of stratified rocks containing water, and the third of otratified rocks, including the oil-sands, usually free from water. The conductor, which was a wooden casing of momewhat greater Internal diameter than the maximum bore of the well, pased through the first of these divisions, and casing was uned in the second to prevent percolation of water into the oil-bearing portion. In later wells the conductor hes been replaced with an 8-in. wrought-Iron drive-pipe, terminatime in a steel shoe, which is driven to the bed-rock, and it 7 - in.-hole is drifted below it to the base of the lowest water-bearing stratumThe bore is then reduced to 5 in in, and a beveiled shoulder being made in the rock. s 5 I ln . easing. having a coltar to fit water-inght on the bevel shoulder, is inserted. The well is then completed with a gi in. bit. As the water is whit off before the portjon of the well below the water-bearing strata is bored the remainder of the drilling is conducted with only eufficient water fo the well to
edmet of sand-pumpling. The dinil is thus allowed to fall freely. instead of being partly upheld by the buoynncy of the water, as in carliter wells.
Welle in Pennaylvania now range in depte from 300 ft . to 3700 ft . Four strings of iron casing are usually employed, having the follow-
 forming the casing being screwed together. Contractors will aiten undertake to driil wells of moderate depth at 90 cents to $\$ 1$ per foot, but the cont of a deep well may amount to as much as $\$ 7000$.
The rotary system of-drilling which in in general use in the osifields of the constal plain of Texan is a modification of that invented poury by Fauvelie in 1845, and used in the early yean of the Industry in mome of the oil-producing countries of Europe. It is one of the mone rapid and economical which can be employed in soft formations, but where hard rock is encountered it is almost useless. The principle of this system consists ementiatly in the use of rotating holiow drilling rode or casing, to which is attached the drilling-bit and through which a continuous stream of water, under a prespure of 40 to 100 m. per eq. in., is forced.
The yield of petroleum wells varies within very wide limits, and the relative importance of the different producing diatricts is also roble of constantly changing. I. C. White ctate geologist of Wollu Weat Virginia, estimates that in fairly good producing sand a cubic foot of rock contains from 6 to 12 piats of oil. He ascumes that in what is considered a good producing district the amount of petroleum which can be obtained from a cubic foot of rock would not be more than a gallon, and that the average thickness of the oil-bearing rock would not exceed 5 it. Taking these figures as a basis, the total yield of oil from an acre of petroliferous territory would be a little over 5000-barrels of 42 U.S. gallona.
A flow of oil may often be induced in a well which would otherwise require to be pumped, by preventing the escape of gas which isuues with the oil, and causing its pressure to raise the oil. The device employed for this purpose is known as the water-packer, and consists in its simplest form of an India-rubber ring, wrich is applied between the tubing and the well-casing, to that upon compromion it makes a tight joint. The gas thus confined in the oil-chamber forces the oil up the subing.
For pumping a well a valved working-barrei with valved sucker is attached to the lower end of the tubing, a perforated "anchor " being placed below. The sucker carries a meries of three or four leather cupa, which are pressed against the inner stiflace of the working barrel by the weight of the column of oil. The sucker is connected by a string of sucker-rods with the walking beam. There is usualiy fixed above the sucker a short iron valverod, with a device known as a rivet-catcher to prevent damage to the pump by the dropping of rivets from the pump-rods.
On the completion of drilting, or when the production is found to decrease, it is usual to torpedo the well to increase the flow. Torponteles The explosive employed is generally nitroglycerin, Wolls and the amount used has been increased from the original 4 to 6 quarts to $60,80,100$ and even aco quarts It is placed in tin canisters of about 31 to 5 in . in diameter and about 10 ft . in length. The canlsters have conical bottoms and Gt one in the other. They are consecutively filled with nitroglycerin, and are lowered to the bottom of the well, one after the other, by a cord wound upon a reel, until the required number have been inserted. Formerly the upper end of the highest canister was fitted with a "firing-hend," consisting of a circular plate of iron, slightly smalier than the bore of the well. and having attached to its underside a vertical rod or pin carrying a percussion cap. The cap rested on the bottom of a small iron cylinder containing nitroglycerin. To explode the charge an iron weight, known as a go-devil, was dropped into the well, and striking the disk exploded the cap and fired the torpedo. Now, however, a miniature torpedo known as a go-devil squib, holding about a quart of nitroglycerin, and having a firing-head similar to that already described. is almost invariably employed. The disk is dispensed with, and the percussion cap is exploded by the impact of a leaden weight running on a cord. The squib is lowered after the torpedo, and, when exploded by the descent of the weight, fires the charge. It must be borne in mind that although the explosion may increase the production for a time, it is by no means certain that the actual output of a well is increased in ail such cases, though from mome wells there would be no production without the use of the torpedo.

The petroleum industry in Canada is mainly concentrated in the district of Petroica, Ontario. On account of the smail ormerta depth of the weils, and the tenacious nature of the ormegts principal strata bored through, the Canadian method of drilling differs from the Pennsylvanian or American ystem in the following particulars:-

1. The use of slender wooden boring-rods instead of a cable.
2. The employment of a simple auger instead of a spudding-bit.
3. The adoption of a different arrangement for transmitting motion.
4. The use of a lighter set of drilling tools.

Although petroleum weils in Rusaia have not the depth of many
of thowe in the Uafted Sentes, the diaturbed charecter of the strata. with consequent liability to caving, and the occurrence of hand concretions, render driling a lengthy and expenaive operntion. It is urual to begin by making an excava-

primatic

 tion 8 ft . in diameter and 24 ft . in depth, and lining the eides of this with wood or brick. The initial diameter of the well dritled from the bontom of this pit is in some inctances 25 much as 36 in, boreholes of the larger alize being preierred, as they are lest liable to become cboked, and admat of the use of larger bailers for raining the oif.The drilling of wells of large sise requires the use of heavy tools and of very atronat appliancen sencrally. The system usually adopted is a modification of the Canadian oyserm already deacribed, the boring roda being, however, of iron instead of wood, but the cable syutem has also to some extent been uned. For the ordinary 2 -in plaindaid manila cable a wire rope has in some cases becn succesonully substituted.

Rivetted tron casinge made of A-in. plate, is employed, and in constantly lowered wo ta tollow the drill closely, in order to prevent caving. Within recent yean, owing to the initiative of Colonel Englith, a method of rassing oil by the agency of compremed air has been introduced into the Baku oil-celds.

In Galicia the Canadian syntem is nearly excluaively adopted. In wome instances under-reauning is found neceasary. This consists in the une of an expanding reamer by means of which the well may be driled to a diameter admitting of the caning dencending freely, which obviously could not be accomplished with an ordinary bit introduced through the casing Of late years the under-reamer has been laxgely superteded by the eccentric bit.
The Davis calyx drill has also been employed for petroleum drifling. This apparatus may be deacribed as a ated-pointed coredrill. The bit σ cutter consists of a cylindrical The contr metailic sthell, the lower end of which is mader by a per process of gulleting, into a eries of sharp teeth, which are set in and out ahternately. The outward set of teeth drill the hole large enough to permit the driliing apparatus to deacend freely, and the teeth set inwardly pare down the core to such a diameter as will admit of the body of the cutter passing over it without seizing. The calyz is a long tube, or a mones of connected tubes, situated above the core harrel, to which it is equal in diameter.
In conclusion it may be stated that the two syatems of drilling for petroleum with which by far the largeat amount of work hat been, and is boing done, are she American or rope system, and the Caradian or rod systern. The former of Syomene is not only employed in the United States, but is in use in Upper Burma, Java, Rumanis and elsewhere. The letter wat introduced by Canadians into Calicie and, with certain modifcations, has hitherto been found to be she bew for that country. A form of the rod system is used in the Rusaian oilfielde, but owing to the large diameter of the wells the appliances differ from those employed clrewhere.

The wells from which the supplias of natural gas are obeained in the United States are drilled and cased in the same manner as the oil wells.

Tramsport and Slorage.-In the early days of the petroleum induntry the oil was transported in the most primitive manner. Thum in Upper Burma, it was conveyed in earthenware vemelt from the wells to the river bank, where it was poured into the holds of boats. It is interesting to find that a rude pipe-line formerly existed In this field for conveying the crude oil from the wells to the river; this was made of bamboos, but it is said that the loos by leakage wes so great as to lead to its immediate abandonment on completion In Ruscia, until 1875, the crude oil was carried in barrels on persian carts known as "arbas." These have two wheela of 85 to 9 ft in diameter, the body carrying one barrel. while another is alung bencath the axle. In America, crude petroleum was at first transported in iron-hooped berrets, holding From 40 to 42 American galons, which were carried by teamsters to Oit Creek and the Allegheny River, where they were loeded on boats, these being foated down stream whenever sufficient water was present-a method leading to much loes by collision and grounding. Bulk barges were soon introduced on the larger rivers, but the use of these was partially rendered unneceseary by the introduction of railways, when the oil was at first transported in barrels on freight cars, but later in tank-cars. These at first consisted of an ordinary truck on which were placed two mooden tub-iike tanks, each holding about 2000 gallons; they were repleced in 1871 by the modern type of tank-car, constructed with a borizontal cylindrical tank of boiler plate

The means of transporting petroleum in bulk commonly used at the present day is the pipe-line system, the hisory of which dates from 1860, in that year S. D. Karns sugserted laying a 6 -in. pipe from Burning Springs to Parkersburg. West Virginia, a distance of 36 m .: but his proposal was never carried into effect. Two years later, however, L. Hutchinson of New York, laid a short line from the Tarr Farm wells to the refinery, which pessed over a hill the oil being moved on the syphon principle, and a year later constructed another three miles long to the railway. These artempts were. bowever, unseccesalul, on account of the excessive leatags
at the joints of the pipen. Whth the adoption of carefully fitted screw-jointo in 1865 the pipe tine sradually came intogemeral use until in 189I the haca owned by the varion tranat companien of Pennsylvanim amounted in length to $25,000 \mathrm{~m}$.

The purmps employed to force the oil through the pipen vere at first of the gingle-cylinder or "donkey "sype, but theve were Cound to cause ezoemive wear- defect remedied by the uet of the Worthington pump now zenerally adopted. The engines uned on the main 6 -ir. lines are of 600 to 800 h p., while thowe ca the email-diameter local lines range from 25 to $30 \mathrm{~h} . \mathrm{p}$.

Tanks of various types are employed in storing the cil, thove at the wells being curcular and usually made of wood, with a contemt of 250 barrels and upwarda. Laige tanks of boiler-plate are med to receive the oil as it comes through the pipe-lines. Thome adopted by the National Transit Company are go ft. an diantiter and 30 ft . high, with slightly conical wooden roofs covered with aheet irron; their capacity is 35,000 barrels, and they are phoed upon the carefully levelied ground without any foundation.

Keromene is tmasported in bulk by various mpans; specially porsitructed steel tank bargen are used on the waterway of the United Staten, tank-cars on the railroedm, and tank-wagons on the roads. The barrels employed in the transport of petroleum products are made of well-measoned white-ank ataves bound by mix or eight iron hoope. They ase coated internally with glue, and paiated in the well-known colours, blue ctaves and white beads The tins largely used for kerowene are made by machipery and contain 5 Asmericas gallons. They are bermetically eseled for tramport

In Canade, meana of transport uimilar to thome already deccribed are employed, but the rewervoirs for storage often constist of exavetiona in the toft Efie clay of the oil diotrict, the eides of which are supported by planks.

The primitive methods originally in rae in the Russian oil-fields have already been deacribed but there were long ago supes eeded by pipe-lines, while a great deal of oil is carried by tank itemmers on the Caspian to the mouth of the Volea where it is transferred to barges and thence at Tzaritzin to railway tank-cars. The Armerican type of storage-tank is generally employed, in conjunction with clay-lined reservorth

Natural gas is largely used in the United States, and for some sime, owing to defoctive methods of storage, detivery, and con. mimption," great waste occurred. The improveracata introduced in 1890 and 1891 . whereby this state of affairs was put an end to, consisted ia the introduction of the principle of supply by meter and the adoption of a comprehensive syatem of roducing the initial presture of the gas, so os to diminish lom by leakage. For the Gater purpone Wentinghoure ganregulators are enployed, the positions of the regulators being so chosen as to equalize the presure shroughout the mervioe. The gas is distributed to the consumer from the wells in wrought-iron pipte, ranging in diameter from 20 ln down to 2 in. Riveted rroughtiron pipen 3 it. in diameter are almo reed. The initial presture is sometimes as high as 400 to to the sq. in., but usually rarges from 200 to 300 h. The mopt coramea mothod of distribution in cities and towns is by a zerias of pipes from 12 in down to a in in diameter, usurily carrying a preaure of about 4 ou to the aq. in. To these pipes the eervice-piped leading into the housea of the conaumers are connected.
Refinine of Petrolewm. The dinetilation of petroleum, eapecially of puch as whe intended for medicinal your man rezularly in his work on the petroleum induetry that Johann'Lerche, who wisited the Caspinn district it 1735, found that the crude Caucauian oil sequired to be dietilled to render it atisfactorily comhustible, asd that, when distilied, it yielded a bright yellow oil resembling a spirit, which readily ignited. As early as 1823 the brothers Dubinin erected a refinery in the village of Mosdok, and in 1846 applied to Prinoe Woronzoff for a subsidy for extending the ube of petroleum-distillates in the Caucasus. In theis application, which was unsuccessful, they stated that they had taught the Don Cossacks to "change black naphtha into white," and showed by - drawing, pueserved in the archives of the Caucasian government. how this was achieved. They used an iron atill, set in brickwork, and from a working charge of forty "buckets" of crude petroleum obtained a yield of sixteen buckets of "white naphtha." The top of the still had a remavable head, connected with a condenser consiating of a copper worme in a barrel of water. The "white mapbiha" was mold at Nijni Novgorod without further treatment.
Some of the more viscous crude oils obtained in the United States are employed as lubricants under the name of "natural oild" either without any treatment or after clarification by subsi. dence and filtration through animal charcoal. Others are deprived of a part of their more volatile constituents by apontaneous evaporation, or by distillation, in vacuo or otherwise, at the lowest possible temperature. Such are known as "reduced oils."
In mont petroleem-producing countrice, however, and particutorly where the product is abundant, the crude oid is fractionally diatilled, so as to separate it into petroleum spirit of various grades. burning oils, gas oils, lubricating oils, and (if the crude oil yields that product) paraffin. The distillates obtained are usually purified by treatment, maccemively, with sulphuric acid and solution of caurtic soda, followed by wathing with vater.

Crude petroleum mes experimentally diatilled in the Unitud Staten in 1883 by Prol. Silliman (d. 1864), and the refining of petroleum in that country may be naid to date from about the year 1855 when Samuel M. Kier fitted up a small refinery with a five-barfil still. for the treatment of the oil obtained from his father's altvelli. At this period the supply of the raw material waz ingurficient to admit of any important developenemt in the Industry, and before the drilling of artedan welle for potroleum was inftimted by Drake the "coaboil" of thalo-oil industry had amumed coniderable proportions in the United Staces. Two larse refineries, one on Nowrown Creek, Long fisland, and another in South Brooklyn, also on Long laland, were ie suecemal operation when the abundant production of petroleum, which immediately followed the completion of the Drake well, placed at the disposal of the refiner a material which could be worked more proftrably than bituminous chale. The existing refineries were accordingly aitered to as to adapt them for the refining of petroloum; but in the manufacture of burning eil froum petroleum the small atille which had been in use in the dissillation of shalo-oil were at firat employed.
In the earifer refineriea the stille the capecity of which varied from 25 to 80 barreli, usually consited of a vertical cylinder conatructed of cast- of wrought-ifon, with a boiler-plate boteom and a cast-iron dome, on which the "goowe-neck" whe bolted. The charge was distiled almost to drynest, though the optration whe not carried far enough to cause the relidue to "coke." The operation was, however, completely revolutionized in the United Stafee by the introduction of the "cracking procen," and by the division of the distillation into two parts one conalsting In the removal of the more volatile constituents of the oil, and the ofter In the dietillation (which is usually conduced in mplurate etilis) of the residues from the firat distration, for the production ol lubricating oile and parafin.
Various arrangenpente have been propooed and patented for the continuous distilation of petroleum, in which crode ofl is supplied to a range of stille as fast as the distilates pass off. The aystem is Inrely imployed In Ruaia, and itt use has been frequentlyattempted in the Uniter States, but the remulta have not been eatffactory, on mocournt, is is said, of the moch greater quentity of dimolved get contained in the Americzen oil, the harger proportion of bentwene which such oil yields, and the less fluid character of the realdue.
In the United States a horizontal cylindrical still ls uasally employed in the dimillation of the spint and kerseme, but what is known as the "choemebox" will has aloo been hryely uned. Amecican stillis of the former type are conatructed of wroughtifrom or steel, and are about 30 ft . in length by 12 ft . 6 ln . In diameter, with a dorme about 3 ft. In diamecer, furnishod with a vapour.pipe is in. in dinmeter. The charge for such a etill te about 600 barrela The stills were formerly complotely bricked in, so that the vapouse should be kept fully heatod umtil they escaped to the eondenser, but since the introduction of the "cracking procem" the upper pert has esually been left exposed to stre sir. The cheeve-box utill hat a vertical cylindrical body, which may be as much $\overline{3} 30 \mathrm{ft}$. In diameter and 9 ft. in depth, coanseted by meuns of three vertical pipee with a vapour chert furmished with a large number, Irequently -s many as forty, of ${ }^{-1}$. dischargo-pipea arranged in paralle linet.
The atills eraployed in Rumia and Galicia are usually amaller than thome alneady deucribed.
The "eracklng" " procum, whereby a conalderable quantity of the oil which is iatermediate between kerceene and lubricatin oil is converted into hydrocarbons of lower apecific gravicy and boiling-point suitable for illuminating purposes, is one of great sciencific and technical interest. It is generally underatood that the producte of fractional distillation, even in the laboratory, are not dentical with the hydrocarbons prewent in the crode of, but wre in part producod by the ection of heat upon them. This wat plainly stated by Profemor Sillimian in the earliont stages of development of the American petroleum industry. An important paper bearing on the subject was publisined in 1871, by T. E. Thorpe and J. Young, as a preliminary gove on their experiments on the action of heat under pressure on solid paraffin. They found that the paraffin was thus eonverted, with the evolution of but liftle gas, into hydrocarbons which were liquid at ondinary temperatureat In an experiment on 3500 grams of parafin produced from shale (melting point $44^{\circ} 5^{\circ} \mathrm{C}$.) they obtained nearly 4 litres of liquid bydrocarbons, which they subjected to fractional diatillation, and on eranining the fraction distilling below $100^{\circ} \mathrm{C}$., they found it to comist mainly of olefines. The hydrocartion $\mathrm{C}_{5} \mathrm{H}_{\mathrm{ta}}$, for example, might be resolved into $\mathrm{C}_{5} \mathrm{H}_{31}+\mathrm{C}_{15} \mathrm{H}_{50}$ or $\mathrm{C}_{4} \mathrm{H}_{14}+\mathrm{C}_{14} \mathrm{H}_{251}$ or $\mathrm{C}_{3} \mathrm{H}_{10}+\mathrm{C}_{12} \mathrm{H}_{3}{ }^{\prime}$ \& Ac_{c}, the general equation of the decomposition being-

The product actually obtained is a mixture of several paraffins and beveral odefines.
The cracking procese practically conaists in distilling the olls at a temperature higher than the normal boiling point of the conactituents which it ls desired to decompone. This may he brought about by a diatillation under pressure, or by allowing the condensed distilate to fall into the highly heated residue in the etill. The rieult of this treatmeat is that the cormparatively heavy oils

PETROLEUM

 322

Uses. - Petroleum has very long been known as a soiuce of
ght and heat, while the use of crude oll for the treatment of wounds anca cutanous affoctiona, and as a lubricant, was even commerce at a still eartier date. For pharmacuutical purposes crude petroleum is no longer generally used by civiliced races,
though the product pesedine is largely employed in this way, phough the product rasedine is largely employed in this way,
end emakions of petroleum have been administered intermully
in various pectoral in various peetoral complaints; while the volatile product is kerosene, bat both the more and the less volatilo portions of petroleam are employed in suitable lamps. Petroleum prodacts
 af "air-gas," (2) the manuiacture of oin-gas, sad
ment of coous gas. For heating purpooes, the stoves exployed

 effected by agituion widh compresed aik. Oism which contrian

 by carrying the vapourn away to the rondeaner as hast tas they are

increased the demand for petroleum spintt. Fecroteum haty hargely superseded other oilh, and is still gaining ground, es a lubsicant for machinery and ratlway rolling-atock, either alone or in admirture with fixed oils. The more viscous descriptions of mineral oils have diso been found suitable tor use in the Elmore process of ore-concentration by oil
Legisfation.-Since the inception of the petroleum industry, moot civilized conutries have prescribed by la a a zeare of flash-point or inflammability, deoigned in most casee primarily to afford a definition of oils for lighting purposes which may be safely stored withoot the adoption of special precautions. In the United Kingdom the limit has, for the purpose in question, been fixed by the legistature at 73° F. by the "Abe-teat," which is the equivalent of the former tataderd of $100^{\circ} \mathrm{F}$, by the "open-test." While the subject of the testing of petroleum for legislative purposes has been investigated in Great Britain by committees of both branches of the legiskature, with a view to change in the law, the standard has never been raised, since anch a count would tend to reduce the avaiable bupply and thus lead wo incrave in price or decerioration in quality. Moroover the chiof object of the Petroleum Acte pansed in the United Kingdom has hitherto been to regulate storage, and fif has always been possible to obtain oils either of higher or lower flash-point, when such are preferred, irrespective of the legal standerd, in eddition to which it may be averted that in a properly constructed lamp used with reaconathe care the ordinary oil of commerce is a safe illuminant. The more recent legislation with rezard to " petroleum spirit " relates mainly to the quantity which may be atored for use on "Eight locomotives"

The more important local anchorities throughort the coumtry have made regulations under the powere conferred upoa, them by the Petroleum Acts, with the object of regulating the "keeping, tale, converance and hawking "of petroleum products heving a thash-point below 73° F., and the Port of London authority, together with other water-way and harbour authorities in the Uaited Kingdoen, have their own by-hwas relating to the navigation of vessels carrying auch petroleum.

In other countries the flash-point standards differ considerably,涪 do the storate regulations. In France, the standand is 35° C. (Gravier tetter, equivalent to $98{ }^{\circ}$ F.), and according to their fiashpoint, liquid hydrocarbons are divided into two classes (below and above $35^{\circ} \mathrm{C}$.), coasidered differently in regand to quantities storable and other regulations. In Germany, the Law prescribes a close-test of $21^{\circ} \mathrm{C}$., equal to aboot $70^{\circ} \mathrm{F}$., whilst in Russia the standard in the weighte to 84.4° F., by the closebert; in both theme countrica the weights of petroleum which may be tornod in apecibied building: of testing and various minimum standards have been adopted. In Pennsytvania, the prescribed limit is a "fire-test "of $110^{"}$ F.: equivaleat to about $70^{\circ} \mathrm{F}$., clove-cert, while in the State of New Yort it is 100° F., clom-apat.

See Sir Boverton Redwood's Pefrolevion and it Products Gad ed., London, 1906); A. Beeby Thompeon, Petroleum Mining (1910); L. C. Tamart, Exploivation de Pethole (1908): C. Engler and H. Hofer, Das Erdod 5 vols. (Igog seq.); A. B. Thomprom, The Oil Pields of Russia (tgob); and J. D. Fienry, Oit Fields of the Empire (2910): (B. R.)

PETROLOGY, the science of rock's (Gr. rérpos), the Branch of geology which is concerned with the investigation of the composition, structure and history of the rock masses which make up the accessible portions of the earth's crust. Rocks have been defined as "aggregates of minerals." They are the units with which the geologist deals in investigating the structure of a district. Some varieties cover enormous areas and are emong the commonest and most familiar objects of nature. Granite, sandstone, clay, limestone, slate often form whole provinces and build up lofty mountains. Such unconsolidated materials as sand, gravel, clay, soil are justly included among rocks as being mineral masses which play an important role in field geology. Other rock apecies are of rare occurrence and may be known in only one or two localities in distant parts of the earth's surface. Nearly all rocks consist of minerals, whether in a crystalline or non-crystalline state, but the insoluble and imperisbable parts of the skeletons of animals and plants may constitute a considerable portion of rocks, as for example, coral limestone, lignite beds and chalk.

Truamenat of the S mbjedi, In this paragraph the subject matter of the acience of petrology is briefly surveyed; the object is to point out the headings under which particular mubjects are treated (there is a separate article on the terms printed in italics). Ceneral quextione as to the naturte origin and chataifietion of rocice and the anthodi of eramination are dimeusied in the prement article. meicralay compriacs similar matter respecting the componeat manerals: medamorphism, melasomatisum, prewalalysis and the
formation of comonationt are asencian which efeet pocks and modily thens. Three chasess of rocks are reoognixed: the igneous, sedimentary and metamorphic. The plutonic, or deep-seated rocks, which coolod far below the surface, and occur as betholites, bosses, laccolites, and seiss, include the great clasees anamice, syemite, diorite, gabbro and pariotits; related to the granices are opilh, greicin, pegmatict, schen rock and micropegmatile; to che syenites, boralasile, nemurwito sephelisa-syenite and golite; to the diorites, aphanite, mapoleomitit and lomalite; to the gabbros, pyraxenite and theralile, and to peridotites, picrite and serfenfine. The hypabymal intrusive sockes, oecurring as sills, meine, diker, nechs, sac., are represented by popphyry and porphyrite (including bastonite, felsits and guark-porphyry), diabase and lamprophyre; some pilchstones belong to this group and contain crysdellites and sphermities. The volcanic rocla, iound typically as lava fows, include phowity and obriditas (with sometimea penike, trachyte and phouolice (and leucitophyre which in treeted under hascits), andesile and dacile, basalt (with the related dokrike, wariolits and lachylyte), nephefinite and lephrite. Among sedimentary rocks we secognize a volcanic group (including taf), agelomeralk and some Idnds of prwice); an areneceous seriee such as sand (soma, with glencowito), saindsfone, graphribe, grepwacis and grapl: an argillaceous group including clay frebrich. phyldile, lakerite. shate and sfate; a calcareous eeries with chath, limestome (often forming stalactites and stalagmiles), dolomile and maris or argillaceous limestones (fint occurs as nodeles in chalk); the aatural phosphated may be mentioned bere. The metanopphic socha are commonly preisess and sekists (includins micoutchiti): other types are amphibolike, charnockite, eclogite, eppdiorie, epidosite, eraunlitite, ilacolumile, hornfeds, mytomite and the scapolite rocks.

Composilion.-Only the commonest minerals are of importance as rock formers. Their number is sonall, not exceoding a hundred in all, and much less than this if we do not reckon the subdivisions into which the commoner species are broken upa The vast majority of the rocks which we see around us every day consist of quarts, felspar, mica, chlorite, kalin, calcite, epldote, olivine, augite, hornhlende, magnetite, haematite, limonite and a few other minerals. Each of these hes a recognixed position in the economy of nature. A main determining factor is the cherrical composition of the mass, for a certain minerat can be formed only when the necessary elements are present in the rock. Calcite is commonest in limestones, as these consist essentially of carbonate of lime; quartz in sandstones and in certain igneous rocks which contalin a high percentage of siticm. Other factors are of equal importance in determining the natural association or paragenesis of rock-making minerals, principally the mode of origin of the rock and the stages through which it has pessed in attaining its present condition. Two rock masses may have very much the same bull composition and yet consist of entirely different assemblages of minerals. The tendency is always for those compounds to be formed which are stable under the conditions under which the rock mass originated. A granite arises by the consolldation of a molten magma (a fused rock
 and great pressures and its component minerals are such as are formed in such circumstances. Exposed to moisture, carbonic acid and other subaerial agents at the ordinary temperatures of the carth's surface, some of these original minerals, such as quarts and white mica are permanent and remain unaffectedy others "weather " or decay and are replaced by new combinations. The felspar passes into kaolin, muscovite and quartz, and if any hlack mica (biotite) has been present it yields chlorite, epidote, rutile and other substances. These changes are accomen panied hy disintegration, and the roct falls finto a loose, incon berent, earthy mass which may be regarded as a sand or soil. The materiuls thus formed may be washed awoy and deposited as a sandstone or grtt. The structure of the original rock is now replaced hy a new one; the mineralogical comstitation is profoundly altered; but the bult chemical composition may not be vcry different. The sedimentary rock may again undergo a metamorphosis. If penetrated by igneous rocks it may bd recrystallized or, if suhjected to epormous pressures with heat and movernent, such as attend the bullding of folded mountain chains, it may be converted into a gneiss not very different in mineralogical composition though radically different in structure to the granite which was its original state.

Structure.-The two factors above enumerated, namely the chemical and mincral tomposition of rocks, are scurcely of greater
importance than their structure, or the relatione of the parts of which they consist to one another. Regarded from this standpoint rocks may be divided into the crystalline and the fragmental. Inorganic matier, if free to take thit physical state in which it is most stable, always tends to

Copreallos

 crystallize. Crystalline rock masses have consolidated from solution or from fusion. The vast majority of igneous rocka belong to this group and the degree of perfection in which they have attained the cyystalline state depends primarily on the conditions under which they solidified. Such rocks as granite, which have cooled very slowly and under great pressures, have completely crystallized, but many havas were poured out at the surface and cooled very rapidly; in this latier group a small amount of non-crystalline or glassy matter is frequent. Other crystalline rocks such as rock-salt, sypsum and anhydrite have been deposited from solution in water, montly owing to evaporation on exposure to the air. Still another group, which includes the marbles, miea-schists and quartzites, are recrystallized, that is to say, they were at first fragmental rocks, like limestone, clay and sandstone and have never been in a molten condition nor entirely in solution. Certain agencies however, acting on them, have effaced their primitive structures, and induced crystallization. This is a kind of metamorphism.The fragmental structure noeds little explanition; wherever mocks disintegrate fragments are produced which are suitable for the formation of new rocks of this group. The Progenater original materials may be organic (shells, corals, plants) or vitreous (volcanic glasses) or crystalline (granite, marble, \&cc.); the pulverizing agent may be frost, rain, running water, or the steam explosions which shatter the lava within a volcanic crater and produce the fragmental rocks known as volcanic ash, tuffs and agglomerates. The materials thay be loose and incoherent (sand, clay, gravel) or compacted by pressure and the deposit of cementing substances by percolating water (sandstone, shale, conglomerate). The grains of which fragmental rocks are composed may be coarse or fine, fresh or decayed, uniform.or diverse in their composition; the one feature which gives unity to the class is the fact that they are all derived from pre-eristing rocks or organisms. Because they are made up of broken pieces these rocks are often said to be "clastic."

Origin of Racks.-The study of the structure of rocks evidently leads us to another method of regarding them, which is more fundemental than those enumerated above, as the structure depends on the mode of origin. Rocks are divided into three great clases, the Igneous, the Sedimentary and the Metamorphic.

Raverem

The igneous (Lat. igmis, fire) rocks have all consoli-
dated from a state of fusion. Some of them are crystalline or "massive"; others are fragmental. The masive igneous rocks include a few which are ncarly completely vitreous, and still more which contain a small amount of amorphous matter, but the majority are completely crystallized. Among the best known examples are obsidian, pumice, basalt, trachyte, granite, diorite. The fragmental igneous rocks consist of volcanic ashes more or less firmly compacted. The sedimentery rocks form a second group; they

Sinctis

 have all been laid down as deprsits on the earth's surface subject to the conditions of temperature, noisture and pressure which obtain there. They include fragmental and crystalline varieties. The former consist of the debris of pre-existing rocks, accumulated in seas, lakes or dry land and more or less indurated by pressure and cementing gubstances Gravel, sand and clay, conglomerate, sandstone, shale are well-known examples. Many of them are fossiliferous as they, contain fragments of organisms. Some are very largely made up of remains of animals or plants, more or less altered by mineralization. These are sometimes placed into a special group as rocks of organic arigin, limestone, peat and coal are typical of this class. The crystalline sediments are such as rock-salt and gypsum, deposits of saline lakes or isolated portions of the sea. They were formed under conditionsunfevourable to Hife and bence rancly contan tomils. The melamorphic rocks are known to be almost entircly altered igneous or sedimentary manges. Metamorphiem consists in the destruction of the original structures motemon and the development of new minerals. The chemical composition of the rocks however suffers little change. The rock becomes as a rule mose crytalline; but all atages in the procese may be found and in a metemorphosed sediment, as. a sandetone, remains of the original sand grains and primary fragmental stracture may be observed, although ertensive recrystallization has taken place. The agencies which produce metamorphism are high temperatares, pressure, interstitial moisture and in many cases movement. The effects of high temperatures are seen best in the rocks surrounding great outcrops of intrusive granite, for they have been baked and crystab lized by the heet of the igneous rock (thermo-metamorphism). In folded monntain chaint where the strata have been greatly compressed and their particies have been forced to move over one another a different type of metamorphism prevaila (regional or dynarnic metamorphism).

Methods of Inverstigation.-The macrosoopic (Gr. parpos, lavge) characters of rocks, those visible in hand-specimens without the ald of the microscope, are very varled and difficult to deacribe accurately and fully. The cmacosenters. geologist in the field depends principally on them and on a few rough chemical and phystcal testa; and to the practical engineer, architect and quarry-master they are allimportant. Although frequently insufficient in themseives to determine the true nature of a rock, they usually serve for a preliminary classification and often give all the information which is really needed. With a small hottle of acid to test for carbonate of lime, 2 knife to ascertain the hardness of rocks and minerals, sod a pocket lens to magnify their structure, the field geologist is rarely at a loss to what group a rock belonges. The fine grained species are often indeterminable in this way, and the minute mineral components of all rocks can usually be ascertained only by microscopic examination. But it in easy to see that a sandstone or grit consists of more or less rounded, waterworn sand-grains and If it contains dull, weathered particles of felspar, shining scales of mica or small crystals of calcite these aloo rarely escape observation. Shales and clay rocks generally are soft, fine grained, often laminated and not infrequently contain minuto organisms or fragments of plants. Limestones are casily marked with 2 knife-blade, effervesce readily with weak cold acid and often contain entire or broken shells or other fossils. The crystalline nature of a granite or basalt is obvious at a glance, and while the former contains white or pink felspar, clear vitreous quartz and glancing flakes of mica, the other will show yellow-green olivine, black augite and grey striated plagioclase.

But when dealing with unfamiliar types or with rocks so fine grained that their component minerals cannot be determined with the aid of a lens, the geologist is obliged to have recourse to more delicate and searching methods of Morowapere investigation. With the aid of the blowpipe (to test the fusibility of detached crystals), the goniometer, the magnet, the magnifying glass and the specific gravity balance, the earlier travellers attained surprisingly accurate results. Examples of these may be found in the works of von Buch, Scrope, Darwin and many others. About the end of the 18th century, Dolomieu examined crushed rock powders under the microscope and Cordier in 18 ry crushed, levigated and investigated the finer ground-mass of igneous rocks. His researches are models of scrupulous accuracy, and he was able to announce that they consisted essentially of such minerals as felspar, augite, iron ores and volcanic glass, and did not differ in nature from the coarser grained rocks. Nicol, whose name is asseciated with the discovery of the Nicol's prism, beems to bave been the first to prepare thin slices of mineral substances, and his methods were applied by Witham (1831) to the study of plant petrifactions. This method, of such far-reaching importance in petrology, was not at once made use of for the systematic

Inveatiantion of rocks, and It wes not till 1858 that Sorby pointed out its value. Meanwhile the optical study of sections of crystals had been advanced by Sir David Brewster and other phymelats and mineralogists and it only remained to apply their methods to the minerals visible in rock sections. Very rapid progress was made and the names of Zirkel, Allport, Vogelsang, Schuster, Rosenbuscb, Bertrand. Fouqué and Lévy are among those of the most active pioneers in the new field of research. To such importance have microscopical methods attained that textbooke of petrologyat the present time are very largely devoted $t 0$ a description of the appearances presented by the minerals of rocks as studied in transparent micro-sections. A good rock-section should be about one-thousandth of an inch in thickneme, and is by no means very difficult to make A thin sectioses spenter of the rock, about as larse as a hatifenny may obvlous crackes By grinding on a plate of planed steel or cast iron with a little fine carborundum it is soon rendered fat on one side and is then transferred to a abeet of plate glass and amoothed with the vety finett emery till all minute pite and roughnemen are removed and the surface it a uniform plane. The rock-chip is then washed, and placed on a copper or iron plate which is heated by a spirit or gas tamp. A microscopic glass alip is also warmed on this plate with a drop of viscous natural Canada balam on its surface. The more volatile ingrediones of the balam are diapelled by the heat and when that is accomplished the smooth, dry, warm rock is pressed firmly into contact with the plase plate so that the film of balsam intervening may be as thin as possible and free from air-bubblesThe preparation is allowed to cooi and then the rock chip is again fround down as before, first with carborundum and, when it becomea transparent, with finc emery till the desired thickness is obtained. It ia then cleaned, again heated with a little more balsom, and covered with a cover glass. The labour of grinding the first surface may be avoided by cutting off a amooth slice with an iron disk armed with eruahed dlamond powder. A second application of the slitter after the first face is moothed and cemented to the glass will in expert hands leave a rock-wection to thin as to be already transparent. In this way the preparation of a enction may require only twenty minutes.

The microscope employed is usually one whlch is provided with a rotating atage beneath which there is a polariser, while above the mervecas objective or the cyepiece an anglyser is mounted: alternatively the stage may be fixed and the polarizing and analysing prisms may be capable of simultancous rotation by means of toothed wheels and a connecting-rod. If ordinary light and not polarized lisht is desired, both prisme may be withdrawn from the axis of the instrument; if the polarizer only is inserted the light transmitted is plane polarized; with both prisms in position the dide is viewed berween "erossed nicols." A mieroscopic rocksection in ordinary ifght if a suitahle magaification (ay 30) be employed is seen to consist of grains or crymals varying in colour, anomates size and shape. Some minerals are colourlest and trant Cumernh parent (quartz, calcite, (elspar, muscovite, \&c.), others (diopside, hornblende, chiorite), blue (glaucophame), pink (garnet), ac. The tame mimeral may, present a variety of colourn, in the eame or different rocks, and these coiours may be arranged in zones parallel to the surfaces of the crystals. Thus tourmaiine may be brown, yellow, pink, blue, green, vioiet, grey or colourtess, but every mineral has one or more characteristic, because moat common tints. The thapes of the crystais determine in a general way the outlines of the sections of them presented on the slides. if the mineral has one or more good cleavages they will be indicated by systems of cracks (sce PI. III.). The refractive index is atso clearly shown by the appearance of the eections, which are rough, with well-defined borders if they have a much etronger refraction than the medium in which they are mounted. Some minerals decompose readily and become turbid and semptransparent (e.g. felspar); others remain always perfectly fresh and clear (e.g. quartz), otherre yield eharacteristic secondary products (euch as groen chlorite after biotite). The inchusions in the crystals are of great interest; one mineral may enciose another, or may contain spaces oceupied by glass, by fiuids or by gascs.

Lastiy the structure of the rock, that is to say, the relation of its components to one another, is usualiy cleariy indicated, whether it mherse be fragmental or massive; the presence of glassy matter Strectosph in contradlatinction to a completeiy cryataline or organic fragments; banding, foliation or ismination; the pumiceous or porous structure of many lavas; these and many other characters, though often not visible in the hand specimens of a rock, are rendered obvious by the examination of a microscopic section, Many refined methods of obeervation may be introduced, such as the measurement of the size of the elements of the rock by the help of micrometers; their relative proportions by means of a glass plate ruled in small muares: the angles between cleavages or faces seen in section by the use of the rotating mraduated stage, and the extimation of the
refractive indes of the miseral by comparion with thowe of difereat mounting media.

Further information is obtained by inserting the polariser and rotating the gection. The light vibrates now only in one plane, and in passing through doubly refracting crystals in the slide is, speaking generally, broken up into two rays, foretrewhich vibrate at richt angles to one another. In many coloured minerals such as biotite, hornbiende, tourmaline, chlorite, these two rays have different colours, and when a section containing any of these minerais is rotated the change of colour is often very strikint. This property, known as "pleochrosm" (Gr. Inden, more; xpen, colour), bof great value in the determination of rock-making minerais. It is often especially intenge un small spots which surround minute enclosures of other minerais, such as zircon and epidote; these are known as " pleochroic halon."

If the analyser be now inserted in such a position that it is crosed relatively to the polarizer the field of view will be dark where there age no minerals, or where the light pasess through isotropic substances much as glass, liquide and cubic cryatals, Domete All other crystailine bodies, being doubly refracting, Refretles. will appear bright in some position as the stage is rotated. The only exception to thls rule is provided by sections which are perpendicular to the optic axes of birefringent crystals; these remain dark or nearly dark during whole rotation, and as will be men later, their investigation is of special importance. The doubly refracting mineral sections, however, will in all cases appear black in certain poaitions as the stage is rotated. They are said to be "extinguished " When Exttortion. this takea place If we note these positions wo may measure the angle between them and any cleavages, faces or other structures of the crystal by means of the rotatiog stage. These angles are characteristic of the system to which the mineral belongs and often of the mineral epecics itself (aee Cerstallogmaphy). To fecilitate meagurement of extinction angles various kinds of eyepieces have been devimed, wome having a etauromcopic calcite plate, others with two or four plates of quarts cemented together; these are often found to give more exact resulte than ame obtained by obeerving mercly the position in which the mineral section is most completely dark between crosed nicols

The mineral mections when not extinguished ere not only bright but are coloured and the colours they show depend on severai lactorst the most important of which is the strength of the douhle refraction. If all the sections are of the same thickness as is nearly true of well. made dides, the minerals with strongent douhle refraction yield the highest polarization colours. The order in which the celours are arranged is that known as Newton's scale, the lowest being dark grey, then grey. white, yellow, orange, red, purple, blue and so on. The difference between the refractive indexes of the ordinary and the extraodinary ray in quarts is 400 , and in a rock-section about fif of an inch thick thia mineral given grey and white polarization tints; nepheifine with weaker double reiraction gives dark grey; augite on the other hand will give red and blue, while calcite with till tronger double refraction will appear pinkish or greenich white All sections of the same mineral, frowever, will not have the same colour; it was stated above that sections perpendicular to aa optic axis will be nearly black, and, in general, the more nearly any aetion approgches this direction the lower its polarization colours will be. By taking the average, or the higheat colour given by any mincral, the relative value of its double relraction can be estimated; or if the thickness of the section be precisely known the difierence between the two refractive indexes can be ascertained. If the slides be thick the colours will be on the whote higher than in thin slides.

It is often important to find out whether of the two axes of elasticity (or vibration traces) in the section is that of greater elasticity (or lesser refractive index). The quartz wedge or seienite plate enables us to do this. Suppose a doubly refracting mineral section so placed that it is " extinguished "; If now it is rotated through 45° it will be brightly illuminated. If the quartz wedge be passed across it so that the long axis of the wedge is paralle to the axis of elasticity in the section the polarization coiours will rise or fali. If they rise the axes of greater elasticity in the two mincrals are parallel; if they sink the axis of greater elasticity in the one is parallel to that of teser elasticity in the other. In the latter case by pushing the wedge sufficiently far complete darkness or compensation will result. Seienite wedges, gelenite plates, mica wedges and mica plates are also used for this purpose. A guartz wedge also may be calibrated by determining the amount of double refraction in all parts of its length. If now it be used to produce compensation or complete extinction in eay doubly refracting mineral aection, we can ascertain what is the strength of the double refraction of the eection because it is obviously equal and opposite to that of a known part of the quartz wedge.

A further refinement of microscopic methods consints of the ure of strongily convergent polarized !isht (konoscopic methods). This is obtained by a wide angled achromatic condenaer above the polarizer, and a high power microscopic objective. Those eections are most useful which are perpendicular to an optic axis. and consequently remain dark on rotation. If they beiong to uniaxiai crystals they thow a dark crow or convergent light between crosed nicole
the bars of which remain parallel to the wires in the ficld of the eyepiece. Sections perpendicular to an optic axis of a biaxial mineral under the same conditions show a dark bar which on rotation becomes curved to a hyperbolic shape. If the section is perpendicuLer to a." bisectrix " (set Crystallography) a black cross is seen which on meration opens out to form two hyperbolas, the apices of which are turned towards one another. The optic axes emerse at the apices of the hyperbolas and may be surrounded by coloured rings, though owing to the thinness of minerals in rock sections these are only scen when the double refraction of the mineral is strong The distance between the axes as scen microscope depends partly on the axial angle of the crosal and partly on the numerical aperture of the objecive. If it is mosured by means of an cye-piece micrometer, the optic axial angle of he mineral can be found by a simple calculation. The quariz welye, quarter mica plate or selenite plate permit the determination of the positive or negative character of the er'stal by the changes in the colour or shape of the figures observed in 1 he field. These operations are preciscly similar to those employed by the mineralogist in the examination of plates cut from erystals. It is sufficient to poinı out that the petrological microscope in its modern development is an optical instrunsent of great precision, enabling us to determine physical constants of crystallized substances as well as serving to produce magnificd images like the ordinary microscope. A great variety of accessory apparatus has been devised to fit it for these special uses.

The separation of the ingredients of a crushed rock powder from one to another in order to obtain pure samples suitable Separation for analysis is also extensively practised. It may of Compo- be effected by means of a powerful electro-magnet ceats.
the strengtb of which can be regulated as desired. A weak magnetic ficld will attract magnetic, then haematite and other ores of iron. Silicates containing iron will follow in definite order and biotite, enstatite, augite, hornblende; garnet and similar ferro-magnesian minerals may be succesgively absteacted, at last only the colourless, non-magnetic compounds, such as muscovite, calcite, quartz and felspar, with remain. Chemical methods also are useful. A weak acid will dissolve calcite from a crushed limestone, leaving only dolomite, silicates or quarte. Hydrofluoric acid will attack felspar before quarta, and if employed with great caution wilh dissolve these and any glassy material in a rock powder before dissolving augite or hypersthene. Methods of separation by specific gravity have a still wider application. The simplest of these is levigation (Lat. lenigare, to make smooth, lecis) of treatment hy a current of water, it is extensively employed in the mechanical analysis of soils and in the treatment of ores, but is not so successful with rocks, as their components do not as a rulc differ very greatly in specific gravity.
Fluids are used which do not attack the majority of the rockmaking minerals and at the same time have a high specific gravity. Solutions of potassium mercuric iodide (sp. gr. 3.196), cadmium borotungstate (sp gr 3 30). methlyene iodide (sp. gr 3 32), bromoform (sp. gr 286), or aceesilene bromide (spgr $4^{\circ}{ }^{\circ}$) are the princlpal media employed They may be diluted (with water. benzene, ic) to any desired extent and again concentrated by evaporation If the rock be a grante consisting of biotite (sp. gr 31), muscovite (sp gr. 285). quartz (sp , gr. 2.65). oligochsc (sp. gr $26 \downarrow$) and orthoclase (sp. gr. 2 56) the crushed minerals will all float in methylene iodjde: on gradual dilution with benzene they will be precipitated in the order given above. Alihough simple in theory these methods are tedious in practice, especially as it is common for one rock-making nuineral to enclose another. But expert handling of (resh and suitable rocks yiclds excellent results and much purer powders may be obtained by this means than by any other.

Although rocks are now studied principally in microscopic sections the investigation of fine crushed rock powders, which exemias was the first brancb of microscopic petrology to thom of Rock receive attention, is by no means discontinued. Aowders. The modern optical metbods are perfectly applicable to transparent mineral tragments of any kind. Minerals are almost as easily determined in powder as in section, but ft is otherwise with rocks, as the structure or relation of the components to one another, which is an eleraent of great importance in the study of the bistory and classification of rocks, is almost completely destroyed by grinding them to powder.
In addition to naked-eye and microscopic investigations chemical methods of research are of the greatest practical utility to the petrographer. The crushed and separated powders, obtained by the processes described above, may be
analysed and thus the chemical composition of the minerals in the rock determined qualitatively or quantitatively. The chemical testing of microscopic sections and minute grains by the help of the microscope is a very
 clegant and valuable means of discriminating between the mineral components of finc-grained rocks. Thus the presence of apatite in rock-sections is established by covering a bare rock-section with solution of ammonium molybdate; a turbid yellow precipitate forms over the crystals of the mineral in question (indicating the presence of phosphates). Many silicates are insoluble in acids and cannot be tested in this way, but others are partly dissolved, leaving a film of gelatinous silica which can be stanned with colouring matters such as the aniline dyes (nepheline, annlcite, zeolites, \&ec.).

Complete chemical analyses of rocks are also widely made use of and arv of the first importance, espectally when new species are under description Rork analysis has of late scars (largely under the inducnec of the chemical Laboratory of the United States Geological Survey) reached a high pitch of refinement and complexity. As many as twenty or twenty-five components may be determined, but for practical purposes a knowledge of the relative proportions of silica, alumina, ferrous and ferric oxides, magnesia, lime, potash, soda and water will carry us a long way in determining the position to which a rock is to le assigned in any of the conventional classifications. A chemical analysis is in itself usually suffictent to indicate Whether a rock is igneous or sedimentary and in cither case to show with eonsiderable accuracy to what subdivision of these classes it belongs. In the rase of metamorphic rocks it often establishes whether the original mass was a sediment or of voleanic origin.

The specific gravity of rocks is determined in the usual way by means of the balance and the pscnometer. It is greatest in those rocks which contain most magnesia, Iron and heavy metals, lesst in rocks rich in alkialis, silica and water. it diminishes with weathering, and generally those rocks whiminishes with weathering. and gencrally those rocks Orawith which are highly erystalline have higher specific gravilies than those which are wholly or parily vircous when both have the same chemical composition. The specific gravity of the commoner rocks ranges from about 2.5 to 3.2.

The above methods of investigation, naked eye, physical, microscopical, chemical, miny be grouped together as annlytical in contradistinction to the syathetic investigation of rocks, which proceeds by experimental work to reproduce different rock types and in this way to clucidate their origin and explain their structures. In many cases no experiment is necessary. Every stage in the origin of clays, sands and gravels can be scen in proccss around us, but where these have been converted titio coherent shales, sandstoncs and conglomerates, and still more where they have experienced some degrec of metamerphism, there are many obscure points about their history upon which experiment may yct throw light. Up to the present time these investigations have been aimost entirely confined to the attempt to reproduce igneous rocks by fusion of mixtures of crushed minerals or of chemicals in specially contrived furnaces. The carliest researches of this sort are of those of Faujas St Fond and of de Saussure, but Sir James Hall really laid the foundations of this branch of petrology. He showed (1708) that the whinstones (diabases) of Edinburgh were (usible and if rapidly cooled yielded black vitrous masses closely resembling naturat pitchstones and obsidians; if cooled more slowly they consolidated as erystalline rocks not unlike the whinstones themselves and containing olivine, a ugite and felspar (the essential minerals of these rocks). Many years later Daubrée, Delesse and others carried on similar experiments, but the first notable advarice was made in 1873 , when Fouque and Levy began their researches.
They succeeded in producing such rocks as porphyrite. leucitetephrite, basalt and dolerite, and obtained also various structural modifications well known in igneous rocks, e.f. the porphyritic and the ophitic (Gr. Inr, serpent). Incidentally. they showed that while many basic rocks (basalts, \&c.) could be perfectly imitated in the laboratory, the acid rocks could not, and advanced the explanation that for the crystalization of the latter the gases never absent in natural rock magmas were indispensable mineralizing agents It has subsequently been proved that steam, or such volatile substances as certain borates, molybdates, chlorides, fubrides, assist in the formation of orthoclase, quartz and mica (the minerals of granite) Sir James Hall also made the first contriburion to the experimental study of metamorphic rocice by converting chall

Inso marble by heatiag it in a clowd eun-barrel, which prevented the escape of the cartonic acid at high temperatures. Adams and Nicholvon have carried this a stage farther by oubjecting marble to great pressure in hydraulic presses and have shown how the foliated structures, frequent in natural marbles, may be produced artificially.
Rock Classificalion.-The three great classes of rocks above enumerated-the igneous, the sedimentary and the meta morphic -are subdivided into many groups which to a small extent resemble the genera and species under which the naturalist classifies the members of the animal kingdom. There are, however, no hard and fast boundaries between allied rocks. By increase or diminution in the proportions of their constituent minerals they pass by every gradation into one another; the distinctive structures also of one kind of rock may often be traced gradually merging into those of another. Hence the definitions adopted in establishing rock nomenclature merely correspond to selected points (more or less arbitrary) in a continuously gradusted scries. This is frequently urged as a reason for reducing rock classification to its simplest possible terms, and using only a few generalized rock designations. But it is clear that many apparently trivial differences tend regulariy to secur, and have a real significance, and so long as any variation can be shown to be of this nature it deserves recognition.
The igneous rocks (crymalline and fragmental) form a well-defined group, differing in origin from all others. The crystalline or massive enseses vaneties may occur in two different ways; the lavas have Tacke. been poured out at the surface and have consolidated after cjection. under conditions which are fairly well understood, seeing that they may be examined at active volcanocs in many parts of the world; the intrusive rocks, on the ot her hand. have been injected from below into cracks and fissures in the strasa and have cooled there beneath masses which conceal them from view till exposed by denudation at a subsequent periad. The members of these two groups differ in many respects from one another, so that it is often possible to assign a rock to one or other of them on mere superficial inspection. The lavas (or effusive rocks), having cooled rapidly in contact with the air, are mostly finely crystalline or have at least fine-grained ground-mass representing Laves or Truach that part of the viscous semi-crystaline lava low which was still liquid at the moment of eruption. At this time they were exposed only to at mospheric pressure, and the steam and other gases, which they contained in great quantify, were free to escape; many important modificatione arise from this, the most striking being the frequent presence of numerous steam cavities (vesieular structure) often drawn out to elongated ahapes subsequently filled up with minerals by infiltration (amygdaloidal structure). As crystallization was going on while the mass was still creeping forward over the surface of the earth. the latest formed mincrals (in the ground-mass) are commonly arranged in subparallel winding lines following the direction of movement (fuxion or fluidal atructure) (see PI. I. Giga, 2 and 9, P1. II. fig. 2), and the larger carly mincrale which had previously crystallized may show the mame arangement. Most lavas have fallen considerably below their original temperatures before they are emitted. Ia their behaviour they present a close analogy to hot solutions of salts in water, which, when they approach the saturation temperature, first deposit a crop of large, well-formed crystals (labile stage) and subsequently precipitate clouds of smaller less perfect crystalline particles (metastable stage). In igncous rocks the first gencration of crystals gencrally forms before the lava has emerged to the surface, that is to say, during the ascent from the subterrancan depths to the crater of the volcano. It has frequently been verified by observation that freshly emitted lavas contain large crystals borne along in a molten, liquid mass. The large, well-formed, early crystals are maid to be porphyritic (P1.III. Gigs. 1,2,3); the smaller crystals of the surrounding matrix or ground-mass belong to the post-effusion stage. More rarely lavas are completely fused at the moment of ejection: they may then cool to form a non-porphyritic, finely crystalline rock. or If more rapidly chilled may in large part be non-erystalline or基lassy (vitreous rocks such as obsidian. tachylyte, pitchstone (P1. 1. gigs. 1, 4. 5). A common feature of glassy rocks is the presence of rounded bodies (apherulites: Gr. aфaipa, ball), consisting of fine diver. gent fibres radiating from a centre (PI. I. fige. 7, 8); they consist of imperfect crystals of felspar, mixed with quartz or tridymite; similar bodies are often produced artificially in glasses which are allowed to cool slowiy. Rarely these spherulites are hollow or consist of concentric shello with spaces between (ilthophysae: Gr. Aloos, stone; ϕ tha, bellows). Perlitic structure, also common in glasses, consists in the presence of concentric rounded cracks owing to contraction on cooling (ece Perlits).

The phenocrysts (Gr. фalren, to show; кןloradiop, crystal) or por phyritic minerals are not only larger than those of the groundmame As the matrix was still liquid when they formed they were free to take perfect erystalline shapes, not being interfered with by
the presure of adjacent cryatels. - They enem to have grown rapidly, as they are often filled with enclosures of glassy or fincly crystaline material like that of the ground-mass (P[. Il. fig. i). Microscopic examination of the phenocrysts often reveals that they have had a complex history. Very frequently they show successive layett of different composition, indicated by variations in colour or other optical propertics; thus augite may be grcen at the centre and various chades of brown outside this; or may be pale green centrally and darker green with strong pleochroism (aegirine) at the periphery. In the felspars the centre is usually more basic and richer in lime than the surrounding faces, and successive zones may often be noted, each less basic than those which lie within it. Phenocrysts of quartz (and of other minerals), instead of charp, perfect cryotalline faces, may show rourded corroded surfaces (PI. I. fig. 9), with the poirits blunted and irregular tongue-like projections of the matrix into the substance of the crystal. It is clear that after the mineral had crystallized it was partly again dissolved or corroded at some period before the matriz solidified. Corroded phenocrysts of biotite and hornblende are very common in mome lavas: they are surrounded by black rims of magnetite mixed with pale green augite. The horablende or biotite substance has proved unstable at a certain stage of consqlidation and has been replaced by a paramorph of augite and magnetite which may be partially or completely substituted for the original crystal but still retains its characteristic outlines.

Let us now consider the characteristics of a typical deep-seated tock like granlte or diorite (PI. 11. Gigs. 4, 5, 9). That these are igneous is proved by the manner in which they have burst through the euperincumbent strata, filling the Phtoafo of cracks with ramifying veins; that they were at a very Abyasal high temperature is equally clear from the changes which Types they have induced in the rocks in contact with them. But as their heat could dissipate only very slowly, because of the masoes which covered them, complete crystallization has taken place and no vitreous rapidly chilled matter is prescnt. As they have had time to come to rest belore enstallizing they are not fluidal. Their contained gascs have not been able to escape through the thick layes of atrata beneath which they were injected, and may often be observed occupying cavities in the minerals, or have occasioned many important modifications in the erystallization ol the rork. Because their crystals are of approximately equal size these rocke are anid to be granular: there is typically no diatinction between a first generation of large well-shaped crystals and a fine-grained ground-mass. Thelr minerals have formed, however, in a definite order, and each has had a period of crystallization whicb may be very distinct or may have coincided with or overlapped the period of formation of some of the other ingredients. The earlier have originated at a time when most of the rock was still liquid and are more or less perfect ; the later are less regular in shape because they were compelled to occupy the intercpaces left between the already formed crystals (P I II. fig s. 5,9). The (ormer are sad to be idiomorphic (or aut nomorphic) atter are anidiomorphic (allotriomorphic. wnomorphir) There are also many other characteristics which scrve to dist inguish the members of these two groups. Orthoclase, for example, is ahe typical felspar of granite, while its modification sanidinc occurs in lavas of similar composition. The mame distanction holds between elacolite and nepheline. Leucite is common in lavas, very rare in plutanic rocks. Muscovite is confined to the intrusives, These differences show the influence of the physical conditions under which consolidation takes place.

There is a cerain clase of intrusive rocks which have risen upwards towards the aurface, but have failed to reach it, and have colidified in fisaures as dikes and intrusive sills at no great depth. To this type the name infrusitu (or hyp. fetrative or abyssal) is often given in distinction to the oludonic (or Mypebyrsal abyssal) which formed at greater depths. As might Types. be expected, they show etructures intermediate between those of the effusive and the plutonic rocka. They are very commonly porplayritic, not ramely vitrcous, and sometimes even vesicular. In fact many of them are indisting uishable petrologically from lavas of similar composition.

The attempt to form a special group of hypabyssal (intrusive and dike) rocks has met with much criticism and opposition. Such a group certainly cannot, rank as equally important and equally well characterized with the plutonic and the effusive. But there are many kinds of rock which are not found to occur normally in any other manner. As examples we may cite the lamprophyres, the aplites and the porphyrites. These never occur as lava fows or as great plutonic bosses: if magmas of the same composition as there rocks occur in either of these ways they consolidate with different asoemblages of minerals and different structures.

In subdividing the plutonic, the hypabyssal and the effusive rocks, the principle is fallowed of grouping those together which resemble one another in mineral con-sidformone stitution and in chemical composition. In a broad perfrewer eense these two properties are interdependent.
${ }^{1}$ ldiomorphic, having lts own characteristic form, Gr. itcot, belonging to one's self, (airbs), mopos (form); allot iomorphic, from

The commenter rock constituents are mearly all osides: chlorine, malphur and fluorine are the only important exceptions to this and Qromion' their total amount in any rock is usually much leas then Chomerowe I\% F. W. Clarke has calculated that E little more than 47% of the earth's crust comaits of oxyeten. It occurs principally in combination as oxides, of which the chiel are silica, alumina, iron oxidee, lime, magneia, potash and soda. The silica functions principally as an acid, lorming alicatea, and all the commonett minerals of igneous rocks are of this mature. From a computation based on 1672 analyues of all linda of roclos Clarke arrived at the lollowing as the avernge percentape componition:
 $\mathrm{CaO}=4-90, \mathrm{Na} \mathrm{O}=3 \cdot 55, \mathrm{KO}=2 \cdot 80, \mathrm{H}_{2} \mathrm{O}=1 \cdot 52 . \mathrm{TiO}_{1}=0 \cdot 60, \mathrm{P}_{2} \mathrm{O}_{5}=$ $0-22$, total 99.22% All the other constituents oceur only in very small quancities, usually much beat then I $\%$

These oxides do not combine in a haphasard way. The potach and codi, for example, with a aufficient amount of alumins and silica, combine to produce felspars. In tome cases they may eake other forms, such as nepheline, leucrte and muscovite, but in the great majority of instances they are found as felsper. The phosphoric acid with lime forms apetite. The titansum dioxade with ferrous oxide gives rise to ilmenite. Part of the lime forms lime felspar, Magnesis and iron oxides with silica crystallise an olivine or enstatite, or with alumine and lime form the complex ferro-magneaian silicates of which the pyroxtnes, amphiboves and biotites are the chicf. Any axicess of silica above what is required 20 neutralize the bases will separate out at quartis; exceat of alumina crystallizes as corundumi. These must be regarded only as general tendencies, which are modified by physical conditions in a manner not as yet understood.

Commonest Minerala.
Plutonic or
Abyseal
Intrusive orHypaby
Lavas or
type.

Hence we may my that except in acid or siliceous rocid containing 66% of eilice and over, quatez will uot be sbundant. In basic mernal rocks (containing 60% silica or lese) it is rare and Conativo accidental. If magnceia and iron be above the average clens while silica is low olivine may he expected; where silica 1. pretent in greater quantity other ferro-magmesian minerals, mach as augite, hornblende, enstatite or biotite, occur rather than olivine. Unless potash is hugh and silica relatively fow leucite will not be present, for leucite does not oceur with free quartz. Nephcline, likewise, is usually found in rocks with much sode and comparatlvely little silica. With high allenlis soda-benting pyroxenes and amphiboles may he present. The lower the percentage of silica and the allonlis the greater is the provalence of lime telspar as contracted with soda or potash Eelspar: Clarke has calculated the relative abundance of the principal rock-forming minerals with the following results: Apatite - 0.6, titanium minerals $=1: 5$, quartz $=12-0$. telspara $=39.5$, biotite $=3.8$, horablende and pvroxene $=16-8$, total $\mathbf{e} 94.2 \%$. This, however, can only be a rough approximstion. The other determining factor, namely the physical conditions attending consolidation, plays on the whole a smaller part, yet il hy no meant negligible, as a few instances will prove. There are certain minersls which are practically confined to deep-seated intrusive socks, e.s. microcline, muscovite, diallage. Leucite is very rare in plutonic masses; many minerals have special peculiarities in microscopic character accordins to whether they crystallized in depth or near the surface, e.g. hypersthene, orthoclase, quartz. There are some curious instances of rocks having the same chertical composition but consisting of entirely different minerals, c.s. the hornblendite of Gran, in Norway, containing only homblende, has the same composition as some of the camptonites of the same locality, which contain felspar and hornblende of a different variety. In this connexion we may repeat what has been said above about the corrosion of porphyritic minerals in igneous rocks. In rhyolites and trachytes early erystals of hornblende and biotite may be found in great numbers partially converted into augite and magnetite. The hornblende and biocite were stable under the pressures and other confitions which obtained below the surface, but unstable at higher kevels. In the ground-mass of these rocks augite is almost universally present. But the plutonic representatives of the mame magma, granite and syenite contain biotite and hornbiende far morecommonly than augite.

Those rocks which contain moat silica and on cryotallizing yield free quartz are erected into a group genemilly designated the "acid" ack. rocks. Those again which comtain least silica and most theonmenmagnesia and iron, so that quarts is absent whik olivine
ard Berte bocte Docte. is usually abundant, form the "basic" group. The "intermediate ${ }^{\circ}$ rocks include those which are characterised by the general absence of both quartz and olivine. An important subdivision of thesc contains a very high percentage of alkalis, especially soda, and consequently has minerals such as nepheline and leucite not common in other rocks. It is diten separated from the others as the "allalif or " codas rocks,
and there if a correaponding retien of basie rochs. Lathy anan oub-group rich in olivine and without fetapar has been colled the "ulcrabeve" rocks. They have very low percencages of stica but unuch iroo and magnesia.

Except these bast practically all rocks eontain felopars or felspathoid minerais. In the acid nocks the common felspars are orthoclase, with perthite, microctime, oligoclate, all haviag much wilica and alkalis. In the basic rocks limbradorite, anorthite and bytownim prevail. being rich in lime and poor in silica, potash and sodsAugite is the commonest (erro-magnesian of the basic rocks, but biotite and hornblende are on the whole more frequent in the acid.
The rocks which contain leacite or mephelise, either partly or wholly replacing felspar are not included in this table. They are essentially of intermediate or of basic character. We might in consequence regard them as varieties of iyenite, diorite, gabbro, \&c,

Acid	Intermediate		Bacic.	Uitrubasic,
Quartz Orthoclase (and Olizoclase), Mica, Hormblende, Augite.	Litule or no Quartz		No Quartz Plagioclate Augite, Olivine.	No Felspar Augite. Homblerde, Olivise.
	Orthoclase	Plagioclase		
	Itarnbleruds. Augte, Biotite.	Hornblende, Augite, Biotite.		
Granite	Syenize.	Diorite	Cabbro.	Peridotice
$\begin{aligned} & \text { Quarte. } \\ & \text { porphyry. } \end{aligned}$	Orthoclesepotphyтy.	Porphyrite.	Dolerite.	Picrite.
Rhyolite, Obaidian	Trachyte.	Andesite.	Breait.	Limburgite.

In which telspathoid minerals occur, and indeed there are many transitions between syenites of ordinary type and nephelipe-ar leucite-syenite, and between gabbro or dolerite and theralite of exsexite. But as many minerals develop in these "alkali" rocks which are uncommon elsewhere, it is convenient in a purely formal classigication lice that which is outlined here to treat the whole aseemblage as a distinct serics.

Nepheline and Tewcile-bearing Rochs.

Commonest Minerals.	Alkali Felspat, Nepheline of Leucite,Augite, Flornhlende, Bintite.	Soda Lime Fetsper Nepheline ut Leucite,Augite, Hurnblende (Olivine).	Nepheline or eucite, Aurite Hofnblende. Olivine.
	Nepheline-syenite. Leucite-syenite. Nephelineporphyry.	Essexite and Theralite.	ljolite and Misourite.
$\left.\begin{array}{c} \text { Efusive or } \\ \text { type or } \\ \text { Lavas } \end{array}\right\}$	Phomolite. Leucitophyre.	Tephrite and Basanite.	Nepbelinebasalt. Leucite-bagalt

This classification is based essentially on the mineralogical constitution of the igneous rocks. Any chemical distinctions between the different groups, though implied, are relegated to a subordinate position. It is admittedly artificial but it has grown up with the growth of the scicnce and is still adopted as the basis on which more minute subdivisions are erected. The subdivisions are by no means of equal value. The syenites, for example, and the penidotites, are far less important than the granites, diorites and gabbros Morcover the effusive andesites do pot always correspond to the plutonic diorites but partly also to the gabbros. As the different kinds of rock, regarded as aggregates of minerals, pass gradually into one another, transitional types are very common and are oftea so important as to receive special names. The quartiz-syenites and nordmarkites may be imterposed between granite and gyenite, the tonalites and adamellites between granite and diorite, the monsoreites between syenite and diorite, norites and hyperites between diorite and gabbro, and so on.

There is of course a large number of recognized rock apecies not included in the tables given. These are of two kinds, either beloneing to groups which are subdivisions of those enumerated (bearing the same relation to them that species do to genera) or thre and exceptional rocks that do not fall within any of the main subdisisiore proposed. The question may be asked-When is a rock entitled to be recognized as belonging to a distinct species or variety and deserving a name for itsell? It must, first of all, be proved to occur in considerable quantity at some locality, of better atillat a series of localitics or to have been produced from different magmase at more than one period of the earth's history. In other words, it must not be a mere anomaly. Moreover, it should have a distinctive mineral constitution, differing from other rocks, of gorntiething individual in the characters of its minerals or of its structures. It is often surprising, how peculiar types of rock, befieved st firse

Fig. 1.-Banded Obsidian, Kirghiz.
The rock consists of alternate bands of brown and colourless glass which have been arranged in stripes by the fluxion movement of the viscous mass before solidification. The glass is rendered granular by very minute crystals.

Fig. 2.-Fluidal Rhyolite, Hungary.
In the centre are crystals of felspar, rather turbid through weathering. The matrix is partly glassy, partly felsitic. and shows the effects of st reaming movements with eddies behind the felspar crystals.

Fig. 5.-Perlitic Pitchstone,
Meisen, Germany.
The perlitic, rounded cracks are very clearly seen, because the rock is decomposing and becoming slightly opaque along them. At the top there is a corroded crystal of felspar, showing cleavage, with large circular enclosures of brownish glass.

Fig. 8.-Spherulitic Feisite, Arran, Scotiand.
The round spherulites of this rock are large and sometimes composite; their radiate structure is obvious. This is a devitrified pitchstone, no longer glassy but finely crystalline, and at the centres of the spherulites there are spaces occupied by a secondary deposit of quartz.

Fig. 3.-Obsidian, Mexico.
This rock has a damascened pattern owing to the irregulat mingling of streams of brown and of colourless glass. It is nearly quite free from minute crystals.

Fig. 6.-Obsidian. Iceland.
In the clear glassy base there are rounded yellow spots (spherulites) arranged in fluxion streams.

Fig. 9. Porphyritic and Fluidal Rhyolite, Hungary.
The ground mass is partly glassy, partly felitic, and shows fluxion-handing. The harke quartz is a double hexagonal pyramid. but its edges and corners are rounded by corrosion and large irregular areas of glass penetrate to its centre.

Plate II.

PETROLOGY

Fig. 1.- Porphyritic pitclıstone, Scuir of Eigs. Scotland.
A large porphyritic felspar crystal is seen lying in a pale-brown glassy base and containing many giass inclusions of irregular shape. The felspar, in one margin especially, shows corroded outines.

Fig. 4.-Granite Rubislaw, Aberdeen.
This is a non-porphyritic. holocrystalline rock. Among its components the crystals of dark mica are conspicuous, and with them occur also a few plates of white mica, with perfect cleavage. The slightly turbid or granular substance is felspar. a little decomposed and the large clear spaces are crystals of quartz.

Fig 7.-Luxullianite, Luxulyan, Cornwall.
In this variety of tourmaline-granite there are many blue needles of tourmaline, grouped in stellate clusters which are embedded in a matrix of clear quartz. These pointed needles diverge from the surfaces of larger grains of tourmaline.

Fig. 2.-Trachyte, Orotava, Tenerifte.
There are larger porphyritic felspars of the first generation and smaller ones of later origin composing part of the ground-mass, which also contains a considerable amount of yellow vitreous material.

Fig. 5.-Hornblende-Granite, Dalbeattic, Scotland.
The dark crystal with fine parallel lines of cieavage is biotite; the others, with two less perfect cleavages, are bornblende. At the top there is a long rodshaped grain of sphene. The granularlooking substance is felspar, and the quart z, as usual, is clear and transparent.

Fig. 8.-Granophyre, Braemar, Scotland.
This photograph is taken between crossed nicols to show the graphic structure of the ground-mass, similar to that of Fig. 6, hut on a much finer scale. The quartz towards the centre of the Gield appears as white, angular areas, embedded in a grey matrix of felspar, and each mineral reacts in a uniform fashion to polarized light over an area of moderate extent.

Fig. 3.-Trachyte, Perlenhardt, Germany.
In this rock there are porphyritic crystals of felspar and of dark brown biotite (nearly black in the photograph), with a few of green augite and mapnetite. The ground-mass is finely crystalline.

Fig. 6.-Graphic Granite, Bodenmais, Bavaria.
This rock consists of angular patebes of clear quartz scattered through a striated dull matrix of felspar. The different quartz areas have all the same optical orientation, as if they were parts of a single crystal.

Fig. 9.-Diorite, Hodritch, Hungary.
The dark crystals are green horrblende, and show the outlines which are characteristic of that mineral. The cloudy grey substance between them is felspar in a somewhat weathered state.

Fig. 1.-Phonolite, Teplitzer Schlossberg, Bohemia.
The large white crystal is felspar, the smaller ones are nepheline having sixsided and four-sided sections. The dark mineral in the ground-mass is aegirine.

Fig. 4.-Hypersthene Andesite, Alwyn, Cheviots, England.
A porphyritic rock with phenocrysts of white plagioclase felspar and of palebrown augite and hyperstbene in a fine ground-mass, partly glassy.

Fig. 7.-Olivine-Gabbro, Volpersdort, Silesia.
Felspar occurs towards the edges of the field and surrounds a cluster of diallage (with strong, dark, parallel lamination) and of olivine (covered with a black setwork of secondary magnetite).

Fig. 2.-Leucitophyre, Rieden, Eiffel, Germany.
A porphyritic clear crystal of leucite lies near the centre of the field; towards the margins are nosean crystals with clear centres and broad black edges. The black spots are aegirine and aegirine-augite, and in the ground-mass small prisms of white nepheline may be seen.

Fig. 5-Olivine-basalt, Craig-
Lockhart, Edinburgh, Scotland.
Two large crystals of augite above and below, and of olivine (right and left) lie in a crystalline ground-mass of plagioclase felspar, augite, and magnetite. The olivine has been altered to fibrous green serpentine, and the pseudomorphs show traces of the original cleavage cracks.

Fig. 8.-Peridotite, Elba.
The rounded crystals are olivine. weathering as usual to magnetite and serpentine along its cracks and borders. The dark interstitial substance is enstatite weathered to bastite.

Fig. 3.-Leucite-Basanite, Vesuvius.
The rounded central crystal is leucite, showing zones of inclusions and wellmarked cracks: below it is a dark-brown augite. and olivine occurs near the bottom of the field. There are numerous rectangular white sections of plagioclase felspar. The dark ground-mass is partly vitreous.

Fig. 6.-Ophitic Olivine-Dolerite, Dun Fion, Arran, Scotland.
The white mineral is plagioclase felspar, which penetrates a large dark crystal of augite in ophitic manner. At the bottom of the field there are a few grains of olivine, colourless, but with strongly marked cracks.

Fig. 9.-Serpentine, Colmonell, Ayrshire, Scotland.
In this rock the process of serpen. tinization, seen in the previous figure, is complete. No olivine remains, but a meshwork of magnetite indicates the position of the cracks in the original crystals. The cloudy, dark streak above the centre is bastite replacing primary enstatite.

Plate IV.

Fig. 1.-Pebbly Grit, Banff, Scotland.
The white pebbles are quartz with irregular cracks and streaks of fluid inclusions. The matrix is a dark, semiopaque mixture of clay and small sand-grains.

Fig. 4.-Marble, Carrara, Italy
A section of well-known statuary marble which consists entirely of calcite in small irregular crystals closely fitted togetber.

Fig. 7.-Slate, Wadebridge, Cornwall.
A fine-grained clay rock with small clear spots of quartz and minute scales of mica. chlorite. \&c. The parallel arrangement of the latter is the cause of cleavage. Obscure dark lines cut across the rock and indicate the development of a secondary cross-cleavage or slipcleavage.

Fig. 2.-Volcanic Tuff, Arthur's Seat, Edinburgh'.
A fragmental volcanic rock with small lapilli of basalt; these are vesicular and contain little felspar crystals. Broken felspars also lie scattered through the rock.

Fig. 5.-Oolitic Chert (Camhrian), Sutherlandshire, Scotland.
This has been once an oolitic limestone, but the calcite has been entirely replaced by silica with perfect preservation of the oolitic structure.

Fig. 8.-Mica-Schist, Blair-Atholl, Perthshire. Scotland.
A clay rock like the preceding one, but more metamorphic and coarsely crystalline. The clear spots are quartz aad the bladed mineral between them is brown and white mica (biotite and muscovite).

Fig. 3.-Crinoidal Limestone (Carboniferous), Clifton, near Bath, England.
The oolitic grains are round or oval, with concentric zoning; in their interior there is sometimes a shell fragment or ot her nucleus. The interstitial mat rix is clear, granular, crystalline calcite. The rock contains fragments of echinoderms. brachiopods, and other fossils.

Fig. 6.-Mylonite Durness, Sutherlandshire.
This well-banded rock was once a crystalline gneiss which has been greatly crushed by earth-movements, and has been ground down into a fine agregate of quartz, ielspar, and mica. The banding is due to internal flow under great pressure.

Fig. o.-Chiastolite-Slate, Skiddaw. Cumberland.
A clay rock affected by contact metamorphism attended by the production of needles of chiastolite, which have in transverse section a diamond-shape with dark enclosures at their centree and a dark cross radiating to their corners.
to be unigue, turs up with ideatical fenturte ia widely matiered Beciona, Gimoio, for example, occurs in Nurway, Scofland, Moatreal, Norway. Brazi, Moatana, Portugal, of This indicaten that underlying all the variations io mineralogica!, stuctural and chemical properties there are definite relationshipe which tend to repeat themselvet, producing the sacme types wisenever the mune conditions are present.
Although in former years the view was widely current, erpecially In Germay that igneous rocks belonging to different seolopical epochs should receive different names it is now admitted on all des that this cannot be upheld.
In $2 g 0 a$ a group of American petropraphers brought lorward a proponal to discard ant existing clasutications of ignepwas rocks and to substitute for them a "quantitative"clamification baced on chemical analyia They showed how vague and often unscientific was much of the existing terminology and argued that as the chemical composition of an groous rock was ita mose fundzmental characteristic it should be elevated to prime position. Geological occurrence, structure, mineralogical constitution, the hitherto accepted criteria for the discrimination of rock species were relegated to the background. The completed rock snalysis is first to be interpreted in terms of the rock-forming minerals which might be expected to be formed when the magma crystallize, e.8. quarta telspars of various kinds, alivine, akermannite, fels pathoids, magnetite, corundum and so on, and the rocks are divided into groups strictly according to the relative propartion of these minerals to one another. There is no need here to deacribe the minutia of the process adopted as the authors have stated them very clearly in their treatise (Quantilation Clasrification of Igwous Rocks, Chicago, 1902). and there is no indication that even in the United Sta tes it will ever displace the older clasuifications
We can often observe in a series of eruptives belonging to one period and a restricted area certain features which distinguish con them as a whole more or less completely from other mesguanto similar assemblages. Such groups are often said to consanguincous, and to characterize a detinite petrological province. Excelient examples of this are turnished By the Devonian igneous rocks of southern Norway as described by lavas studied by H. S. Washington. On a larger scale the volcances which girdle the Pacific (Andes, Cordillera, Japan, \&c.), and those which occur on the volcanic ialands of the Atlantic, ahow the meme phenomena. Each of these groups has been formed presumably Irom a single deep-seated magma or source of aupply and during a period which while necesarily prolonged was not of vast duration in a geological sense.
On the other hand, each of the great sultes of eruptive rocks which conatitute such a petrological province embraces a great omerumits range of types Prolonged eruptions have la a few tion. casea a momewhat monotonons character, owing to the predominance of one kind of rock. Thus the lavas of the Hawaifrn Inlands are mostiy basaltic as are thove of Oregon, Washington and the Deccan, all of which form geological mates of enormout megnitude. But it is more usual to find lasalts andesites, trachytes, dacites and many other rocks occurring in a single eruptive complex. The process by which a magma aplits up into a variety of partial products is known as "difierentiation." Its importance from the mtandpoint of theoretical petrology is very preat, but as yet no aderpuate explanation of it has been offered. Differentiation may, show itseff in two ways. In the first type the succewsive emisoions from a volcanic focus may differ considerably from one another. Thus in the Pentland Hills, near Edinburgh, the lavas which are of lower Devonian age, were first basathic, then andesitic, trachytic and dacitic, and finally rhyolitic, and this ouccesuion was repeated a second tinie. Yet they all must have come from the tame focus, or at any rate from a group of foci very clowely connected with one enother. Occasionally it is found that the caftier tyvas are of intermediate character and that basic alternate with acid daring the later stages of the volcanic history
Not less intereating are those cases in which a single body of rock has in coneolidation yielded a variety of petrographical types of ten widely divergent. This is best ahown by great plutonic bones which may be reyarded as having once been vast subterranean apaces filled with a nearly homogeneous liquid magma. Cooling took place gradually from the outer surfaces where the igncous rock wats in contact with the surrounding strata. The resultant bacolite (Gr. λ hewos, pit, crater, λ Mon, stone), ztock or boas, may be a few hundred yards or many miles in diameter and oftem contains a proat diversity of eryotalline rocks. Thus peridotite, gabbro, dioritte, tonalite and grianite, are often associated, usually ma auch a way that the more basic are the first-formed and lie nearent the external garfaces of the masa. The revence sequence occurs occomionally, the edgee being highly acid while the central parts consist of more basic rocks. Sometimes the hater phases penetrate into and vein the carlier; evidently there' hal beem come movement dime to temporary increase of presture when part of the haccolite was solid and part utill in a liquid state. This linke theo phenomema with thowe above described where succestive emimions of different character have procesided outwards from the focso

Accopding to modera visw two explanetions of chere fect: sre ponsible Sorme geologists hold that the different rock faciet lound in amociation are olten dus to local mborption of surroundint pocks by the molten tragima (" ascimilation "). Efiects of this kind are to be expected, and have bean clearly proved in many places. There is, bowever, a penteral roluctance to adoult that they are of great importance. The mature and suecemion of. the rock epecies do not as A tule sbow any relation to the sedimentary oe other materials which may be mpposed to have been dissolved; and where solution is keown to have gone on the produets ane utually of aboormal character and ensly dintinguishable from the common rock types

Hence it is geremally eapponed that differeatiation is to be ascribed to come physical or chemical procesers which lend to the splitting up of a magma into dispimilar portions, etech of which consolidates as a distinet kind of rock. Two factore can be selected as probably most potent. One important factor is cooling and another is crystallipation, According to phytion-chemictl lawn the least soluble subatances mill tend to difluee cowards the cooling muraces (Ludwis-Sorets's principle). This is in accordance with the majority of the obmerved lacts and is probably a evre cewsa of differentiation, though what ita potency may be is uncertain. As a rock solidifies the minerals which crymallize follow one another in a more or lesa well-defined order, the move basic (accordint ev Ronenbuack's law) being first to separate out. That in a general way the peripheral portions of a isccolite conaist mainly of thove carly basic minerals suggesta that the sequence of erystallization helpa targely in determining the succession (and consequently tho distribution of rock species in a plutonic complex). Gravity also may play a part, for it is proved that in a solutionat reat the heavigat components will be concentrated towards the base. This must, however, be of secondary importance as in laccolites the top portions often consist of more basic and heavier varietien of rock than the centres. It has aiso been argued that the earliest minerals being henviest and in any case denser than the lused magma around them. will tend to sink by their own weight and to be congregated ncar the bottom of the mash, Electric currente, rasgnetic attraction and convection currents have also been called in to account for the phenomena obscrved. Magmas have also been compared to liquids which, when they cool, eplit up into portions no longer coinpletely woluhte in one another (liquation hypothesis). Each of these partial magmas may dissolve a portion of the others and as the temperature falls and the conditions change a range of liquids differing in composition may be supposed to arise.

All igneous magroas contain disolved gases (steam, carbonic acid, sulphuretted hydrogen, chlorine, fuorine, boric acid, ate.). Of the whater is the primcipal, and was formerly believed to have percolated dowowards from the earth's surface to the heated rocks below, but la now generally admitted to be an integral part of tha magma. Many pectuliaritict of the structure of the plutonic rocks as contrasted with the lavas ray reasonably be accounted for by the operation of these gases, which were unable to eacape as the deep-scated masses slowly cooled, while they were promptly given up by the superficial effusions. The acid plutonic or intrusive fock: have never been reproduced by laboratory experiments, and the only succeseful attempta to obrain their nainerala artificially have been those in which special provision was made for the retention of the " mincralizing "gases in the crucibles or scaled tubes employed. These gracs often do not enter into the composition of the rockforming minerals, for most of these are free from water, earbonic acid, \&c. Hence as crystallization goes on the residual liquor must contain an ever-increasing proportion of volatile constituents. It is conccivable that in the final stages the still uncrystallized part of the magma has more resemblance to molution of mineral matter in superheated steam than to a dry igneous fusion. Quartz, for example, is the last mineral to form in a granite. It bears much of the stamp of the quartz which we know has been deposited from aqueous solution in veins, \&c. It is at the same time the mont infusibfe of all the common minerals of rocks. Its late tormation show that in this case it arose nt comparativety how temperatures and points clearly to the epecial importance of the gases of the maxma as determining the sequence of erystallization.

When wolidification is nearly complete she gases can no longer be retained in the rock and make their eacape throurg fissuret towaris the surface. They are powerful agents in attacking the minerals of the rocks which they traverse, and instances of their operation are found in the lewolinisation of granites, courmalinization and formation of greisen, depodt of quartz veins, stanniferous and aurilerous veins, mpatite veins, and the group of changes known as propylitization. These "pneomatolytic" (Gr. meoura, epirit, vapour, M^{2}, to toone, diseolve) procemes are of the first importance in the senesis of many ore deponita. They are a real part of the history of the magma itwelf and contitute the terminal phates of the volcanic requence.
The complicated succeasion from basic (or ultrabasic) to acid types examplified in the history of many magmas is refected with
"The term "propylite" (Gr." mpmulow a gateway) was given by Richthofen to a volcanic mock which is supposed to have marled a new epoch in votcanic geology (see Ampestre)
ationishing completenam in the hienry of individual producta In each class of rocir cryetallisation followe a definite courte. The sounace of first miserals to separate belong to a group lanown Cratalyas Es the minor mecoseories; this includes zircon, apatite, Afoh sphene iron oxiden; then follow in onder olivine. augite, porabiende, biotire, plagioclame, felspar (becioning erth the varteties most rich in time and ending with thome gich contmin mont sode), orthoclase, microcline and quartz (with micropegmatite). Many exceptions to thls rule me known; tho aame mineral may crystallive at two different periodis; two or more minerals may erystallise simuitancously or the etagea in which they form may overlap. But the succesion above given holds in the vast majority of casce. Expresed in this way: the more basic minerals precede the leas hasic; it is krown as Rowenburch's law.
Typer of Sirmature.-In sonae rocks there eevms to be little tendency lor the minerals to envelop one another. This is true of many gabbros, aplites and gramiten (PL. 111, fig. 7). The grauns then lic cide by wide, with the faces of the latter moulded on or adapted to the more perfect erystalline ourtines of the earliter. More commonly some clower relationship exists beeween them. When the smalicr diomorphic cryntals of the first-Iormed are ecattered irrepularly chrough the barger and fees perfect crystals of later origin, the swames eructure is said to be poikilitic (Gr. rowhos, many(PL. III, Gip 6) is very chard). A variety of this, known as ophitic in which large plates of augite enclose many smmill laths of plagiociase Ielspar. Biotite and hornhlende frequently enclose felspar ophitically; less commonly iron oxides and sphene do eo. In peridotites the "lustre-mattied" structure ariscs from pyroxens or hornbleade enveloping olivine in the same manner (PL. III, fig- 8). In these cases no crystallographic relation exists between the two minerals (enctosing and enclosed).

- But often the aurrounding mineralphas been hid down on the surface of the other in such a way that they have certain crystalline parand faces or axes parallel to one another. This is known Oruelms as "parallel growth." it is best seen in zoned crystals of plagioclase felspar; which may range in composition from anorthite to oligoclase, the more acid layers being deposited regularly on the surfaces of the more basic. Biotitc and muscovite, homblende and augite, enstatite and diallage, epidote and orthite, very frequently are asociated in this way.
When two minerals crystallise imultaneously they. may be intergrown in "graphic" fashion. The best example is quartz alanel and orthociase occurring together as micropegmatite inew (PL II. Gige 6 and 8). The quarts forms angular patches in the fclspar, which though separatcd have the same crystalline orientation and ont position of extinction, while the felspar on its part behaves in the same way. Two porous crystais thus interpenetrate but the scattered parts of each mincral maintain their connexion with the others. There may be also a definite relation between the crystalline axes of the two cryatals, though this is not known in all cases. Augite also occuts in graphic intergrowth with hombiende, ofivine and felspar; and hornblende, cordierite, epidote and biotite in graphic inter[rowth with quartz:
Physical Cicmistry of Igneons Rocks.-The great advances that have been made in recent years in our lonowledge of physical chemistry have very important bearings on petrological investigations, Especially in the otudy of the genesis of ignoous rocks we anticipate that hy chis means much light will be thrown on problema which are now very obscure and a completc revolution in our ideas of the conditions which affect cryutallization may yet be the conequence Already many important results have been gleancd. As yet fittle mork of an exact and quantitative nature has been done on actual rocks of on mixtures resombling them in composition, but at the Carnesie Institucion in Washington, an elaborate serics of experiments in the synthesis of minerals and the properties of mintures of these is being carried on, with all the refincments which modern science can sursest. The work of Doclter and of Vogt may aloo be mentioned in this connexion. At the eame time the mathematical theory of the physical processes involved has weceived much attention, and eerves both to direct and to elucidate the experimental work.

A fused mixture of two miperals may be regarded as a sointion of one on the other. If ouch s solution be cooled down, cryntallizaFimanes tion witi generafly wet in and if the two components be Solvilowh. independert (or do may be expected to start myitallicing. On further cooling, more of this mineral will eeperate ont till at last a reaidue laft which contains the two components in defmite proportiona This mixture, which is known as the eutectic mixture. has the lowert taolting-point of any which can be farmed from these minerals. If heal be still abstracted the eutectic will compolidate as a whole: its two trineral components will crutalige cimultancourly. At any forea preanare the oompoition of the entectic midume in euch acave is alorays the alme-

Smilarly. fthere be three independent eomponeats (none of -hich forme mived cryatals with the others), according to their selative amounts and to the componition of the eutectic mixture coe will begin to crystallive: then another will make ite appearance

In solid form, and winn the excess of theme has been removed, the rernary eutectic fhat mixeure of the three which has the loweat meitimp-point) mitl be produced and crytalfiontion of all three components will go on sfmultageously.

These processes have without doubt a very clone mology to the formation of igneous rocles. Thus in certain felsites or porphyries which may be condidered as being escentially mixtures of quarts and felspar, a certain amount of quartz has crystallized oue at an early period in the form of mell-shaped porphyritic crystals, and thercafter the remainder of the rock has solidified as a very fine-grined, cryptacryatalline or sometimes micrographic ground. masa which consists of quartz and felspar in intimate intermixture. The latter clowely remembles a eutectic, and chemical studics have proved that rithin somewhat narrow fimits the composition of these felsitic ground-masecs is constant.

But the comparison must not be parhed too far, as there are always other components than quartz and felspar (apacite, zircon, biotite and iron coxides being the moos common), and in rocks of this type the gases dissolved in the magma play a very important part. As crystallization goes on, these gases are set free and their pressure must increase to some extent. Morcover, the felspar ia not one mineral but two or perhaps three, there being always soda felspar and potash felspar and usually also a emall amount of lime felspar in thicse porphyrics.

In a typical basic rock the conditions are even more complex. A dolerite, for example, usualty contains, as its last producis of crystallization, pyroxenc and felspar. Of these the latter cennsiste of three distinct species, the former of an unknown number; and in each case they can form mixed crystais, to a greater or lesa extent with one another. From theme considerations it will be clear that the propertied of solutions of two or thrge independent components, do not necpearily explain the process of crystallization in any igneous rock.

Very Irequently in porphyries not ouly quartz but felspar also is present in large well-formed early crystals. Similariy in bassits, augite and fclspar may appear both as phenocrysts and tes components of the ground-mase. As an explanation of this it has been suggested that supersaturation has taken place. We may suppone that the augite which was in excess of the proportion mecessary to form the felspar-augite, cutectic mixture, first separated out. When the remaining solution reached the eutectic composition the felspar did not at once start crystalizing. perhaps because nuclei are necessary to initiate erystal-growth and thene were not at hand: sugite went on crystailizing while felspar lagged behind. Then Ielspar began and as the mixture was now supersaturated with that mineral a considerable amount of it was rapidly thrown out of the solution. At the same time there would be a tendency for part of the augite, slready crystallized, to be dissolved and its crystals would be corroded, losing their sharp and perfect edges, as is often observed-in rocks of this group. When the necessary adjustments had been made the entectic mixture would be extablished and therealter the two minerals would consolidate simultaneondy for nearly so) till crystallization was complete.

There is a good deal of evidence to shot that supersaturation is not unimportant in igncous magmas. The frequency with which they form flasses proves that under certain conditions the molten rocks are highly viscous Much will depend aleo on the premence, accidental or otherwise, of nuclei on which a mineral eubstance ean be deposited. It is known that minerals differ in their tendency to cryatalize, some doing mo very readily while others are alow and backward. The rate at which crystallimation goes oo depends on many lactorg, and there ase rewarlable diffesences in this meapect between mineralo.
On the other hand, there is plenty of evidence to ebow that superaturation, though prohably one of the causen, is not the priscipal cause of the appearance of more than one mineral in two generations of crystals in mome of the quarte-porplayies, for example, there are phenocryets not only of quartz and relapar but also of micropegmatite. Ihese prove that quartz and felspar were not crystalliving succemively or alternately but simultaneonshy.

The great majority of the minerals found in igneous rocka are not of simple composition, but are mixtures of various elementary minerals in very different proportions. This enormounly complcates the theoretical problems of consolidation. It has been found. for example, that in the case of three mineralo-one of wirh is indepeodent, thile the two otherm can form mixed crymalo-there is a large number of posible sequences; and, what is very important, ore mineral may meparate out entirely at an cariy stage, or its cryatallization may be interrupted and not continuous. The ternary eutectic, which is produced by a mixture of three independent minerala, may mot in such a care be the last metance to cryatalline, and may not be proaent tet all. This is very mach in meoondance with the abterved facts of petrology; for waully in a rock there i^{3} one miperal which indubitably fits the luet of all to finime erytallixing and contained ne apptecinble quantity of the othern

As yet we know litth about goch important questiona me the compontion of the entectic mixtures of rock-minerala, their hatent beat of fusion, specifir heatt, mutual sofubilities, inversion temperatures, se. Untli we are in pometasion of a large body of scrurate information on moch points as thene the theoretical treatment ai
she procemes involved is the formation of igneous rocks cannot be anceemally handied. Bat every day ween arn incercase in the amount of data avalable, and encournges an to believe that sonnct or lacer vome of the simplor encous rocks at way rate will be completcly explicable on physico-chemical principles.

Rock masses of Igneous origin have no sconer consolidated than they begin to change. The gases whit which the magma is charged paet. are slowly disipred, bevaflowe often remain hot and chearge. steaming for many years. Then games actint the cont ponents of the rock and deposit new ouineraly in cavitic: and fissures. The beautiful seglites, 80 well known to collectors of minerals, are largely of this origin. Even before these "pont-volcanic" proceases have ceaned atmoupheric decomposition begins. Rain, frost, carbonic acid, oxy on and ocher agents operate continuourly, and do sot ceate till the whole maes hase crumbled down and more of its ingrediants have been resolved mto new products In the clasuificalion of rocks these secondary changes are generally considered uncmonthal, rocks are clasibied and described an if they were ideally freph, though this is sarely the case in nature.

Epigenitic change (secondary procemes) may be arranged under - number of headiogs, each of which is typical of a group of roclos seopentery or rock-lorming mincrala, though usually more than chargen one of theme alterpitions will be found in progress in the same rock Silicification, the replacemsat of the minerels by cryatalline or crypto-erystatline witica. is tront common in ecid rocks, such as rhyolite, but is also found in serpentise, esc. Kaotiniration is the decomposition of the felepart, which are the commonest minerals of igneous rocks, into knolin (along with quarta, muscovits, ac.); it is beat shown by granitea and syenites. Sespentinization in the alteration of olivite to serpentine (vith megrectite); it is typical of peridotites, but occurs in mont of the basic rocke In uralitization eecondary hornblende repleces augize; this occurs very gencrally in diabseses; chloritization is the alteration of augite (biotite or hornblende) to chlorite, and is seen in many diabuse dioritem and greenszonet. Epidotization cocars aloo in rockes of this group, and consiste in the development of epidote from biotite, borablende, augite or plagioclase fetspar.

The sedimentary rocks, which constit ute the second great group, have many poiats in common that distinguinh them from the igneous and the metamorphic. They have all originated on the surface of the earth, and at the period of their formation were exposed oaly to the temperature of the air and to atmospheric pressure (or the pressures which exint at the bottoms of sean and lakes). Their minerals are in most caves not ausceptible to change when exposed to moist air or sea, and many of them are hydrated (chlorite, micas, \&c.), or oxidized (iron orcs), or contain carbonic acid (calcite, dolomite). The extent, bowever, to which this is the case depends largely on the rapidity with which they have accumulated; cosrse rocks quickly piled up often consist of materials only partly weathered. When crystalline, the sedimentary rocks are usually moluble at bow temperatures. The members of this group ocear la beds or strata, hence they are often known as the stratified rocks; the upper beds are always of later formation than those which underlic them, except (as may happen when great disturbance has taken place) the whole series is inverted or overturned. Many of the stratified rocks have been formed by the agency of moving water (rivers, currents, \&c.) and are grouped toget her as "aqueous" rocks; others have been deposited by the wind in deserts, on sandy beaches, \&c. (these are "acolian '). Others are the remains of animals or of plants, modified by the action of time, pressure and percolaling water. Lastly, we find beds of crystalline nature, such as rock-salt and gypsum, which have been formed by the desiccation of saline waters; of her crystalline stratified rocks, such as dolomite and many bedded iron-stones, are replacement products due to the introduction of mineral matter in solution, which replaced the original rock mass partially or wholly.

When the rocks exposed at the earth's aurface give way before the attack of the ageacics of denudarion, they erumble down and are resolved into two parts. Onc of these consimts of solid material (mand, clay and angular debrin) insoluble in carbonated waters: the other part is dissolved and washed away. The undissolved wesidues, when they finally come to reke, form clastic medimontary rocks (andstone, condiomerate, shale, 8 cc .). The dissolved portions are partly trameferred to the sen, where they betp to increase ite wore of solta, and may again be precipitated as crystalime sedimentary rocks; but they are also made use of by plants and by animala to form their skeletal and vital tiswues From this tatter portion the rocke of argenic orijin are bnile up. Theap
may almo compain certain. ingredients derived from the atugociphore (aitrugen, carton in cosla, atc).
We have thus thre types of sedimente of ditinct origia, which may be named the clacic (or fragmental), the crystalline and the organic.
The clantic materials may aocumulate in sitm, and thea differ chicfy in their disintegrated and wathered state from the parcot rock masers on which they rest. The best example of clane theme are the soils, but in clevated regions angular broken clantic
rock often covers large arets. More usually they are tranaported by wind or water, and become ported out according to their wize and density. The coarrear débriz comen firat to rear and is least wom and weathered; it includes screes, gravele, coerse mands, \&c. and consolidates as conglomerates, breccias and pebbly grits. The bedding of these rocks is rudimentary and imperiect, and as cach bed is traced along its outcrop it frequently changes its character with che strata on which if rents. The most finely divided sediment travels farthest, and is laid down in thin uniform sheets of wide cxtent. It is known as mud and clay: around the ahores of our conitinents, at distances of a hundred miles and more from land. great shects of mud ane spread over the oocan floors. This mud cootaim minute partickse of quarta and of felspar, but consists ementinily of Ginely divided scaly minerals, which by their amall size and fint shape tend to remain zuspeaded in water for a very long time. Chlorite, white mican and kaolin are che beat examples of this ctas of substances. Wind action is even more effective than water in separating and removing these fine particlea. They to a very larfe extent cociape mechanical attrition, because they are transported in auspension and are not awepe along the ground or the bottom of the acs; hence they are mostly angular. Fragmants of incermediate magnitudcs (from aty of an lnch to 1 of an inch) are clamed as sands. They consist largely of quarts, because it does not weather into scaly minerals tike fclspar, and having but a poor cleavage docs nat split up into thakes like mica or chlorite. These quarte grains have becn rolled along and are unully rounded and worn (P1. IV. Gg. i). More or less of garnet feleppar, tourmalive, zircon, rutile, ac.0 are mized with the quarth, bocauna thase are band mincrals not readily decompowed.
The mechanical sorting by the trasporting agencica is umally somewhat incomplete, and mixed types of sodiment resuit, such se gravels containing sand, or clays with coarrer arcmectous particles Moroover, muccessive layers of deponit may not always be entirely similar, and alcernations of varying coraposition may follow one another in thin laminae; e.g. laminae of arenaceouly material in beds of clay and shalc. Organic matter is frequentiy mingled with the Gner-grained medimente
These three typen have been mamed the peephitic (or pebllyf Gr . (Witon, pebbic); pammitic (or mady, Gr. Whyos, sand), and pelitic (or muddy: Gr, meds. mud).
Two groups of clatic mediments deerve special treatment. The pyroclatic (Gr. rise fire, and aneorto, broken) rocks of volcanic origin, consisist mootly of brokee pieces of lava (bouba, ash, ecc) (PI. IV. Ge. 2) and only accidentally contain other rocks ar fomile They are wratified, and may be coarse or fare, but are usually much less perfectly sorted out, according to their finenese, than ordinary aqucous or acolian deposita. The slacial clayp (boulder clays). representing the ground moraincs of ancioat glacicns and ice aheeth are characterized by the very variable cize of their ingredients and the striated, blusted sub-angular form of the hrger rock fragments. In them stratification is exceptional and fossils are very rare.
The crystalline sedimentary rocks have been deposited from solution in water. The commonest typea, such as nock-aalt, Eypaume anhydrite, cnrnallite, are knowa to have ariven by the crystelman
evaporation of enclosed enline lakes exposed to a dry atmospicerc. They oocur usually in beds with layers of red clay and mart; mome limertones have been formed by calcareous water: containing carbonate of lime dissolved in an excem of carbonic acid; with the escape of the volatile gas the mineral matter is precipitated (sinters, Spruddestin, \&c.). Heated waters on coolint may yicld up part of their divolved mineral substances; thus silf ceols sioters ase produced around geymers and hot springs in many parts of the world. There seems no reamon to separate lrom these The veingtones, which fifi the fissures by which these waters rioe to the suriace. They differ from those above enumerated in being more perioctly erystalized and in having no definite stratification, but only a banding parallel to the more or leas vertical walls of the fissure. Another subdivision of this class of rocks is due to recrystallization or crystalline replacement of pre-existing sediments. Thus limestoncs are dolomitized or converted into ironstones, fints and cherts, by percolating waters whicb temove the lime salts and substitute for them compounds of iron, magnesia, silicon, and so onThis may be considered a kind of metamorphism; it is generally known as metasomatism (q.v.).
The rocka of organic origin may be dut to animale or planta They are of great importance, as limextopes and coals belong to this group. They are the most foseiliferous of all onath rocks: but clastic aediments are often rich in lossils onsais though crystalline sediments rarely are. They may be sub
carbonaceous, slliceous, ferruginous, and so on. The calcareous organic rocks may consist principaily of foraminifera, crinoids, corals, brachiopoda, moilusca, polyzoa, ac. Most of them, however, contain a mixrure of organisma. By crystailization and metasomatic changes they often lose their organic structures; metamorphism of any kind has the same effect. The carbonaceous rocks are essentially plant deposits; they include peat, lignite and coal. The siliceous organic rocks include radiolarian and diatom oozes; in the older formstions they occur as radiolarian cherta. Fiint nodules owe their silica to disseminated fossils of this nature which have been dissolved and redeposited by concretionary action. Some kinds of siliceous sinter may be produced by organisms inhabiting hot silicated waters. Calcarcous oolites in the eame way may have arisen through the agency of minute plants. Bog iron ores also may be of organic rather than of merely chemical origin. The phosphatic rocks so extenslvely soughe after as sources of fertilizing agents for use in agriculture are for the most part of organic origin, since they owe their substance to the remains of certain varieties of a nimals which secite a phorphatic skeleton; but most of them no longer show organic structurea but have been converted into nodular or concretionary forms.
All sediments are at first in an incoherent condition (e.g. sands, clays and gravels, beds of shells, \&c.), and in this state they may Camperto remain lor an indefinite period. Millions of years have atos. elapsed since some of the early Tertiary strata gathered on the ocean toor, yet they are quite friable (e.g. the London $\mathrm{Clay}^{\text {(}}$) and differ littie from maay recent accumulaions. There are few exceptlons, however, to the rule that with increasing age sedimentary rocks become more and more indurated, and the older they are the more likely it is that they will have the firm consistency generally implied in the term "rock," The pressure of newer ediments on underiying masses is apparently one cause of this change, though not in itself a very powerful one. More efficlency is generally ascribed to the action of percolating water, which takes up certain soluble materials and redeposits them in pores and cavities. This operation is probably accelerated by the increased pressure produced by superincumbent masees, and to some extent also by the rise of temperature which itrievitably takes place in rocks buried to some depth bencath the surfece. The rise of temperature, however, is never very great; we know more than one instance of sedimentary deposits which have been buried benesth four or five miles of similar strata (0.g. parts of the Old Red Sandstone), yet no perceptible difference in condition can be made out berween bers of similar composition at the top of the series and near its base. The redeposited cementing material is most commonly calcareous or siliceous. Limestones, which were originally a. Hoose accumulation of shelis, corals, \&e., become compacted into firm rock in this manner; and the process often takes place with surprising ease, as for example in the deeper perts of coral reefs, or even in wind-blown massea of thelly sand exposed merely to the action of rain. The cementing cubstance may be regularly deposited in cryotalline continuity on the original grains, where these were crystalline; and ever in sandutones (such as Kentish Rag) a crystalline matrix of caicite often envelopes the sand grains. The change of aragonite to calcite and of calcite to dolomite, by forming new crystaline masses ln the imerior of the rock, usually also accelerates contolidation. Silica la less easily soluble in ordinary waters, but even this ingredieat of rocks is dissolved and redeposited with great frequeney. Many andstones are held together by an infinitesimal amount of coiloid or cryptocrystalline silica: when freshly dug from the quarry they are soft and easily trimmed, but after exposure to the air for some time they become much harder, as their siliceous cement sets and passes into a rigid condition. Others contain fine scales of kaolin or of mica. Argillaceoust materials may be compacted by mere pressure, like graphite and other scaly mincrals. Oxides and carbonates of iron play a large part in many sedimentary rocks and are especially important as colouring matters. The red sands and Coloralion limestones, for example, which are 00 abundant, contain inely divided stan amounts of (erric oxide (hatmatite), which in a Anely divided state gives a red hue of all rocks in which it is present- Limonite, on the other hand, makes rocks yellow or brown; oxides of manganese, asphalt and other carbonaceous subotances are the cause of the black colour of many sediments Bluinh tints result sometimes from the presence of phosphates or of Auorspar: while green is most frequently seen in rocks which contain dauconite or chlorite.
Mclantorphic Rocks.-The melamorphic rocks, which form the third great subdivision, are cven more varied than the igneous and the sedimentary. They include representatives of nearly Ill kinds of the other two classes, their common. characteristic being that they have all undergone considerable alterations in structure or in mineral composition. The agencies of melamorphism (g-p.) are of two kinds-thermal and regional. In the former case contact with intrusive igneous masses, such as granite, laccolites or dikes, have indurated and recrystallized the original rock. In the second case the actions are more
complex and less clearly understood; it is evident that preasure and intorstitial movement have had a powerful influence, possibly asmisted by rise of temperature. In thermal or contact alteration the rocks are baked, indurated, and often in large measure recrystallized. In regional metamorphism recrystallization also goes on, but the final products are usually schists and gneisses. It is as a rule not difficuit to distinguish the two classes of metamorphic rocks at a glance, and they may conveniently be considered separately.
When a rock is contact altered by an igneous intrusion it very frequently becomes harder, more crystaline and more lustrous, owing to the development of many small crystals in ita make Many eltered rocks of this type were formerly called hornstones, and the term hormfelses (Ger. Hornfels) is often used by geologists to signily those

Tharmer time grained, compact, crystaline products of thermal metamorphism: A ahale becomes a dark argillaceous hornlela, full of tiny plates of brownish biotite; a marl or impure limestone changes to a grey, yellow or greenish Hme-silicate-hornfels, toogh and sptantery; with abundance of asgite, gamet, wollastonite me other minerals in which lime is an lmportant componert. A diabase or andesite becomes a diabase hornfela or anfeesite hornfels with a large development of new hornblende and biotite and a partial recrystat. lization of the ofiginal felspar. A chert or fint becomes a tineiy crystalline quartz rock; sandstones lose their clastic structure and are converted into a mosaic of anall closefitting prains of quartz

If the rock was originally banded or foliated (as, for example, a laninated sandstone or a foliated celc-schist) this character may not be obliterated, and a banded hornfels is the product; loasils even may have their shapes prescrved, though entirely racrystallized, and ia many contact aftered lavas the temm cavities are still vieible, thougt their contents have usaally entered into new combinations to form minerals which were not originally present. The minute structures, however, disappear, often completely, if the thermal akeration to very profound; thus amall grains of guarte la a chale are loat or blemd with the surtounding particles of clay, and the fine ground-mase of lavas is entirely reconstructed.

By recryatallization in this manner peculiar mocks of very distioct types are often produced. Thus shales may pase into condierite rocks or may show large crystals of andalusite (and chiastolite. Pi. IV., fig. 9), staurolite, garnet, kyanite and sillima nite. A consider: able amount of mica (both muscovite and biotite) is simultancously formed, and the reautting product has a ciose resemblance to many kinds of schist. Limestones, is pure, are often turned into coarscly crystalline marbles (PI. IV., fig. 4); but if there was an admixture of clay or sand in the original rock such minerals as garnet, epidore. idocrase, wollastonite, will be present. Sandstones when greatly heated onay change into coasse quartzites composed of large clear grains of quarts. These more intense staces of alceration are not so commonly seen in igneous rocks, possibly because their minerats being formed at high temperatures, are not no casily transformed or recrystallized.

In a few eates rockos are fused and in the dark glasay product minute crystale of apinel, sillimanite and cordierite may meparnte out. Shales are occasionally thus aitered by basalt dikes, and fels pathic sandstones may be completely vitrified. Similar changes may be induced in shales by the burning of coal seams or even try an ordinary furnace.
There is also a tendency for interfusion of the igneous with the sedimentary rock Granites may absorb fragmeats of chate or pieces of basalt. In that case hybrid rocks arise which have not the characters of mormal igneous or sedimentary rocks. Such effects are scarce and are usually eacily recognized. Sometimes an buvading granite magma permeates the rocks around, filling their jointes and pianes of bedding \&c., with threads of quartix and feleper. This is very exceptional, but instances of it are known and it may take place on a large seale.

The other type of metamorphism is often said to be regiomal; cometimes it is called dynamic, but these terms have not strictly the same connotation. It may be said as a rule to make the rock more crystalline and at the same time to give it a foliated, schistose or gneissic structure. This latter consists in a definite arrangemert of the minerals, 50 that

Reptanal such as are platy or prismatic (e.g. mica and hornblende, which are very common in these rocks) have their longest axes anranged parallid to one another. For that ceason many of these rocks split readily in one dircetion (schists). The minerals ako tend to agereppe in bands; thus there are seams of quartz and of mica in a mica achita, very thin, but consisting essentially of one mineral. These seame are called folia (leaflets), and though never very pure or very presis tent they give the rock a streaked or banded character when they are seen edgewise (P1. IV. figm-6, 7, 8). Along the folis composed ol the soft or fissite minerals the rocka will sever mont reactily, and the Ireshly split specimen will appear to be faced or coated with this mineral; lor example, a piece of mica schith looked ar face wize migh be supposed to consia entircly of ahining crales of minica. On the odge of the specimea, hovives, the whise folia of gracialac gearts

Fin be visible. In gneines these atuernating folia are thicicer and Ress regular than in achists; they are often lenticular, dying out rapidly. Gneisses also, as a rule, contain more felspar than schists do, and they are tougher and less fissile. Contortion or crumpling (PI. IV. fig. 6) of the folistion is by no means uncommon, snd then the splitting faces are undulose ot puclicered. The origin of tchistosity or folation is not perfectly understood, but it is clear that in many cases it is due to pressore, acting in a direction perpendicular to the banding, and to interstitial movement or internal flow arringing the mincral particlea while they are cryptalliaing.

Rocks which were originally eedimentary and rocks which were undoubtedly igneous are converted into schists and gneisses, and if originally of similar composition they may be very difficult to distinguish from one another if the metamorphism has been great. A quarts-porphyry, for exmple, and a fine felspathic andstorre, may both be converted into a grey or pink mica-achits. Usually, however, we may distinguish between eedimentary and igneous schists and gneisges. Often the metamorphism is progressive, and if the whole district occupied by these rocks be scarched traces of beddicg, of clastic etructure, unconformability or other evidence may be obtained showing that we are dealing with a group of altered ecdiments. In other cases intruaive junctions, chilled edges, contact alteration or porphyritic structure may prove that in its original condition a metamorphic gneiss was an igneous rock. The last appeal is often to the chemist, for there are certain rock types which occur oaly as ediments, while others are found only ansong igneous masses, and, however advanced the metamorphism may be, it rarely modifies the chemical composition of the mass very greatly. Such socio, for example, as limestones, calc-schists, dolomites, quartrites and alominous shales have very definite chemical charactere which distinguish them even when completely recrystallized.

The schists and gneisocs are classified sccording to the minerals they consint of, and this depends principally on their chemical composition. We bave, for example, a group of metamorphic limestones, marbles, calc-achists and cipolins, with crystaline dolomites; many of these contain silicates soch as mica, tremolite, diopside, scapolite, quartz and felspar. They are derived from calcareous sediments of different degrees of purity. Another group is rich in quartz (quartzites, quartz schists and quartrove gneisaes). with variable amounts of white and black mica, garnet, felepar, moisite and hornblende. These were once sandstones and arenteceons rocks. The graphitic schists may readily be believed to repreent pediments once containing coaly matter of plant remains; there ere also schistose ironstones (haematite-schists), but metamorphic beds of salt or sypsum are excecdingly uncommon. Among echict: of igneous origin we may mention the silky calc-schists, the foliated expentines (once ultrabasic masses rich in olivine), sand the whive mica-schists, porphyroide and banded hallefintas, which have been derived from rhyolites, quartz-porphyrles and acid tuffe. The majority of mica-schists, however, are altered clays and shales, and pass into the normal sedimentary rocks through various types of phyllite and mica-slates. They are among the most common metamorphic rocks; some of them are graphitic and others calcareons. The diversity in appearance and composition is very great, but they form a well-defined group not dificult to recognize, from the abundance of black and white micas and their thin, foliated, schistope character. As a special subgroup we have the andalusite-, stauro-lite-, kyanite- and sillimanite-schists, together with the condieritegreisses, which usually make their appearance in the vicinity of gneissose granites, and have presumably been affected by contact alteration. The more coarsly folinted Eneisoss are almost as frequept as the mica-schists, and present a great variety of types differing in composition and in appearance. They contain quartz, one or more varieties of felspar, and usually mica hornblende or augite, of en garnet, iron oxides, \&c. Hence in composition they resemble granite, differing principally in their foliated structure. Many of them have "augen" or large elliptical erystals, mostly feispar but sometimet quartz, which are the crushed remains of porphytitic minerals; the foliation of the matrix winds around these augen, closing in on each side. Most of these augen sneisoes are metamorphic granites, but sometimes a conglormerate bed simulates a gneise of this kind rather closely. There are other gneisen, which - Gere derived from felspathic sandstones, grits, arkoses and sediments of that order; they mostly contain biotite and muscovite, but the homblende and pyroxene gneisses are usually igneorss rocks allied in composition to the homblende-granites and quarts-diorites. The metamorphic forms of dolerite, basalt and the basic igneous rocis generally have a distlnctive facies as their pyroxene and olivine are replaced by dark green hornbiende, with often epidote, garnet and trotite. These rocks have a well developed foliation, as the prismatic hornblendes lie side by side in parallel arrangement. The majority of amphibolites, hornblende-schists, foliated epidiorites and green schists belong to this group. Where they are least altered they pass through chloritic schists into sheared diabases, fater gabbros and other rocks in which remains of the original urneons minerals and structures occur in greater or leas profusion.

Bisciogeafiv.- Moat text-books of geology treat of petrology in more or less detail (see Gbology: Bibliograply). Elementary books on petrology include F. H. Hatch. Petrology (5th ed., London, 1909): L. V. Firsson. Rochs and Rack-mineraly (New York, 1908)!
F. D. Dana, Handbogh of Mineralogy and Pedroprephy (isth ed, New York, 1908): A. Harker, Petrology for SImdemts (4th ed.p Cambridge, 1908): G. A. I. Cole, Aids to Practical Geologf (6th ed., London, 1go9). For rock minerals consuit. I. P. Iddings, Roch Minerals (New York, 1906); A. Johannsen, Determination of Rack-formisg Minteraly (New York, 1go8); E. Huecak and E. G. Smith, Delermination of Roch forming Mrinerals (2nd ed. New York, I893); N. H. and A. N. Winchell, Oplical Yineralogy (New York, 1909). On the classificetion and origin of rocts aee A. Harker, Notwol History of I gueows Racks (Loodon, 1909): I. P. Iddings, Igacows Rochs (New Yority r9op); Crow, Iddinges Washington and Pirsion, Omantitation Classitication of Iencows Rocks (Chicago, 1902): C. Van Hise, Metamorphism (Washington, 1904): A. P. Merrili, Rocks, Rock-meathering and Soils (London, 1897); C. Doetter, Petrogenesis (Brumswick, 1906); J. H. L. Vogt, Silibatcchmeldosumget (Christiania, 1903); F. Fouque and A. Michel Levy, Syilibere des mintraur at des roches (Paris, 1882). The principal authonities on the analysis and chemical composition of nocks are F. Roth, Beitrage sur Petrographe (Berin, 1873-1884): A. Osann, Befirdet ster chemischen Pelrogroghic (Stuttgart, 1003): H. S. Washington, Manal of the Chemical Amalyris of Rocks (New York, 1go4) and Chemscal Analyses of I greows Rocks (Washington. 1904); F. W. Clarke, Analyses of Recks (Washington, 1904); Max Dittrich, Anleilung sur Gesteinsanalyse (Leipzig, I905); W. F. Hillebrand, A malysis of Silicate and Capbonate Roche (Washington, 1907).

The great systematic treatises on Petrology are F. prkel, Lehrbuch der Petrogesphic (and ed.g Leiprig, 1894+3 vols.); H. Rovenbusch, Mikroskopische Physiographic (4th ed., Stuttgart, 1909, 2 vols.)

Useful German handbooks include: E. Weinschenk, Polarisadions: mikroskop, Gesteinsbidiende Mineralien and Gesteinshumde (and ed., Fritburg, 1907, er) ; R. Reinisch, Petrographieches Prahtihum (2nd ed., Berlin, 1907) ; H. Roeenbuech, Elemente der Gesteiaslebre (3rd ed., Stuttgart, 1g(9): A. Grubenmann, Die krystallinen Schiefar (Berlin, 1907); F. Loewisson Lessing, Petrogrophisches Lexilon (IB93 and 1898, alsa a Fr. ed., 1901); F. Riane, Prohtische Gesteinehunde (and ed., Hanover, 1905).

The principal French works are E. Jannettaz, Les Roches (3rd ed., Paris. 1900): F. Fouqué and A. Michel Levy, Miméalogie micrographique (Parts, 1879); A. Michel Lévy, and A. Lacroix, Lat Mineraux des rochts (Paris, 1888); A. Lecroix, Môndrakgie de le France (1., I1., Paris, 1893); and Let Enclases des roches fruppiose (Macon, 1893).

British petrography is the subject of a special work by J. J. H. Teall (1 ondon, iSo8). Much information about rocks is contained in the memoirs of the various geological surveys, and in Quart. Jowrn. of the Geol. Soc. of London. Mpmeralogical Magasime, Geological Lagaine, Tachermak's. Miveralogische Millheifongen (Vienma), Neuct Jahrowch filf Miveralogie (Stuttgart), Jowrwal of Geology (Chicago), \&c.
(J. S. F.)

PETROAEL, s $16 t h$ or $17 t h$ century fire-arm, defined by R. Barret (Theoribe and Practike of Modern Warres, 1998) as a "horseman's peece." It was the fire-arm which developed on the one hand into the pistol and on the other into the carbine. The name (Fr. petrinel for poitrinal) was given to the weapon cither because it was fired with the butt resting against the chest (fvibrime, Lat. paches) or because it was carried alung from a belt across the chest.

PETRONIOS (G. ($\left.{ }^{\prime}\right)^{1}$ Petromius Arbiter), Roman writer of the Neronian age His own work, the Satirac, tells us nothing directly of his fortunes, position, or even century. Some lines of Sidonius Apolinaris refer to him and are often taken to imply that he lived and wote at Manseiles. If, hovever, we accept the identifiction of this author with the Petronius of Tacitus, Nero's courtier, we must suppose eithur that Marseilles was his birthplace or, as is more litely, that Sidonius refect to the novel itself and thet its acene wes partly laid at Marscilles. The chief pernonages of the story are evidensly strangers in the towns of couthern Italy where we find them. Their Greek-sounding names (Encolpius, Ascyilos, Giton, \&x.) and literary training accord with the characteristics of the old Greek colony in the ist century A.D. The high position among Latin writers ascribed by Sidonius to Petronius, and the mention of him beside Menander by Macrobius, when compared with the absolute silence of Quintilian, fuvenal and Martial, seem advene to the opinion that the Satirae was a work of the age of Nero. But Quintilian was concerned with writers who could be turned to use in the

The MSS. of the Sakirce tive no praenomen. Tacitus's Petronius is Gaims, though the elder Pliny and Plutarch call him Titun. The name Arbiter, given him by later writers, is not an ordinary cognomen; it may have been bestowed on him by contemporaries from the fact that his fadgrnemt was reganded as the criterion of good taste.
eliucation of ali orator. The silence of Juvenal and Martial may be accidental or it is possible that a work so abnormal in form and substance was more highly prized by later generations than by the autbor's contemporaries.

A comparison of the impression the dook gives us of the character and genius of its author with the elaborate pleture of the courtier in Tacitus certaialy suggests the identity of the two. Tacitus, it is true, mentions no important work as the composition of his C. Petronius; such a work as the Sativae he may have regarded as bencath that dignity of history which he s proudly realized. The care he gives to Petronius's portrait perhaps shows that the man enjoyed greater notoricty than was due merely to the part he played In bistory. "He spent his days in sleep, his nights in attending to bis official duties or in amusement, by his dissolute life he had become as famous as ot her men by a life of energy, and he was regarded as no ordinary profligate, but as an accomplished voluptuary. His reckless freedom of speech, being regarded as frankness, procured him popularity. Yet during his provincial governorship, and later when be held the office of consul, he had shown vigour and capacity for affairs. Afterwards returning to his life of vicious indulgence, he became one of thechosen circle of Nero's intimates, and was looked upon as an absolute authority on questlons of taste (arbiler cleganliac) in consexion with the science of luxurious living." ${ }^{\prime \prime}$ Tacitus goes on to say that this excited the jealousy of Tigellinus, an accusation followed, and Petronius committed suicide in a way that was in keeping with his He and character. He selected the slow process of opening vcins and having them bound up again, whilst he conversed on light and trifing topics with his friends. He then dined luxuriously, slept for some time, and, so far from adopting the common practice of fiattering Nero or Tigellinus in his will, wrote and sent under seal to Nero a document which professed to give, with the naroes of his partsers, a detailed account of the abominations which that emperor had practised.

A fact confirmatory of the general truth of this graphic portanit is added by the elder Pliny, who meations that just before his death he destroyed a valuable marrhine vase to prevent fis falling fnto the imperiail hands. Do the traits of this picture agree with that impression of himself which the muthor of the Sadince has lefe upon ble work? That we possess therela part of the document seat to Nero is an impossible theory. Our fragments profess to be extracts from the ffteenth and sixteenth books of the Safirar: Petronius could not have compoced one-tenth even of what we have in the time in which he is said to have composed his memorial to Nero: We may be gure too that the latter was very frank in its language, and treated Nero with far greater meverity than the Bampues Ireats Thmaichio. On the other hand, it is clear that the crealor of Trimaichio, Eacolplus and Giton had the experience; the tnctinations and the literary gifts which would emable him to descrithe with forcible mockery the debaucheries of Nero. And the impression of his personality does in another respect correspoad closely with the Petronius of the Annols-in the union of immoral sensivalism with a rich vein of cynical humour and edmirable taste.

The style of the work, where it does not purposely reproduce the soleciams and colloquiatisoms of the vaigar rich, is of the pepesa Latin of the Silver age.? Nor would there be any point in the rerses on the capture of Troy and the Civil War at any
${ }^{2}$ Anme xvi. 18.
${ }^{2}$ The false tante in fiterature and expremion foatered by the declasectiones is condemned by both Persius and Petronius on the same grounds. Cf, 100 Pers. 1. 121 , hoc ego opertw m, hoc ridere wexm,
 pecusia semdo: Pers. Ii. 9, O si chulial patrume, proctlarumi fumas, ef - si sub rastro crepmet argati miki seria, with Sah 88, Alius donmm promiltis, si propingux m dipilem extulerii, alisus si hesaurxme ef oderit and 42, homo animam ebultiif: Pers. iv. 26, arat . . . quanfmm mon milous aberral with Sal. 37, fundos habet qua milor malant. Both use the rare word baro. Animame ebullire oceurs in Seneca's Apocolocyulosis, and the verbal resemblancea illustrate perhaps rather the common ube by both writers of the vulgar atyle. Cf. [or resemblances po the st yle of the younger Seneca and the dite of the work in gencral, Scuder, 2it. M (ms. (1843).
other era than that in which Nero's Troice and Iucan's Pharsolite were fashionable poems. The reciting poet indeed is a feature of a later age also, as we learn from Martial and Juvenal. But wo know from Tacitus that the luxury of the table, so conspicuous in Trimaichio's Banquat, feh out of fashion after Nero (Ann. 3. 55):

Of the work itself there have been preserved iat sections of a narrative, in the main consecutive, although interrupted by Irequent gaps. The name Satirac, given in the besk MSS., implies that it belongs to the type to which Varro, Imitating the Greek Menippus, had given the character of a medley of prose and verse compogition. But the string of fictitious narrative by which the medley in held together is something quite new in Roman literature. This carterss prodigat was so happily inspired in his devices for amusing himself as to intraduce to Rome and thereby transmit to modern times the novel based on the oxdinary experience of contemporary life ${ }^{2}-$ the precursor of sach novels as Gil Blas and Roderick Random. Thers is no evidence of the existence of a regular plot in the fragmentsy but we find one central Ggure, Eacolpius, who protesses to narrate his adventurea and describe all that he saw and heard, whist allowing various other personages to exhibit their peculiarities and express their opinions dramatically.

The fragment opens with the appearance of the bero. Ewcolpias, who scems to be an itincrant locturer travelling with acompanion named Ascyltoa and a boy Giton, in a portico of a Greek towat in Campania. An ad mirable lecture on the false taste in literature. resulting from the prevailing system of education, is replied to by a rival declaimer, Agamemwo, who shifts the blemed from the tenchers to the parents. The central personafen of the story next go through a series of questionable adventures, in the course of which they are involved in a charge of robbery. A day or two after hey are present. at a dinner given by a freedman of enormous wealth. Trimalchio, Who entertained with ostentationan and grosesque exiravagance a number of men of his owa ranik but less procperous. We lisien to the ordinary talk of the gueats about their neighbouns, abous the weather, about the hard times, about the public games, about the education of their children. We recognixe in an extravagam form the eame kind of vulganty and pretension which the cat priat of alit times delighta to expose in the illiterateand outentatious millionaines. of the agt. Next day Encolpius separates from his companios. in a fit of jealousy, and, after two or three dayn' sulking and breodiag on his reveape, entery a picture gallery, where he meets with an old poet, who, a ler talking eensibly on the decay of art and the inferiority of the painters of the age to the old masters, proceeds to illustrace a picture of the capture of Troy by some verpes on that theme. Thia ends in those who are walking in the adjoining colonnade driviag him out with stones. The scene is next on board ship, where Encolpius finds he has callen into the hapds of some old enemies They are shipwrecked, and Encolpius, Giton and the old poet get to shore in the neighbourhood of Crotom, where, as the inhabitants are notocious fortune-hunters, the adventurers set up as men of fortune. The fratment emde with a new set of questionable adventures, in which prominent parts are played by a beautiful enchentress named Circe, a pricstess of Priapua, and a certain mazron who leaves them ber heirs, but attaches a condition to the inheritance which evea Encolpius might have chrunk from fulfilling." If we can suppose the author of thia work to have been animated by any other motive than the desire to a muse himself, it might be that of convineing bimself that the world in general was as bad as be was himself. Juvenal and Swift are justiy regarded as among the very greatest of satirists, and their extimate of human aature is perhape nearly as unfavourable as that of Petronius; but their attitude toward: human degradation is not one of complacent amusement; their realism is the realism of disgust, not, like that of Petronizs, a realism of sympathy. Martial does not gloat over the vicee of which be writes with cyaical frankness. He is perfectly aware that they are vices, and that the reproach of them is the worst that can be cast oo any ooe. And, further, Martial, with all his faules, is, in his affections, his tastes, his relations to others, essentially human. frrendly. geverous, true. There is perhaps not a single sentence in Petronius which implies any, knowledge of or sympathy with the existence of affection. conscience or honour, or even the most elementary goodnem of heart.
${ }^{3}$ For the whole question of possible predecessors and Petronius's relation to the extant Greek romances see W. Schmid. "Der griechische Roman "in Jahrbicher fir das Wess. Alertam, Ac. (iga4). Ooe would certainly have expected the realistic tendency which appears in the New Comedy, the Characters of Theophrastus and the Mimes, to have borne this fruit before the firat century of our era.- (W. C. Su.)

Comnes qui in testamento meo legata habent praeter tibertos treos. hac conditione percipient quacdedi, sl corpue meum in partea conciderist et astante populo conederint (44).

The woris hap mached pesias 80 fromentary and mutilated a shape that we may of course gltogether have mined the key to it: it may have been intended by ite author to be a sustained satire, written in a vein of reserved and powerful irony, of the type roalised in our modern Jowathan Wild or Barry Lymdos. Otherwise we must admit that, in the entire divorce of intellectual power and insight from any clement of right human feeling, tho work is an exceptional phonomenon in literature. For, as a wort of orizinal power, of pumomis represertation, of literary invention and art, the fragruent deservea all the admiration which it has received. We recognive the arbiter ciegantioe in the admimble sense of the remarks scattered through it on education, on art, on poetry and on eloquence. There is a true fecliog of nature in the description of a grove of phane-trees, cypresmen and pinea;

> "Has inter ludebat aquis errantibus arunis"
> Spumeus ee querulo vexabat rore lapillos""

And some of the ahorter pieces anticipate the terseness and elegance of Martial. The long fragment on the Civil War doen mot seem to be written go much with the view of parodying an of entering into rivaly with the poam of Lucan. In the epigram extemporized by Trimalchio late on in the banquet:
" Quod non expectes, ex transverso fitEt supra nos Fortuna negotia curat
Quare ds nobis vina Falerna, poer,
we have probably a more deliberate parody of the stylo of vervea prod uced by the illiterate aspirants to be In the fachion of the day. We might conjecture that the chief gift to which Petronius owed his socinl and his biterary succese was that of humorons mimicry. In Trimakbio and his various guest, in the old poet, in the cultivated, depraved and moody Encolpius, in the Chrysis, Quartilia, Polyaenls, fec., we recognize In living examples the play of thom various appetites, pacsions and tendencies which atirists deal with as abstract qualitica. Another gift be posessase in a high degree, Which must have availed him in society as weff as in literature- the ift of story telling: and some of the stories which firnt appear in the Sadirce-re.e. that of the Matron of Ephesus-have enjoyed a great reputation in later times. His style, toon, is that of an cucellent talker, who could have discussed questions of taste snd literature with the most cultivated men of any time as well as a mused the most dissolure society of any time in their most reckless revels. One phrase of his is often quoted by many who have never conme upon h in its original context, "Horatii curions Ielicitas"
Authoxitiss.-Until about 1650 only part of the Banquet of Trimatchio, with the other fragments of the work, was known. The best MS. of this type is a Leiden MS., a copy by Scaliger of one which reems to have belonged to Cujaciul. Marinus Scatilius (me, however, Eiths, Jownal of Philoloty, 12, P. 266) discovered at Trau in Dalmatia a MS. containing the whole Banquet, which was frst published at Padua in 1664.
The important editions are (1) with explanatory notes: Burmann (Amsterdam, 1743, with Heinslusie notes), and. of the Cewa only. Fried (2) with critical aotes: Bacheler (Berlin, 1862, 4th ed.. 1994). Translations into German in Friedlander's edition (Cena only), into French by de Guerie (complete, in Garnier's Bibliotidque), into English in Lowe's edition (Cena only) and Bohn's series (comp plete). Lexicon to Petronius by Segebade and Lommatsch (Leipzig. 1098). Criticinm, Ac, in Haley." Quaest. Petron." (Harmard Siudues, I891); Collignon, Elude swr Pleront (Paria, 1892): Emile Thomas, L'Empers de La sociele romaive d'apres Pusome (Paris, 1892); Hirzel, Der Dialog. ii. (Leiprig, 1895); Tyrrell, Latis Poelry (London. 1895): Norden, A witibe Exsisprosa i. (Laipxig. 1898): Henderson, Lifec and Prumcifate of the Emperer Nero (Lomdon, 1903); Dill, Romas: Soctety from Nero to Marcus Amrelius(London, 1905); and the various 2 histories of Roman literature (especially Schanz, $\$ 395$ sqg.). (W.Y.S.; W.C. Su.).

PETROPAVLOVSR, a town of West Siberia, in the government of Akmolinsk, on the right bank of the Ishim river, and on the great Siberian highway, 170 m . by rail W. of Omsk. The population, 7850 in 1865 , was 21,796 in 1900, of whom one-third were Mahommedan Kirghiz. The town carries on an active trade in cattle, furs, tea, wool, skins, cottons, woollen stuffs, corn, metals, metallic wares and spirits. The small fort of Petropavlovsk was founded in 1752, and was the military centre of the Ishim line of fortifications.
Pet ropavlovise is also the name of a Rumian seaport in Ramchat ka, on the eastern chore of the Bey of Avacha, in $53^{\circ} \mathrm{N}$, and 158° 44^{\prime} E. Its harbour, one of the best on the Pacific, is little used, and the town consists mercly of a few huts with some 400 inhabitant:. Ita naval institutions were transferred to Nikolayevak after the ettack of the Anglo French fleet in 1854.
PETROPOLIS, a city of the state of Rio de Janciro, Branf, In an elevated valiey of the Serra de Estrella, 2634 ft . above rea-level and 27 m . N. of the city of Rio de Janciro, with which it is connected by a combined raliway and steamehip tine, and
also by a lomger milway line pop, of the munaipality (Igoch, 30,331 , a lage percentage being summer residents, as the censua was takep late in December; (1902, municipal censuc), 18,373- Patropolis is served by the Principe do Grilo Part rail way, now apart of the Leopoldian symbem, which connoct with Rio de Jameiro and Nictheroy on the coast, and with the mation of Fatre Rios on the Central of Brasil railway. Ita alitede sives the city a cool invigocating climate, making it a favourite eummer residence for tho well-to-do clases of Ria The minfall is abundant, and especially so in summer (December to March) when the humidity is extatene. Vegatation is luxuringt and comprises a great variety of tropical and sub-trapical epecies. The city is buitt in a larys, frregulardy shapod banin formed by metrems which coaverge to forme the Piabanha river, a tribatiary of the Parahybe do Sul. Areong the public brildinge are the old imperial pelace, a modern camper residence of the mational execative and a mmaicipal hall. Although Potropolis is net a commercial centre, its water-power and cool climate are making it an important manufacturing. town Areong the products are cotion fabrics and garments, beer, and Camembert and Brio checses.

Petropolis was founded in 1845 by Julins Fredenick Kolet under tho auspices of the emperor of Brasil, Dom Pedra II., on lands purchased by his father, Dom Pedro I., in 1821. The place was previously known as Corrego Secco, which Dr Georgo Gardner deacribed in 1837 as "a small, miserable village." The first emperor planued to establish there a German colony, but the plan was not realized until 1845, whe about 2790 colonists from Germany were located there. Its growth was slow, but the choice of the place by the experor is a smimer revidence drow thither matay of the wealithy residents of the capital. The Mand railway was opened to the foot of the semra (Rale da Serra) in 1854, and the macadamised mad up the stres to the town in $\mathbf{1 8} 56$. The mountain section of the railway, on the Riggenbach system, was completed in 1883. Petropolis has since becoma the mammer residence of the diplomatio corpt and of the higher officials of the Federal government, and was the capital of the state of Rio de Janeiro from 1893 to 1903 -

PryRoVsz, a seaport of Russia in Transcaucadia, on the Cuspian Sea, ta the province of Daghestan, 180 m . by rail E. of Vladikavkas, and $\mathbf{2 3 5} \mathrm{ma}$. N.W. from Baku. Pop. g806. The town has become the port of embarcation for Kraspovodst. the Trumacapian territory, and the Central Asian thanates. There are maphtha wells; and the hot sulphur baths af Ak-al and Talga, close by, attract many visitara fn summer.

PITROVER, ato of eastern Russia, in the government of Saratov, on the Medvyeditsa, a tributary of the Doa, 60 m . N.W. of the town of Saratov. Pop. (1864), 10,228; (1897), 13,212. It was founded by Peter the Great in 1698 as a defence against the Kuban Thiars. Its industrial establishments include distilleries, tanneries, tallow and brickworks.

PREROZAVODSK, a town and episcopal seo of Russla, capital of the government of Olonets, on the west shore of Lake Onega, 190 m . N.E. of St Petersburg. Pop. (1865), 11,0a75 (1897), 12,521. Two cathedrale, built cowrarits the end of the r8th century, a mining school, ma ecelesiantical sentinary and a government cannon-foundry are the chief public buiding and institutions. Feter the Great foanded iromworks here in ryo3, but they contfoued in operation only twenty-four yeare. The camnon-foundry was inatituted in 1774. Petrozevedisk became the capital of the government of Olonets in 1802.
PETRUCCI, PAIFDOR 0_{0} (d. 1512), tyrant of Siena, spent the greater part of his youth in exile, on sccount of the civil strife by which his native town of Siena was torn; but on the triamph of the party of the Noweschi (those who supported the Couscil of Nine) in 1487 he was able to return bome. On the desth of his btother Giacopo. one of the most powerful mina in the city, Pandolfo succeeded to all the latter's offices and emoluments (1497), thus becoming in fact if not in name master of Siena. By his marriage with Aurelia, daughter of Nicola Berghese, another very infuential citizen, he'still further strengthened his anthority. But he soon began to abuse his power by selling public offices to
the highent bidders, or eonfering them of his followens. A plot wes made to murder halm, but he dibcovered the conspiracy in time, and his owe father-in-taw, who had been leader of the tnoverteat, was put to death. In 1498 be prevented the outbreak of war with Flortace over the poselsion of Montepulcisiso, which had-been a bone of contention between the two cities for over a humdred years. Ifie attitude towarda Cesare Borgia mas oxceedingly astute; at firt be sacistod him, and obtained from him with the favour of the French king the ceanion of Piombino; but having suheoquently aroused the surpicions of Borgin, the better attempted to mpprese Petrucel by inviting hims to the fatal meeting of Senigalin. The Siencere tyrant, bowever, did not fall into the trap, and although Borgia in 1502 obliged hinn to quit Siena, be returwed two months later, more powerful than bofore. Potrucd mopportod Pisa in the War against Florence, but event wally, through the intervention of the pope and of the king of Spain, be made peace with the latter city, to which be geve back Montepolciano in $\mathbf{2 5 1 2}$. As a rewerd for this action Pope Jullas II. created his mepbew cardinal. During his last days Petrucd abdicated his authority in favour of his aon Borghese. He died at San Quirioo di Osenma on the arst of May 1522.
See Peect, Memoris storico-aribiche di Siuse (Siena, 1755); U. C. Mondolfo, P. Petrucci sigmore di Siema (Siena, 1899).

PEYRUS AUREDRUS (Oreor), scholastic philosopher and monk of the Franciscan order, lived in the latter half of the inth century, and died in Paris in 1322 just after his appointment as archbirhop of Aix. He was cone of the first to attack the realist doctrines of Duns Scottre, and is interesting mainly as the precursor of William of Occam in his revival of Nominalism. His ability earned for him the tities of Doctor Fcaurdus and Doctor Abundases.
 born in Vienna, was brought up on his father's eatate in Galicia. Having decided to give up the military career on which he had tarted, be devoted himself to painting, taking for his subjects the simple scenes of the life on the dreary Pusita. His paintings are treasured for their fine qualities of colour, and for the sincerity with which the artist sets before us the uneventful melancholy bife of Hungariail peasants and sippias-without any thencrical pathos or forced humoar. He was the inventor of the Pettentofen box, an appliance for dissolving and redistributing cracked or discoloured varnish without friction or the dapgeraus tree of chemical. He died in Vientas in 1889.
 chemist and hygienist, was born on the 3rd of Decemiver 1818 it Lichtenheim, near Neuburg. He was a nephew of Frank Kaver Pettenkofer ($1783-1850$), who from 1823 was surgeon and apothecary to the Bavarian coort and was the author of come chemical investigations on the vegetable alkaloids. He studied pharmacy and medicine at Muoich, where he graduated M.D. in 1843, and after working under Liebig at Giessen was appointed chemint to the Munich mint in 1845. Two years later he was chosen extraordinary profemor of chemistry in the medical faculty, fo 1853 he received the ordinary professorship, and in 2865 be became also professor of hygiene. In 1894 be retired from active work, and on the roth of February 1901 he shot bimself in a fit of depression at his home on the Starnberger See, near Munich. In his earlier yeara he devoted himseli to chemistry, both theoretical and applied, publishing papers on the preparation of gold and platinum, numerical relations between the atomic weights of anilogous elements, the formation of aventurine slass, the manufacture of illuminating gas from wood, the preservation of oil-paintings, tre. The reaction known by his name for the detection of bile acids was published in $\mathbf{2 8 4 4}$. In his widely used method for the quantitative determination of carbonic acid the gaseoms mixture is shaken up with baryta or lime wator of known streagth and the change in alkalinity ascertained by means of oxalic acid. But his uame is most familiar in connexion with his work in practical hytiene, as an apostle of good water, fresh sir and proper seware dispocal. His attention was drawn to this suhject about 1850 by the unbealthy coadition of Munich.

Pettenkofor gave vigorous expromion to hle views on hypiene and disease in aumerous books and prpers; be wet an editor of the Zeilccieriff fir Brologic from 1865 to 1882, and of the Archto firm Bygicur fromi 1883 to 1894

PEITICOAT, an underskirt, is part of a woman's dress. The petticont, ice. "petty-coet "or small cost, was originally a aloort germent for the upper part of the body worn under an outer drcss; 红 the Promplorivem parmiorwio the Latin equivalent is tsaicula. It was both a man's and a woman's garment, and was in the first case worn as a small coat under the doublet, and by women apparently as a kind of chemise. It wet, however, carly applied to the skirt worn by women hanging from the waist, whether as the princlpal lower garment or as an underskirt. In the middle of the 17th century the wide breeches with heavy lace or embroidered ends worn by men were known as "petticoat breeches," a term alsa applied to the loose canves or oilskin overalls worn by fishermen.

PETIIE, JOHI ($1839-1893$), Scottish painter, was born in Edinburgh on the 17th of March 1839, the son of Alerander and Alison Pettie. In 1852 the farnily removed to East Linton, Haddingtonshire, and a partrait by the lad of the village carrier and his donkey overcame his father's objections to art as a career for his son. When sixtcen he entered tha Trustees' Academy in Edinburgh, working under Robert Scott Lauder with W. Q. Orchardson, J. MacWhirter, W. M'Taggart, Peter Grahara, Tom Grahan and G. P. Chalmers His first exhibits at the Royal Scottish Academy were "A Scene from the Fortumes of Nigel "o-one of the many subjects for which he sought inspiration in the novels of Sir Walter Scott-and two portraits in $\mathbf{1 8 5 8}$, followed in 1859 by "The Prison Pet." To the Royal Academy in 1860 ho sent "The Armouress"; and the success of this work and of "What d'ye Lack, Madam?" in the following year, encouraged him in settle in London (1862), where he joined Orchardson. In 1866 he was elected an Associate of the Royal Academy, and in 1874 received full academical honours in succession to Sir Edwin Landseer. His diplome picture was "Jacobites, $\mathbf{1 7 4 5}$." Petlie was a hard and rapid worker, and, in his best days, a colourist of a high order and a brilliant executant. In his early days he produced a certain emount of book illustration. His connexion with Good Words began in 1861, and was continued till r864. With J. MacWhirter he illustrated The Posiman's Bag (Strahan, 1862), and Wordsworth's Pectry for the Yowng (Strahan, 1863): His principal paintings, in addition to those already mentioned, are "Cromwell's Saints " (1863); "The Trio" ($\mathbf{2 8 6 3 \text {); " George }}$ Fox refusing to take the Oatb" (1864); "A Drumhead Courtmartial "(r865); "The Arrest for Witchcraft "(r866);"Treason" (1867, now in the Mappin Art Gallery, Sheffield); "Tussie with a Highland Smuggler" (1868); "The Sally" (1870); "Terms to the Besieged " (1872); "The Flag of Truco" (1873); "Hol Hol Old Noll" and "A State Secret" (I874); "A Sword end Dagger Fight" (r877); "The Death Warrant " (1879); "Mononouth and James II."(188a); "The Vigil" (1884, in the Chantrey Collection, National Gallery of British Art); "Challenged " (1885); ${ }^{10}$ The Chieftain's Candlesticks" (2886); "Two Strings to Her Bow " (1887); "The Traitor " and "Sir Charles Wyndham as David Garrick" (2888); and "The Ultimatum " and "Bonnic Prince Charlie" (1892). Pettie died at Hastings on the 2rst of February 1893. In 1894 a selection of his work was included in the Winter Eshibition of the Royal Academy. His portrait by himself is in the Tate Gallery.

John Pellic, R.A, (London. 1908). by his nephew Martin Hardie. gives the story of his life, a catalogue of his pictures, and Girty reproductions in colours.
PLitY, BIR WILHIA (1623-1687), Engish atatistician and political economist, born on the 26th of May 1623, was the son of a clothier at Romsey in Hampshire, and received his carly education at the grammar school there. About the age of fifteen be went to Caen (Normandy), taking with him a little stock of merchandise, on which he traded, and so maintained himself whilst learning French, improving himself in Latin and Greek, and studying mathematics and other sciences. On his return to England be seems to have had for a short time a place
th the royal mavy. He went aboond agais in 1643, and temained for three years in France and the Netherlands, pursuing his studies In Paria he read Vesalins with Hobbes, who was then preparing his Trectelus oplecess, and it is siid that Peity drew the diagrams for him. In 1647 Petty obtained a patent for the invention of double writing, is. a copying machine. In politics he espoused the side of the pariament. His first publication was a letter to Samuel Hartilib in 1648, entitled Adoice for the Adrancencent of some Particular Parts of Learning, the object of which was to recommend such a change in education as would give it a moce peactical character. In the same year he took up his residence at Oxford, where he was made deputy professor of anatormy, and where he gave instruction in that science and in chemistry. In 1649 he obtained the degree of doctor of physic, and was soon after elected a fellow of Brasenose Coliege. He gained some notoriety in $\mathbf{1 6 g o}$ by restoring to life a woman who had been hanged for infanticide. In 1651 he was made proiessor of anatomy at Oxford, and also became professor of music at Gresham College. In 1652 he went to lireland, having been appointed physician to the army in that country In 1654, observing that the admieasorement and division of the lands loffeited in 1641 and granted to the soldiers had been " most inefficiently and absurdly managed," he entered iato a contract to execute a Iresh survey, which he completed in thirteen months. ${ }^{1}$ By this he gained 89000 , and part of the money he invested profitably in the purchase of soldiers' debentures. He thus became possessor of so large a domain in the county of Kerry that, aocorting $t 0$ John Aubrey, he could behold from Mt Margetton 50000 acres of his own land. He set up ironworks in that neighbourhood, opened lead-mines and marblecqurries, establibhed a piichard fishery, and commenced a irade in timber. Beaides the office of comminsloner of distribution of the lande he had surveyed, he held that of secretary to the lord-Heutenant, Henry Cromwell, and was also during two years clerk of the council. In January $16 \mathrm{~g}_{8}$ he was elected to Richard Cromwell's partiment is member for West Looe in Cornwall. After the Reatoration he returned to England and was favourably seceived and krighted by Charles II., who was " musch pleased with his ingenious discourses," and who, it is sald, Intended to create him earl of Kirmore. He obtained from the king a new patent comstituting him surveyor-general of Ireland. In 1663 he attracted much notice by the sacoese of hisinvention of a doublebottorned ship, which twice madic she passage between Dublin and Holyhead, but was afterwards bost in a violent atorm. He was one of the first members of the Royal Society, and sat on its counct. He died in London on the 16th of December 1687, and was buried in the church of his native place. Hos will, a curious and characteristic docoment, is printed in Chalmers's Biographical Dictionary.

Hfis widow, Elisaberh (d. 1708), danghter of Sir Handress Waller (1604-1666), the lish Cromweliain soldier and regicide, was created Barowess Shelburne by Jance 11. in 1688; and her two some were successively created oarls of Shelburne, but on their death withoat iscue the Petty eatates passed to their cister, Anne, and aker ber marriage to the ast earl of Kerry the Sheliberne title was revived in ber son's lavour (see under Lanaspowne, iet Marpuess).

Petty's Irish survey was based on a collection of soctal data which entitles him to be considered a real pioneer in the science of comparative statistics. He was also one of the first in whon we find a tendency 10 a view of industrial phenomena which was at verimes with the then dominant mercantilist ideas, and he exhibits a atatesmanlike sense of the elements in which the extrength of a nation really consists. Roscher names him as having, along with Locke and Dudley North, raised the English school to the higheat poist it attained before the time of Hume.
'The sarvey executed by Petty was, somewhat whimsically. called the "Down Survey." because the results were set dowm in mapa; it is called by that name in Petis's will. He left in MS a fulf accoums of the proceedings in connexion with it, which was edited by Sir Thomas A. Larcom lor the lrish Archatological Society in 18\$1. The maps, some of which were injured by a fire in 1711, are preserved in the Public Record Office, Dublin.

His Troalise of Taxes and Contributions contains à cloar statement of the doctrine that price depends on the labour necessary for production. Petty is much concerned to discover a fixed unit of valoe, and he thinks he has found it in the necessary sustenance of a man for a day. He understands the cheapening effect of the division of habour. He states correctly the notion of " natural and true" rent as the remainder of the produce of land after payment of the cost of production; but he seems to bave no idea of the "law of dimmishing returns." He has mach that is just on the subject of money' he sees that there may be an excess of it as well as a deficiency, and segands the prohibition of its exportation as contracy to sound policy. But he errs in attributing the fall of the rate of interest which takes place in the progress of industry to the increase in the quantity of money. He protested agrinst the fetters imposed on the trade of Ireland, and advocaled a union of that country with Great Britaun. Whilst the general tendency in his day was to represent England as in a state of progressive declino-an opinjon put forward particularly in the tract entitled Briconsia Languent-Petty declared her resources and prospects to be not inferior to those of France.

A complete list of his works is given in the Athenae axomienses. The most importan are: the Treadise of Taxes and Contributions (1662, 1667 and 1685); Political Arilhmetic, presented in MS. to Charics 11 . but. because it contained matter prikely to be offensive to Prance, kept utipublished till 1691, when it was edited by Petty's son Charles; Quastulumcusque, or a Tract concerning Moncy (1682); Observetions mpor the Dublin Bills of Mortalify in 1081 and She Staie of that City (1683): Ersey concerning the Mulliplication of Mankind (1686); Potitical inatomy of Ireland (1691). Several papers appeared in the Philosophica! Transactions. See Economic Writings of Sir William Petry, ed. C. H. Hull (2 vols., $18 g 9$).

PEITY-0FFICER, the title in the navy of a large number of minor (Fr. pelit, small) officers, of less than commissioned or warrant rank-such as the master-at-arms, sailmaker, caulker, armourer, cook, tic. They were originally named, and removable, by the captain.

PETVIIA, in botany, a genus of plants belonging to the natural order Solanaceae and containing about 16 species, chieffy South American (southern Brazil and Argentina). The garden forms are derived from the white-flowered P. nyctaginifora and the violet- or purple-flowered P. violocea. The varieties of petunia, especiaily the double forms, make admirable specimens for pot culture.
Named or specially line varieties are propagated by cuttings taken from stock plants kept through the winter on a dry warm sheff, and moved into a brisk moist heat in early ppring: the young shoots are planted in pama or pots slled with gandy moil, and, aided by a brisk bottom heat, strike root in a few dayn. They are then potted singly into thumb-pots, and when once established are gradually hardened off, and afterwards repotted as required. The choots should be copped to make bushy plants, and their tops may be utilized as cottinges. The single varieties are rained from seeds cown in light sandy toil in heat, in the early spring, and very alighely covered. The plants need to be pricked out or potted of as soon as large enough to handle. Good strains of seeds supply plants suitable for bedding; but, as they do not reproduce themselves exactly, any sorts particularly required must be propagated, like the double ones, from cuttings.
PETWORTH, a market town in the Horsham parliamentary division of Sussex, England, 55 m . S.S.W. from London by the Landor, Brighton \& South Coast railway. Pop. (rgor), 2503. The church of St Mary is Perpendicular, and contains numerous memoriats of members of the Percy faunily and others. Petworth Howse, situated in a beaulful park, dates from the ysth century, and contains a magnificent collection of pictures. At Bignor in the neighbourhood are remains of an important and splendidly adormed Roman villa.
The first mention of Petworth (Peartingawyrth, Peteorde, Puetewid, Pedowurde, Putteworth, Pytteworth, Petteworth) occurs in a grant by Eardwulf, king of Northombria, to St Peter's Church, about 79Y. In.the time of Edward the Confensor Pet worth was an allodial manor held by his queen Edith, and in so8s Robett Fitz-Tetbald held it of Roger Montgomery, earl of Shrewsbury. It then included a church and a mill, and was rated at nine hides. Through Queen Adelima, Petvorth catbe first into the hands of
ber ateward, Reginald de Wyndsor, and was afterwards given zo ther brother Joscrine, who held it of the honour of Aruadet. Josceline married Agnes de Perty and assurned the surname of Percy. The honour and manor of Pet morth lollowed the descent of this family until 1708 . In $\mathbf{2} 377$ Henry Pency was created earl of Northumberland. The ondy daughter of the last eand mazried Chardes, duke of Somernet, in 1682, and Petwonh descended through their daughter Catherine to the earls of Egremont. The adopted mon of the third can wes created Baron Leconficid in 1859.

PRUTINGER EONXAD ($5465-1547$), German humanist and antiquarian, was born at Augsbarg. In 1497 ho was town clerk of his native place, and was on intimate terms with the emperior Maximilian. He was one of the first to pubtich Roman imoctiptions, and his name remains asseciated with the fumons Tabode pendingeriond (see Map), a map of the military raads of the western Roman Empire, which was discovered by Konrad Celtes, who handed it over to Peutinger for publication. Peutinger aloo edited the Historia Golbormin of Jordanes, and the Hasloria sentis Langebardorym of Pauhus Diacenus.
The Tabula pemtingeriand was forst publisbed as a whole by F_{1} de Scheyh (1753): Later editions by E. Desjardins (18691874) and C. Niller (isas); see aloo E Paulus, Enklarung der Pcutinget Tafed (1867): and Teuffel-Schwabe, Hist. of Roman Lilerabure (Eng. trans., 1900).

PEVEMSEY, a village in the Eastboume parliamentary division of Sussex, England, 65 m . S.S.E. from Lopdon by the Loodon, Brighton \& South Coast railway. Pop. (Igor), 468. The village is a member of the Cinque Ports, but the sea has receded a mile from it in historic times. The outer wall, with solid towers, of the celebrated castle, is of Roman construction, and originally enclosed a complete oval; it is ezmerally considered to have enclosed the strong town of Anderido Within rise the fine ruins, principally of the inth century, but in part Norman, of the castle proper, with a keep and four massive round towers. The church of St Nichotas, close to the castle, shows beautiful Early English work. It has been supposed that Pevensey was the scene of the landing of Caesar in 55 B.C., but the question is disputed.

The name of Pevensey (Paevenisel, Pevensel, Pevenes, Pemsey) first occurs in a grant of land there by the wouth Sazon Duke Berthuald to the abbey of St Denis in 795. In later Sazon times, at least by the reign of Edward the Confessor, it was a royal borough and had a barbour and a markel. Its carly importance was due to its fencible port. It was the landing place of Wiliam the Norman on his way to conquer, and was the caphut of the rape of Pevensey, which was granted by William to the earl of Mortain and subsequently became the Honour of the Eagle. Some time before the reign of Edward 1. the town of Pevensey was made a member of Hastings and shared the liberica of the Cinque Ports, but apart from them it poasesses no charter. It was governed hy a bailif and twelve jurats, elected annually, until hy an act of 1883 it ceased to exist as a borough. Its sead dates apparently from the reign of Honry IIL. The gradual decline of Pevenacy was complete in the 15 th century and was caused by the recession of the sen and comsequent loss of the harbour.

PEW (Mid. Eag. paces, through O. Fr. puya, pmi, mod. puy. ia the sense of hill, di. eppuyer, to lean eqainst; Irom Let. podimm, a high place, balcony; Gr. mbeor, pedenal, moin, (oot), a term, in its most usual meaning, for a fixed seat in a church, usually enclowed, slightly raised from the floors, and composed of wood framing, mostly with ornamented ends. Some bench ends are certainly of Decorated character, and some have been considered $t 0$ be of the Early. English period. They are sometimes of plain oak board, at 103 in . thick, chamfered, and with a necking and finial generally called a mppy heod; others are plainly panelled with bold cappings; in others the panels are ormamented with tracery or with the linen patters, and sometimes with runaing foliages. The large pews with high enclosures, curtains, \&c., known familiarly as "horse-boxes," and common in English parish churches during the 18 th and early part of the rgth ceaturies, have pearly all been cleared away. The parish church
of Whirby, in Yorkstire, is periupis the bex surviving example of an unaliered unternor.

The Latio wond podimes was particularly applied to a belosay or parapet next to the arena un the Roman theatre where the emperor and other distunguished persons sat. According to Du Cange (Clossarium, s.y. podikm), it is found in medieval Latin for a bench (subsolliam) lor the minor canons at a church in Lyons (i343), and also for a kneeling suoul in a monastic church. The word "pew" in English was often used for a suall for the minieter, for a reading deak, or for a pulpis. The foor space of the mave and transepts of medieval churches was u sually open, mars being sometimes provided for kneeting. and id any fixed seats were provided these would be for the patrons of the church or for dissinguisthed people. Some enclowed seats, however, seen wo have been reserved for women, as is seen in Puers Plotuman, ch. vii. 144. "Among wyyea and wodewes ich am ywoned stite yparroked in puwes." They did not come into general use till the middle of she 15th or begizning of the 16 th century (bee Casques. Parish Life am Medienal Euglomd, (1906. pp 62 ar.d 133). Over the few seats thus allotted diepute aroee and altempts were made to appropriate them. Thus the constitutions for the synod of Exeter, drawn up by Bishop Peter Quivel in 1287. forbid any one "to claim any sitting in the church as his own. Whoever first comes to pray, let him take what place be wisthes in which to pray

Al common law all seats in a parish church are for the common use of all the parishioners, and every parishioner has a righe to a seat without paying for it. The disposition of the seats is in the discretion of the churchwardens acting for the ordinary for the purpose of orderly arrangement (as to the exercise of this discretion see Reywolds v. Moncktone, 1841, 2 M. \& R. 384), and this can be excrcised in cases where all the seats are free (Asher \mathbf{V}. Calcrafl. 1887, 18 Q.B.D. 607). The right to a seat does not belong to a mon-parishiener. As agninst the assignment and disposition of eeats by the ordinary, acting through the charchwardens, two kinds of appropriation can be eat up (a) by the grant of a faculty hy the ordinary, and (b) by prescription, based on the presumption of a lout faculty. Such laculties are rarely granted now; they were formerly common; the grint was to a man and his family "so long as they remain inhabilants of a certinin house in the parish "; the words " of a certain house "are now usually omitted. The chaim to a pew by prescription must be in respect of a bouse in the parish; the right is subject to tho burden of repairing the pew; it is not en easement, not does the Prescription Act $\mathbf{8 8 3 2}$ apply to it (see for the whole subject of a clam by prescription Phillifs v. Hadiday, 18g1, A.C. 228). The letting of pews in pariah churches became common in the i6th century, but there are some earlier instances of the use, for example at SL Ewena, Bristol, in 1455 (Churchradrdens' Acconents, Sir J. Maclean, Trans. Bristal and Glowcester Arckeed. Assec.n wol. xy., 1890-189t). The taking of pew rents in parish churches is illcgal (Lard Slawell, in Weller v. Gamer, 1798, 3 Hag. Comsioh 8:7); but under the various Church Building Acta sents may be let and rents charged to pay the salary of the minister, \&ce.
Soe A. Heales, Hivery and Lowo of Charch Seals and Pews (1872): Phillimore, Eccks. Lam (1896), it 1424 veq.

PEWTEB, a gencral name used to denote a number of alloys of various metals in diverne proportions, the sole common feature of which lies in the fact that tin is always the chief conscituent. The etymology of the word is doubtiful, but it is probebly an English modification of speller, which wal adopted with more or less local alteration by the continental Euxopean nations, who at an eariy period were eager purchasens of the warr, becoming peomler in Dutch, peutre, peambe or piaudre in French, pellore in Ltalian and pellre in Spanish. Roman pewter, the oldesk known, which has been disinterred at various places in Ergland and elsewhere, was composed of lin and lead alone, for the occmaional traces of iron are believed to be accidental, in propostions which, though varying considerably, group themselves around two definite formuliae, one containing 71.5 parts of tin to 27.8 of lead, the other 78.2 of tin 1031.7 of lead, or one libra of tin to 4i, and 3 unciae of lead respectively. Oa the European continent in the middle ages, some ten centuries later than the supposed date of the Roman pewter found in Britain, when wo first get definite records of the composition of periter, lead remained the chief, If not the only secondary ingredient. In 1437 the pewterers of Manspelier added 4 parts of lead to 06 of rin.

Hiven matring dishom and pocrivgers to parts of lead to go of tin for salt-celiars and ewers; chose of Limoges used 4 parts of lead to 100 of tin; at Nuremberg in 1576 it was ordained that not more than I tho of lead should be mined with every so it of tin; in Ftance during the 18 th centery a limit of 15% of lead was imposed, while at the present time $16-5 \%$ with a magiti of 1.5 fore errors is regranded as safo for thie stortige of wine und comequenthy legal.

In England the endiest known ordinances for the regolation of the craft were drawn up to $13 \boldsymbol{q}^{2}$ and reccived the epproval of the mayor and aldermen. From thom we learn that for sounded vessels lead qiaght be mised with the tin in the prod portion of 26 th to each hurndredweight, shough thivi quantity appears to have been found excessive, since in 1352 a pewtexer mas punished because his alloy contained mote than if it to the hundrediveight, anlel this ba a clerical. error in the contemporary records of the Pevterers' Company. Articles made of this material were to be known as "vessels of tyn for ever " but the alloy soon came to be known as "ley." Another formula, however, authorized in the same document, would appear 10 have been at that time as exclusively English secrec, to which was presumably due the universal rectognition of the superiority of the istand wates which is to notable x fact in the hisiory of pewter. It was known as "fyne peavier" and usod For dishes, sacers, platiers, chargers, and for alf. "things that they make square." such as cruets, christotiories, tec., which owing either to the sough usage they would be submitted to, of to the sharpness of theid angles, callect for greater toutghness in the matertal. The recipe for this alloy as ariginally propounded was as much hruss to the tin "as it wol receiuve of his tature." but the lack of precision in this perhaps rendered it difficult to distingeish accidental variations from detiberale aduheration; and in $\mathbf{8 4 7 4 - 1 4 7 5}$ it was resolved that 36 of brass mura be mised with every buadredweight of sin. The penattles fot infringement of the rulas were severe and frequendy ewforced, bert in aplte of them therstions and lmprovements crept in. The chiel and pertaps the earilest of these wes the eddition of a certain proportion of bismuth, or wo it was then called "tha glass." When this wats Grst used is not recorded, but by 1501 it was accepted as a matter of course; in 1630 a maker "was found in faxte for not sufficiently tempering his metal with in glass "; and in 1653 it was ordered that 3 ib weight of tin glases at least must be mixed with every roco th of tin. Amt monry was subsequently introduced-thoagh there is no mention of it in the records of the Pewterers' Company-sometimes alone as in tin and temper (1.6 to 190 pirts) and trife (17 parts 1083 of tin), sometimes with ather metals as in hard metal (96 parts of tim, 8 of antimeny and i'of copper), a mixiure very closely resembling that still used under the name of "Britannia metal," and in plate pewter (roo parts of tin, 8 of antimony, 4 of copper and 4 of bsmuth). The wares were originally fashioned in two ways, by hammering or by costing, and the workers in each were strictly differentiated, the former, who worked in fine pewter, being known as Sadwate men, the latter who used " ley" as Hollow-ware men. A third class, known as Triflers, from the alloy they were limited to, probably at first only manufactured such small erticies of domestic use or ornament as did not definitely fall under eit her of the other headings, but from an authorized list of wares, drawn up by a committeet of Triffers in 1612, it is clear that the barrier between them and the Hollow. ware men had been largely broken down. Another method of working pewter which seems to have been introduced later, and never followed to any great extent. was spinning. by which'thè vessel was shaped in a mould on a wheel by the mere pressure of a blunt tool, the softness of the metal gllowing of its flowing sufficiently for this purpose.

Pewter first appears in history in 1074, when a synod at Rouen permitted its use as a substil ute for gold or silver in church vessels. a concession accepted also at Winchester two years later, again wiahdrawn In 1175 , but once more tacilly adopled some twenty wars after. The records of its domestic use commence with the caldrons employed for boiling the meat at the coronation of

Edward 1. 㸗. 2174, thotigh we gather that the tructe was even then flourishing in Paria and Bruges, whence during the following century it extended to Augeburg, Nuremberg, Poitiers, Mons and orher contimentil centres. Confined as-first to the more wealthy classes, we can trace at time goes on its extension lower and Lower in tha social scalo, until at the end of the 27 th century its use, was almost triversal. Thenceforward its vogue steadily declined. The growing cheapness of glams and chinaware and thic invention of more showy metals brought upon it by degrees the intal stigna of vilgarity, uncil with very few exceplions its manofactere ontirely ceaset.
Artistically, pevice was at its best when its makers were least conscious of che art revealed in it, thinking more of the durability and appropritataiess to purpose of their wapes than of their decorative qualitiss. Though intentionally ernamental vessels thay be found carlier, it was not until the 18th century that the pewterers sot themsives to slavishly copying the designs and methods of the silversmiths, whether suitable to their material or not, and thereby undoubtedly hastened their own dowrdall.

Of recont yeart pewter has taken its place among the articles sought after by collectors, and its cost has so materially and rapilly incressed that the manufacture of vessels, guaranieed of course gentinely antique, bids fair to become once more a phying industry. Unforturately the various enactmentis compelling each ruaker to stamp his ware with a definite touchmatk seem at al times to have been very generally evaded or ignored, and experience alone is therefore the only sale guide to distigguishing new from ofd.
Breliogenzry,-History of ate Worshipfod Company of Pemerers of Che Cily, of Lomdom, by Charies Welch (London, 1902); Pewter Plate, by R.J. L. Masse (London, Igo4); Scottisk Paster ware and Paw. terers. by L. Ingleby Wood (Morton, Edinburgh n.d.): Odd Pecoler. by Malcolm Bell (Newnes London, n.d.); Ler Metamr daws lamti: gudt ol at moges Age. L'Etacin, by Germain Bapst (Paris, 1884); Didionnaire de ramerablement et de le dsaralion, by Henri Havand: Histoive dx mobilier: by Abert Jacquemart (Paris, 1877); "Analysis of Roman Pewter.' by W. Gowland, A rchaeologic, vol. Ivi. (18q8): Powter Marks and Otd Pewer Ware: Domestic and Eaderiastical, by Christoplerer A. Mariham (1909).
(M. Be.)

Plizentis, a town of southern France, in the department of Hérault 33 m. W.S.W. of Montpelliez on the southern railway. Pop. (1906), 6433. The commerce in cognac, spirits and wines is 80 important that the prices current for these at the weekly sales are registered throughout the wine marts of France and Europe. There is a handsome monument to Moliere, who lived at Pexemas severnl years and produced his first plays there in r65s and 1656. A gateway (isth century) and old mansion of the $15^{\text {th }}$ and 16 th centuries are of interest.

Pézenas (Puscennoe) was founded by the Gauls. In the roth century it became the capital of a countship subsequently held by important families including those of Montmorency, Conde and Conti. In the 17th century the town was on several occasions the meeting place of the estates of Languedoc.

PFAFF, JOHANF FRIRDRICH ($1765-1825$), German mathematician, was born on the and of December 1765 at Stuttgart. He received his early education at the Carlsschule, where he met F Schiller, his lifelong friend. His mathematical capecity was carly noticed; he pursued his studies at Göttingen under Abraham Gotthelf Rästner (1719-1800), and in 17^{87} he went to Berlin and studied practical astronomy under J. E. Bode In 1788 Plafl became professor of mathematics in Helmstedt, and so comtinued until that university was abolished in $\mathbf{1 8 r o}$. From that time till his death on the 21 st of April 1825 he held the chair of mathemutles at Halle. Plaf's researches bore chiefly on the theory of series, to which he applied the met hods of the so-called combinatorial school of German mathematicians, and on the solution of differential equations. His two principal works are Disquisitiones analvicac maxime ad calculum integralem ef docirinam serierum pertincties Y4to., vol. i., Heimstladt, 1797) and "Methodus generalis, acquationes differentiarum particularam, necnon aequationes differentiales vugares, utrasque primi ordinis inter quotcumque variabiles, complete integrandi "in Abk. d. Berl. Aeact. (1844-1815). The former work contains Pfafi's discusaion
of a certain differential equation which gemerally bears his name, but which had originally been treited in a leas complete manner by L. Euler (gee Dipferential. Equations). The latter work contains an important addition to the theory of partial differential equations as it had been left by J. L. Lagrange.

His byother, Johana Wiresin Anopzas Prayz (1774-1835), was professor of pure and applied mathematica succesaively at Dorpat, Nuremberg, Wurzburg and Erlangen. Aoother brother, Cbristinn Hewnrych Prars ($1775-1852$), greduated in meodicine at Stuttgart in 1793 , and from 880 t till his death was professor of medicine, physics and chemistry at the uriveraity of Kiel.
pFalZsURG, e town of Germany, in the imperial proviact of Alsace-Lorraine, lies high om the west alopes of the Vosgen, 25 m . N.W. of Strassburg by rail. Pop. (2905), 3716. It contains an Evangelical and a Roman Catholic church, a synagogue and a teachers' seminary. Its induastrics include the manufacture of gloves, straw hats and liqueurs, and also quarrying.

The principality of Pfalzburg, of which this town was the capital, originally a part of Luxemburg, afterwards belonged in turn to the hishop of Metz, the bishop of Strassburg and the dike of Lorraine, and passed into the possession of France in 166!. The town was of importance as commanding the passes of the Vosges, and was strongly fortified by Vauban in 1680. The works reaisted the Allies in 8814 and 1815 , and the Germans for four months in 8870 , but they were taken on the 52 th of December of that year. They have since been razed.

PFEIFFER, PRANZ (1815-1868), German acholar, was borm at Bettlach near Soleure on the 27Lh of February 28.5 . After studying at the university of Munich be went to Stuttgart, where in 1846 be became librarian to the royal library. In 1856 Pleiffer founded the Germario, a quarterly periodical devoted to German antiquarian research. In 1857, having established his lame as one of the foremost authorities on German medieval literature and philology, he was appointed professor of these subjects at the university of Vienna; and in 1860 was made a member of the Imperial Academy of Sciences. He died at Vienna on the 2gth of May 1868.

Among the many writings cdited by him may be mentioned the Barloam und Josaphat of Rudolf von Ems (1843). the Edolscass of Ulrich Boner (1844). Die dewlscien Mystiker des 14. Jahrhunderts (1845-1857; new ed., 1go6), the Buch der Natwr of Konrad von Megenbere, a 14th-century writer (1861), Dis Predigter des Berihold von Regasibure (1862) and the poems of Walther von der Vogelweide (1864; 6th ed. by K. Bartach. 1880). Of his independent writings the most important are Zur deutschen Literafurgeschichle, Ober Wesen wand Bildung der hofischen Sproche in mittelhochdeulscher 2eit, Der Dichter des Nibelmagendiedes, Forschung mad Kritic axf dem, Gebiete des dewsence Altertums, and Aldewsches Obmagsbuch. A biographical sketch by Karl Bartsch is in Uhlands Briefmechsal mil Freiherrn von Lassberg, edited by Franz Pfeifier (1870).

PFEIPFER. IDA LAURA (1797-1858), Austrian traveller, daughter of a merchant named Reyer, was born at Vienna on the $14^{\text {th }}$ of October 1797. In 1820 she married Dr Pfeiffer, a lawyer of Lemberg, who subsequently incurred official persecution and was reduced to poverty. In her later life Mme Pleiffer devoted her limited means to travel. In 1842 she visited Palestine and Egypt, and published an account of her journey in Rcisc einer Wienerin in das Heilige Land (Vienna, 1843). In 1845 she set out to Scandinavia and Iceland, describing her tour in two volumes. Reise nach dem skardinavischen-Nordem und der Insed Island (Pest, 1846). In 1846 she started on a journey round the world, visiting Brazil, Chile and other countries of South Americs, Tahili, China, India, Persia, Asia Minor and Greece, and reaching home in 1848. The results were published in Eine Frauenfakt um die Wall (Vienna, 1850). In 1851 she went to England and thence to South Africa, intending to penetrate into the interior; this proved impracticable, but she proceeded to the Malay Archipelago. spending eighteen months in the Sunda Islands and the Moluccas. After a visit to Australia, Madame Pfeiffer proceeded to California, Oregon, Peru, Ecuador, New Granada, the Missiones Territory, and north again to the Great Lakes, reaching home in $\mathbf{1 8 5 4}$. Her narrative, Meine zreike Welursise, was published at Vienna in $\mathbf{1 8 5 6}$. In May of the same year she set out to explore Madagascar, where at furst she
was cordially received by the queet. Dut she unwittingh allowad herself to be involved in a.plot to overthrow the govern ment, and was expellied the country. She died at Vieana on the 27th of October 18 ys .
The Reise mach Madagtostar man inaled in 1861 (Vieinnil), with a biography by her son.
 logian, was born at Stetten near Cannstadt in Wirttembers on the 15t of Saptember 1830. From 1857 to 1861 he studied at Tubingen under F. C.,Batur; and afterwards is Bagland and Scolland. He then eatered the minisery, hecame repalose at Tubingen, and for a short time held. a pastorate at Fieithrona (1868). In 8870 he became chief pestor and superintendent as feme and socm afterwards profeacor ordinarius of theology, but in 1875 he was called to the chair of aysteratitic theology at Berlin, having made his name by a series of articlea on New Teatrment criticism and Johammine and Pauline theology, which appeared in Adolf Hilgenfeld's Zaidscierift futr saissenselhaftiche Thcologic, and by hin Der Pouljinismes; published in 1873 (2nd ed., 2890; Eng. trans, Pauliniwn: a Contribution to the Hielars of Primitine Christion Theolegy, 2 vols., 1875, 犃.). Dar Urcheriskndum, seine Schriftem und Lehren, in gaschichllichem Zusemmenheng bescloriebon was publinbed in 1878 and considerably enlarged for m second edition in rgoz (Ens. treans., 1906). In $\mathbf{1 8 9 0}$ spptared The Dewloppoment of Theology since Kand, ted its Progress in Greal Brilain aince 18es, which wes written for publicttion in England. A more elaborate work was his Religionsphilosophic anf gacchichllichen Grmaltage (1878 ; snd ed, enlarged, 1885-1884; Eag. trans, from and German ed., Th Philoxpthy of Redicion on the Basis of its EIfslary, i voln, 2886 2888). "The Influence of the Aposcie Paul on the Develepanent of Cbriatianity" was the title of a course of Hibbert Lecturs given in London in 1885 . In 1894 he delivered the Gifind Lecturns at Edinburgh, the mahject being "The Philooophy asd Development of Religion." His later publications included: The Early Chridtian ConctWion of Chrisf (spos), Dis Releteking des Christentums (1905; Eng. trans, 1906), Relision and Rotigiomen (1906; Eng, trans, 2907), and Dic Embelchlung der C/ristemeras (r907). He died on the 18 th of July 1908, at Gross Lithterfelde, near Berlin. In New Testament criticism Pfeiderer belonged to the critical school which grew out of the impule given by F. C. Baur. But, like other modera German theologimas, be showed a greater disposition to comproxaise. All his wark shows - judicial tone of mind, and is remarzable for the charm of its style.

Pfeiderer's younger brother Famund (184a-igon) diso tioguished himself both in philotophy and theology. He too entered the ministry (1864) and during the Franco-German War served as army chaplain, an experience described in his Erlebnicse cince Feldgeisilichen (1800). He was afterwards appointed professor ordinarius of philosophy at Kiel (1873), and in 1878 he was elected to the philosophical chair at Tübingen. He published works on Leibnitz, empiriciem and sceplicism in Hume's philosophy, modern pessimism, Kantic criticism, English philosophy, Heraclitus of Ephesus and mapy other subjects.

PFORTA, or Schulpporta; formerly a Cistercian monastery dating from it 40 and now a celebrated German public school. It is in the Prussian province of Saxony, on the Salele, 2 m . S.W. of Naumburg. The remains of the monastery include the 13th century Gothic church, recently restored, the Romanesque chapel (sith century) and other buildings now used as dormitories, lecture rooms, \&e. There is aloo the Furstenhaus, built in 1573. Schulpforta was one of the three Firsterschiviem fiounded in 1543 by Maurice duke, and later elector, of Saxony, the two others being at Grimma and at Meissen. The property of the dissolved monastery provided a good revenue for the new educational foundation, which now amounts to about fi 5,000 a year. Free education is provided for 840 boys, the total namber of pupils being 78 5. Alter being in the possession of Saxony, Pforta passed to Irussia in 1815, and since this date the school has beep enliccly rearganized.
 Baden, at the confluence of the Nagold and the Eriz, on the northern margin of the Bluck Forest, 19 m . S.E. of Karlaruhe by mil, and at the junction of lines to Wildbad and Eitingen. Pop. (1895), 33,345; (5905), 59,395, mots of whom are Procestants. Its most interesting buildings ane the old palace of the margraves of Baden, and the Schlomakirche, the laster an edifice of the sath-1gth centuries, containing the tombs and monuments of the margraves. Pfotaheion is the chief cenire in Cormany for the manufacture of gold and silver ormaments and jewelry, an industry which gives exployment to about 22,000 hands, besides which there are iron and copper works, and manufactures of chemicals, paper, leather, machunery, \&ce. A hrish trade is maintained in timber, catcle and agricultural produce.
Prorsheim (Ports Hercyniae) is of Roman origin. From about 1300 to 1565 it was the seat of the margraves of Baden. It was taken hy the troops of the Cathotic League in 1624, and was destroyed by the French in $\mathbf{1 6 8 9}$. The thory of the 400 citizent of Elorzheim who secrificed themselvet for their prince after the battic of Wimpfen in May 1622 has been relegated by modern historical research to the domain of tegend.
See Conte, Dic 400 Pforlkimer (1879); Brombecher, Dur Tod dep 100 Pfortheinut (Ploszheim, 1886); Stola, Gatchicition der Stad Pforthinim (Pforzbeim, 1901).
PHAEBO, Greek philosopher, founder of the Elian echool, was a native of Elis, born in the lat years of the sth century s.c. In the war of $40 \mathrm{r}-400$ between Sparts and Elis he was taken prisoner and became a slave in Athens, where his baanty broungt him notoriety. He becance a pupll of Socrates, who conceived a warm affection for him. It appears that he was indmate with Cebes and Plato, and he gave his name to one of Plato's dialogues. Athemseus relates, however, that he resolutely declined responsibility lor any of the views with which Phato credits him m_{4} and that the relations between him and Plato were the revere of friendly Aeschines also wrote a dialogad called Phoelo. Shortly after the death of Socrates Phaedo setumed to Elin, where his diaclplea included Anchipytus, Moschus and Pliketanus, who succeeded him. Subsequently Mencedemus and Aselepiades' traneferred the school to Eretria, where it was known as the Eretrian school and is frequenily identified (e.g. by Cicero) with the Megarians. The doctrines of Phaedo are not kthown, nor is it posdible to infer them from the Piatonic dialogue. His witings, none of which are preserved, were in the form of dialogues. As to their authenticity nothing is known, in spite of an attempt at selection by Pametius (Diog. Letert. ii. 64), who maintains that the zopyrus and the.Simow are genwine. Seneca has preserved one of hif dicta (Epist. 94. 41); namely that one method of acquiring virtue is to frequent the socicty of good men.
See Wharnowitz, Hermes, siv. 189 seq.
PHASPRA, in Greck legred, daughter of Mines and Patiphat. With her sister Ariadne ahe was carried of by Theseus to Athene, and became his wife. On the way to Eleusis she met Hippolytus, son of Theseus by a former wife (Hippolyte, queem of the Anaszons, or her sister Antiope), and fell in love with him. Finding her advances rejected, she hanged herself, leaving behiad a letter in which ahe accused Hippolytus of having made dishonourable proposals. The same story, in the mein, is told of Bellerophon and Antein. It formed the subject of tragedies by Sophocles, Euripides (two , one of which is extant), Seneca and Racime.
PIAEDRUS, Roman fabulist, was by birth a Macedonian and lived in the reigns of Augustus, Tiberins, Gains and Claudius. According to his own statement (prologue to book iiil), not perhaps to be taken too.literally, be was baen on the Pietian Mountrin, but he seems to have been brought at ant eariy age to Italy, for be mentions that he read a verse of Empius as a boy al school. According to the heeding of the chiof MS. he weas a lave and was freed by Augustus He incurred the wrath of Sejanus, the powerful minister of Tiberius, by some supposed allacions in his fables, and was brought to trial and paniahed. We learn this from the prologue to the third book, which is dedicated to Eutychus, who has been identified wilh the famoss
charioteer and favourite of Gaius. The fourth book is dedicated to Partuculo, who seems to have dabbled in literature. The dates of their publication are unknown, but Seneca, writing between A.D. 41 and 43 (Consol. ed Polyb. 27), knows nothing of Phaedrus, and it is probable that he had published nothog then. His wort shows little or no originality, he simply verstied in 1 ambic trimeters the fables current in his day under the rame of "Acsop," interspetsing them with ancedotes drawn from dady life, history and mythology. He telles hus fable and draws the moral with businestite directness and simplicity, his language is terse and clear, but thoroughly prosaic, though it occasionally attarns a dignity bordering on eloquence. His Latin is correct, and, except for an exeessive and peculiar use of abatract words, shows hardly anythung that might not have been written in the Augustan age. From a literary polnt of view Phacdrus is inferior to Babrius, and to his own imitator, La Fontaine; he lacks the quet piçturesquencss and pathos of the former, and the eruberant vivacity and humour of the iatter. Though he irequently refers to the envy and detraction which pursued him, Phaedrus seems to have attracted little attention in antiquity. He is mentioned by Martial (iin. 20, 5), who imitated some of his verses, and by Avimus. Prudentius must have read him, for the imitates one of his lines (Prud. Cath. vii. Iry; cf. Phaedrus, iv. 6,10).

The firat edition of the tive books of Phaedrus was published by Pithou at Troyes ia 1596 from a manugcript now in the poseenion of the marquis of Rosanbo. in the beginning of the 18 th century there was discovered at Parma a MS. of Perotti (14i0-1480), archbishop of Sipoato, containing sixty-four fables of Phaedrus, of which mome thirty were new. These new fables were first publiched at Naplen by Cavitto io 1808, and alterwards (much mpre correctly) by Jannelli in 1809. Both editions were superseded by the dits covery of a much better preserved MS. of Perotti in the Vatican published by Angelo Mai in 1831 . For wome time the authenticity of these new fables was disputed, but they are now generally secepted, and with jumice, as senuine fables of Phnedrus. They do nte form a mixth boak, for we know from Avianus that Phaedrus wrote give books only, but it in impossible to assign them to their original places in the five books. They are usually printed as an appendix

In the middle eges Phacdrus exercised a considerable minfuence through the prose yentions of his fables which were current, though his own works aad even his name were forgottes. Of these prome verions the oldest cxisting seems to be that known as the "Anonynus Nilantl," to called because finst edited by Nilant at Leiden In 1709 from a MS. of the I3th century. It approaches the text of Pheedrus so clowely that it was probably made directly from it Of the sixty-seven fables which it contains thirty are derived from lost fables of Phaedrus. But the largert and moot infuential of the prose versions of Phaedrus is that which bears the name of Rowubur. It contains eighty-three fables, is as old as the roth century, and seems to have been based on a atill carlier prome verion, which, under the name of "Aenop," and addremed to one Rufu, may have been made in the Carolingian period or even eartier. About this Romulus nothing is known. The collection of lables in the Weissenburg (now. Wolfenbattel) MS. is based on the same verion as Romevilus. These three prose versions contain in all one hundred distinct fables, of which fifty-six are derived from the existing and the remaining forty-four presumably from lost lables of Phaedrus. Some scholars, as Burmann, Dresser and L. Moler, have tried to restore these lost fables by verifying the prose verions.
The collection bearing the name od Romulus became the sorrce from which, during the second half of the middle ages, almot all the eollections of Latin fables in prose and verse were wholly or partially drawn. A 12th-century version of the first three books of Romulus in elegiac verse enjoyed a wide popularity, even into the Renaimance. Its author (generally referred to since the edition of N6velet in $\mathbf{r} 610$ as the " Anonymus Neveleti "') was long unknown but Hervieux has shown grounds for identifying him with Walther of England, chaplain to Henry L. and afterwards archbishop of Palerno.

Another version of Romelus in Latin delegiect was made by Alesander Nockan, born at SK Albens in 1157. Amonset the collections partly derived from Romulks the most lamous is probably that in French verse by Marie de France. About 1200 \& collection of fables in Latin prose, based partly on Romulus, was made by the Cistercian monk Odo of Sherrington: they have a trong medieval and clerical tinge. In 3370 Cerand of Minden wrote a poetical version of Rowadme in Low Gepman.
Since Pithou's edition in 1596 Phaedrus has been often edited and translated; among the editions may be mentioned thove of Barmana translated; among the enitions may be mentiond, Berger de Xlvrey (1830), Orefi (1832). Eymenharde (1867). L. Meller (1872), Riaa (1885), and above all that of Lo kiavet (Paris, 1895). For the
medieval versions of Phaedrus and their derivatives mee L．Roth，so Pholologus，i． 523 meq ．：E．Grosec，in fahrb．f．class．Phitol．，cv （1872）；and especrally the learned work of Hervicux，Les Fabultstes
 1884），who gives the Latun sexts of all ibe medieval traitators（direct and indrect）of Phsodrus，some of them being publistbed for the frat time．
（J．P．P．）
 lator of Virgil，was educated at Oxford and at Lincoln＇s Inn．He publshed in 1535 Natwra brevimen，and in 1543 Name Bake of Presidentes．He says on the title－page of bis version of the Acnerd that he was＂solicitor to the king and queen＇s majesties， altending their honourable council in the marches of Wales．＂ He settled at Kilgarran in Pembrakeshire，and comblned the study of medicine with his legal practice．He wrote several medical works，and was admitted M．D．of Oxford in 1559．He contributed to Sackville＇s Mirrower for Magistrates，＂Howe Owen Glendower，being seduced hy false prophecies，toke upon him to be Prince of Wales．＂In is58 appeafed The Saver Firss Bookes of the Emaidos of Virgil comerited into English Meter．He had completed two more books in April 1560 and had begun the teath，but be died in the autumn of that year，leaving his tate incomplete．The translation was finished by Thomas Twyne in 1584 Phacr＇s tranalation，which was in rhymed fourteen－ syllabled lines，was greatly admired by his contemporaries，and be deserves credit as the first to attempt a complete version， the earlier rendering＊of Surrey and Gawain Douglas being iragmentary althoust of greater poetic value．
PEAETROM（Gr．中aider，shining，radiant），in Greek mytho－ logy，the son of Helios the sun－god，and the nymph Clymene He persuaded his facher to let him drive the chariot of the sun tacross the sky，but be lost control of the borses，and driving too near the earth scorched it．To save the world from utter destruction Zeus killed Phakthon with a thunderbolt．He fell to earth at the wouth of the Eridanu，a river of northern Earope （identified in later times with the Po），on the banks of which his reeping sisters，the Heliades，were transformed into poplars and their tears into amber．This part of the legend points to the mouch of the Oder or Vistula，where amber abounds． Phatethon was the subject of a drama of the same name by Euripides，of which some fragments remain，and of a lost tragedy of Acachylus（Haliades）；the atory is most fully told in the Melamerphosses of Ovid（i．750－ii． 366 and Nonmus，Dionysiaca， xxyvii）．Phathon has been identified mith the sun himself and with the morning star（Phosphorus）．In the former case the legend is supposed to represent the sun sinking in the weat in a blase of light．His identification with the morning star is supported by Hygious（Astrom．ii．42），where it is stated that the morning（and evening）star was the son of Cephalos and Eos（the father and mother of Phation according to Hesiod，Theog $\mathbf{9 8 4} \mathbf{9 8 6}$ ）．The fall of Phation is a favourito subject，especially on sarcophagus relicis，as indicating tbe transitoriness of human life．
See C．Kraseck＂Quaestiones Phaechontene．＂in Philologische Unecrsuchunges（ 1885 ），F Wieseler，Phedher（IB57）；Wilamowitz Mollendorf and \mathbf{C} ．Robert in Hermes，iviti（iB83）；Fraseris

PRAGOCYTOSIS（Gr．中ayeiv，to eat，devour，and diror， oell）．Many cells of the body possess the property of engulfing particles，a character to be associated with their power of performing amoeboid movement．This property is termed phagocylosis．Primarily this phagocytic power was simply the means by which the cell took within its cell body food particles which were ultimutely digested and ascimilated．In the higher organisms，however，this property has been developed for different purposes，and in pathology at the present day a meaning wider than that above given is often included in the tern．The particle having been taken into the ocll，ome of three things may happen．（I）The particle may consist of difestible material，in which case the ceil secretes a digestive fluid，a food vicuole is formed．the particle is gradually dismolved by the secretion and the productis absorbed into the cell subbetance．（2）The particio may be indigentible，in which cuse it is refained whim the cell
body for a zime and ultimately diacharged．The partitie engiobed may comprise almonat any matermal，but if it in to serve at a food at muat be of anamal or vegetable origm At the time of ungestion at may be dead or lunes in the case in which it is living the organiam ss find killed and then dreesed，or（3）the orgaomm may prove retimant，in whach cave it may maltiply and fanally destroy the cell，when a number of organisms are sea free．This is poes of the menne by which，in the higher organisme， a bocal infection my become dimitibuted through the orgonis．n． The dimedion effected malhin a bell is fermentative is charscter． Thus a protcolytic ferment has been propered from the bodies of amochat－ibe ferwent pomeasing fairly active propertics both in ecid，neueral or altoline media，but expecially in the latter．

In studying the process of phagecytosia generally mach inlor－ mation may be gained se 20 its general characters by the atudy of the procemes of intracellular digewion in the wimpler Inverte－ bratem，a study largely extended by Metchoikoff and his co－ workers in the elaboration of Metchnilkof＇s view of the mature of immunity．Thes，to take an instance from the sponges．Food substasces，in the form of miante orgamicres，which have penctrated the pores of the aponge are aciand by the cilaced or amoebovd cells linias thowe apaces，and are then killed and digeated．In this ease sheo the process of digestion 每 proved to be fermentative．It is readily underatandable that we should find mack cells on the extronal murace of as onganism or on the aurface linins the alimentary tract，particulaty tin the latter position．But in addition there are many cellis withip the body in which phagocytic power is retained and markedly developed． Such cells may be fixed ot wendering cells．They are employed for removing foreign meterial or debris which may occur rillin a timae．For instance，as the resulk of an injury，infinmanatory procesa，ac．，colls and ocber structures of a liane may be dentroyed．One of the procemes of teprait comaints in the removal of the resulking debris，which is effected by phagocytes．A sumilar process is soen with red blood corpuscles which may have escaped into a ciasue through rupture of capillatich Fomeigen particies socidentally gining adrainion to a tivase are in anany cases removed in a dimilar manser，ef．aock particles which have passed through the respiratory surfice are thes largely removed by phagocytes and carried to the bronchial lymphatic glands． Very commonaly living orgonianse effect an entrance thromh wound surfacem，the alimentary suriaco，tace，and one of the procemes employed for their deatruction and removal is that of phagocytomis．
As an illustration of the removat of foreign red blood corpuacles： we may take the experiments of Metchnikoff in which a manil drop of defibrineted blood of the goose was injected uoder the skin of a snail．The corpuscles quickly spread throogh the hacmolymph of the sanil，which by itacli，bowever， effects no thange in them．At the end of soveral hours emeni－ nation abows that the leucocytes of the sanill have englobod a large number of the red corpuscies．The following day metect corpuscles can still be forad in the hacmolymph，tuat the najor number have already been devouxed by the leccocytes．Wher taken up by a phagocyte the red corpuscle becomea round and its wall permeable．A vecuole is formed anound the compuoche， in which dianolved haemoglobion can be seen，a part of this haemoglohin siso prames into the nucleve of the red corpumiles proving that it too has been profonondy altered Many of the nuclei are discharged．After some time the only parts of tive corpmado remaning are pieces of the muclens and the periphetal layer of the corpescte．Frequently the phagocytes，after heving devoured one or soveral red corpacles，themselves bocome a preys to their fellow．Analogous changes are obverved in the tmpoet of a manmal when blood which has been extravamated is beir removed，es．after a brufes．The first efiect of the meroarcinage in an exudative infiammation，during which lemoocytes artive in large aumbers and enguif the corpascles．In the precers of digestion which follows the hacmogtobin is altered and mew pigments formed from it．In mammala thim paguent is dank red or brownish，in the pigeon lt i groen．Finally the corpmeches aro comapletcly dipented．Analogous phomomenm may be obecrved

In connetion whth the removal of cell detris resulting from any injury. Numbers of phagocytes may he found at work in this direction, for instance in the pus formed within an aseptic abacess. Hence we any regard the phagocytes as acting as the seavengers of the tissues.

In the instances we have been dealing with the phagocytes are chiefly of the class of wandering cells and are brought to the seat of their activity by the blood. In examining any tisevo Where the process is going on it is seen that the phagocytes have accumulated there in large numbers. They have been attracted to the damaged area. The mechanism which effects this attraction is a chemical one-chemiotaxia. At the seat of the change chemical substances are produced which act upon the phagocytes, causing them to migrate towards the source-positive chemiotaxis. Apparenlly the material dissolving from cell débris can act in this manner. Thus if a capillary tube filled with a tissue extract he inserted under the skin of an animal, within a abort time it will he found to he surrounded with numbers of leucocytes, which may also have encroeched into the tube itself. As in otber instances of chemiotaxis the same chemical stimulus in a higher concentration may repel the cells-megative chemio taxis. Instances of this are especially frequent in relation to micro-organisms and phagocytes, to which we may now turn.

That phagocytes can paralyse, till and digest many microorganisms is the mein fact in Metchnikoff's theory of the nature of immunity The reaction may he readily studied by injecting a small quantity of a fluid culture of some mildly pathogenic organism into the peritoncal cavity of an animal, and in the course of an hour or so examining a smear from the surface of the oment um. When an abundance of phagocytes enclosing the organism in different stages of digestion will be found. Or we may adope Leisbman's metbod, in which a few drops of human blood are diluted with saline solution and centrifuged. The layer of white corpuscles is pipetted of. suspended in serum, and a minute drop of a suspension of a pathogenic organism is added. The preparation is then incubated at $37^{\circ} \mathrm{C}$. for a quarter of an bour. Upon examining a drop of this mixture a number of bacteria are found within the phagocytes. Thus this atuck and destruction of bacteria by phagocytea may take place within the body or by cells removed from the body. Whether or so a phagocyte can engul(bacteria is dependent upon a number of lactors-partly specific properties of the phagocyte, partly factors varying with the comatitution of the body serum. Thus Wright and Doaglas, employing Letshman's method, have proved that leucocytes do not take up bacteria (reely unless the serum in which they are suspended contain opsonins. They found, for example, that leucocytes taken from a patient suffering from a pyococci infection if auspended is normal human serum take up the cocci abundantly, whereas if the same leucocytes are suspended under similar conditions in the patient's own scrum the reaction may he almost absent. Further, leucocytes taken from a normal individual and suspended in the patient's serum are practically inactive, while the same phagocytes in normal serum are very active. Exactly how the substance in the serum acts is undecided, but it has been proved that there are in serum subetances which become fixed to bacteria and which render them an easier prey to the phagocytes. This specific opsonin is used up when the bacteria are added to the serum, so that if the bacteria are subsequently removed the serum is no longer active. There is evidence too that there is a multipicity of opsonins. As to the origin of the opsonins we bave no certain evidence. It is guggested that they are a secretion from the leucocytes themselves and that it is an evidence of another and preliminary mode of attack possessed by the lencocyte, viz. the discharge of a secretion from the cell which is to damage or paralyse the bacterium and thus enable the phagocyte to engulf it.

The mechanism of destruction of a bacterium once it has beem taken up by a phagocyte is probably, just as in the instance of dead cellular material, one of intracellular digestion. The bacterium before being engulfed is probably inert in most instances, though it may yet prove too strong for the phagocyte. The next stege we cen arace is the formation of a vaceole aroumd
the organism, or, if the latter he lerge, around a part of the organism, and the part thus surrounded quickly shows signs of destruction. For instance, its ataining reactions become weaker. When a part only of the organism is surrounded by a vacuole the part thus surrounded soon ceases to stain, while the remaining part stains normally, and we thus have a marked contrast evidencing the two stages.

In the next place we must ask which are the cells possessing phagocytic powers? Leaving apart the cells lining the alimentary tract (because we know practically nothing of their power in this respect) a number of free cells possess amoeboid properties as well as also a number of fixed cells. These latter are attached to certain spots of a lissue, but are capable of throwing out processes which can seire upon particles of foreign matter or even upon certain elementa of the same argenism. Of this category Metchnifoll distinguisbes the nerve cellis, the large cells of the spleen pulp and of lymph glands, certain endothelial cells, the neuroglia colls, and perhaps certain cells of connective tissues. All these elements can under certain conditions act as phagocytes, and with the exception of the nerve cells all are of mesoblastic origin. Those of greater importance on account of their greater activity in this respect are the large splenic and lymph cells, the neuroglia cells and certain endothelial cells. With regard to the wandering cells Metchnikof considers that some are cortainly non-phagocytic, for instance the lymphocytes, According to Metchniliof it is only when these cells become older and have developed a nucleus rich in chromatin and an abundant cell body that these cells develop phagocytic properties. This is the large hyaline leucocyte. The polymorphonuclear and the ecsinophil leucocyte are both phagocytes. Metchnikoff therefore divides the phagocytes into two clacses-the microphages, comprising the polymorphonuclear and the eosinophil cell, and the macrophages, containing the large byaline cell, the cell of the splenic pulp, the endothelial cell and the neuroglia cell. From further observation of these cells he concludes that the microphages are chiefly concerned in opposing the micro-organisms of acute infections, whereas the macrophages are chiefly concerned in combating chronic infections. It is the macrophage also which is concerned in removing cell débris, ess. red corpuscles from a haemorthage or the red corpuscles of another animal which may have been introduced experimentally.

Metchnikofi and his co-workers have shown that the two principal groups of leucocytes are generally spread throughout the vertebrates. Thus instances of each kind are lound even in the lamprey, though here their staining properties are feebler; also cells which show but small differences from the analogous cells of mammals are found in the alligator. (T G. Br.)

PHALANGER, a book-name applied to the more typical representatives of the group of diprotodont marsupial mammals, including the cuscuses of the Moluccas and Celebes, and the socalled opossums of Australia, and thus collectively the whole family Phalangeridac. (See Mazsupialla.)
Phalangers generally are small or medium-sised woollycoated marsupials, with long, powerful, and often prehensile tails, large chws, and opposable nailless first hind toes. They seem in the day to be dull and aleepy, but are alert at night. They live mostly upon fruits, leaves and blossoms, although a few feed habitually upon insects, and all relish, in confinement, an occasional bird or other small animal. Several possess flyingmembranes stretched between their fore and hind limbs, by the help of which they can make long and sustained leaps through the air, like fying-squirrels; but the possession of these flyingmembranes does not seem to be any indication of special affinity, the characters of the skull and teeth sharply dividing the flying forms and uniting them with other species of the non-fying groups. The skull (see fig. 1) is, as a rule, broad and flattened, with the posterior part swollep out laterally owing to the numermus air-cells situated in the substance of the squamosal bones. The dentel formule is very variable, especlally as regards the premolars, of which some at least in each genus are reduced to functionles, rudiments, and may even vary in number on the two sides of tho jaw of the anme individual. The incisors ase
always i, the lower one very large and inctined formards, and the caniass mormally t, of which the inferior is always minute, and in owe genus generally absent. The molars number either $\frac{1}{2}$ or $\frac{1}{2}$. All the species here discussed are included in the sub-family Phalangerinae, of which the dastinctive features, as well as those of the family Phalangeridat, are referred to under Marsuptalia.

The most gexerlized representatives of the group appear to be the ring-tailed phalangers, constituting the geaus Psendachirus, which is common to Australia, Tasmania and New Guines, and

Fic. 1.-Skull of Grey Cuscus (Photanger orientalis).
mncludes at least half a score of species. The dentition is generally \& 1, c. 2, 2. + m. 3. but one upper incioor and the canine may be wanting. The crowns of the molans sbow a creacentictetructure, but they are said to retain the three primitive cuspa which are fused in the other gencra. The prehensile tail has its tip naked for a ahort distance, and the whole of the terminal third and the under surface of the remainder short-haired, the tip being generaly white. The hair is thick and woolly, and generally yellowish-olive in colour. These phalangers are the ring-tailed opossums of the Australians. From this genus is apparently derived the taquan Aying-sguirrel, or Aying-phalanger (Petamroides volans), which ranges from Queensland to Victoria, and is the largen of the flying sroup. Its dentition is esoentially similar to that of Psemdochirys, although there is one pair less of cheek-teeth, and the bushy tail is naked and prehensile at the tip. Reverting to the non-fyying spocies, we have Gymanehodens leadbeateri, a small animal from Vietoria representing a genus by itself, with the same denzal formmas as Pseudocherus, but cheek-teeth of a differeat type the ears naked (instead of hairy) behind, glands on the chest and between the ears, and the tail long and evenly bushy to the tip. From this are evidently derived the Aying-phatangers-fiying-aquirrels-of the genus Pctanurus, which differ merely in the possemion of a parachute, and are represented by several spocien, ranging from Australia (exclusive of Tasmania) to the Aru Islande, New Cuinca, and New Ireland. Of the yellow-bellied species, P aussralss, the habite are described by J. Gould as follows: "This animal is common in all the brushes of New South Wales, perticularly those which atretch along the coast from Port Philip to Moreton Bay. In these vast lorests trees of one kind or another are perpetually flowering, and thus offer a never-lailing supply of the blowsoms upon which it feeds; the flowers of the various kinds of gums, wome of which are of great magnitude, are the proncipal favourites. Like the reat of the genus, it is oocturnal in its habsts, dwelling in boles and in the spouts of the larger branches during the day, and displaying the greatest activity at night while running over the smal! lealy brasches, frequently even to their very extremities, in search of insects and the honcy of the newiy opened bloseome. Its structure being ill adtapted for terrestrial habits, it seldom deacends to the ground except for the purpose of passing to a tree too distant to be attaiaed by springing from the one it wishes to leave. The tops of the trees are traversed by this animal with as much ease as the most level ground is by euch as are destincd for terra froma. If chased or forced to flight it ascends to the highest branch and performs the most enormous leaps, sweeping from tree to tree with wonderful address: a slight elevation gives its body an impetus -hich with the expansmon of its membrane emblien it to past to a condiderable ditance, always ascending a littie at the extrompty of the leap; by this ascent the animal is prevented from receiving the shock which it would otherwise sustain."
A second species, P. scisreus, in some ways one of the moot beautiful of all mammale is shown in fig. 2.
A preciely similar relationship exists between the tiny featherGiled pholanger, Dstoecharus pennatus, of New Guinen, and the equally minute pigmy flying-phalanger or fiying-mouse, Acrobates pypmoens, of Queensland, New South Wales and Victoria; both being characterized by the hairs of the tail forming a vane on each cide, at well as by tufte of loag haise at the pase of the thinly-
haired eark There are six pain of cheek-wecth, of which the last three are small and rounded, with blunted cusps, while the anteror teeth are sharp and of insectivorous type. The pigmy fyingphalanger feeds on honey from flowers and inseets.
To some extent intermediate in saructire between Aerolates and Pelawrus. although without a parachute, are the beautidu litelo dormousephalangers, as typified by Dromixia mana, which range from Western Australia and Tasmania to New Guines They appear to be a generalized type, which has died out where they have come into competition with the more specialized forms. Although ynable to dy they are exceedingly active, and rake loog leape from bough to bough ; externally they are characterized by their dormouse-

Fig. 2-Squirtel Flying-Phalanger (Pctamrus scinnens).
Fike form, large, thin, and neariy maned cart, without tufts inside or at the base, sharp and rudimentary froat claws and long aharp hund ones, and mouse-like tail, which is furry at the base, then acaly, and naked and prehensile at the tip. There may be either six or seven pairs of cbeek-teeth, of which the hinder carry four smail smooth cuape, and the frot upper incipor is mach logger thana the otber two. Tbe etriped phalanerers (Dactylopsila) are brger animals, of the approximate size of a squirrel. easily recognised by the longitudinal ycllow and black striping of the fur, and the slender and elongated fourth fromt toe. The typical D. trivirgota ia common to north Auseralia and New Guinea, but D. 保pater. whech has the fourth toe atill more elongated, is exclunively Papata. They have scien pairs of check-tceth, of which the four last are oblong and four-cusped, and the first lower incisor is longer than in any other phalanger They apparenty feed on both leaves and grubs, probably extracting the latter trom crannies with the elomgated toe. Tite cail is more or loss baro on the under mide of the gate

The last group of the sub-family is represented firstly by the cuscuscs, or cususes (Phalanger), which are arboreal animals of the approximate size of cals, and range from the Solomon Istande through New Culnea and the Moluecas to Celebees, boing, in fact: the only Old World marsupials found westwards of New Guinea. Externally they are charactented by their thick woolly fur, short or medium ears, which are hairy outside, and sometimes inside as well, by the naked and ariated soles of the foet, and the long and markedly prebencile tain, of whech the bapal hall is furred lite the body. and the terminal hall entirely naked. The number of checkteeth varies, owing to the frequent absence of some of the front ones, but there are generally seven pairs, of which the last four canty erescents insernally and cuspe externally. About tea epecies are koown, of which the grey cuscus (P owiemalit) of Amboyna ared Timor was discovered about 300 years ago, and was thus the firme known Old World marsupial. In the spotted cuscus (P. maculatms) the males are marked with orange and white, while the females are uniformly grejibh. Cuscures are tieepy animals, feeding mainly on leavem, but sloo devouring birds and ernall mammala

Nearly allied to the cuscuses are the typical Australian phalangers. or opossums, forming the genus Trichosurus. They differ Irom the cuscuses, among other featnres, by the thick and non-tapering tail being covered with bushy hair up to the extreme tip, which it asked, as in a marrow lise along the middle of the terminal third
(or rether more) of the lower turface, by the prutence of a gand on the chest. and by the soles of the hind feet being hairy. In the ckull the upper canine is separated from the outermost incisor,
 epecies is the brush-tailed phalager, or brush-thiled oponeum (T. Eudpermia), of Auseraliz, an animal of the sitet of a manil fox, represented in Tasmania by the brown phalanger (T. enipecula fmigimoses). The short-ared phalanger (f. canding) sepaenente the sroup in Southern Queensland and New South Wales. The dental
 astoreal and mainly nocturmal in their habits; and it is thewe which form the chief game in " oposum-sbooting " mong the gum-trees by moonlight.

The long-snouted phalanger is referred to under MansupiatiA.
($\mathrm{R} \mathrm{L}^{\circ}$)
PGALANZ (Gr. \$aravk, of unknown origin), the name, in Greek history of the arrangement of heavy-armed infantry in a single close mass of spearmen (see Aruy: History). In analomy, the Latin plural pholanges is the term applied to the bones of the finger and toe, and in botany to a group of united stamen clusters. The term "phalanx" was adopted by F. C. M. Fourier ($q . v$.) as the name of the socialistic community living in a "phalanstery."
PGALARIS, tytant of Acragas (Agrigentum) in Sicily, c. $570-$ 554 B.c. He was entrusted with the building of the temple of Zeus Atabyrius in the citadel, and took advantage of his position to make himself despot (Aristote, Polilics, v. so). Under his rele Agrigeatum seems to have sttained conssideneble prosperity. He supplied the city with water, adorned it with fine buildings, and strengthened it with walla. On the northern coast of the island the people of Himera elected him general with absolute power, in spite of the warnings of the poet Stesichorus (Aristote, Rhetoric, ii. ac). According to Suldas he succeeded in making himself master of the whole of the island. He was at last overthrown in a genemal pising headed by Telemachus, the ancestor of Theron (tyrant c. 488-472), and burned in his hrazen hull.
Atter ages have held up Phalaris to infamy for his excessive cruelty. In his braxen bull, invented, it is said, by Perillus of Athens, the tyrant's victims were shut up and, n fre belng kindied beneath, were roasted alive, while their shrieks represented the bellowing of the bull. Pcrillus himself is said to have been the first vietim. There is herdly room to doubt that we have hore a tredition of humatiancrifice in contrexion with the worship of the Phocnician Bana (Zeus Atabyrius) such as prevailed at Rhodes; when misiortune threatened Rhodes the brazen bulls in his temple bellowed. The Rhodians brought this worship to Gela, which they lounded conpointly with the Cretans, and from Cela it pased to Agripentum. Human macrifices to Band weve common, and, though in Phocnicia proper there is no proof that the victims were burned alive, the Crophaginians had a brazen image of Baal. Irom whose downturned hands the children slid into a pit of fire; and the story that Minog hed a brazent man who presoed people to his glowing breast points to similar rites in Crete, where the chitd-devouring Minotaur poist certainly be connected with Baal and the favourite sacrifice to him of chifdren.

The story of the buil exnnot be dismisaed as pure Invention, Findar (Pyikit, i. 18g), who lived-less than a century alterwards, enpresily asspciates this instrument of torlure with the game of the tyrant. There was certainly n brazen buil at Agrigentum, Which was cartied off by the Carthaginians to Carthage. whence it was \#gain taken by Scipio and restored to Agrigentum. In Fater times the tradition prevailed that Phalaris was a maturally humane man and a patron of philosophy and literalure. He is to deacribed in the declamations ascribed to Lucian, a ad in the leiters whicb bear his own name. Plutarch, too. though he takes the umfavourable view, mentions that the Sicilians gave to the everity of Phalaris the name of justice and a hatred of crime. Phalaris may thas have been one of thoge men who combine justice and even bumanity with religious fanaticism (Suidas, s.\%.; Diod. Sic. ix. 20, 30, xini. 90, xxxii. 25; Polybius vii. 7, xii, 25; Cicero, Ds Officits, ii. 7, iti. 6).

The letters bearing the mame of Pialaris (ifs ita namber) are now chicify remembered for che crushing exposure they received at the hands of Richard Bentley in his controversy with the Hon. Chavies Bayle, who had published an edinion of them in 1695 . The first edition of Bentley's Dissertation ow Phalaris appenred in 567 , and the seciond edition, replylag to the answer whach boyle publinhed in rige, came out in IGgo. From the mencion in the lettors of towns (Phintia, Alees and Tauromenium) which did not exist in ibe time of Phalaris, from the imitations of authors (Herodotus, Democritus, Euripides. Callimachus) who wrote lons alter he was dead, from the reference to tmpedies, though tragedy was not yet invented in the lifetime of Phalaris, from the dialect, which it not

Dorian but Attic, nay. New or LateAttic, as well as from abourditice in the matter, and the entire abwence of any reference to them by any writer before Stobatus (C. A.D. 500). Bentley sufficiently proved that the ketters were written by a sophist or metorician (possibly Adrianus of Tyre, died C. A.D. 192) hundreds of years after the death of Phalaria. Sulides admirat the letters, which he thought genuine, and in modern tiapes, before their expoumse by Bentley, they were thought highly of by toone (e.g. Sir William Temple in his Essay on Ancient and (Toders Ledrning). though others, as Politianus and Erasmus, perceived that they were not by Phalaris. The latest edition of the Episthes by R. Hercher, in Eppistologyaphi graeci (1873), and of Bentley's Diseertation by W. Watner (with introduction and notes, 1883): see especially R.C. jebb, Lffe of Beniley (1882)
PEALECISM, or Prailisy (from Cr. 中ahdss), an anthropological term applied to that form of nature worship in which adoration is paid to the generative function symbolized by the phallus, the male organ. It is common among primitive peoples, especially in the East, and had been prominent also among more advanced peoples, e.g. the Phoenicians and the Greeks. In its most elementary form it is associated with frankly orgiastic rites. This aspect remains in more advanced forms, but gradually it tends to give place to the joyous recognition of the principle of natural reproduction. In Greece for example, where phallicism was the essence of the Dionysiac worship and a phallic revel was the origin of comedy (see also Iferyes), the purely material and the symbolical aspeets no doubt existed side by side; the Orphic mysteries bad to the intellectual Greeks a significance wholly different from that which they bad to the common people. Phallic worship is specially interesting as a form of sympathelic magic: observing the fertilizing effect of sun and rain, the savage sought to promote the growth of vegetation in the spring by means of symbolic sexual indulgence. Such were the rites which shocked Jewish writers in connexion with the worship of Baal and Astärüth (see Baal, and cf. Atarcatis, Isittar). The same principle is at the root of the widespread nature worship of Asia Minor, whose chicf deity, the Great Bother of the Gods (q.o.), is the personification of the earth's fertility: similarly in India worship is paid to divine mothers. Generally it should be obscrved that phallic worship is not specially or perhaps primarily paid to male deities, though commonly the more important deity is accompapied by a companion of the other scx, or is itself androgynous, the two symbols being found together.

In the Dionysiac rites the emblem was carried at the head of the processions and was immediately followed by a body of men dressed as women (the ithyphalli). In Rome the phallus was the most common amulet worn hy children to avert the evil eye: the Latin word was fascinum (cf. Miny, Nal. Hist. xix. 50. salyrica signa; Varro, Liag. Lat. vii. 97, ed. Müller). Pollur says that such emblems were placed by smiths before their forges. Before the temple of Aphrodite at Hierapolis (q.o.) were two huge phalli (180 ft . high), and other similar ohjects cxisted in all parts of the ancient world both in statuary and in painting. Among the Hindus (see Hinduism) the phallus is called linge or lingam, with the temale counterpart called yoni; the linga symbolizes the generative power of Siva, and is a charm against sterility. The rites classed together as Saki puja represent the adaration of the female principle. In Mexico, Central America, Peru and other parts of America phallic emblems are found. The tendency, however, to identify all obelisk-like stones and tree-trunks, together with rites like circuncision, as remains of phallic worship, has met with much criticism (e.f. Robertson Smith, Religion of the Semitcs, and ed., pp. 456 sqq.).
For authoritics see works quoted under Religron: 15 A and \mathbf{B} ad far
PHALTAN, a native state of India, in the central division of Bombay, ranking as onc of the Satara jagirs. Area, $397 \mathrm{sq} . \mathrm{m}$. ; pop. (1goi), 45.739, showing a decrease of 31% in the decade. The estimated revenuc is $\{13,000$, and the tribute $\{6,40$. The chief, whose title is nimbalkar, is a Mahralta, tracing his descent to a grante from a Delhi emperor in the $54 t h$ century. The town of Phaltan is 37 m . north-east of Satara; pop. (rgol), 9512.

PHANARIOTES, a name derived from Phanar, the chicf Greck quarter at Stamboul, where the occumenical patriarchate is situated, and applied to those members of families resident in the Phanar quarter who between the ycars 1711 and 1821 were appoiated hospodars of the Danubian principalities; that period of Moldo-Wallachian history is also usually termed the Phanariote epoch. It is not to be understood as marking the introduction into the principalities of the Groek element, whicb had already established itself firmly in both provinces, to both of which Greek princes had been appointed before the 18 i e entury. But whereas the Greek families of eartier introduction gradually became merged in their country of adoption, the hier immigrants retained their separate mationality and grew to be powerful agents for furthering the spread of Graecism in the principalities. The person raised to the prineely dignity was usually the chicf dragoman of the Sublime Porte, and was consequently well versed in contemporaty politics and the statecraft of the Ottoman government. The new prince, who was compelled to purchase his clevation with a heavy bribe, proceeded to the country which be was selected to govern, and of the language of which he was in nearly every case totally ignorant, accompanied by a horde of needy hangers-on; he and his acolytes counted on recouping themselves in as short a time as possible for their initial outhy and in laying by a sufficiency to live on after the termination of the prince's brief authority. It was the interest of the Porte to change the princes as often as possible, as the aceession donation thus became due more frequently. When, owing to the numerous cases of treachery among the princes, the choice became limited to a few familics the plan was bit upon of frequently shifting the prince from one province to the other: the prince of Wallachia, the richer of the two principalities, was always ready to pay a handsome douccur to avert his transfer to Yassy; the prince of Moldavia was èqually ready to bribe his supporters at Constantinople to sccure his appointment to Wallachia. To raise funds to satisly the rapacity of the Porte the princes became past masters in the art of spoliation, and the inhabitants, liable to every species of tax which the ingenuity of their Greek rulers could devise, were reduced to the Last stage of destitution. The active part taken by the Greek princes in the revolt of $1820-21$ induced the Porte to revert to the appointment of native princes.

PHANIAS, of Eresus in Lesbos, Greck philosopher, important as an immediate follower of and commentator on Aristote, came to Athens about 332 b.c., and joined his compatriot, Theophrastus, in the Peripatetic school. He wrote works entitled Analytica, Categoriae and De interpretatione, which were either paraphrases or critical commentaries, and seem to have added little to Acistotle's own writings Alexander of Aphrodisias refers to a work apds $\Delta u b \delta \omega p o v$, and Albenaeus quotes from another treatise, Against the Sophists. Outside philosophy, he and Theophrastus carried on the physical investigations of Aristolle; Alhenaeus frequently quotes from a wort on botany wbich manifests great care in definitions and accuracy of observation. From Plutarch (Life of Themistockes) we learn that he was regarded as an historian of importance. The chiel of his historical works is the Prytancis Eresii, which was either a bistory of his native place or a general history of Greece arranged according to the period of the Eresian magistracy. He wrote also works on the Tyrants of Sicily and on tyranny in general. The value of these books is attested by the frequency with which they are quoted on queations of chronology (e.g. by Plutarch, Susdas, Athenaeus). To the history of Greck literature be contributed works on the poets and on the Socratics, both of which are quoted.

He must be distinguished from another Phanias, a Stoic philocopher, discipie of Posidoniva. Diogenes Lazrtius mentions a work of his wherein be compares Posidonius with Panaetius in erguing from physical principles.
PRANOCL:S, Greet elegiac poet, probably flourished about the time of Alexander the Great. His extant fragments show resemblances in style and language to Philetas, Callimachus and Hermesianar. He was the author of a poem on paederasty. A lengthy fragment in Stobaevs (Plerilegimat, 64) detcribes.
the love of Orpheus for the youthful Calais, son of Boreas, and his subscquent death al the hands of the Thracian women. It is one of the best extant specimens of Greek elegiac poctry.

See N. Bach, Philetae, Fiermesianactis, ef Phamedis velipuice (r829); L. Preller. Ausgeroditite Amfsatse aus dem Gabicte der classisches: Allerthamiswassenschafl (1864).

Phantasmacoria, a name invented by a certain Philipstal in 1802 (from Gr. фӓraopa, phantasm, apparition; and dyopk. assembly) for a show or exhibition of optical ithusions produced hy means of the projecting laniem (q.r.). The word has since begn applied to any mpidly or strikingly changing scenc, and especially to a disordered or fantastic scenc or picture of the imagination.
pharanit (Paroh), the Heliraized title of the king of Egypt (q.v.), in Egyptian Per-0; Pheron in Herodotus represents the sime. Its comhination with the name of the king, as in PharaohNecho, Pharaoh-llophra, is in accordance with contemporary native usage: the name of the earlier Pharaoh Shishak (Sheshonk) is rightly given without the tite. In hieroglyphic a king bears scveral names preceded by distinctive tilles. In the IVth Dymasty there might be four of the latter: (1) identifying him with the royal god Horus; the name is commonly written
 perhaps a palace or tomh, on which tbe falcon stands. (2) A
connecting him with the vulture and uraeus goddesscs, Nekhabi and Buto of the south and north. (3) 3) B a hawk on the symbol of gold, signifying the victorious Horus. (4) $\$ 166$ the old titles of the rulers of the seperate king: doms of Upper and Lower Egypt, to be read simi, "butcher(?) " and byti, "beekceper(?)" The personal name of the king followed (4), and was caclosed in a cartouche \square apparently symbolizing the circuit of the sun which alone bounded the king's rule. Before the IVth Dynasty the cartouche is seldom found: the usual title is (1), and (3) does not occur. In the Vih Dynasty the custam began of giving the king at his accession a special name connecting him with the sum: this was placed in the cartouche after (4), and a fifth title was added: (5) 2 P Si-rt, "son of the Sun-god," to procede a cartouche contrining the personal name. The king was briefy spoken of by his titie sfni (see 4), or bnw-f, "his service," or Ify, " licge-lord." These titles were preserved in the sacred writing down to the latest age. An old term for the royal palace establishment and estate was Per-'0, "the Great House, " and this gradually became the personal designation of Pharadit (cf. the Grand Porte), displacing all others In the popular language.
(F. Lh. G.)

PRARI, a town of Tibet. It is supposed to he the higheat and coldest town in the world, being $15,000 \mathrm{ft}$. above the sea." As it commands the road between the Chumbi Valley and Whast and also one of the chief passes into Bhutan, Phari is of consideralule military importance, and is defended by a large fort or Jong. which was occupied by the British expedition of 1904. Phari Jong is supposed to have bcen huilt about 1500 A.b., and was enlarged or rebuilt in 1792, under Chinese advice, as a defence agoinst the British. It has the appearasce of a medieval castle, and scems to have been builk in imitation of the Europena style.
pHARISERs, a sect of the Jews first mentioned by Josephus, in his account (Ame xiii. 5,9) of the reign of Jonathan, the brother and successor of Judas Maccabeeus. The name, which may be translated "Separatists," indicates their devotion to the ideal, enforced hy Exra and Nehemiah upon the reluctant Jewn of a mation meparate from all other nations in virtue of its
pecolizir relhtion to Yalweh (Neh. ix.). This ideeil nation consisted of all who were prepared to obey the Law of Moess, irrespective of their natural descent. Consequently the Pharisees, who seem to have been an order of refigious teachers, were concerned to make converts (proselytes), and some of their grentest seachers were of non-Jewish parentage. They wert also concerned to insist upon the strict observance of the Lam, so far as it was compatible with the exigencies of ordinury life, and to truin disciples who should act a proper example to the mass of the people.
The ideal of separation descended from the Great Synagogue (Assembly) of the time of Exra to the Synagogue of the Blasidaeans (Assideeons), who allied themselves with Jodas Maccabaeus when his followers decided to suspend the law of the Sebbath, in order that the true Jews might preserve themsetves from annibilation and survive to keep the Law as a whole. This section of the Hasidaeans is clearly the practical outcome of the principle wtich Josephus describes in the language of philosophy as the characteristic of the Pharsecs-" some things and not anl are the work of Fate" (Ant. xiii. 5, o). Fate is the Stoic term for God; and these forerunners of the Pharisecs judged that the time had come for them to take action rather than to wilt passively on God. But then and always the prime concern of the Pbarisees was the extension of God's sovereignty the Kingdom of God) throughout the world. God's will, which all men should obey, was revealed in the Law, and though He mught appoint governors over them, He remalned their King, and no governor who was not a prophet-God's mere mouthplece-could com. mand their unquestioning obedience. When Judas reconquered Jerusalem and rededicated the desecrated Temple, his work, from the Pharisecs' point of view, was done. The Templeworship was part and parcel of the Divine plan, and a legitimate High Priest was necessary. Alanius was. therefore, welcomed by the Hasidaeans, and only his treacherous murder of suxty of their number taught them that any Syrian nominee was their enems. Later they acquiesced in the clection of Simon to the high-priesthood with the condition "until there should arise a faithiul prophet "; but some of them remonstrated agannst the combination of the sacred office with the position of political ruler in the person of John Hyrcanus as consrary to the precedent set by Moses at his denth. When Alexandra came to the throne the Pharisees were the real rulers and imposed upon the people the deductions from the written Law which formed the growing body of their oral tradition. Their reign was long enough to establish this tradition in respect of ritual, and even when this godden age-as it seemed to later Scribes-was over they exercised a paramount inftuence upon the common people. They bad learned to read God's will in the events of history, and deduced (for example) the doctrine of the resurrection of the dead from the death of the martyrs under Antiochus Epiphanes and Alcimus. And what they learned from current history and from the ancient history of the nation recorded in Scriplure they tanght in the synagogues, which corresponded not merely to the parish churches but also to the schools-day schools and Sunday schools-of to-day. Apart from their control of public education, their power was enhanced by their cfforts to better the position of women, and hy their notorious leniency in the matter of punishments. Everything-the repeated statements of Josephus and the facts of Jewish history after A.D. $70-$ goes to show that the Pharisecs moulded the religion of the people. Attempts have been made in modern times to represent the Apocalyptists as opposed to the Pharisees and as occupying the position in popular estimation which Josephus ascribes to the Pharisees. But for such representations there is no solid ground. Superfcially the language of apocalypses differs from that of rabhinic decisiona, and where the seer takes a comprehensive vew of the ages the rabbi legislates for particular cases. But even in the Talmud the reiga of Alexandra is described in apocalyptic language such as is commonly applied to the future age, and if alowence be made for the symbolism proper to revelatons it is clear that easentially the scribe and the seet have the same purpose and even the same doctrines. The Pharisees were occupied with the
precemeal reatination of the dreains of thetr supposed opponents: which gain a vague glory from their being far off.
The gospels generally have left upon the minds of men an impresion unfavoursble to the Pharisces. They contain denumcietions attributed to our Lord and assigned-with obvious injustice in some casea-to the seribes of this sect. It is to be remembered that the Pharisees were the only sect of the Jews who survived in Christian times and that the Pharives were never a bomogeneocas body possessed of a definite policy or body of doctrine. Moreover it is clear that our Lord denounced not all the Pharisees but the hypocrites only, as did the rabbis whose sayings are reported in the Talmud and other Jewish books. Again the third goepel in particular betrays relations bet ween the Pharisees and Jesus very different from those of the common Cluristian view, which conjures up an impossible picture of an absolute breach between the Prophet of Nazarech and the whole corporation of the Pharisees as a result of a quarrel with certain members of that dissident soct of independent thinkers. Gamaliel and his pupil St Paul are better representatives of the non-hypocritical Pharisec; and the Pauline Epistles or the writings of Philo are the best extant examples of the manner and matter of their teaching. As for the denunciations, apart from the charge of insincerity, it appears that the acribes in question are pilloried for the defects-or the excesses-of their qualitus. Indeed they are corroborative evidence for the reverence with which the Pharisees were regarded by the people generally, and for the zeal with which they strove to fulfil God's will as contained in the Lave and elucidated by the Tradition.
(J. H.A. H.)

PEARIMACOLOGT. Systematic writers on the subjeet differ considerably in the exact meaning which they attach to the term pharmacology (ϕ ¢p pancos, 2 drug; λ bros. a discourse), some making it much more comprehensive than others. Binz, for instance, defines it as treating of the origin. nature, chemical and physical qualities, physiological actions, and therapeutical uses of drugs; in France and in Italy it is restricted to the mere description of medicines and their preparations, the action and uses of which as remedies are inctuded in the term therapeutics. In English-speaklng countries, and by the majority of German writers, the meaning is now restricted to the study of the action of cherical substances (as apart (rom foods) on all kinds of animals, from bacteria up to man; it is, in fact, a comparative study of the action of chemical bodies on invertebrate and vertebrate animals. One of its practical aims is to obtain a wide and accurate knowledge of remedial substances in relation to their application in the treatment of disease, while another is to discover new or improved remedies. This meaning of the word has now become fixed in the English langunge by use and wont.
 which is etymologically more correct, is often used as its equivalent, but it has never become widely adopted. The study of pharmacological actions was at first almost entirely confined to those of remedial agents, and especially to the remedies in the diffcrent national pharmacopocias, but in many cases it has now been extended to substances which are not used for curative purposes. The introduction into practical use of many medicines, such as paraldehyde, phenazone and strophanthus, has followed the study of their actions on animals, and this tends to be more and more the case. Pharmacology is a branch of biology; it is also closely connected with pathology and bacteriology, for certain drugs produce structural as well as functional changes in the tissues, and in germ diseases the peculiar symptoms are caused hy foreign substances (toxins) formed by the infective organisms present in the body. The effects of many of these toxins bear a close resemblance to the action of certain wellknown drugs, as in the case of tetanus toxin and strychnine, and are studied by the same methods of observation and research. It is impossible also to dissociate pharmacology from clinical therapeutics; the former invescigates the agents which are used in the treatment of disease, the later is conctrned with their remedial powers and the conditions under which they are to be uned. Hence the word "pharmaco-therapy " has come into
use, and most of the neter standand teand books combine together the consideration of pharmacology and therapeutics. Pharmmcology is also related to toxicology, as many remedial and other agents are more or less poisonous when given in large doses, but it does not include the detection, tests, and the other strictly medico-lepal aspects of poisoning.

Pharmacology proper began as the result of the application of strictly experimental methods to physiology. The discovery mano (early in the roth century) that plants owe their remedial and poisonous qualities to small quantities of definite active principles, such as alkaloids and neutral bodies, which can be extracted in a chemically pure condition, had also a very important effect on its development. We meet first with experiments made by investigators who perceived that observa. tions on man and animals might lead to a better understanding of the action of drugs. In 1676 Wepfer and Conrad Brunner demonstrated on dogs the tetanizing action of nux vomica, and similar rough experiments were repeated from time to time with otber substancea by later investigators. In 1755 Menghini published an elaborate study of the action of camphor on a great variety of different kinds of animals. Albert von Haller (b. 1708) sought to elucidate the action of remedics by observations on healthy men, and in 1767 William Alexander made experiments on himself with drugs, which were, however, brought to an abrupt termination by his nearly killing himself. In 177^{6} Daries, by observations on himself and on cats, established the mydriatic action of belladonna and other atropaceous plants. Hitherto no attempt had been made to determine what particular parts of the body were especinily affected by drugs, but Fontana showed, in his great work (Fiorence, 1765) on the venom of the viper and on other poisons, that the general symptoms were brought about by an action on particular organs. He performed more than six thousand experiments, more than four thousand of which were on animals, and he determined the effects on the heart and other important structures. These analytical methods of research were well known to the second Monso in Edinburgh, and to his pupils, one of whom, William Alexander, wrote a thesis in r790 entitled "De partibus corporis animalis quae virihus opii parent." Fis methods were doubtless known also to the French physiologist Magendie, who improved upon them, and who in 1809 published a research on the Upas Tieute and other strychnine-containing plants, in which he showed that their effects were due to an action on the spinal cord. The researches of his pupil, Claude Bernard, on curare, were equally exact and logical, and have served as the model for many subsequent investigations. In consequence, from the time of Magendie pharmacology may be said to have been put on a more exact hasis. By the middle of the 19 th century there were many workers on the subject, and the actions of such drugs as digitalis, morphine, alcohol, and many others bad been frequently and minutely investigated. About this time Buchheim, professor of miteria medica in Dorpat from 1846 to 1879 , founded the first pharmacological laboratory on modern lines in Europe, and he introduced a more rational classification of drugs than bad hitherto been in use, arranging them in groups according to their pharmacological actions. In the herbals and older treatises on materia medica and therapeutics no explanation is usually offered of the action of medicines, and in such works as that of Cullen (1789) only a few of the more obvious actioas are occasionally explained according to the current theories of physiology and pathology. In works such as Parcin's Elcments of Maleria Medica and Therapeutics (1842), the physiological effects of medicines are usually described, but very briefly as compared with the materia medica. At the present day most textbooks dealing with medicinal agents and treatment devote a large part of their space to pharmacology, and a corresponding change has taken place in the teaching of the subject in universities and medical schools. Since Magendie's time numerous papers dealing with pharmacological subjects have appeared in the Journal of Aratomy and Physiology, the Journal of Physiology, Virchew's Archis, and the principal medical periodicals of all countries. In 1873 the Archis fir experimentelle Pathologic und Pharmakologic first appeared,
in 1895 the Archives Internationales 2 Pharmalhadomamia, and in 1909 The Jowrmal of Pharmacalogy and Therapculics (perblished at Baltimore, U.S.A.), all of which are chiefly or entirely devoted to pharmacology.
The methods of research are easentially those employed by physiologists, the action of substances being studied in the tistual way on bacteria, leucocytes, frogs, rabbils and other animals Not only are the general symptoms investigated, but it is necessary to carry out experiments on the nerves, muscles, circulation sccretions, \&ce., so as to get a more exact knowlodere of the reasons of the general action. It is true that many of these animals react somewhat differently to drugh, both as regards each other and as regards man, but for the most part the differences are quantitative rather than qualitative. After carrying out a serics of observations on animals, the drug can be acsigned to ite special group, and a good idea can be oblained of its possible practical value or the reverne; hence there is a saving of time and an avoidance of the necessity of testing its effects on man. The action of a drug may be called direct when it acts on any part to which it is immediately applied, or which it may reach through the blood; and indire t when one organ ection of is affected secondarily to another, as, for instance, in strychnine poisoning when the muscles are wiolently contracted as the result of the action of the alkaloid upon the spinal cord. In a few cases the action is merely physical, but most frequently it is cherrical in its mature, and is exerted on the living cell, the activity of which is either stimulated or depressed. In some cases the substances actually enter into a chemical combination with the protoplasm, which may be temporary or (much lest frequently) permanent; in other cases they scem simply to modify or disturb the usual chemical activity of the cells Prolonged or excessive stimulation invariably leads to depression or paralysis, the tissues becoming fatigued, and from this comdition they may recover or they may not. When we come to consider more in detail the results of these actions we find that the various secretions of the body, such as the sweat, gastric juice, hile, milk, urine, \&c, may be increased or dipinished; that the heart may have its muscular or nervous apparatus stimulated or depressed; that the nerve-centres in the brain, medulla and spinal cord may be rendered more sensitive or the reverse; and that the general metabolism of the body may be altered in various ways. In addition, the fluid constiturnten such as the lymph and blood, may have their composition and bulk considerably altered, while the special senses, the temperature, and, in short, every function and tissue, may be more or less affected.

Some drugs given in excess are poisons to all forms of protoplasm, hut when given in doses much short of the lethal they usually exhibit a distinct tendency to affect specially, and at an early period, certain organs or tissues, and hence result differences in action; others may act only on certain organs, leaving the others practically untouched. It is often possible by appropriate dosage to contrive that these special parts or organs may be affected and the rest of the body left practically intact, and it is by taking advantage of these selective actions that remedial or therapeutical effects are usually obtained. 'Some substances have a very wide range of action, and involve a great varicty of structures, while others, such os purgatives, have a very limited sphere. The action of drugs is often modified hy circumstances peculiar to the individuals or animals to whom they are administered. In man the most important of these circumstances is age, but speaking broadly this is really a question of bulk, the child being affected like the adult, but by smaller doses. There are exceptions to this, however, as children are more affected in proportion hy opium and some other substances, and less by mercury and arsenic. In old age also the nervous system and the tissues generally do not react so readily as in youth. Hahit, race, personal temperament, emotional conditions, disease, the time and circumstances of administration, and other accidental causes may also modify the action in man. Some species of animals are much more susceptible to the action of certain drugs than others, a condition which depends on obvious
or unknown structural or metabolic difierences. In the game way some individuals show a special tendency to polsoning by doses of certain drugs which are harmless to the great majority of mankind, and hence we. get unexpected or unusual results, these arising from specini susceptibility on the part of certain organs. These idiosyncrasies are not confined to drugs, but are scen with a few articles of food, such as egss and shellifish. It is well known that the habitual consumption of certain drugs, such as tobacco, Indian henap, opium, arsenic, alcobol and many others, gradually induces a condition of tolerance to their effects, so that large doses can be taken without causing symptoms of poisoning. In all cases, however, there is a limit, and after it is reached the ordinary effects of these substances are seen. Some individuals, however, never become tolerant, and show poisonous effects on each repetition of the dose. The degree of tolerance often differs in individuals at dififerent times and in different circurnstances, and may become lost by breaking of the habit for a short time. The explanation generally given is that the nerve and other colls become eccustomed to the drug, so that they cense to react, or that an antitoxin is formed which antagonizes the poison, or that the poison is rapidly destroyed in the body. Recent rescarches on arsenic and atropine, however, point to the leucocytes as playing an important part in the production of tolerance, as these gradually become capable of ingesting large amounts of the forcign substances, and thus render them mone or lest harmiess to the lissucs, until they are gradually excreted from the body. When the amount is too large to be dealt with by the levcocytes, poisoning seems to occur even in the most habituated. Tolerance in therefore analogous to, but not identical with, the immunity which takes place with the toxins of infections disenses and snake poison. Certain substances, notably digitalis, lead, mercury and strychnine, exhibit what is called a cumulative action-that is to say, when small quantities have been taken over a period of time, poisoning or an excessive action suddenly ensues. The explanation in these cases is that the drag is absorbod more rapidly than it is excreted, hence there is a tendency to accumulation in the body until a point is reached when the amount becomes paisonous.

Bodies which have a close resemblance in their chemical constitution exhibit a similar resemblance in their pharmacological action, and as the comstitution of the substance becomes modified chemically so does its action pharmacologically. Numerous researches have demonstrated these points with regnrd 20 individual groupa of subatences, but bitherto it has not been possible to formulate any fixed laws regarding the relationship between chemical constitution and physiological action.

When drugs are swallowed no absorption may take place from the alimentary canal; but, as a rule, they pass from there into the blood. Abeorption may also take place from the skin, from the rectum, from the respiralory passages, or from wounds, and from direct injection into the subentaneous tissue or into a blood wessel. Very rarely, as in the case of silver salts, excretion does not take place; but usually the drug is gol rid of by the ordinary channels of elimination. Just as drugs act upon the tissues, so they themselves are in many cases reacted upon, and broken up ot altered. While in the alimentary canal they are subjected to the action of the digestive fluids and the varied contents of the stomach and intestines, and after absorption they come under the influence of the constituents of the blood and lymiph, and of the chemical action of the tissue cells. Inorganic bodics, such as metals, may enter into albuminous combinations which may greatly modify their effects, and organic substances may be split up into simpler compounds by oxidation or reduxtion, or may be rendered more complex by synthesis.

The antagosiam between certain drugs has been much studied in relation to their une as antidotes in poisoning, the sim being to counteract the effects rather than to obtain a direct physiological antagonistic action. Substances which directly aniagoaize each other by acting on the same tissue.are few in
number, but there are numarow instanoen in which the effects of symptoms may be eloviated by acting on another tisune. Thus curne may stop strychnine convulsions by paralysing the terminations of motor nerves, and chloroform may exercise the same effect by abolishing the irritability of the spinal cord. If two poisons act on the same tissue, one stimulating and the other puralysing it, the paralysing substance removes the action of the stimulant substance, not by bringing the tissue back to its normal state, but by abolishing its excitability; hence, although life may be saved by such an action, yet it can only be so within certain limits of dosage, because the antagonism is never complete at every point.
Speaking in the widest sense, every substance has an action on living protoplasm, but for convenience pharmacological substances have come to te limited to those which are used as drugs, or which have a distinct action upon the animal organism. Such substances are derived from (1) the chemical ekements and their compounds; (2) phnts; and (3) animals. The first class includes such substances as iodine, mercury, iron, carbon, and their various compounds, and such bodiea as alcohol, chloroform and chloral, all of which are found is nature or can be prepared by ordinary chemical processes of manulacture. From plants many substances are obtained which al the present time we are unable to make in the chemical mboratory, and of the constitution or composition of which We are in many cases ignorant. Some of these, such as resins, gums, essential oils and fats, are readily obtained as natural cxudations or hy very simple manipulations, while others, such as the alknloids, glucosides and vegetable acids, often require to be extracted by very complex processes. Substances obtained from animals include gland secretions, pepsin and other ferments, musk, cod-liver oil, \&c., and to these may be added various antitoxins. The classification of substances having pharmacological actlons presents so many difficut lies that no satisfactory or universaily adopted Clamalore method has yet been proposed. Our knowledge presents so many gips, and the mode of action of many remedies is 80 obscure and imperfectly understood, that any arrangement adopted must be more or less tentative in character. Tbe close alliance between pharmacology, therapeutics and clinical medicine has induced many authors to treat the subject from a clinical point of view, while its relationships to chemistry and physiology have been utilized to elaborate a chemical and physiological chassification respectively as the basis for systematic description. Certaia writers in despair have adopted an alphabetical arrangement of the subject, while others have divided it up into inorganic, vegetable and animal substances. These last-mentioned methods are far behind our present state of knowledge, and need not be discussed here. The objection to a strictly chemical classification is, that while many subi stances closely allied chemically have a somewhat similar action in certain respects, yet in others they differ very widdy-a striking example of which is given in the case of sodium and potassium. A physiological classification according 10 an action on the brain, heart, kidney or other important organ becomes still more bewildering, as many substances produce the same effects by different agencies, as, for instance, the kidneys may be acted opon directly or through the circulation, while the heart may be affected cither through its muscular substance or its nervous apparatus. A clinical or therapeutical classification into such divisions as aasesthetics, expectorants, bitters, and 80 on, according to their practical applications, also leads te difficulties, as many drugs are employed for numerous purposes. The ideal method of grouping pharmecological substances would be in reference to their chemical action on living protoplasm, but as yet our knowledge is too scanty for this. At the present time the metbod adopted by Buchheim, or some modification of it, is the most acientific. As the result of painstaking investigations be grouped together all those substances ha ving similar actions, giving to each group the name of its best-known or most thoroughly investigated memher. Once the groups were more or less fixed any new substance could, when
its action mas determined, be raferred to ite own group, and thus be placed or ciamified. As few subedances are aboolutely identical in action, but only broadly similar, it is often difficult to divide tharply one group from another. In a remond it it manifeatly imposaible to pass in review every pharmacological substance, and we shall therefore confine oursalven to thase groups which ere of practical importance. Many molividen drufs are described under thefr own headings.

Gnoup I. Acids.-This includes sulphuric, hydrochloric, nitric, phosphoric, tartaric, citric, acetic and lactic acids, all of which owe their action to their acidity. Many of the other acids, such as carbolic and salicylic, hove specific effecte which have no relationehip to their acid reaction. The conoemtrated acida have an intense bocal action, varying from complete destruction of the issues to more or less irritation. When considerably diluted they are only clightly irritating : externally applied and In the stomach they have as atataeptic sction; they increate the secretion of salive, and thus tasuage thirst. In the intentine they combine with ammpnia and other alcalis present, and are aboerbed into the blood as neutral ealts, being excreted chicfly in the urinc. In small doses they somewhat incrense general metabolism. Boric acid only belongs partially to this sroup, as it and its compound borax have certala eqpecific ections in addition.
Group II. Altalis.-This includes caustic potash, caustic moda, solution of ammonin, their carbonates and bicarbonatcs, borax, toaps, fithium carbonate and citrate, quicklime, slaked lime, chalk. magnesia and magnentum carbonate. All these subtances, apart froen any other actions, exert a similar effect upon the body in virtue of their alkalinity. When they are taken internally in cmall amounts they neutralize the acids in the stomach and other parts of the alimentary caral, and at the same time they increast the normal acid secretion of the tomsch. Alter absorption inte the blood, which they make soarewhat rove allaline, thoy are excreted chiofy in the urine. to which they impart an allaline geaction if given in sufficient quantity. Some of them by stimulating the kidncy cells act as diuretics, but others apparently lack this action. Caustic potash and caustic soda are locally very irritating, and destroy the timeses, but lowe this quality when combined with acids as in the case of their carbonates, bicarbomates and borax. Quicklime is also caustic, but magnesia is bland and unirritating. Weak solutions epplied locally saponify fats, soften the epidermis, and thus act as fight stimulants and cleansers of the scin. Calcium salts form inochuble soaps with fate, and combine with albommen in a manner which makes then soothing and atringent rather than irritatingApart Irom alkaline effects, these metals difier considerably pharmacologically. Potassium and lithium have a depressing ction upon the nervous system, ammonium salts have a stimulating ection, while sodium practically speaking is indifferent. Calcium and magnesium have actions mmewhat eimilar to that of potasaism. Most of these substances are normal constituents of the body. and indispensable for healthy exastence. They are contained in sufficient amount in our ordinary dictary to supply the needs of the organism.

Grour III. Easily absorbed Salks.-Sodium chloride may be taken as the type of those salts which diffuse readily, and are therefore easily absorbed. Sodium nitrate, potastium nitrate, potassium chloride, ammonium chloride, the alkeline iodides and bromides, also belong partly to this group. although most of them have also epecific actions. Locally they cavee considerable irritation, and when swallowed in concentrated solution may cause vomiting. From the tomach and intestines they are rapidly absorbed, and frpidly excreted from the blood, increasing all secretions and the pencrat metabolism. These effects are apperently due to their eriating action upon individual cella

Group IV. Sals absorbed with dificuily.-This group includes the sulphates of sodium, potassium and magnesium, the acetate ind tartrate of potash, citrate of magnesium, sodium phosphate, codium tartrate and similar anlte Locally their action is alight. but when taken internally, disoolved in water, they are not aboorbed from the alimentary canal except in very limited amount. They therefore remain for the most part in the intestine, and as they attract and retain large quantities of witer, and at the same time Clightly stimulate the muccons nemberne, they coros to have a purgative action and form the well-known group of alime mothartics. The small portion which is absorbed exerts a diuretic action.

Grour V. Hedry Metals. -These include iron, manganese, aluminium, chromium. zinc, cepper, bilver, sold, platinum, lead, mercury, and probably antimony, armenic and bemprth. Although mope of theat differ very greatily ia their ections after abeorption, atill locally they have certain cfiects in common due chiefly to theit chemical action on albumen. Their aoluble salts combine with albumen and preserve it, strong solutions being extremely irritant or caustic. while weaker onem are ast ringent timply, or even socthing. They are ull antiseptics. Their insoluble compounds ate much lese active locally than the soluble, and in many cases are only effective to the extent to which they are diseolved by the secretions. Some metals are onfy abocrbed from the ationentary caml to such

A very limited amount that they enert nogeteral necion, white others readily paet into the blood aed give rive to more or lest mariced effects. All of them injected into the blood in large doses act as muscle and nerve poisons, and during their excretion by the kidney ucually imitate it meverety, bur boly a few are absorbed in muficient amoum to produce similar efierm when given by the mouth. Whet iron is injected directly into a vein it depresurs the heart's actione the blood pressure and the nervous system, and during its excretion greatly irritates the bowd and the kidncys. When taken by the mouth, bowever, no such actions are seen. owing to the fact that very miaute quantities are aboorbod and that cheve become starad in the livet, where they are converted into organic compounds and ultimately go to form hacmoghobin. Suluble salts of manganese, aluminum, zinc, copper, gold, platinum and bitmuth have, when siven by the mouth, little action beyond their local astrinatem or irritating effects; but when injected into a blood wenel they all evert much the same depresaing cfiect upon the heart and nervous system. Silver resembles them closcly, but differs by the circumstance that it is deposited permanently in minute granules in the tissues, and, withow affecting the general healih, sains the skin of a blaish colour (antyris). Mercury and lead are aboorbed from the bownel ia considerable quantities, and are capalsle of inducing acute irritant poisoning as well as chronic poisoning. Lead poisons the muscular and nervous systems, and gives rise to paralysis, wasting. colic and other symptoms, white in the case of mercury, itemors, alivation, anaemia and very marked cacheaim ape induced. Anmenic and antimony do not form combinations with albumenbut they both greatly depress the centril nervous system and circulation; and, if their action be long continued in large doses, they cause fatty degencration of the viecera and disappefrance of fyeogen from the liver. Locally they are both very srritation. and antimony has a special tendency to cause vomitiag.

Geove VI. Halogess.-This group includes iodine, bromine and chlorine, in their free state or as compounds. Locally they are all three atrongly irritant or caustic, owing to their chernical action oa albmmen. Itwey are it addition poweffel germiciden, and by tplittigg up water may act as axidizing agents Owing to cheir strong affinity for the hydrogen of organic compounds they offen act as bleachers and deodorizers. lodine has a special interest, as it is m necessary constituent of food, and is present in the secretion of the thyroid cland. Aport from certain conditions of ill bealth. the iodides, as such, have no very marked influence on the healthy body beyond their saline action. Alkaline bromides, in addision to their saline action, have in sufficient doses a depressing effect upon the tentral nervous system, and less markedly upon the heart. Chlorime componnds are not known to exercise any action of a similar kind.

Geour VII. Sulphur.-Sulphur itsclf has no action, but when brought into contact with the secretions it forms stulphides, sutphites and sulphuretted hydrogen, and thereby becomes more or lesa irritant and alatiseptic. In the bowel its converion ino malphides causes it to act as a mild haralve. Baths containing wulphuretted hydrogea or alkaline sulphides have a sliphly irritating effect upon the sking and stimulate the general metabollsm.

Grove VIII. Phospherss.-This inciudes phosphides, and, according to come authoritien, hypophouphites. Phosphorus is present in all cells, in comsiderable quantity in the servous tisese, and in the boncs as phosphates. 14 is therefore, in sorme form or other, a necessary part of dietary. When taken by the mouth phosphorus is an irritant poison in large doees; in smell doses the oaly effects noticeabie consist in an increased formation of bony and comactive timpue, alibough it is also euppooed to emert a gendy timulating effoct upon the nervous system.

Group IX. Oxyen.-When pure oxygen is inhated the only effet is a slight increase of the amount of the gas in the blood, but this bas no particular phyaiolopical effect. The pharmacological action of hydnogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right.$) potassium permangamate. powdered charcoal and some other oxidizing agents depends on the readiness with which they give up oxygen.

Gnour X. Carbonic Acid.-Carbonic acid sas, carbonic oxide (CO) and sone other invespirable gaves produce their effecs practicolly by asphyxiation. When dimeolved in water, however, carbomic acid gas is a gentle stimulant to the mouth, stomach and bowel, the mixture being absorbed more rapidly than plain waier; hence its greater value in assuaging thirnt. Nitrous oxide (laughing gas) thes at tone time believed to act eimply by cutaing of the eupply of orycen to the timpues, but it alwo has a specific efiect in prodecing prathyis of certain parts of the central nervous system, and bence its value as an amesthetic; when given in small amounts mixed with elo it produces a condition of exhilaration.

Guovp X1. Wain.-Water acts directly as a diloent and solverst. It therefore incrases all the wecretions, especially thooe of the shin and kidncys, while it almo stimulates the gencral metabolism of the body and the excretion of nitrogenous products. Mineral witere ect in the same way, but their effects are very moch modified by, and depend lagety wpon, ofter oonstitwents, such at alpaline talion iron, arsenic, sulpandea, carbotic acid, \&ic.

Ghoup XII. Tamic Actd-Tannic acid is present in mall quantities in the great majority of plants, but in notable quantity in gall-ants, oak bark, bearberry leaves, rhatany rook, catechn, kino,
red zum, bact fruit, logwood and wich hatef. all of which are harely used as medicines. In these the variety of tannic acid is not exacthy the wame, but although there are alight chemical differences, they all poosess the power of tanning tow hides and of preeerving albumiponas tissues. The action of tannic acid is strictly local, and depends upon its puwer of precipitating albumem and of destroying germs. It thus acts as an astringent on all mucous membranes. After aboorption into the blood is loses this effect, as it is partly broken up into gallic acid and partly combised with allatis, both of which changes nullily its action upon albumen.
Gzour X1II. Local Imikants.-Although some of the druge diready considered have a local irritanz action, they produce other more umportant effects. but the substances here ranged under this hearting depend emtirely for their action on their tocal infitant ffiects.
e. Those which act upop the alitmettary-canal: Simple bitters uch as quasia wood, columbo root, taraxuesm, gentian, chiret ta, and mainy otbers, irritate gently the naucous membrame of the stomach and bowels, and by incremoin the wecretionas improve the appectite and digestion. The aromatic bitters such as chamomile fowers, cascariln lank, hops, orange peet and others contain in addition small quantities of estentinf oile which intereseve their local action. The active primiples ta wonse of these bitters trave been isolated pure, and bave beren found to be alkaloids or neutral compounds. Sabstances inte pepper, cayenne pepper, mustard. borse-radist and giager irritate the stomach and bowed much in the tame way, but are more pungent. and ere consequently used as condiments. Some of these fave a similar but lewn narked effect upon the skin. The lage number of vegetable substances used as purgatives owe their action to an'irrituting effect upon the musows pembrane and the neuro-muscular apparalius of the bowel, wheneby the secretions and peristalsis are more or less increased, as the reailt of which diarshoea ensues. Some of them cause wo much irritation that the discharge is very watery (hydragosuce cathartics), while others, for example aloes. by acting genily on the hwer port of the bowel and on its muscular coath, produce simply a laxative effect. A few of them, such as aloin and colveynthin. are also partative when injected solxcutaneuusly or into she bhood, probably owing to their being excreted into the intesunal canal.
b. Thove Fhich act on the skin: The besp known of thene is cantharides (Spanish fy), the sective principle of which is a colourless eryertaline body-cantharidin-whech is extremely irftating. On a mucous membrame or a delicatte skin it exerts as irritane action, which occurs more quirkly than on a thickerned epidermis ach sat the scalp, and according to the atrength and periud of application there may result redness, a blister. or an uker. Many offer mubatances, such as chrysarcolin, mustard. popper, \&c, are aho capable of irritating the skin. the effect produced verying from mere difletation of the cutameoos vessels so destruction of timsure.

Gebuf XIV. Mele-ferm.-This includes the sale-fern, minonin, cremo, pomegranmte hark, pumpkin seeds and many other substances containing active priociples which have a specife poisonous acsion on intestimal parasitic worms. Apart from this their actions vary conoiderably, but ate of tittif practical importance.

Geour XV. Retherrald Oils.-This includes a very large number of substancen which owe their action to the fact that they contain ethereal or essential oils. The best known of these are cluves, pimento (allapice), myrile, eucalyptus, caraway, fennel, difl, coriasoder, revemary, havender, peppermint. spuarmint. autmet. ciamamona, mondal-mood, curpentive, juniper berries, valerian and sumbul. In this group may be inclucked the oleo-resins, such as copaiba. cubebs and Canada balazan; the gum-resins, such as asaletida. Eyrrh, mmmoniacum and galbanum; and the true balsams, such as benzoin, storax. Latsam of Tulu and balsem of Peru. The reains when taken internally have nuich the same action ats csacntial oils, which are closely alled cbecrically, while the benzoic and cimamic acids in the balsams modify their actione very wibhtly. Although individual eswential oits may differ somewhat im ection, chemically and pharmacologically they are fundamemally wimilar. They an have a poisonous acrion on protoplasm, which makes them uneful in medicine as antisuptics, dikinfectants, permicides, anti-fernentatives and parasiticides; when locally applied they are more or leta irritating. and, then very dilute, astringent. When ewallomed in small doses they wightly irtitate the mouth and getatic macous menibrane, increasing the sacretions and producing a feeling of varmsh. At the ame time they increate the movements of the etomach, and also in thin wry haster digetion, an setion which extends to the upper part of the bowel. They are readily aboorbed into the blood. and they are excreted dichy by the lidnoys in $\begin{aligned} & \text { m }\end{aligned}$ more or less altered form, and probably also by the different mencons membranes, and even by the skin. After absorpeion chek ection, speaking generally, is exerted on the brain and opinal oond, and b it first eloghtly stimulant and afterwands depreasing, even to the causing of sleepinest and stupor. Locally applied they depress the terminations of sensory nerves, and may thereby testen pain. On the beart and ctrcutation the effects are whataht unleot large doses are given, when the palse becomes show and blood-premetre much leacered. During excretion they Irritate the kidneys and the aweat-glands, and thereby increase the excretion of ufine and of -weat. They also incretive the mumber of leucocyte in the blood,
and the more irritating of them increinse the tow of blood to the pelvic organs, and may thus atimulate the uterus, or in lange doaet caube abortion. The various camphors, such as laurel camphor Borneo camphor, menthol and cumarin, are cxidized derivatives of emential oils, and differ only mperficially from them in their action.
Gnoop XVI. Phemat.-This includes a very large number of bodies chernically allied to bensol, tuch as cartofic acid, sulphocarboleten, creoopte, wood car, coal tar, oil of cade, thymol. nalicylic acid, bemoic acid, maphthol, hydroquinon, crevol, guaincol, ichthyof, ascharin and many othere. Thens all rewemble cartulic acid more or less closely, and may be described as gencral protoplasm poisonts Lonally their destractive and irrienting effurty vary a food denl. but even when very dilute they all have a marked poisponous activen on bacteria, whige blood corpuncles, yeast and similar orytnimena After abmorption mont of them exercise a depressing effect upon the nervous syotern, and are capmble of reducing high temperature. They are mostly exereted in ithe urine.

GRoop XVII. Aleatal.-This group also includes e very large number of chemical bodies, only a lew of which are muentioned here. Erhyl alcohol is taken as a type of the action of meihyl akohot amyl alcohol, propyl alcohol, ether, atetic ether, paraldehyde, sulphomal, chioroform, methyl ethocide, ettiyl chiorike, choora hydrate. batylchioral hydrete, and almont any eanber of derivative from these. Sone of them are so volatike that they produce their effect when inhmied, others when aprayed upon the akin cause intense cold and them anacsthesia; but telken in the broadent sens the action of all of them after ahoorption into the bloud ia very dimilar, end ia exerted upon the central nervous syatem, more tapecially the cerebram. In all cancs theve is a lomger or shorter period of exciternent, followed by intoxication or marcosis, and with laye doees this pasees into paralysis and denth from depremion of the respiratory centre or of the leart. Small doves of any of thent dilate the blood veasels from an action on the vaso-motor centre in the medrili oblongata, as a result of which the treart beats more rapilly and the blood circulates more frcely; but larger duses bave a general deproseing effect upon the circulatory syatem. Undet theis action move heat is lost from the body, the gencral motabulion is dimininhed and the temperature falla. With some of them, arbly as chloral and chloroform. the stimalation period is stort compared wint the narcocic period, while with others, mech as ether, the reverse is the care.
Gnout XVIII. Nitriles,-This groes contains anyl mitrite, ethyl nitrite, methyl nitrise, nitmglycerin, sodium and potassium nitrites, erythrol-retranitrate, and many ather componinds rontaining nitrout or mitric acid. The lartet becomes reduced to nitrous in the body, and thereby exercises its characteristic effectio These consist chiefly in an action upon non-striped muscle, vasomotor centres, blood vessels and the blood. When they are given by inhalation or by the mouth their first effect is to produce anarked ditatation of the small arteries, with a fall of blood-pressurc and a greathy increased rapidity of the hemrt's action. Ae the same time the con-striped muscies slightly fose their tonicity, and when very barge deases are given the haemoglobin of the blood becomea converted into the chocolate-coloured methaemoglobin. The volatife members of the group act much more rapidly and more transiently that the others.
Group XIX. Alkeloids.-This embraces a very large number of important phammacological substances, which differ a good doal in the details of their action, but they all act upon muscte and merve tisace. Some of them affect only certain portions of the nervous system, others have a mach wider range of action: they may act in cither care as atimulants or as depressams, and henot the symptoms produced by them vary very greatly.
c. Morphine and the other opium alicaloids (codeine, narcotine, taudanine, sc.) have two promiment actions-a napcotic followed by a tetanic action. In morphine, on the higher animals at least, the ascoctic action is very, marked, the manizing action slightly 90: while in thebaine there is litele marcotic effect, buta a tetanizing metion thee that of strythnine. Morphine exercises iss efferts chivelly upon the cerebram and the medulta objongata in man. It has in addition a markedly depresaing action upon the respiratory centre. it lewens all the secretionts except the sweat, and diminishes bowel peristabis and the sixe of the pupil. Men are much more affecied by it thas birds, rabbits, doge and anoet other animals. Cats, however, show martood symptom of cerebral excitement and incrtase of the reflewe. Coanpared with morphine, codeine and the other alkaloids are only dishty ancotizing.
2. Stryctnine and brucine wery clowely resemble each other in action, and under this beading curarine may also be included. These bodiem timalate the grey matter in the spinal cord and cause tetatnic convulaions. In the case of curare these are masked almost at once by paralysis of the terminations of the motor nerves.
3. Cabeine is the mative priaxiple in tea, coffce, tola, mate and puaram: while theobromine, a body cloacly allied to it, is found in cocon and chocolate. They both stimulate the grey gerve-cells in the brain and cond, this being the foundation of their dietetic value and their use tis nervine stimulants. They also markedly increase the wecretion of urine by stimulating the mecreting celfo of the kiducys.
4. Coctiate is the active principle of the coca leaf, which in chemed

 given for the porpote of causing vomitins, e.f. ipecacuanha or apomorphine. Awhermetics or Sedatioes OLat. sedare, to compose) streat vomiting either by their central or local action, e-s. opium, cocaine or centuth oxalate. Purgalives (Lat. purgare, to cleanse) aid the onward pessage of the contents of the intertinal canal, either by increasing the contractions of its muscular coat as lamatives (Lat. laspore, to loowen), e.s, masgoeis, or by increasing the flow of fuid. Some ane termed drastics (Gr. bpaoruchs, active) or callartics (Gr. aefuptuls, cleanaing), which produce watery evacuations. Cholagogwes (Gr. xolt, bile, drowb, keading) are purgatives which act by incressing the flow of bile, either by causing an increased eccretion (e.g. podophyllum) or by eweeping it onwards by utimulating the intertinal contractions (e.2. calomel).
III. Drugs acting on parasites. Anthedmintics (Gr. iort, against, D mar, Dumpos, a worm) are drups which kill parasitea inhabiting the intestine. The term wernicide (Lat. womis, worm, cacdere, to bill) is applied to drugs which directly kill the entoma, while Nernifuts (Lat. vermis worm, fugars, to put to fight) is applied to the putgative usually given after the vermicide for the purpose of expelling the worm. Parasilicides or anhi-parasifics destroy parasites; the terms are usually restricted to thooe acting on gkinparasites as contrasted with intertinal ones.
IV. Drugs acting on the urinary systeme Diwelics (Gr. \& 4 through. dipop, the urine) increase the flow of urine, while lithonbiptics (Cr. λ tos, tone, potpens, to rub, grind down) are druge given to prevent the formation of urinary calculi.
V. Druge acting on the generative system. Aphrodisiacs (Gr. 'Apoostry, the goddets of love) incrense the action of the generative centre in the spinal cord: Anaphrodisiocs decrease its action. Ecbolics (Gr. boshnect to throw out) or exytocics (Gr. \&\&bs, sharp, quick, sbos, parturition) stimulate uterine action. Emmancpogmes (Gr, ypypz, menses, drurbs, leading) are eubstances which increase the meastrual flow. Galactogopmes (Gr. 7iAa, milk) increase the secretion of milk, white antigaloctogogues (c.g. beiladonna) have the opposite effect.
VI. Drugs acting on the respratory system. Expredorants increase the broachial mecretions; antispasmodics retar the spasm of the muscular coat of the bronchial tubes, e.\&. stramonium. This latter term is aiso used for drugs which act as general depremants:
VII. Drugs or substances acting on the bodily beat. Axtiprotics (Gr : dri, against, myerds, (ever) either increase the heat loss or diminish its production; e.e. phenacetin, cold water, duc. VIII. Drugs of substances acting on the slin. Diaphordics (Gr. Hepopeis to carry through) increase the amount of sweat, either by acting directly on the swent centrea or on the nerve terminals The word Sudorific (Lat. tuder, sweat) is applied to them when they act very, powerfully. Amhidratics or Ardinidratics (Gr. tsoth, sweat) diminish the secretion of sweat. Emollients (Lat. nedis. soft) are substances which soften and protect the parts. Demulcente (Lat. dommicerc, tolten), soothe the akin or mucous membrane.
IX. Drugs acting on metabotism. Aheratiass are druge which titer the course of a dimease. the mode of action being unknowa. Tonics gre drugs which increase the muscular tone of the body by ecting either on the atomach, beart, spinal cord, ice.
X. Drugs acting on the blood. Anbilosins are organic producta designed to aeutralise the formation of the toxins of certain diseases in the blood. Taxime are also injected in order to stimulate the blood plasma to form antitoxins (see Bactiriology). Antipariodies inhibit a disease having periodic recurrencen; e.g-quinine in malaria. Haemativics are druge which increase the amount of haemoriobin in the blood.
XI. Druge acting on the nervous sytem. Anneslielics (g.s.) diminish encibility. either central or peripheral: Arodynes (Gr. (G) privo, dim, pain) relieve pain only, but, is in Amalpesics (Gr. Ahewis eenve of pain), vensibility is unaltered. Stimmants are thowe which lead to excitation of the mental faculties and in guantity may lead to delirium and incoherence. Hypmotics (Gr. (fros, sleep) or Soporifics (Lat sopor, a deep sieep) are drugs which produce deep without causing cerebral excitement. Narcolics (Gr. ydent, numbnean) are those which besides producing aleep mry in large doses depress the functions of respiration and circulation.
XII. Druge which arrest the progreas of putrefaction. This is either by imhibiting the growth of micro-organisms (Anliseptics) er by demeroying them whea prement (Diniegictans). (H. L. H.)

PeiA: compounder), in its modern technical sense, a boak containing directions for the identification of rimples and the preparation of compound tnedicines, and published by the authority of a covernment or of a medical or pharmaceutical society. The name hat also been applied to similar conpendiums iscued hy private individuals. The first work of the kind published under government authority appears to have been that of Nurvinberg in $1542 ;$ a passing student named Valerius Cordus showed
a collection of medical receipts, which he had nelected from the writings of the most eminent medical uthorities, to the phy. sicians of the town, who urged him to print it for the benefit of the aporhecaries, and obtaimed for hi work the mapction of the senatus. An exalier work, known as the A ©idetarimin forontinum, had been published under the autherity of the college of medicine of Florence. The term "pharmacopoeia" firt appears is a distinct litle in a work published at Basel is i56i by Dr A. Foes, but does not appear to have come into general use until the beginning of the 17 th century. Before 1542 the works principally used by apothecaries were the trentise on simples by Avicenna and Serapion; the D e symomymis and Quid pro qwo of Siman Januengis; the Liber serviteris of Bulcharim Ben Aberaserina, which described the preparations made from plante, animats and minerals, and was the type of the chemical portion of modem pharmacoponias; and the Antidelarimen of Nicolans de Salerno, containing Galenical compound arranged alphabetically. Of thls last wrort there were two editions in ue-Nicolings magnus and Nicolaus parvus; in the latter several of the compounds described in the larget edition were omitted and the formulae given on a maller scale,

Until 3617 such drest and medicincs as were in common ust were sold in England by the apothecaries and roocers. In thet year the apothecaries abtained a separate charter, and it wits enacted that no grocer thould keep an apothecary's thop. The preparation of physicians' prescriptions was thas confined to the apothecaries, upon whom pressure was brought to bear to make them dispense accurately, by the isuce of a pharmacopoeia in May 1618 by the College of Phyaicians, and by the powet which the wardens of the apothecaries received in common with the censors of the College of Physicians of examining the shops of apothecaries within 7 m . of London and destroying all the compounds which they found unfaithfully prepered. This, the first authorized Londow Pharmocopoeio, was selected chiefly from the worlgs of Mexte and Nicolaus de Salerno, but if what found to be so full of errors that the whole edition was cancelled, and a fresh edition was published in the following December. At this period the compounds employed in medicine were often heterogeneous mixtures, some of which contained from 201070 , or more, ingredients, while a large number of aimples were used in consequence of the same substance being supposed to posses different qualities according to the sousce from which it was derived. Thas craba' eyes, pearls, oyster-shells and coral were supposed to have diferent propertios. Among other ingredients entering into same of these formplas were the excrements of human beings, doge, mice, geese and other snimals, calculi, human stull and moss growing on it, blind puppies, earthworms, Sc. Although other editions of the London Pharmacopocia were issued in $5621,1632,1639$ and 1677 , it was not until the edition of 172r, published under the auspices of Sir Hans Sloane, that any important alterations were made. In this iswe many of the ridiculous remedies previously in use vere omitted, although a good number were still retained, such as dog; excrement, earthworms, and moss from the human skull; the botanical names of herbal remedies were for the first time added to the official ones; the simple distilled waters were ordered of a uniform strength; sweetened spirits, cordials and ratifias were amitted as well is several compounds no longer used in London, althoagh still in vogue elsewhere. A great improvement was effected in the edition published in 1746 , in which only those preparations were retained which had received the approval of the majority of the pharanacopocis committee; to these was added a list of those drugs only which were supposed to be the most efficaclous. An attempt was made to simplify further the older formulae by the rejection of superfuous ingredients. In the edition published in 1788 the tepdency to almplify was carried out to much greater extent, and the extremely compound medicines which had formed the principal remedies of physicians for 2000 years were discarded, while a few powerful drugz which had been considered too dangerous to be included in the Phermacopoeia of 1765 were restored to their previous position. In 1809 the French chemical nomenchature
whe adopted, and in rers a corrected imprestion of the same wh isuned. Subsequent editions were puhlished in 1824, 1836 and 1852 .

The first Edinbugh Pharmacopocia was published in 1699 and the last in 1841; the first Dmbim Plarmacopoeis in 1807 and the last in 8850 .

The preparations contained in these three pharmacopocias were not all unlform in strength, a source of mucb inconvenience and danger to the puhlic, when powerful preparations guch as dilute hydrocyanic acld were ordered in the one coontry and dispensed according to the national pharmacopoeia in another. In consequence of this Inconvenience the Medical Act of 8858 ordained that the General Medicat Council should cause to be published a book containing a list of medicines and compounds, to be called the British Pharmacopocia, which should be a substitute throughout Great Britain and Ireland for the separate pharmacopoeiss. Hitherto these had been published in Latin. The firt British Pharmacopocia wes publisbed in the English language in 8864 , hut tive such general dissatlafaction both to the medical prolession and to chemists and druggists that the Generat Medical Council hrought out a new and amended edition in 1867. This dissatisfaction was probably owing partly to the fact that the majority of the compilers of the work were not engaged in the practice of pharmacy, and therefore competent rather to decide upon the kind of preparations required than upon the method of their manufacture. The necessity for this element in the constraction of a pharmacopoeis is now fully recognized in other conntries, In most of which pharmaceutical chemiste are represented on the commitee for the preparation of the logally recognized manuals.

National pharmacopocias now exist in the following countries: Austria, Belgium, Chile, Denmark, France. Germany, Great Britain, Greece, Holland, Hungary, India, Japan, Mexico, Norway, Portugal, Ruaia, Spain, Sweden, Italy, Switzerland, the United States of America and Venervela. Ail the above-mentioned wer iswaed under the authority of government, and their instructions have the force of law in their respective countries, except that of the United States, which was propared by commiscioners appointed by medical and pharmacenticn societien, and has no other authority, although generally accepted as the national textbook.

The Freach Coder has probably a more extended use than any other pharmacopoeia outside its own country, being, in connexion with Dorvault's L'O frime the standard for druggrsty in a large portion of Central and South America; it is alio oficial in Turtey. The sum-total of the druge and preparations it conatains is about 1250, or double the average of other modern pharmacopoeias, The progress of medical knowledge has led to a gradual but very perceptible alteration in the contents of the pharmacopoeiats. The original very complex formudae have been simplified until only the mont active ingredients have been retained, and in many cases the active principles have to a large extent replaced the crude drugs from which they, were derived. From time to time such secret remedies of druggiste or phyticians as have met with popular or profematial approval have been represented by eimpler official preparations.

The rapid increase in medical and pharmaceutical knowledge renders necemary frequent new editions of the national pharmacopoeias, the office of which is to furnish definite formulae for preprations that have already come into ertensive use in medical practice, 0 oa to ensure uniformity of strength, and to give the characters and tests by which ther purity and potency may be determined. But each new edition requiree several years to carry out numerous experiments for devising ouicable formulae, 50 that the current Pharmacepocin cas never be quite up to date. This difficulty has hitherto been met by the publication of auch nonofficial Iormularies as Squire's Compantion to the Pharmacopocia and Martindsie's Eresa Phamacopocia, in which all new remedies and their preperations, uses and doses are recorded, and in the former the varying skrengths of the ame preparations in the different pharmioopoeias are also compared. The meed of such works to supplement the Pharmacopocia is shown by the fact that they are even more largely used chan the Pharmacopocia itself, the first having been issued in 18 and the second in 33 editions at comparatively short intervals. In England the tand of etaborating a new Pharmacopoeim in entructed to a body of a purely medical character, and legally the pharmacist has not, at in other countries, a voice In the matter, notwithstanding the fact that, although the medical practitioner is naturally the bett judge of the drug or preparations that will fford the beet therapeutic result. he to not wo competent as the pharmaciot 30 eay how that preparation can be produced it the mont effective and satisfactory manner , mor how the purity of drags can be tested. In the preparation of the fourth edition of
the Ericish Pharmaceporia in togt worpe new departures wert made A committee of the Phamaceutical Society of Creat Brilain wat appointed at the request of the General Medical Council to advise on pharmaceutical matters and the valuable assistance rendered by it is scknowledged in the preface of that work. A ceasus of prescriptions was taken to ascertain the relative frequency with which different preparations and drugs were used in prescriptions and muggestions and criticisms were sought from various medical and pharmaceutical bodies at home and in the coloniea. As regarda the purely pharmaceutical part of the work a committee of reference in pharmacy, nominated by the phacmaceutical socictien of Creat Britain and Ireland, was appointed to report to the Pharmacopoeia Committee of the Medical Council.
Some difficulty has arisen since the passing of the Adulteracion of Food and Drugs Act concerning the use of the Pharmacopoeia as a legal standard for the drugs and preparations contained in it The Pharmacopoeis is defined in the preface 28 only " intended to afford to the members of the medical profession and thoee engaged in the preparation of medicines throughout the British Empire one uniform standard and guide whereby the nature and compooition of ubstances to be used in medicine may he ancertained and determined." It is obvious that it cannot be an encyclopaedia of aubstances used in medicine, and can only be used as a standard fur the aubstancet and preparations contained in it, and for no others. It has been held in the Divisional Courts (Dichins v_{o} Ronderson) that the Pharmacopoeja is a standard for official preparations asked for under their pharmacopoeial mame. Bux there are many subatances in the Pharmacopoeia which are not only employed in medicine, hut have other uses, such as sulphur, benzoin. tragacanth, gum arabic, ammonium carbonate, beswax, oil of turpentine, finsed oil, and for these a commercial standard of purity as distinct from a medicinal one is needed, since the preparations used in medicine should be of the highest possible degree of purity obtainable, and this standard would be $t 00$ high and too expensive for ordinary purpoes. The use of trade synonyms in the Pharmacopoein, euch as saltpetre for purified potasium nitrate, and milk of sulphur for precipitated sulphur. is partly answerable for this difficulty, and has proved ta be a mistake, since it affords ground for legal prosecution if a chemist gells a drug of ordinary commercial purity for trade purposes, instead of the perified preparation which is official in the Pharmacopoeia for medicimal use. This would not be the case if the trade 䯺nonym wre omitted. For many drups and chemicals not in the Pharmacopocia there is no standard of purity that can be used under the Adulteration of Food and Drugs Act, and for these, as well as for the commercial quatity of those drugs and easential oils which are also in che Pharmacopoeia, legal standard of commercial purity is much needed. This uubject formed the basis of discussion at severs meetinge of the Pharmaceutical Society, and the results have beed embodied in a work entitled Suegested Slamdards for Foods ant Drugt, by C. G. Moor, which indieates the average degree of purity of many drugs and chemicals msed in the arts, as well as the highest degree of purity ohtainable in commerce of those used in medicise. An important step has also been taken in this direction by the publication under the authority of the Council of the Pharmaccution Society of Great Britain of the Braksh Pharmaceutrcal Cedex, in which the characters of and tests for the purity of many monofficial drugs and preparations are given as well as the character of many glandular preparations and antitoxins that have corne into use in medicine, but have not yet been introduced into the Pharmacopoeia. This work may also possibly serve as a standand under the Adulteration of Food and Druge Act for the purity and strength of drugs not incfuded in the Pharmacopoeia and as a standard for the commercial grade of purity of those in the Pharmacopoeia which are used for non-medical purposes.

Another legal difficulty connected with modern pharmacoponerate is the inclusion in some of them of synthetic chemical remedies, the processes for preparing which have been patented, whilst the substances are sold under trade-mark names such as veronal. The scientific chemical name is often long and urwieldy, and the physician prefers when writing a prescription to use the shorrer name under which it is sold by the patentees. In this case the pharmacist is compefled to use the more expensive parented arricte and the patient complains of the price. II he uses the same article under ite pharmacopoeial name when the patented articte is prescribed he lays himself open to prosecution by the patentee for infringement of ptent rights. The only plan, therefore, is for the physician to use the chemical name (which cannot be patented) as given in the Pharmacopoeia, or-for those eyrthetic remedies not included in the Pharmacopoeia-to use the scientific and chemical name given in the British Phammeeutical Coden.
Infornafional Pharmecopacia.-Increased facilities for travel buve brought into greater prominence the importance of an appronch to aniformity in the formulae of the noore powerful rempites, in order to avold danger to patients when a prescriptinn Is dispensed in a different country from that in which it was witten. Attempes haw been made by international pharmaceutical and medical conferences to settle a basis on which an international pharmacopocia could be prepared, but, owing to national jealousies and the attempt to include too many preparation in such a work it has got ase 3 ,
beea produced. The otandardization of preparations of petent medicines, as regards the amount of active principles they contain, can only conveniently and ecomomically be done in operating on targe quantities, and muet naturally lead to the preparations boing standardited at wholenale houres, who ivue a guarantee with them but it in not yet certain that deterioracion may not take place after standardization. in such as thowe of ergot or digitalis, so that it is sorvewhat quertionahle whether the standarditation is of permanent value in all casen. Probably more dependence is to be placed on careful aelection of the drug and sicill in its preparation and precervation by the recail pharmacist, who thould be permonally responsibte for the quality and purity of the preparations he sells Athough the attempt to form an international pharmacopoeia bas failed, a project for an imperial pharmacopocin which ebould be adapted to the general and local requiremente of all parts of the British Empire bas met with better succees. With the aid of the medical and pharmaceutical aythorities in each of the seventy administrative divisions of the British Empire an Indian and Colonial addendug to the British Pharmecoproeia of 1898 was compiled and published in 1900 in which each article receiven official anaction an the countries indicated at the foot of the monographs. This was regarded as a preparatory atep to the publication of a complete imperial pharmacopoeiz.
Several unoficial universal pharmocopoclas have beem pablinhed in Engiand and is France, which eerve to show the comparative streath of parallel preparntions in different countries. The metric or decimal mode of calculation and the centigrade scale of temperapure are adopted in all pharmacopocias except those of Great Britain (in which the metric equivalents are now given) and in onme instances of Greece. The majority omit chemical formulae. An aphabetical arrangement is followed in all. The maximum dones of preparations are given in several pharmacopoeias and the physician must indicate on his prescription, II he exceeds this limit. by using a note of exchamation after each articie, that he purpoeely mintende-uuch a dove to be employed. The great increase of medical literatura and international eachange of medical jourmals has led to the adoption in almoet every country of all the really valuable rennedial agents, and the more extended use of active principles has given rise to an approximation in strength of their colutions. The diffculty of nomenclature could probably be overcome by a lite of synonyms being piven with each articles and that of language by the uee of Latin. The greatest etumbling-blocks in the way of uniformity are the tinctures and extracts-a clase of preparations containing many very powerful druge, hut in which the datne name does not alway indicate the same thing; thus, dextract of aconite eigoifiet an extract of the root in the pharmacopociat of the United States Japan and Ruseia, extract of the leaves in the Danish and Portuguese, inspissated juice of the tresh leaves in the Greck, and alcohollc extract of the rbot in that of Spain and ltaly, and alcoholic extiact of the dried beaves in the Chilean pharmacopoeins. It appears probable, however, that the growth of pharmaceutical chemstry will indicate, in time, which of thove in use form the most active and trustworthy preparations, while the general adoption of the metric bystem will lead to clearer approximation of strength than bitherto. The method adopted by the Portuyuese Pharma. copoeid comes meareat to that uniformity which is to desirable in woh preparations, as the tinctures of the freah plasts are all prepared with equal parts of the drug and alcobolic menstrum; cimple tinctures in general, with unfortunately a few exceptions, With one part of the drug in five parts of alcohol of given strength; ethereal tinctures are in the proportion of one part in ten; and the tinctures of the allzaloids and their alts contain one part of the alcaloid in ninety-nine of menstrum.

Homosopathic and eclectic practitioners as well as dentists hue also their special pharmacopoeias.

See. Bell and Redwood, Progress of Pharmacy (Lomdon, 1880); Scherer, Licerafwre phormacopocarym (Leipxiy, and Sorau, 1822): Flint, Report on the Pharmecopocias of als Natross (Washington, (883).
(E. M. H.)

PHARYACOSIDERITE, mineral species consisting of bydirated basic ferric arsenate, 2FeAOO. $\mathrm{Fe}(\mathrm{OH})_{3} \cdot \mathrm{SH}_{2} \mathrm{O}$. Crystals have the form of small, sharply defined cubes of an olive- or grass-green colour, and occur together in considerable numbers on the matrix of the specimens. On account of its cubc form the mineral was carly known as "cube ore" (Ger., Wurfelerz), the name pharmacusiderite, given by J. F. L. Hausmann in 2813, alludes to the argenic and iron present ($\$$ topanow, poison, and ofinpos, iron). The faces of the cube are strated parallel to one diagonal, and alternate corners are sometimes replaced by faces of a tetrabedron. The crystals are feebly cloubly refracting, and in polarized light exhibit banded structure parallel to the cube faces. The hardness is 21 and the epecific gravity 2.8 . Recent analyses prove the presence of a ginall hut variable amount of potassium ($\mathrm{K}_{1} \mathrm{O}, 2.68-4.13 \%$) in the Cornish crystals, though in those from Hungary there is
only a erece; this constituent appers to take the place of basic hydrogen in the above formuln. A curious property is to be observed when a crystal of pharmacosiderite is placed in a solution of ammonia-in a few minutes the green colour changes throughout the whole crystal to red; on placing the red crystal in dilute hydrochloric acid the green colour is reatored. Natural crystals are sometimes honey-yellow to brown in colour, but this appears to be due to alteration.

Pharmaconderite fo mineral of mecondary origin, the eryataic oceurring attached to gossany quarts in the upper part of veins of copper ore. It whe found in come abundance at the end of the 18 th century in the copper minea of the St Day district in Corrwall and has since been found at few other localities. for example, at Konigaberg near Schemuitz in Hungary, and in the Tintic district is Urth.
(l. J. S.)

PBARMACT, a lerm which in the original Greek form signified the use of any kind of drug (фفряаноу), potion or spell, and hence also poison and witchcraft. In the modern signification it is applied to the act of preparing, preserving and compounding medicines, according to the prescriptions of physicians. It was used first in this sense in 1597.

In the earliest periods of the world's history of which we have any record, this art, like that of the perfumer, was practised by a special class of the priesthood, as in the case of Eleazar (Num. iv. 16), and that of medicine by another class (Lev. xii.).

Egyptian inscriptions indicate that the physician-priests sent their prescriptions to be dispensed hy the priests of Isis when, accompanied by the chanter of incantations and spells, they visited the sick ${ }^{1}$. A papyrus of Sent, 3300 日.c., gives directions as to the preparation of prescriptions. In the Ebers papyrus, 1550 b.c., mention is made of blisters, ointments, clysters, mineral and vegetable drugs. The art of the apothecary is alluded to very early in the Old Testament history (Exod. xxx. 25-35 and in axxvii. 20) and again in the time of Solomon (Eccles. 8. 9), hut this word, which is translated por fumewr in the French version, only indicates that the preparation of fragrant unguents and incense formed, even at that early date, a part of pharmacy, since the drugs mentioned, viz. galbanum, myrrh, stacte, frankincense, calamus, cassia and cinnamon, were all of them used in perfumes, even the myrrh being prohably the kind distinguished at the present time in the Bomhay market as perfumed myrrh or bissabol, which still forms an ingredient of the joss sticks used as incense in the temples in Cbina. The myrrh mentioned in Gen. 100 vii .35 is described under another Hehrew word, and refers to ladanum, a fragrant resin produced in Cyprus, and the use of this drug, as well as that of cinnamon and cassia, indicates even at that early period a knowledge of the products of Somaliland, Arabia and the East Indies and the existence of trade between the farther East and Egypt. In China also at a very early period the art of pharmacy was practised. Ching-Hong, a contemporary of Menes I. of Egypt, was learned in the art, and made decoctions and extracts of plants. The materia medica of the Chinese at the present date affords an excellent illustration of the changes that have taken place in the use of drugs, and of the theories and superstitions that have guided the selection of these from the earliest ages. inasmuch as it still comprises articles that were formerly used in medicine, hut have now been utlerly discarded. Thus the doctrine of signatures is evident in the use of the celebrated Ginseng root of China, which, like that of the mandrake (Gen. xxx 14-16), owed its employment to the fact that the root often divides into branches resembling the arms and legs of a man, and this resemblance gave rise to the belief that it conferred strength and virility. The same belief is shown in the botanical names lappled to many plants, c.s. Pulmonaria, Hepatica, Scrophularia, and others.

The astrological belief that plants, animals and minerals are under the influence of the planets is shown in the older names of some of the metals, e.g. Saturn for lead, Venus for copper, and Mars loriron, and the belief that the colours of flowers
${ }^{1}$ The Exyptiana believed that the medicinal virtmes of glants wers due to the spinita who dwelt within theme
indicated the particular planet they were under led to their use in diseases and for constitutions supposed to be under the same planet. Physicians to this day head their prescriptions with a zign that originally meant an lnvocation to Jupiter, but now xepresents the word recipe.
The beliel, which isstill heff by the Chinese, that the excrements of animals retain the properties and peculiarities of the animals from which they are derived, led to the use in medicine of these dimuanting remedies, which are still sold in drug shope in China, and were only omitted from the Engligh Pharmacopocia as late as 1721. At that date the science of chemistry was very imperfectly known, and the real constituents of ordinary remedies so litule understood that diferent virtices were attributed to different products containing the same constituents. Thus, prepared oystert shells, coral, pearls, crabs' "eyes " and burnt hart's horn "ere regarded as specifics in different complaints, in ignorance of the fact that they all contain, as the chief ingredients, calcium phosphate and carbonate. The celebrated Gascoigne's powder, which was sold as late as the middle of the igth century in the form of balls like sal prunella, consisted of equal parts of crabs' "eyes," the black lips of crabs' claws, Oriental pearls, Oriental bezoar and white coral, and was administered in jelly made of hart's horn, but was prescribed by physicians chiefy for wealthy people, as it cost about forty shillings per ounce. Superstition ulso entered largely into the choice of remedies. Thus various parts of criminals, such as the thigh bone of a hanged man, moss grown on a human skull, \&c., were used, and even the celebrated Dr Culpeper in the ${ }^{17}$ th century recommended "the ashes of the bead of a coal black cat as a specific for such as have a skin growing over their sight."
In course of time the knowledge of drugs, and consequently the number in use, gradually increased, and some of the preparations made in accordance with the art attained a celebrity that lasted for centuries. Thus diachylon plaster was invented by Menecrates in A.D. I, and was used by him lor the same purposes as it is employed to-day. An electuary of opium, known as Mithrodatum, was invented by Mithradates VL., king of Pontus, who lived in constant fear of being poisoned, and tested the effects of poisons on criminals, and is said to have taken poisons and their antidotes every day in the year. The prescription for the general antidote known as Mithradatum was found with his body, together with other medical MSS., by Pompey, after his victory over that king. The prescription was improved by Damocrates and Andromachus, body physicians to Nero. The first was subsequently known as Mithradatum Damocratis, and the second as Theriaca Andromachi, the name Theriaca or Tiriaca being derived from the snake called Tyrus, the flesh of which was added to it by Andromachus. The former contained 55 , or, according to some formulae, 72 Ingredients, and occurs in anl the dispensatories, from that of Corvus Valerius up to the pharmacopocias of the 1gth century; and aromatic preparations of opium are still used, under the name of Theriaka in Persia. The Theriaca prepared at Venice had the highest reputation, probably because in Venice the component parts were exposed to the inspection of wise men and doctors for two months, to determine whether they were or were not fit for use. The apothecaries' ordinance at Nuremberg provided that no Theriaca should in future be branded with the seal of the city unless it had been previously examined and declared worthy of the same by the doctors of medicine, and that every druggist must know the age of the Theriaca he sold. Inasmuch as its action changed very materially with age, "the buyer should in all instances be informed, so that he may not be deccived." The last public preparation of Theriaca took place at Nuremberg in r 754.

In a.D. 77-78 Dioscorides of Anazarba, in Cilicin, wrote his great work on materia medica, which still remains the most important work on the plants and druss used in ancient times (of which about 400 were enumerated) and until the 17 th century whs held as the most valuable guide to medicinal plants and drugs extant. Nearly 100 years afterwards Galen, the imperial physicien at Rome (L D. 13 $3-200$), who was leamed in surgery,
pharmacy and matería medica, added about 200 more plants to thone described by Dioscorides

Galen believed in the doctrine of humours originated by Hippocrates, which supposes the condition of the body to depend upon the proper mixture of the four elements, hot, cold, moist and dry, and that drugs possens the same elementary qualizies, and that on the principle of contraries one or other was indicated, e.g. a cooling remedy for a feverish state. This doctrine was held for many centuries, and drugs are classed by all the old herbalists an having one or other of these qualities in a greater or kess degree. Galen is said to bave invented hiera-picra, which he employed as an anthelmintic; it is suill used in England an a domestic remedy. In the oth century Alexander of Tralles used colchicum for gout, iron for anaemin, and rhubarb in liver wemkness and dysentery. The practice of phanmacy was extended by the Arabian physicians, and the separation of it from medicine was recoguized in the 8th, and legalized in the n th century. The practice of "polypharmacy," or the use of a large number of ingrodienss in prescriptions, which was common in the milddle ages, was greatly due to the view enubciated by Alkekendo, and held by one of the Arabian schools of medicine: that the activity of medicine increases in a duplicate ratio when compounded with others; and it was only in the firse hali of the x8th century that the practice was altogether discontinued in the pharmacopocias, although the theory was shown to be incorrect by Averroes in the 12 th century.
The establishments for dispensing medicines at Cordova, Toledo and other large towns under Arab rule, were placed under severe iegal restrictions. Frederick II. in A.D. 1233 passed a law, which remained in force for a iong time in the two Sicilies, by which every medical man was required to give information against any phairsacist who should rell bad medicine. The pharmacista were divided into two ciasses, the slatioxarit, who sold simple drugs and non-magisterial preparations at a taril deternined by competent authorities, and the confectionarii, wbose basiness it was to dispense scrupalously the prescriptions of medical men; all pharmaceutical establishments were placed under the surveillance of the college of medicine. In the monastic period pharmacy was to a great extent under the control of the religious orders, particularly the Benedictines, wha, Irom coming into contact with the Arabian physicians, devoted themselves to pharmacy, pharmacology and therapeutics; but, as monks were forbidden to shed blood, surgery leil largely into the hands of barbers, so that the clase of barber-surgeons came into existence, and the sign of their skill in bloodtetting will appears in provincial districts in England in the lorm of the barber's pole, representing the application of bandages
In England the separation between medicine and phartracy was somewhat tater thay on the continent of Europe. The earliest record of an apothecary's shop in London was in $\mathbf{x} 345$ The status of the apothecary, as suhordinate to the physician in the time of Henry VIIL., is evident from the following, our of ar rules hald down by a prominent apothecary, who was a cousin of Anne Boleyn: "His garden must be at hand, with plenty of herbs and seeds and roots. He must read Dioscorides. He must have mortars, pots, filters, glasses and boxes clean ard sweet. He must have two places in the shop, one most ciean for physic, and the base place for chirurgic stuff. He is neinher to increase nor to diminish the physician's prescription; he is neither to buy nor to sell rotten drugs. He is only to meddle in his own vocation; and to remember that his office is only to be the physicinn's cook."
Thit drugs used by the physicians and apothecariea were purchased from the grossarli or sellers in gross, who were sabsequently called grocers, some of whom specialized as drugsists and others as chymists or chemists. The apothecaries, who were the pharmacists of those days, were not represented by any corporate body, but in the reign of King James I., in 1606, were incorporated with the Company of Grocers. This mrrangsement was not, however, approved of by the physicians, tho obtained in 1617 a separate charter for the apothecarics, to the number of 154 , which was the number of phywicians thea
prettisfisg in Lohdoh." At the same time it was ehiacted that no grocer should keep an apothecary's shop, and that no surgeon ghould sell medicines, and that the phywicians shoold have the power to search the shops of the apolhecaries whinin 7 m . of London under a penalty of froo in case of a refusal to permit it. Soon after the apothecaries were formed into in separate company they took into comsideration means to prevent the frauds and adulteritions practived by the grocats and druggiens, and, to remedy the evil, establishad a manuluctoty bfi their own in 1626 so that they might make prepaturiosis for their own members. The fruds and adulterations wese probally due in part to she apothecarics, for Dr Bterrit, a colleginte physicion of London, stated that " each chymists which sell preparations honestly made complain that few apothectarics will go to the price of them." The medicinal prepapationa which required the aid of a furnaco, such as mideral earths, were undertikien by the chymists, who probably derived their name from the Ajchymines, who flourthed from the 14 th to the sth centuries When the word was discovered to be derived from an Atrabie prefix and a Greek word the prefix was dropped. In the rglt century the word chymist became altered to chemist, akhough the original speling is still contintued to a sumall extent. The curious signs on the coloured carboys in chemists' windows, which were commonly to be seen tutil the middle of the roth century, were signs used by the alchemises to indicate various chemical substances. In 1604 the aporhceaties had increased frem ais to nearly 1000, and many of them, having ecquired a knowledge of the uses of medicine, begna to prescribe medicines for their customers and to assume the functions of the physician, who retorted in 1697 byestablishing dispensaries, where medicines could be procured at their intrinsic value, or at coot price. The masistants employed at these dispensarics after a time appear to have gone into busincts on their own accomat, and in this way the dispensing chemiste, as a class, appear to have originated.
In 1748 the Apothecaries' Corporation obtamed a charter empowering them to lioense apothecaries to sell medicines in London, or within 7 m ., and intended to use it to restrain chemists and druggists from practising pharmacy, and to prohibrit physicians and surgeons from selling the medicines they prescribed, but the apothecurics, by paying merreased atention to medical and surgical practice, had not only alienated the physicians and surgeons, but materially strengthened the position of chemists and druggists as dispensers of prescriptions. When a further attempt was made in 8815 to bring a bill into parliament including provisions for prohibiting the practice of pharmacy by uneducated persons, and giving power to examine dispenting chemists, the latter became alarmed, and, finding that the provisions of the bill were entirely in the interests of the apothecaries, and directed against chemists and druggists, the latter took measures to oppose it in partinment, which were so far successul ts to prevent apothecaries from interfering in any way with, of obtaining any control ovet, chemists and druggists. In $18 \not f x$ another attempt was made by the apothecaries to control the trade of chemists and druggists on the ground that no adequate examination or education in pharmacy existed, and that such should be instituted, and be controlled by the apothecaries and physicians, bot the latter disclaimed any desire to take an active part in the matter.' The chemists and druggists, recognizing that no institution for the systematic education and examination of chemists and draggists existed in England, and that no proof could be given that each individuat possessed the necessary qualifications, decided that this objection must be met, and that pharmacy must be placed upon a more scienlific footing. They thercfore resolved upon the foundation of a voluntary society, under the title of the Pharmisceutical Soclety of Great Britain, "for advancing the knowledge of chernistry and pharmacy, and promoting a unlform tystem of edaction for those who should practise the same, also for protecting the collective and individual interests and privileges of all its members, in the event of any hostile altack in parliament or elsewhere." This society was instituted in 8841 , the orginal founders being chemists and drugejes in the

Inetropolis and provincial towns. On the 18 th of February 1843 a royal charter of incorporation was granted to the society, and a permanent status was thus acquired: Chemists in business before the granting of the charter were entitled to foin the society as members, but those who wished to join it sabsequently could do 80 only on condition of passing an examination for the purpose of testing their knowicdge of pharmacy: A school of pharmacy' was instituted, and a museum and library were stented. The chemical laboratory' in connexion with the school was, wher' first instituted, the only one in England for teaching purposes, and the museum how reputed to be the best pharmaccatical one in the wordd, the Ebrary now containing thout 53,000 volumes.
The examinations are three in mumber. The first is of a pee Erthinary character, qualifying for registration as a student or appreatice; in Fexe of this exmenination, certificates of atatriculation at a university and thbse of ortain other educational bodien are mecepted. The sacomel eremination qualifies for regiatration as a chomist and drugefat. This is known as the minor examination. aod mutat be posed beforu anyone can legnaly dipense, compound and acil acheduled poisome The sobjects included are syyupmatic botany, vegetable morphology, and physiology, chemisery, physics matera modica, pharmacyo diapensing, posolony, ehe reading of prescriptiona, and a knowledye of poinons and their amildotes. Foisons and Pharwacy Act of 190 (section 4) has given the society power to requlate the preliminary traising, arragge a carricolum, and divide give qualifying examination into two partan so that an appnoximation to the staidard of pharmareutical education on the Continear is filacty to telee place withis a short period. Degrees in sceneme and pharmacy are granted by the universitics of Manchester and Glaggow, and ather umiversitien were in 1910 comsidering the queation of grenting degrees.

The third, or major examunation, which qualifies for regintration 25 a platmacrutical chemin, is not, tike the minor, a compulsory ome, fant ramks as an honours examination. The educution for thin cexauigation has lopp pace with the rapod advances of science, all the following subpecta now receiving attention! the microocopical structure of plants and druss so as to detoct adulterations and umpuritios in popdened drugs; organic and quasititive analysis, including those of food and druts, water, snils, gas and urine; optice, to as to epable them to canry out the prosciptions of oculists; spectrum analysis; the use of the polariscope and refractometer; the method of applying Rontgen rays; the preparation of glandular secretions and antitoxdins; and the chemistry of remedies lor the fungoid dienases and isisect peste of plints.

Thope who have passed this examination are corupetent to perform analysis of all kinds, and generally obtain the preference for various appointments, such as bead dispensers in povernment or of her large hoopitals, or as analysts. The society has also cstablished a chemical repearch taboratory, in which muxh waeful work hwe been dome in cosnexion with the nutional pharmancopocia undar the direction of the Pharmacopoeia Committeo of the Medical Council.

A pharmacy act, which was passed in 1852 , established a distinction between registered and examined, and unregistered and unezamined chemists and druggists, creating a register of the former under the name of pharmanceutical chemists, 50 that the pubfic might discriminate between the two classes. A subsequent pharmacy act, passed in 1868 , added a register of chemists and druggists, and rendered it unlawiul for any unregistered person to sell or keep open shop for selling the polsons mentioned in the schedule of this act. The administration of the act was entrusted to the pharmaceutical society, and the duty of prosecuting unnuthorized practitioners has been performed by the society ever since, without any pectniary assistance from the state, although the leged expenses involved in prosecution amount to a considerable portion of its income.

The Poisons and Pharmacy Act of roos extended the acbedule of poisons mstituted by the act of 1868, and it now inchudes arsenic, aconite. alconitine and their preparations; all poisonous vegetable alkaloids, and their salts and poisonous derivatives; atropine and its salts and their preparations; belladonns and all preparations or admuxtures (except belladonna plasters) containing o-t \% or more of beliadonna altaloid; cantharides and its poisonous derivatives; any preparation or admixture of coca-leaves containing $0-1 \%$ or more of coca alkaloids; cornosive sublimate; cyanide of potassium and alh poisonous cyanides and their preparations; tartar emetle, nux vomica, and an
preparations or admistures contsining 0.2% or more of strychnine; opium and all preparations and admixtures containing $t \%$ or more of morphine; picro-toxine; prussic acid and all preparations and admixtures containing 0.5% or more of prussic acid; savin and its oil, and all preparalions or admixtures containing savin or its oil. None of these may be sold to any person who is unknown to the seller, unless introduced by a person known to the seller, and not until after an entry is made in a book kept for the purpose, stating, in the prescribed lorm, the date of sale, name and address of purchaser, the name and quantity of the articic sold, and the purpose for which it is stated by the purcbaser to be required. The signature of the purchaser and introducer (if any) must be affixed to the entry.

The following poisons may not be sold, either retail or wholesale, unless distinctly habelled with the name of the article, and the word poison, with the name and address of the saller:-

Almondas essential oil of (unkes deprived of prosesic acid). Antimonial vime. Cantharides, tincture end all vesicating liguids, preparations or admixtures' of. Carbolic acid, and liquid preparations of carbolic acid and ics bormologues containing more than 3% of thome subutances, except preparations for owe as cheep-wash or for any ocher parpore in connetion with agriculture or horiculture, contained in a clowed vesel distinctly bbelled with the wond "poisonous," the name and address of the seller, and a notice of the apocial purposes for which the preparations are intended. Chloral hivirate Chloroform, and all preparations or admiatures containic: more than 20% of chloroform. Coca. any preparation or admixture of, containing more than $0-1 \%$ bat leas than 1% al coca alkaloids Digialis. Mercuric iodide Mescuric salpto. cyanide. Oxalic asid. Poppies, all preparations of, excepting red cyanide. petals and syrup of red poppics (Papaper Rhoeas). Precipipoppy petals and sll oxides of mercury. Precipitate, white. Strorate, red, And all oxides of mercrations or admixtures which are phanshus: Sulphonal. All preparations or admuxtures which are not included in part 1 of the schedule. and contain a poison within the moaning of the pharmacy acts, except preparations of admixtures, the exclusion of which from this schedule is indicated by the words therein relating to carbolic acid, chlorolorm and coes, and except such substance's as come withia the provisions of section 5 of the act.

It has been erroneously represented by interested persons that the Pharmaceutical Society desires a monopoly of the sale of poisons. This is not the case. Any poisonous substance that is not included in the schedules can be sold by anyone, as, for instance, red lead, sulphate of copper, \&c. The duty of the Pharmaceutical Society is a purely legal one, and relates only to the schedules of poisons framed by the government to protect the public by rendering it a difficult matter to obtain the poisons most frequently osed for criminal purposes. In continental countries the laws are even more stringent.

In response to an agitation originated by certain manulacturers (one of whom was a member of parlingeatt), who were prosecuted for omstiting to label arsenical and nicotine preparations as poisons as required by the Pharmary Act of 1868. a new act was passed in tgos, by which persons, withont any training in toxicology, and being net her pharmaceutical chemista, nor chemists and druxgist may be granted licences by bocal authorities to sell poisonous substances used exclusively in agriculture or horticulture, for the destruction of insects, fungi or bacteria, or as shoep dipe or weedkillers, but which are poisonous by reason of containing the echeduled poisons, arsenic or nicotine, arc. One condition concerning the granting of such licences has been, it is suid, detiberately ignored in many towns, viz. that the local authority, before granting a licence, " shall take into consideration whether, in the neighbourhood. the reasonalie requirements of the public are satisfied with regard to the purchase of poisonoun substances, and also any abjections they may receive from the chiel officer of police, or from any existing yendors of the substances to which the application relates." It is left to the Pharmaceutical Society to take legal action against any infringement of the law. although it ie obvious chat this should be carriod out at the government expense. siace it is for the benefit of a section of the public, and obviously to the loss of the members of the Pharmaccutical Society. Moroover, the present act nulifices ihe object of the previous act of 1868 , which was to reduce the facitities for obtaining poisons. The fact that a volumtary cocicry with limited fende must coctuet the illegat decisions of local councils, without sovernment sapport, seems bikely to render this portion of the act of 1 goos a doad letier.
Al the time of the passing of the Pharmacy Act of 1852 co-operative associations did not conse under consideration, and no provision was made conoerning shem as regards the title of chemith, or as to eny action urch associalions might take 80 evade the law. It has been decided in the law courts that a limited liability company
is not a person in the eye of the law, and therefore does not cogat under the operation of the act of 1868 . The result of this decision was that any chemist whe failed to pass the qualifying examination could constitute hirnmelf with a few others, even if ignoramt of pharmacy, into a limited liability comapany, which would then have been outside the powers of the sce, and not subject to its provinions. This false pusition was remedied by the set of 1908, wtich bring companies into line with mdividuals.

On the continent of Europe the dispensing of prescriptions is confined to pharmacists (pharmocicus and apotionkers). They are not allowed to prescribe, nor the medical men to dispense, except under specin! licence, Porefy and then only in small villages, where the pharmacist could not make a living. The principle of "ome ras one shop" is general; a pharmacist may not own more than ene shop in the same town. In Holland be may not enter inso any agreement, direct or indirect, with a medical man with regard to the supply of medicines. In Austria, Germany, Italy, Rumania and Russia the number of pharmacies is limited according to the population In France, Switzeriand, Belgiurn and Holland the number is not limited, and every qualified pharmacist has the zight to open a shop or buy a pharmacy. Where the number of pharmacies is limited by law prescriptions may only be dispersed at these establishments. The original prescription is kept by the pharmacist for either three or ten years, eccording to tbe country, and a certified copy given to the palient, written on white paper if for internal use, or on coloured paper (usually orange yellow) if (or external use. The price of the drugs and the tarifl for dispensing prescriptions is fixed by government authority. In Russia a prescription containing any of the poisons indicated in the schedules \mathbf{A} and \mathbf{B} in the Russian pharmacopocia may not be repeated, except by order of the doctor. The use of pharmacopoeia preparations made by manufacturers is allowed, but the seller is beld responsible for their purity and strength. The prices charged for dispensing are lower in countries where the number of pharmacies is limited by l2w, the larger returns eanbling the profit to be lessened.

The educational course adopted in different countries varies as to the details of the subjects taught. The preliminary, or classical examination, is usually that of university matriculation, or its equivalent. The period of study is eighteen manths in Denmark or Norway, and two in Austria, Finland, Germany, Portugal, Russia, Sweden and Switzerland, three in Belgium, France, Greece and Italy, four to six in Holland, and five in Spain. In Creat Britain the period of study is voluntary, and usually occupies only one year. Two or threc years of apprenticeship is required in most countries, including Great Britain, but none in Belgium, Greece, Italy or Spain.

The subject of patent medicines is but little understood by the general public. Any medicine, the composition of which is kept secret, but which is advertised on the label for the cure of discases, must in Creat Britain bear a patebt medicine stamp equal to about one-ninth of its face value. The British Medical Association published in 1907 a work on Secrat Remedies; what they cost and what they condain. The analyses published in this work show that nearly all tbe widely advertised secret remedics contain only well-known and inexpensive drugs. The Pharmacewtical Society on the other hand has also problished a Pharmoceulical Jowrall Farmulary, iacluding several busdred formulao of proprietary medicines sold by pharmacists, so that it is now possible for any medical man to ascertain what they contain. The government accepts all the thereip published formulac as "known, admit ted and approved" remedics, and therefore not requiring a patent medicise stamp. In this way widely advertised secret remedies can be replaced by medicines of known composition and accepred value in any pert of the world. Most continental countries have isfued stringent laws against the sale of socret remedies, and these have been lately strengthened in Germany, France and Italy. In Switzerland secret remedies cannot be advertised without submitling the formula and a sample of the remedy to the board of healab.
(E. M. H.)
prapramazus, Persian soldier and statesman, the son of Pharnaces, belonged to a family which from 478 governed the atrapy of Pbrygia on the Hellespont, from its beadquarters at Dascylium, und, actording to a discovery by Th. Nöldeke, was descended from Otanes, one of the associntes of Darius in the marder of Smerdis. Pharnabazus first appeass as satrap of this province in 4 r3, when, having seceived orders from Dasius 11 . to send in the outstanding tribute of the Greek cities on the coast, he, like Tissaphernes of Caria, entered into negotiations with Sparta and began war with Athens. The conduct of the war was much hindered by the rivalry bet ween the two satraps, of whom Pharnabazus was by far tbe more energetic and upright. After the war he came into conflict with Lysander ($9.0 . \mathrm{s}$: see also Peloponsesian War), who tried to keep the Greck cities under his own dominion, and became one of the causes of his overthrow, by a letter which he sent to the ephore at Sparta (Plut. Lys. 19; Nepos, I.ys. 4; Polyaen. vii. 29). He received Alcibiades at his court and proxised him means to go up to the king to reveal the intrigucs of Cyrus, but when the Spartans insisted on his death he yielded to their demand for his assassination (Plut. Alcib. 37 sqq.; Diod. xiv. 81). When in 399 the war with Sparta broke out he again tried to conduct it strenuously. With the belp of Conon and Evagoras of Salamis he organized the Persian fleet, and while he was hand pressed on land by Agesilaus he prepared the decisive sea-battle, wbich was lought in August 394 al Cnidus under his and Conon's command, and completely destroyed the Spartan fleet. He sent support to the allies in Greece, by which the walls of the Peiraeus were rebuilt. But in the war on land he struggled in vain against the lethargy and disorganization of the Persian Empire; and when at last, in 387, in consequence of the embassy of Antalcidas to Susa, the king decided to conclude peace with Sparta and to enter again into close alliance with her, Pharnabazus, the principal opponent of Sparta, was recalled from his command in high honoura, to marry Apame, a daughter of the king (Plut. Arlux. 27). In 385 he was.one of the generals sent against Egypt, and in 377 he was ordered to prepare a new expedition against the valley of the Nile. The gathering of the army took years, and when in 373 all was ready, his attempt to force the passage of the Nile faited. A conflict with Iphicrates, the leader of the Greek mercenarics, increased the difficultics; at lest Pharnabazus led the army back to Asia. From these campaigns date the silver coins with the name of Pharnabazus in Aramaic writing. When be died is not known.

In the time of Alexander we meet with a Persian general Phama. bazus, son of Artabasos (Arrian ii. iteq.), who probably was the grandson of the older Pharnabazus.

The name Pharnabazus is also borne by a king of lberia (Georgin) on the Caucasus, where the dynasty seems to have leen of Persian origin, defeated by a gencral of Mareus Antonjus (Mark Antony) in 36 a.c. (Dio Cass. xix. 24). In the Georgian dynerty the name cocurs as late as the Igth century. (ED. M.)
Phanyingits. The pharynx, or upper portion of the gullet (seen to a large extent on looking at the back of the mouth) is freqnently the seat of a chronic inflammatory condition, usually associated with derangements of the digestlve organs, or with syphilis or gout; sometimes it is due to much speaking or to excessive tohacco-smoking-especially of cigarettes. On inspection, the inflamed mucous membrane is seen unduly red and glazed, and dotted over with enlarged follicles. The condition produces considerable irritation and "dryness," with cough and discomfort, which may eventually become chronic. Treatment consists in removing all sources of irritation, in sectifying gastric disturbance, and in the application of the electric cautery, of astringent lotions or of mild caustic solutions. The pain may be relieved by spraying with certain anodyne solutions. In the case of adenoid growths (see ADENODS) there is often an associated granular appearance of the pharynx, due to eniargement of the minute glands of the mucous membrane. The inflamed pharynx of the orator ("clergyman's sore-chroat") may be put right by lessons in elocution or hy complete rest for a time. The gouty throat may call for a change of diet, or for a "stay at one of the watering-places where early rising, moderate
food, regular excreise and the drinking of laxative waters join in sestoring healeh.
(E.O.*)

PHARYMX (Gr. \$dour ξ, throat), in anatomy, the cavity into which both the nose and mouth lead, which is prolonged into the oesophagus or gullet below, and from which the larynx ot air tube comes off below and in front; it therefore serves as a passage both for food and air. It may be litened to an empty sack turned upside down and narrowing toward its mout h. The back and sides of tho sack are formed by the three constrictor muscles of the pharynx, each of which overlaps the outer surface of the one above it, and these are lined internally by thick mucous memhrane. The upturned botion of the sack is attached firmly to the base of the skull and tbe internal pterygoid plates, so that this part cannot collapse, but below the anterior and posterior walls are in contact, and a trabsverse section of the pharynx is a mere slit.
From the front wall, on a kevel with the floor of the nose and roof of the mouth, a slanting shelf of muscular and glandular tissue covered with mucous membrane, projects downward and backward into the cavity. and divides it into an upper part or naso-pharyox and a lower or oral pharynx (sec fig.). This shelf is the soft palate, ond from the middle of ita free border hancs a worm-like projection, of variable length but averaging about hall an inch, the mosala. The whole of the fromt wall of the naso-pharynx is wanting. and here the cavity opens into the nose through the posterior nasal apertures (see Olfactory Srsien). On cach side of the nasopharynx, and therefore above the soft palate, is the lange triangular opeoing of the Eubtachian tube through which air posses to the tympanum (see EAR). Behind this opening, and reaching up to the roof of the nasd-pharynx, is a mass of lymphoid tissue. must marked in children, known as the pharyngeal tonsil. This tissue, when it bypertrophice, causes the discase known as "adenoids."
From the mid-line of the roof of the pharynx a small pouch, the burss pkeryngee, bert scen in chiklhoond, projects upward. while on each side, above and behind the onening of the Eustachian tube, is a depression known as the laceral reecss of the pharynx.

The oral pharynx communicates with the waso-pharynx by the pharingeal isthmus behind the free edge of the suft palate. Above and in front it is continuous with the cavity of the mouth, and the demarcation between the two is a ridge of mucus menibrane on each side running. from the soft palate to the site of the tongue, and caused by the projection of the palato-glos us muscle. This is known as the anterior pillar of the lauces or anterior palatine arch. About hall an inch bchind this ridge is another, made by the palato-pharyngeus muscle, which gradually ides away in the side of the pharynx below. This is the posterior pillar of the lauces or posterior palatine arch, and between it and the anterior is the fossa (tonsilar sinus) in which the tonsill lis:
The Tonsil is an ovai mass of lymphoid tissue civered by mucous membrane which dips in to form mucous crypte; externally its position nearly corresponds to that of the angle of the jaw. It is very vascular, deriving its blood from five nei ${ }^{\text {b }}$ bouring arteries. Below the tevel of the lonsil the anterior wall f the pharynx is Cormed by the posterior or pharyngeal surface of the tongue (q.v.), while below that is the epiglottis and upper opering of the larynx which is bounded laterally by the apteno-p pigottic folds (see RESPIRATORY SYSTEM). On the lateral side of ich of these folds is a pear-shaped lossa known as the sinus pyrif mis. Below this the pharynx narrows rapidly until the level of that lower border of the cricoid cartilage in front and of the sixth eervical vertebra behind is reached; here it passes into the ocsophagus, having reached - total length of about five inches.

The mucous membrane of the naso-pharynx, like that of the reat of the respiratory tract, is lined by ciliated colu mnar epithelium, but in the oral pharynx the epichelium is of the stratificd squamoue variety. Numerous racemose glands are present (see EpithediAL TISSUES), as well as patches of lymphoid tissue especially in childhood. Outside the mucous membrane and separating if from the constrictor muscles is the pharyngead aponeurosis, which blends above with the periosteum of the base of the skuff.
Embryology. The pharynx is partly lormed from the ectodermal stomatodacal invagination (see Embryology and Mouth) and partly from the fore gut, which is the cephatic part of the entodermal mesodacum. Up to the fifteenth day (see Moutr), the bucco-pharyngeal membrane separates these structures, and, though no vestiges of it remain, it is elear that the upper and front part of the naso-pharynx is stomatodacal while the reat is mesodaesl. The five visceral arches with their intervening clefts or pooches surround the pharymx. and the Eustachian tube is a remnant of the first of these. The second pouch is represented in the odult by the comsilar simus, end until lately the hateral recess of the pharynx was looked upon as part of the same, but it has now been shown to be an independent diverticulum. The sinas pyriformis probably represents that part of the fourth groove from which the proberil lobes of the thyroid body are derived.

The Burs playngee was at one time loaiced upon as the place whence the pituitary body had been derived from the roof of the pharynx, but this is now disproved and its meaning is unknown The tonsil is formed is the second branchial cleft or rather pouch, Cor the clefts are largely incomplete in man, about the fourth month; its lymphoid tissue, as well as that elsewhere in the pharyong is formed from lymphecytes in the subjacent mesenchyme (see Exbeyology), though whether these wander in from the blood or are

Sagittal Section through Mouth, Tongue, Larynx, Pharynx and Nasal Cavity.
The tection is slightly oblique, and the posterior edge of the nasal septum hat been pre: eerved. The specimen is viewod slightly from below, hence in part the low position of the inferior curbinated bone.
development of the ventral part of the pharyax is doalt with in the articles Tongue and Respriatory System.
For titerature see Quain's Elements of Ahalomy, vol. i. (London, 1908), and J. P. McMurrich, Development of the Hemas Body' (London, 1906).

Comparation Anatomy,-In the lower, water-breathing, vertebrates the pharynx is the part in which respiration occurs. The water passes in through the month and out through the gill slits where it comes in contact with the gills or branchiae.

Tbe lowest subphylum of the phylum Chordata, to which the term Adelochorda is sometimes applied, contains a worm-like creature Balanoglossus, in which numerous rows of gill slits open Irom the pharyux, though Cephalodiscus, another member of the came subphylum, has only one pair of these-
In the subphylum Urochorda, to which the Ascidians or seaequirts belong, there are many rows of gill slits, as there are aloo in the Acrania, of which Amphioxus, the lanceler, is the type. In all these lower forms there are no true gills, as the blond-vesels lining the large number of alits provide a sufficieat area for the exchange of pasen

In the Cyclontonuta a reduction of the number of gins slits takes place, and an increased area for respiration is provided by the gill pouches lined by pleated folde of entodermal mucous membrave;
these form the simpleat type of true internal sila. In. the hoon lamprey (Ammocoetes) there sre eight sill slite opertiog from the pharynu, but in the adult (Petronyroa) they are reduced to meven. and a meptean grown forward epparatiog the veatral or beanchini part of the pharyax frome the dormal or digestive part. Boch theme tubes, however, communicate near the mouth.

In fishes there are uspally five pairs of gid sitits, though a rodif mentary one in fromt of theme is often present and is called the spiracle. Occarionally, te in Hexanchus and Heptanchus, there may be six or seven slits, and the evidence of comparative anatomy is that githes formerly had a larger number of gill atits than at preseat.
In the Telecatami, which inclurde the bony fishes, there is an external gill cover or operculum.
In the Diproi or mud fish the work of the gills in shared by that of the Jungs, and in the Alrican form, Protopterum external gilla, developed from the ectodermal parts of the gill slits, first appear. In the tailed Amphibians (Urodeln) the first and fifth gill ciefts are never perforated and are therefore in the mame condition as all the gill clefta of the human embryo, while in the gilled salamanders (Necturus and Proteus) only two gill clefts remain patent. The gills in all the Amphibis are external and of ectodermal origin, but in the Anura (frogs and toads) these are succeeded before the metamorphosis from the tadpole stape by internal pills, which, unlike those of fish, are said to be derived from tbe ectoderm.
In the embryos of the Sauropaida (reptilew and birds) five gill clefts are evident, thougb the posterior two are seldom at any time perforated. while in the Mammalia the rudiments of the fifth cleft are no longer lound in the embryo, and in man, at all eventas none of them are normally perforated except that part of the first which forms the Eustachian tube. It will thus be seen that in the process of phylogeny there is a gradual supprestion of the gill cletts beginning at the more posterior ones.
The solt palate is first found in crocodilet as a membranous structure, and it becomes muscular in mammals. The bursa pharynte and pharyngeal toanil are found in several of the lower mammalas In the stoep the latter is particularly large.
For literature and further details, aee R. Wiedersheim's Comparative Analomy of Vertebroles, translated by W. N. Parker (London, 1907); also Parker and Haswellis Zoolaky (London, 1897). (F. G. P.)

PHBASANT (Mid. Eng. fcsomil and fesaun; Ger. fason and anciently fasand; Fr. faisan-all from the Lat. phasionas or phasiana, sc. avis), the bird brought from the banks of the river Phasis, now the Rioni, in Colchis, where it is still abundant, and introduced, according to legend, by the Argonauts into Europe. Judging from the recognition of the remains of several species referred to the genus Phasianus both in Greece and in France, it seems not imposcible that the ordinary pheasant, the P. colchicus of ornithologists, may have been indigenous to this quarter of the globe. If it was introduced into England, it must almost certainly have been hrought by the Romans; ${ }^{2}$ for, setting aside several eartier records of dooblful authority, ${ }^{2}$ Stubbs has shown that by the regulations of King Harald in 1059 unus phasianus is prescribed as the
${ }^{2}$ These are P. anchiaci from Pikermi, P. alhus and P. medias from the lacustrive beda of Sansan, nod P. desnoyersi from Touraine, mee A. Milpe Edwards, Ois. Joss. de la France (ii. 229, 239-243).

2 Undoubred remains have been found in excavationa at Silchester.
${ }^{2}$ Among these perhaps that worthy of mont attention is in Probert's translation of The Ancient Lasys of Cevilria. (ed. 1823 pp. 367. 368), wherein extracts are eiven Irom Welsh triads, pre sumably of the age of Howel the Good, who died in 948. One of them is, "There are three barking hunts: 2 bear, 2 squirrel and a pheasant." The explanation is. "A pheasant is called a berking hunt, because when the pointers come upon it and chase it, it takee to a tree, where it is bunted by baiting." The present writer hat not been able to trace the manuscript containing these remartable.
alternative of two part ridges or other birds amting the "pitantiae" (rations or commons, ss we might now say) of the canons of Waltham Abbey, and, as W. B. Dawkins has remarked (Ibis, 186, p. 358), meither Anglo-Saxons nor Danes were likely to have introduced it into England. . It seems to have been early ander legal protection, for, according to Dugdale, a licence was granted in the reign of Hetry I. to the abbot of Amesbury to kill hares and pheasants, and from the price at which the latter are reckoned in various documents, we may condude that they were not very abundant for some centuries, and also that they were occasionally artificially reared and fattened, as appears from Upton,' who wrote about the middle of the $\mathbf{2} 5$ th century, while Henry VIII. seems from his privy purse expenses to have had in his household in i 532 a French priest as a regular " fesaunt breder," and in the accoants of the Kytsons of Hengrave in Suffolk for 1607 mention is made of wheat to feed pheasants, partridges and quais.

The practice of bringing up pheasants by hand is now extensively followed, and the numbers so reared vastly exceed those that are bred at large. The eggs are collected from birds that are either running wild or kept in pens, and are placed under domestic hens; but, though these prove most'attentive fostermothers, much additional care on the part of their keepers is needed to ensure the arrival at maturity of the poults; for, being necessarily crowded in a comparatively small space, they are subject to several diseases which olten carry of a large proportion, to say nothing of the risk they run by not being provided with proper food, or by meeting an early death from vatious predatory animals attracted by the assemblage of so many helpless victims. As they advance in age the young pheasants readily take to a wild life, and indeed can only be kept from wandering in every direction by being plentifully supplied with food, which has to be scattered for them in the coverts in which it is desired that they should stay. The proportion of pheasants artificially bred that "come to the gun" would seem to vary enormously, not only irregularty according to the weather, but regulazly according to the district. In the eastern counties of England, and some other lavourable localities, perhaps three-fourths of those that are hatched may be satisfactorily 'accounted for; hat in many of the western counties, though they are the objects of equal or even greater care, it would seem that more than half of the number that live to grow their feathers disappear inexplicably before the coverts are beaten. For the sport of pheasant-shooting see Snooming

Formerly pheasams were taken in snares or mets, and by hawking; but the crossbow was also used. and the better to obtain a "sitting shot."-fos with that weapon men had not learnt to "shoot flying."-doga appear to have been employed in the way indicated by the lines under an engraving by Hollar, who died in $1677:-$

> "The Feazant Cocke the woods doth most Irequent. Where Spanielle opring and pwarche hisn by the sent."

Of the many other species of the genus Phasianus, two only can be dwelt upon here. These are the ring-necked pheasant of China, P. torquatus, easily known by the broad white collar, whence it has its name, as well as by the pale greyisb-hlue of its upper wing-coverts and rump and the light buff of its flanks, and the P. persicolor of Japan, often called the green pheasant

[^27]from the beaviful tinge of that coloar that in certain lighty pervades almost the whole of its plamage, and, deepening into dark emerald, occupies all the breast and lower surface that in the common and Clinese birds is bay barred with glossy black scallops. Both of these species have been introduced into England, and cross freely with P. colchicws, while the hybrids of each with the ofder inhabitants of the woods are not only periectly fertile inicr se, but cross as freely with the other hybrids, so that birds are frequently found in which the hlood of the three species is ningled. The hybrids of the first cross are generally larger than either of their parents, but the superiority of sire does not seem to be maintained by their descendants. White and pied varieties of the common pheasant, as of most birds, often occur, and with a little caie a race or breed of each can be perpetuated. A truch rarer variety is sometimes seen; this is known as the Bohemian pheasant, not that there is the least reason to suppose it has any right to such an epithet; for it appears, as it were, sccidentally among a stock of the pure P. colekicks, and offers an example analogous to that of the Japan peafowl (see Peacocx), being, fike that breed, capable of perpetuation by selection. Two other species of pheasant have been introduced to the coverts of England-P. recocsi from China, remarkable for its very long tail, white with black bars, and the copper pheasamt, P. socomerringi, from Japan. The well-known gold and sitver pheasants, P. pictus and P. nyclitemerus, each the type of a distinct section or subgenus, are both from Chinh and have long been introdaced into Europe, but are only fitted for the aviary. To the Iormer is allied the still more beauriful P. amierstice, and to the latter about a dozen more species, most of them known to Indian sportsmen by the general name of "kalcege." The comparatively plain pucras pheasants, Pucrasic, the magnificent monauls, Lophophorus, and the fine snow-pbeasants, Crossoptilum-of each of which genera there are several species, may also be mentioned.
All the specics known at ihe time are bcautfully figured from drawings by J. Wolf in D. G. Eiliot's Monograph of the Phasianidae (2 vols. fol., 1870-1872)-1 he last icrm being used in a somewhat general sense. With a more precise scope W. B. Tggetmeier's Pheasants: pheir Natural History and Practical Namagement (4th ed., igo4) is to be commended as a very useful work. (A. N.)
PHEIDIAS, son of Charmides, universally regarded as the greatest ol Greek sculptors, was born at Athens about 'soo m.c. We have varying accounts of his training. Hegias of Athens; Agetadas of Argos, and the Thasian painter Polygnotus, have all been regarded as his teachers. In favour of Ageladas it may be said that the influence of the many Dorian schools is certainly to be traced in some of his work. Of his life we know little apart from his works. Of his death we have two discrepant accourts. According to Plutarch he was made an object of attack hy the polizical enemies of Pericies, and died in prison at Athens. According to Philochorus, as quoted by a scholiast on Aristophanes, he fled to Elis, where he made the great statue of Zeus for the Eleans, and was afterwards put to death by them. For several reasons the first of these tales is preferable.
Plutarch gives in his life of Pericies a charming account of the vast artistic activity which went on at Athens while that statesman was in power. He used for the decoration of his own city the money fumished by the Athenian allies for defence against Petsia: It is very fortunate that after the time of Xerxes Persia made no deliberate attempt against Greece. "In all these works," says Plutarch. "Pheidias was the adviser and overseer of Pericles." Pheidias introduced his own portrait and that of Pericles on the shield of his Parthenos statue. And it was through Pheidias that the political entmies of Pericies struck at him. It thus abundantly appears that Pheidias was closely connected with Pericles, and a ruling spitit in the Athenian art of the period. But it is not ensy to go beyond this general assertion Into det ails.

It is Important to observe that in resting the fame of Pheidias upon the sculptures of the Parthenon we proceed with little evidence. No ancient writer ascribes them to him, and he seldom. it ever, executed works in tharble. What he was celebrated
for in antiquity vas his atatues in bronze or gold and ivory. If Phutarch tells us that he superintended the great works of Pericles on the Acropolis, this phrase is very vague. On the other hand, inscriptions prove that the marble blocks intended for the pedimental statues of the Parthenon were not brought to Athens until 434 8.c., which was probably after the death of Pheidias. And there is a marked contrast in style between these statues and the certain works of Pheidias. It is therefore probable that most if not all of the sculptural decoration of the Parthenon was the work of pupils of Pheidias, such as Alcaunenes and Agoracritus, rather than his own.

The earliest of the great works of Pheidias were dedications in memory of Marathon, from the spoils of the victory. At Delphi be erected a great group in bronze including the figurcs of Apollo and Athena, several Attic heroes, and Miltiades the general. On the Acropolis of Achens he set up a colossal bronze image of Athena, which was visible far out at sea. At Pellene in Achaea, and at Plataea he made two other statues of Athena, also a statue of Aphrodize in ivory and gold for the people of Elis. But among the Grecks themselves the two works of Pheidias which far outshone all others, and were the basis of his fame, were the colussal figures in gold and ivory of Zeus at Olympia and of Athens Parihenos at Athens, both of which belong to about the middle of the sth century. Of the Zcus we have unfortumately lost all trace save amall copies on coins of Elis, which give us but a general notion of the pose, and the character of the head. The god was seated on a throne, every part of which was used as a ground for sculptural decoration. his body was of ivory, his robe of gold. His head was of somewhat archaic type: the Otricoli mask which usod to be regarded as a copy of the head of the Olympian statue is certainly more than a century later in style. Of the Athena Parthenos two small copies in marble have been found at Athens (see Greex Arr, fig. 38) which have no excellence of workmanship, but have a certain evidential value as to the treatment of their original.

It will be seen how very sonall is our actual knowledge of the works of Pheidias. There are many stately figures in the Roman and other museums which clearly belong to the same school as the Parthenos; but chey are copies of the Roman age, and not to be trusted in point of style. A. Furtwingler proposes to find in a statue of which the head is at Bologna, and the body at Dresden, a copy of the Lemnian Athena of Pheidins; but his arguments (Moslerpicces, at the beginning) are anyihing but conclusive. Much more satisfactory as evidence are some sth century torsos of Alhena found at Athens. The very fine torso of Albena in the Ecale des Beaux Arts at Paris, which has unfortunatcly losi its head, may perhaps best serve to help our imagination in reconstructing a Pheidian original.

As regards the decorative sculptures of the Parthenon, which the Greeks.rated far below their colossus in ivory and gold, see the article Parinenon.

Ancient critics take a very high view of the merits of Pheidias. What they especially praise is the ethos or permanent moral level of his works as compared with those of the later "pathetic" school. Demetrius calls his statues sublime, and at the same time precise. That he rode on the crest of a splendid wave of art is not to be questioned: but it is to be regretted that we have no morsel of work extant for which we can definitely bold him responsible. (P. G.)

PHEDDON (8th or 7th century e.c.), king of Argos, generally, though wrongly, called "tyrant." According to tradition he flourished during the first half of the 8th century s.c. He was a vigorous and energetic ruler and greatly increased the power of Argos. He gradually regained sway over the various cities of the Asgive confederacy, the members of which had become practically independent, and (in the words of Ephorus) "reunited the broken fragments of the inheritance of Temenus." His ohject was to secure predomipance for Argos in the north of Pcloponnesus. According to Plutarch, be attempted to break the power of Corinth. by requesting the Corinthians to ecnd him 1000 of their picked youths, ostensibly to aid him in
war, his real intention being to put them to death; but the plot was revealed. Pheidon ascisted the Pisataps to expel the Elean superintendents of the Olymptan games and presided at the festival himself. The Eleans, however, refused to recognize the Olympind or to include it in the register, aod shortly afterwards, with the aid of the Spartans, who are said to have looked upon Pheidon as having ousted them from the headsibip of Greece, defeated Pheidon and were reinstated in the possession of Pisatis and their former privileges. Pheidon is said to have lost his life in a faction fight at Corinth, where the monarchy had recently been overihrown. The affair of the games has an important bearing on his date. Pausanias (vi., 22, 2) defnitely states that Pheidon presided at the festival in the 8th Olympiad (i.e. in 748 B.c.). but in the list of the suitors of Agariste, daughter of Cleisthenes of Sicyon, given by Herodotus, there occurs the mame of Leocedes (Lacedas), son of Pheidon'of Argos. According to this, Pheidon must have fourished during the early part of the 6 th ceptury. It has therefore been assumed that Herodotus confused two Pheidons, both kings of Argos. Ihe suggested substitution in the text of Pausanias of the 28 th lor the Sth Olympiad (i.c. 668 instend of 748) would not bring it into agreement with Herodotus, for etrent then Pheidon's son could not have been a suitor in 570 for the hand of Agariste. But the story of Agariste's wooing rescmbles romance and has slight chronological value. On the whole, modern authorities assign Pheidon to the first balf of the 7 th century. Herodotus further states that Pheidan established a system of weights and measures throughout Pcloponncsus, to which Ephorus and the Parian Chronicle add that he was the first to coin silver money, and that his mint was at degius But according to the better authority of Herodotus (i. 94) and Xenophanes of Colophon, the Lydians were the first coiners of money at the beginning of the 7 th century. and, further, the oldest known Aeginetan coins are of later date than Pheidon. Hence, ualuss a later Pheidon is assumed, the statement of Ephorus must be considered unhistorical. No such difficulty occurs in regard to the weigits and measures; it is generally agreed that a system was alrendy in existence in the time of Pbeidon, into which he introduced certain changes A passage in the Aristotclian Constitulion of Altows (\mathbf{x}_{-}2) states that the measures used before the Solonian period of reform were called "Pheidonian."
Sce Herodotus vi. 177; Epborus in Strabo viii. 358, 376: Phutarch Ameloriae narrationes, 2: Llarmor pariu!p, ep 30; Pollux ix. 83; Nicolaus Damascenus, frag. 41 (in C. W. Mallers Frof. kist. grae cormm, iti.): G. Grote, History of Greece, pt. ii. ch. 4: B. V. Head Historia Numorum (1887); F. Hultsch, Griechische and rbmiscio Metrologic (1882): G. Rawlinson'a Berodetws, appendix, bl i.: note 8. On the question of Pheidon's date, exe J. B. Bury, History of Greece, ii: ${ }^{68}$ (1902): I. P. Mahafiy, Problemes in Greak History. ch. 3 (1897): \}. C. Frazer's note on Pausanias vi. 22, 2; and esperi: ally C. Busolt, Grieckische Gexchichte (znd ed. 1893), ch. 融 12. C. Tricter, Pheidon woa Arges (Hanover, 1880), apd J. Aeloch. Rheinisches Musewm, xlv. 595 (1890), isvour a later date, about 58.

PHETPS, AUSTII ($1820-1890$), American Congregational minister and educationalist, was born on the 7 th of Janany 1820 at West Brookfield, Massachusetts, son of Eliakim Phelps,' a clergyman, who, during the boyhood of his son was principal of a girls' school in Pittsfield, Massachusetts, and later pastor of a Presbyterian church in Geneva, New York, The son studied at Hobart College in 1835-1835, then at Amberst for a year, and in 1837 graduated at the university of Pennsylvania. He studied theology at Union Theological Seminary, at the Yake Divinity School, and at Andover, and was licensed to preach in 1840 by the Third Presbytery of Philadelphin. He was pastor of the Pine Street (Congregetional) Church in Bostom in i842-1848, and in $1848-1879$ was professor of sacred rhetoric and homiletics at Andover Theological Seminary, of which be was president from 1869, to 1879, when his failing health forced him to resign. He died on the 13th of October 1890 at Bar Harbor, Maine. His Theory of Preaching (1881) and English
${ }^{1}$ Eliohom Phelpt afterwards lived in Stratlond, Herkimer covnty. New York, where, bis house was "posecesed "and was lows a placo of curious intercst to studentio of "spiritualisen".

Shle tn Public Disrowrse (7883) became standatd textbooks; and personally he was a brilliant preacher. He married in 1842 Elizabeth Stuart ($1815-1852$), eldest daughter of Mioses Stuart, then president of Andover: she was the author of the popular story Smnnyside (185i) and of other books. In 1854 be married her sister, who died only eighteen months later; and in 1858 the married Mary A. Johnson, ol Boston.

With Professors E. A. Park and D. L. Furber he edited Fyymns and Chotry (1860), and with Professor Park and Lowell M1ason The Sebbaft Hiyme Beak (id59). The Still Howr (1859), a sumpary of a series of sermons on prayer. is a devocional clasic. His other worka are: The New Birth (1867). portraying conversion (in some instances) as a eradual change; Sabbah Hours (1874): Studies of she OIf Testament (1878): NTen and Books (1882): Ny Portfolic (1882): 1 Iy Shudy (1885); and MY Notr Bouk (1890).
See A ustion Phelgr: A A cmoir (New York, 1891). by his daughter, Elizabeth Stuart PhelpeiWard.
PHETPK EDTARD JOHM ($1822-1900$), American lawyer and diplomat, was born on the isth of July 1822 at Middlebury, Vemont. He graduated from Middiebury College in 1840 . was a schoolmaster for a year in Virginia, and was admitted to the bar in 2843. He began practice at Niddlebury, but in 1845 removed to Burlington, Vermont. From 1851 to 1853 be was second comptroller of the United Suates Treasury. apd then practised law in New York City until 1857, when he recurned to Burlington. Becoming a Democrat alser the Whig party had ceased to exist, he was debarred from a polinical career in his own state, where his party was in the minority, but he served in the seate constitutional convemion in 5879 , and in r880 was the Democratic candidate for governor of his state. He was one of the founders of the American Bar Association, and was its president in ${ }^{1880-1881}$. From 188ı until hus death he was Kent Profersor of Law in Yale Uaiversity. He was minister to Great Britain from 1885 to $\mathbf{1 8 8 9}$, and in 1893 served as senior counsel lor the United States belore the international tribunal at Paris to adjust she Bering Sea controversy His closing argument, requiring eloven days for its delivery. was an exhatustive review of the case. Phelps lectured on medical jurisprudence at the university of Vermont in 1881 1883, and od constitutional Law at Bohon University in 18821883, and delivered numerons addresses, among them that on "The United States Supreme Court and the Soveraignty of the People" at the contennial celebration of the Federal Judiciary in 1800 and an oration at the dedication of the Benrington Battle Monument, unveiled in 1801 at che centennal of Vermont's admission to the Union. In politics Phclps was alvags Conserative, opposing the anti-slavery movement before 1860, the freo-siver movement in $\mathbf{1 8 9 6}$, when he supported the Republican presidential ticket. and after 1808 becomang an andent "anti-expiansionist." He died al New Haven. Connecticut, on the oth of Dlarch 1900.
See the Orations and Essays of Edroard John Pleftss edited hy J. G. MeCullough, with a Mrmors by fohn WV. Stewart (Xew. York. 1901): and "Li'c and Public Services of the Hon. Edurard J Phelos." by Matthew H Buckham. in Proceedtugs of the Vermont Historical Sociery (Burlington, Vi, 1gos).

PHELPS. SAMUEL (i8a4-1878). English actor and manager, was born at Devonport on the a 3 th of February 1 \$oy. He was early thrown upos his own resources, and worked in vanous newspaper offices. Shortly after his marriage in i\$26 to Sarah Cooper (d 2867), he accepted a theatrical engagement in the York circuit at eighteen shillings a week, and afterwards appeared in south of England towns in prominent tragic roles. attracting sufficient attention to be spoken of as a rival to Kean. He made his first London appearance on the 28 th of August 18_{37} as Shylock at the Haymarket. After a short season there be was with Nacready for about six years at Covent Garden, the Haymarket and Drury Lane successively In 1844 be became co-lessee of Sadter's Wells Theatre with Thomas L. Greenwond and Mrs Afary Amelia Warner (s8o41854). Creenwood supplied the husiness capacity. Phelps was the theatrical manager, and Mrs Warner leading lady In this position Phelps remained for iwenty years, during which time be raised the Sadler's Wells house to an important position,
and Limself appeared in a very extensive and vetied repertory. Thirty-four of Shakespeare's plays were presented there under his direction, with great educational effect, both on public and players. In 186ı Greenwood retired from the partaership, and Phelps, umable to cope with the husinest of management, retired from it in the following year. For the next fifteen years he acted under various managements, achieving considerable success in some of Halliday's dramatic versions of Scott's novels, such as The Forlunes of Nfged and Inanioo. His last appearance was in $i 878$ as Wolsey in Hemry VIII., and be died on the 6th of November 1878. He was a sound and capable actor, rather than one of any marked genius; and, in spite of his predilection for tragedy, was most successful in such cheracters of comedy as called for dry humour. Perhape Sir Pertirax Macsycophant in Chartes Macilin's The Man a/ the World was his finest impersonation. He published an annotated edition of Shakespeare's plays (2 vok., 1852-1854).

PHELYPLAUX, a French family of Bjesois. Its two principal branches were those of the siegneurs of Herbault, La Vrilliére and Saint Florentin, and of the counts of Pontchartrain and Maurepas. Reimond Phelypeaux, seigaeur of Herbault and La Villitre (d. 8629), was treasurer of the Epargne in 1599 , and became secretary of state in 1611. His son Louis succeeded him in this bitter office, and died in 1681. Bahhazar Phelypenux, marquis de Chitenuneuf (d. 1700), and Louis. marquis de La Vrillitre (d. 1725), respectively son and grandson of Louis, were also secretaries of state. Louis Phelypetux (17051777), count of Saint Florentin and afterwards duke of La Vrilliere (1770), succeeded his father as secretary of stave; became minister of the king's household in 17.99, n ministef of state in 1751, and dischatged the functions of minister of loreign affairs on the disgrace of Choiseul (1770). He incursed great unpopularity by his abuse of lettres de carifet, and had to resign in 1775- Raimond Balthazar Phelypeanx, seigmeur du Verger, a member of the La Vrilliere branch, was sent as ambassador to Savoy in 1700 , where he discovertd the intrigues of the duke of Savoy, Victor Amadeus II., against France; and when war was dechared he was kept a close prisoaer by the duke (1703-1704). At the time of his death (1713) he was governorgeneral in the West Indies. The branch of PontchartrinMaurepas was founded by Paul Phelypeaux (1569-1621), broiher of the first-mentioned Raimond; be became secretary of state in roro.

PHENACETTN. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \cdot \mathrm{C}_{4} \mathrm{H}_{5} \cdot \mathrm{NHCOCH}_{3}$ (para-acetamino phenetol). a drug preparod by acetylating parz-phenetidin, or by heating para-acetylaminophenot and polasstum ethyl sulphate with alcoholic sode to $150^{\circ} \mathrm{C}$. Pora-phenetldin is prepared by treating the sodium salt of para-nitrophenol with ethyl iodide, and reducing the nitrophenctol to para-phemetidin or aminophenetol. The yield may be doubled by diazolizing para-phenetidin. coupling with phenol, ethylating and reducing

$$
\mathrm{ErOC}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \cdot \mathrm{OE} \rightarrow 2 \mathrm{EEO} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NH}_{2}
$$

It crystallizes from water in colouriess plates, melting at $135^{\circ} \mathrm{C}$. It is soluble in about 7° parts of hot and in about 2400 parts of cold water.

Several compounds related to phentectin have been introduced into medicine. Triphenin is propylphenetidin; lectophemin is lactylphenetidin: pyrantin is para-ethoxyphenyl succinimide. EiO $\left.\cdot \mathrm{C}_{4} \mathrm{H}_{4} \cdot \mathrm{NiCO} \cdot \mathrm{CH}_{2}\right]_{2}$: salophen or saliphenin is salicylpherietidin; amygdophenin is mandelylphenetidin. In addition, several other derivatives have been sugested which have a greater solubility than phenaretin, e.g. phesin, which is the sodium salt of pheracetia sulphonic acid, apolyain and citrophen (citrophenin), which are citric acid derivatives of para-phene: tidin. \&c.
Phenacetin is contained in both the British and United Statea pharmacopoeia. in the latter under the name of acetphenetidia. The dose is 5 to 10 grss given in cachete or in suspethion. Whew the drag is carelemly unade it may contain imapurities, producing considerable isritation of the kidneys. The physiological action of phemacetin consista in a sedative action on the sensory tracts of the spinal cord, and a depressint action on the heart, where it
tends to paralyse the action of the cardiac muscie. Upon the bodily heat it exercises a marked effect, decreasing the action of the heat-producing centre as well as increasing the dissipation of heat, and thus causing a marked fall in semperavure. In soxic doses the blood becomes dark and blackish from the lormation of methemoglobin, and the urine is changed in colour from the passage ol ateered blood. The chied therapeutic use of phenacetin is as an antineurajgic. and it is of service in migraine. rheumatism of the arb-acute type, intercostal neuralgia and locomotor ataria,

PHEMACITE, mineral consisting of beryllium orthosilicate, $\mathrm{Be}_{3} \mathrm{SiO}_{4}$ occasionally used as a gem-stone. It occurs as isolated crystals, which are rhombohedral with parallel-faced hemithedrism, and are eitber lenticular or prismatic in hahit: the fenticular habit is determined by the development of laces of several obtuse rhombohedra and the absence of prism faces (the accom-
 panying bgure is a plan of such a crystal viewed along the sriad, or principal, axis). There is no cleavage, and the - fracture is conchoidal. The hardness is high being 7t-8; the specific gravity is 2.98 . The crystals are sometimes perfectly colourless and transparent, hut more often they are greyish or yellowish and only translucent; occasionally they are pale rose-red. In general appearance the mineral is not unlike quarta, for which indeed It had been mistaken; on this account it was named, by N. Nordenskiold in 1833, from Gr. tiva ξ (a deceiver).

Phenacite has long been known from the emerald and chrysoberyl. mine on the Takovaya stream, near Ekiteriaburg in the Urals, where large crystals occur in mica-schist. It is also found with topaz and amazon-stone in the granite of the Ilmen mountains in the southern Urals and of the Pike's Peak ragion in Colorado. Large crystals of prismatic habit have-more recently been found in a felspar quarry at Krageró in Norway. Framont near Schirmeck in Alsace is another well -known locality. Still larger crystals, measuring 12 in. in diameter and weighing 28 th , have been found at Grcenwood in Maioe, but these are pseudomorphs of quartz after phenacite.

For gem purposes the stone is cut in the brilliant form, of which there are two fine examples, weighing 43 and 34 carals, in the British Museuna. The indices of refraction (oo $=1-6540$, ($=1.6527$) are higher than those of quarts, beryl or topaz; a laceted phenscite is consequently mather beilliant and may sometimes be mistaken for diamond.
(L. I.S.)

PHENACODUS, one of the earlicst and most primitive of the ungulate mammals, typilying the family Pheracodontidae and the sub-order Condylarthra. The typical Phenacodus primaemes, of the Lower,or Wasatch Eocenc of North America, was a rclatively small ungulatci of slight build, with straight limbs each terminating in five complete toes, and walking in the digitigrade lashion of the anodern tapir. The middle toe was the largest, and. the weight of the body was mainly supported on this and the two adjoining digits, which appear to bave been encased in bools, thus foreshadowing the tridactyle type common in perissodactyle and certain extinct groups of ungulates. The skull was smal. with proportionately minute brain; and the arched back, strong lumbar vertebraes long and powerful tail, and comparatively feeble fore-quarters all proclaim kinship with the primitive creodont Carnivora (see Creodonta), from which Phonacodur and its allics, and througb them the more typical Ungulata, are probably derived. All the boses of the limbs are separate, and those of the carpus and tarsus do not alternate; that is to say, each one in the upper row is placed immediately above the corresponding one in the row below. The full series of forty-lour teeth was developed; and the upper molars were short-crowned, or brachyodont, with six low cones, two tuternal, two Intermediate and two external, so that they were of the typical primitive bunodonl stracture. In habits the anipal was cursorial and herbivorous, or possibly carnivorous.

In the Puerco, or Lowest Eocese of North America the plece of the above species was taken by Euprologonia puercensis, an animal only half the size of Phenocodus primactus, with the tetminal joints of the limbs intermediate between hools and claws, and the first and fifth toes taking their full share in the support of the weight of the body. These two genera may be regarded as forming the earliest stages in the evolution of the horse, coming below H yracotherium (see Equidar).
As ancestors of the Artiodactyle section of the Ungulata, we may look to forms more or less closely related to the North American Lower Eocene genera Mioclarnass and Pantolestes, respectively typifying the families Miorlocnidoe and Pontolestidac. They were Gve-toed, bunodont Condylarthra, with a decided approximation to the periseodactyle type in the structure of the feet. A third type of Condylaritra from the North American Lower Eocene is represented by the family Meniscotherifilae, including the genere Mendrodhevinm and \boldsymbol{H} pracops. These, in is suggested, may havo been related to the alacestral Hyracoidea. Teeth and jaws probably referable to the Condylarlhra have been oblained in European early Tertiary formations. All Ungulata probably originated from Condylarthra.
Sce H. F. Osborn. Skelcton of Phencoodxs primocyws comparison with Emprotogonia, Bull Amer. Alus in 159.
(R L-)
PHENANTHRENB, $\mathrm{C}_{1} \mathrm{H}_{3}$, a bydrocarbon someric vith anthracene, with which it oceurs in the fraction of the coal tar disinilate boiling between $270^{\circ}-400^{\circ} \mathrm{C}$. It may be separated from the antbracene oil by repeated fractional distiliation, followed by fractional erystallization from alcobol \{anthracene being the less soluble), and finally purified by oxidizing any residual anthracene with potassium bichrothate and sulphuric acid (R. Anschutz and G. Schultz, Ann., 1879, 196, p. 35); or the two bydrocarbons may be separated by carbon bisulphide, in which anthracene is insoluble. It is formed when the vaporrs of toluenc, stilbene, dibenzyl, ortho-ditodyl, or coumaroue and benzene are passed through a red-hot tube; by distillins morphine with zinc dust; and, with anthracene, by the action of sodium on ortho-brombenzyl bromide (C. L. Jackson and J. F. White, Amer. Chem. Jowr., i880, 2, p. 391). It crystallizen in cotourtess plates or needles, which melt at $99^{\circ} \mathrm{C}$. Its solutions in alcohol and echer have a laine bluc fluorescence. When heated $10250^{\circ} \mathrm{C}$. with red phosphorus and hydriodic acid k gives a hydride $\mathrm{C}_{14} \mathrm{H}_{\text {st }}$. It is nitrated by nitric acid and sulphonated by sulphuric acid. With picric acid it forms a sparindy soluble picrate, which melts at $145^{\circ} \mathrm{C}$. On the condition of phenanthrene in alcoholic solution see R. Behrend, Zeit. phys. Chem., 1892, 9, p. 405; 10, p. 265. Chromic acid oxidizea phenanthrene, first $t 0$ phenanthrene-quinone, and then to diphenic acid, $\mathrm{HO}_{2} \mathrm{C}-\mathrm{C}_{4} \mathrm{H}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{4}-\mathrm{CO}_{3} \mathrm{H}_{4}$
Phemanthrene quinome. [C. $\mathrm{H}_{\mathrm{d}_{2}} \mathrm{CO}_{\mathrm{h}}$. crystallises in orange meedilea which melt at $198^{\circ} \mathrm{C}$. It possesses the characterictic properties of a diketane. lorming crystalline derivatives with sodium bisulphite and a dioxime with hydroxylamine. It. is non-volatile in steam, and is odourkse. Sulphurous acid reduces it to the cortesponding dihydroxy compound. It combines with ortho-diamines, in the presence of acctic acid, to lorm phemazenes.

Oa the constitution of phenanthrene see Crismistay: forganic.
PHENAZINE (Azophenylene), $\mathrm{C}_{12} \mathrm{~F}_{4} \mathrm{~N}_{2}$, in organic chemistry, the parent substance of many dyestuff, e.g. the eurhodines, toluylenc red, indulines and safranines. It is a dibenzoparadiazine having the formula given below. It may be obeained by distilling barium azobenzoate (A. Claus, Ber., 1873, 6, p. 723); hy passing aniline vapour over lead oxide, or by the oxidation of dihydrophenazine, which is prepared hy beating pyrocatechin with orthophenylene diamine (C. Ris, Ber., 1886, 19, P. 2206). It is also formed when ortho-aminodipheaylamine is distilled over lead peroxide (O. Fischer and E. Hepp). It erystallizes in yellow needles which melt at $171^{\circ} \mathrm{C}$., and are only sparingly solubie in alcohol. Sulphuric acid dissolves It, forming a deepred solution. The more complex phenazines, such as the naphihophenazines, naphthazines and naphthotolazines, may be prepared by condensing ortho-diamines with ortho-quinones (O. Hinsbers, Ann., 1887, 237; p. 340); by the oxidation of an ortho-diamine in the presence of a naphthol (O. Witt), and by
the decompopition of ortho-anilido-(toluidido- 8ce.)-apo compounds with dilute acids. If alkyl or aryl-artho-diamines be used aronium baces are obtained. The azines are mostly yellow in colour, distil unchanged and are stable to oxidants They add an alkyliodides readily, forming alkyl azonium salts.

By the entrance of amino or hydroxyl groupe into the molecule dyestuffs are formed. The mono-amino derivetives or exriodises are obtained when the arylmonamines are condensed with ortho amino to compounds; by condensing quinone dichlorimide or para-nitrosodimethyl aniline with monamines containing a free para position, or by oxidizing ortho-hydroxydiaminodiphenslamines (R. Nietzki, Ber., 1895, 28, p. 2976; O. Fischer. ibid., 1896, 29, p. 1874). They are yellowish-red solids, which behave as weak bases, iweir ealts undergoing hydrolytic dissociation in aqueous molution. When heated with concentrated hydrochioric acd the amino group is replaced by the hydroxyl groap and the phenolic earhodols are produced.
The symmetrical dyminophenazine is the parent substance of the important dyestuf toluylene red or dimethyldiaminotoluphenazine It is obtained by the oxidation of orthophenylene diamine with ferric chloride; when a mixture of para-a minodimethylaniline and meta-toluylenediamine is oxidized in the cold, toluylene blue, as indanine, being formed as an intermediate product and passing into the red when boiled, and also by the oxdation of dimethyfparaphesylene diamine with metatoluytene diamine. It crystallizes in orange-red veedles and its alcoholic solution flnoresces stroagly. It dyes silk and mordanted corton a fime scarlet. It is known commercially as neubral red. For the phemazonium alts see Saframine
Phenazone is an isomer of phenazine, to which it beara the same selation that phenanthrene bears to anthracene. It is formed by reducing diortho-dinitrodipheayl with sodium amalgam and methyl alcohol, or by heating diphenylene-ortho-dihydrazine with hydrochlonic acid to 150° C. It crystallizes in needles which melt at 156° C. Potassium permanganate oxidizes it to pyridazine tetracartoxylic acid.

Fiztolpittialisin, in organic chemistry, a compoond derived from phthalophenone, or diphenyl phthalide (formula I.), the anhydride of triphenyl-carbinot-ortho-carborylic acid. which is obtained by condensing phithalyl chloride with bemzene in the presence of aluminium chloride. The phthaleins are formed from this anhydride by the entrance of hydroxyl or moino groups into the two phenyl residues, and are prepared by condensing phenols with phthalic anhydride, pherol itself giving rise to phenolphthalein (formule II.) together with a small quantity of fluorane (formula III.), whilst resorcin under similar conditions yields fluorescein (q-a.). The phthaleins on reduction yield phthalines, which are derivatives of triphenylmethane carboxylic acid; these reduction products are colourless and may be regarded as the leuco-compounds of the phthaleins, thus phenolphthalein itself gives pheriolphthaline (formula IV.). Dehydrating agents usually convert the phenolphthalines into anchraquinone derivatives.

1. Diphenylphthalide, 11. Phenolphthalein, III. Fhorane.

IV. Phenolphthaline.

Phenolphthalein is obtained when phenol and phthalic anhydride are heated with concentrated sulphuric acid. It crystallizes in colourless crusts and is nearly insoluble in water, but dissolves in dilute molutions of the caustic alkalis with a fine red colonr, being reprecipitated from these solutions by the addition of mineral acid. It dissolves in concentrated caustic alicalis to a colourless solution which probably contains salts of a non-quinonoid character. This difference in behaviour has led to considerable discussion (see H. Meyer, Monals., 189, 20, p. 337 ; R. Meyer, Ber., 1903) 36, p. 2949: A. G. Perkin and Green, Jowr. Chem. Soc., 1904, p. 308). On fucion with caustic alkali, phenolphthalein yields benzoic acid and para-dihydroxybenzophenone, which shows that in the original condensation the phthalic acid residue has taken the para poeition to the hydroxyl groups of the phenol.
Fluorane is a product of the condeneation of the phthalic acid revidue in the ortho position to the hydroxyl groups of the phenol,
anhydride formation also taking place between these fydroxyd groups It dissolves in concentrated sulphuric acid with a yellowishgreen fuorescence. The rhodamines, wich are closely pelated to the phthaleins, are formed by the condonmation of the allyl metaanmidophemole with phthalic anthydride in the prosence of anlphuric acid. Their salts are fine red dyes.
 to appear), in ovdinary language a thing, process, oveat, tic., observed by the sensea. Thus the rising of the sen, a thunderstorm, an earthquake are natural "phenomena." From thin springe the incorrect colloquial sense, something out of the common, an event which especialiy strikes the attention; hence such phrases as "phemomenal "activity. In Greet philomophy phenomena are the changing objects of the senses as oppoled to essences (nt atra) which are ane and permanent, and are therefere regarded in being more real, the objects of remson rather than of seases which are " had witnesses." In modern philosophy the phemomenon is meither the "thing-in-itself," nor the moumenon (gs.) or object of pare thaught; btht the thing-in-itself as it appears to the mind in sensation (see especially Kant; and Meraprimes). In this tense the subjective character is of prime importance. Among derivative terms are "Phenomenalism" and "Phonomenology:" Phemomenalism is cither (i) the doctrine. that there can be no knowledge except by phesomena, i.e tensegiven data, or (2) the doctrine that all known thinge are phenomem, ice, that theme are no "thingo-inthemselves." "Phenomenology" is the science of phenomena: every special science has a speclat section in which its particular phenomena are described. The term was first used in English in the 3rd edition of the Ency. Brit. in the article "Philosophy" by J. Robison. Kant has a special use of the term for that part of the Melophysic of Nature which considers motion and rest as predicates of a judgment about things.

PHERECRATES, Greek poet of the Old Attic Comedy, was a contemporary of Cratinus, Crates and Aristophanes. At first an actor, he seems to have gained a prize for a play in 438 日.c. The only other ascertained date in his life is 420 , when he produced bis play The Wild Mes. Like Crates, whom he initated, he abandoned personal satire for more general themes, although in some of the fragments of his plays we find him attacking Alcibiades and others. He was especially famed for his inventive imagination, and the elegance and purity of his diction are attested by the epithet dirukioraros (most Attic) applied to him by Athenaeus and the sophist Phrynichus. He was the inventor of a new metre, called after him Pherecratean, which frequently occurs in the choruses of Greek tragedies, and in Horace.
A considerable number of iragments from his 16 (or 13) playa has been preserved, collected in T. Kock, Comicorwm Alticorrim Pragmenka, i. (1880), and A. Mcincle, Poelarnim Comicormm Grapcormm Fragmenta (1855)-
PHERRGYDES OF LEROS, Greek mythographer, f. c. 454 s.c. He is probably identical with Pherecydes of Athens, although the two are distinguished by Suldas (also by I. Lipsius, Qucestiontes logographicae, 1886). He seems to have been born in the lislapd of Leros, and tn have been called an Athenian because he spent the greater part of his life and wrote his great trork there. Of his treatises, On Leros, On Iphigencia, On the Festivols of Dionysws, nothing remains; hut numerous fragments of his genealogies of the gods and heroes, variously called Ioroplar, Feveadoria, Abroxbbes, in ten books, written in the Ionic dialect, have been preserved (see C. W. Moller's Frag. hisl. graec., vol. i. pp. xxiviv., 70). He modified the legends, not with a view to rationalizing them, but rather to adjust them to popular bellefs. He cannot, therefore, be classed with Hecataeus, whose method was far more scientific.
See C. Latke, Pherecydea (dise Gottingen, 1893); W. Christ, Geschichle der triechischen Litleratwr (1898); and specialy H. Bertsch, Pherodydeitciu Studien (1898).

PEERECYDES OP SYROS, Greek philosopher (or rather philosophical theologian), Hourished during the 6th century b.c. He was sometimes reckoned one of the Seven Wise Men, and is said to have been the teacher of Pythagoras. With the possible
exception of Cadmus (q.o.) of Miletus, be wis the first Greck prose-writer. He belonged to the circle of Peisistratus at Achens, and was the founder of an Orphic community. He is characterized as "one of the carliest'representatives of a hall-critical, half-credulous eclecticism " (Gomperz). He was credited with having originated the doctrine of metempsychocis (q.r.), whilo Cicero and Augustine assert that he was the first to teach the immortality of the soul. Of his astronomical sludies he left a proof in the "heliotropion," a cave at Syros which served to determine the annual turning.point of the sun, like the grotto of Posillipo (Posilipo, Posilippo) at Naples, and was one of the sights of the island.

In his cosmogonic treatise on mature and the gods, cailed Ilerthuxos (Preller's correction of Suldas, who has irnderxors) from the five elementary or original principles (aether, fire, air, water, earth; Gomperz sabstitates smoke and darkness for aether and earth), he enupiated a system in which science, allegory and mythology were blended. In the beginning were Chronos, the principle of time; Zeus (Zas), the principle of Hife; and Chthonie, tho earth goddess. Chronos begat fire, air and water, and from thene three sprang numerows other gods. Smoke and dartwess appear in a liter tradition. A fragment of the "sacred marriage" of Zas and Chthonit mist found on an Egyptian payyms at the end of the rgth centary.
See H. Diels Fragmente der Vorsolnatilier (1903): also O. Kern, Da Orpincin Epimenidis, Pherecydit thengmiis (I888); D. Speliotopoulos, In 2 treudton rois Ewelow (Aibeas, 18go); T. Gompera, Crect Thiakers (Eng, trans.), i. 85: B. P. Grenfell, New Classical Fragmends (1897): H. Weil, Eumdet swr lantiquit grecque (tgoo).

Phigalia, or Pengaleja (\$tydica or \$ryadia; mod. Paulisa), in ancient Greek city in the south-west angle of Arcadia, situated on an elevated rocky site, among some of the highest mountains in the Peloponpesus-the most conspicuous belng Mit Cotylium and Mt Elasum; the identification of the latter is uncertain.

In 659 B.c. Phigalia was taken by the Lacedaemonians, but soou after recovered its independence by the help of the Orasthasians. During the struggle between Achacans and Aetolians in 221 B.C. it was held by Dorimachus, who left it on the approach of Philip V. of Macedon. In common with the other cities of Arcadia, it appears from Strabo to have fallen into utter decay under the Roman rule. Several curious cults were preserved near Phigalia, including that of the fishtailed goddess Eurynome and the Black Demeter with a horse's head, whose image was renewed hy Onatas. Notices of it in Greek history are rare and scanty. Though its existing ruins and the description of Pausanias show it to have been a place of considerable strength and importance, no autonomous coins of Phigalia are known. Nothing remains above ground of the tesoples of Artemis or Dionysus and the numerous statues and other works of art which existed at the time of Pausanias's visit, about A.D. 170. A great part of the city well, builk in fine Hellenic masonry, partly polygonal and partly isodomous, and a large square central fortress with a circular projecting tower, are the only remains now traceable-at least without the aid of excavation. The walls, once nearly $a \mathrm{~m}$. in circuit, are strongly placed on rocks, which slope down to the little river Neda.

One very important monument still exists in a fairly perfect state; this is a temple dedicated to Apollo Epicurius (the Preserver), built, not at Phigalia itself, but at Bassac, 5 or 6 m . away, on the slope of Mt Cotylium; it commemorates the aid rendered by Apollo in stopping a plague which in the sth century s.c. was devastating Phigalia. This temple is mentioned by Pausanias (viii. 41) as being (next to that of Tegea) the finest in the Peloponnesus, "from the beauty of its stone and the symmetry of its proportions." It was designed by Ictinus, who, with Callicrates, was joint architect of the Parthenon at Athens. Though visited by Chandler, Dodwell, Gell, and other English travellers, the temple was meither explored mor measured till 1811-1812, when C. R. Cockerell and tome other archacologists spent several months in making exeavations there. After mearly fifty years' delay, Prolessor Cockercll published the resules of these labours, as well as of his previous work at Aegina, in Tamples of Aegina and Bassae (1860), one of the most careful
and beautifully illustrated archaeological works produced. Tha labours of Cockerell and his companions were richly revarded; not only were sufficient remains of the architectural features discovered to show clearly the whole deaign, but the internal sculptured friese of the cella was found almost perfect. This and other fragments of its sculpture are now in the British Museum. The colonnade of the temple has been recently restored by the Greck authorities.
The figure shows the plan of the temple. which is of the Doric order, but has an interaal arrangement of itt cella nolike that of any other known temple. It stands on an elevated and partly artificial plateau, which commands an extensive view of the cak-clad mountaine of Arcadia, reaching away to the blue waters of the Meseenian Gulf. Unlike other Doric temples: which usually stand cast and weat, this is placed north and south; but it has a side entrance on the cast. It is thexantyle, with afteen columnt on its Clanks; thirsy-four out of the thirty-eight columpe of the perisyle are atill standing, with the greater part of their architrave, but the rest of the entablature and both pedimente have fallea, topether with the greater part of the internal columns of the cella. It will be sees from the plan that thene are very strangely placed, apparently without symmetry. as regards the interior, though they are set regularly opponite the voids in the peristyle.
With the exception of one at the wouth end, which is Corinthian, the internal columns are of the lonic order, and are engaged with the cella. wall, forming a series of recesses, which may have been designed to contain statuch. Another peculiarity of this interior is that theme columns reach to the top of the cella in one order, not in two ranges of columns, one over the other, $=$ was ethe umal Doric fashion. There inner columas carried an Ionis entablature, of which the fricze now

Plan of the Tempie at Basse. in the British Museum Cormed a part. The pediments and external metopes of the periosyle appear to have contained no aculpture, bett the metopes wiution the permatya on the exterior of the cella had sculpeured sahjectes; oaly a fow fragments of thete were, however, discovered. The position occupied by the great statue of Apollo is a difficult problem. Cockerch. with much probability, places it in the wouthern portion of the cells, facing the eastern wide door, so that ti mould be lighted up by the rays of the rising mun. The main entrance is at the northerm end through the pronaos, once deiended by a door in the end of the cella and a metal screen, ni which traces were found on the two columns of the pronaos. There was no door between the posticum and the cella. The general proportions of the fronts resemble those of the Theseum at Athens: excrpt that the entablature is less mantive, the columna thicker. and the diminution less-all propartionally apeaking. In plan the terople is long in proportion to its width-measuring, on tbe top of the stylobace, 125 ft. 7 in. by 48 ft . 2 in., while the Thereum (bailt probably half a century earlicr) is about $104 \mathrm{ft}^{2} 2 \mathrm{in}$. by 43 ft . 2 in .
The material of which the teuple is buile is a five grey himemone (once covered with painted zucco), except the roof-tiles, the capitals of the cella columns, the architraves, the lacruaria (ocilings) of the posticum and pronaos, and the scupture, all of which are of white maribe. The roof-tiles, apecially noticed by Pausanias, are yemarkable for their size. workmanship, and the beauty of the Parian marble of which they are made. They measure 2 ft . I in. by 3 ft .6 in ., and are fitted toget her in the most careful and Ingenious manner. Unlike those of the Parthenon and the temple of Acgina, the depol or " jointtiles" are worked out of the same piece of marble as the gat ones, for the sake of more perfect fitting and greater security agaiest wet.
Traces of painting on various anchitectural members were found by Cockerell, but they were too much faded for the colours to be distinguished. The destgns are the nsual Greek patterns-the fret, the honcymuckie, and the egy and dart.
The sculpture ls of the preatest interent, as being deagned to decorate one of the finest buildingt in the Peloponnesus in the latter halt of the Sth century b.c.: see Bril. Mus. Caialogue of Sculptare, wal. i
The frieze. now in the British Museum, is complete ; it is nearly 101 ft . long by 2 It. high, carved in relief on twenty-three slabs of marble 41 to 5 In. thick. The unbjects are the battle of the Lapithme and the Centaurn, and that betwien the Amasons and the Crecian, the
two favourrite aubjects in Graek plastic art of the best period. They are designed with wonderful fertility of invention, and life-bice realion and spirit; the composition is arranged so as to form a meries of ditgonal lines or sigzegs fif, thus forming a pleasing contrast to the unbroken borizontal lines of the cornice and architrave The various groups are skilfully united together by some dominant line or action, so that the whole subject form one unbroken composition.
The gelief is very high, more than 3 in in the moot alibut parth, and the whole treatment is quite opposite to that of the Parthenon frieze, which is a very superior work of art to that at Bassae. Many of the Eimbs are quite detached from the ground; the drill has been largely used to emphasize certain shodows, and in many places, for rant of due calculation, the eculptor has had to cut into the fint background behind the figures. From this it would appear that no finished clay-model was prepared, but that the relief was aculptured with only the help of a drawing. The point of sight, more than 20 ft . below the botom of the friexs, and the direction in which the fight fell on it have evidently been carefully considered. Many parts, invisible from below, are left comparatively rough. The workmanship throughout is unequal, and the hands of several sculptors can be detected. On the whole, the execution is not equal to the beauty of the design, and the whole friexe is somewhat marred by an evident derire to produce the maximam of effect with the least possible amount of habour-very different from the almost gem-like finish of the Parthenon frieze. Even the design is inferior to the Athenian one; most of the figuren are ungracefolly short in their proportions. and there is a great want of refined beavity in many of the femple hands and faces. It is in the fire of its varied action and its subtlety of expression that this eculpture moot excels. The boble movements of the heroic Greeks form a striking contrast to the leminine weakness of the wounded Amazons, or the strugejes with teeth and hoofs of the brutish Centaurs; the group of Apollo apd Artemis in their chariot is full of grace and dignifed power. The marble in which this friese is eculptured is somewhat coarse and crystalline; the slibs appear not to have been built into their place bat fixed afterwards, with the aid of two bronse bolts driven through the face of each.

Of the metopen, which were 2 ft. 8 in. square, only one exista pearly complete, with eleven fragments: the one almost perfect has a relief of a nude warrior, with loating drapery, overcoming a long-haired bearded man, who tinks vanquished at his feet. The relief of these is rather less than that of the frieze figures, and the work is nobler in character and superior in exacution.

In addition to the works mentioned in the text, see Leake, Morea (i. 490 and in. 3I9; Curtius, Peloponnesos. i. 319: Roes, Reisen int Pelopennesas; Ssackelberf, Der A pollo-Temped wis Bassae (1826); Lenormant, Bas-reliefs ds Parthewan et de Phigalie (1834); and Histories of Sculpture mentioned under Grese ART.
(I.H. M.; E. GR.)

PHILADEIPRIA, the Greck name (1) of a city in Palestine in the fand of Ammon (see Aymontres), and (2) of a city so-called in honour of Altalus II. of Pergamum, the modern Ala-Shehr (q-w).

PEIIMDAPRIA, the third city in population in the United States, the chief city of Pennsylvania, and a port of entry, co-extensive with Philadelphia county, extending W. from the Delaware river beyond the Schuylkill River, and from below the oonfuence of the Delawase and Schuylkill rivers N.E. about 23 m . along the Delaware tiver and Poquessing Creek. Independence Hall, which is a few squares east by south of the city hall, is in $39^{\circ} 56^{\prime} 57^{\circ} 5^{\circ} \mathrm{N}$. and $75^{\circ} 8^{\prime} 54 \cdot 75^{\circ} \mathrm{W}$. The port is abont 102 m . from the Atlantic Ocean, and the city hall is 90 m . by rail S.S.W. of New Yort and 135 mi . N.E. of Washington. The city has an area of 132-7 sq. m. At the southern extremity are lowlands protected by dikes from the tide; the business centre between the rivers is about 40 ft . higher but level; the district west of the Schaylkill is generally rolling; and in the upper district the sarface rises from the Delaware toward the northwest until in the extremie north-west is a picturesque district overlooking Wissahickon Crect from hills erceeding 400 ft . is treight.

Population.-When the first United States census was taken, In 1790, Philadelphia was the second largest city in the Union; and had a population of 28,522 . It held this rank until 1830 , when it was enceeded in size by Baltimore as well as by New York. In 1850 it was smaller also than Boston; but in 1854 the Consolidation Act extended its boundaries so as to incuude all Philadelphia contrity and in 1860 the city had figen again to second rank. This rank it held until 1890 when, although its population had grown to $1,046,964$, it was 50,000 less than that of Chicago. In 1900, witb popelation of 1,993679 - it
was still farther behind both Nev York and Chicago. In rgoo, of the total popniacion, 998,357 , or 77.18%, were native-born, as against only 63% native-born in New York and 65.43% mative-born in Chicago, Of Philadelphia's native-born white population, bowever, 414,093 , or $44 \cdot 24 \%$, were of loreignborn parentage. The foreign-born population included 98,427 born in Ireland, 71,319 born in Germany, 36.759 born in England, 28,95 I born in Russia (largely Hebrews), $\mathbf{1 7 , 8 3 0}$ born in Italy, 8479 born in Scotland and 5154 born in Austria; and the coloured consisted of 62,613 negroes, 1165 Chipese, 334 Indians and 12 Japanese. In igio the popylation was $1,549,008$,

Streats.-With the exception of a limited number of diagonal thoroughfares and of streets laid out in outlying districts in conformity with the natural contour of the ground the plan of the city is regular, Market Street-which Penn called High Street-is the principal thoroughfare east and west, Braad Street. the principal thoroughfare north and south, and these streets intersect at right angles at City Hall Square in the business centre. The strcets parallel with Broad are numbered from First or Front Street west Irom the Delaware River to Sixty-Third Street, taking the prefix "North" north of Market Street and the prefix "South " south of it; the streets parallel with Market are named mostly from trees and from the governors and counties of Pennsylvania.

The wholesale district is centred at the east end of Market Street' near the Delaware tiver. The best retail shops are farther west on the south side of Chestnut Street and on Market and Arch streets. Most of the leading bonks and trust'companics are on Chestnut Sereet and on Third Street bet wreen Chestnut and Walnut streets. Several of the larger affice buildings and the stations of the Pennsyivania and the Philadelphia \& Reading railwaysare in the vicinity of the city hall; here too, are the Baldwin Locomotive Works. The large textile mills, the great coal wharves and the Cramp Ship-Yards are to the north-east along the Delaware, and in districts west of these are the leading manufactories of iron and steel. There are large sugar refineries in the south-eastern part of the city. Rittenkouse Square, a short distance south-west of the city hall, is the centre of the old aristocratic residential district, and the south side of Walnut Street between Fourteenth and Nineteenth streets is o fashionable parade. There are fine residences on North Broad Street and on some of the streets crossing it, and many beavtiful villas in the picturesgue suburbs of the north-west. The most congested tenements, occupied largely by Italians, Hebrews and negroes, are along the alleys between the rivers and south of Maricet Street, often in the rear of some of the best of the older residences.

The principal structure is the city hall (or "Public Buildings ") one of the largest buildings in the world in ground space (4) acres). It rises 548 ft . to the top of a colossal bronve statue (37 ft. high) of William Penn (by Alexander Calder) sumounting the tower, It accommodates the state and county courts as well as the municipal and-county offices. The loundation stone was laid in August 1872. On its first floor is Joseph A. Bailly's statue of Washington, which was erected in front of Independence Hall in r869. About the Public Buildings are statues of Generals McClellan and Reynolds, President McKinley, and Joseph Leidy and St Gaudens's "Pilgrim." On all sides are great buildings: on the porth the masonic temple (1868-1873); on the south the stately Betz. Building; on the west the enormous Broad Stroet station of the Pennsylvania railway. The Pennsylvania Acadeny of Fine Arts and the Oddfellows' Temple are among other notable buildings in the vicinity. The post office, facing Ninth Street and extending Irom Market Street to Chestnut Street, was opened in 1884; in front is a seated statue of Benjamin Franklin, by John J. Boyle. The mint is at the cornet of Sixteenth and Spring Ganden streets. The custom-hotase, on Chestnut Street, was designed by William Strichand ($1787-1854$), in his day the leading American architect. It was modefed after the Parthenon of Athens, was built for the Second United States Bank, was completed in 1824, and was pat to its proernl use in 1845. Other prominent buthdings of
which Strictiland was the architect are the stock exchange, St Paul's Protestant Episcopal Church, St Stephen's Church, the elmabouse and the United States Naval Asylum. The main building of Girard College (on Girard Avenue, between North 19th and North a5th istreets), of which Thomas Ustick Walter (1804-1887), a pupil of Strickland's, was the architect, is one of the finest specimens of pure Greek architecture in America. Near the Schuylkill river, in West Philadelphia, are the buildings of the university of Pennsylvania. Its free museum of science and art, at South a3rd and Spruce, on the opposite side of the river, was huilt From the designs of Walter Cope, Frank Miles Day and Wilson Eyre, and its north-western part was first opened in 18g9. Tall stee-frame structures, of which the Betr Building, completed in 1893, was the first; have become numerous. The Roman Catholic Cathedral of St Peter and St Paul, east of Logen Square, was begon in 1896 and was cighteen years in building. The Arch Street Methodint Episcopal Church is one of the most handsome churches in the city. The South Memorial Church of the Advocate (1897), on North 18th and Diamond streets, is a reproduction on a smaller seale of Amiens Cathedral.

Perhaps the most famous historical monument in the United States is Indtpendence Han, on Chestnut Street between FIfth and Sirth streets, designed for the state house by Andrew Hamilton (c. 2676-1 741), speaker of the assembly, and was used for that purpose until 1799 . The foundations were laid in 1731 and the main building was ready for occupancy in $\mathbf{1 7 3 5}$, although the entire building was not completed until 175r. The steeple was taken down in 1774 but was restored hy Strickland in 1828, and further restorations of the building to its original condition were effected liter. In the cast room on the first floor of this briilding the second Continental Congress met on the roth of May 1775, George Washington was chosen commander-in-chief of the Continental army on the 15 th of June 1775, and the Declaration of Independence was adopted on the 4th of July 1776. The room contains much of the furniture of those days, and on its walls are portraits of forty-five of the fifty-six signers of the Declaration and a portrait of Washington by Peale. At the bead of the stairway is the famous Liberty bell, which bears the inscription, "Proclaim liberty through all the land unto all the inhabitants thereof " and is supposed (without adequate evidence) to have been the first bell to announce the adoption of the Declaration of Independence. It was cast in England in 1752, was cracked soon after it was brought to America, was recast with more copper in Philadelphia, and was cracted again in 1835 while being tolled in memory of Chici Justice John Marshall, and on the 12nd of February 1843 this crack was so facreased as nearly to destroy its sound. On the second floor is the original of the charter which WIlliam Penn granted to the city $\ln 1701$ and the painting of Penn's treaty, with tho Indians by Benjamin West. The building has been set apart by the city, which purchased it from the state in 1816, as a museum of historical relics. On the north-west corner of Independence Square is old Congress hall, in which Congress sat from 1790 to 1800 , and in which Washington was inaugurated in 1793 and Adams in 1797. At the north-east corner is the old city-hall, on the second floor of which the Supreme Court of the United States sat from 1791 to 1900 . A short distance east of Independence Square in Carpenters' Hall, in which the first contineintal congress assembled on the 5th of September 1774 and in which the national convention in 1787 framed the present constitution of the United States; the bailding was clso the headquarters of the Pemsylvania committee of correapondence, the basement was used as a magande for ammunition during the War of Independence, and from 1791 to 1797 the Whole of it was occupied by the First United States Bank. The Carpenters' Company (established in 1724) erected the building in 5770 , and since 1857 has prewerved it wholly for its historic ansociations. On Arch Sircet near the Delaware is preserved as a national monument the bouse in which Betsy Ross, in r 777, made what has been called the first United States flag, in accordapce with the resolviion of Congrese of the 14 ch of Junc. Not
far from this house is Christ Church (Protestant Episcopal), a fine colonial edifice designed mainly by Dr John Kearsley (1684-1772). The corner stone was laid in $\mathbf{~ 7 1 2 7}$, but the steeple, in part designed by Benjamin Franklin and containing a famous chime of eight bells, was not completed until 1754. The interior was restored to its ancient character in 1882, the pews of Washington and Franklin are preserved, and a set of communion plate presented to the charch by Queen Anne in 1708 is used on great occasions. In the churchyard are the graves of Benjamin Franklin, Robert Morris, Brigadier-General John Forbes, John Penn, Peyton Randolph, Francis Hopkinson and Benjamin Rush. St Peter's, the second Protestant Episcopal Church in the city, has a massive tower and a simple spire; within are the original pews. In the south-east part of the city near the Delaware is the ivy-ciad Ond Sweden' Church, built of brick in 1698-1700. The house which William Penn built about 1683 for his daughter Letitia was removed to Fairmount Park and rebuilt in 1883. In Germantown (q-a), a suburb which was annered in 1854, are several other historic buildinges.
The dominant feature of the domestic architecture is the fons rows, in street after street, of plain two-storey or three-storey dwellings of red ("Philadelphia") pressed brick with white marble steps and trimmings, and with white or green shutters, each intended for one family.
Parks.-Fairmount Park extends along both banks of the Schuytkill for about 5 m . and from the confuence of the Schuyikill and Wissahickon Crock it continues up the latter stream through a romantic glen for 6 m . Its area is about 3418 acres. Five acrea of an estate belonging to Robert Morris during the War of Independence and known as "Fair Mount." or "The fills," were purchased by the municipality for "a city waterworks and for park purposes" in 18 r2, and from this beginning the park grew to its present dimensions by purchases and giftss The principal buildings in the part are: the McPherson mansion, once the property of Benedict Arnold and in October 1780 confiscated by the committee of safety; the Peters (or Belmont) Mansion, built in 1745 and much frequented by the notables of the Revolutionary and early niational period; the birth-place of David Rittenhouse, the astronomer, and a monas: tery of the German pletiste, both on the banks of Wisehichon; and memorial hall and horticultural hail, both murvivals of the centennial exhibition of 1876 . On Lemon Hill, near the south end of the park, stands the Robert Morris mansion; in the vicinity is the cabin which was General U. S. Grant's headquarters at City Point, Virginia, during the winter of 1864-i865. Neat the Columbia Avenue entrance to the park and near the Ease Park Remervoir are the children's playhowe and playpround, endowed by the will of Mrs Sarah A. Smith (d. 1895). At the Green Street entrance is an imposing monument to Wastington, designed by Rudolph Siemering and ereted by the Sociery of the Cincimati fo 1896-1897, with a bronze equestrian ntatue. The Smith Memocial entrance, white granite with bronse statues, was erected in memory of the officera of the Civil War. The park also contains ${ }^{1}$ a monument to Lincoln by Randolph Rogers, an equestrian statue of Grant by Danicl Chester French and Edward C. Potuerian equentrian statue of MajorGeneral Jamea Gordon Meade by Aleminder Mine Calder; as equestrian statue of Joan of Arc by Emmanuel Fremiet; an heroic bust of James A. 'Garfied by Augustus St Gaudeni; statues of Columbus, Humboldt, Schiller and Goethe; a Tam O' Shanter group of four figures in red mandstone by James Thore; John J. Boyles "Some Aqe in America "; Cyrua Edwin Dallin'p" Medicine Man "; Wilbelm Woif's' "Woynded Lioness'" (at the entranoe to the Zoological Gardens): Albert Wolfs " Lion Fighter" ${ }^{\text {" }}$. Auguste Nicolas Cain's" Litoness bringing a Wild Boar to her Cobs "; Edward Kemeys's "Hudson Bay Wolven:"; Frederict Remingtom's "Cow Boy "; and several artixic fountaine, and a Japanese teqplegare. In the down-town district, Franklin, Washington, Rintenhouse and Logan squares, equidistant from the city-hafi, have been reserved for public parks from the founding of the city: in Rittenhouse Square is the bronse " Lion and Soppent" of A. L RaryeIn Clarence H. Clark Park, West Philadelphia, is Frank Edwin Elwell's group "Dickens and Lithle Nell." In. Broad and Spring Garden streets opposite the Baldwin Locomotive Works is Herbert Adams's statue of Matthias William Baldwin (1795-1866), fornder of the work Close to the bank of the Delaware, some distatict N.N.E. of the city-hall, is the small Penn Treaty Park with a monument to mark the site of the great elm tree under which Penn, socording to tradition, negotiated his treaty with the Indians in 1683. In the south-wert part of the city, slong the Schuyilill, is Bartram's botanical garden (17 mores), which the tity

[^28] ©ther parks are the gift of the-Fairmount Park Art Ampociatios (1871; reorganised th ineas and 1906).
edded to its park gystem in 1891 ; in it is the ctone house, with ivycovered walls, which the famous botanist built with his own hands. Through the efiorts of the City Park Arsocintion, organized in 1888, a number of outlying parks, connacting parkways and small triangutar or circular parks, have been placed on the city plan. Amony these are League Island Park (300 acres), oppositc the United States navy yard on League Island; Penny Pack Creek. Park (about 1200 acres), extending 61 m . along Penny Pack Cresk, in the north-eact; Cobb's Creek Park, cxtending a bout 4 m. along the western border: Fairmount Parkway, 300 It. wide on a dinet line southenst from Fairmount Park to Logan Square and momewhat narrown from Logan Square to the city-hall; and Torresdale Parkway (300 ft. wide and $10 \frac{1}{\mathrm{~m}}$. long), from Huating Park, 41 m , north of the cityhall, along a direct line nocth-cas to the city limits. A plaza at the intersection of Broad and Johnson strects, madiating strects therefrom, and the widening of Broad Strect 10 300 ft. from this plaza to League Ishand Park are also on the city phan. Laurel Hill cemetery, on a high hank of the Schuyliall and contiguous 10 Fairmount Park, is the city's principal hurying ground; in it are the tombs of Dr Elisha Kent Kane, the Arctic explorer, and MajorGeneral Meade.

Theatres,-The first Shakespearean performance in the United States was probsbly at Philadelphia in 1749; another company played there in 1754 and 1759; and in 1766 was built the Old Southwark theatre, in which Major John André and Captain John Peter De Lancey acted duriag the British occupation of the city, and which afrer twenty years of illegal existence was opened " by authority" in 1789. The Walnut Street theatre (i808) is said to be the oldest play-house in the United States. Oiher thontres are the Carrick, the large Academy of Music, the Chestnut Street opera house, the Lyric, the Adelphi, the Park and the German.

Clubs.- Arnong social clubs are the Union Leaguc, the University (1881), the Philadelphin, the City, the Markham, the Manufacturers (1887), the Rittenhouse, the Lawyers, the Clover, the Pen and Peacil, the Art, the Mercantile, several country clubs and athletic clubs (rotably the Racket), and the foremost cricket clubs in the United States, the Belmont, the Philadelphia the Keystonc, the Mcrion (at Haverford), and the Germantown (at Manhcim).

Musemme, Learned Societies and Libraries.-In the southern part of Fairmount Park is a zoological garden with an excellent collection. Its site is the former estatc of John Penn, grandson of William Penn. The collection is an outgrowt h of the museum, the first in the United States, opened by Charies Willson Peale in lackepencence Hall in 1802. It is now owned by the Zoological Society (incorpornted in 1859) and was opened in 1874. Other museums in Fairmount Park are: the botanical collection in borticultural hall; and in mermorial hall the gencral art collections of the Pennsylvanin Muscum and School of Industrial Arts and the Wilstach collection of paintings (about 500), including examples of the Italian schools from the 15 th to the 17, th centuries and of modern French and American painters. Bartram's botanical garden, mentioned above as a city park, was established in 1728 by John Bartram (16og-1777) and is the oldest botanical garden in America. The Philhdelphin Commercial Muscums, founded in 189 , is a notable institution for promoting the foreign commerce of the United States, having a collection of raw materialy and manufactured products from all countrics, a laboratory and a library. The institution invertigates trade conditions and the requirements of markets in all parts of the world. maintains a bureau of information, issues a weckly bulfetio for American exporters and a monthly publication for foceign buyers, and has published several "foreign commercial guides "and other commercal worka. The museum in maintained chicfly by municipal approptiations and by fees. Its control is vested ia "The Bonrd of Trustees of the Philadelphia Museums"" composed of fourtcen cisizens of Philadelphia chosen for life and eight ex oficio members who are the incumbents of the lending state and municipal offices. There are home and forcign advisory boards, and the immediate management is under a director. In 1727 . Franklin, then in his twenty-second year, formed most of his "ingenious acquaintance into a club," which he called the Junto, "for mutual improvement," and out of the Juntogrew in 1731 the library of the Library Company of Philadelphia, which he epolke of as the "motber of all North American subscription libraries" but which was not the first subscription library in North America. The Library Company of Philadelphim absorbed in 1769 the Union Library, which had been founded some years before; and in 1792 the Loganinn library, a valunble collection of chasical and othcs worlas providod for under the will of James Logan, a friend of Penn, was transferred to it. Subsequentiy it acquired by bequest the libraries of the Rev. Samuel Preston of London and of William Mackenzie of Philadelphia. Among the raritie in the latter was a copy of Caxton's Golden Legen (1486). In 1869 the Library Cormpany was made the beneficisy, under the will of Dr James Rush (1786-1869), of an ertate valued at about a million dollars, and with this money the Ridsway branch was established in 1878 . The library has owned its building since 1790 : the building on the present aite was opened in 1880 and was enlarged in 1889 .

The American Philosophical Society, founded by Franklin in 1743, the oldest and the most famous academy of science in America. Its organization was the immediate consequence of a circular by

Franklin entitled, A Proposal for Prombecme Useful Kmondedy among the Bratsht Plamations in America. In 1769 it united vith (aod officially took the nave of) "The American Society held at Philydelphin for Promating Uschul Knowledge." Among its early prewidents were Franklin, Rittenhouse and Jefierson It has a valuable library-about 50,000 vols.-containing the grent mases of the correxpondence of Franklin; here, too, are many interesting relics, amons them the chair in which Jefferson cat while writing the Declaration of Independence and an autograph copy of the Declaration. The eociety has published 27 quarto vols. of Trassacfroms (1771-1908); its Procredings have been published regularly since 1838, and in 1884 those from 3744 to 1838 , compiled from the manuscripe minutes, were also published. The Academy of Natural Sciences of l'hiladelphia, founded in 1812, has been noted for its collection of burds since it acquired, in 1846, the callaction of the duc de Rivoli numbering more than 12,000 eppecimens; severni smaller collections have since been added. The ncaderny has a notable collection of shells and fossils and the "types " of Lcidy, Cope, Say, Conrid and other mituralists, and a library. It is componed of the following " ace!ions ": biological and micioscopical (i868), entornological (1876), botanical (1876), mineralogical and gcological (1877) and ornithological (1891). It has published a Joternal since 1817 and its Procecdings ance 1841, and periodicals on entomology, conchology and ornithology. To a lew young men and woncen it gives training in scientitic investigation without charge. The Pennsylvania Histocical Society, organized in 1824, has a valuable collection of historical material, including the papers of the Penn family and the Charlemagne Tower collection of American colonial laws and many early American printed handhilts and books (esperially of Bradford, Franklin and Christopher Saur), portraits and relics. With the proceeds of the society's publication fund the Pansylomia Magasine of Hisfory and Biography has been publishod since 1877. The Numismatic and Antiquarian Society of Philadelphia, organized in 1858, is the oldest numismatic orrapization in the United States; it has a collection of coins, and since 1865 it has published its Proceedings. The College of Physicians and Surgeons has an cucellent medical library. The free library of Philadelphia (cstablished 1891) includes a main library and several branches. Other important libraries are that of the unvensity of Penasylvania, the Mercantile, that of Franklin Institute, that of the Law Asociation of Philadelphia, the Athenacum, that of the German Socicty of Pennsylvania, and Apprentices. The free muscum of acience and art of the university of Pennsylvania has valuable archaeological collections, notably the American and the Babylonian collectiona made by univerbity expeditions.

Schools.-William Penn in his frame of government provided for a commirtee of manners, education and art. The aseembly, in March 1683, pased an act which provided that all children should be taught to read and write by the tince they were twelve years of age, that then they thould be taught some useful trade, and that for every child not so taught the parent or guardian chould be fined five pounds. At a meeting of the provincial council held in Philadelphia ia 1683 the governor and council appointed as echoolmaster, Enoch Flower, who for twenty ycars had held that powition in England. But schools were left almost wholly to private initiative until t818. The first grammar school, commonly known in its early years as the Friends' frec school, was established in 1689 under the care of the celebrated George Keith; although maintained by the Friends it was open to all, and for more than sixty years was the only pullic place for frec instruction in the province. It was chartered by Pern in 1701, 1708 and 1711 , in time became known as the Winliam Penn Charter Schood, and is still a sccondary achool on Twelfth Sirect. In 1740 a building was erected for a "charity school "and for a "house of worship," but the school had not been opened when, in 8749 , Franklin publishod his Proposals relating to the Education of Youth in Pensilposia. Under the infuence of this publicntion a new cducational association was formed which purchased the building and in January 1751 opened in it an institution that was chartered as an "academy and charitable school " in 1753, was rechartered as a college and academy in 1755 . and became the university of Pennsylvanin by act of the stale legishture pasecd in 1791. The university occupied the site of the present post office from 1802 until 1872 , but was then removed to grounds near the western bank of the Schuylkill.

The foundation of the present public chool system was laid in I818 by an act of the legislature which constituted the city and county of Philadelphin the first school district of Penpsylvania and provided for the establishment therein of free schools for indigent orphans and the children of indigent parents; the same act authorized the establishment of a model school for the training of teachers, which was the pioncer school for this purpose in America. In 1834 free clementary schools were authorized for all children of school age, and since then the system has developed until it embraces the Central High School for boys, which has a semi-collegiate course with a department of pedagosy and confers the degrees of B.A. and B.S.; a Normal High School lor girls, into which the model school was converted in 1848 . in which most of the teachers of the city are trained and which only graduates of the Girts' High School are permitted to enter; the William Penn High Schoul for girls (opened 1909) with academic, commercial, applied arts
houselfold science and library economy departments; a School of industrial arts; two manual iraining echools; about one hundred night schools (attended mainly by adults); several special schools for habitual truanis or insubordinate and disorderly childrun, and a number of vacation schools and playgrounde for the summer scason. In 1909 disarict high schools were planned as a part of the public school system. The city has also many private high whools and academics.

Besides the university of Pennsylvania and the Central High School for boys the collegiate institutions are La Salle College (Roman Catholic; opened in 1867) and the Temple University (nonscctarian; chartered in 1888 as Temple College after four years of teaching; in $\mathbf{1 8 9 t}$ received the power to confer degrees); which is designed especially for self-supporting men and women and was founded by Ruswil Hermann Conwell (b. 1842). a lawyer and jourmalist, who entered the Baptist ministry in 1879, was pastor of the Grace Baptist Church of Philadelphia in 188t-1891, became pastor of the Grace Baptist Temple in 1891, and was a public lecturer. He was the first president of the Temple College, which was begun in connexion with the work of his church. Temple University offers instruction both day and evening, has clasecs from the kindergarten to the highest university grades, and courses in business, civil enginecring, domestic art and domestic science, physical training. pedagogy and music; it has a theological school (t893), a law school (1894), a medical school (1901) and a achool of pharmacy(r901); and in 1907 the Philadelphia Dental College, one of the best knoon dental shools in the country, joined the univernity. In 1893 a trust fund left by Hyman Gratz was used to found the Gratz College for the educntion of teachers in Jewish schools and for the study of the Hebrew language, and Jewish history, fitcrature and religion; the college is under the control of the Kaal Kidosh Mikoe Israel of Phitadelphia. Bryn Mawr College (q.v.), one of the leading institutions in America for the higher educstion of women, is a few miles beyond the city limits. Schools of medicine, for which Philadelphia has tong been noted, include the department of medicine of the university of Pennsylvania (opened in 1765); Jefferson Medical Colkege (1825); the Yoman's Medicat College (1850), the first chartered school of medicine for women to confer the degree of M.D.; the Medico-Chirurgical College (1881) ; Hahnemann (homoeopathic) Medical College (1888); and the department of medicine of Temple University (1901). Among other professional achools are the department of law of the university of Persasylvania (1790), the law schoot of Temple University (1894); the divinity school of the Protestant Episcopal Church (1862); the Lutheran theological Serminary (1864); Saint Vincent's (Theologival) Scminary (R.C., 1868); the theological school of Temple University (non-sectarian, 1893): Pennsylvania College of Dental Surgery (1856); Philadelphia Dental College (1863 ; since 1907 a part of Temple Universiny); the department of dentistry of the university of Pennsylvania (1878); the department of dentistry of the Medico-Chirurgical College (1897) : the Philadelphia College of Pharmacy (1821); the depariment of pharmacy of the Medico-Chirurgical College (1898); and the school of pharmacy of Temple University (igoa). Girand College (see GIkard, STEPHEN) is a noted institution for the education of poor white orphan boys. The Penneylvania Academy of the Fine Arts, founded in 1805 in Independence Hall, was the first art school in America; it oceupies a fine building on Broad and Cherry streets, with a gallery of about 500 paintings, including examples of early American masters (especialiy Gilbert Stuart, of whom it has the Angest collection), of modern American artists (cspecially in the Temple collection), and, in the collection of Henry C. Gibson, of French Iandscapes. The Drexel Institute of Arts and Sciences, founded in 1891 by Anthony J. Drexel and endowed by him with 82,000,000, occupies a beautiful building (Chestnut Street and 32nd; opened in 1891) and embraces the following departments: arehitecture, science and technology, commerce and finance, domestic science, domestic arts, library school, English language and literat ure, history, civil government and economics, physical training, evening classes, department of free pablic lectures and concerts, library and reading room, and museum and picture pallery. The institution bestows fre scholarships on a considerable number of students and charges the others very moderate fees. Its building houses a library, a collection of rare prints and autographs, and a mnscum with a picture gallery and exhibits of embroidery, textiles, ceramica, wood and metal work, \&c. The Pennsyivania Muscum and Sehool of Industrial Art tounded in 1876 and opened in 1877, has schnols at Broad and Pine streets-the museum is housed in Memorial Hall in Fairmount Park. The school is a pioncer in America; it was originally a school of applied art, but in 1884 the Philadelphis textile echool wast established as another department. The Wagner Free Institute of Science, founded by William Wagner in 1855, has a library and a natural history museum, provides iree lectures on cientific subjects, and publishes, Transacliows, containing sciensific memoirs. The Franklin Institute for the promotion of mechanic arts (1824) has a technical library (with full patent records of several nations): since 1824 it has held exhibitions of manufactures; it has published aince 1826 the Journal of the Franklin Institute; the institute provides lecture courses and has night schools of drawing. machine design and naval architecture. The Spring Carden Instituse (is5z), with day clases in mechanical drawing, handiwork
and applied electricity, and night classes in thooe sobjects and fat frcehand and architertural drawing; the Philadefphia School of Dewgn for Women (1836), of which Emily Sartain, a daughter of John Sartain, became priscipal in 1846, and a school of horology (I\$94) are other mamual and industrial tranang schools within ihe city, and not far beyond the ciry limits is the Wilhamson Free Srhool of Michancal Trades (I\&\&), cndowed by lainh Vansant Williamson ($1803-1889$) with more than $\$ 8,000,000$ for the free training of bricklayurs, machinsts, carpenters, pattern makers, stationary enfoncers and other mechanacs. The Lincoln Institution and Educational Home untll 1907 was devoted mainty to the education of Indians.

Newspapers and Periodicals.-The American Weekly Mercemy was the first newapaper published in Philadelphia and the third in the colonies. It was firse issued on the 22 nd of December 1719 by Andrew Sowle Bradford, a son of William Bradford, the first printer in the Middle Colonies, and was the first newwaper in these colonies. The second newspaper in the city and in the province was the Unimersal Instructor in all Arts and Scocnces and Pewiwsytwamsa Gazelte. It was established in 1728 by Samucl Keimer. but less than a year afterwards it became the property of Benjamin Franklin and Ilugh Meredilb, who shortened its tite to the Perrsybanta Gatefle. The only one of the newspapers established during the coloninl era which survived the 19 th century was the Pennsylvanic Packet or General Adveritser, which was started in 1771 by John Dunlap, and during the War of Independence was pubtished scmi-weckly, with occasional "postscripts' of important news: in 1839 it was absorbed by the Forth Americon (1829), with which the Untled States Gaselle (1789) was united in 1847 and which is etin published as the North American. The Anrora and General Adner. tiser, established in 1790 by Benjamin Franklin Bache (1769-1 798), a grandson of Franklin, was a notorious anti-Federalist organ in its early years. A pioncer among newspapers at modern prices is the Pudic Ledger, founded in 1836, and in 1864 purehased by George William Chikds. Orher prominent daily papers now published are the Inquirer (Republican: 1829), the Press (Republican; 1857), the Record (Indeperklent Democrat: 1870), the Demokrat (German; 1838), the Erenting Bulletin (Republican; established in 1815 as the American Sentinel), the Eventng Ilem (1847), the Evemng Telegraph (Independent Republican; 1864), and the Tageblall (Labour; German: 1877). Many of the carlicr literary periodicals of America vere published in Philadelphias: among them were the American Magacine (i757-1758 and 1769). Thomas Paine's Penwshowia Magazine (t775-1776), the Columbtan Magazine (1786-1790; callod the Unionsal Asylunt in 1790) which was edited by Mat thew Carcy and by A. J Dallas, the excellent American Mfusesm (1787-1792 and 1798), with which Carey was connected, the Port Folio (1801-1827: edited until 1812 by Joseph Dennic) and the Analectic (1802-1812) which succeeded Select Remews and Spertl of the Fortign Magasimes (1809), of which Washington Irving was editor in 1813-1814. and to which Paulding and Verplanck contributed. and the Ameruas Qmarterly Revew (1827-1837). Among others were: Godey's Lady's Book (1830-1877), for which Poc. Irving, Longfelow, Willis and others wrote; and Graham's Lady's and Gentleman's Magesme (1840-1859), with the contributors just named and Cooper, John G. Soxe, E. P. Whipple and others. Lipprocoff's Megazine (1868) is a monthly, best known for its fiction. The Saturday Enening Posf, which has the largest circulation of the weekly publications, and the Ladics' Home Journal (1883), the semi-monthly winh the largest circulation, are owned by the same company. The Form Jonracil (1877) is a well-known agricultural monthly.

Trusts, Chartics, Ec.--Girard College and thirty-eight other charitics are maintained out of the procecds of as many trusts. which are administered by a board of dircerors composed of twrlve members, appointed by the courts of common pleas, and the major, president of the selcet council, and presinient of the common council as ex-oficio members. In 1907 the invested capital of the Girard Trust alone amounted to $\$ 24,467.770$ and the income from it was 81.988 , of4. The tokal capital of all the minor trusts in the same year was \$1,583,026 and the income from this was 856.730. Amonz the mioor trust (unds are: Wills Hosjital (established in 1835): Benjamin Franklin Fund (1790) for aiding yourg married artificyrs: Thomas D. Grover Fund (1049) for providing the poor witb fuel and food; Mary Shiclds Aimshouse Fund (1880); and the Joha Soost Medal Fund (1816) (or bestowing medals upon young inventors To Franklin Philadelphia is hargely indetred for the Pennsylvania hospital, the first hospital in the United States, which wats projerted in 175! and is one of the foremost of neary one hundred such institutions in the city. The municipal hospital for contagious diseases and hospitals for the indigent and ithe inkane are maintained by the municipality, but most of the other institutions for the eick are maintained by medical schools and religious sects. Municipal charitics are under the supervision of the department of pubbic health and charitics. Philadelphia is the seat of the state penitertiary for the castern district, in which, in 1829 , was inaugurated the "Individual " system, i.e. the scparate imprisonment and discriminating tratment of criminals with a view to effecting their riorm.

Transportation and Commerce.-Nearly every street in the businegs centre and about one-third of the streets throughout the
bailt-ap portion of the clity have a singie track of electric railway (overhead trolley), and most of the wider ones, except Broad Sercet, Which has none, have a double track. A subway line has been opened for a short distance under Market Street, and other subway lines, es well as elevated lines, have been projected. The entire system, embracing in 1909 a total of 624.21 m . is operated by the Philadelphia Rapid Transit Company. Several inter-urban electric lines afford cheap service to neighbouring towns and cities. The extemsive railway system under the control of the Pennsylvania railway. ropethor with the Baltimore \& Onio railway affords tramsportation facilities north to New York, south to Baltimore, Washington and the eouth, west to the bituminous coalfelds of Pennsylvania, the grain fields of the Middle West, and to Pietsburg, Cleveland, Cincinnati and Chicago. The Philadelphia \& Reading railway connecte the city with the great anthracite coal region, and both the Philadelphia \& Reading and the Pennaylvania control a lipe to Atlantic City. The Schuylkill is navigable for small cralt to the "Fall line," about 7 f m . above its mouth and for vesscls drawing 26 ft . to the oil refineries at Point Breeze, 3 m . Irom the mouth; from Point Breene to the head of mavigation the channel eepth varies from 54 to 22 ft . The Delaware river is navigable to Trenton, Now Jersey, about 30 m . above the upper end of the port of Philadelphia, and although in its natural condition this river was only 17 ft. deep at low water in its shallowest part below the port this depth was increased between 1836 and 1899 to 26 ft (eroept in thriee shoal atretches), and a project of the Federal government was adopted in 1899 for increasing the depth to 30 It: and the width to 600 ft . In 1905 the city of Philadelphia and the state of Pennsylvania appropriated $\$ 750,000$ for the improvement of the river between the city and the southern boundary of the state. ${ }^{1}$ Sceamships ply regularly between Philadetphia and several Europcan ports, ports in the Weat Indies, and ports of the United States.
The port extends from the Pennsylvania railway terminal at Greenwich Poiot up the Delaware River to the Philadelphia \& Reading terminal at Port Richmond. a distance of about 8 m ., and there are minor harbour facilitics on the Schuylkill. The matural facilitien together with the improvements that have been made, were long offset by an ipefficient port administration under an antiquated $\mathrm{L} w$ of 1803 which permitted the wharves to pass largely under private control: but in 1907 the old board of port wardens was abolished and in its place was created a municipal department of harves, docks and fersies.

Uatil the opening of the Eric Canal, in 1825, Philadelphia was the emponium of the United States; it was then displaced hy New York Sorme years later Philadelphia lost its Iucrative China trade, and its decline- in commercial importance continued until 1883, Then the value of its imports amounted to ondy $\$ 32,811,045$. the value of its exports to only $\$ 38,662,434$ and the city was outranked in foreign trade by New York Boston, San Francisco and New Orleans. By 1900, however, the value of its imports had risen to $\$ 49,191,236$ and the value of its exports to $881,327,704$; in 1909 the value of the imports was $\$ 78.003,464$, an amount less than one-eleventh that of New York, but exceeded only by Ncw York and Boston, and the value of the exports was $\$ 80,650,274$. an amount less than one-eighth that of Ncw York, but excecied only by New York, Galveston and New Orleans. The principal imports are sugar, drugs and chemicale, goatskins, wool, tobacco, jute and burkap, and cutton goode, iron ore, manulactured iron, lides and bananas; the principal exports are iron (manufactured), steel. petroleum, wheat, flour. lard, cattle and meat products. The proximity of the city to New York, whence many of its products are shipped, makee the etatistics of lis disect importe and exports no true index of its commercial importance.

Lennfactures.-Philadelphin has always boen one of the foremost manufacturing centres in the United States, and in 1905 it was outranked only by New York and Chicago.' The total value of its factory product was $\$ 519,981,812$ in 1900, and $\$ 591,388,078$ in 1905 Measured by the value of the products, Philadetplia ranked first among the cities of the country in 1905 in refining sugar and molasses ($337,182,504 ; 13.4 \%$ of the total of the country) and in the manutacture of carpets and rugs ($\$ 25,232,510$; 41% of the total of the country), leather ($\$ 23,903,239: 9.5 \%$ of the total of the country), hoviery and knit goods ($\$ 5.770,873$; 115% of the total of the country), woolien goods ($\$ 12,239,881 ; 8.6 \%$ of the total of the country), and felt hats ($\$ 5,847,771 ; 16 \%$ of the total of the country): second in the manulacture of worsted goods ($5 \times 26,964,5,33$; 16% of the total of the country) and in dyeing and finishing texilies ($34.371,006 ; 8-6 \%$ of the tidal of the couintry); and third in the manufacture of clothing ($\mathrm{S}_{3} 1,031.882$; 5.1% of the tocal of the country) and silk goods ($35.079,193$; 3.8% of the total of the country). Other large industrics are the manufacture of foundry and machine-shop products, cotton goods, malt liquors, iron and steel, chemicals, cigars and cigarettes, soap, confectionery, furuiture,

1 The city had previousty expended $\$ 1,555,000$ on the improvement of the Dela ware and Schuylkill rivers.

The Philadelphia Museums claim that excluding elaughterhouse and sweat-ahop products the value of Philadelphia's manuGactured products is greater than that of any other cify in the counery,
paintes, boots and choces, efoctrical apparetus, and condage and twine, and among notable individual establithments are the Baldwia Locomotivo Works, the Cramp Ship-Yards and the Disston or Keystome Say Worlat. There are petroleum refinerica at Point Brecse near the mouth of the Schuyilill; petroleum is piped to them from the north-west part of the state.
Water Supply.-The firse municipal waterworks, installed in 1799-1Bor, pumped water by steam power from the Schuylhall into an elevated tank in Centre Square, where the city-hall now tands; this was one of the carijest applications of steam to municipal water pumping. In 1812-1815 new steam works were installed on Quarry Hill, or Fairmount ; in 1819-1822 pumping works operated by water power were substituted for those cperated by steam; and if was in great part for the preservation of the purity of the water supply that Faimount Park was created. The park, however, did not serve its purpose in this respect. The water was impure and inadequate: additional works were installed from time to time, mostly on the Schuylkill, whence water was pumped by steam to reservoirs from which distribution was made by gravity; and to meet the increasing demands new filtration works and accessories were installed in rgo1-1go8. These take the water mainly from the Delaware river.
Gonernmens anod Finances.-Inasmuch as it has been proved that in 1683 there was in use in Philadelphia a seal bearing the inscription "Philadelphia 83. William. Penn. Proprictor. and. Covernor" and in all respects different from the provincial seal or the county seal, it seems that there was then a listinct goverament for the city. In July $\mathbf{x} 684$ the provincial council, presided over by William Penn, appointed a committee to draft a borough charter, hut there is no record of the work of this committec, and it is uncertain what the government of Philadelphia was for the next seventeen years. ${ }^{\text {a }}$ In i701 Penn himself issucd a charter creating a close corporalion modelled after the English borough and under this the city was governed until the War of Independence. Upon the annulment of the Penn charter hy the Declaration of Independence, government by commisefons was establishod, but in 1789 a nevr charter was granted and, althougb the government has since undergone many and great changes, it is by virtue of this charter that the city remains a corporation to day: The Consolidation Act of 1854 extended the boundaries to the county lines without destroying the county government, changed the corporate name from " Mayor, Aldermen, and Citizens of Philadelphia " to "the City of Philadclphia," created the offices of controlier and receiver of taxes, and considerahly modified the powis and duties of the corporation and its officers. The Builitt Act, passed in 1885 to go into effect in 1887, and since 1885 amended and supplemented, is a new charter except in name; particularly noteble is its transfer of the balance of power from the councils and various sell-perpetuating commlssions to the mayor.
The mayor is elected for a term of four years and is not cligible to the office for the next succeeding term. With the advice and consent of the aclect conancil be appoints the directors of the departments of public safety, public works, bealth and charities supplies and (since 1907) wharves, docks and ferries, and the three members of the civil service commission. He may appoint. three persons to examine any department and for reasons given in writing may remove any officer whom he has appointed. His veto power extends to items in appropriation bills, but any item or ordinance may he passed over his veto within five days ol.such veto by an aftrmative vote of three-fifths of the members elected to each council The select council is composed of one member from each of the 47 wards, and in the common council each ward has one member for every four thousand names on the last completed assessment list (including names of those paying poll taxes as well as those paying taxes on real or persomal property): in 1909 there were 80 membera of the common council. The scveral administrative departments

A document purporting to he a eharter, bearing the date of the 20th of May 1691, and signed by Thomas Lloyd, deputy-governor, was discovered in i887, but the great seal is missing and there is no evidence that the charter was even in operation. The minutes of "a meeting of the Council held at Philadelphiz on the.thied day of Sixth Month 1691 " mention "Humphrey Morrey the present Mayor of the city of Philadelphin "; and this would seem to thow that there was a regular municipal government in 1691. See Philaddphia: 7ls Founding and Seady: Reporl of the Committee to determise the Year of the Physical asd Lezal Foumding of the Cily of Philaddlphic (Philadelphin, 1908).

In 1905 the state legislature took the appointment of these officera from the mayor and vested it in the councils, but this legislation was repealed in 1906.
are: public safety, public moricu, receiver of taxes, cisy treaourer, city controller, law, education, charities and corrections, supplies, wharvea, doclss and ferries, civil ervice commission and sinking fund commission (composed of the mayor, the city controller and a commiasioner elected by amajority vote of the city councila). Members of the select council are elected for three yeary-one-chind each year; members of the common oouncil for two years-one half each year; and the receiver of tanee, the city treasurer, the city controller, and the city solicitor, who is the head of the department of baw, for a term of three years. The police constitute a bureau of the department of public anety, and at their head is a superintendent appointed by the director of the department with the approval of the eelect council. The department of education in administered by a central board appointed (at large) by the judges of the courts of common pleas.

The assessed value of taxable property in the city increated from $\$ 153,369,048$ in 1856 to $\$ 536,667,834$ in 1880 , to $\$ 880,935,265$ in 1900, and to $\$ 1,358,675,057$ in 1910 . Thecity's yearly expenditure increased from $\$ 5,170,680$ in 1856 to $\$ 14,640,479$ in 1880, to $\$ 30,628,246$ in 1900 , and to $\$ 48,012.630$ in 1909 . The principal items of expeaditure in 1909 were: for public schools $\$ 3,242,218$; for the bureau of water, $32,827,200$; for streets and hightrays, 4.,219,260; for police, $3,810,535$; and for protection against fire, $\$ 1,873,720$. The receipts for the same year were $\$ 44,372,977$, of which $\$ 18,851,442$ were from the property tax (runicipal and state), and $\$ 4,396,124$ were from the water tix. The city's indebtedness increased mapidfy for a period of twenty-five yean following consolidation. At the beginning of 1856 the funded debt was $\$ 16,781,47^{0}$, by the berginning of 1870 it had grown to $842,401,933$. and by the beginning of 1880 to $\$ 70,970,041$. By the new state constitution adopted in 1873 no municipality is permitted to create a debt exceeding 7% of the assemed value of its taxable property, in 1879 the stato legislature passed an act to prevent the city from living beyond ite income, and as a consequence of theme restrictions the funded debt, leas loans held by the sinking fund, was reduced by the beginning of 1895 to $\$ 33,139,695$. The great expense of installing the new filter plant, developing the park system, and making other improvements has, however, caused it to grow again; at the beginaing of 1910 the total funded debt was 955483.830 and the net funded debt was $\$ 84,901,620$.

History.-The patent granted to William Penn for the territory embraced within the present commonwealth of Pennsylvanin was signed by Charles IL. on the $4^{\text {th }}$ of March 168 x and Penn egreed that "a quantity of land or ground plat should be hid out for a large town or city in the most convenient place upon the river for health and navigation," and that every purchaser of 500 acres in the country shall be allowed a lot of 10 acres in the town or city, "if the place will allow it." In September Penm appointed William Crispin, Nathaniel Allen and John Bean a commission to proceed to the new province and lay out the city, directing them to select a site on the Delavare where " it is most navigable, high, dry and bealthy; that is where most ships can best ride, of deopest draught of water, if possible to load or unjoad at tbe bank or key side without boating or lightering of it." Crispin, a kinsman of the proprietor, died on the voyage out, but William Heage had been nemed a fourth commissioner some time after the appointment of the others and the three survivors arrived in the province toward the close of tbe year. They had been preceded by Penn's cousin, Captain William Markham, as deputy-governor, and were soon followed hy the surveyor-general, Thomas Holme. Although the Swedes had established a settlement at the month of the Schuylkill not later than 1643 and the site now selected by the commissioners was beld by three brothers of the Swaenson family, these hrothers agreed to take in exchange land in what is now known as Northern Liberties, and as carly as Juiy 1682 Holme, according to modified instructions from Penn for making the lots smaller than originally intended, laid out the city extending from the Delaware river on the east to the Schuylkill river on the west, a distance of about ${ }^{2} \mathrm{~m}$., and from Vine Strcet on the north to Cedar (now South) Street on the south, a distance of about 1 m . Penn landed at New Castle on the Delaware on the 27th of October 1682 and two days later came up as far as Upland, now Chester, 13 m . south of Philadelphla, hut wben he came to his newly tounded city is not known. He is known, however, to have presided at a meeting of the provincial cousell held here on the ioth of March 1683, and from that time Philadelphin was the capital of Pennsylvania until
${ }^{1}$ If the debt of a city already exceeded the 7% fimit it could be inerensed only by permission of the legislature.

1799, when Lancaster became the capital. During nearty the whale of this period it was also the most important city commercially, politically and socially in the colonies. Quaker influence remained strong in the city, especially up to the boginning of the Igth contury; and it was predominant in Philadelphia long after it had given way before the Scotch-Irish in the rest of Pennsylvania. But even in Philudelphis the scademy (later the university of Pennsylvanis) soon came under the control of the Protestant Episcopal Church. The first Continental Congress met in Carpenters' Hall on the sth of September 1774; the second in the old state house (Independence Hall) on the zoth of May $\mathbf{y 7 5}$; and throughout the War of Independence, except from the 26th of September 1777 to the $18 t h$ of June 1778, when it was in possession of the British, ${ }^{2}$ Philadelphia was the virtual capital of the colonies; it was a brilliant social city, especinlly during the British posseasion. The nationt convention which framed the present constitution of the United Stales sat in Philadelphis in 1787 , and from 1790 to 1800 tbe city was the national capital. Here Benjamin Franklin and David Rittenhouse made their great contributions to ecience, and here Washington delivered his farcwell address to the pecpile of the United States. Here, in July and Auguse 1789, the clerical and lay delegates from the Protestant Episcopal Churches in the United States met and formally organized the Protestant Episcopal Church in the United States. Here the first bant in the colonies-the Bank of North America-was opened in 1781 , and here the first mint for the coinage of the money of the United States was established in 1792. The city was visited With an epidemic of yellow fever in 1793 and again in 1798 ; and in 1832 nearly roco inhabitants died of Asiatic cholera.

The origimal boundaries remained unchanged for 172 years, but the adjoining teritory as it became populated was erected into corporated districts in the following order: Sotithwark (1762), Northern Liberties (1771), Moyamensing (18ı2), Spring Garden (1813), Kensington (1820), Penn (1844), Richmond (1847), West Philadelphia (1851) and Belmont (1853). In 1854 all these districts, together with the boroughs of Germantown, Frankford, Manaytunk, White Hill, Bridesburg and Aramingo, and the townships of Passyunk, Blockley, Kingersing, Rorborough, Germantown, Bristol, Oxford, Lower Dublin, Moreland, Byberry, Delaware and Penn was abolished and the boandaries of Philadelphia were extended to the county lines by a single act of the state legislature. The consolidiation was in part the outcome of a demand for efficiency in pteserving order. There had been occasional outbreaks of disorder: on the 17th of May 1838 an anti-abolition mob had bumed Pennsylvania Hall, which had been dedicated three days before to the discussion of abolition, temperance and equality; in May r844 antiCatholic rioters had burned St Michael's and St Augustine's churches, and minor riots had occured in 1835, 1842 and 1843 Philadelphia the from the first strongly anti-slavery in sentiment. and it was bere in December 1833 that the American AntiSlavery Society was organized, and in 1856, on the anniversary of the battle of Bunker Hill, that the first mational convention of the Republican party met. During the Civil War the arsenal and the Southwark navy yand were busy manufacturing material for the Federal armies, the city was crowded with wounded soldies, and here in 1864 was heid the great sanitary fair for the benefit of the United States sanitary commission, an organirstion for the relief and care of wounded and sick soldiers. In 1876, the centennial year of American independence, a great exhibition of the industries of all nations was beld in Fairmount Park from the soth of May to the roth of November, and about fifty buildings were erected for the purpose. In October 1882 the city celebrated the bi-centennial of the landing of William Penn, and in October 1908 the 225th anniversary of its foundation.

L Lord Howe, who had been in command of the Britiah, embarked for England on the 24th of May, and on the 18 th of thes monih was held for his farewell entertainmeni the famous Michiases, a leate of gaiety with a tournament somewhat like those common in the age of chivalry, which was in Large part planned by Captain John Andra

Brespogarty.-wI. T. Scharf and T. Westoott, Hislerg of Philedafinit (Philadelphia, 1884). the ctandand history; fi F. Watson, Anmals of Phulodelphio, revised by W. P. Havard (Philadelphia, 1898), o(ten the record of tradition; E. P. Allineon sand B. Pearoace Priladelpha 168r-r887; a Iistory of Mumicipal Dapelopment (Philadelphit, 1887): F. H. Young (ed.), Memorial History of the Cily of Philaderpisis (New York, 1895); Lillian 1. Rhoaden. The stary of Philadedehis (New York, rgoo): T. Williams, "Pbiladephia," in L. P. Powell'e Efatoric Towns of the Middte Siates (Nev Yoric, 1899): F. M. Etting, Ast Efistericol Accownl of the
 Consolidation of Phitadelptia (Philadelphin, 1873): and Aynee Repplier, Phiasdphiog, the Place and People (Nev York, 8898).
 London in the latter part of the 17th century. In 1652 Dr John Pordage ($1607-168 \mathrm{r}$), rector of Bradield, Berkshire, gathered together a few followers of Jakob Bochme, the chief of whom was Jane Lead or Leade (nde Ward; 1623-1704). Pordage was ejected from his living by the Triers in 1655, but was restored in 166o. Mrs Leade had been from girlbood of a mystical temperament, and experienced phantasms which she recorded in a diary entited A Fountain of Gardeny, beginning in 1670, in which year the Philadelphian society was definitely organired. She drew up for it "The Laws of Paradise," which show that the enterprise was designed "to sdvance the Kingolom of God by improving the life, teaching the loftiest morality, and enforcing the duty of universal brotherhood, peace and love." Its members had a strong faith in what they called the "Divine Secrets," the wonders of Cod and nature, the profound apiritual experiences of regeneration and soul-resurrection, and the second Advent. In 1693 some of Mrs Leade's writings-were uranslated into Dutch, and by this means and her acquaintance with Francis Lee (1661-1719), an Oxford scholar who studied medicine at Leiden and became ber son-in-law, a connexion was opened up with Germany and Holland. In 1703 the Philldelphians dre畐 ap their confession, but they made no further progress and soon declined. The Holland branch withdrew, and the English government forbade the society to meet. For many years, however, a considerable number of people regarded Mrs Leade's visions, which were puhlished in a long series of writings, as proofs of her divine calling. In her later years she had a severe struggle with poverty, which was relieved by a pension granted by Baron Kniphausen.

PRIMAs, an islet in the Nile above the First Cataract, of great beauty and intereat, but since the completion of the Assuan dam in 1902 submerged except for a few months yearly during High Nile (July to October), when the water is allowed to run freely through the slaices of the Assuan dam. Philae is the mearest island to the point where the ancient desert road from Astuan rejoins the river south of the cataract. It marks also the ead of the cataract region. Below it the channel is broed and straight with rocky granite islands to the west. The name in Egyptian was Pilak, "the angie (?) island ": the Arabs call it Anas el Wagud, after the hero of a romantic tale in the Arabias Nights. Ancient graffiti abound in all this district, and on Bigeh, a larger island adjoining Philae, there was a temple as early as the reign of Tethmosis III. The name of Amasis II. ($570-535$ B.c.) is said to have been found at Philae, and it is possible that there were still older buildings which have been swallowed up in later constructions. About 350 B.c. Nekhtnebf, the last of the native kings of Egypt, built a temple to Isis, most of which was destroyed by floods. Ptolemy Philadelphas reconstructed some of this work and began a large temple which Ptolemy Euergetes I. completed, but the decoration, carried on under Later Ptolemies and Caesars, was never finished. The temple of Lis was the chicf sanctuary of the Dodecaschoenus, the portion of Lower Nuhia generally held hy the Ptolemies and Romans. The little island won great favour as a religious resort, not only for the Egyptians and the Ethiopians and others who frequented the border district and the market of Assuan, but also for Greek and Roman visitors. One temple or chapel after another sprang up upion it dedicated to various gods, including the Nubian Mandulis. Ergamenes (Arkamane), king of Ethiopia, shared with the Ptolemies in the building. Besides
the temple of Isis with its birth-temple in the first court, there weresmaller temples or chrines of Arsenuphis, Mandulls, Imnthes, Hathor, Harendotes (a form of Horus) and Auguatus (in the Roman styld), besides unamed ones. There were also monumental gateways, and the islund was protected by a stone quay all round with the necessary staircases, icc., and a Nilomeler. The most beaviful of all the buildings is an unfinished liosque isscribed by Trajan, well known under the name of "Pharaoh's Bed." Craffiti of pilgrims to the shrine of Isis are dated as late as the end of the gth century A.D. The decree of Theodosins (a.o. $37^{8)}$ which suppressed pagan worship in the empire was of bittle effect in the extreme south. In A.D. 453 Maximinus, the general of the emperor Marcian, after inflicting a severe deleat on the Nobatac and Blemmyes who were setiled in Lower Nubia, and thence raided Upper Ebypt, made pence on terms which included permission for these heathen tribes to visit the temple ind even to borrow the image of Isis on certain cocasions. It Was not till the reign of Justinian, a.n. 527-565, that the temple of Philae was finally closed, and the Idols taken to Constantinople. Remains of Christian chuches were disclosed by the thorough exploration carried out in 1895-1896 in view of the Barrage scheme, under the direction of Captain Lyons, The accumoletions of rubbish on the island were cleared away and the walk and foundations of the atone buildings were all repaired and streagthened before the dam was completed. The annual flooding now appears to be actually heneficial to the stonework, by removing the disintegrating satis and incrustations. The tops of most of the boildings and the whole naclens of the temple of Isis to the floor remained all the year round above the water level until the dam was rised another 26 ft - work begun in 1907-when the tempias were entirely submerged except during July-October. But the beauty of the islasd and its ruins and palm trees, the joy of travellers and artists, is almost gone.
See H. G. Lyona, A Repior on ale Island and Tamples of Philae (Caino, 1896), with numerous plaps and photographas a socona report, A Report of ine Temples of Philoe (1909), deale with the condition of the ruins as affected by the immersions occasioned by the filling of the Asuan dam; Baedeker's Egypf; and on the effectis of the eabmervion, ac., reports in Ammales diesirvice des avitiquites; valp iv. v.
(F. LL.G.)
 patriarch of Moscow, was the second son of the boytr Nitita Romanovich. During the reign of his firet cousin Theodort I (158-1598), Theodore Romnoy distinguished himself both as a soidier and a diplomatist, fighting against the Swedes in 1590, and conducting negotiations with the ambanandors of the emperor Radolph II. in $1593-1594$. On the death of the childiless tsar, be was the popular candidate for the vacant throne; but he acquiesced in the election of Boris Godunov, and shared tho diagrace of his too-powerful family three years later, wheo Borit compelled both him and his wife, Xenia Chestovayz, to take monastic vows under the names of Philaret and Marthe reapectively. Philaret was kept in the strictest confimement in the Antoniev montstery, where be was exposed to every conceivable indignity; but when the pseudo-Demetrius orerthrew the Godunovs he zeleased Philaret and made him metropolitan of Rostov (1605). In 2600 Philaret fell into the hands of pacudoDemetrius II., who mamed him patriarch of all Rusian though his juriadiction only ertended over the very limited aren which acknowledged the impontor. From 16ro-1618 be wan a prisoner in the hands of the Polish king, Sigismund III., whom he refued to acknowledge as tsar of Muscovy oa belog tent on an embesy to the Polinh capp in 1610 . He wes relened on the concluaion of the truce of Deurino (Feb. 13, 1619), and on the and of Jraid was canonicelly enthroned patriarch of Mocoow. Henceforth, till. his death, the eatablished govermment of Muscovy was a diarchy. From 1619 to 1633 there were two actual sovercions, Tser Michael and hia father, the mont holy Patriarch Philaret. Theoretically they were co-regents, but Philerek frequently trangacted affais of state without consulting the tsar. He repleniaked the treanury by a more equable and rational syatem of asceming and collecting the tazes. His moet important
domestic measure was the chaining of the peagantry to the soil, a measure directed against the ever increasing migration of the down-trodden serfs to the steppes, where they beeame freebooters instead of tax-payers. The taxation of the tear's dyusknuie lyudi, or military tenants, was a first step towande the proportional taxation of the hitherto privileged classes Philaret's seal for the purity of orthodoxy sometimes led hirn into excesves: but he encouraged the publication of thoological works, formed the nucleus of the mbiequently famous Patriarchal Library, and commanded that every archbishop should establish a seminary for the clergy, himself setting tbe example. Another great service rendered by Philaret to his country wai the reorganization of the Muscovite army with the help of foreign officers. His death in October 1633 pat an end to the RussoPolish War ($1632-33$), withdrawing the strongest prop from an executive feeble enough even when supported by all the weight of his authority.
See R. N. Bain, The Firrs Romanows (Lomdon, r903); S. M. Solovev, Hish of Russic (Rua.), vol. ir. (St Peterib. i8gs, \&cc.) (R. N. B.)
PRILATBLIY (Gr. \$Nos, loving, and drelds, free of tax), the suidy and collection of postage-atamps and other marks of prepayment issued by post-offices. The fancy for collecting poastagestamps began a abort time after the issue of the first British penny and two-penny stamps in 1840 (soe Post and Postal Service). Dr Gray, an official of the British Museum, began collecting them soon after their appearance, and an advertiscment is an issue of The Times of ithar ashs for gifts of canculled ctamps for 2 young ledy. In 1842 the new hobby was ridiculed in Puuck It whes not until about 1860 , however, that stamp collecting began to be systematically carried on witb fill regard to such minutioc as the different kinds of paper, water-marks, perioration, shade of colour and distinctive outline. Ahout 1862 a teacher in Paris directed that foreign stamps should be collected and pasted upon the pages of bis pupiis' atlases and geographies according to countries, and this may have been the find form of the systematic classification of stampsin a collection. Of existing collections the oldest were begun between 1853 and 2860, by which year French collectors had assumed especial prominence. Professional dealera now made their appearance, and in 1861 philatelic literature, now of vast extent, was inaugurated by the publication in Strasbarg of a catalogue of atamps inved up to that time. The Paris collectors were the first to classify stamps, mensure them by the gauge, note the mater-marks and separate the distinct issues of each country. Collecting with due regard to the relationship of different issues Called plating. The firat English catalogue was issued in 2862, followed in Decomber of the same year by The Slamp Collectro's Rewies and Mouthly Adsortiser; published in Liverpool, the first philatelic periodical, the second, The Stamp Collector's Magesine, appearing in 1863 . In 1863 also appeared Le TimbraPoste, a Brumels journal. Up to 1910 over 800 philatelic periodicals had appeared.

Althoogh amall bodies of enthosissts had banded together In England, France and the United States for the study and collection of postagostamps as early as 1865, it was not until 1869 that the first great club, the Philatdic Society of Loudon, still the most important in the world, was founded. Other societies in Great Brftain are the Jumiop Philotedic of London, and theos of Birmingham, Mapcheater, Edinburgh and Leith. The leading society in America is the American Philatelic Aseocintlob; In France the Socille francaise de timbologic; in Cermany the Internationcler Philadditten-Verein. More than 400 euch organizations are now in existence, the majority of them in the United Stetes and Cermany. At a phitatelic congrus, held in London in 19ro, the formation of a universal union of philatelic societies " to discourage unnecesaryo or speculative imerese "was considered.
Not only the stampe themselves were collected, but "entires," i.e. poutcards, eavelopen with the tampe atili adhering, \&c. Marks oi-prepayment at last became so numerous that, about 1880, specialists began to appear, who restricted their colfectlons to the mampe of some particular coumtry or contivent, or to
postcards or newspaper-wrappers alone. The most extensive and valuable stamp collection in the world, that of Baron P. von Ferrary of Paris, was begun about 1865. This collection, which cost its owner at least $\{250,000$, containa a cancelled and an uncancelled specimen of each stamp. The next greatest collection is that bequeathed to the British nation in 189! by T. K. Tapling, M.P., now in the British Museum. Among other important collections may be mentioned those in the German Postal Museum in Berfin, of King George V. of England, W. B. Avery, H. J. Duveen and the earl of Crawford. The largest sum realized for an entirc collection was $£ 27,500$, which was paid for that of M. P. Castle, consisting of European stamps only. The value of a stamp depends partly upon its age, but much more upon its rerity, which again is dependent upon the number of the particular stamps originally issued. Most stamps have a quoted value, but some possess a conventional value only, such as those of which only one or two specimens are known to exist; for instance, the one-cent stamp of the 1856 isaue of British Cuiana (one known copy); the Italian is centesimi stamp of 1865 converted by an overprint into 20 centesimi (one copy); the Cape of Good Hope triangular, printed by mistake on paper intended for stamps of other colonies (four copies); and the 2 cent stamps of the earliest issue of British Guiana (ten coples). The best known of the very rare stamps are the id. and ad. "PostOffice " Mauritius, for whieh higher prices have been paid than for any other stamps, although 23 copies are known to exist out of the 1000 issued. For a fine specimen of these Mauritius stamps $£ 2000$ bas been offered. Two of them have been sold for $£^{2400}$. Philatelic exhibitions such as those held in London in 1890 and 1897 and in Manchester in 1909 have proved popular.
"Reprints" are reimpressions, taken from the original plates, of obsolete stamps, and have a much smaller value than specimens of the original issue. Forgeries of the rarer stamps are common but are easily detected. Modern postage-stamp alburns are often beautiful specimens of the printer's art, reproductions of every known stamp being given in the original colours.
See W. J. Hardy and E. D. Bacon, The Slamp Collector (Londoo, 1898): Ohiver Firth, Postage Stamps and Their Collection, (1897): F. J. Melville, ABC of Stamp Collecting (rgo3); Calman and Coltin. Calalogw for Adsanced Collealers (Naw York, 1goz); Hascing E. Wriegt and A. B. Creelo, History of the Admesite Stamps of the Brilish 7 sles (London, 1899); J. K Tiffany, Slamp Collector's Library Companion (Chicago, 1889): Luff, The Postare Stamps of the Uniled Slates (New York, 1902); W. E. Danielles Fistory of Eritisk Posb marks (London. 1898): L. Salefranque, Le Timbre a travers I kistoint (Rouen, 180); R. Senf, Illustricrier Pachouthreichomhalalog (Leipeie annualiy): Krôtzsch, Permanentes Handbuch der Postfreimar henturse (Leipzig. annually); periodicals: The London Phidotelisf (monthly): Illustriterte Briefmerhon-Zeitung (Leiptig).

PHILSTOII (c. $361-263$ b.c.), Greek poet of the New Comedy, was bom at Soli in Cilicia, or at Syracuse. He settled at Athens early in life, and his first play was produced in 330 . He was a contemporary and rival of Mentander, whom be frequently vanquished in poetical contests. Posterity reversed the verdict and attributed Philemon's successes to unfair influence. He made a journey to the east, and resided at the court of Ptolemy, king of Egypt, for some time. Phutarch (De Cohibende Irg, 9) relates that on his journcy be was driven by a storm to Cyrene, and fell into the hands of lits king Magas, whom be had formerly sitirized. Magas treated bim with contempt, and finally dismissed him with a present of toys. Various accounts of his death are given; a violent outhurst of laughter, excess of joy at a dramatic victory, or a peacefuf end while engaged in composing his last work (Apuleius, Piorida, 16; Lucian, Macrob. 25; Plutarch, An Seni, p. 725). Of the ninety-seven plays which be is said to have composed, the titles of fifty-seven and considerable iragments have been preserved. Some of these may have been the work of his son, the younger Philemon, who is said to bave composed fifty-four comedies. The Merchant and The Treasure of Philemon were the. originals respectively of the Mercator and Trinsmmus of Plautas. The fragments preserved by Stobacus, Athenaeus and other writers contain much wit and good sense. Quintilian (Ingtig. 2. 2, 72)
ampoed the swicond place among the poets of the New Comedy to Phflemon, and Apuleius, who had a high opinion of him, has drawn a comparison between him and Menander.

See A. Meineike, Nfonamdri et Philemenis raliquice (18n3, including Bentley's emendations); T. Kock, Comicorwom ereacorwim fragmema, vol. iii. (1884).
PAILEM0I, EPTATLE T0, a ecripture of the New Testament. Onesimus, a slave, had robbed (w. 11, 18-19) and run away from his master Philemon, a prosperous and influentinl Christian citizen of Colossae (Col. iv. 9), either offence rendering him liable to be crucified. Voluntarily or accidentally, be came across Paul, who wor him over to the Christian faith. In the few tactiul and charming lines of this bricf note, the apostie sends him back to his master with a plea for kindly treatment. After greeting Philemon and his wife, with Archippus (possibly their son) and the Christians who met for worship at Philemon's house (ov. 1-2), Paul rejoices over (v. 4-7) his correspondent's charncter; it encourages him to make an appeal on behalf of the unworthy Onesimus (8-21), now returaing (Col. Iv. 9) along with Tychicus to Colossae, as a pentent and sincere Christian, in order to resume his place in the household: With a line or two of personal detail (27-25) the note closes.

Rome would be a more natural rendezvous for fugitivarii (runaway slaves) than Cacsarea (Hilgenfeld and others), and it is probable that Paul wrote this note, with Philippians and Colossians, from the metropolis. As Laodicea is close to Colossae it does not follow, even if Archipprus be held to have belonged to the former town (as Lightfoot argues from Col. iv. 13-17), that Philemon's residence must have been there also (50 A . Maier, Thiersch, Wieseler, tic.). Paul cannot have converted Philemon at Colossae (Col. ii. 1), but elsewhere, possibly at Ephesus; yet Philemon may have been on a visit to Ephesus, for, even were the Ephesian Onesimus of Igratius (Eph. it.) the Onesimus of this note, it would not prove that he had always lived there. No adequate reason has been shown for suspecting that the note is interpolated at any polnt. The association of Timotheus with Paul (p . s) does not involve any official tinge, which would justify tbe deletion of cal Tumbeos δ ajed $\phi 6$ s mov in that verse, and of huive in w, y-2 (so Holtzmann), and Hausrath's suspicions of the allusion to Paul as a prisoner and of 1.12 are equally arbitrary. The construction in $20.5-6$ is difficult, but it yields to exegetical treatment (cf. especially Haupt's note) and does not involve the interpolation of matter by the later redactor of Colossians and Ephesians (Holtamann, Hausrath ${ }^{2}$ and Brickner, Reihenfolge d. pawl. Briefe, 200 seq.).
The brevity of the note and its lack of doctrinal significance prevented it from gaining frequent quotation in the early Christian litersture, but it appears in Marcion's canon is well as in the Muratorian, whilst Tertullian mentions, and Origen expressly quotes it. During the 19th centary, the hesitation about Colossians led to the rejection of Philemon by some critics as a pseudonymous little pamphlet on the slave questionan aberration of literary criticism (reproduced in Ency. Bib., 3693 seq.) which needs simply to be chronicled. It is interesting to observe that, apart from the letter of commendation for Phoebe (Rom. xvi.), this is the only letter in the New Testament addressed, even in part, to a woman, unless the second epistle of John be taken as meant for an individual.
Bibliogra fry. - In addition to most commentaries on Colossians and to Dr M. R. Vincent's edition of Philippians, compare special exeretical studics by R. Rollock (Geneva, 1602). G. C. Storr (1781), J. K. I. Demme, Erhlarung d, Philemon-Briefes (1844); H. A. Petermann, Ad fidem nersionwm ...cum carnum texdy orig. graece (Berlin, 1844): M. Rothe, Pauli ad Philem. epistolaz interpridatio kistoricoexegefica (Bremen, 1844); and H. I. Holtzmann, Zeibuchrifi far tissen. Theologie (1873), pp. 428 eqg, beaides the ewaya of J. G. C. Klotzich, De eccasione at indole epistolae ad Philem. (1792): D. H. Wildschut, De vi diction is el sermonis elegantia in epistola ad Philem. (1809): and I. P. Esser Der Briff an Philemon (1875). An up-to-date turvey of criticium is hurnished by Dr J. H. Bermard in Hastings's Dictiongery of the Bible, iv. $832-834$, and a good exposition may be found in Z. Weber's Der Brief and \& Philemon, ain Vorbild für die

[^29] Dryadale's devotional commentary (Loodoa, 1906).

PHILESDI and BAUCIS, the hero and heroine of a beautiful story told by Ovid (Medam. viii. 610-715), the scene of which is laid in Phrygia. Zetw, accompenied by Hermes, visited earth in human form; tired and weary, they sought shelter for the night, but all shat their doors against them except an aged couple living in a humble cottage, who afforded them hospitality. Before their departure the gods revealed themselves, and bade their hosts follow them to the top of a moontain, to escape the punishment destined to fall on the rest of the inhabitants. The country was overwhelmed by a food; the cottage, which alone remained standing, was changed finto a magnificent temple: The gods appointed Philemon and Baucis priest and priestess, and granted their prayer that they might die together. After many years they were changed into trees-Philemon trito an oak, Baucis into a Hme. The story, which emphasives the sacred duty of hospitality, is probahly of local Phrygian origin, put together from two widely circulated legends of the visits of gods to men, and of the preservation of certain individuals from the flood as the reward of piety. It lingers in the account (Acts xiv.) of the healing of the lame man by Paul at Lystra, the inhabitants of which identified Paul and Barnabas with Zeus and Hermes, "come down in the likeness of men."
Similar stories are given in I. Grimm, Deutrehe Mythologie (Eng. trans, $\mathbf{1 8 8 3}$, ii. 580, and iii. 38).

PHILEs, poet. At an early age he removed to Constantinople, where he was the pupil of Georgius Pachymeres, in whose honour be composed a memorial poem. Philes appears to have travelled extensively, and his writings contain much information concerning the imperial court and distinguished Byzantines. Having offended one of the emperors hy indiscreet remarks published in a chronography, he was thrown into prison and only released after an ahject apology. Philes is the counterpart of Theodorus Prodromus in the time of the Comneni; his character, as shown in his poems, is that of a begging poet, always pleading poverty, and ready to descend to the grossest flattery to obtain the favortable notice of the great. With one unimportant exception, his productions are in verse, the greater part in dodecasyliahic iambic trimeters, the remainder in the fifteen-syllahle" political" measure.
Philes wae the author of poems on a great veriaty of cubjects; on the characteristics of animalt, chiefly based upon Aclinn and Oppian, a didactic poerm of some 2000 lines, dedicated to Michael Palaeologus; on the elephant: on plants; a necrological poem; probably written on the death of one of the wons of the imperial house; a pancgyric on John Cameacuzone, in the form of a dhalogue; a conversation between a man and his squil; on cocleninstical eubjects, such as church festivals, Christian beliefs, the maints and fathers of the church; on works of art, perhaps the moet valuable of all his piecos for their bearing on Byzantine fromography, since the Writer had before him the morks be deacribes, and also the mont succeseful from a literary point of view; occasional poems, many of which are simply begging letters in verse.
Editions: the natural history poems in F. Lehrs and F. Dibner, Poeles bucolici at didactici (Didot erics, 1846): Mannelis Philae Carmina imadita, ed. A. Martini (1900); Manuelia Philae Carmina ed. E Miller (1855-1857). See also C. Krumbacher, Geschichite der bymantimischen Lilheralur (1897).

PHILBTAS of Cos, Alexandrian poet and critic, floarisbed in the second halif of the $4^{\text {th }}$ century b.c. He was tutor to the son of Ptolemy I. of Egypt, and also taught Theocritus and the grammarian Zenodotus. His thinness made him an object of ridicule; according to the comic poets, he carried leed in his shoes to keep himself from being blown away. Over-atudy of Megarian dialectic subueties is said to bave shortened his life. His elegies, chiefly of an amatory nature and singing the praises of his mistress Battis (or Bitth), were much admired by the Romans. He is frequently mentioned by Ovid and Propertius, the latter of whom imitated him and preferred him to his rival Callimachus, whose superior mythological lore was more to the taste of the Alexandrian critics. Philetas was also the author of a vocabulary called "Arearra, explaining the meanings of rave
and obecure words, including words peculiar to certain dialects; and of notes on Homer, severely criticized hy Aristarchus.

Fragnenta edited by N, Bach (y838), and T. Berys, Pactos lyrici erceci; ;ee aleo E. W. Masas, De tribus Phizstee carminibus (1895).
PHILIDOR, FRANCOIS ANDRS DANICAN (1726-1795), French composer and chest-player, was born at Dreux, on the 7th of September 1726, of a musical family. The family name was Danican, but that of Philidor, added in the middle of the 17th century, eventually supplanted the older name. Francois Andst received a musical education as a member of the corps of pages atteched to the orchestra of the king; and subsequently he earned his living hy giving lessons and copying music. Much of his time wat, however, devoted to chess, at which he soon became an expert. He spent many years in travelling on the Continent and in England, meeting and defeating the most noted players of the time, and is regarded as the strongest player and greatest theoretician of the 18th century. Returning to France in 1754, he resolved to devote himself seriously to musical composition, and after producing several works of minor importance hrought out at Paris, in the year 1759, his successful light opera, Blaise L_{s} Savetier, which was followed by a number of others, notably Le Soldat magicien (1760), Le Jardinier at son scignews (1761), Le Sorcier (1762), and Tom Jones (1764). He died in London on the 3ist of August 1795.

PHILLP (Gr. \$Anertos, fond of horses, from \$uleíy, to love, and $t_{\text {rinos, }}$ horse; Lat. Philippus, whence e.g. M. H. Ger. Philippes, Dutch Filies, and, with dropping of the final s, It. Filippo, Fr. Philippe, Ger. Philipp, Sp. Felipe), a masculine proper name, popularized among the Christian nations as having been that of one of the apostles of Christ. Notices of distinguished men who have borne this name are arranged below in the following order: (1) Biblical; (2) Kings of Macedonia, France, Germany and Spain; (3) other rulers.

PHiLIP, one of the twelve apostles, mentioned fifth in all the lists (Mati. x. 3; Mark iii. 18; Luke vi. 14; Acts i. 13). He is a mere name in the Synoptists, hul a figure of some prominence in the Fourth Gospel. There he is said to have been "of Bethsaida, the city of Andrew and Peter," and to have received his call to follow Jesus at Bethany, having previously been, it would seem, a disciple of the Baptist (John i. 43, 44; cf. 28). Philip was at that time the means of bringing Nathanael to Jesus (John i. 45), and at a later date he, along with Andrew, carried the request of the inquiring Greeks to the Master (John xii. 22). Philip and Andrew alone are mentioned by name in connexion with the feeding of the five thousand (John vi. 5, 7), and Philip is abso one of the few interlocutors in John riv. Slight though these references are, all agrec in presenting Philip as of an inquiring and calculating cheracter, slow to take the initiative, but, when convinced of the path of duty, thoroughly loyal in following it. After the resurrection he was present at the election of Matthias as successor to Judas, hut he does not again appear in the New Testament history; it is, however, implied that he still continued in Jerusalem after the outbreak of the first persecution.
Little reliance can be placed on the traditional accounts of Philip, owing to the evident confusion that had arisen between him and the evangelist of the same name, who appears in the book of Acts (see below). According to Polycrates, hishop of Ephesus, in his controversial letter written to Victor of Rome towards the end of the and century (ap. Euseb. HI. E., iii. 31, v. 24), the graves of Philip "of the twelve apostles," and of his two aged virgin daughters were in (the Phrygian). Hierapolis; a third daughter, " who had lived in the Holy Ghost," was buried at Ephesus. With this may be compared the testimony of Clement of Alexandria, who incidentally (Strom. ini. 6) speaks of "Philip the Apostle" as having begotten children and as having given daughters in marriage. On the other hand, Procius, one of the interlocutors in the "Dialogue of Caius," a writing of somewhat later date than the letter of Polycrates, mentions (ap. Euseb, H. E., iii. 31) "four prophetesses, the daughters of Philip at Hierapolis in Asia, whose tomh and that of their father are to be seen there," where the mention of the
daughters frophesying identifies the persois meant with the Philip of Acts (cf. Acts 20 i. 8). The reacons for setting aside this latter identification, and for holding that the Philip who lived at Hierapolis was the Apostie are clearly stated by Lightfoot. Colossians (2) note 3, p. 45 seq., and fresh confirmation of his view has recently been afforded hy the discovery of an inscription at Hierspolia, showing that the chorch there was dedicated to the memory" of the holy and glorious apostle and theologian Philip" (Ramsay, Cilise and Bishoprics of Phrygia, vol. i., pt. ii. p. 552).
See also Cormen, "Die Tochter des Phalippus" in the Zriteckrij fir die mentestamemilliche Wissenschaof ((g901), p. 289 sq9. The other view, that the Philip of Hierapolis is the Philip of Act, \& taken by Zahn, Forschungen sur Geschichte des neutestamendichem Eenons (1900), vi. 158 eq9.

A later stage of the tradition regarding Philip appears is various late apocryphal writings which have been edited by Tischendorf in his Acta epostolormis epacryphe, and in his Apocalypses apocryphoe. According to the Acta Philippi, a work belonging at the earliest to the clone of the $4^{\text {th }}$ century (see Zahn, op. cit. p. 18 sqq.), Philip, with Bartholomew and his own sister Mariamne, exercised a widespread missionary activity, preaching not only throughout Asis Minor, but also in Hellas the city of the Athenians, in Scythia, and in Gaul, icc. According to one account be died a natural death; according to anotber he was hanged or crucified, head downwards. An apocryphal gospel, which describes the progreas of the soul through the neat world, bears his name (Hennecke, Neutestomenulicio A pohryithen, 1904, p. 40 seq.).

Since the 6th century Philip has been commemorated in the West, along with St James the Leas, on the ist of May, their relics being deposited in the same church in Rome; in the Eastern Church Philip's day is the 14th of November, and that of James the Less the a3rd of October.

PHILIP, "the evangelist," is first mentioned in the Acts (vi. 5) es one of "the seven" who were chosen to attend to certain temporal affairs of the church in Jerusalem in consequence of the murmurings of the Hellenists against the Hebrewe After the martyrdom of Stephen he went to "the city of Samaria," where he preached with minch spccess, Simon Magus being one of his converts. He afterwards instructed and baptized the Ethiopian eunuch on the road between Jerusalem and Gaza; next he was " caught away" by the Spirit and "found at Azotus" (Ashdod), whence "passing through he preached in all the cities till he came to Caesorea " (Acts viii). Here some years afterwards, according to Acts $\mathbf{x x i} .8,9$, where he is described as "the evangelist " (a term found again in the New Textament only in Eph. iv. 11; a Tim. iv. s), he entertained Paul and his companion on their way to Jerusalem; at that time " he had four daughters which did prophesy." At a very early period he came to be confounded with the apostle Philip (see above); the confusion was all the more easy because, as an esteemed member of the apostolic company, he may readily have been described as an apostle in the wider sense of that word (gee further Salmon, Indrod. to the New Tastament, 7 th ed., p. 313 sqq.). A late tradition describes him as settling at Tralles in Asia Minor, where be became the overseer or ruler of the church. "Philip the deacon" is commemorated on the 6th of June.
PHILP I. king of Macedonia, a semi-legendary prince, son of Argaeus, was, according to Herodotus (viii. 137-139) and Thucydides (ii. ros), the third of the Macedonian kinge. In the texts of Dexippus and Eusebius he ranks sixth, Caranus, Coenus and Thurimas (or Turimmas) being there regarded as the predecessors of Perdiccas I., whom Herodotus and Thucydides regard as the first king of Mecedonia. Eusebius and Dexippws assign to Philip I. a reign of 38 and 35 years respectively. There is, however, no real evidence for his existence.
(E.R.B.)

PHILP II. ($382-336$ B.c.), king of Macedonis, the som of Amyntas II., and the Lyncestian Eurydice, reigned 359-336. At his hirth the Macedonian kingdom, including the turbulent peoples of the hill-country behind, was very imperfectly consolidated. In 370 Amyntas died, and the troubled reigm of

Philip's eldest brother, Alexander I1., was cut short in 368 by his assassipation. His murderer, Ptolemy of Alorus, rulod as regent for the young Perdiccas, Amyntas's second son. In 367 Philip was delivered as hostage to the Thebans, then the leading power of Greece (by whom does not seem clear). During the three years be spent at Thebes the boy no doubt observed and learnt much. When he returned to Macedomia (364) Perdiccas had succeeded in getting rid of Ptolemy; but he fell in 360-359 before an onset of the hill tribes instigated by tho queen-mother Eurydice, leaving only an infant son. Various pretenders sprang up and the kingdom fell into -onfusion. Philip seized the throne and drove back his rivals. He now began the great task of his life-the creation of the Macedonian national army. The first experiment he made with this new organiam was brilliantly successiul. The hill tribes were broken by a sipgie battle in 358, and Philip established his authority inland as far as Lake Ochrida. In the autumn of the same year he took the Athenian colony, Amphipolis, which commanded the gold-mines of Mt Pangaeus. Their possession was all-important for Philip, and be set there the new city, called after him, Philippi. Athens was temporarily pecified by assurances that Amphipolis would be handed over to her later on. The work of fashioning the Macedonian army occupied Philip for the next few years, whilst his diplomacy was busy securing partisans within the states of Greece. He avoided as yet a forward policy, and having taken Pydna and Potidaea soon after Amphipolis, he made them over to the Olynthian confederation (see Olyntrius). His marriage with the fierce witch-woman, Olympias, daughter of the Epirote king, falls in this period, and in 356 she bore bim his greater non, Alexander. In 353 Philip was ready for strong action. He first attacked Abdera and Maronea, on the Thracian sea-board, and then took Methone, which belonged to Athens. An overt breach with Athens was now inevitable. In the same summer be invaded Thessaly, where the Aleuadae of Larissa ranged themselves on his side against the tagus Lycophron, "tyrant" of Pherae. Pherae called in the help of the Phocian mercenaries, who had profaned Delphi, and Philip met with a check. He had, however, the advantage of now being able to present himself to the Greeks as the champion of Apollo in a holy war, and in 352 the Macedonian prmy won a complete victory over the Pheraeans and Phocians. This battle made Pblip tagus of Thessaly, and he claimed as his own Magnesia, with the important harbour of Pagasae. Hostilities with Athens did not yet take place, but Athens was threatened by the Macedonian party which Philip's gold created in Euboea.

From 352 to 346 Philip díd not again come south. He was active in completing the suhjugation of tbe Balkan hill-country to the west and north, and in reducing the Greek cities of the coast as far as the Hebrus (Maritza). For the chief of these, indeed, Olynthus, he continued to profess friendship till its neighbour cities were in his hands. Then, in 349, he opened war upon it. Athens, to whom Olynthus appealed, sent no adequate forces, in spite of the uphraidings of Demosthenea (see his Olyadkiacs), and in the spring of 347 Olynthus fell. Philip razed it to the ground (see Olynthus). Macedonia and the regions adjoining it having now been securely consolidated, Philip. celebrated his "Olympian" games at Dium. In 347 Philip advanced to the conquest of the eastern districts about the Hebrus, and compelled the submission of the Thracian prince Cersobleptes. Meanwhile Athens had made overtures for peace (see the De falsa legatione of Demosthenes), and when Philip, in 346 , again moved south, peace was sworn in Thessaly. The time was come for Philip to assert himself in Greece, and the Phocians, who still dominated Delphi and held Thermopylae, could furnish a pretert to the champion of Pan-Helleniom and Apollo. The Phocian mercenaries at Thermopylac were bought of and Philip crossed into central Greece. Here he made Thebes his ally and visited the Phocians with crushing vengeance. The Pythian games of 346 were celehrated at the delivered Delphi under Philip's presidency. Pan-Hellenic enthusiasts already anw Philip as the destined captain-general of a national crusade against Perris (Lsocrates, Philijppws, about 345). And
sech a position Philip had determined to secure: the Maceºminn agents continued to work throughoat- the Greek states, and is the Peloponnesuas Sparta soon foond herself isolated. Euboen, too, submitted to Macedonian influenct, and even received some garrisons. But more work had to be done in the Balken bighlands. In s44, or one of the following years, the Macedoaina arms were carried acrose Epirms to the Adriatic. In 342 Philip led a great expedition north "comparable to nothing in antiquity since Daxius' famous march to Scythia." In 34x his army was still campaigoing in eastern Thrace, when Philip felt compelled to show his presence is Thessaly. During these years, although Athens had not overtly broken the peaco of 346, there had been various diplomatic bickerings and hoatile intrigues between the two powers (cf. the Philippics of Demosthenes). Athens had even sent emisaries to the Persien.court to give warning of the proposed natlonal crusade. She now esged on the cilies of the Propontis (Byzantium, Perinthus, Selymbria), who felt themselves threatened by Philip's Thracian conquests, to declare agimst him. The sirepes of Perinthus and Byrantinan $(340,389)$ ended in Philip's meeting with a signal chock, due in some mensure to the belp afforded the besieged cifies by Athems and ber allies Philip's influence all over Greece was compromised. But befone marchiag south be led another experition acroes the Balkens into the country now called Bulgaria, and retarned to Pellis with much epail but severely wounded is the thigh. In 338 be once more crossed into central Greoce. The pretext was the contumacy shown by the Locrian town Amphisea to the rulings of the Amphictyoric Council. Philip's fortification of Eletes filled Athens with alarm. Thebes was induced to join Athens; so were aome of the minor Peloponnesian atates, apd the allien took the field against Philip. This opponition was cruabed by the epoch-mating battle of Chaeroneia, which left Greece at Philip's feet. In the following year (337) Philip was in the Peloponnesus, and a congress of the Greek atates at the Isthmous (from which, however, Sparta held sullenly aloon recogeized Philip as captain-general for the war against Persia Philip returned to Macedonia to completehin preparations; an edvansed force was sent into Aefia in the spring of 336. But Philip's.plans were suddenly blasted by his assassination in the come year during the manriage festival of his danghter at Aegae, the old capital of Macedonia. He left, however, in the Macedonian army a splendid instrumant which enabled his som within ten years to change the face of the world.
Philip stands high among the makers of kingdoms. Restless energy, determination, a faculty for animating and organizing a strong people, went with umecrupulous duplicity and a fuliblooded vehemence in the pleasures of sense. Yat Philip was not untouched hy ideal considerntions, as is proved hy the respect, no douht sincere, which he showed for Hellenic culture, by the forbearance and deference with which he treated Alhens, the sacred city of that culture and his mortal foe. A special interest belongs to the Macedonian kingdom as it was shaped by Philip, since it forestalls a system which was not to find the time ripe for it in European history till many centuries later-thenational kingdom quichened with the culture developed by the ancient city-states. The national kingdoms founded by the Northern races, after the fall of the Roman Empire, under the influence of the classical tradition, are the beginnings of the modern European bystem; Philip of Macedon foreahadown Theodoric, Charlemagne and William the Conqueror. But this first national kingdom within the sphere of Greek culture could not ultimately live between the surge of the Northern barbarians and the Roman power.

See the authorities under Grasce: Bistory. A vivid and masterly eketch of Philip's personality aod work is given in D. G. Hogarth's Phitho and A lexander (1897).
(E. R.B.)

PGILP III. [Arshmazosl, king of Macedonia, was the fceble-minded son of Philip II. of Macedonia by a Thessalian wife. He was chosen by the Macedonian prmy at Babylon in 323 to be nominal king conjointly with the infant Alexander, and was killed in Macedonia by order of Olympies (117). (See Mackdonian Expire)

37^{8} PHILIP (KINGS OF MACEDONIA)-PHILIP II. (FRANCE)

THILP IV_{n}, kins of Macedoain, was the son of Casatider, uny of Macedunia: he reigned only one year (297-296).
PIILIP Vop king of Macedonia, son of Demetrius II. and Chrysels, was an infant at his father's death in 230-229. His cousln, Antlgonus Doson, administered the kingdom as regent cill his death in 221-220, when Philip was eighteen years old. Philip now ascended the throne and reigned till 179 . His relgn was occupiod in the vain strugge to maintain the old Macedoaian supremacy in the Balkan Peninsola, which became mopeleng after the intervention of Rome and the decisive battle of Cyooscephalac (197). See Rome: EIistory, II. "The Republic " (period B, 8 b).
(E. R. B.)

PHILIP I. (ro50-1ro8), king of France, eldeat som of Henry I of France and Anne, daughter of Jarosiav I. (d. Io54), grand duke of Kiev, came to the throne, when a child of eight, by the death of his father on the 4 th of August roco. He hat been crowned at Reims, in the presence of a number of magnates, on the 23 nd of May 1059. Philip passed most of his early years in and around Paris, whero the castles of lawless barons, such as that of Montliery, threatened even his personal safely. His minority came to an end in ro66. In the long reign that followed be showed no great ability or energy, and a booseness of motals which embroiled him with the Church. Before he was fifly years of age he became "fond of nothing but good cheer and sleep." But he increased the lands of his house around Paris, maintained order in them, and held his own against Watiam I. and William II. of England, whose power in France far enceeded his own. This he accomplished for the most part by taking advantage of the quarrels among his vassals. When Baldwin VI. of Flanders died, in roto, his son Arnull was attacked by his uncle Robert the Frisian, count of Holland. Philip interiered, at the prayer of Arnulf's mother, Richildis; bot the allies were defeated near Casset on the aznd of February ro7r and Arnulf slain. After a second war peace was sealed, apparently, by the marriage of Philip to Robert's step-daushter Bertha, daughter of Gertrude of Saxony and Florence, count of Holland. In 1074 a new rupture led to Phillp seizing Corbie, part of the dower of his aunt Addle, who had married Baldwin IV. of Flanders. By chis he secured a sort of outpost in the direction of Flanders. The other main episodes of lis reign were the quarrel over the Angevin inheritance and his wars with the dukes of Normatidy. In ihe struggle between Fulk Rechin and his hrother Geoffrey the Beanded for the fnheritance of their uncie, Geofirey Mertel (d. 1060), count of Anjou, Philip received from Pull in to69. as the price of his neutrality, Chiteau Landon and the Gatinais. This acquisition linked the county of Sens, acquired in ross, with the rest of the domain round Paris, Melma and Orieans. War with Wrliam 1. was chronic but fintermittent. In 1076 Pbirip forced him to ralse the siege of Dol in Brittany. Peace was made in 1077, and in December ro79 they tojether besieged Robert Curthose in the castle of Gerberoy. On the 8th of May zo80 the siege was raised and peace thade. War with William began again in ro81 over the county of Vexin, which Philip had seized on the retirement of its count, Simon of Valois, to a monastery in 1076. William demanded reparation for the rald of Philip's vassals and the cession of Pontoise, Chaumont-en-Verin and Mantes, but died dfter sacking Mantes in the same year. In rog8 there was was between Philip and William Rufus in both Maine and the Vexin. William came in person from Maine to lead the attack in the Vexin in September, and crossed the Sefne, penetrating to Within 30 m . of Paris on the west; but the campaign brought no results. In his last years Philip left the duty of repelling the attacks of his Norman and other enemies to his son Louis, associating him with himself, as "king-designate," some time between the 24 th of May 1098 and the 25 th of September 1100.

It was his second marriage which was the cause of Philip's greatest difficultics. On the 15 th of May 1092 he carried off Bertradz, daughter of Simon, barqn de Montfort, wife of Fulk Rechin. and prepared to marry her, though his wife Bertha was still living. The bishops, headed by Ivo, bishop of Chartres, refused to attend the ceremony of marriage, hut one was found
to perform it. Philip's open simony had long been a cause of friction with the papacy. When be added bigamy and adultery, Urban LI. excommunicated him. The bishop of Chartres, in consequence, refused to bring his vassals to help Philip's ally, Robert, duke of Normandy, against his brother William in ro94Bertha died in that year, but Fulk was still living, and the sentence was renewred at the council of Autun on the 55 th of October. Philip replied by summoning the bithops to Paris to try Ivo of Chartres for treason. He gained a respite from the papal sentence by promises of submission, but the sentence was renewed by Urban at the council of Clermont in re95, in rog6, and in ro97, and at Poitiers in zror, despite the protest of William IX., count of Poitiers, who entered the church with his knights to prevent his suserain from being excommunicated on his lands. Philip was reconciled with the Church in 1104, and took an oath not to have any converse or society with Bertrada except in the presence of "non-suspect" persons. But they scem to have gone on living together, and even visited Fulk Rechin (Bertrada's husband) in company on the 15 th of October noc6. Philip died at the end of July n108.

His reign is chiefly remarkable for the steady growth of the royal domain. In addition to the gains mentloned, be bought in 1101 a large alice of territory, including Bourges and Dun-leRoi, from Eudes Arpin, viscome of Bourges, who was going on the crusade; and toward the end of his reign took Montlitry, whoee lond beset tho southern approech to Paris. By his first queen he had four children: Louis VI., who succeeded him; Henry, who died young; Charles; and Constance, who married Hugh I., count of Champagme, and later Bohemund I:, prince of Antioch. By Bertrada de Montfort ho had three children: Phellip, count of Montes; Fleury or Florus, who married the beiress of Nangis; and Cecilia, who married, first Tancred, prince of Galice and Antioch, and secondly Pons de Saint Gilles, count of Tripoli.

The materials for the reign of Philip I. are in the Recuel des historiens des Casiles et de la France, vols. xi. to xvi. See especially the critical examination by Dom Erial of the historians who have spoken of Philip I. at the beginning of vol zvi Consalt alno E. A. Freeman, Norman Conguest, Ny passim, and William Rufas, ii. 165-302: A. Luchaire, Lowis le Gros (Paris, 1890), and w Les Premiers Capetiena in E. Lavisse's Histoire de France (iI. Ii. Pp. 168-175). More recent is the Recuais det actes de Philippe I., edited by M. Pron (rgos), and E. Monod's Erpoi ser les rapparts de PaseaJII. cose Philippe 7. (Paris, 1907). For notices of the principal chronicles of the time aee A. Molinier, Les Sources de Fhisloire de Frouce (II., esp. p. 307 et meq.).

PHILIP II. (1165-1223), known as Pemip Acgosios, king of France, son of Louis VIL. and Adela, daughter of Theobald II., count of Champagne, was born on the 21st of Augost 1165. On the 1st of November 1179 he mas associated with his father as king hy being crowned at Reims, and at once his father's illness threw the responsibility of government on him, the death of Lonis on the roth of September 1880 leaving him sole king.
The boy-king found himself and his kingdom in a difficult and humiliating position. His long strip of royal domain was hemmed in by the Angevin Empire on the west and by the kingdon of Arles on the south-east. Henry II. of England mas feudal lord of the greater part of France, practically all west of a line which began at Dieppe and ended at the foot of the Pyrencen more than half-wey across to the Mediterranean, while at one point it nearly touched the Rhone. Philip's predecessors had consolidated the Capetian power within these narrow limits, but be himsetf was overshadowed by the power of his uncles, William, archbishop of Reims; Henry I., count of Champagne; and Theobaid V., count of Blois and Chartres. He secured an ally against them, and an addition to the royal domain, by marrying, on the 28th of April 1 r8o, Isabelia or Elizabeth, daughter of Baldwin V., count of Fiainaut, and of Marguerite, sister of Phlip of Absace, the reigning count of Flanders, who ceded Arras, St Omer, Alre and Hesdin, and their districts, as Isabella's dowry, a district afterwards called Artois. On the 28th of June y 880 Philip made a treaty with Henry II. at Gisors, and his reign thus opened auspiciously. But from ri81 to 1185 he had to struggle against a feudal league of his Champagnard uncles and other great
berome, whote motat active member wis Stephen L., chant of Sancerre (issa-ingi). Though attacked from both north and eouth, the king's activity enabled him to compel the count of Sancerte to implore peace in 1181. On the denth of leabel of Vermandois, wife of Count Philip of Flanders, in 118z, Philip claimed Vermandois and seized Channe and St Quentin, and forced his father-in-iaw, Baldwin of Hainaut, to support him by threateniag to divorce Queen lsabel. The count of Flanders was obliged to sign the treaty of Beves in Joly 1585 , which gave the king, in addition to the expectetion of Aito , his wifte's dower, sisty-five castles in Vermandois and the town of Armiens. By mi86 Hugh, duke of Burgandy, the only member of the coalition not yet subdued, was focced to submit. Then, cecure at bome, the king turned against Henry II., and by the truce of Chitenuronx in Jone 1187 , gained Issoudin and the seigniory of Freteval in the Vondomoin. Thoagh the eruce was for two years, Phitip assembled an army in 3888 to invede Normendy, demanding Gisors and the conchution of the marriage which had been arranged betwetn his sister Alice and Richard of England, who had meanwhile deserted his father. But the news came that Saladin had taken Jerusalem and Richard took the cross. Shorthy afterwards Philip took.edventage of a rising against his quondam friend Richard, who was duke of Aquitaine, to seize the county of Berry At a conference at Bommoalins on the 28th of Novenber Richard again abendoned his father, and after a second conference at La Ferte Bernard, Philip invaded Maine and forced Henry II to conclude the ireaty of Aray on the sth of July 1189, by which the English king did homage and surzendered the territories of Gracy and Imoendun. Henry died two fays later Pledges of mutual good faich and fellowship were senewed betwean Philip and Rlchard of England on the joth of December 1589 , and they both prepared to go on the crusade.

Before setting out Philip arranged for the government of France during his absence by his famous tostament of ingo, by which he proposed to rule France as far as postible from Palestine. The power of the regents, Adela, the queen-mother, and William, erchbishop of Reims, wes restricted by a council composed mostly of clerks who had the king's confidence. An annual report on the state of the kingdom was to be sent him. On the wey to Palestine the two kings quarrelled. At the siege of Acre Philip fell ill, and on the amd of July, nine daya after its fall, he announced his intention of returning home. He reached Paris at Christmas 1r91, having concluded on his way an alliance whth the emperor Henry VI. against Richard, despite his pledges not to molest his lands. When Leopold 1., duke of Austria, took Richard prifoner and delivered him to the emperor, Philip dild his utmost by offers of money to prolong his captivity, and, allied with the English king's brother John, attacked Richard's domains, but upon Richard's return the Normans rallied enthustastically to his aid. Philip was defeated at Freteval on the 3rd of July 1894 , but he continued the war, generally with ill success, for the next five years. Again a formidable coalition was formed against him, including Baldwin IX., count of Flanders and Hainmat, Renaud of Demmartin, count of Boulogne, Louris, count of Blols, and Raymond Vi., count of Toulouse. In Germany, Otto of Brunswick, efterwards the emperor Otto IV., allied bimseff with Richard, while Philip was supported by Otto's rival, Phillp of Swahin. Richard's death, in April i199, removed his archenemy; and Richard's successor, John, concluded the treaty of Le Goulet with Philip on tbe 22nd of Mfay 1200 , ceding to him the count y of Evreux, Graçy and lssoudun, and the susertinty of Berry and Auvergne. John renounced his suzereinty over Brittany and t be guardianship of his nephew, Arthur; he engaged not to aid the count of Flanders or Otto IV. without Philip's consent, paid him a reliel of 20,000 marks, and recognived himself as his vassal for his continental fiefs. Philip's son louis, afterwards Louis VIII., married Blanche of Castile, John's niece. But in 1202 the war was renewed, John having seized somecastics from the family of Lusignin. whose head was the count of La Marche, and taken for his queen a prospective bride, Isabelle Taillefer, from Hugh, son of Hugh IX., count of La Marche. At atinterviev at Le Goulet on the asth of March, Phillp demanded •
the cession of Anjou, Poitor and Normandy to his ward, Arther. John refused; be was summoned to Puris before the royal judges, and failing to appear was sentenced at the end of Apcil 1202 to lone all his fiefs. Brittany, Aquitaine and Anjou were conferred on Arthur. Philip invaded Normandy, took Lyone-Lu-Fortt and Eus, and, establishing himself in Gournay, besieged Arques But John, joined by Witiam des Roches and other lords of Maine and Poitou, jealonss at the incrense of Philip's power, defeated and took Arthur prisoner at Mirebeau. Philip abendoned the siege of Arques in a fit of fury, marched to the Lolre, burning everywhere, and then returned to Paris. Bat John soon alienated the Poitevin barons, and Williarn des Roches signed a treaty with Philip on the and of March 1203 . Then Philipicontinued his great tasit, the conquest of Normandy, capturing the towns around the fortress of Chiteau-Gailland which Richard had built to command the valley of the Seine. Pope Innocent III. tried to bring about peace, but Philip was obdurate, and after murdering Anthur of Brittany John took refuge in England in December :203. The fall of Chitean-Gaillard, after a siege which lasted from September 1203 to April 1204 , decided the fate of Normandy. Roven, boumd by ties of trade to England, resisted for forty days; but it surrendered on the 24th of June 1204. The conquest of Maine, Touraine, Anjou and Poitou in 1204 and r205 was litule more than a military promenade, though the castles of Loches and Chinon held out for a year Philip secured his conquest by invishing privileges on the convents and towns He left the great lords, such as William des Roches, in full possession of their feudal power. In 1206 be marched through Brittany and divided it amongst his adherents. A truce for two years was made on the 26th of October 1206 by which John renounced all claims in Normandy, Maine, Frittany, Touraine and Anjon, but it did not last six months. Then Poitou was thoroughly subdued, and another truce was made in 1208 , little more than southern Saintonge and Gascony being left in the hands of John. Philip had reduced to a mere remnant the formidable continental empire of the Angevins, which had threatened the existence of the Capetian monarchy.

Philip then undertook to invade England. In the assembly of Soissons on the 8th of April 1213 he made every preparation for carrying out the sentence of deposition pronounced by the pope against John. He had collected 1500 vessels and summoned all his barons when Innocent LIl., having sufficiently frightened John, sent Pandulf with the terms of submission, which Jobm accepted on the 13 th of May.

Disappointed of his hopes of England, Phllip turned his arms against Ferdinand, count of Flanders. Ferdinand, son of Sancho I., king of Portugal, owed his county to Philip, who, hoping to find him a docile protege, had married him to Jeame, heiress of Flanders, daughter of Count Baldwin IX., who became emperor of the Eass, using the weak Philip of Namur, her guardian, toaccomplish that end. They were married in January 1212. On the miorrow of the marriage Louis, afterwards Louis VIII., seized Aire and St Omer in right of his mother, Isabella, and on this account Ferdinand refused his feudar duty in the English expedition. Moreover, the trade interests of his suhjects, who got their raw wrool from England, drew him to an alliance with England. Philip's attack brought this about on the 2and of May 1213. He invaded Flanders and took the chicl towns within a week; bat he had part of his fleet hurned hy the English at Damme, and had to hurn the rest to save it from faling into their hands. He retumed to Paris, and Ferdinand retook most of the towns which had been taken by the king. A war of fire and pillage began, in which Philip and his son Louis burned thelr way through Flanders, and Ferdinand did the same through Artols.

In 1214 came the great crisis of Philip's life, All the forces against which he had been struggling milted to overwhelm him. Paris was to be attacked from Flanders and Guienne al the same time. A league including his rebei vassals, Renaud of Dammartin, count of Boulogne, and Ferdinand, count of Flanders, with the emperor Ofto IV. and a number of German princes of the Rhide reglon, had been formed in tweroth-east, while John of England
made one more attempt to recover his heritage at the head of an army of mercenaries aided by the fickle baronage of Poitou. John landed at La Rochelle on the 16 th of February 1214, and was at first succestul. On the roth of June he laid siege to Ls Roche-aux-Moines, the fortress which delended Angers and commanded the Loire valley; but on the approach of a royal army under Prince Louis on the and of July his Poitevin barons refused to risk a pitched battle, and he flod hastily to la Rochelle. The Angevin Empire in France was lost. Meanwhile Philip himself won his greateat victory at the bridge of Bouvines, among the morasses of Flanders. At first taken by curprise, he turnod the abortive attack into a complete rout. Renaud and Ferdinand were taken prisoner, and Otto IV. fied from the battiefied. The army of the allies was utterly destroyed (July 27, 1214). Nothing shows the progress of the Capetian monarchy more than the enthusiasm and joy of the people of France, as described by William the Breton, over this crowning victory. The battle of Bouvines, a decisive battle for the history of Germany as well as for France and England, sealed the work of Philip Augustus. The expedition of his son Louis to conquer England can handly be considered as an incident of his reign, though he was careful to saicguard the rights of the French Crown. More important was the Albigensian crusade, in which he allowed Louis to take part, though be himself, preoccupied with the king of England, bad refused time after time to do anything. He treated Simon de Montfort as if he were a royal bailli; hut it was not in virtue of any deep-laid scheme of his that in the end Amaury de Montfort, Simon's con, resigned himself to leave his lands to the Crown of France, and gave the Crown a power it had never before possessed in Lantuedoc.

Even more than hy his conquests Philip II. marks an epoch in French history by his work as an organizer and statesman. He surrounded himself with clerks and legists of more or less bumhle origin, who gave him counsel and acted as his agents. His baillis, who at first rather resembled the itinerant justices of Henry II. of England, were sent into the royal domain to supervise the conduct of the prepols and hear complaints, while in the newly acquired lands in the south local feudal magnates were given similar powers with the citle of senechal. Feudal service was more and more compounded for by a money payment, while additional taxes were raised, all going to pay the mercenarics with whom he fought Richard I. and John. The extension of the system of sawoegarde, by which abbeys, towns or lay vassals put themselves under the special protoction of the king, and that of pariage, by which the posseasor surrendered half the interest in his estate to the king in return for protection or some further grant, increased the royal power. Tbe small barons were completely reduced to submission, whilst the greater feudatorics could often appoint a castellan to their own castles only after he had taken an oath to the king. Philip supported the clergy against the feudal londs, and in many cases againgt the burgesses of the towns, but rigidly exacted from them the performance of their secular dutics, ironically promising to aid the clergy of Reims, who had failed to do so, "with his prayers only" against the violence of the lords of Rethel and Roucy. He clung to his right of regale, or enjoyment of the revenues of bishoprics during their vacancy, though it was at times commuted for a fixed payment. The attempt to raise a tithe for the crusade in 1189 failed, however, before a general resistance owing to an unfair assessment.
It has been said with some justice that Philip II. was the first king of France to take the bourgeaisie into partnership. He lavoured the great merchants, granting them trade privileges and monopolies. The Jews be protected and plundered by turns, after the fashion of medieval kings. Amongst the subject towns administered by frendes a great extension of the "custom of Lorris" took place during his reign. But it is as the ally and protector of the communes that be takes his almost unique place in French history. Before him they were resisted and often crushed; after him they were exploited, oppressed, and finally destroyed. In the case of Senlis be extended the jurisdiction of the commune to all crimes committed in the district. It is
true that he sappressed some commones in the newiy conquens? fiefs, such as Normandy, where John had been prodigal of privileges, but he erected new communes in his owa private domain, quite contrary to the custom of other kings. He seems to have regarded them as a kind of garrison against fevdal unaliness, while the rente they furnished increased his financial resources. He created no new types of commune, however, except Peronne, which received a maximum of political indopendence, the twenty-four electors, who named the jurds and other officam, being elected by the corps da meldiers.

The newly organized powers of the Crown were in evidence everywhere, interfering in the family affairs of the great feudntories and taking advantage of minorities, such as that of Theobald IV. of Champagne. The great feudatories acoepted his legislation on dower in 1214 and 1319 and the clablissement of 1209 making co-heins of fiefs hold direct from the king and not from one of their number. The Toumois was substituted for the Angevin money in Normandy after 1204. The army which safeguarded this sctive monarchy consisted chiefly of mercenaries. The old feudal ast was but rarely convoked. The communes, though they appear as taking part in the battle of Bouvines, compounded for their service by a money peyment as early as 8194
Philip's policy of huilding up a strong monarchy was pursued with a steadiness of aim which excluded both enthusinsm and acruple. But he secms to have prided himself on a certain humanity, or even generosity of temper, which led him to avoid putting his enemies to death, though be did not scruple to condemen Renaed of Dammartin to the most inhuman of imprisonments. He was impulsive and could display extraordinary activity at times, but he possessed also a certain coldness and caution. He shrant from no trickery in carrying out his ends, and had no roons for plty. He could not even trust his own son with any power, and was brutal in his relations with his queen, Ingeborg. He is described by Paita Gltincau as "a well-knit, handsome man, bald (from his illosss at Acre), of agreeable face and ruddy complexion, loving good cheer, wine and wormen. Generous to his friends, he was miserly to those who displeased him; very skilled in the art of the engineer, catholic in his faith, far-secing obstinate in his resolution. His judgment was sound and quict He was also quick in his anger, but easily appeased." As the result of his steadiness of aim and patient sagacity, at the end of his reign the Crown was victorious over the feudal nobility and the royal domain extended to the frontiers along wilh royal authority. Artois, the Amienois, Valois, Vermandois, the greater part of the Beauvaisk, Normandy, Maine, Anjou, Touraine, and an important part of Poitou and Saintonge, were added to the domain during his reign. The number of prtobks was increased from thirty-eight to nimety-four, and the royal revenue increased from 19,000 livses a month to 1200 livies a day.

Philip Augustus died on the 14th of July 1223. He was thrice married. His first wife, Isabella, by whom he had one son, Louis, died in 1889 or zrga. After her death he married Ingitsjorg or Ingeborg (q.v.), daughter of Vildemar L of Denmark This unlucky marriage was negotinted, it is said, chiefly to acquire the old claims of Denmark over England, to be used as a weapoe against Richard I. However that may be, be soon repudiated this Danish princess, for whom be seems to have conceived an unconquerable aversion on the very morrow of his marriage to her, and in 1196, in defiance of the pope, who had refused to nullify his union with Ingeborg, married Agnes, daughter of Bertold IV., duke of Meran. This led to his ercommunication and brought the interdict upon France, and did more to weaken him than any other act of his. In 1200 be was forced to putaway Agnes and to recognire Ingeborg as his lawiul wife, but he kept her in prison until 2213. By Agpes (d. 1201) he had a son Philiph called "Hurepel," count of Clermont, and a dagghter Mary, who married Philip, count of Namur (d. 1213), and then Heary Lh. duke of Brabant. Ingeborg lived until z236.

See A. Luchaire in E. Levisse's Bistoiry \&o France, tome ini 83-284 (Paris, 1904), and literature there Ipdicated; L Destiste, Catalotw des aclas do Philippe Augates (País, 8856 and 1901):

(Leipait, 1899), Bd. II. Der Erownex (1906); and W. H. Hutton, Puilit Augusial (in the Forrign Statesmen series, London, 1896). A. Molinier, Las Sources de l'histoire de France (rome iii. pp. 1-38), gives a complete bibliography of the sources for Philip's relgn, including the history of the Third Crusade.

PHILIP III. (1245-1285), surnamed "the Bold " (le Hardi). king of France, son of Lovis IX. and Margaret, daughter of Raymond-Berenger IV., count of Provence, was born on the 3rd of April 1245. His funeral monument at St Denis depicts a man with beardless, square-cut features, but lacking character and animation. The autbenticity of this effigy is fairly well borne out by what is known of him from other sources. He had many of the virtues of St Lovis, but neither decision of character nor devotion to duty. He was pious, charitable, of unimpeachable morality, quick-tempered but placable, no great scholar, and only energetic as a hunter. The absence in him of the qualitios that fit a man to rule made his court the arema of intriguing factions, which in reality ruled France during his reign of fifteen years. Matthew of Vendome, abbot of St Denis, an ald servant of Louis IX., acted as Philip's counsellor, so the chroniclers state, throughout the reign; but he is only a shadowy figure, and it is difficult to reconcile the statement that "everything was done eccording to his will" with the known facts. It was probably with administration, and not policy, that Matthew was chjefly concerned. In one instance at least his advice was openly Gouted. Coming to the throne by the death of his father on the 25th of August 1270, Philip began his reign by falling entirely under the influence of Pierre de la Brosse, who had been surgeon and valet-de-chambre to his father, upon whom he lavished lands and honours, making hiro lord (sieur) of Langeais, Chatillon-sur-Indre and Damville. Even Edward I. of England and William. Daropierte, count of Flanders, strove to win his favour by sifts. But his fall was assured when Philip, who in xa7r lost his first wife, Isabellh, daughter of James I., king of Aragon, matried in 2274 Marie, daughter of Henry III., duke of Brabant. She was young and beautiful, and supplied a centre round which those who wished the downfall of the favourite grouped themelves. In June 1278 he was charged with various crimes, including one of poisoning the king's eldest son, and hanged at Montfaucon. His death left the parties of Marie, the qucen, and Margaret, the queen-mother, to strugale for the mastery. The firs subject of dispute was the inheritance of the count of Provence, Raymond-Bérenger IV., father of Margaret and of Eleanor, wife of Henry MII. of England. Upon his death, in ra45, his youngest daughter, Beatrice, wife of Chatles of Anjou, the king's uncle, succeeded to his lands, to the exclusion of her elder sisters, who claimed some portion of them for themselves. In 128 I war nearly broke out on this question. Margaret and her friends formed the league of Macon against Charles of Anjou, but the king managed to keep them at peace. The settlement of the claims of the king of England in Aquitaine by the treaty of Amiens in 1279 was a victory for the party of Margaret.

Agenais and southern Saintonge, which fell to the Crown by the death of Alfonse of Poitiers in 1276, as part of his vast possessions in Aquitaine and Languedoc, were ceded to Edward 1. of England in accordance, with the treaty of Paris 1259. Another portion of the heritsge of Alfonse, the Venaissin, was ceded to the papacy to redeem an old promise. In general the strong will of Charles of Anjou directed Philip's policy. He secretly urged his nephew's candidature for the imperial crown, left vacan by the death of Richard of Cornwall, king of the Romans, in 1272, but without success. In May 1275 the party of Marie secured for Philip, the king's second son, the hand of Jeanne, the heiress of Navarre and Champagne, along with the guardianship of the kingdom of Navarre during the minority of Jeanne. But early in 1276 Jeanne's mother, Blanche, the widow of Henry III. of Navarre and Champagne, married Edmund, first earl of Lancaster, brother of Edward I.; and she and her English husband kept Champagne until, in 1284, Jeanne came of age.
An expedition of Philip against Castile in aid of the children of his sister, Blanche, proved abortive. Regardless of this Fracning be was induced in 1284 to take up the quarrel of his
uncle Charies in Sicily, after the Sicilian Veapers in 1282. Two assemblies of barons and prelates were held at Bourges in November 1283 and February 1284 to deliberate on the question. This was a mere matter of torm; Marie of Brabunt and her party had decided the matter beforehand, and the crown of Aragon, which the French pope Martin IV. had declaved forfeited by Peter, was accepted for Charles of Valois, Philip's third son. The project was atroagly oppoeed by Matthew of Vondome, who was in correspondonce with the king of England on the subject. It was the first warlike expedition undertaken by the house of Capet outside France. It proved a disastrous failure. The Prench army laid sicge to Cerona on the 26th of June 1285. The town surrendered on the 7th of September, but disease and the defeat of the fleet by the Aragonese navy at Las Farmiguas Islands led to a retreat, during which, on the 5 th of October, the king died. In the same month the garrizon placed at Geroms surrendered. It is typical of Philip's character and career that he should die thus, in an expedition.undertaken agninst the interests of his kingdom, at the instigation of his ambritious uncle.

Philip was twice married. On the 28th of May xa62 he married Isabelle, daughter of James I., king of Aragon, who died in 1271. By her he had four children: Louis, who died in 1276; Philip, born in 1268; Charles of Valois, born on the rath of March 1270; and Robert, who died young. By his second wife, Marie (d. 1322), daughter of Henry III. of Brabant, whom he married in 1a74, be had three children: Louis, count of Evreux; Margaret, who married in 1299 Edward I., king of England; and Blanche, who married Rudolph III., duke of Austria.
Sce Ch. V. Langlois, Le Rtyne de Philippe Le Hevdi (Paris, 1887); and in E. Lavisse's Histoire de France, tome iit., it. II3-117 (Paris, 1901); Fr. Walter; Die Poditih der Kuric waler Gregor X. (Bertin, 1894 ; Registers of Gregory X. and Nicholas III., published by the French school at Romei R. Sternfeld, Ludwies des Feiligen Krevzzug wack Twnis mad die Politik Kurls 1. pom Sivilien (19g6); P. Fournict, Le Royamme d'Arler (Paris, I89I). For complete bibliography of sources see A Molinier, Les Sources de l'hisloire de Framce, tome iii. 171-187 (Patis, 1903).

PHILIP IV. (ra68-1314), called " Le Be " or "the Fair," king of Franoe, was the son of Philip III. and his wife, Isabella of Aragon. His reign, which began in October 1285, is one of the most momentous in the history of medieval Europe, yot it belongs rather to the history of France and to that of the papacy than to the biography of the king. Little is known of the personal part played by Philip in the events associated with his name, and later historians have been divided betwen the vitw which regards him as a handsome, lethargic nonentity and that which paints him as a master of statecralt who, under a veil of phlegmatic indifierence and pious sentiment, masked an inflerible purpose, of which his ministers were but the sprokesmen and cxecutors. The first view seems to be borne out by the language of contemporary chroniclers. To his enemy, Bernard Saisset, he was neither man nor beast, but a statue, "the handsomest man in the world, but unable to do anything but stare fixedly at people without saying a word." Guillaume de Nogaret, his minister, draws a far more flattering picture, enlargiag on his charm, his amiability, his modesty, his charity to all men, and his picty; and the traits of this over-coloured portrait are more or lews repeated by Yves, a monk of St Denis. There is, however, no word of any qualities of will or initiative. All of which suggeats a permonality mentally and physically phlegmatic, a suggestion strengthened by the fact that Bartholomieus de Neocastro (quoted by Wenck) describes him as corpulent in r2go.

Yet this was the king who with equal implacability hrought the papacy under his yoke, carried out the destruction of the powerful order of the Temple, and haid the foundations of the mational monarchy of France. In this last achievement Professor Finke finds the salution of a problem which Langlois had declared to be insoluble. In 1302, in the midet of a hostile assembly, Philip cursed his sons should they consent to hold the Crown of any one hut God'; and in this isolated outburst he sees the key to his character. "Philip wat not a man of violent initiative, the planner of daring and fateful operations; otherwise there
${ }^{2}$ Wenck, p. 49.
moold have been some rigns of it. His personality was that of a mell-instructed, outwardly cold, because cool and calculating man, essentially receptive, afire for only one idea: the highest pousible development of the French monarchy, internally and externally, as against both the secular powers and the Church. His merit was that he carried through this idea in apite of dangers to hiowelf and to the state. A resolution once arrived at he carried out with iron obstinacy." Certainly he was no roi !ainlart. His courage at the battic of Mons-en-Pevele was the admitation of friend and foe alike. It was against the advice of his tutor, Acgidius Colonna, that on coming to the throne be chose as his counseliors men of the legal class, and the names of his great ministers-Guillaume de Nogaret, Enguerrand de Marigny, Pierre Flotte (d. 1302)-attest the excelient quality of his judgment. He was; too, one of the fow monarchs who have left to their successors reasoned programmes of reform for the state.

The new materials from the Aragonese archives, poblished by Finke, give the same general impression of "uncanny" reticence on Philip's part; when other conternporary kings would have spoken he treeps silence, allowing his ministers to speak for him. Isolated passages in some of the Aragonese letters included in the collection, however, throw a new light on contemporary estimate of his character, describling him as all-powerful, as " pope and king and emperor in ore person." ${ }^{1}$

The reign of Philip IV. is of peculiar interest, because of the intrusion of econonaic problems into the spheres of national politics and even of religion. The increased cost of government and the growing wealth of the middle class, mather than the avarice of the king and the genius of his mimisters, were responsible for the genesis and direction of the new order. The greatest event of the reign was the struggle with Pope Boniface VIII. (g.g.). The pope, in his epposition to the imposition of royal taxation upon the clergy, went so far in the bull Clericis laicos of 1296 as to forbid any lay authority to demand taxes from the clergy without his consent. When Philip retaliated by a decree fortidding the exportation of any coin from France, Boniface gave way to save the papal dues, and the bulls issued by him in 1297 were a decided victory for the French king. Peace hetween the two potentates followed until 130I. After the arrest, by Philip's orders, of Bernard Saisset (q.v.), bishop of Pamiers, in that year, the quarrel flamed up again; other causes of difference existed, and in 1302 the pope issued the bull Unam sanctam, one of the most extravegant of all statements of papal claims. To ensure the support of his people the king had called an assembly of the three estates of his kingdom at Paris in April 1302; then in the followins year Guillaume de Nogaret seized the person of the pope at Anagnl, an event immortalized by Dante. Boniface escaped from his captors only to die (October 11), and the short pontificate of his saintly successor, Benedict XI., was occupied in a vain effort to restore harmony to the Church. The conclave that met at Perugia on his death was divided between the partisans of the irreconcilable pollcy of Boniface VIII. and those of a policy of compromise with the new state theories represented by France. The election was ultimately determined by the diplomacy and the gold of Philip's agents, and the new pope, Clement V., was the weak-willed creature of the French king, to whom he owed the tiara. When in 1509 the pope installed himself at Avignon, the new relation of the papacy and the French monarchy was patent to the world. It was the beginning of tbe long "Babylonish captivity" of the popes. The most motable of its first-fruits was the hideous persecution of the Templars (q.v.), which began with the sudden arrest of the members of the order in France \ln 1307, and ended with the suppression of the order by Pope Clement at the council of Vienne in 1313 .

It is now tolerahly clear that Philip's molives in this sinister proceeding were lack of money, and probably the deliberate

1 Finbe, it no, 78, P. 122. Anon. to the commanderies of Cardeyne and Amcho: PPus des rey et papa et emperadorl Car tot lo mon sap, quel papa no es negun et que el fa tot go ques vol del papm et de la eqgied."
wish to destroy a body which, with fis privieged position and international financial and military organization, conalituted a possible menace to the state. He had already persecuted and plundered the Jews and the Lombard bankers, and repeated recourse to the debasing of the coinage had led to a series of small risings. But under his rule something was done cownals systematizing the royal tares, and, as in England, the financial needs of the king led to the association of the people in the wort of government.
In 1394 Philip IV. attacked Edward I. of England, then busied with the Scottish War, and seized Grienne. Edward won over the counts of Bar and of Flanders, bat they were defeated and he was obliged to make peace in 1297. Then the Flemish cities rose against the French royal officers, and utterly dereated the French army at Courtrai in 1302 . The reign closed with the French position unimproved in Flanders, except for the transfer to Phillp by Count Rohert of Lille, Dousi and Bthune, and their dependencies. Philip died on the 29th of Novemher 1314. His wife was Jeanne, queen of Navarre (d. 1304), through whom that country passed under the rule of Philip on his marriage in 1284; three of his sons, Louis X., Philip V. and Charles IV., succeeded in turn to the throne of France, and a daughter, Isabella, married Edward II. of England.

See the Chronigue of Geoffrey of Paris, edited by M. Booquet, in vol. xxii. of the Recural des wifloricus des Geulas et de ha Pratic. Of raodern works mee E Boutaric, La Framce somy Philippe Le BA (186I); G. Digand, Philigpe le Bed et le Seimi-Sizge (1900); C. V. Lanylois in E. Lavisse's HAsloire de France, vol. iii. (1901); K Wenck, Philipp der Schone mon Frankreick (Marburg, 1905): H. Finke; Papstlum and Untereang des Tamplerandenc, 2 vols. (Mutater i. W. Igo7l, esp 1.ch. il.

PHILIP V. (c. 1294-1322), " the Tall, ${ }^{\text {º }}$ King of Prance, second son of Philip the Fair and Jeanne of Navarre, recelved the county of Poitiers as an appanage, and was affianced when a year old to Jeanne, daughter and heiress of Otto IV., count of Burgundy. The marriage took place in 1307 when he was thirteen years of age. When his elder brother, Louis X., died, on the sth of July 1316, leaving his second wife, Clemence of Hungary, with child, Philip was appointed regent for eighteen years by the parliament of Paris, even in the event of a male heir being born. Clemence's son, born on the $15^{\text {th }}$ of November, lived only four days, and Philip immediately proclaimed himsell king, though several of the great barons declared that the rights of Jeanne, daughter of Louis X. by his first wife, Margaret of Burgundy, ought to be examined before anything else was done. The coronatipn at Reims, on the gth of January 1317, took place whth the gates of the city closed for fear of a surprise. The states-general of the 2nd of Fehruary 13r7, consisting of the nobles, prelates, and the hurgesses of Paris, approved the coronation of Philip, swore to obey him, and declared that women did not succeed to the Crown of France. The university of Paris approved this declaration, but its members did not take tbe oath. The Salic law was not involved, and it was later that the lawyers of the 14th century tried to connect this principle to an articte of the Salic law, which accords inheritance in land (i.e. property) to males. In the Frankish law the article refers to private property, not to pthilic law. The death of Philip's son Louis, in 1317, disarmed the opposition of Charies, count of La Marche, who now hoped to succeed to the Crown himself. Odo or Eudes IV., duke of Burgundy, was married to Jeanne, Philip's daughter, and received the count y of Burgundy as her dower. The barons all did homage except Edward II. of England, and Philip's position was secured. The war with Flanders, which had begun under Philip IV. the Fair, was brought to an end on the and of June 1320. The revolt of the Pastocreaux who assembled at Paris in 1320 to go on a crusade was crushed by the seneschal of Carcassonne, whither they marched. One of the special objects of their hatred, the Jews, were also mulcted heavily by Philip, who extorted r50,000 livies from those of Paris alone. He died at Longchamp on the night of the and of January 1322.

Philip was a lover of poetry, surrounded himself with Provengal poets and even wrote in Provencal himself, but he was also one of the most hard-working kings of the house of Capet. The
ineccurity of hia positfon mede him seek the support of national ascemblles and of provincial estates. His reign in some ways reembled that of Edward I. of England. He published a serics of ordinancess organizing the royal houschold and affecting the financial administration, the " pariement" and the royal forests. Boabolished all satrisons in the tomas except those on the finonticr and prowided for public order by allowing the inghabitants of his towns to armi thenselves under the command of captains He tried band to procure a unification of coinage and wcipsts and measures, but failed owing to the opposition of the extates, who were alruid of the new taxation neccessary to mect the lows involved in mising the standard of the coinage, and who hedd to their toenl measares and currency partly from conservatism, partly as a relic of local liberty. Philip as a reformar wes in many ways before his time, but his poople failod to understand him, and he died under the repraach of extortion.
See P. Lehugeor, Histoine de Philippe Le Long (Paris, 8897); E. Laviste, Hiscoire de Pramer (Tome 11, 2): and sourcea incticated in A. Molinier, Reforloire des sources de riniwoive de France (Paris, 8003).

PRILIP VI. (2 293-1350), king of France, was the son of Charlea of Valois, third won of Philip III., the Bold, and of Margaret of Sicily, and was thas the nephew of Philip IV., the Fatir, whose sons, LouisXX., Philip V. and Charles IV., died successively without leaving mabe heirs. He succeeded to the thronc on the death of his cousin, Charise IV., in 1328. Before his accession Philip had enjoyed considerable influence, for he was count of Valois, Anjou, Maine, Cbartres and Akncon. He had married in 1313 Jeanme (d. 1348), daughter of Rober II. of Burgundy, a detevoined woman who was long known as the real riler of France. An expedition to Italy in $\mathbf{1 3 1 9 - 2 0}$ against Calios Vieconti brought him litue glory; he was more sucecessul in a small expedition to Guienne, undertaken against a revolted vused who was supported by the English.
When Chartes IV: died, in February $\mathbf{1 3 2 8}$, his wife was enceinte, and it became necessary to appoint a regency until the birth of the child, who would, ii a son, succered to the throne. At the assembly of barons called to choose a regent, Edward MII. of Enjland, the nephew and nearest male relation of Charices IV., pot in a ctaim. Edwand III., however, descended from the royal house of France by his mother Isabel, and the barons. probably actuatod by an ohjection to the regency of an English king, decided that neither a woman, "nor by consequence bei sann, could succeed to the kingdom of France," and Philip of Valois, in spite of his belonging to a junior branch of the family, wes elected regent. On the birth of a girl to the queen widow the regency raturally led to the throne of France, and Philip was crowned at Refths on the 19th of May 1328. Navarre had not tocepted the regency, that kingdom being claimed by her husband for Jeanne, countess of Evreux; the eldest daughter of Louis X., the count of Evreux himself being, like Philip of Valois, a grandson of Philip the Bold. The new king secured the friendship of the count by allowing Jeanne's chnim to Navarre, in returnfor a renurciation of any right to Champagne. Edward III. of England, after more than one citation, tendered verbal homage for part of Guienne at Amiens in 1329, but he declined to place his hands between those of Philip VL., and thus formally to acknowledge bim as his liege loid. Two ycars later, however, be forwarded the acknowledgment by letters patent. Meanwhile Philip VI. had won a victory, which he turned into a massacre, at Cassel (August 23, r328) over Bruges and the other towns of West Flanders, which under the leadership of Jakob van Artevelde had thrown off the authority of their count, Loxis of Nevers. The count of Flanders was. reinstated, and maintalned his authority by a reign of terror.
Much harm was dove to Philip VI.'s authority by the scandal arising out of the prosecution of Robert of Artok, count of Beaumont, who was the king's brother-in-law. The count had presented to the pariement of Paris forged doeds in support of his claim to the county of Artois, held by his aunt, Mahaut, countess of Burgundy. The surden death of Mahnut, and of her deughter and heivess, Jeanne, widow of Philip V, lent celour
to other suspicions, and Robert was driven from France and hia soods confiscated. He found reluge, first in Brabant and theie at the English court, where he was received as a relative and a victim of false sccusationa.

Philip VI. enjoyed powerful elliances. In Italy he was allied with his uncle, Robert of Anjou, king of Sicily, and with his former enemy, Galens Visconti; in the north with the duke of Brabant and the princes of the Netheriands; on the cast with the reigning princes of Lorraint and Savoy; with the king of Bohemia and with Pope John XXII. at Avignon, and hia successor, Benedict XII. In 1336 it seemed that the Crusade, for which Philip VI. had long been preparing, would at last start; but the relalions with Edward III. of England, which had always been struined, became worse, and within a year France was embarked on the struggle of the Hundred Years' War. The causes which led to war, the conflict for commercial supremacy in Flanders, disputed rights in Guienne, the help given by France to the Scots, and the unnatural situation of an English king who was also a vassal of the French Crown are dealt with elsewhere (see France: History). The immediate rupture in Flanders was due chielly to the tyranny of the count of Flanders, Louis of Nevers, whom Philip VI. had reinstated. Edward III. had won over mast of Philip's Cerman and Flemish allies, and the English naval victory at Sluys (June 24, 1340), in which the French ficet was annihilated, effectually restored English preponderance in Flanders. A truce followed, but this was disturbed after a short duration by the disputed succession to the duchy of Brittany. Edward III. supported John of Montfort; PhilipIV. his own nephew, Charies of Blois. A truce made at Malestroit in 1343 at the invitation of the pope, was rudcly broken by Philip's violence. Olivier de Clisson, who with fourteen other Breton gentiemen, was suspected of intrigut with Edward IIL., was invited to a great tournament in Paris. On their arrival they were seized by Philip's orders, and without form of trial beheaded. Then followed Edward III.'s invasion of Normandy and the campaigni of Crecy (g.s.). Philip's army was destroyed; he himscif was wounded and fled from the field. He sought in vain to divert Edward from the sicge of Calais by supporting the Scots in their invasion of England; but eventually a truce was arranged, which lasted until 1351. Philip VI. diod at Nogent-de-roi on the r2th of August $\mathbf{1 3 5 0}$.

Philip VL. met his necessities by the imposition of the hated gabelle or salt tax, which was invented by his legal advisers. The value of the coinage fluctuated continuously, to the great hindrance of trade; and although at a meeting of the States. General it was asserted that the king could levy no extraordinary taxes withont the consent of the estates, he obtained heavy sabsidies from the various provinces. Towards the close of his reign he acquired from Humbert II., comte de Vienne, the province of Dauphint, and Montpellicr from the king of Majorca. These acquisitions made the ultimate annexation of Provence a certainty. Philip married a second wife, Blanche of Navarre. By his first wife he left two sons-his successor, John II., and Philip of Orleans, count of Valois.
See Continuations de ba chromique de Guillawme de Nangis edited in 1843 by Gerraud for the Soc. de Ihist. de France; Grandes ckroniques de Saint Denis, vol. v. (6837), edition by Paulin Paris; E. Deprez, Les PrAliminaires de la guerre de ceas axs, 1328-1343 (Paris, 1902), based on texts from the English Record Office and the Votican; - Paul Violfet, Histoire des instíztions politigues de la Framee wol. ii (Paris, 1898): and EL Lavisse, Hish de France, vol. iv. pt. I. (1902). by A. Colville. Further references will be found in Nos 3095-3t12 and $3165-3240$ of A. Molinier's Sources de l'histoive de France, vol. iv. (Paris, 1904).

PRILIP (. 1177-1208), German king and duke of Swabia, the rival of the emperor Otto IV., was the fifth and youngest son of the emperor Frederick I. and Beatrix, daughter of Renaud III., count of Upper Burgundy, and consequently. brother of the emperor Henry VI. He entered the church, was made provost of Aix-la-Chapelle, and in 1 rga or hrgz was chosen bishop of Würzburg. Having accompanied his brother Henry to Italy in itgr, Philip forsook his ecclesiastical calling, and, travelling again to Italy, was made duke of Tuscany in 1195 and received
an extensive grant of lands In ingo he became duke of Swabia, on the death of his brother Conred; and in May 1197 he married Irene, daughter of the eastern emperor, Isaac Angelus, and widow of Roger II., king of Sicily, a lady who is described by Walther von der Vogelweide as "the rose without a thorn, the dove without guile." Philip enjoyed his brother's confidence to a very great extent, and appears to have been designated as guardian of the young Frederick, afterwards the emperor Frederick II., in case of his father's early death. In 1197 he had set out to fetch Frederick from Sicily for his coronation when he heard of the emperor's death and returned at once to Germany. He appears to have desired to protect the interests of his nephew and to quell the disorder which arose on Henry's death, but events were too strong for him. The hostility to the kingship of a child was growing, and after Philip had been chosen as defender of the empire during Frederick's minority he consented to his own election. He was elected German king at Mohlhausen on the 8th of March n198, and crowned at Mainz on the 8th of Scptember following. Meanwhile a number of princes hostile to Philip, under the leadership of Adalph, archbishop of Cologne, had elected an anti-king in the person of Otto, second son of Henry the Lion, duke of Saxony. In the war that followed, Philip, who drew his principal support from south Germany, met with considerable success. In 1199 he received further acceasions to his party and carried the war into his opponent's territory, although unable to obtain the support of Pope Innocent III., and only feebly assisted by his ally Philip Augustus, kling of France. The following year was less favourable to his arms; and in March 1201 Innocent took the decisive step of placing Philip and his associates under the ban, and began to work energetically in favour of Otto. The two succeeding years were still more unfavourable to Philip. Ot to, aided by Othakari., king of Bohemia, and Hermann I., landgrave of Thuringia, drove him from north Cermany, thus compelling him to seek by abject concessions, but without success, reconciliation with Innocent. The submission to Philip of Hermann of Thuringia in 1204 marks the turning point of bis fortunes, and he was soon foined by Adoiph of Cologne and Henry I., duke of Brabant. On the oth of January 1205 he was crowned again with great ceremony by Adolph at Aix-la-Chapelle, though it was not till $\mathbf{8 2 0 7}$ that his entry into Cologne practically hrought the war to a close. A month. or two later Philip was loosed from the papal ban, and in March 1208 it scems probable that a treaty was concluded by which a nephew of the pope was to marry one of Philip's daughters and to receive the disputed dukedorn of Tuscany. Philip was preparing to crush the last flicker of the rebellion in Brunswick when he was murdered at Bamberg, on the 21st of June 2208, by Ot to of Wittelsbach, count palatine in Bavaria, to whosa he had refused the hand of one of his daughters. He left no sons, but four daughters; one of whom, Beatrix, afterwards married his rival, the emperor Otto IV. Philip was a brave and handsome man, and contemporary writers, among whom was Watther von der Vogelweide, praise his mildness and generosity.
Sce W. von Gescbrecht, Geschichle der denksehes Kajecreit, Bd. V. (Leiprig, 18881; E. Winkelmann, Philipp wos Schooaben Bud out IV. yon Brasnschweig (Leipzig 1873-1878); O. Abcl, Konif Philif ${ }^{2}$ der Hohenstaufers (Berling ${ }^{1852}$): Regesta imperii. V., edited hy J. Ficker (innshruck. 1881); R . Sch wemer, Innocemz III.
 (Serrastorg, 1882); and R. Riant, Innocens III., Ppilippe de Somabe, * Bomifece de Montjerrat (Paris, 1875).

PHILLP I. the Handsome (1478-1 506), king of Spain, son of the emperor Maximilian I., and husband of Joanna the Mad, daughter of Ferdinand and Isabella, was the founder of the Habsburg dynasty in Spain, and was born at Bruges on the 2 2nd of July ${ }^{1478}$. In 1482 he succeeded to the Burgundian possessions of his mother Mary, daughter of Chares the Bold, under the guardianship of his fatber. In 1406 he married Joanna. The marriage was one of a set of lamily alliances with Austria and Portugal designed to strengthen Spain against France. The death of John, the ouly son of Ferdinand and Isabella, opened the succeasion to the Spanish Crown to Joanta. In

Igon she and ber husband received the bomage of the contes of Castile and of Aragon as beirs. Philip returned to Flandert bofore the close of the year. His life with Joanna was rendered extremely unhappy by his infidelity and by ber jealousy, which, working on a neurotic temperament, precipitated her insenity. The princess gave way to paroxyams of rage, in which the was guiley of acts of atrocious vioience. Before ber mocher's death, in 150, she was unquostionably quite insane, and husbend and wife llved apart. When Isabella died, Fardinand endeavoured to lay hands on the regency of Castilo, bat the nobles, who disliked and feared him, forced him to withdraw. Philip was summoned to Spain, where he was recognised as king. He landed, with his wife, at Corumna on the 28ch of April igo6, accompanied by a body of German mercenaries. Father and soo-in-law had interviews at Remesal, near Pueblo de Senabria, and at Renedo, the only result of which was an indecent family quarrel, in which Ferdinand professed to defend the inderests of his daughter, who he suid was imprisoned by her husband. A civil war would probably have broken out between them; but Philp, who had oaly been in Spain long enough to prove his incapacity, died suddenly at Burgos, apparently of typhoid fever, on the 25 th of Seplember 1 go6. His wife refused for lons to allow his bedy to be buried or to part from it. Philip was the father of the emperors Charles V. and Ferdinand I.
PHILP II. ($1527-1598$) king of Spain, was born at Valladolid on the 21st of May r537. He was the son of the emperor Charics V., and of his wife Isabella of Portugal, who were first cousins. Philip reccived his education in Spain. Wris tutor, Dr Juan Martincz Pedernales, who latinized his name to Siliceo, and who was also his confossor, does not appear to have done his duty very thorouglly. The prince, though he had a.good command of Latin, never equalled his father as a linguist. Don Juan de Zuniga, who was appointed to teach him the uee of arms, was more conscientious; but he had a very poor pupil. From his carliest years Phiiip showed himself more addicted to the deak than the saddle and to the pen than to the sword. The emperor, who spent his life moving from one part of his wide dominions to another and in the camps of his armies, watched his heir's education from afar. The trend of his letters was to impress on the boy a prolound sense of the high deatinies to which he was born, the necessity for keeping his nobles apart from all share in the conduct of the internal government of his kingdom, and the wisdom of distrusting counsellors, who would be sure to wish to influence him for their own ends. Philip grew up grave, self-possessed and distrustful. He was beloved by his Spanish suhjects, but utterly without the power of attrecting men of other races. Though socused of extreme licentiousness in his relations with women, and though be lived for years in adultery with Dofia Maria de Osorio, Philip was probably less immoral than most kings of his time, including his father, and was rigidly abstemious in cating and drinking. His power of work was unbounded, and he had an absolute love of reading, annotating and drafting despatches. If he had not become sovereisn of the Low Countries, as heir of Mary of Burgundy through his father, Phillp would in all probatility have devoted himself to warfare with the Turks in the Mediterrasean, and to the conquest of northern Africe. Unhappily for Spaing Charles, after some hesitation, docided to transmit the Netherlands to his son, and not to allow them to go with the exapire. Philip was summoned in 1548 to Flanders, where he went unwillingly, and was ill regarded. In 155x be was back in Spain, and intrusted with its gavernment. In is43 he had been married to his cousin Mary of Portugal, who bore him a son, the unhappy Don Carlos, and who died in 1545. In 1554, when Charles was meditating his abdication, and wished to secure the pasition of his son, he summoned Philip to Flanders again, and arranged the marrlage with Mary, queen of England, who was the daughter of his mother's sister, in order to form \& union of Spaing, the Netheriands and Eagland, befort which France would be powerless. The marriage proved barren. The abdication of his father on the 10 th of January 1596 constituted Philip sovereife of Spadu with its Americar possessions, of the Arogonens inheritance
in Italy, Naples and Sicily, of the Burgumaina inheritunce-Lhe Nethorlands and Franche Comte, and of the dachy of Milan, which his father separated from the erepire for his benefit. It was a legacy of immense.responsibilities and perils, for France was bound in common prudente. to endeavour to suin a power which encircled her on every side saye the sen and threatened her independence. France was for a time beaten at the batties of St Quentin and Gravelines, and forced to make the Peace of Catean Cambresis (April 2, 1559). But the death of Mary of England on the 17 th of November 1558 had deprived Philip of English support. The establishment of Elizabeth on the English throne put on the lank of his acattered dominions another power, forced no less than France by unavoidable political necessities to be his, enerny. The carly difficulties of Elizabeth's reign secured him a deceitful peace on that side for a time. His marriage with Elizabeth of Valois on the aznd of June 1559, and the approach of the wars of religion; gave him a temporary security from France. But the religions agitation was affecting his own Flemish possessions, and when Philp went beck to Spain, in August i559, he was committed to a lifelong struggle in which he could not prove victorious except by the conquest of France and England.

If Philip 11. had deserved his name of the Prudent he would have made haste, so soon as his father, who continued to intervene in the government from his retreatat Yuste in Estremodura, was dead, to relieve himself of the ruinous inheritance of the Low Countries. It was perhaps impossible for him to renounce his rights, and his education, co-operating with his natural disposition, made it morally impossible for him to believe that he could be in the wrong. Like the rest of his generation, he was convinced that unity of religion was indispensable to the maintenance of the authority of the State and of good order. Family pride, also, was carried by him to its highest poasible pitch. Thus external and internal influences alike drove him into conflict with the Netherlands, France and England; with the first because political and religious discontent combined to bring sbout reyolt, which he falt bound in duty tocrush; with thesecond and third because they helped the Flemings and the Hollanders. The conflict assumed the character of a struggle between Protestantism and Roman Catholicism, in which Philip appeared as the champion of the Church. It was a part he rejoiced to play. He became, and coukd not but become, a persecutor in and out of Spain; and his persecutions not only hardened the obstinacy of the Dutch, and helped to exasperate the English, but they provaked a revolt of the Moriscoes, which impoverished his kingdom. No experience of the failure of his policy could shake his belief in its essential excellence. That whatever he did was done for the service of God, that success or failure depended on the inscrutable will of the Almighty and not on himself, were his guidiog convictions, which he tramsmitted to his successors. The "sarvice of God and his majesty" wras the formula which expressed the belief of the sovereign and his subjects. Philip must therefore be held primarily responsible for the insane policy which brought Spain to ruin. He had a high ideal of his duty as a ling to his own people, and had no natural preference for violent courses. The strong measurces he took against disorderly elements in Aragon in 156z were provoked by ertreme misconduct on the part of a faction. When he enforced his claim to the crown of Portugal (i579-1 581) he preferred to placate his new subjects by paying attention to their feelings and their privileges. He even made dangerous political concessions to secure the support of the gentry. It is true that he was ready to make use of assassination for political purposes; but he had been taught by his lawyers that he was "the prince," the embodied state, and as such had a right to act for the publicgood, legibus colulus. This was but in accoldance with the temper of the times. Coligny, Lord Burghiey and William the Silent also entered into murder plots. In his private life he was orderly and affectionate to his family and servants. He was slow to withdraw the confidence he had once given. In the painful episode of the imprisonment and death of his firstbom son, Don Carlos, Fhilip behaved honourably. He bore the acute agony of the disease which
hilled him with manly patience, and he died ploushy at the Escorial on the r3th of September 1598 .

As an adroinistrator Philip had all the vices of his type, that of the lahborious, self-righteous man, who thinks he can supervise everything, is capable of endleas toil, and jealous of his authority, and who therefore will ket none of his servants act without his instructions. He set the erample of the unending discuscions in committee and boundless minute writing which finally chaked the Spanish administration.

The Histoire de Phalipice. II. of M. H. Formeron (Paris, re81), contains many references to authorities and is exhaustive, but the author has mome violent prejudices. Philif II., by Martin Hume (London, 1897), is more just in its treatment of Philip's personal character, and gives a useful bibliography. The main sources for the political history ane the Docwmentos findicos pars la historie de
 xl., xcviii., ci., ciii ${ }_{3}$ cx, cxi. and others; L. P. Gachard, Acless des Elats feneraux des Pays Bas, 1576-1585 (Brussels, 1861-i 866); and the Culenders of Stale Papers, Foreign Series, Elizabeth (London, 2864-1901). See also Martin Hume, Two Emglisk Quesus conid Philip (1908).

PHILP III. (1578-162x), king of Spain, son of Philip II. and this fourth wif, Anne, daughter of the emperor Maximilian IIL, was bom at Madrid on the 14th of April 1578 . He inherited the beliefs of his father, but no share of his industry. The old king had sorrowfuliy confessed that God had not given him a son capable of governing his vast dominions, and had foreseen that Philip III. would be led by his servants. This calculation was exactly fulfilled. The new king put the direction of his government entirely into the hands of his favourite, the duke of Lerma, and when he fell under the influence of Lerma's son, the dake of Uceda, in 1518, he trusted himself and his states to the new favourito. The king's owa life was paseed amid court fantivities, on which enormous sums of money were wasted, or in the practiot of childish piety. It was said that he was 80 virtuous as hardly to have committed a venial sin. He cannot be justly blamed for having been born to rule a despotle monerchy, without even the capacity which would have qualified him to manage a small estate. He died at.Madrid on the 31st of March 1621. The story told in the memoirs of the Erench ambasador Bamompierre, that he was killed by the heat of a brasere (a pan of hok charcoal), because the proper official to take it away wat not at hand, is a humorous eraggeration of the formal etiquette of the court.
R. Watson and W. Thompeon, History of Phetip III. (1786), give the most available general account of his reign; see alla the continuation of Mariana's History of Spais by Mifiana (Madrido 1817-1822).

PHILIP IV. (1605-1665), king of Spain, eldest son of Philip III. and his wife Margarct, sister of the emperor Ferdinand II. was born at Valladolid on the 8th of April roos. His reign, after a few passing years of barren successes, wes a long story of political and military decay and disaster. The king han beea held responsible for the fall of Spain, which was, however, dme in the main to internal causes beyond the control of the motet despotic ruler, however capable he had been. Philip certainily possessed more energy, both mental and physical, than his father. There is still in existence a translation of Guiociardini which he wrote with his own hand in order to qualify himelf for government by acquiring a knowledge of political history. He was a fine horseman and keen hunter. His antistic tamte was shown by his patronage of Velasquer, and his love of letuers by his favour to Lope de Vega, Calderon, and other dramatists. He is even credited, on fairly probable testimony, with a share at least in the composition of several comedies His good iutentions were of no avail to his government. Coming to the throne at the age of sixteen, he did the wisest thing he could by allowing himself to be guided by the most capable man he could find. His favourite, Ollvares, was a far more honest man than the duke of Lerma, and was more fit for the place of prime minister than any Spamiard of the time. But Philip IV. had not the streagth of mind to free himself from the influence of Otivares when he had grown to manhood. The amusements which the favourite-bad encouraged became the business of the
king's life. When, in 1643 , the disasters falling on the monarchy on all sides led to the dirmisal of Otivares, Philip had lost the power to devote himself to hard work. After a brief straggle with the tack of directing the administration of the most extensive and the worst organized monarchy in Europe, he annk bact into his pleasures and was governed by other favoarites. IIt political opinions were those he had inherited from his father and grandiather. He thought it his duty to support the German Habsburgs and the cause of the Roman Catholic Church againat the Protestants, to assert his sovereignty over Holland, and to extend the domlnions of his house. The utter exhaustion of his people in the course of a hopeless struggle with Holland, France and England was seen by him with sympathy, but he considered it an unsvoidable misiortune and not the result of his own errort, since he could not be expected to renounce his rights or to desert the cause of Cod and the Church. In public he maintained a bearing of rigid solemnity, and was scen to lengh only three times in the course of his life. But in private he indulged in horseplay and very coarse immorality. His court was frosely vicious. The early death of his eidest son, Balianar Carios, was unquestionably due to debauchery encosarged by the gentiemen entrusted by the king with his education. The lesson shocked the king, but its effect soon wore off. Philip IV. died broken-bearted on the $x 7$ th of September z665, expressing the hope that his survivins son, Carios, would be more fortunate than himself.
The best accounts of Philip IV. will be found in the Estudios del reinade de Felípe IV.. by Don A. Cánovas del Castillo (Madrid, 1889), and in the introduction by Don F. Silvela to his edition of the Cartas de Sor Meria de Agrede y del rey Falip IV. (Madrid, 1885-1886).

PaILP F. ($683-\mathrm{x} 746$), king of Spain, fornder of the present Bourbon dynarty, was the son of the Davphin Iouls and his wife, Miaria Anma, daughter of Ferdinand Maria, elector of Bavaria. Ke was born at Versailles on the 19th of December 1683. On the extintetion of the male line of the house of Habsburs in Spain he wes named heir by the wrill of Charles II. He had shared in tho careful education given-to bis elder brother, Louis, duke of Burgundy, hy Fenelon, and was himself known as duke of Anjou. Philip was by nature dull and phlegmatic. He had learnt morality from Fenclon's teaching, and showed himself throughout his life tirongly adverse to the moral laxity of his grandfather and of most of the princes of his time. But his very dometic regularity caused him to be entirely under the influence of his two wives, Maria Louisa of Savoy, whom he married in 1702, and who died in Februaty 1714, and Elizabeth Farnese of Parma, whom he married in December of the same year, and wbo survived him. He showed courage on the field of bettle, both in It aly and Spain, during the War of the Spanish Succestion, and was flattered by his courtiers with the title of Ef Amimoso, or the spirited. But be bad no taste for military adventure. If be had a strong passion, It was to provide for his arccesaion to the throne of France, if hls nephew, Louis XV., thould die, and he indulged in many intrigues againat the house of Orieans, whose ight to the succession was supposed to be eccured by Philip's molemn renunciation of all claim to the Frency throne, when ho became king of Spain. It was in parsuit of one of these intrigues that be abdicated in 1724 in favour of his son Louis. But Louis died in a few months, and Philip returned to the throne. At a later period he tried to abdicate again, and his wife bad to keep him in a species of diegained confinement. Throughont bis life, but particularly in the leter part of it, he was subject to prolonged fits of melancholin, during wbich be would not even openk. He died of apoplexy on the gth of July $\mathbf{z 7 4} 6$.

The bet account of Philip's character and reign if still that given by Cowe in his Mamoirs of 4te Kings of Spai of ine Frowe of Bownbex (London, 1815).

PHILP TAE POTD (x i4s-1404), duke of Burgundy, fourth son of John II. of France and Bonne of Luremburg, was born on the Igth of January Iziz. He earned his summene by his bravery while fighting by Mis father's side on the field of Poitiers. After the defeat of King John he. accompanied him into captivity
in England. In 1360 he recetved the tithe of duke of Touraines, and Ia June is 363 was encrusted with the government of Burguady, which John had united to the crown at the death of the laxt duke of the Capecien family, Puilip of Roovre, in 1361 . In Septeraber ${ }^{3} 363$ John bessowed on Phillp the title of duke of Burgundy, together with that of first peer of France. Jobn was anxious not to displase the Burgundians, who were accustomed to their independence; and, moreover, with Philip as duke of Burgundy he was in a better posture to reiat the iting of Navarre, Charles the Bood, who Lid claim to the duchy. The donation, which whs at gist kept secret in eplte of a request made in 1363 for its confirmation by the eamperot Cuades IV., was ratifiod at the accession of Charles V. of France; but in consequence of Philip's preoccupation with the Grand Companies, which had invaded France, it was not until Noveraber 1364 that he definitely took ponsession of the dachy. Charite continued to show favour to his brother, appointing him (te ig6i) his lieutenant in Champagne and marryang him to Margaret, daughter and heiress of Louit of Malo, count of Elandert, and widow of Philip of Rouvre. Edwand III. of England wis negotiating for the macriage of this princest with his tom Edmund, earl of Cambridge; but Charles prevailed upon Pope. Urban V. to refuse the dispensation necessary on grounds of tinoh3p, and even conspnted to give up Litle, Douni and Orchise to Flanders on condition that Marganet should marry his bacher. Philip eventually won the day, thanks to the support of the late count's mother, and the marriage toot place with high revel at Chent on the roth of June 1369 .

During the succeeding years Philip proved a falthfui ally to Charies. He took part in the almost boodles cmapaigh against the duke of Lancaster, Fho had handed at Calnin; in 1377 he took several towns in French Fianders from the English; and in 1379 rebieved Troyen, which had been besieged by the Eaglish. On Charles's death Philip foond himself, with his brot bers, the dukes of Anjou and Berty, in charge of the government of France in the name of Charles VI., who was enfurf; and in the absence of the duke of Anjon, who left France in 1382 to conquer the kingdom of Nuples, Philip occupied the most powerful position in the realm. He pervaded the youns king to intervene in Flanders, where the citivent of Chent, whose rebellious spirit had necesileated Philip's intervention in 1379, had agrin revolted under Philip van Artevelde and had expelied Louis of Male. On the 27th of November 1382 the Franco-Burgundian ehivalry crushed the'rebels at Ronebecke, and on his return the duke of Burgundy took part in repres; ing the popular movements which hed brokeen out in Paris and other French towas. In 1383 an itmurrection in Flander supported by England gave rise to another Prench expedition; but in January 1384 the death of Louis of Make made Philip master of the countships of Flandert, Artots, Rethel and Nevers; and in the following year the citimens of Chent decided to submit. At this period Philip songht to ingratinte himed with the emperor, who was a ncar neighbour, and of whotin he held a part of his dominions, by givins two of his daughters in masriage to two princes of the bowe of Baveria; be aloo took an important part in briating aboui the marrige of a princess of the same family, lasbel, to King Charies VI.

Hostilities, however, were renewed between France and England. A formidable expedition was pregared under the direction of the duke of Bursundy, and a fleet of 1400 eall assembled at Sluys; but the enterprise failed owing to the dilatoriness of the duite of Berry. The fatiguing and inglorions expedition in the Netheriands, into which the duke dragsed Charies for the purpose of supporting hid kiosweman, Joan of Brabant, egainst the duke of Gederiand, shook Philip's credit with his nephew, who on bis returi declured himself of age and confided the government to the ancient councillore of his father, the "Marmousets." The fing's madneat (2y92) restored his uncles to power, and particulady Phillp, who after asearias peace by treating with the dule of Brittany end by conctuding ${ }^{8}$ truce of twenty-eight years with England, made strenuous efiorts to put an end to the Great Schtem, viating Pope Benedict XIII.
at Avience in 3395 in the bope of obtuining a volumtary revienation from him. But the growing infuence of the king's brocher, Lovis of Orleana, who was on terms of great intimacy with Queen Isabel and was accused of beipg ber lover, was a sedous obstruction. Discond broke out in the council, and but for the intervention of the dukes of Berry and Bourbon the two princes mould have come to an open strugele. For a brief period Philip wes dieposecmed of auchority, but he regained it in 400 and kept it till his death, which took place on the 27th of April 1404. The catbedral of St Benigne at Dijan cooksins him remains, and his tomb (lormerly in the Chartrease of Dijoa) in now in the muncurm in the Hoteldo-ville.
Althougt he had to curb the independent spirit of the sedgneurs of Franche-Comte, and in apite of frequent callisions with his numals in Flanders and with the citivens of Besangon (who in 1360 extracted from blm a promise to respect their privilegesa), Philip appears to have governed his territories with mencity and \& cortain moderation, and he war particulaty succossful in employing the resources of France in the intereste of Burgundy. He granted numerous privileges to the inhabitants of Dijon, and crested in 1386 two chambres des complase, one at Dijon and the Other at Lille. He was, in the plarnee of a contermporary, "kindly and amiable to high and low and thoce of middle rank, liberal as an Alewader, noble and pontifical, in court and state magnificena." Bur his tiberality and his bove of display involved him in enormous expense, and he left so many debts that his widow was compelled to renounce her personal estate to avoid the reeponsibility of dikcharging them. By his wife Margaret (d. 1405) he bad a numerous family: John the Fearless, who sucoceded him; Charles and Louis, who both died In infancy; Anthony, count of Rethel, and Philip, count af Nevers, both killed at Agincount; Margaret, who married William of Bevaria, courat of Outrevent; Catherino, wife of Leopold, duke of Austria; Mary, wife of Amadeus VIII. of Savoy; and Bonne, who was betroched to John of Bourbon and diad young.
(R. Po.)

PHILIP THE GOOD ($1306-1467$), duke of Burgundy, zon of John the Fearleas, duke of Burgundy, and Margaret of Bavaria، was bora at Dijon on the xuth of Jume 1396, and muccoeded his father on the roth of September 14r9. The natural ontcome of the amemination of John the Fearless (q...) was to drive his successor to the Engisish side. In 1419 Ptilíp signed with Heary V. of England the treaty of Arres, by which he recognized Henry as regent and future heir of the kingdom of Frasce, and th 1420 gave his adherence to the treaty of Troyes. Early in December 1420 Philip entered Parrii with the king of England, and subsequently took part in the defeat of the French at MonsenVimeu. By a treaty conctuded by Philip at Ammens in April 1423 with the dukes of Brittany and Bedford, John, duke of Bedford, married Philip's sistex Anme, and Archurr of Brittany, earl of Richmond, bectime the husband of Philip's sister Margatet. A feri yeurs later disoord arose among the allies. When the duke of Bediond besiegad Orieans the inhabitants offered to surrender, but to the duke of Borgundy; whereupon Bediond retorted that "he did not bent the busbes for others to take the brds." When this speech reached Philip's ears he withdrew his troops in didgeon, and conctaded a trace with France (3429). Bedford, however, sseceeded in conciliating him by promises and presente, and in 1430 Philip took part in the campaign against Compiegne.
But another confict arose between the duke of Burgandy and the English. Jacqueline, countom of Erinatut, the divorced wife of the duke of Brabant and the hefrese of Hollund and Zeeland, had married the duke of Gloucester, who attempted to take fordible possession of his wife's terntorien Philíp, bowever, himself claimed Brabant as having been bequeathed to him by his cousin Philip, the late duke, with the result that the Burgundians repulsed the troops of the duke of Gloacuter, and Jacqueline was forced to recognise the duke of Butsundy as her Heutenant and heir. Moreover, the duchese of Bediord had died in 1433. Charike VII., who in spite of the efforts of the curtinal of Ste-Crodx and the conferences beld by him at

Auxerre and Semur had hitherto refused to retum to France, finally decided to take part in the conferences which were opened at St Vanat d'Arras on the 6th of August 1435, and to which the whole of Christendom attached very high importance, all the princes of Europe and the pope and the council of Basel being represented. Philip consented to a reconcilis: tion with the ling of France, and agreed to recognize him ate his legitimate sovereign on condition that he thould not be roquired to pay him homage durimg hia lifetime. Charies, on his part, solemnly craved pardon for the marder of John the Fearless through the mouth of the dean of the church in Paris, and handed over to the dube the counties of Micon, Auserre, Bar-aur-Seing and Ponthieu, and the towns on and near the Somme (Roye, Montdidier, Peronne), reservipa the option of redeeming the Somme towns for 400,000 sold cmowns. Philip proved a faithful ally of the king, giding him in re-entering Pario and prepating an expedition against Calais, which, bowever. failed through the ill-will of his Flemish subjecta (i436). In 1440 he paid the rensom of Charics of Orleans (the son of his father's old enemy), who had been a prisoner in Eagland alace the battle of Agincourt; received him with great honour at: Gravelines; and married him to Mary of Cleves, upon whom he bestowed a handsome dowry. In 1442 Philip entered into a conspiracy to give the duke of Orleanso a larger chare in the affains of the kingdom. To Rene of Anjou, the duke of Lar raine, be showed himself less generova, seting up another chimant to the duchy of Lorraine in the person of Anchony of Vaudemont, and takiag Rent prisoner in 1431; it was not until 1436 that he consented definitively to relanse Rent on condition that he ahould abandon several strong places and pay an enortanas ransom. In 1445, at the conferences of Chilons-rumMarne, the ducheds of Burgundy renounced these claims in her husbend'a name in order to assure the execution of the treaty of Arras.

Philip was frequently disturbed by the insochocrination of the Flemish communes. He had to quer meditions at litge (1430), Ghent (1432) and Antwerp (1435). In 1438 be was driven with the duchess out of Brages by the revolted citisens, a revalt which he repressed with great severity. In 1448 the citisens of Ghent rose in rebeliona, but, disappofated of French support, they wers defeated at Ruppelmonde and in 3453 were overwhelmed at the bettle of Givire, whess they left 20,000 dead on the field. At a banquet shortly ifterwards Philip vowed that he would lead a cruade againat the Turke. who had seired Constantinople, and the knights of his coart swore to follow his example. ${ }^{1}$ The expedition, however, did not take place, and was but a pretert for levying subsdies and for knightiy entertalnments. In 1459 Philip sent an embaty under the duke of Cleves into Italy 20 take part is the confercaces preparatory to 2 fresh expedition aguinst the Turbs, but uhis enterprise likewise fell to the ground. In 1450 the duke of Burgundy had given an msylum to the Dauphis Louls (afterwards Loufs XI.), who had quarselled whth lis father and had been forced to leave France. The "foz who would roh his host's hen-roost," as the old king calbed Loais, repaid his protector by attempting to sow'discord in the ducal family of Burgundy, and then retired to the castle of Cerappe in Brabent. At Charles VII.'s death, however, Ptilip was ove of the first to recognize the new king, and accompanied him to Paris. Daring the jowney Louis won over the seigneuss of Croy, the principal coumselors of the duke of Burgandy, and persuaded Philip to allow him to redeem the Sonme towns for the sum stipulated in the treaty of Arras. This proceeding Infuriated Philip's son Charkes, count of Charolais, who prevailed upon his father to break his pledge and dechare war on the king of France. On the 12 th of April 1465 Philip haaded over to his son the entire administration of his
${ }^{1}$ This was the singular vow knowe as "the vow of the pheasant," from the fact that Phitip placed his hand solemaly on a phenetet, which had been brought to him by his herald. and vowed shat he would bight the furts and challenge thelr suluan to tingle combat.
etates. The old dule died at Bruges on the 1 gth of June 146y, and was buried at Dijon.
Philip was a great lover of porap and luxury and a friend of letters, being the patron of Georges Chastehain, Olivier de la Marche and Antolie de la Salle, and the founder of the cotlection of MSS. known as the "Bibliotheque de Bourgogne" (now at Brumels), and aloo of the university of Dole (1421). He edminitered his estates wisely; promoted commerce and industry, perticularly in Flanders; and left his son a welllined treasury. He was thrice married: in 1409 to Michelle (d. 1422), daughter of Charies VI. of France; In 1424 to Bonne of Artois (d. 1425); and in 1429 to Izabel (d. 1472), daughter of John 1., king of Portugal. On the occasion of his thind marriage Philip founded the order of the Golden Fleece. He was succeeded by Charles, afterwards known at Charies the Bold, his only surviving son by Isabel. He had several illegitimate children, amons them being Corneille, called the Grand Bastard, who was killed in 1452 at the battle of Ruppelmonde.
(R. Po.)

Failip, Landgrave of Hesse (1504-1567), son of the landgrave Willism II., was born at Marburg on the I3th of November rgo4. He became landgrave on his father's death in I 509, and having been declared of age in 1518, was married in 1523 to Christina, daughter of George, duke of Seanony (d. 1539). In 1522 and 1523 he aseisted to quell the sising of Prune von Sictingen (g.e.), who had raided Hesse five years previously, and in 1525 he took leading part in cruasing the rebellion of the peasants in north Germany, being mainly responsible for their defeat at Frankenhausen. About this time Philip adopted the reformed faith, of which ho was afterwrds the realous and daring defender. Indifferent to theolegicat or even to patriotic, comsiderations, his plans to protect the reformers rested upoe two main principlom-unhty among the Protestants at home and military aid from abroad. The schomes he put forward as one of the heads of the league of Schmalkalden, aimed primarily at overthrowing the hoube of Hebaburg; to this end aid was sought from foreigner and natuve, from Protestant and Catholic alike. Rnvoys were sent repeatedly to Frasce, England and Denmark; Turkey and Vence were booked to for ansiatance; the jealousy felt towards the Hababurgs by the Bavarian Wittelsbechs wiat gilifully fomented; and tho German Protestants were assured that ettact was the best, nay the only, means of defence. Before tha formation of the league of Schmaltalden Philip mas very intigate with Z wingli, and up to the time of the reformer's death, in IG31, ine hoped that miterial sid would be forthcoming from his followers. In 1526 he had aided Jahn the Constant, elector of Sarony, to form an ariance of reforming princes; and in 1520 be callod together the abortive conference at Marbarg, boping thus to clooe the breach between Iatherans and Zuthdians Morr agacesive wes his action in 1508 . Decaived by the forgeries of Otto von Pack (q-v.), he believed in the existence of a compiracy to cruah the reformoris, and was only restrained from attacking thin enemies by the influence of John of Sasony and Luthar. He sacceeded, hawever, in compelling the archbishop of Mains and the bishops of Waraburg and Bamberg to contribute to the coat of his mobilizalion. Philip was freely accused of having employed Pack to concoct the forgery; and, although this charge is doubtiess false, his eager acoeptance of Pack's unproved statements aronsed considerable it-feeling among the Catholics, which he was not slow to return. In 1529 the landrave signed the "proteat" which was presented to the diet at Spires, beling thus one of the original "Pretestants; " in i530 be was among the subscribers to the confemen of Augburg; and the formation of the league of Schmalkulden in the same year was largely due to his energy.
His next inportapt undertaking, the restoration of Ulrich, duke of Wurtemberg (q.v.) to his duchy, was attended with comepicuons successa Wurtemberg had passed into the possession of the Habsburgs, but after Philip's brief and victorious cempaign in 1534 the humiliation of Charles V. and his brother, the German king, Ferdinand I., was so complete that it. was
said the landgrave had done more for Protestantistin by thet enterprise than a thousand of Lueher's books would do. After this victory Philip entertained the idee of coming to terms with Charles V. on the basis of extensive concemions to the Protestants; but he quickly returned to his former plans for leading a general attack on the Habsburgs. The Concord of Wittenberg, made in 1536, was favourable for theve achemes, but after five years apent in assiduows preparation war was prevented by the serious Inness of the landgrave and the lukewarment of his allies. Recovering from his malady, te had returned to his intrigues when an eveat happened which materially affected the fortunes of the Reformation. His union wilh Chriatina was not a happy one, and having fired his affections upon Margaret von der Saal (d. I 566), he obtained an opinion from Protertant theologians that bigamy was not forbidden by Holy Writ. Luther and Melancthon at length consented to the manriage, but stipulated that it should be kept mecret, and It was cetebrated in March 1540 . The marringe, bowever, became known, and a great octery arose agniost Philip, whose friends quichly deserted him. He objected to Luther's coumicl to deny the existence of a second marriage; ahused John Frederick, elector of Sazony, for not coming to support him; and caused bignomy to be publicly defended. Alarmed, however, by the strength of his enemies, and by their evident determination to puainh him as a bignonit, be in Juae 1541 made a treaty with Charlea VA at Regensbors. In return for'a general pardon be undertoak to break of relations with France and England and loyally to aupport the exaperor.

During these yoars Phlip had been forwarding the progress of the Reformation in Hesce. This was begun about 1526 , when an important synod was held et Homburg; the university of Marburg whis founded in the intenstes of the reformers in 1527 : and after the diet of Spires in 2529 the work was conducted with renewed vigour. The Catbolic worship wes suppresed, and the secularized church revenues supplied an endowment of the new univensity.

The peace between the emperor and the Inndgrave was soon broken. In 2542 Philip persuaded the league of Schmalkalden to attack Henry II., duke of Brusewick-Wolfonbatitel, cotensibly in the interests of the Protestant towns of Brunewick and Coalar. The duchy was quickly overrua, and Henty-a Catholic prisocdriven out; but the good underatanding between the emperor and the landgrave whas destroyed, and the relations betweer Protestants and Catholics became worse than before. Nor was the fisure in the Protestant ranks clowed, and Charles took advantage of this disunion to conquer Gelderiand and to mature his prepirations for overthrowing the league of Schmalkalden. Unlike John Frederick of Samony, Philip divined, or partly divined, the emperor's intentions, and urged repeatedly that the forces of the league should be pat in order. Thia advice passed unheeded, and when Charles suddenly showed his hand, and in July $\times 546$ issaed the imperial ban against the landgrave and the elector, it was seen that the twe princes were almost isolated. Fighting began along the upper Danube, and when indecision and want of funds had rofned the league's chances of succese, Philip returned to Hesse and busied himself with secking belp from foreign powers; while in April 1547 John Frederick was captured at Muhberg. After this defeat the landgrave was induced to surrender to Charles in June by his son-in-law. Maurice, now elector of Saroay, and Joachim II., elector of Braudenhurg, whe promised Philip that he should be pardoned, and were greatly incensed when the emperor refused to assent to this condition. There is, however, no truth in the story that the word einiges was altered by an imperial servant into awiges, thus making the phrase " without any imprisonment" in the treaty of surrender to read "without perpetual imprisonmens." Philip was sentenced to detention for fifteen years, and at he was heartily distiked by Charles his imprisonment was a rigorous one, and became still more so after he had inade an attempt to escape. His acceptance of the Interim.in 1548 did not bring him freedom; but this came in consequence of the humiliation of

Charles V. at the hands of Maurice in $\mathbf{5 5 5 2}$; and after the conchusion of the peace of Passan in this year he returned to Hesse. Although less axtive than formerly, the landgrave did not cease to intrigee on behalf of the Protestants while continuing the work of reforming and organizing the Church in Hesse. In $x 562$ he aided the Huguenots with troops, and he was frequently in conmunication with the insurgents in the Netherlands; hut his efforts to form a union of the Protestants were fruitless. Philip, who is sometimes called the Magnonimows, died at Cassel on the gist of March 1567. By Christina he had four sons and five daughters, and according to his directions the landgraviate was partitioned at his death between his sons, He had also hy Margaret von der Saal seven sons, who were called counts of Diets, and one daughter.
See Ch. von Rommel, Ph.zept der Crassmialige (Giessen, 1830); Briefwechised Lamdrraf Philippy mit Bucer, edited by M. Lenz (Leipaig. 1881-1890) : Polfisches Arckio des Lamdprafen Phlipp, edized by F. Korch (Leiprig. 1904); L. G. Mogen, Hisloria captimiatis Philipyi Magnamiwi (Frankfort, 1766); W. Falckenheiner, Philspp der Grossmichive im Bamernheriege (Marburg 1887); H. Schwarz, Landgraf Philipp now Hessen mad die Packschem Händad (Leipsig, 1881): (. Wille, Philipp der Grassmiitige son Hessen wad die Restitation Ulrichs ron Writemberg (Tübingen, 1882); W. W. Rockwell Die Doppeleke des Landgrafen Philipt von Hessen (Marburg, 1904); A. Heidemhaim, Die Unionspolitik Phispps pon Hessen (Halle, 1890); K. Varrentrapp. Landgraf Philipp won Hexsem mad die Uximpsitus Marbwre (Cassel, 1904): Von Drach and Könnocke, Die Bildwisso Phitipps des Grossmúlizen (Cassel, 1905): Festschrifl zum Gedächtwis Philipps. published by the Verein fur hessische Geschichte med Lamdextyode (Cascel, 1904); and Philipp der Grossmütige, Beibrage aue Grschichice srimes Lebens and seiner Reit, published by the Historischer Vercin für das Grasshertogtum Hessen (Marbung, 1904).

PHILIP, 10AR (1775-185I), British missionary in South Africa, was born on the 14th of April i775, at Kirkcaldy, Fife, the son of a sehoolmaster in that town. After having been apprenticed to a linesdraper, and for three years a clerk in a Dundee business house, be entered the Hoxton (Congregalional) Theological College, and in 1804 was appointed to a Congregational chapel in Aberdeen. In 1818 he joined the Rev. John Campbell in his second journey to South Africa to inspect the stations of the London Missionary Society, and reported that the conduct of the Cape Colonists towards the natives was deserving of strong reprobation. In 1822 the London Missionary Society appointed him superintendent of their South African stations. He made his headquarters at Cape Town, where he also established and undertook the pastorate of the Union Chapel. His indignation was aroused by the harbarities inflicted upon the Hottentots and Karfirs (by a misority of the colonists), and he set himself to remedy their grievances; but his zeal wan greater than bis knowledge. He misjudged the character both of the colonists and of the natives, his cardinal mistake being in regarding the African as little removed from the European in intellect and capecity. It was the period of the agitation for the abolition of slavery in Enghand, where Philip's charges against the colonists and the colonial government found powerful support. His influence was geen in the ordinance of 1828 granting all free coloured persons at the Cape every right to which any other British subjects were eatitied. During $\mathbf{2 8 3 6 - 1 8 2 8}$ he was in England, and in the last-named year he published Researches in Soulh Africe, containing his views on the native question. Hia recommendations were adopted by the House of Commons, but his unpopularity in Soulh Arrica was great, and in 1830 he was convicted of libelling a Cape official. The British government, however, caused the Cape government to conform to the views of Philip, who for over twenty years exercised a powerful, and in many respects unfavourable, inftuence over the destinies of the country. One of Philip's ideals was the curbing of colonial "ageression " by the creation of a belt of native states around Cape Colony. In Sir Benjamin D'Urban Philip found a governor anxious to promote the interests of the natives. When however at the close of the Kaffir War of $1834-35$ D'Urban annerod the country up to the Kei River, Philip's bostility was aroused. He came to England in 1836, in company with a Kaffir convert and a Hottentot convert, and aroased puolic opinion against the Cape government. Hia views
triumphed, D'Urban was dismissed, and Pbilip returned to the Cape as unofficial adviser to the government on- all matters affecting the natives. For a time bis plan of buffer states was carried out, hut in 1846 another Kaffir rising convinced him of the futility of his schemes. The Kaffir chief who had accompaniod him to England joined the enemy; and many of his converts showed that his efforts on their behalf had effected no change in their character. This was a blow from which he did not recover. The anneration of the Orange River Sovereignty in 1848 followed, fnally destroying his hope of maintaining independent native states. In 1849 he severed his connexion with politics and retired to the mission station at Hankey, Cape Colony, where he died on the 27th of August 1851 .
See South Africa: History; G. M'C. Theal's History of Southafrica since 1705 (London, ed 1908); Missiomary Magazine (1836-1851); R. Wandlaw's Pumpral Sermon, 1852.

PHISIP, KINO (c. 1639-1676), chief sachem of the Wampanoag Indians in America, and the son of Massasoit (d. 1662)as the English, mistaking this title (great chiel) for a proper name, called Woosamequin (Yellow Feather)-who for forty years was the friend and ally of the English colonists at Plymouth. To Massasoit's two sons, Wamsutta and Metacomet, the English gave the names respectively of Alexander and Philip. Alexander succeeded his father as sachem, and in the same year, while in Marshfield, whither he bad gone to explain certain alleged unfriendly acts toward the English, was taken ill; he died on his way home. Philip, who succeeded Alexander, suspected the English of poisoning his brother. The English had grown stronger and mote numerous, and had begun to meddle in the internal affairs of the Indians. In 1667 one of Philip's Indians accused him to the English of attempting to betray them to the French or Dutch, but this charge was not proved. In 167r the Plymouth authorities demanded that the Wampanoags should surrender their arms; Philip consented, but his followers failed to comply, and measures were taken to enforce the promise. Philip thereupon went before the gencral court, agreed to pay an annual tribute, and not to sell lands or engage in war with other Indians vithout the consent of the Plymouth government. In 1674, when three Wampanoags were executed at Plymouth for the alleged murder of Sassamon, an Indian convert who had played the part of informer to the English, Philip could no longer hold his followers in check. There were outhreaks in the middle of June 1675, and on the 24th of June the massacre of whites began. There was no concerted movement of the various tribes and the war had not been previously planned. The Nipmuck Indians rose in July; the tribes along tbe Connecticut river in August; those in'the present states of Maine and New Hampshire in September and October, and the Narragansets in December, when (on the igth) they were attacked and seriously crippled, in what is now the township of South Kingstown, Rhode Island, by the English (under Governor Josiah Winsiow of Plymouth), who suspected their loyalty.

The colony of Connecticut took quick measures of defence, guarded its frontier, maintained its ailiance with the Mohegans, and suffered little injury. Massachusetts and Plymouth were slower in acting and suffered great loss. Rhode Island raised no troops, and suffered severely. Early in the autumn Philip went neariy ns far west as Albeny in an unsuccessful attempt to get aid from the Frencb and the Mohawks and supplies from the Dutch traders. At Deerfield on tho 18th of September about 60 English were killed and the settlement was abandoned. In the spring of 1676 it became evident that the Indian power was waning. The warrions had been unable to plant their crops: they were weaker numerically and more poorly armed than the English, and the latter had also made an alliance with the friendly Naticks and the Niantica. On the int of August 1676 Philip's wifo and nine-ycar old son were captured, and on the inth of Angust an Indian traitor guided the English to the sachem's hiding place in a swamp at the foot of Mount Hope (in what is now the township of Bristol, Rhode Island), where early the next morning he was surprised, and while trying to escape was killed by an Indian. The head of Philip was sent to Plymouth and set
on a pole in a public place, where it remained for a quarter of a century; his right hand was given to his slayer, who preserved it in rum and won many pennies by exhihiting it in the New England towns. The struggle was now over in southern New England, but it continued along the north-eastern frontier till the spring of 1678 , and nearly every settlement beyond the Piscataqua was destroyed. In the colonies of Plymouth, Massachusetts, Rhode Island and Connecticut six hundred men (or about 9% of the fighting population), besides many women and children, had been killed; thirteen setuements had been completely destroyed, and about forty others were party burned. Plymouth had incurred a debt greater than the value of the personal property of her people. The Indians suffered even worse: in addition to the large number of men, women and children slain, great numbers, aroong them the wife and son of Philip, were sold into slavery in the Spanish Indies and the Bermudas. Many others migrated from New England to New York; and the few remaining Indians, feeble and dispirited, were no longer a power to be re-koned with. Philip was an Indian patriot and statesman, not a warrior; he united the tribes in their resistance to the colonists, but was not a great leader in battle.

- See George M. Bodges, Soldicrs in King Philip's Wor (Leominster, Mass, 1896): Jahn Corham Palfrey, History of Newe England, vol. iii. (Boston, 1864) ; and especially George W. Ellis and John E. Morris, King Pkilip's War (New York, 1906). See also Entertaining Passages Relating to King Philip's War (Boston, 1716; new edition, edited with notes by H. M. Dexter, Boston 1865), the account by Colonel Benjamin Church (1639-1718), one of the principal leaders of the English. of the warfare in south-castern New England, in which he took part; It is one of the most famous and realistic accounts of eariy Indian wariare.

PHILIPPA OF HAINAUT (c. 1314-r369), queta of the English king Edward III., was the daughter of William the Good, count of Holland and Hainaut, and his wife Jeanne de Valois, granddaughter of Philip III. of France. Edward visited the court of Count William in 1326 with his mother Isabella, who immediately arranged a marriage betwcen him and Philippa. Aiter a dispensation had been obtained for the marriage of the cousins (they were both descendants of Philip III.) Philippa was married by proxy at Valenciennes in October 1327, and landed in England in December. She joined Edward at York, where she was married on the 3oth of January 1328. Her marriage dower had been seized by the queen dowager Isabella to pay a body of Hainauters, with whose help she had compassed her husband's deposition. The alliance ensured for Edward in his French wars the support of Philippa's influential kindred; and before starting on his French campaign he secured troops from William the Good, as well as from the count of Gelderland, the count of Julick, and the emperor Louis the Bavarian. Her mother Jeanne de Valois, visited her in 1331 and further cemented the community of interests between England and Flanders. Before 1335 Philippa had established a small colony of Flcmish weavers at Norwich, and she showed an active interest in the weaving trade by repeated visite to the town. She also encouraged conlmining on her estates in Tynedale. Her eldest son, Edward the Black Prince, was born in 1330, and she subsequently bore six sons and five daughters. In November 1342 she became guardian of John of Gaunt and her younger children, with their lands. Her agents are said to have shown great harshness in collecting the feudal dues with which to supply her large household. The anecdotes of her piety and generosity which have been preserved are proof, however, of her popularity. She interceded in 8331 with the king for some carpenters whose careless werk on a platform resulted in an accident to herself and ber ladies, and on a more famous occasion her prayers saved the citizens of Calais from Edward's vengeance. There is a generally accepted story, based on the chronicles of Jehan le Bel and Froissart, that she summoned the English forces to meet the Scottish Invasion of 1346, and harangued the troops before the battie of Neville's Cross. She certainly exercised considerable infuence over her husband, whom she constantly accompanied on his campaigns; and her death on the 1 gth of August 1369 was a misfortune for the kingdom at large, sipce Edward from that time cime. mader
the domination of the rapacions Alice Perrers. Philippa was the patrou and friend of Froissart, who was her secietary from 1367 to 1366. Queen's College, Oxford, was not, as is stated in Skelton's version of her epitaph, founded by her, but by her chaplain, Robert of Eglesfield. Her chief benefactions were made to the hospital of St Katharine's by the Tower, London.

See Agnea Strickland, Lives of the Gaeans of Ranglend, voi. i In addition to the account given in him Chromiquer, Froissast wrote a formal culogy of her, which has been lout.

PHILIPPEVILLE, a seaport of Algeria, chief town of as arrondissement in the department of Constantine, and 54 m . N. by E. of that city, on the Bay of Stora, in $36^{\circ} 53^{\prime}$ N. $6^{\circ} 54^{\prime} \mathrm{B}$. It is connected by railway with Constantine, Batna and Biskra. Thi' town derives its importance from being the port of Constantine. The harbour works, with every vessel on port, having been destroyed by a storm in 1878, a more commodious harbour was built, at a cost of about $\{1,200,000$. From Cape Skikda, on the cast a mole or breakwater projects 4592 ft . to the W.N.W., while from Chateau Vert on the west another mole runs ont 1312 ft . to the north, leaving an entrance to the port about 656 ft . wide. The protected area comprises an outer and an inner basin. The depth of water at the entrance is about 33 ft ., alongside the quays about 20 ft . The quays are faced with blocks of white marble brought from the quarries at Filfila, 16 m . distant. Pop. (1906), of the town 16,539, of the commune 26,059 of the arrondissement, which includes 12 communes, 147,607.

Philippeville occupies the site of successive Pboenician and Roman citics. By the Romans, under whom it attained a high state of prosperity, it was named Rusicada. In the middle ages the town ceased to be inhabited. The site was purchased from the Arabs by Marshal Valfe in 2838 for $\mathbf{f 6}$. Some parts of the Roman theatre remain, but the stones of the amphitheatre, which stood without the walls of the modern town, and which the French found in an almost perfect state of preservation, were used by them for building purposes, and the raflway was cut through the site. On a hill above the town are the Roman rescrvoirs, which have been restored and still supply the tow with water. They are fed by a canal from the Wadi Beni Mekh. The Roman baths, in the centre of the modern town, serve as cellars for military stores.

PHILIPPI (Turk. Fidibejik), a ctty of ancient Macedonis, on a steep hill near the river Gangites (mod. Angisfa), overiooking an extensive plain and at no great distance from the coast of the Aegean, on the highway between Neapolis (Kavalia) and Thessitonica. Originally called Crenides (Fountains), it cook its later name from Philip II. of Macedon, who made himself master of the ncighbouring gold mines of the Hill of Dionysus, and fortified the city as one of his frontier-towns. In 41 8.c., after the victory gained over the senatorial party by Octavies and Antony, it became a Roman colony, Celonia Jwlia Philippexsis, which was probahly increased after the battle of Actium (Col. Aug. Julia Phil.). The inhabitants received the Jus Italicum, and Philippi was one of the specially designated "first cities" (Acts rvi. 12; see Marquardt, Rom. Slectsterwaliwng, i. 187). The city was twice visited by St Paul, whose Epistle to the Philippians was addressed to his converts here. The site now uninhabited, is marked by ruins-the substructions of an amphitheatre, parts of a great temple-wich have furnished interesting inscriptions. A little to the east is the hage shone monument of C. Vibius, known to the Turts as Dikeliteshiar end to the Greeks as the Manger of Bucephalus.
See Heurey and Daumet, Mission arci. en Meckicine, Pàris (106s). and other authoritics in bibliograpiny of Macesomia; Corp. Jmecr. Lak, iii. 1 .
(1. D. B.)

PRILIPPIANG, EPPETLB TO THIS, a book of the New Testament. Commumications had already passed between the Chris tians of Philtppi and Paul, not only when he was at Thesenlopica (iv. 15-16), but at some subsequent period (Iv. 18), when Epaph roditus had brought hinh a present of money frose them. It in possibie that this gift was accompanied by a letter. At any rate the ertant epistle is the wenver to one recelved from the Philippinn Christiane, who bad waidently detired finformation about tio
mposte's healich and prospects (i. in), asmured bim of their prayers (1. 19), and wondered whether he, their pride and giory (кal獜a), would return to them (i. 25 seq.).

After a briel greeting (i. 1, 2), Paul assures them of his loving interest in their present attainments and future progrest in the faith of the gospef (i. 3-11); then, relieving their anxiety about his own prospecte, he expresses the confident hope that he will be released and thus be able to return to them (i.12-26). Meantime they were to avoid any pride or factiousness which might break their anity' as a church (i. 27-ii. 18), and they are promised a visit Irom two of Paul's coadjutors, whoare well known to them (ii. 19-30). At this point the letter suddenly swerves ${ }^{2}$ into a passionate warning against some errorists of Judaism (iii. ${ }^{\text {s-iv. }}$), after which the appeal for unity at Philippi is reiterated (iv. 2-9), ${ }^{4}$ and the epistle cloves with some personal details (iv. so-23).
Paul is a prisoner when he writes, and the place of composition may therefore be Caesares or Rome (Acts xxviif. 16, 30-31). The evidence upon tbe whole seems to point to the latter. The phrase okia Kaiaapos (iv. 22) suits Rome better than Caesarea, and, while mparsiphoy (i. 13) does not necessarily imply the capital, it is most naturally understood of Rame.' But the whole tone of the epistle suggests that Paul expected a speedy end to his case. Now at Caesarea this was out of the question. His appeal to Caesar involved a protracted process, and it is very difficult to put expressions like those e.g. of ii. 23 into such a situation. The critical outlook of Philippians does not correspond with the position of the apostle at Caesarea, nor can the lutter town be said to have been a centre of vigorous Christian propaganda (i. 17). Finally, the contention that no visit of Timothy to Rome is known is an argument from silence which is of little more weight than the plea of Spitta that the cupidity of Felix (Acts xxiv. 26) was excited by the arrival of the money from Philippi (Phil. iv. 16).
A further examination of the epistle shows that it must have been written towards the close of the Steria $\overline{\lambda \eta \eta}$ of Acts $x x v i j i .30$, not in the carlier part of the Roman captivity. Paul is on the edge and eve of the great decision. Behind him (in 12-13) bes a period during which considerable progress has been made in the local preaching and extension of the gospel, nor does the language of the apostie suggest that this fresh departure in the propaganda was stimulated by the mere novelty of his arrival. Furthermore, the relations between the Philippians and himself presuppose, on any fair estimate, an interval of time which cannot be crushed into a few months. News of his arrival must have reached them; money was collected (ii. 25, iv. 18) and then forwarded hy Epaphroditus, who fell sick after he reached the capital; news of this again floated back to Philippi, and subsequently Paul heard of the Philippians' concern (ii. 26). Not till then did he compose this letter.
Philippians is thus the last extant letter we possess from Paul, unless some of the notes embedded in the pastoral epistles are to be dated subsequent to its composition. It unites the close of his career in Rome with the begraning of his mission work in Europe (iv. 15; cf. Acts xvi. 12), and illustrates not merely the situation of the apostle at Rome, but the terms of exceptional affection which existed from first to last between him and the
${ }^{1}$ For the strongs Cheistian consciousnesa of solidarity, prestupposed in the Philippians, see Von Dobschucz's Christian Lifc in lhe Primitive Cluarch (1904). pp. 93 seq.
The tonch of acertity in ii. 21 (after i. 14) is probably to be explained by the fact that "Paul had lound some of the brethren refuctant to andertake a journey to Macedonia, or to perform some other menvice which he desirod, and the words only express the mementary dhzappointment of a man who was imprisoned and ready to die for the gospel " (Drummond). Cl. Renan's Anitichrist (Eng. trans. p. 40).
'The mocalled logion in (Justin's?) De resurrect. 9: apque in

- On iv. 8 Von Soden notes (Hispory of Early Christian Lileroture, p. 114) that "it is as il we heard the ripple of the waves at the meeting of the two streams which have their source in Ziun and the Parthenon.:
*II she expreimion meant (a) the procfecti pratorio or officials charged with the care of prisoners under trial, i.e. the eupreme loperial eourt, or (b) the praetorian guard, or (c) their barracks, thia would almont follow. But conceivably it might mean the palace, i.e. of Herod (Acts xxiil. 35). The balance of probabilitics falien however, in favour of the court hypothetis.

Macedonian churches. The main argument for putting it eurlier is derived from the admitted affinities bet ween it and Romans, the Colossian and Ephesian epistles containing, it is beld, a more advanced christology (so Lighticot especially, end Hort, Judasitic Christianity, pp. 115-129), But such considerations are not decisive. Paul wrote from time to time, not in the execution of a literary plan, but as different objects or interests called out his powers. The Philippians did not roquire, and therefore did not receive, the same elaborate warnings as the Asiatic churches. Hence on the one hand it is unreal to lay stress on coincidences with Romans, as if these necessarily implied that both epistles must have been composed shortly after one another, while again the furthes stage' ol thought on Christ and the Church, which is evident in Colossians, does not prove that the latter must have followed the former. Upon the whole, the internal evidence of the epistle strongly favours its position as the last of the captivity cpistles.

The attempts made during the rgth century to disprove the Pauline authorship now possess merely an historic interest, nor have the various hypotheses of more or less extensive interpolation won any serious support. ${ }^{4}$ More significance attaches to the view that the epistle is made up of two separate notes, written to Philippi at different times. The fusion of the two is found in the abrupt hiatus of iii. 1 , and evidence is led from supposed inconsistencies between the earlicr and the latter parts of the epistle. But the flexibility of a letter-writer, under different moods of feeling, which would naturally lead to rapid transitions, may be adduced as some explanation of the latter phenomena. The exegesis does not absolutely necessitate a partition of the epistle, which (so Heinrichs and Paulus) would make iii. r-iv. 20 a special letter addressed to some inner circle of the apostle's friends (in spite of iv. ro seq.), or take iii.-iv. (Hausrath, History of N. T. Times, iv. 162 seq. and Bacon, Slery of St Poul, pp. 367 seq.) as earlier than i.-ii. Besides, as Pfeiderer points out, the hypothesis is shipwrecked on the difficulty of imagining that "each of the epistles had but one essential part: the first, in particular, lacking an expression of thanks for the gift from the Philippians, which must nevertheless, according to ii. 25, have already taken place." In his letter to the Philippians (iii. 2) Polycarp indeed observes that Paul wrote dreorodas to them; but, even if the plural could not be taken as equivalent to a single despatch, it would not necessarily support the partition theory of the canonical Philippians. Polycarp may have known of more than one Pauline note to Philippi, no longer extant, or he may be referring loosely to : Thessalonians, which was addressed to a neighbouring Macedonian church. The esegetical arguments are, in short, the final court of appeal, and their verdict tells rather in favour of the epistle's integrity. The simplest account of iii. I is to suppose that Paul started alresh to complete or supplement what be had already written, possibly because some fresh tidings from Philippi had reached him in the interval. Psychologically the change from ii. 19 seq., with its note of farewell, to the impassioned outhurst of iii. 2 seq., is not incredible in an informal Ietter from a man like Paul. The hiatus is striking, but it cannot be held to necessitate an editorial dovetailing of two separate epistles. It is doubtful, therefore, if the ingenious attempts to analyse Philippians have proved much more convincing than the similar movewent of literary criticism upon the first Philippic of Demosthenes, where research has swung back in the main to a conservative position (ci. A. Baron in Wiemer Studien, 1884, 173-205).
The first clear echoes of the epistle are heard in Polycarp, though it was probably known to Clement of Rome and Ignatius (cf. the evidence tabulated in The New Testomemt in the Apostolic
© To the details furnished in the present writer's Historical New Testament (2nd ed., 1901, pr. 634-635) may be added references to Völter's Poulws th seine Brufo (tgoj), pp. 286-323, Belser's Eindeinung in der N. T. (and ed, Igo5). pp. 555 seq., and Schmiedel's paragrapha in Ency. Bib. (3147-3148). Pfieiderer (Primitioe Christiavily, i. 354 eg.) now besitates on ii. 6 meq . aloce like Brickner and Schmiedel. The objections to Paul's authorship on the score of style and grammar are finally eet aside by the philologist Nifgeli in Der Wortschats des Appastels Pembus 1905), pp. 80-82.

Falhers, 1905, pp. 53 seq., 72 seq., 94 seq., with R. J. Knowling's Testimeny of SI Paw to Christ, pp. 111 seq. and Gregory's Canon and Text of N. T., 1907, pp. 205-206).

Bibliograymy.-The ablest among recent editions of the Greek text are thoes of R. A. Lipsius (Hand-Commentar tum N. T., 2nd ed. 1892), E. Haupt (in Meyer's Kommemtar, 1902) and H. A. A. Kennedy (Expositor's Greek Tessamemt, 1903), to which may be added the older commentaries of C. J. Ellicott (5th ed., 1888), J. B. Lightioot (6 th ed., 1891) and A. Klfopper (1893), which in some reapects are not yet superseded. Other modern editions by M. R. Vincent (Internat. Cris. Commentary, 1897), H. C. G. Moule (Cambridge Greak Testament, 1897) and J. M. S. Baljon (1904) are worthy of notice, as well as the Roman Catholic commientanes by P. Beelen (Louviin. 1852) and A Bisping (1866). The carlier work on the epistle is adequately summarized by B. Weiss in his Der Philipper. brief auseclegt w. die Geschichte seiner Auslegung kritisch dargestellt (1859). There are brief popular commentaries in German by A. Neander (Eng. Irans., 18531, Edinhurgh). K. Braune (in Lange's Bibel Werh, and ed., 1875), Von Soden (1890), K. J. Muller (i899) and W. Lueken (in Die Schriftem des N. T.. igo6) in English by C. J. Vaughan, M. F. Sadler (1889), J. Agar Beet. G. C. Martin (Cemury Bible) and Principal Drummond (Internal Handbooks to N. T., 1899). In addition to the literature cited in the course of this article, consult the geaeral xudies by M. Hasselmann (Anolyse pragmotiome de replire aur Phil., ${ }^{1862 \text {); A. Sabaticr (Encyel. des }}$ sciences relig. x. $569-573$); J. Gibb (Hastings's Dict. Bible, iii. 840-844) ; Str W. M. Ramsay ($5:$ Paul the fravelter, ch. x., xv. 14) And 'R. R. Smith (The Epistle of Sl. Paul's First' Trial, Cambridge, 1899); besides the older cscoys of Rettig (Ouarationes phitippienses, Giessen, 1831) and C. Muller (Comment. de Locis quibusdam epistolac od Phil. 1844). The case against the Pauline allthorship was stated most fully hy F. C. Baur (Paulus, Eng. trans, ii. 45 seq. and in Theol. Jahrb., 1849, pp. 501 seq., 1852, pp. 133 seq.): E. Hinsch (Zeiuschrift fir viss. Theol., 1 B73, pp. 59 seq.); S. Hockstra (Theed. Tijdsckrift. 1875. pp. 116 seq.); f P. Scraztman (De Gemeente te Tome, I878, pp. 201 seq.); C. Holsten' (Jahrb. Jür prokest. Theologie. $1875 . \mathrm{Pp} .425$ seq. ${ }^{1876}$, pp. 58 seq. 282 seq.); and Van Manen (Fandeleiding moor de ondchrist. Letlerkmade, 1900, pp. 49- 51, 82-84; also in Ency. Bib., 3703-3713). The most thorough replies have been those of LOncmann (Pawfi ad Philipp. epislala contra Baurixm defensa, 1847): Ernesti (Sludicu und Rrisicen, 1848, pp. 858-924; 1851 pp. 591-612): B. Brückner (Epistola ad Phil. Paulo auclori
 amx Ph. 1850); Grimm (Zeischrifl fur wiss. Theologie. 1873, pp. 33 seq.) : Hilgenfeld (ibid., 1884, pp. 498 seq.): C. Weizisicker (A postolic Age. i. 218 seq .279 seq., ii. 131) and Clemen (Paulus, i. $130-138$). The relipious ideas of the episte are best stated in English by Principal Rainy (Philippians, Expositor's Bible) and H. C. G. Moule (Philippian Siudies. 1897). O the numberless monographs on ii. 6 seq. the most full is Tholuck's Dispulatio christologica de loco Pauli. Phit. ii. 6-9: and discussions of special excellence may be found in A. B. Bruce, The Humiliation of Chrisf (3rd ed., 1889, pp. $15 \mathrm{seq}_{\text {. }} 357 \mathrm{seq}$.) ; Weiffenbach's Zw A qulegung d. Stelle Phil. 19. 5-11 (Karlsruhe, 1884); and E. H. Gifford, the Incarmation (mprinted from the Expasitor, 1896).
(J. Mr.)

PHILPPICS, in classical biterature, "a series of orations delivered by Demosthenes against Philip of Macedon. The name was applied to the speeches of Cicero against Mark Antony, and "Philippic" has passed into general use in the sense of an impassioned invective or declamation.

PRIILPPICUS, East Roman emperor, 711 1-713, was the son of the patrician Nicephorus, and became distinguished as a-soldier under Justinian II. His proper name, which indicates his Armenian origin, was Bardines. Relying on the support of the Monothelite party, he made some pretensions to the throne on the oulbreak of the first great rebellion against Justinian; these led to his relegation to Cephalonia by Tiberius Absimarus, and subsequently 10 his banishment, by order of Justinian, to Cherson. Here Bardanes, taking the name of Philippicus, successfully incited the inhabitants to revolt, and on the assassination of Justinian he at once assumed the purple. Among his first acts were the deposition of Cyrus, the orthodox patriarch of Constantinople, In favour of John, a member of his own sect, and the summoning of a conciliabulum of Eastern bishops, which abolished the canons of the sixth general council. Meanwhile Terbelis, king of the Bulgarians, plundered up to the walls of Constantinople, and shortly afterwards the Saracens made similar inrouds from the Asiatic side. The reign of Philippicus was brought to a close through a conspiracy beaded hy two of his generals, who caused him to he blinded.

See Gibbon, Decline and Fall of the Romen Enpire (ed. Bury, Londen, 1896), v. 183-184,
 belonging to the United States of America, situated about 500 m . off the S.E. coast of Asia between $4^{\circ} 40^{\prime}$ and $21^{\circ} 10^{\prime} \mathrm{N}$. and between $116^{\circ} 40^{\prime}$ and $126^{\circ} 34^{\prime} \mathrm{E}$. It is bounded W. and N. by the China Sea, E. by the Pacific Ocean, and S. by the Celebes Sea and the coastal waters of Borneo. Of the large islands, Laron (40,969 sq. m .) is the most northerly, and Mindanao (36,292 sq. m.), the most southerly. Between Luzon and Mindanao are Samar (503i sq. m.), Negros (4881 8q. m.), Panay (4611 8q. m.), Mindoro (3851 sq. m.), Leyte (2722 sq. m.), Cebú ($1762 \mathrm{sq}. \mathrm{m)}$.), Bohol (1441 sq. m.) and Masbate ($1236 \mathrm{sq} . \mathrm{m}$.). Farther west and separated from the southern portion of this chain is the long narrow island of Palawan or Paragua (4027 sq. ma.). The total land area of the Philippines is about 115,026 aq. m., and 92% of this is included in the eleven islands named above. There are twenty others, which bave an area ranging from 106 sq. m. to 682 sq . m., and the total number of islands enumerated within the archipelago is 314i; of these 2775 contain less than isq. m . each.
Physical Fectures.-The islands are mainly of volcanic origin, and their surface is much broken by hills, isolated voleanoes and mountain ranges, trending north and south, north-west and sontheast, or northenst and south-west. Extending for 350 m . along the east coast of central and northern Luzon is the Ferra Madse range, rising in occasional peaks to more than 4500 ft . and seldom less than 3500 ft . On the west coast are the Caraballos Occidentales north from the Gulf of Lingayen and the Zambales southward from that gulf to Manila Bay. The Caraballos Ootidentales range in very complex; the central ridge is in some parts a rolliag plateam. but it rises in Mi Datá to 7364 fL , and numerous bolty spurs project from it. Much of the Zambales range has an average beight of 4000 ft . or more, and several peaks are more than 3000 ft. hish. Between the Sierra Madre and Caraballos Occidentalest is the valley of the Cagayin river, about 50 m . wide, and eate of the Zambelea range is a lowland basin, about 150 m . long and 50 m . wide, and not more than 100 ft . above the sea except near its centre, where the extinct volcano of Aráyat rises to 3564 It. The greater part of southern Luzon is oecupied by isolated volicanoes and irtegula masoes of hills and mountains Mt Mayon (7916 ft.). mear the southeastern extremity, is an active volcano with an almona perfect conc. Of less prominence are Mt Banâjao (7382 It.) Mt Isarog (6634 ft .) and Mt Masaraga (5244 ft .). The istand of Mindanao is traversed north to south by motmtain rangea, which rise in their summite to heights esceeding 4000 ft That alows the cast coast is longest and least broken, and between it and the next range inland is the level valley of the Agusan river. from to to 50 m . wide. Farther west and south-west is the valley of the Rio Grande M indanao, the largest river on the island, and betweet the lower course of this river and the south cotent is a mountain ramge with a north-west and couth-cast trend. On the cast border of the south portion of the basin of the Rio Grande Mindanao is Mt Apo (10,312 ft.), an extinct volcano and the highest elevation in the archipelago.
Each of the larger islands between Luron and Mindanao. emepe Samar and Bohol, is traversed longitudinally by a singie mountain range with occasional spurs In Leyte there are several isolated volcanic cones, two of which, In the north part, exceed 4000 It . In Mindoro the range. is broad, extending from coast to coast. and it culminates in Mt Halcos (about 8eco ft.). In Negros is Mt Canlaón (8192 (t.), a volcano, and oeveral summite enoeedine 6000 ft . In Panay is Mt Madiá́s (7264 ft) and severnl otber peals exceeding 4000 ft . The highest peaks in Masbate are about 2500 it high, and in Cebd not much more than 2000 ft. In Samar there are irreguiar massen of hills. The southers portion of Bohol in very hilly, but the northern partion is more level. Palawas, 275 n. long and about 15 m . wide, is traversed throgitont its lemgth by a range of mountaine with an average beight of 4000 to 5000 ft. and a few summits about 6000 ft . high. Subraarine motuntaio rangea connect not only the islands within the archipelago. but aloo the archipelago itself with Borneo ared Celebee, so that only whallow channels connect the interior watern with the Pacific Ocean and the China Sea. The coast-line of the Philippines, more than 11,000 E in length; is fringed with coral refis and broken by numerons gulfs and bays.
The Cagayan river, in north Luzon. is the largent in the anctir pelago. It is about 230 m . hong and drains to the northwant abovt 10.000 sq . m., or neariy one-fourth of the istand. The Rio Grande de Mindanso (known in its upper course as the Rio Pulangua) drains to the south and west a larger area in central and southern Mindanso and is zecond in stex. It and the Appan, which draine to the northward the mountain valley in eant Misdaneo, are ench over 200 m . in length. The principal rivers of the lowland becial of centrai Luzon are the Pampanga and the Agna. The Pampuse risea in the highlands on the north-east border, flow south by week and diachargee through weveral chanols into Manila Bag. Tw

$$
\begin{aligned}
& \dot{1} \\
& \cdot \\
& \vdots
\end{aligned}
$$

1
$\rightarrow-$

the cool mencon. and heroms, bitternerand ducion at all timen. The birde of prey 45 specien of which 22 are peculiar to the group, yary in ane from a tiny falcon not larger than a sparrow (Microhierax), to en immense monkey-catching eagle (Pithecophaga (efory, Grant). which is atrong enough to meire monkeys as they leap lrom tree to tree. There are al species of kingfisbern, 15 being peculiar. Of the 12 tpecies of hornbills not one accurt outside of the Philippincs. Frog-mouths, bee-birde, night-hawles and swifts are found in contiderable variety. One of the last (Collocalia troglodytes, Gray) constructe the edible nests to highly prized by the Chinese. The best neats ane obtained on the precipitous sides of the Peion de Coron, between Culion and Busuanga.
There may also be mentioned 2I cuckoos, 1 cockatoo, 20 parrots and parakects, 20 woodpeckera, barbets, broadbills starlings, acioles, weaver-finohes, larks, nuthatches, 28 beautifully coloured mun-birds, and 23 flower-peclicers, titmice, shrikes, swallow-dhrikes, tailor-birds, thrushes, fruit-thrushes, falry blue-birds, fire-birds, 42 fly-catchers, 4 wallows, and 5 species of mout beautifully coloured ant-thruithees as well as a lerge number of birds for which Englinh mames cannot be readily supplied.

Reptiles and batrachians are sbundant, but have been littla tudied. Pythoms occur throughout the group, and sometimes attain enormons aise. There are numerouts venomous serpents, but the mortality from snake-bite is low. Gecicoes may be seen on the walls and ceilings of any house. Flying lizards abound in the foremts. Large iguanas are numerous, Their egis are prised by the natives, and the fesh of one speciet, known as ibit of pelubid, to highly emteened. Crocodiles are extremely numerous in many of the etreames and are occavionally found in the sea along the coasts Specimens have been obtained measuring I 8 ft . in length. Land turtes of omall size are common. Very large eea turties tre often captured by the fishermen, and their flesh is highly appreciated as an article of food. A considerable busineas is done in tortoise-abell. Frogs occur in great variety. One small species appears in immense mumbers with the oncoming of the rainy season, and at night the noise of its outcry alrnost deadens other wounds.
Fishes, especially marine finhes, are numerous and varied. About soo species of food fishee have been found, and common among them are the bangos or miltcish, the banak or mullet, macherel, berring, anchovies, groupers, snappers, pompano tarpoa and bonito. The "dalag," which is fotsod in the paddy-gelds during the wet ecason, is a favourite with the natives.

The Philippines are famous for the variety, beauty and abundance of their land molluscs. Fresh-water and marine mollusca are aloo very numerous. While most of the epecies are of interest chiefly to the conchologist, there are a number of edible fonms. The ahells of Plocwors placemta, L., split into thin fat plates and, cut into smell squares, are almost universally used in place of window glass. The valves of the giant clam (Tridachma) mometimes attain a length of 5 ft . and weigh hundreds of pounds. Pearlgysters art abundant in the southern waters of the archipeiago. Pearl-Gshing is an important industry in the Sulu Islands. The chells of the pearly mautilue are commonly uned by the Viasyans for drinking cupa From the great opercula of certain marine forms bracelets and other ornamente are carved, while the hard crrated edges of other species are sometimes eraployed in place of knives lor harvesting rice The land molluscs have been thoroughly clamified, but much ctill remsing to be done with the marine species.
Arkropoda are very abundant and as yet little known. Shrimpis, mabs and lobsters form an important wource.of food supply. Mosquitoes are mumerous in the wet lowlands. Bees are abundant, And wild honey and wax are gathered in considerable quantities. The number of apecies of ants is very large. Some of them infent dwelliaphoures and swarm over the food. The termites. or socalled "white ants," inflict great damage on wooden buildings. Plagues of locuste occasionally, during a drought, ruin growing crope; in danap wet weather these insects are destroyed by a fungui crowth (Empases gryllon) within their bodics-
Land-leeches swarm in the damp lowland foresta. The coral beds of Mindanio and the Sulu Archipelago are of unsurpassed beauty, and Guimaras, Ceba and Siquijor are.completely covered with a thick cap of coral limestone.

Fiore.-The fich and varied flora of the Philippines is earentially Malayan, intermixed with Chinese and Australian elements, but with sufficient individuality to constitute a sub-region, there being at least 769 gpecies peculitar to the archipelago More than twothirds of the land surface is covered with forents. In the lowlanda and on the lover mountain clopes the foresta are compoed chiefy of bropd-leaved trecs, common among which are the bamboo, the coco and other palms, and the banyan tree; but on the higher mounctin siopes pincs are mose abundant. About 750 specics of wood are of commercial or local value, among them are woods rell-mited for menctural purposes, inside fraishing, cabinet work and enriage making. Plants valuable for their fibre number thout 300, and amony them is the abach (Muse lacilis), from the leaves of which Martila hemp is made. There are gutta-percha, ipdiarmbler and other trees and plants yielding gums, the banana, masen, and many other trees and plants yielding fruits: and various prowind ginats yrielding mute, egices, oils and medicines

Climate.-A uniformly high temparature, ewemive bumidity: heavy rainfalla and violent tropical ptorms, known as typhonoa a bagilos, are characteristic of the Philippine climate. At Manila the mean annual temperature is about 60° F., the range of meat monthly temperature 6.48°, frona 77° in January to 83.40° in May; and the range of extremes (during the period from 1881 to 190n) $39-96^{\circ}$ from $60-08^{\circ}$ in January 188_{1} to $100-04^{\circ}$ in May 1889 . In accordance with the monthly variations in temperature at Manila the year is divided into three ecacons: temperate (November, December, January and February), hot (Aptil, May and June) and intermediate (Mareh, July, September and Oetober). Throughout the anchipelago the mean angual temperatute paries much more with the altitude than with the latitude, but the range in mean monthly ternperatures increace from $3-96^{\circ} \mathrm{F}$, at DAveo, Mindanes in 7° i $^{\prime}$ N. to 12.6° at Santo Domingo, Batan Inlards, in $20^{\circ} 28$ ciab The equability of the temperature aloo decreacs eppre ciably from the sea-coast to the interior. The rnamum daily range of temperature at Manila varies from 13.8° in June to $17 \cdot 7^{2}$ in December. At Manila the monthly average of relative humidity ranges from 70.7° in April to 85.5° in September, and the anmual average is 79.4°. The mean ansual rainfall in this city is about 76 in., and mearly three-fourthe of it is from the middle of June to the middle of October, when the winds blow from the pouth-west. During the period from 1865 to 1902 the annual nainfall varied from 35.6 in in 1885 to 117.3 la . in 1867 when in the month of September alone there was a fall of $57-8 \mathrm{in}$. In July. August and September two-thinds of the days are rainy, but in February, March and April only one-tenth of them are zainy. On the Pacific const of Luzon, Samar, Leyte and Mindanao the miny season if from November to May, when the winds blow from the eart or the north-east. In the year eoding August 1903 the amonnse of rainfall et 41 observation stations widely distributed throuphourt the archipelago varied from 16.2 in. at Zamboanga in weat Mindanao to 152 in. at Masinloc, on the west coast of central Luxon. The Philippines are visited on the average by twenty or more typhoona annually. About one-fifth of them occur in September. Durin January, February, March and April they are rare; in May. Jeme and July they become increasingly common, and in Auguat there is a Galing of in the number, which reaches its maximum in September, gradually decreasing in October, November and Do cember. In the famous typhoon of the 20th of October 1883, the vortex of which pasted over Manila, an immense amount of damage was done in the city. Two thousand pereons lost their lives in Sanay and Leyte during the great storm of 1897. The typhood warniage ent out from the Manila observatory annually tave beavy lou of life and property.

Soll.-The soil, usually of a reddish-brown colour, it for the most part disintegrated lave mixed pith decayed vegetation; occerions ally there is alwo a mixture of disintegrated coral limestona.
Agriculture-Agriculture is the principal industry. In 1901 about 40% of the working population were engaged in agicultural purnuite. The industry in, however, in a primitive condition The native farmers are lasy and alow to appreciate the advantage of the methods recommended by the Americant, Only 9.5% o all the land in the archipelago was included in "tarms" in 1gos. and lew than one-hall of the farm land wat under cultivation La Laguna, Luson, was the only province in which more than 50% of the land was included in "farms," and Cobfí the only yoland in whioh more than 25% of the land was included in farma; in the large island of Mindanno only 1.4% in Macbate only 2.6% and in Mindoro only 3.9% There were 815453 "Larms "or indvinual hoidings, but more than one-fifth of these were small parcele ar gardens containing less than an ecre each; about one-balf contained Lest than 21 acres each, and the average sige was 8.57 acres More then four-fifthe of them were worked by owners, and the remainder chiefy by share tenants. The principal crops are hemp (absci! eugar, tobacco, coco-nuts and rice Most of the hemp (538,200 acres in 1902) is grown in south Luton and in Samar and Leytes. but smaller crope are produced in Cebd, Mindoro, Marinduque, porth Mindanao and south Negros; the crop bocame of commercin importance about 1855, and in 1907 the yield for export amounted to 112.895 tons. About two-thinds of the augar is produced in Negros but it is an important crop in the provinces of Pampanga and Tarlac, within the lowland basen of Lumon, aleo in the province of Batangis on the south coast of Luron, in the south and east of Panay, and in Cebd. The production increased Irom about 6000 tons in 1855 to 300,000 tons in 1893 , and for many years prior to 1887 it was a more important crop than hemp, but since the American occupation the crop has been smaller. The total acreage in 1909 was 177.620 acres, and in 1907 the yield for export was 118.305 tons. Approwimately one-half of the tobacco, 77,632 acres yioding 37.485 is in 2902, is grown in the valley of the Cagnyan river. and most of the remainder, which is of inferior guality, in the neighbouring provinces of Union, Ilocos Norte sad Abri, and in Panay, Cebd, Masbate and Negros. The nativee chen betel murte instead of tobacco, and to the production of these nuta they devore meore than 60,000 acres. The rich soil of the lowlands of the province of Laguna is especially well adapted to the culture of the coco-nut palm, and since the American occupation contiderable coco-nut pam, and sance the American occupation contiderabie
land in this province that had formeriy been deveted to engent
 low districts alour the coasts; in igoe about 375,000 acres were devoted to the culture of them.

Rice it the motaple food of the nativen. When the Philippines were discovered by the Speniand tit the the oaly cultivated crop of importance, and until the 19 h century it wad the chief article of export, but is the culture of the more profitable crope of hemp. sugar and coco-nuts was extended it became an article of import As late as 1902, however, about one-half of the land under cultiva cion was sown to rice. It is pown mont extensively in the lowlands of the south balf of Luson, in north Pansy and in Negron, but the culture of either the lowland or the upland varietien for local consumption is very general. la wome districts Indian corn is the taple food instead of rice, and the production of this cereal in mall quantitios for liventock is seneral. It is grown mont exteusively in the valley of the Cagayin river, in 1902 the total acreage in the archipelago was about 254,470 . For aeveral years prior to 1891, conce, gromi principally in the provinces of Cavite, Batangas and Lepanto-Bontoc, Luson, was nearly as important a crop an tobacco, but between 1891 and 1808 mont of the coffee plantations were deatroyed by insects and disemee. A small quantity of coffee it giown in the province of Benguet, Luson, and is of superior guality, Cotton, the cultivation of which was diacouraged by the Spanith sovernment as areans of increasing the cultivation of tobacco is a very seanll crop, escept in the proviaces of llocos Norte, and Ilocos Sur on the went cont of north Luson; in 1902 there were in these province about 5525 acres of cotton. Many tropical Iruits grow wild but their quality is often inferior; thone cultivated most extensively are mangoes and bananas. Crapes, blackberries, figt and strawberries have been introduced from the United States and are grown succenofully in the province of Benguet. The natives care little for the rarden veretables common to Europe and America, but in the vicinity of Manila and other lagge centres of population the Chinese prow many of these for consumption hy Europenan and American inhabitants.

With the exception of the water-buffalo, which is indiepenable for arcicultural purposes, the domestic animals are very inferior in quality and few in numbers. The horses, which are of Mexican. Spenish and Chinese origin, are mall and poorly cared for; some Amerten bornes have been introduced for the purpooe of improving the breed. The teat cattle, which are of Australian and Indian origin, are raued chiefy lor beef, their hides and their borns; about nine-tenths of them were destroyed by the rinderpeat and the war at the cloue of the 19th century. Swine are numerous but they are of a kind knowa in the United States as " razorbacks." There and many goats but ooly a lew aheep. In one distriet near Manila duck-raising is of considerable importance, but the principal branch of the poultry industry consiats in the raising of game-cocks for cock-fighting, which is the mational eport.

Mineral Ropencest-Numerous mineral deposits have been discovered but litck has been determised with reppect to their value. Sub-bituminout coal is widely distributed. That near the surface is generally poor in quality and the difficulties of deep mining may be great because of folds and faults in the rocks. There are however, promiang felde netr Danao, in Ceba; on the island of Polillo, of the ent coant of Luwon; in the south pert of Mindoro; on Battin Ialand, off the south-rast coast of Luron; on Dinagat lsiand, off the north coest of Mindanso; and in the north-east cormer of Negros. Gold hat been lound in small quantities in nearly mil the provinces. There is some rude goid mining by the natives. As the remult of favourable indicetions extensive gold-mining operations have been instituted in the provincen of Benguet and Amboe Camarines in Luson, and on the istand of Masbate. Copper fs scarcely less widely diatributed than gold, hut the production of It awnits amelters and better facilitien for transportation. There are extengive deposite of iron ore (magnetite and hematite) in the province of Bulacan, Luzon. Iron ore has been lound in other provinces of Luzon and in the islands of Cebd, Panay and Marinduque. There are outcrops of lead in Mariaduque and Ceba, and in Marinduque comsiderable alver is maciated with the lead. Arwong other sminerals are eulphur, lime, sypoum and phoaphate.

Mantufactures.- The manufacturing industry conaiste mainly in preparing agricultural products for market. and in the production by the natives of wearing apparel, furniture, houmehold utensils, and ether articles required to rupply their primitive wants. The most important factories are those for the manufacture of cigars and cigarettes, but most cigars and some of the cigarettes are made by hand In the manufacture of sagar most of the mills in use extract only about three-lourths of the julce from the cane; in 1902 about 73% of it was manufactured by 528 mills operated by meam, 17% by 470 mills operated by hand or by a carabao: and 10% by 77 mill operated by water-power In the principal nce-producing disericts the rice is threwhed and cleaned by nachines, bet in ofher dintricte more primitive method are employed. Mod of the cloth Which the nativen wear the monem weave in their own homes There are three principal varieties: stamey, which is mite from zelacted hemp fibree and is worn by both ment and women. fun, which as made from a mixtare of hemp and pineapple-plant fibres cish ef without the addition of conte cotton and ailk and is uned
 from the दibres in the feal of the pineapple-plant and il utaed for making woonen's garments, handkerchefs and acaris. Nips, made from the flbe of the astave or meguey plant and worn by women, is leas controm. Hatsare mede of palm lenves, alnct leaves, baname leaven, plit bemboo and verious praves Math, ruga and earpets are made prixcipally of eplit bamboo; chairs and beds of balinas and other woods and of ratten. Alcohol is distilled from nipm. coco-tuth buri (Corghles mobracuifere), eavong (Ceryula onasta), pugahan (Coryode wrens) and lodian corts. Other manufacture of the sativen include vehicle of various kinds, harmenes, indigo coco-nut oil. coap, alt and lime.

Comminaicalions and Commerce.-The first railway in the Philippince whe the line from Manila to Dagupan (120 m .) which was buit by an Endiah corporacion under agmarenty of the Spanish Boversment and was opened in 1890 . Tuere trat go further conatruction for ten years. But in 1900 and 1903 the Philippine government at extablished in 1902 by an act of the Consrese of the United States, granted frenchiset for the extention of the Manila-Dagupan railway to Cabantuan (55 m) and to Antipolo (24 m .). The first of theae branches wae completed in 1905. the secoad in 1906. If February 1905 Congrese authorized the Philippine government to aid and encourage the construction of railways by guaranteeing 4% interest on bonds; the duty on imported materials used in the construction of railway and the internal revenue on Philippine forest producte uned for that purpone have aloo been removed With this anctance the Manila Railroed Company, organised under the laws of the state of New Jersey, agreed to construct about 600 m . of rifway in Luzon; and the Fhilippine Railroed Company, enganized under the laws of the state of Conaecticur egreed to constract about 800 m. in Panay, Ceba and Nerrob In 1909 there were in operation more than 300 m . in Luson, 60 m. in Cebl and 50 m . in Panay. At the beginning of the American occupation the roads were very bad and in many of the islonda there were aone; but in 1909 there were at least 400 m . of good roeda. The Cagayin river. which is mavirgable for mative bont 160 m . from its mouth, and for rafte 40 m . farther up, is an importapt highway of commerce in north Luson. Many milea of inland water communication with small boats or bamboo rafts are aflorded by the Pampanga, Agno, Abra, Pasig and Bleol rivers in Lumon, and by the Aguaan and Rio Grande de Mindanao in Mindanto. Thert are lcw harbours which admit vesele drawins more than IS ft. of water, but many which admit smaller vemels, and at the cione of 1909 there were 151 steamboats and 424 sailboate engaged in the coasting trade Manila is the principal port of entry, and aince the American occupation Manila harbour has been made acoemible to vesocls drawing 30 It . of water. Cebu in Cebu and Iloilo in Panay are ports of entry second and third in rank, although amall in comparison with Manilm; there are others of minor importance.

The foreign commerce of the Philippines conaits chiefty in the exportation of Manila hemp, dried coconnat ment (ooper), eur and tobacco. both in the leaf and in cipars and cigarettes; and in the importation of cotton goods, rice, wheat-four, freeh beed boots and shoes, iron and steel, illuminating oil, liguors, paper and paper goode. The value of the enports increased from $819.754,068$ in the year ending the 30th of June 1900 to $832,816,367$ in the year endiag the 30th of Juge Lgo8, and the value of the imports increased during the came period from $\$ 20,601,436$ to $330,918,357$. A very large part of the trade is with the United States and Great Britain. The imports from Creat Britain exceed thove Irom the United States, but the exports to the United States are minch greater than thove to Great Britain, and the total trade with the United Seates is greater than that with any other country. In $19098-05 \%$ of the imports were from the United States and 17.8% of the exports were to the United States; in 190816.4% of the imports were from the United States and 41.4% of the exportit were to the United States. In 1909 Iree trade was entablished between the United States and the Philippines in all goods which are the growth. product or manufacture of these countrice, with the exception of sice. except that a limit to the free importation from the Phillppines to the United Seates in any one year is frod on cigare at I5,000,000 on wrapper tobacco and on Giler tobacco, when mixed with more than 15% of wrapper tobacco, at 300,000 \%: on filler tobacco at $1,000,000 \mathrm{lb}$ and on sugar at 300,000 grose tons. In the cate of manulactures the law provides that only thoee articles which do oot contain more then 20% is value of foreigm materind chall be admitted Iret.

Population -The cotal pepulation of tho archipelago as enumerated in the census of 1903 was $7,635.426$. Of this number $6,987,868$ were classed as civilised and 647,740 as wild, $7,579,288$ or $99 \cdot 2 \%$ were malive-born and 56,138 were foreignborn; 7.539,632 were of the Malayan or brown race, 41,097 were of the yellow. race, 24,016 were of the black race, 14,27I whre of the white race, and 15,419 were of mixed races. Of the black race $\mathbf{2 3 , 5 1 5}$, or $97 \cdot 8 \%$, were Negritos, who are believed to be the iborigines of the Philippines. Nearly all of them live in a primitive thate in the interior of Luson, Panay, Mindenao and

Negros. They are very short of stature, 4 ft . 10 in . being about the average height of a full-grown man, and the women are shorter. Their colour is black, their akull decidedly-round, their hair thick and frizzly, their legs thin and almost without calves, and their toes so prehensile that they can use them nearly as well as their fingers. They tattoo themselves and wear very little clothing, usually only a geestring. They have no fixed abodes but room about in groups of a few families. They are stillul with the bow and in throwing stones, and they can easily kindle a fire, even in the wet season, by rubbing together two pieces of dry bamboo. Their food consists principally of game, roots and wild fruits. The women, who do all the work, collect wax and honey, which are their principal staples in trade. Few Negritos live to he fifty years of age. The brown race, which came from the south in successive waves of immigration beginning in prehistoric times, is composed of twenty-three distinct tribes verying widely in culture, language and appearance; their languages however belong to one common stock and there is a general resemblance in pbysical features and in quality of mind. The great bulk of the population, approximstely 90%, is included in seven Christian tribes as fodlows: Visayan, 3,219,030; Tagalog, 1,460,695; Пlocano, 803,942; Bicol, 566,365; Pangasinan, 343,686; Pampangan, 280,984; and Cagayin, 159,648 . The Visayans are the principal inhabitants of the islands in the central part of the archipelago (Panay, Cebf, Negros, Leyte, Bohol, Samar, Masbate and Paragua) and on the nortb and east coasts of Mindanao; they were perhaps the most civilized people in the archipelago when discovered by the Spaniards, by whom they were originally called Pintados because they were in the habit of painting their bodies; but since tben their progress has been less rapid than that of the Tagalogs-who constitute the bulk of the population of Manila and central Luzon and the majority of the population of Mindanso--who are now the most cultured of the brown races in the Philippines. Most of tbe Ilocanos are in the western half of north Luzon; most of the Bicols in south Lnvon; most of the Pangasinans in the province of Pangasinan, which borders on the Gulf of Lingaytn, most of the Pampangans in the province of Pampanga, which borders the north shore of Manila Bay; and most of the Cagayfins in the valley of the Cagayan river. More than three-fourths of the widd population is included in the Moro, Igorot and Negrito tribes. The Igorots (197,938 wild and 13,582 civilized) are the chief representatives of the early Malay immigration to the archipelago. They are the principal inhabitants of the provinces of Lepanto-Bontoc and Benguet in north Luzon and are numerous in the monntain districts of neighbouring provinces. Among the wildest of them head-hunting is still a common practice; but the majority are industrious farmers laying out their fields on artificial terraces and constructing irrigation canals with remarkable skill. The Moros (275,224 wild and 2323 civilized) were the last of the Malays to migrate to the islands; they came after their conversion to the Mahommedan religion, and their migration continued until the Spanish conquest. More than one-half of them are in Mindanso and they are the principal inhabitants of the small islands of Jolo, Basilan, Siassi and Tawi Tawi sonth-west of Mindanao. Slavery is cammon mong them. They are generally miserably poor, cruel and haughty. Nearly three-fourths of the foreign-born and 97.5% of the representatives of the yellow race come from China. The mixture of the races is principally that of the Chinese with the Malays or the Spaniands with the Malays. More than hulf the representatives of the white race (1903) were Americans. Most of the inhabitants live in groups of villages. In 1903 there were 13,400 villages and nearly three-fourths of them contained fewer than 600 inhabitants each. Laoag in north Luzon with a population of 19,699 , Iloilo in Panay with a population of 19,054, Cebia with a population of 18,330 , and Nueva Chceres in south Luron (10,201), were the only towns with a population exceeding zo,000; and Manila (219,928) was the only city. After the 1903 cenaus many towns were enlarged by annexation of cuburbin
Government.-At the beginning of the American occupation, in August 1898, a purely military government was established; but in May 1899 the military authoritics began the re-establish-
ment of civil courts, and in July of the same year they began the organization of civil municipal governments. To continue the work of organizing end establishing civil government the president of the United States appointed in February 1900 a Philippine Commission of five members, with William H. Taft as chairman. On the 1st of September 1900 this body assumed the legislative functions of the central government at Manila; on the th of July 1901 the executive authority was, by order of the president, transferred from the military governor to Judge Taft, whom he had appointed civil governor; on the 6th of September rgor the Philippine Commission, by authority of the preaddent, established the four executive departments, of interior, commerce and police, finance and justice, and public instruction; and on the 29th of October 1901 the president appointed a vice-governor. The Congress of the United States, in an act approved on the rst of July 1902, ratified and confirmed the government $=5$ thus established, but required that future appointments by the president of the governor, vice-governor, members of the commission and heads of the executive departments should he made with the consent of the Senate. The organic act contained a bill of rights, provided for the establishment of a popalar assembly two years after the completion of a census of the Philippines, and more definitely provided for the organization of the judiciary. The firse popular assembly, of 80 members, was opened at Manila on the i6th of October rgof, and since then the legiskature has been composed of two branches, the Philippine Commission (five Americans and four, formerly three, Filipinos), and the Philippine Assembly. The members of the Assembly are elected by districts (the population of which is approximatcly equal) for a term of two years. A voter must be twenty-three years of age, must have been a resident of the municipality for six months, must not he a citiven or subject of any foreign country, and must possess at lenst one of the following qualifications: have been an office-holder under Spanish ruic, own real catate worth 500 pesos, pay taxes amounting annually to 30 pesos, or be able to apeak, read and write cither Spanish or English. The legislature meets annually; a regular session is limited to 90 days, and a special session to 30 days.

Justice is administered principally by a supreme court, courts of first instance, and courts of justices of the peace. The supreme court consists of seven members, four Americans and three Filipinos; and the chief justice and associate justices of the supreme court are appainted by the president of the United States with the consent of the Senate. The judges of the courts of first instance are appointed by the goversor with the consent of the Philippine Commission. A judgment of the supreme court of the Philippines which affects any statute, treaty, title, right or privilege of the United States may be reversed, modified or affizmed by the Supreme Court of the United Statea; an appeal to the Supreme Court of the United States may also be had in any cause in which the valne in controversy exceeds $\$ 25,000$

The most common form of provincial government is that by a governor, who is elected biennially by the municipal conncillons in convention, and a secretary, a treasurer, a supervisor, and a fiscal or prosecuting attorncy, who are appointed by the Philippine Commission. Each municipality is governed by a president, a vice-president, and a municipal councii, all of whom are elected biennially by the qualified electors of the municipality. The Philippine "municipality" is an administrative area, often sparsely settled, is often called a town, and may be compared to a New England township; the municipalities are the units inte which the provinces are divided. Each mmicipality is made up of barrios or small villages (about 13,400 in the entire archipelago) and of one, or more, more thickly peopled areas, each called a poblacion, and resemblung the township "centre" of New England
Education -The eatablishment of an efficient syucem of elementary schoof has been an important part of the work of the Americel administration. Under Spanieh rule the Church eatabitined colleges and seminaries for trainige priesta, but the Spanime sywem of secular mehooly for elementary instruction, enablithod ba 18063 arcomplished little; the schooles mere taught by waqualified matiove teachers and the supervision of there was very bax. The Amerion
wretem, enteblishad by the Pailippipe Compatsion in 1901, provides a course of instruction (in the Engtish language) for 11 years: 4 primary, 3 intermediate and 4 secondary In the intermediate and secondary departments there is a choice of six courses ; general, teaching, farming, toolwork, housckeeping and household arts and business. The administrative head of the aystem the director of education, who is appointed by the commission, and who arranges the course of study, approves the plans for school houses, determines in what towns secondary schools shall be established and in what towns American teachers hall teach, divides the apchipelago into school divisions and appoints a division superintendent in each, and supervises the examination of teachers and the application of insular school funds. Associated with him is an advisory board also appointed by the commission. In each school division, of which there were 35 in 1908, the division superintendent appoints the native teachers, prepare for the municipal councily estimates of school expenses, and approves all expenditures from municipal school funds. In each municipality there is a school board consisting of the president of the municipality and from four to six other members as the division superintendent thall determine: ono-half of them are elocted by the municipal council and one-balf are appointed by the division superintendent. In 1902 there were 928 American teachers employed in the Philippine schools; the employment of American teachers is only a cemporary policy, bowever, and by 1908 the number has been reduced to 795. In 1910 there were more than 6000 Filipino teachers who were teaching English to more than 500,000 pupils. The total number of chikdren of school age in the islands probably reaches $2,000,000$. The insular government also makes annual appropriations for the maintenance of Filipino students at educational institutions in the United States; in 8908 the number \mathbf{n} provided for was 130 . Besides the elementary schools there are at Manila the Philippine Normal School, the Philippine School of Arts and Trades, the Philippine School of Commerce and the school for the instruction of the deaf and blind, and in 1908 the Philippine legislature pasoed an ect for the establishment of a university of the Philippincs.

Finance.-Revenue is derived largely from custonus dutics and internal revenue taxes. In 1909 the reccipts were $\$ 22,739,000$, the expenditure $\$ \mathbf{2 3}, 337,000$, and the total bonded indebtedness 16,000,000.
(N. D, M.)

Hislory.-The Philippine Islands were discovered by Magellan in March 5 521. The first island on which he landed was Malhou, bet ween Samar and Dinagat. Then sailing south he touched at Mindanao, from which he suiled north-west, past Bohol to Cebu.. Here he found a good barbour in the bay on which the city of Cebil now stands. He made an alliance with the natives, who nadertook to supply hise witb provisions. With his new allies he crossed to the little island of Mactan, where he was killed in a skirmish. A Portuguese by birth, he had been sailing in the employ of Ring Charles I. of Spain (the emperor Charles V.), with the object of proving that the Moluccas lay within that part of the world which Pope Alerander VI. and the treaty of Tordesillas (June 7, 1494) had given to Spain and not to Portugal. Magellan named his discovery the Archipelago of San Lacarus. The Spaniards, however, called the group the Islas de. Poniente (Western Islands). The Portuguese called them the Ishes de Oricnic. The distinction was not accidental: To the Portaguesethey constituted the eastern boundary of their world. From the Spanish point of view the islands were on the extreme western verge of the national domain. In 1529 , by the treaty of Zaragosa, Spain relinquished to Port ugal all claims to the Moluccas and gereed that no Spaniard should trade or sail west of a meridian drawn 297 leagues east of the Moluccas. This was a plain renunciation of any rights over the Philippines, which lie several degrees west of the Moluccas. This fact, however, was ignored and in 1542 an attempt to conquer the Philippines was made by Ruy Lopez de Villabos (e. 1 500-1544). Villabos chose to honour the heir-apparent of the Spanish throne by naming some of the islands which he discovered, west and north of Magellan's discovery, the Islas Filipinas; After the accession of Philip II. ($555^{-1} 598$) a much more important expedition was fited out on the Mexican coast, under the direction of the distinguished conquistador, Miguel Lopez de Legaspi (1524-1572). In the sailing directions, issued in 156 x , for the use of this expedition the phrase "Tas Islas Filipinas "was used as applying to the entire archipelago. Starting on the and of November 1564 , from Navidad, with four ships built and equipped on the spot, Legaspi began an enterprise which entitles bim to a place among the greatest of colonial pioneers. He was accompanied by five Augratinian friars and four hundred men. In 1565 he founded,
on the inlund of Cebin, San Misuel, the first permanent Spaninh settlement in the islands, destined to become the Villa de Santfsimo Nombre de Jesus, later the city of Cebí. In 1575 the city of Manila was founded and becamethe insular capital. Legaspi's conquest of the islands was fecilitated hy the fact that there were no established netive states, but rather a congeries of small clan-like groups, the beadship of which was hereditary. Legaspi was reinforced from time to time hy small contingents of troops and friars. Although he encountered enormons obstacles, including famine and mutiny, the hostility and treachery of the natives and of foreigaers, and the neglect of the home government, he laid a sure forindation for permanent Spanishoccupation. By a combination of tect, courage and resourcefulness he won the hearts of the natives, repelled the Portuguese and, not withotanding the great distance from Spain, established the new colony on a prectical basis. Before his death in 1572 be had exploued and pacified a large part of the island territory, had established rade, and had arrested the progress of Mahommedanism.

Tbe conquest of the Philippines was essentially a missionary conquest. Inspired by apostolic sced the friars braved the terrors of life in the remote villages, raised the natives The frters from barbarianism and taught them the forms of and che Christienity. As a result of their labours the Chrif. OABciats tian Filipinos stand unique ts the only large mass of Asiatics converted to Christianity in modern times. The friars promoted the social and cconomic advancement of the islands, cultivated the native taste for music, introduced improvements in agriculture and imported Indian com and cacao from Ancrica. Tobacco was introduced by the government.

The colonial government was palterned on that of Spaniah America. The powers of the governor-general were linited only by the audiencia or supreme court, of which he was preaident, and by the residencia or official investigation at the expiration of his term. The islands were subdivided into provinces under alealdes majores who exercised bothexecutive and judicial functions. The favouritism and corraption that honeycombed the civil service of Spain frequently resulted in placing in responsible positions persons who were entirely unfit. Hairdressers were made into alcaldes, and sailoss were transformed into gobermadors hy the miraculous grace of royal decrees. The provinces were subdivided into pueblos, each under a native gobermadorcillo, elected annually. The permanent offices conld he hought, sold and inherited. The mistake was made of peying very low salaries to the officials, who took this as a justification for illegal exactions. The difficulty of securing proper afficials gradually resulted in the more important civid functions being handed over to the friars, who frequently exercised a benevolent despotism. In more than half of the twelve hundred villages there was no other Spaniard beside the priest. The Spanish language was practically unknown. It was far easier for the monks to learn thenative dialects than to teach their parishioners Spanish. For two centuries and a half after the conquest there is little narrative history worth recording. There were border wars with rebellious savage tribes, attacks made hy Chinese pirates sceking plunder or refuge, volcanic eruptions, earthquakes, tornadoes and the periodical visits of marauders from the southern islends.

In 1762, however, as an incident of the war between-Spain and England, a British fleet of thirteen ships, under the command of Admiral Samuel Cornish (d. ${ }^{-1770}$) and Brigadier- artht General William Draper (1721-1787), was sent to Oarypine the Philippines. The available Spanish army con- of Mashtr sisted of ahont 600 men, while the attacking force numbered 6830. After a bombardment, Manila fell and on the sth of October the British entered the city. By tbe terms of the capitulation the whole of the archipelago was surrendered to the British and an indemnity of $4,000,000$ pesos was to be paid. As there was no governor-general at tbe time, the British were obliged to treat with the acting-governor, the Archbishop Manael Antonio Rojo; hut his authority was set aside hy a war-party who rallied around Simon Anda y Salazer, a member of the eudicncia. Ands proclaimed himself governor-general and practically
succeeded in confining the Britith to Manila At the ciose of the war the Philippines were returned to Spain. Manila was evacuated in March 1764.
For the first quarter of a century after the Spanish conquest the islands were allowed free trade. Then came the familiar Beanome restrictions, limiting commerce to a fixed amount Deveno annually, and eflectively checking coonomic developmeat ment. In 1591 direct trade between the Philippines and South America was prohibited. In 1593 trade between the Philippines and Mexico, the only route open between the colony and Spain, wis limited to two ships annually, the ships not to exceed 300 tons burden. The result was that the command of the Acapulco galleon was rarely worth less than $\$ 50,000$. The passenger fare from Manila to Acapulco, at the end of the 18th century, was $\$ 1000$. This monopoly lasted until the Mexican War of Independence forced the Spanish government to regard the Philippines as being in the East instead of the West. Spain's colonial policy was not based on an exaltation of the commercial ideal. However much tbe administrators may have fallen short in actual practice, the Spanish ideal was to preserve and civilize the native races, rather than to establish lucrative trading posts where the natives might be easily exploited. In America the laws which provided elaborate safeguards for the protection of the Indians were, to a large degree, nullified by the lust for gold and silver and the consequent demand for labourers in the mines. In the Philippines the bumane policy of the home government had no such powerful obstacles to contend with. Business was not developed. The natives were allowed to live the indolent life of the tropics. Compared with the results of English or Dutch colonization the conversion and civilization of the Filipinos is a most remarkable achievement. Notwithstanding the undeniable vices, follies and absurd illiberalitios of the Spanish colonial stgime, the Philippines were the only group in the East Indics that improved in civilization in the three centuries following their discovery. The chief defect in the Spanish Philippine policy was that while it made converts it did not make citirens. Self-relience, freethought and mental growth were not encouraged. Progress in scientific knowledge was effectively blocked by the friars. Their presses confined their activities to the production of catechisms, martyrologies and handbooks in the native languages after the fashion of the presses of Mexico. Five hundred auch works were printed and distributed in Manila alone before 1800 . To reach the masses, unfamiliar with Spanish, manuals of devotion and outlincs of Christian doctrine vere translated into the various native languages. Ol the Bible itecif, no part was tranalated or published. A knowledge of reading and writing was generally diffused throughout the group.
The era of discontent may be said to have begun in 1825 when the loss of her colonies on the mainland of America caused Spain Bra of to take a more immediate interest in tbe Philippines, ancontext and increased emigration to the islands. Between s840 and 1872 thirty newspapers were founded. The introduction of secular books and papers, more or less surreptitiously, belped to apread the sceds of sedition. In 1851 the Spanish Filipino Bank was established. In 1856 foreign trade, hitherto confined to Manila, was permitted to enter the port of Hoilo, and foreign traders were allowed to open branch bouses outside of the capital. The change in Spain's economic policy, including an attempt to exploit the coalfields and to encourage both agriculture and commerce, helped to awaken hitherto dermant elements. In I6ot the Jesuits had opened a college In Manila for the education of Spanish youth. In 1768 they had been expelled. In 1859 they were permitted to return on the understanding that they were to devote themselves to education.
The Spenish Revolution of 1868 ceused a further influx of Spaniards and also the introduction of the pernicious" spoils system." With every change of ministry in Madrid came a new lot of hungry politicians encious to fill even the more humble colonial offices. The opening of the Sues Canal in 1869, followed by the eatablishment of direct steam communication between Spain and the Philippines, somnded the death knell of the peaceful
miselonary ere and brought about the definite entry. of the slands into the world of commerce and pregress.

The friars, by perpetuating medieval conditions in a country that was now beins opened to contact with the civilised world, increased the feeling of discontent. The natural result was a violent conflict. The more advanced Filipinos desired the fulfiment of the decrees of the Council of Trent whereby the incumbencies in Christianised towns and villages should be held by regular clergy and not by, friars. Filipinos had for generations been ordained into priesthood although not received into monastic orders. This measure was really aimed at the political and economic ampremacy of the Spanish-born friars, who bad by this time scquired 400,000 acres of agricultural land, more than half of it in the vicinity of Manila. The sgratian question added to the growing discontent. All the revolutions began in the province of Cavite, where the friars owned 125,000 acres. In $\mathbf{1 8 7 2}_{2}$ the secret agents of the friars induced the native gerrison at Cavite to mutiny and thus give the friars an excuse to press for vigorous action. The mutiny was not successful, but Father Burgos, the leader of the reform party, was publicly garrotted with three other native priests; and the native clergy were declared to be incompetent to have the cure of souls. Several of the richest and best educated Flipinos were convicted of treason and banished.

With the increased facilities for European travel Filipinos began to visit Europe and return with new and broader notions of life. The most distinguished of the travellers was Jose Rizal (1861-1896). Borm in Calainha, in the Rare province of Luzon, of pure Tagalog parentage, he attended the newly reopened Jesuit university in Manila. He was then sent to Europe to complete his studies, first in Madrid, where he became a doctor of medicine, and later in Germany, where be received the degree of Ph.D. He came into touch with advanced methods of scientific research, acquired great ability as a writer. keen perception of truth and an unflinching realization of the defects of his own people, and the unpleasant but essential fact that to have better goverament they must first deserve it. His propaganda, aimed at the small body of Filipinos who had suffcient education to appreciate political satire, was very effective His most famous novel, Noli me camgere, was published in 1886. In this he drew a masterly picture, not ondy of the life and inmorality of the triars but alio of the insolent Filipino chiefs or caciques, sobservient to the powers above, tyrannical to those below, superstitious, unprogressive and grasping. Caciquisa or "boesism," sovernment by local aristocrats, was the prime feature of village life in the islands during the entire period of Spanish rule and existed long before their arrival.

The campaign of Rizal, Marcelo del Pilar, Graciano Lopes Jeena and Apolinario Mabini, the leaders in the "Young Filipino Party." was a protest against both the domination of the friars and economic and administrative caciquism. To escape the vengeance of the friars, Rizal was obliged to fice to Europe. In 2892 he returned to the islands on the assurance of the governor, Eulogio Despujols y Dosay, that be might live there in peace. His enemies, bowever, aucceeded in baving him arrested on a charge of treason. Meanwhile be had organized a reform party under the title of Liga Filipina. Its object had been to procure, by pacific means, several reforms in the government of the islands, the chief of which were the expulsion of the friars, and the withdrawal of the governor-general's arbitrary power to deport Filipinos. The friars importuned Despujols for Rizal's life but he persistently refused their demand, and met the case half-way by banishing Rizal to Mindanao. Incensed by the failure of theis plot, the friars obtained the recall of Despujols.

The new governor, Ramon Blanco, was like Despujols and many of his predecessors, humane at heart, but he could do titule more than bold in chock the tyrannical schemet of the clergy. The banishment of Rizal convinced the The reform party that peaceful endeavour was futie. A secret organization, the Katipwnan, was therefore started to securo reforms by force of arms. It was founded by Andrés

Bonffacio, a schoolmaster of Cavite. In 2895-1806 the friats acting as sples for the goverament, obtained the banishment of many hundreds of natives.
On the day after the Katipunan conspiracy had been brought prematurely to light by a traitor, chree hundred prominent Filipinos were lodged in prison. This precipitated

Prontict the revolt The insurrectos attacked the civil guard outside the city, but were unsuccessful. A week later some hundrods of insurgents attacked the powder magazine at San Juan del Monte, but were completely routed. Four of their chiels were taken prisoners and executed in Manila. Ten days after the plot was discovered Manila and five other provinces were officially proclaimed in a state of siege. The insurrectos concentrated all their encrgies upon Cavité province. Several villages fell into their hands. - The insurgent comnander-in-chief was Emilio Aguinaldo. He was born in in69 in Cavite, son of a native farmer of considerable ability, and of a half-caste mother whose father was a Chinaman. After attending the Tagalog school at Cavite he entered the Jesuit College in Manila but did not graduate. In 1893 he became municipal alcalde of Cavité, and later foined the Katipunan.
The government was in a difficutt position. General Blanco had extremely few European troops at his disposal, and it was doubtful how far native troops could be trusted. Reinforcements were on the way from Spain, but the demands of Cuba had already depleted the Peninsula of the best fighting material. Blanco, blamed for not acting at once, was recalled. In December 1896 General Camilo Garcia de Polavieja (b. 1838) arrived as his successor, with General Jost Lachambre (b. 1840) as chief of staff. Before Blanco left be had released Rizal and allowed him to go to Spain, but the friars caused his arrest and he was sent back to Manila, where he was executed by Polavieja's orders in December 1896.
Lachambre took the field in Cavite with energy and succeeded in quelling the rebellion in that province. He was then despatched north. Numerous small battles were fought with Aguinaldo and the lnsurgents, who were repeatedly defeated only to reappear in other places. Polavieja's demand for more troops having been refused, be resigned, and was succeeded in the spring of 1897 by General Fernando-Primo de Rivera. Hostilities continued, but the wet season set in, making operations extremely diffcult. Before Primo de Rivera could make much headway against the insurgents affairs in Cuba became so serious that the Spanish government cabled bim that pacification was most urgently desired. As a result he suspended operations and signed the treaty of Biacabato (Dec. 12, 1897), by which Aguinaldo and thirty-five of his chief followers were allowed to retire to Hongkong with a cash indemnity of 400,000 pesos. The Madrid goverament relused to confirm the terms of peace, and the peace rejoicings in Manila were followed by the persecution of all those who were known to have sympat hized with the movement.
On the isth of February 1808 in Havana harbour, the U.S.S. "Maine" was blown up. On the isth of March Primo de seunth- Rivera, learning that theAmerican Commodore George Amontere Dewey was. mobilizing bis fleet in the harbour of wor

Hongkong, called a council at -which the Spanish Admiral Patricio Montojo (b. 1839) stated that, in the event of a confict, his own feet would be inevitably destroyed. Primo de Rivera was now recalled and General Basilio Augusti (b. 1840) took his place. With a new governor-general all plans had to be reconsidered. Briore suitable defences could be made, word came from Hongkong that Dewey had started for Manila and Montojo hurriedly sailed from Subig Bay to Cavite, barely in time to anchor before Dewey arrived. Few among his crew understood handling a gun properly, and owing to the poor care which his vessels had received they were actually inferior to the individual vessels of the Areerican squadron. Commodore Dewey arrived in the Bay of Manila on the ist of May, and totally destroyed or distbled the Spanish fleet. The surrender of the city was refused. The Americans occupied Cavite. The battle of Kanila Bay and the defeat of the Spanish feet destroyed the presige of Spain throughoutt the ismpia Inaurrectiono bogan
in gearly every province. Aguinaldo and his friends wera allowed to come to Cavitt in an American transport. With the approval of Commodore Dewey, who allowed arms to be supplied him, Aguinaldo successfilly renewed his campaign against the Spaniards until practically ald Luzon, extept the city of Manila and suburbs, was in his controL. Relinforcements arrived, and on the a3th of August Manila was riken by the Americans, under General Wesley Merritt (b. 1836)

The refusal of Generni Mertit to permit Aguinaldo's troops to enter Manima created resentment on the part of the Filipisos A so-called constitutional convention was beld at Malolos, and a constitution was adopted. At the same time the Visayan Republic was organized, and it professed allegiance to Aguinaldo's government. Neither Aguinaldo's government nor the Visayan government was able to maintain order, and the whole country was subject to the looting of robber bands. The treaty of peace between the United States and Spain, by which the Philippine Islands passed into the hands of the former, was signed in Paris on the roth of December 1898 , but it was not confirmed by the Senate until the 6th of February 1899. During this period the Filipino army remained under arms. On the 4 th of February bostilities broke out between the Americans and the Filipinos. The latter were defeated on the gith, at Paco, with houvy loss. The American troops, now under General E. S. Otis (b. 1838), following up the enemy, drove Revon
them out of Majolos and then withdrew to cerment the Manila to await reinforcements, which brought Amertcmen the total American force up to about 60,000 men. It ts unnecessary to trace in detail the gradual conquest of the islande, or the bundrods of engagements, often small, between the rebels and the Americana. Owing to the nature of the country, and the hope of securing independence from a possible overthrow of the Republican party in the United States, the war was prolonged for two or three years. With the capture of Aguinaldo on the 23rd of March 1go1, the resistance became little more than that of guerrillas.

Civil government was introduced as fast as possible. During 1899 the Schurman commissaion, beaded by Dr Jacob G. Schurman of Cornell University, was sent by The Taft President McKinley to report on the state of affairs Commert In February 1000 a second and more powerful *on commission was appointed, consisting of Judge W. H. Taft, Professor D. C. Worcester (b. 1866), General L. E. Wright (b. 1846), Mr H. C. Ide (b. 1844), and Professor Bernard Moses (b. 1846). Under the presidency of Mr Taft it began to exercise a legislative jurisdiction in September 1900. Its frrst act was to appropriate $\$ 1,000,000$ for the construction and improvement of roads. It next provided for the improvement of Manila harbour, which involved an expenditare of $\$ 3,000,000$. The fifth act extended to the islands the benefis of a civil service based on metit. In 1901 a general school law was passed under which 1000 American school teachers were introduced. They were scat tered among 500 towns, to teach- 2500° Filipino teachers English and modern methods of school teaching. Ohes legislation provided for the organization of a judiciary, a supreme court, the enactment of a code of civil procedure, the establisbment of a bureau of forestry, a healith department, and an agricultural bureau and a bureau of constabulary, made up of native moldiers officered by white men. Ladronism was very widely distributed under Spanish rule, and the old guerdia civil committed outrages almost equad to those of the hrigands themselves. The pew constabulary, has been eminently successful in maintaining law and orders Great progress has been made in the scientific mapping of the islands.

On the 4th of July igor the office of military governor was abolished, the military forces being largely recalied, and the part remaining being made henceforth subordinate to the civil authorities. Mr Taft became governor. Doveregeneral. A general amnesty was granted to all meat rebels and political prisoners who would take the osth of allegiance to the United States. Oa the ast of July ygor President

Roosevelt signed an act eatablishing the civil government of the Philippines and providing for a new legislative body. A census was authorized and was taken in 1903. The act of 8002 also authorized the purchase of land belonging to the friars. Although among such 20 ignorant and diversified body as that of the Filipioos public opinion an bardly be said 10 exist, there is no doubt that the batred of the friars was practically universal. When the revolution came the members of the four orders had to fice for their lives, although the people who killed or imprisoned those they could catch were generaily good Catholics. As the insular governmest could not saiely allow the friars to return to their parishes the friars' lands were bought for $\$ 7,000,000$. Mr Taft managed the delicate task of conducting negotiations with the Vatican without arousing the hostility of either Catholics or Protestants. On the ist of February 1904 General L. E. Wright became governor. He was succeeded in 1905 by Mr H. C. Ide, who was succeeded by General James T. Smith in 1906. The elections for the first Philippine Assembly were held on the 30th of July 1907. and 31 Nationalists, 16 Progressists, 33 Independents and others were elected. The total vote cast was about 100,000 . In many districts the Nationalists' candjdates promised that if they were returnod immediate independence would follow. When the Assembly met it became apparent that the great majority were more anxious to act as a dignified branch of the legislature than to maintain consistency with their pre-election declarations. The legislature convened for its second session on the 1st of February 1900. During this session 72 laws were passed, of which 23 had been introduced by the Commission and 49 by the Aseembly. Among the acts was one providing for the continuance of Spanish as the official language of the courts until 1913; an act providing for benkruptcy; and an act fixing the age of majority at 21 years.
Governor Smith left the islands in May 1900 and was succeeded by W. Cameron Forbes. On the 6th of August 1909 the Payne and Colton bills became law, greatly promoting trade between the Islands and the United States (see Communicalions and Commerce). On the and of November 1009 delegates were elected for the second Philippine Assembly. (11. Bi.)
Bibliography. - Sce, in generol. A. P. C. Griflin, A List of Books on the Philippine Islands in the Library of Congess (Washington. 1903). with references to periodicals: T. H. Pardo de Tavera, Bubioseca fuliprna (ibid. 1903): W. E. Retana, Aporalo biblioendico de la historia general de filipinos (3 vols. Madrid, 1906); idem. Archto de bibliofilo filipino (Madrid, 1895); J. A Robertson, Eibliography of the Philsppine Islands (Cleveland. Ohio. 1go8). For gratistics. general description and material on administration, sce Census of the Phalippine 1 slonds in 1003 (4 vols, Washington. 1905): Pronowncing Gazellier and Geographacal Dichuaary of the Fhilippine Islands (Washington. 19021; Eilhnological Survey Publieations of the Department of the Interior (Manila, 1904 sfq.); Reports of the Philippine Commission (Washington, 1901 sq9): Sir John Bowring. A Visit to the Phisppine Islands (London. 1839): D. C. Worcester, The Phulippine Islands and their Peaple (New York, 1898) ; F. W. Atkinson, The Philipprime Islands (Bral on, 1905): C. H. A. F. Lindsay, The Philspines under Spontat und Amcrican Rules (Philadelphia, 1g06): A. H. S. Landor. Th. Gims of the Fast (New York, 1904); M. A. Hamm, Manila and the Thuippines (London, 1898): J. A. LcRoy, Philsppine Life sm Tous and Country (ibid. Igo5): J. B. Devins, An Observer sin the Phationnes (Boston, 1905) i R. R. Lala, Phulippine /slands (Niew York, isge); H. C. Potter, The Eas! To-day and To morrono (ibid. 1002): F. Blumentritt, Die Philippinen (Hamburg, 1900); H. P. Willis, Owr Philippine Problem, a Siudy of American Colonal Policy (New York, 1905): Edilh Moses, Unofficial Letters of an Official's Wife (ibid. 1908); W. B. Freer The Phalappone Experiences of an American Teacher (ihic. 1906): I. G. Schurman, Phappene Affaws (ibid! 1902): W. H. Taft, Covil Cosernmient in the Phulipinizes (idid. 1goa): and Spociol Report ta the Presidend ow the Phylippones (Washington, 1908): and R. C. McGregor, Lanual of Pkslipgine Birds (New York. 1909). For the history of the islands, see E. H. Blair and J. A. Roberison, The Philippine Islands. 1403 -1808 (55 vols., Cleveland, 1903-1909): J. Montero y Vidal, Fistorta general de Filipimes (3 vols, Madrid. I887-1895) ; Juan de fa Concepcion (1724-1787). Historia ecneral de Pkilipsinas (14 vols.. Manila. 1788-1792) ; Gaspar de San Agustin (1650-1724). Conquistas de las islas Philipinas (2 vols, Valladolid. 1890); Le Gentil, Voyage dans les mers de VInde (Paris, 1781): F. Colin Labor coanfacica, ministerios apostolicos de los obrecos de la compania

(3 vols. Barcelona. 1900-tg02), J. Marioez de ZúRiga, Fisterio de las islas Phutpinas (Sampaloc, 1803 . Eng. trans., Londor, 1814) I. J. Delgado, Historna pemeral snero-prefann, poluvea y natural des islas del Foricente, Llam :siltpsitas (Manita, 1892); E. G. Bourne. Discosery, Conquest ay Eavly History of the Phalippine Islands (Cleveland, 1907): F. Combes (1620-1665), II storna de Mixdanao y Jolo (Madrid, 1897); J. M. Castillo y Jimen z, El Katipuman of d filibustersmo en fulpit:s (Madrid, 1897)i E. R. Delmas, Lo Insxrreceson de Fuliprnas ite 1806 y 1807 (2 vols, Barcelona, 1899): F. D. Millet. The Exfection to the Phwipprices (London, 1899): and J. Peilicena y Lópe: La V'erdad sobre Filishas (Manila, 1900).

PHILIPPPOPOLS (Bulgarian, Floodis; Turkish, Felibe), the capital of Eastern Rumelia, and of the department of Philippopolis, BuIgaria; situated in the midst of picturesque granite eminences on the right bank of the river Maritas, 96 m . E.S.E. of Sofia and 97 m . W.N.W. of Adrianople. Pop. (1906) 45.57^{2}. of whom a large majority are Bulgarians, and the remainder chiefly Turks, Greeks, Jews, Armenians or gipsies. Philippopolis is on the main railway from Vienna to Constantinople, via Belgrade and Sofia. The Maritza is navigable up to this point, and as the city has communication by rail both with the port of Dédtagatch on the Mediterranean and that of Burgas on the Black Sea, and is situated in a remarkably fertile country, it has become the chief commercial centre of southern Bulgaria, and is the seat of both Greek and Bulgarian archbishops. The residences of the richer Grecks and Bulgarians occupy the slopes of the largest eminence, the Jambaz-tepf, in the centre of the city; between it and the Nobtet-tépé, from the summit of which there is a magnificent view of the city, is the Armenian quarter; near the bridge over the Maritza is the poorer Turkish quarter; and south-west of the Jamhaz-tepe there is a suburb of villas. On the Bunari-tépé a monument has been erected by the Russians in commemoration of the war of 1877, and near this is the new palace of the king of Bulgaria. The Sahubtépé is crowned by a clock-tower. Not far from it are the beautiful Exhibition Parklaid out in $\mathbf{1 8 9 2}$ and the fine JournaiaJami Mosque. Near the Maritza are the remains of the ancient konak (palace) of the. Turkish pashas, the puhlic park formed hy the Russians in 1877, the gymnasium, and the new Greck cathedral. The city has a large commerce in rice, attar of roses, and cocoons; other exports being wheat, wine, tobacco, alcohol and hides.

Eumolpia, a Thracian town, was captured by Philip of Macedon and made one of his fronticr posts; hence its name of Philippopolis, or "Pbilip's City." Under the Romans Philoppopolis or Trimontium became the capital of Thracia; and, even after its capture by the Goths, when 100,000 -persons are said to have been slain, it continued to be a flourishing city till it was again sacked by the Bulgarians ir 1205. It passed under Turkish rule in 1363; in 1818 it was destroyed hy an earthquake; and in 1846 it suffered from a severe conflagration. During the war of $1877-78$ the city was occupied by the Russians (see also Bulcarla: Hislory).
PHILIPPSBURG, a town of Germany, in the grand duchy of Baden, situated on a sluggish arm of the Rhine, 15 m . N. of Karlsruhe, on the railway Bruchsal-Germersheim. Pop. (ı90j) 2625. It has manulactures of tobacco and cigars, and some trade in cattle and hops. Philippsburg, formerly an important fortress, originally belonged to the ecclesiastical principality of Spires, and was named Udenheim. In 1338 it was surrounded with walls by bishop Gerhard. A later hishop of Spires, Philipp Christoph von Sötern, made the place his residence early in the $17^{\text {th }}$ century, strengthened the fortifications, and renamed it Philippsburg after himself. At the peace of Westphalia in 1648 the French remained in possession of the town, but in 1679 it was restored to Germany, and though again captured by the French in 1688 it was once more restored in 1697. In 1734 the dilapidated fortress fell an easy prey to the French under Marshal Berxick, who, however. lost his life beneath its walls. It was restored to Geimany in 1735, and was again besieged by tho French in $\mathbf{1 7 9 9}$. The town was assigned to Baden in 1803

See Nopp. Gexchicluc der Slade Philippsbwrg (Philippoburg, (8881).
 to a49, often called "Philip the Arab," was a native of Boatra in Avabie Trachonitis Having eatered the Roman exony, he roee to be practorian praefect in the Peraian carapaign of Gordinn IIL, and, inspiring the soldiers to slay the young emperoc, was raised by them to the purgio (244). Of his reign little is known except that he celebrated the encular games with great pomp in 248, when Rome was supposed to have reached the thousandth year of her existence. A rebellion broke out among the legions of Moesis, and Decius, who was sent to quell it, was forced hy the troops to put himeelf at their head and march upon Italy. Philip was defeated and slain in a batte near Veronn. Acoooding to Christian writerg, be was a convert to Christienity.
See Aurelius Victor, Caesores, 28; Eutrogias, is. 3; Zoaras, xif. 19.

MIILPA, ATBROSE (c. 1675-1749), English poet, was born in Shropshire of a Leicestershire family. He was educated at Shrewsbury school and St John's College, Cambridge, of which be became a fellow in 1699 . He seems to have lived chiefly at Cambridge until he resigned his fellowship in 4708 , and his pastorals probably belong to this period. He worked for Jacoh Touson the bookseller, and his Pasforals opened the 6th volume of Tonson's Miscellanies (1709), which also contained the pastorals of Pope. Philips was a stanch Whig, and a friend of Steele and Addison. In Nos. 22, 23, 30 and 32 (1713) of the Gmardian he was injudiciously praised as the only worthy successor of Spenser. The writer of the papers, who is supposed to have been Thomas Tickell, pointedly ignored Pope's pastorals. In the Speciater Addison applauded him for his simplicity, and for having written English eclogues unencumbered by the machinery of clastical mythology. Pope's jealousy was roused, and he ent an anonymous contribution to the Guardian (No. 40) in which be drew an Ironical comparison between his own and Philip's pastorals, censuring himself and praising Philips's worst passages. Philips is said to have threatened to cane Pope with a rod he kept hung up at Button's coffee-house for the purpose. It was at Pope's request that Gay hurlesqued Philips's pastorals in his Shepherd's Week, but the parody pleased hy the very guality of simplicity which it was intended to ridicule. Samuel Johnson describes the relations between Pope and Philips as a "perpetual reciprocation of malevolence." Pope lost no opportunity of scofing at Phillps, who figured in the Bafhos and the Dunciad, as Macer in the Choracters; and in the "Instructions to a porter how to find Mr Curll's authors "he is a "Pindaric miter in red stockinga." In 1718 he started a Whig paper, The Preehimher, in conjunction with Hugh Boulter, then vicar of St Olave's, Southvark. He had been made justice of the peace for Westminster, and in 17 r 7 ㄹ commissioner for the lottery, and when Boulter was made archbishop of Armagh, Philips accompanied him as secretary. He sat in the Irish parliament for Co. Armagh, was secretary to the lord chancellor in 1726, and in 1733 became a judge of the prerogative court. His patron died in r742, and six years later Philips returned to London, where he died on the Ith of June 1749.

His contemporary reputation rested on his pastorals and epistles, particularly the description of winter addressed by him from Copenhagen (17,0) to the earl of Dorset. In T. H. Ward's English Poels, however, he is represented hy two of the simple and charming pieces sddressed to the infant children of Lord Carteret and of Daniel Pulteney. These were scoffed at hy Swift as "Littie fimm on Miss Carteret," and earned for Philips from Henry Carey the nlckntme of "Namby-Pamhy."
Ptilipers wortes are an abridsment of Bishop Hacket's Life of. John Williams (1700); The Thescand and One Days: Persian Tales (1722), from the Frepch of F. Petis de fan Croix; three plays: The 'Distrast Molker (17ra), an adaptation of Racine's Andromague; The Briton (17a2); Hivmfroy. dule of Glowcester (1723). Maty of his peems, which included togie trensiations from Sappho, Anacreos and Pindar, were pabisthed eeparately, and a colfetted edition appeared in 1748 .

PRIILF, J0IIT (1676-t 708), Eaglsh poet and man of letters, con of Dr Stepben Philips, archdeacon of Shropshire, was born at his father's vicarage at Bampton, Oxfordshire, on the zoth of Deceraber 1676. He was educated at Wiacheater and Chriot 2817

Church, Oxford. He was a carelul reader of Vingil and of MPton In 1701 his poem, The Spendid Shilling, was pubzthed without his consent, and a second uneuthorized version in ε yo5 induced him to print a corcect edition in that year. The Splondtis Stiling, which Addison in The Touler called n the finest burlesque poems in the British language" recites in Mitonic blank verse the mincries consoquent on the mant of that piece of money. Its success introduced Phllip to the notice of Robert Haricy and Henry St John, who commiagioned him to write E Tory compterblast to Jomeph Addison's Compaigu. Philips was happier in buriesquing his favourite euthor than in genuine infitation of a heroic theme His Marbonough is modelled on the warrions of Homer and Virgil; be rides precipitate over heaps of fallen horves, changing the fortune of the battle by his own right arm. Cyder (ryo8) is modelted on the Geergict of Vingil. Cerealie, en Invilution of Millow (r7o6), ilthough printed without his mane, mey safoly be sacribed to fim. In all his poems exoept ERenhein be found an oppentmity to izaert a evilogy of tobacco. Philipe died at Elereford on the 1 gth of February ry08/g. There is an inscription to his menory is Wetsminster Abbey.

See The Whate Worls of. . Jown Phatipt. . To misich is Prefired his Lift, by Mr (Cu. Sevell (and ed., 1720); Johamon, Iives of in Poeds; and Biograptic Brilamonices

PITLIP, KATHAEIIE (165I-1664), Engish poet, deughter of John Fowler, a merchant of Bueklersbury, London, was born on the Int of January 163r. Her finther was a Preabyterinn, and Katharine is said to have read the Bihle through before the was five years oid. On arriving at yents of dilucretion she broke with Prebyterian iraditions in both religion and poltion, became an ardent adualrer of tho hing and his church policy, and in 1647 mantied Janes Philips, a Wehh royalist. Her home at the Priory, Candigan، became the centre of a "society of friendship," the members of which were known to one another by fantastic names, Mrs Phitips beins "Orinda," her husbend "Antenor," Sir Charles Cotterei "Poilarchus." The es matchless" Orinda, as ber admireis called her, posed as the apostlie of female fricudship. That there wes much solid worth under her affectations is proved by the respoct and friendisitp she ingoired. Jeremy Taylor in 1659 dedicated to her his " Discourse on the Nsture, Offoes and Mespures of Priendship," and Conder, Henry. Vaughan the Silurist, the earl of Roscommon and the earl of Cork and Orrery all celehrated her talent. In 1662 she went to Dublin to pursue her husband's claim to certain Irishestates, and there she completed a txinsiation of Cornellie' Pomper, produced with great success in 1663 in the Smock Alley Theatre, and printed in the same yesr both in Dublin and London. She went to london is March 1664 with a nearty completed tranalation of Cornelle's ITerace, but died of amallpor on the 2 2nd od June. The literary atmosphere of her circie is preserved in the ercellent Letters of Orimats of Poliarchas, published by Bermind Lintot in 1705 and 1709 . "Poliarchus" (Sir Charies Cotterel) was master of the ceromonies at the court of the Reatorition, and afterwards tranalated the romances of La Calprenede. Mrs Philipe had two children, one of whom, Katharine, bectime the wife of Lewis Wogan of Boulston, Pembroteshire. Accordins to Mr Cowe, this lady may have been "Joan Philips," the author of a volume of Pamale Pomes. . . arition by Epidifis, which are in the style of Orind, and dirplay genuine fecline with very little reserve.
 By the Incomparable Mrs X. P. appeared surreptitionsly in 1664 and an authentic edition in 166\%. Selectad Poams, edited with an appreciation by Miss L. L Guiney, appeared in $1904 ;$ but the bete modern edition is in Sointsbury's Manor Poedt of de Cardine Peried (vol, in, 190s).

PRITISHinEs, ${ }^{2}$ the genersl name for the people of Phitistia
 lowiands on the Mediterranem coast from the neighbourhoed
1 "Philistine," es a term of contempt, hometlity or rephoach, appear frrst in Engtigh, in n eense equivalent to "the enemy," as early as the beginning of the t7th century, and later an a sang term for a bailiff or a cheriff's officer, or merely for dranken of vicious people generally. In Cerman univeraties the townitoll
of Jaff. (Ioppe) to the Egyptian desert south of Gasa (on the subeoquent extension of the name in its Greek form Palaestina, see Palesitine).
r. Eeyphian Evidence.-The name is derived from the Purasati, one of a great confederation from north Syria, Asia Minor and the Levant, which threatened Egypt in the XXth Dynasty. They are not among the hordes enumerated by Rameses II. or Merneptah, but in the cightb year of Rameses III. (c. 1200-1190) the Purtsati hold a promineat place in a widespread movement on hand and sea. The Syrian staties were overwhelmed and the advance upon Esypt seemed irresistible Rameses, however, collected a large fleet and an army of native troopa and mercenaries and claimed decisive victories. The Egyptian monuments depict the flight of the enemy, the heavy on-carts with their women and children, and the confusion of their shipa. But the sequel of the events is not certain. Even if the increasing weakness of the Egyptian Empire did not invite a repetition of the incursion, it could have allowed the survivors to settle down, and about a ceatury later one of the peoples formerly closely allied with the Purasati is found strongly entrenched Dor, and together with the more northerly port of Byblos treats with scant respect the traditional surerainty of Egypt. ${ }^{4}$ That some definite political changes ensued in this age have been inferred on other grounds, and the idertification of the Purasati with the Philistines may permit the assumption that the latter succeeded in occupying the district with which they have alwaye been associated.

The Egyptian monuments represent the Purasati with a very dianinctive feather head-dress resembling that of the Lycians and Mycenmeans. Their ganeral physiognomy is hardly Cilician or Hittite, but European. Their arms comprise two short swords, a longer spear, a round ahield, and they sometimes wear i cont of mail; a curious fenture is their tactics of fighting in a circle of protecting shields. The charioss resemble the Hittite with two crosed receptacles for the weapons, but obviously these were not used by the Purasati alone. On archseofogical grounds the Purasati have been connected with the people of Keftiu, i.e. Mycenaeaps of Crete, although a vider application of this term is not to be excluded.
See further, G. Maspero, Senugetio of the Nations, pa $46 \mathrm{taq9}$. ;
 desell. pp. 1-42 (1900), pp. 113^{12} \&q9. (1904); H. R. Hall. British School of Athens, vili. $1 s 7 \mathrm{sqq}. \times 154 \mathrm{sqq}$; Proc. Soc. Bibl. Arck.

 cently, A. Wiedemann, Orient. lif. Zois (1910), cola, 49 mq9, dip putes the identification of Keft with Crete.
2. Histary. - Biblical tradition, 'too, has recognined the Philistipes as immigrants from Caphtor (Amos is. 7). They appear in the pre-Mosnic age (Gen. $x \times i .32,34$, Evii), at the Erodus of the Iaraclites (Ex. xiii. 17, xv. 14), and the invasion of Palcatine. They are represented as a confederation of five cities (Ashdod, Ascalon [Ashkelon], Ekron, Gath and Gaza) which remained moonquered (Joehuas adii. a seq-, Judges iii 3 ; contrast Joshut av. 45-47, xix. 43). The institution of the Hebrew nonarchy (c. I000 s.c.) follows upon periods of Philiatine oppression (Judges iii. 31, x. 7, 12, xiii. 1-5; mee Sancson; Elif Saucust; Savi; Davm). The subjugation of them is ascribed were callod by the etudente Phitister: they were "outsiders," the enemy of the chooen people. It is eupponed that this usie arome in 1693 in Jena after a "town and gown" row in wbich a student had been billed and a sermon preached on the text "the Philistines be upon you, Sammon " Jeee Omerterly Review, April 1899, 438, note, quoted in the Now Engistm Dictionary). "Philitine th thus became the name of contempt applied by the cultured to thome whom they considered beneath them in intellect and taste, and was firnt so uned in English by Carlyle, and Matthew Arnold (Essays in Criticism
"Heinrich Heine." 1865) give the word its rogue and its final connotation, as adgnifying "inacoessible to and impatient of ideas." ${ }^{\text {chep.] }}$
${ }^{1}$ So the Papyrus firm publiahed by W. Golfolictheff (Rec. de grasame. xxi. 74 sgq.), on which wee A. Erman. Zeif. f, ocegpe. Spracie, pp. 1414 (igoo); W. M. Maller, Minteit d. sorderanjah Gesell. Pp. 14 sqg. (1900): J. H. Breanted, Hist of Ep. Pp. 513 eq9. Bislorical Records, Iv. 274 sqq; ; H. W. Hogs, in the Theolog. Series I. of the publication of univerity of Mancbetter, p. 90 meq.
 viii. I ; for Solomon see t Kinges x 20); bat they evidenth recovered their independence, and we find that twice within a short time the northern Israclites laid sige to the bonder fortress of Gibbethon (I Kings xy. 27, xvi. 15). Although this place has not been identified, it is mentioned in a list of Danite cities with Aijaton, Ekron, Eltekeh and Timneh (Joshus xix. 44, miL 23), names of importance fior the history. Somewhat linter the evidence becomes fuller, and much valuable light is thrown upon the part which the Philistine coast played in the pelitical history of Palestine. Gars, the most coutherly and famous of the Philistine towns, was the terminus of the great caravan-toute from Edom and south Arabia, with whoee Bedouin it was generally on good terms. It was "the outpost of Africa, the door of Asia " (G. A. Smith), the stepping-off point for the invasion of Egypt, and the fortress which, next in importance to Lachish, barred the maritime road to Phoenicia and Syria.? It is necessary to realize Gaza's position and itslinks with trading centres, since conditions in the comparatively small and helfdesert land of Judah depended essentially upon its relations with the Edomites and Arabian cribes on the south-east and with the Philistines on the west. Jehoshaphat's supremacy over Philistines and Arabians (2 Chron. xivi. 11, partly implied in 1 Kings xxi. 47) is followed by the revolt of Libnah (near Lachish) and Edom against his son Jehoram (2 Kings viii. 20, 22). The book of Chronicles mentions Philistines and Arabians, and knows of a previous warning by a prophet of Mareshah (east of Lachish; 2 Chron. xx. 37, xxi. 16). In like manner, the conquests of Uxziah over Edom and allied tribes (2 Kings xiv. 22, see 2 Chron. xxvi. 7) and over Gath, Ashdod and Jabneh (ibid. v.6) find their sequel in the alliance of Samaria and Damascus against Ahaz, when Edom recovered its independence (50 read for "Syria" in 2 Kings xvi. 6), and the Philistines attacked Beth-shemesh, Aijalon, Timnath, \&c. (2 Chron, xxviii. 17 seq.). ${ }^{4}$ These notices at least represent nafural conditions, and the Assyrian inscriptions now are our authority. Tiglath-pileser IV. (734 8.c.) marched down and seized Gaza, removing its gods and goods. Its king Hanun had fled to Musri, hut was pursued and captured; Ascalon, Judah and Edom appear in a list of tributaries. Musri was entrusted to the care of the Arabian Idibi'il (of the desert district), but continued to support antlAssyrian leagues (see Hossen), and again in 720 (t wo years after the fall of Samaria) was in alliance with Gaza and north Palestine. Assyria under Sargon defeated the southern confederation at Rapibi (Raphia on the border of Egypi) and captured Hanun; the significance of the victory is evident from the submission of the queen of Aribi (Arabia), the Sabacan Itamara, and Musri. This Musri appears to have been a district outside the limits of Egypt proper, and although tribes of the Delia may well have been concerned, Its relations to Philistia agree with the independent biblical account of the part played previously by Edom and Arabian tribes (see Mizpain). But the disturbances continued, and although desert tribes were removed and settled in Samaria in 715 , Musri and Philistia were soon in arms again. Ashdod (see Isa. xx.) and Gath were taken and sacked, the people removed, and fresh colonies were introduced. Judah, Edom and Moab were also involved, but submitted (71i 8.c.). Scarcely ten years passed and the whole of Palestine and Syris was again torn with intrigues. Sennacherib (Sargon's successor in 705) marched to the land of the " Hiluites," traversed
${ }^{2}$ See G. A. Sanith, Fist. Geof. of the Haly Land. cha ive seat; and M. A. Meyer, Histery of ine City of Gean (New Yorts 1907). For the traditione amociating Gaza with Crece. wee the litter. Index, s.o. Minos; the rewmblance between the Mirmosins of South Arabia and Cretan Minoe has afforded grounde for all Hinds of apeculations, ancient (Pliry vi. 157) and modern.
Between the cencral fudacal platedu and the bitter loy the "lowlands" (Sbefphelab), a diatrict open equally to Judacana and Philistines alike.
${ }^{-}$Cl. Gaza aod Edom agaiart Judah in Arnon i. 6, and, for the part played by Damascus, the hiter vicisuitudes under the Nabataeans (Josephus, Anf. xiii. 13-3). It is dfficult to date the abiance of Syria and Philistie gainst lrael in Isa. ix. it reeq. (on the text. see the commentariesh.
the coust and, deroeodiot from sidoo, took Jam, Beth-drom, Benoberak, Ekron and Timmah (all in the dinerict nseribed to the soathern Dan). At Ehekeh (emo in Dan) the allika were defeated. Farther mouth came the turn of Aseation, Lachish and Liboach; Judiah uader Heselitiah suffured soveroly, and its western citlen were trameferred to tha faithful vamale of Ekron, Achdod and Gaza. The immedizte sabrequent events are obscure (pere further Hrexerinis). In the 7 th ountury Gasta, Acculon, Auhdod and Elcron were Assyrion vesoats, together with Jedih, Moab and Edom-in anl, twenty-two tinge of the " Hittites" the discovery of Assyrian contract-tablets at Ceaer ($c .6 \mathrm{go}$) may indicate the presence of Astyrian garrisont. But as the Assyrian power dectined Eeyptian monarchs formed phass of agerandizement. Herodotus mentions the Scythfan invision and sack of the temple of Aphrodite Urania (Astarte) at Avcilon, also the prolonged eiege of Ashdod by Pammetichus, and the occupetion of Kadyris (Gan) by Necho (i. 105, ii. 157 eqq., iii. 5). But the Babylonian Emplre followed upon undidional lines and thrust beck Egypt, and Nabonidas (553 E.c.) ctaims his vassale as far as Gazs. The Pespins took over the realm of their predocessors, and Gara grew in importance as a seat of finternational commerce. Nehemiah speaks not of Plulistines, but of Ashdodites (iv. 7), speaking an "Ashdodite" dialect (xiii. 24): Just as Strabo regards the Jews, the Idumsears, the Gazans and the Ashdodites as four cognate pooples havint the common characteristic of combining agriculture with commerce. In southern Philistis at least, Arabian immigration became more pronounced. In the time of Cambyses Arabe were settled at Jenyson south of Game (Herod. iin. 9), and when Alerander marched upon Eyypt, Geze with its army of Arabe and Persians offered a Etrenuons resistance. Recent discoveries mear Tell Sandipannah (or Mareshab) have revealed the presence of North Arabian (Edomite) names about the and century E.c. ${ }^{1}$ On the history of the district see further Jews; Mncealeres; Palcestine
3. Philistive Troditions.-The interdependence of the south Palestinian peoples follows from geographical conditions which are unchangeable, and the fuller light thrown upon the last decades of the 8 th century s.c. illuminates the more fragmentary evidence elsewhere. ${ }^{\text {a }}$ Hence the two zieges of the Philistipe Gibbethon by the Israelites (above) obviously have some significunce for Judaean history, but the Judrean anoals unfortunately afford no help (see Asa). Again, the Aramaean attack upon Irrael by Hazael of Damascus leads to the capture of Gath (2 Kings zii. 17), and this, together with the statement that he took "the Philistine" from Jehoahas of Israel (ibid. xiii. 22, Iucian's recension), bears upon Judah, but the statements are isolated. Somewhat later, the Assyrian king Adad-nirari IV. ciamed tribute from Edom, Philistin and Beth-Omri (the Israelite kingdom); the curlous omission of Judah has suggested that it was then fncluded with the second or third of these (see Jews, 5 12). The Ehilistines naturally had a prominent place in popular tradition, and the story of Isaac and the Philistine Abimelech (Gen. xxvi., cf. $\mathbf{x i} \mathbf{3}^{2}$) is of great interest for its unbiased representation of intercourse, enmity, alliance and covenant. But it is mportant to notice that a parallel story (x..) is without this distinctively Philistine background, and this variation is significant. One account of the Israclite invasion conceived a conquest of earlier giant inhabitants (Anikim) who survived in Gazz, Gath and Ashdod (Joshua xi. 21 seq, contrast xiij. 3), but were driven out from Hebron by Caleb (Joshus xv. 14, cf. Num. xiii. 22, 28). The Philistines themselves are called the remnant of the Anskim (Jer. xivil. s, 30 the Septuagint), or as Caphtorim replace the earlier Avvim.

* Peters and Thiersch, Peinded Tombs in the Nearopolis of Mariose (igos).
1gos). amably only part of come more entenaive operacions, but their selation to Shithal's great Paicatine campaign fe uncertain; see
 be unsafe to infer much from the Eg. reference to the "umomenter (Fpiy. meanis tambirous) of Canman and Pritistio (Bull Ins. Cairo, i. 98).
 Phillistions leads to "pence botween Insel and the Amorites" (I Sam. vil. 44); and the migration of the Danites is placed after Samson's conflicte with the Philistines (Judesen Iviii. mead), or is due to the presuare of Amodites (i, 30). Evean in David's fidtes with the Pbilistine in Judah, Jerwalem is Iebuaite, neighboaring non-Iernelite cities are Hivite or Amorite Uaphua is 7 , a Sam. axi. 2), and his stange adversariat find a ctove parallei in the memi-mythical some of Amak (2 Same 20i, 36, 28, 20, 28). This fluctuntion, due pertly to the diffesent circlee in which the blblical marratives took shape, and partiy so definite recthaping of the traditions of the pest, seriomely complicates all attempts to combine the earty fistory of Ierall with the extermal evidence. The history of the Philistive district goes back long befort the time of the Purasati (c. 1200 日.c.), and if the references to Philictions in pre-Monic times are treated as anachronisme, thowe which can be applied to the rath-isth century do not at once acomire an historical vahues The references of the time of the Erodus, the Invasion and the "Jadaes" -whatever chronalogical schowe be adopted-must be takea in connexion wha a careful emamination of all the ovidance. It is inhorently not improbable that a recoliection has been preserved of Philintine oppresaions in the acth ceatury, but it is extremely difficult to shetch any adequate sequence of events, and among the conficting traditions are situations equally applicablo to later perfods of bostility. Biblical history has presented fts own vieve of the Iswelite and Jodrean momarchies; Isreel has ite evemies who come pourtig forth from the south (1 Sem. xifi. 17, 18), while the founder of the Jodecan dynasty has intimate relations with a Pritistine king Achinh (or Abimelech, Pa ruriv.), or, from another point of view, clears the district of a prehistoric race of gianth. In the stories of Samson and Samuel, the Philistines aro bocated in the maritime phin, whereas, in the oldest traceable account of Sual's rise (appareatily shortly before 1000 E.C.) they boid I srad (I Sam. ix. 16 , ziil. 3 seq., 7, xiv. 1, 11, 21). But there is mo historical continuity between the two situations, and the immediate prelude to the achievements of Saul and Jonachan is loat. The Mblical evidence does not favour any contmued Philistine domination since the time of Rameses III., who indeed, leter in his reign, made an expedition, not against the Purasati, bet into North Syria, and, as appears from the Papyrus Harris, reatorod Egyptian eupremacy over Paleatine and Syrim Upon the (incomplete) external evidence and upon a careful criticimen of the biblical history of this period, and not upon any promiscuous combination of the two sources, muat depend the value of the plasuibla though broad reconstructions which havo been proposed.

Considerablo streas is often laid upon Goliath's armour of brovze and his fron welpon, but even Devld himself has holmet, sword and coet-of-mail at his disposal (1 Sam. xvil), and snits of armour had already been taken from Mesopotamin by Tethmosis III. Chariots of fron are ascribed to the Canamites (Jochiva zvii. 16, 18, Judges i. 29, iv. 3); but if early references to iron are treated as unhistorical (Gen. iv. 22, Num. mxi. 22, xriv. 16, Deut. iv. 20, viii. 9, xix. 5, xxvii. 5, xxviii. 48, zxrili. 25, Joshus vi. 19, 24) Goliath's iron spear-head must be judged together with the whole narrative in the light of a consistent historical criticism. ${ }^{\text {b }}$

3 The hahabitants of Accalop becieged by Ramease II. are repre seated as Hittives. For an attempt to treat the pre-Monaic referexces as hittorical, see A. Noordtrij, De Pitistijnen (Kampen, 1905).
"See on these, W. M. Maller, Mimeil. d. morderasioh Gesel p 39 seg.; G. F. Moore, Ency. Bib., art. "Philistinet" ${ }^{\prime \prime}$ col. $37{ }^{30}$ evqu and cf. H. W. Hogs, op. cih p. 9 L . For the eugrestion that the "Phitiotinea "have in certain cosea taben the place of another ethnic, mes 1. Cook, Cril Notes on O. T. Hiftery pp. 43 eq. $127 \mathrm{seg} ., 13 \mathrm{seq} .136 \mathrm{seg}$. 144 ; d. from another point of view, T.K.Cheypa, Decine and Fall of Kingiom of Jmdeh (1906), pp. xko aq9.
${ }^{5}$ The ineroduction of iron has been escribed to about 1000 B.c.

 peed hardly be aid that the height and might of Goliath murat be regarded in the same way as Num. siiit 32; Dent. ii. II. The man of the heroic age ars eiante, as were the 'Ad and Thanad to the later Arabe.
4. Condmuings.-The Prilictines sppear in the Oid Testarment as a Semitic or at least a thoroughly Semitized peopla. Their proper names show that before and even during the Persian age their hangages differed only dialectically from Hebrew. Among the exceptions muat be rechoned Achish (Sept. idxovs), with which has boen compared Irausu, aing of Ekron (7th century) and the "Keftian" name Ahashas of the XIXth Egyptian dynasty. Names in -eth (Golisth; Ahusrath, Gen. mevi.) aro not restricted to Philistines, and Phicol (ibid.) is too obscure to erve as evidence. The religion is not novel. The male god Dagon has his partner Astarte (9q.o.), and Baal-rebub, a famous oracle of Ekron (2 Kinge L) finds a parallel in the local "baals" of Palestine. ${ }^{2}$ Even when the region seems to be completely Hellenized after the Persinn age, it is not so certain that Greek culture pervaded all classes (sec G. F. Moore, Ency. Bib. col- 3726), although a certain amount of foreign influence probably made itself felt upon the coast-towns at all timea. The use of the term diNbquion in Maccabacan and later writinge (cf. the contemptuous hatred of Ben Sira, Ecclesiasticus L. 26, and the author of Jubileca zriv. 30 sq9.) correctly expreses the canditions of the Greek age and the Maccabaean wars, and naturally any allusion to the situstions of many centuries previously is quite unneocsaary. Similarly, the biblical evidence represents the traditions in the form which they had reached in the writer'a time, the true date of which in oiten ancertain. Antagonism between Philistines and Israclites was not a peraisting feature, and, although the former are styled "uncircumasised" (chiefly in the stories in the book of Samuel), the term gained new force when the expulsion of uncircumcised aliens from tho sanctuary of Jerualem was proclaimed in the writings ascribed to Ezekiel (ch sliv.)?

In fact the question arises whether the history of tbe Philistines is not that of a territorial designation, rather than that of the lineal descendants of the Purasati, who, if one of the peoples who took part in the eveats of the XXLh Dyassty, may well have bequeathed their mame. The Mediterranean coast-land was elways exposed to incursions of aliens, and when Carians appear as royal and temple guards at Jerusalem (2 Kings xi. 4), it is sufficient to recall old Greek trnditions of a Carien sea-power and relations between Philiatia and Greek landss Even the presence of Carians and Ionians in the time of Pammetichus I. may be assumed, and when these are planted at Defreh it is noteworthy that this is also closely associated with a Jewish coloany (viz. Tahpanhes, Jer. zliii. seq.). Although the Purasati appear after the 1 gth-14th centuries, now illuminated by the Amarna tablats, their own history is perhaps earlier.' But there is no reason at present to believe that their entrance caused any break in the archaeological bistory. The apparantly "Aegean" influence which enters into the general "Amaran "period seems to begin before the age of the Amarna tablets (at Lechish), and it passea gradually into later phases contemporary with the
${ }^{2}$ See further, F. Schwally, Zoil. Wissens. Theol. xridiv. 103-108. A few Hebrew, words bave been reysided as Philistine loan-words, so notably pillegesh "concubine" (radiact, raגkaris, Lat. pellex), and serem (rtpousos) the title applied to the five lords of the Philistine confederation; seren otherwine means "axde," and may have been applied metaphorically like the Arob, kepb (W. R. Smith). On the other hand, a common origin in Asia Minor is also possible for these worde'

In the prophetical writinge the Philisitios are densunced (Eith Ammon, Moab and Edom) for their vengenmoe upon Judah (Exit. xxv. 15-17). With Tyre and Sidon they are condemued for plundering Judah, and for Kidnapping its children to mell to the Greeks (Joel iii. 4-8; cf. Amoe i. 6-12; 1 Mace iii. 41). They are threateved with a foe from the north (Jer. xay. 20; Isa. siv. 29-31; see Zephanian), as aloo is Phoenich (Jer. xivii. s-7) upon whon they depend (e.. Zech, is 3-8). Judah is promised reprisals (Zeph. ii. 7; Obad. 19), and a remmant of the Philintines may become worstrippers of Yahweh (Zech. in 7). The historical backgrounds of these paesagee are dieputed.
${ }^{-}$See J. L. Myres, Jowrwal of Hellomic Stuliasi xavi. 84 sq9. (19o6); especially pp. zo8, 127 eq9.
T This is muggented by the recent diacovery at Pheertos in Crete of a diak with evklence for a native acript; ere A. I. Evans, Scripta Minoo (Oxford, 1909), Pp. 22 aq9.: E. Meyer, simagaberichte of the Berlin Academy for the 31st of October 1909.

Irrective monschy. There is a. faidy comatinuons intencoune with extemal culture (Cyprioue, early and late Greek), and, if Gath be identified with Tel efsaf, Blise and Macaliscer, who wacavated it, foand no trace of any interruption in its history. Only at Geser-perhaps Philistine, 2 Sam. v. 25-has there been found ovidence for a atrunge race with several distinctive features. Bricked veult tombs were discovered containing bodies outatretched (not contracted); the deposits were of an unurually fine character and comprined silve, alabaster and even iron. The culture appears to find Carian and Lydian parallels, and has been ascribed provisionally to the $13^{\text {th-10th }}$ centuries. So far, bowever, of the cities lying within or immedintely exposed to Philistine influence, the discoveries at Gezer are unique.
Acoording to the biblical traditions the Philigtines are the rempant of Caphtor (Jer. Ilvii. 4, Arnos ix. 7), and the Caphtorim drove out the aboriginal Ayva from Gara and district, as the Horiteseand Rephaim were displaced by Edom and Ammon (Deut. ii. 23). These Caphtortm, together with Ludim (L.ydiam) and other petty peoples, apparently of the Delta, are onco reckoned to Egypt (Gen. x. 14). ${ }^{6}$ By Caphtor the Septuagint has sometimes underatood Cappadocin, which indeed may be valid for its ago, but the name is to be identified with the Esgptian K (a)ptar, which in later Ptolemaic times seems to mean Phoenicia, although Keftizu had had another connotation. The Cherethites, menociated with the Philistine district (I Sam. zxx. 14, 16، Euck. [xv, 16, Zeph. ii. 5 seq.), are sometimes recofnized by the Septuagint as Cretans, and, with the Pelethites (often taken to be a rhyming form of Philistines), they form part of the royal body-guand of Judacan kings (2 Sam. viti. 18, 1v. 18. Ix. 7, I Kinga i. 38 , 44 ; in 2 Sam. $2 x .13$ the Hebrew text has Cerites). However adecuate these identifcations may seem, the persistence of an independent clan or tribe of Chere-thites-Cretans to the close of the $7^{\text {th }}$ century would imply an unbroken chain of nearly sir hundred years, unless, as is inherently moro probable, later immigrations had occurred within the interval. But uport the ethnological relations either of the south Palestinian coast or of the Delta it would be unsafe to dogmatize. So far as can be ascertained, then, the first mention of the Philistines belongs to an age of disturbance and change in connexion with movements in Asia Minor. Archaeological evidence for their influence has indeed been adduced,' but it it certain that some account must be taken also of the influence by land from North Syris and Asia Minor. The influences, whether from the Levant or from the north, were not confinel to the age of Rameses III. alone, and the biblical evidenct, eapecially, while possibly preserving some recollection of the invasion of the Purasati, is in every case late and may be shaped by later historical vicissitudes. It is impossible that Palestine should have remained untouched by the external movements in connexion with the Delta, tho Levant and Asia Minor, and it is possible that the course of internal history in the age inmediately before and after 1000 b:c. ran upon lines different from the detailed popular religious traditions which the triblical historians have employed. (Soe further Palesine: Ristery.)
For older studien see F. Hitrig; Urgeschicher der Plilistep (184s). with the theory of the Pelnagic origin of the Philistines; K. Searts Gasa w. d. philist. Kiste (1852), and (with special reference to earlier theories) W. Robertson Smith's art. in Evicy. Bril, gth ed.

PHILIETUS, Greek historian of Sicily, was born at Syracuse about the beginining of the Peloponnesian War (432 B.c.). Eie was a faithful supporter of the elder Dioryaius, and commander

- See R. A. S. Macalister, Qmarierily Stat of the Paleatime Erplot. Fund, pp. 319 sqq. (1905). pp. 197 sq9. (1907). and \ddagger. L. Myres. ibid. pp. 240 eq9. (1907). On the other hand, H. Thierach would connect the painted pottery of Tel er Safi, \&c., with the Phistiacs
 Hall, Proc. Soc. Bibl Arch xuxi. 235
"0. 13 meq. may be a secondary addition "written from apecinly intimate acquaintance with the (later ?) Egyptian geograpliry (J. Skinner, Genesi, p 214).
 1909); Evana, Scripte Mínoa, pp. 77 Eq9.
of the ciandel. In 386 be excited the jeniousy of the tyrant by secretly marrying his niece, and was sent into beniebment. Hie settled at Thurii, but afterwards removed to Adria, where he remained until the death of Dionysius (366). He wan then recalled by the younger Dionysius, whom he persuaded to dismina Plato and Dion. When Dion set sail from Zacynthus with the object of liberating Syracuse from the isransis, Philistus was entrosted with the command of the fleet, but he was defeated and put to death (356). During his stay at Adria, Philistus occupied himself with the composition of his Eucelued, a history of Sicily in eleven books. The first part (bks, i.-vii.) comprised the history of the island from the eariiest times to the capture of Agrigentum by the Carthaginians (406); the second, the history of the elder and the younger Dionysius (down to 363). From this point the work was carried on by Philistus's fellow countryman Athanas. Cicero (ad. Q. Fr. ii. 13), who had a high opinion of his work, calls him the miniature Thucydides " (pusilims Thucydides). He was admitted by the Alexandnan caltics into the canon of historiographers, and his work was highly valued by Alexander the Great.
See Diod. Sic. xiii. 103, xiv. 8. xv. 7. xvi. 11, 16; Plutarch, Diom, 11-36; Cicero, Brutus. 17: De oralore, ii. 13: Quintilian, Instut. x. 1, 74: fragments and life in C. W. Maller. Fragmenta kastoricorum
 der allen Gescitiche (isgs); E. A. Freeman. History of Sxcil) (18911894); A. Holm, Geschichte Sicilsems im Alvert (1870-1898).

PRILLAOR, 2 town of Britich India, in Jullundur district; Punjab, on the north bank of the river Sutiej, 8 m . N. of Ludhiana. Pop. (Igor), 6g86. Founded by the Mogul emperor Shah Jahan, it was long of importance as commanding the crossing of the Suticj. At the Muliny in 1857 the fort contained the sicge train, which was sent safely to Delh; but the sepoy regiment in the cantonment shortly afterwards mutinied and escaped. The fort is now occupied by the police training school and the central bureau of the criminal identification department.
PAILMIMORE, SIR ROBERT JOSEPH ($1810-1885$), English judge, thind son of a well-known ecclesiastical lawyer, Dr Joseph Phillimore, was born at Whitehall on the sth of November 1810. Educated at Westminster and Christ Church, Oxford, where a lifelong friendship with W. E. Gladstone began, his first appointment was to a cierkship in the board of control, where he remained from 1833 to 1835 . Admitted as an advocate at Doctors' Commons in 1839, he was called to the bar at the Middle Temple in 184 1, and rose very rapidly in his profession. He was engaged as coumsel in almost every case of importance that came before the admiralty, probate or divorce courts, and became successively master of faculties, commissary of the deans and chapters of St Paul's and Westminster, official of the archdeaconries of Middlesex and London, and chancellor of the dioceses of Chichester and Salishury. In 1853 he entered parliament as member for Tavistock. A moderate in politics, his energies were devoted to non-party measures, and in 1854 he introduced the hill for allowing viva voce evidence in the ecclesiastical courts. He sat for Tavistock until 1857, when he offered himself as a candidate for Coventry, hut was defeated. He was appointed judge of the Cinque Ports in 1855, Queen's Counsel in 1858, and advocategeneral in admiralty in 1862 , and succeeded Dr Stephen Lushington (1782-1873) as judge of the court of arches five years liter. Here his care, patience and courtesy, combined with unusual lucidity of expression, won gemeral respect. In 1875, in accordance with the Public Worship Regulation Act, he resigned, and was succeeded by Lord Penrance. When the Judicature Act came into force the powers of the admitalty court were transferred to the High Court of Justice, and Sir Robert Phillimore was therefore the last judge of the historic court of the lord high admiral of England. He continued to sit as judge for the new admiralty, probate and divorce division until 1883, when he resigned. He wrote Ecclesiastical Lase of the Church of England, a book which still holds its ground, Commentaries on International Laro, and a translation of Leasing's Laocoon. He married, in 1844, Charlotte Anne, daughter of John Denison of Ossington Hall, Newark. He was knighted in 1862, and created a beronet in r88r. He died at Shiplake, near Henley-dn-Thames, on
the 4th of February 1885. Fife eldeat mon, Sir Wamer G F. Phillimore (b. 1845), abo distinguished as an authority en ecciesiastical and sdminalty law, became in 1897 a judge of the high coart.

PHIMLIP, JOAR (1817-1867), Scottish painter, was born at Aberdeen, Scotiand, on the sgth of April 8817. Hia father, an old soldier, was in humble circumstances, and the son became an errand-boy to a tinsmith, and was then apprenticed to a painter and glarier. Having received same technical instruction from a local artist named William Mercur, he began, at the age of about fifteen, to paint portraits. In 1834 he made a very brief visit to London. About this time he became asaistant to James Forbes, an Aberdeen portrait-painter. He had already gained a valuable patron. Having been sent to repair a window in the house of Major P. I. Cordon, his interest in the works of art in the bouse attincted the attention of their owner. Gordon hrought the young artist under the notice of Lord Panmure, who in 3836 sent him to London, promising to bear the coet of his art education. At first Phullip was phoed under T. M. Joy, but he soon entered the schools of the Royal Academy. In 8839 be figured for the first time in the royal academy exhibilion with a portrait and a landscape, and in the following year he was represented by a more ambitious figare-picture of "Tasso in Disguise relaling his Persecutions to his Sister." For the neat ten years be supported himself mainly by portraiture and by painting subjects of national incilent, such as "Presbyterian Catechizing," "Baptism in Scotland," and the "Spacwife." His productions at this period, as well as his earlier subjectpictures, are reminiscent of the practice and methods of Wilkie and the Scottish genre-painters of his time. In 189I his health showed signs of delicacy, and he went to Spain in eearch of a warmer climate. He was hrought face to face for the first time with the brilliant sunshine and the splendid colour of the south, and it was in coping with these that he first manifested his artistic individuality and finally displayed his full powers. In the "Letter-writer of Seville" (1854), commissioned by Queen Victoria at the suggestion of Sir Edwin Landseer, the artist is struggling with new difficulties in the portrayal of unwonted splendours of colour and light. In 1857 Phillip was elected an associate of the Royal Academy, and in 1859 a full member. In 1855 and in 1860 further visits to Spain were made, and in each case the painter returned with fresh materials to be embodied with increasing power and subtlety in the long series of works which won for him the title of "Spanish Phillip." His higbest point of execution is probably reached in "La Gloria" (1864) and a smaller siagle-figure painting of the same period entitied "El Cigarillo." These Spanish subjects were varied in 1860 by a rendering of the marringe of the princess royal with the crown prince of Prussia, executed by command of the queen, and in 1803 by a picture of the House of Commons. During his last visit to Spain Phillip occupied himself in a careful study of the art of Velazquez, and the copies which he made letched large prites after his death, examples having been secured by the royal and the royal Scottish academies. The year before his death he visited Italy and devoted attention to the works of Titian. The results of this study of the old masters are visible in such works as " La Loteria Nacional, " left uncompleted at his death. During this period he resided much in the Highlands, and seemed to be retuming to his first love for Scottisb subjects, painting several national scenes, and planning others that were never completed. He died in London on the 27th of February 1867.

Hia works were collected in the International Exhibition of 1873. and many of them are engraved by T. Oldham Barlow. In addition to the paintlngs already mpecified the following are among the more important: "Life among the Gipsies of Sevile "(i853), "EI Paseo" (1855)."Collection of the Offertory in a Scotch Kirt" (1855). "A Gipsy Water-carrier in Scville" (1855). "The Prayer of Faith shall save the Sick " (1856). "The Dying Contrabandist" (1856). "The Prison Window" (1857), "A Huff" (1859). "Early Career of Murillo" (1865),"A Chat round the Brasero" (1856).

PHILLIPs, ADRLADDE (1833-1882), American contralto singer, was born at Stratford-on-Avon, England, ber family enigrating to America in a84a Her mother tancht dancidy
and Adchide began a career of the Boston atage at ten years old. Bet in 1850 her calent for singing became evident, and through Jenny Lind and others she was sent to London and to Italy to study. In 1855 she returned to America an accomplished vocalist, and for many years she was the leading Amencan contralto, equally succesoful in oratorio and on the concert platiorm. She died at Carisbad on the 3rd of October 188.

PHILLIPs, EDWARD (1630-1696), English author, son of Edward Phillips of the crown office in chancery, and his wife Anne, only sister of John Milton, the poet, was born in August 1630 in the Strand, London. His father died in 1631, and Anne Phillips eventually married her husband's successor in the crown office, Thomas Agar. Edward Phillips and his younger brother, John, were educated hy Miteon. Edward entered Magdalen Hall, Oxford, in November 1650, but left the university in 1651 to be a bookseller's clerk in London. Although he entirely differed from Miteon in his religious and political views, and seems, to judge from the free character of his Mysteries of Love and Eloquence (1658), to have undergone a certain revulsion from his Puritan upbringing, he remained on affectionate terms with his uncle to the end. He was tutor to the soa of John Evelyn, the diarist, from 1663 to 1672 at Sayes Court, near Deptiord, and in 1677-1679 in the family of Henry Bennet, carl of Arlington. The date of his death is unknown hut his last book is dated 1696.
His most important work is Thectrum poelarum (1675). a list of the chief poets of all ages and countries, but principally of the English poets, with short critical notes and a prefatory Discourse of the Poets and Poetry, which has usually been traced to Mlitton's hand. He also wrote A Now World m Words, or a Gentral Dictionary (1658). which went through many editions, a new edition of Baker's Chromicle, of which the section on the period from 1650 to 1658 was written by himself. from the royalist standpoint; a supplement (1676) to John Speed's Theatre of Great Bruatn, and in 1684 Enchirudion Isnquae latunce, zaid to have been taken chiefly from notea prepared by Milton. Aubrey states that all Aliton's papers carce into Phultipnis hands, and in 1694 he published a translation of has Letters of Slate with a valuable memoir

His brother, Joinn Prinlips (t631-1706), in 1652 published a Latin reply to the anonymous attack on Mitton entitied Pro Rege a Appulo anglicaro. He appears to have acted as unofficial secretary to Milton, but, disappointed of regular political employment, and chafing against the discipline be was under, he published in 1655 a bitter attack on Puritanism entitled a Satyr against Hypocrites (1655). In $\mathbf{8} 656$ he was summoned before the privy council for his share in a book of licentious poems, Sportive Wi, which was suppressed by the authoritics but almost immediately replaced by a similar collection, Wis and Drollery. In Montelion (1660) he ridiculed the astrological almanacs of William Lilly. Two other skits of this name, in 1661 and 1662, also full of course royalist wit, were probably hy another hand. In 1678 he supported the agitation of Titus Oates, writing on his behalf, says Wood, "many lies and villanies." Dr Oates's Narrative of the Popish Plot indicatod was the first of these tracts. He began a monthly historical review in 1688 entitled Modern History or a Monthly Account of all considerable Occurrences, Civil, Ecclesiastical and Muiliary, followed in $16 g 0$ by The Present Slate of Europe, or a Historical and Political Mercury, which was supplemented by a preliminary volume giving a history of events from 1688 . He executed many translations from the French, and a version (1687) of Don Quixole.

An extended, but by no means friendly, account of the brothers is given by Wood, Alhen. oxon. (ed. Bliss, iv. 764 seq.), where a Ong list of their works is dealt with. This formed the basis of Willam Godwin's Lives of Edroand and Jokm Phillips (1815), with which is reprinted Edward Phillipg's Lafe of Johs Millom.

PHILMPS, JOHI ($1800-1874$), English geologist, was born on the 25th of December 1800 at Marden in Wiltshire. His father belonged to an old Welsh family, but settled in England as an officer of excise and married the sister of William Smith, the "Father of English Geology." Both parents dying when be was a child. Philips came under the charge of his uncle; and after being educated at various scbools, he sccompaniedSmith on him wenderings in compexion with his geological mapa. In the
spring of 1824 Smith weat to York to deliver a conste of lectures on geology, and his nephew accompanied him. Phillipa accepted engagements in the principal Yockshire towns to artange their museums and give courses of lectures on the collections contained therein. York became his residence, where he obtained, in 1825, the situation of keeper of the Yorkshire museum and secretary of the Yorkshire Philosophical Socicty. From that centre he extended his operations to towns beyond the county: and in 883 y he included University College, London, in the sphere of his activity. In that year the Britigh Association for the Advancerment of Science was founded at York, and Phillips was one of the active minds who organized its machinery. He became in 1832 the first assistant secretary, a post which he held until 1859. In 1834 be' accepted the professorship of geology at King's College, London, but retained his post at York. In 1834 be was clected F.R.S.; in later years he received hon. degrees of LL.D. from Duhlin and Cambridge, and D.C.I. from Orford; while in 1845 be was awarded the Wollaston Medal hy the Ceological Society of London. In 1840 he resigned his charge of the York muscum and was appointed on the stafif of the geological survey of Great Britain under De la Beche. He spent some time in studying the Palacozoic fossils of Devon, Cornwall and West Somerset, of which he published a descriptive memoir (884) ; and he made a detailed survey of the region of the Malvern Hills, of which be prepared the elaborate account that appears in vol. ii. of the \mathbf{H} emoirs of the Sursey ($\mathbf{2 8 4 8}$). In $\mathbf{8 8 4}$ he became professor of geotogy in the university of Dublin. Nise years later, on the death of H. E. Strickland, who had acted as substitute for Dean Buckland in the readership of geology in the university of Onford, Phillips succeeded to the past of deputy, and at the dean's death in 1856 became himself reader, a post which he held to the time of his death. During his residence in Oxford he took a leading part in the foundation and arrangement of the new museum erected in $\mathbf{1 8 5 9}$ (see his Notices of Racks and Fossils in the University Muxam, 1863; and The Oxford Museum, hy H. W. Acland and J. Ruskin, 1859; reprinted with additions 1893). Phillips was also keeper of the Ashmolean museum from 1854-1870. In 1859-1860 he was president of the Geological Society of London, and in 1865 president of the British Association. He dined at All Souls College on the a3rd of April 4874, but on leaving be slipped and fell down a flight of stone stairs, and died on the following day.
From the time he wrote his first paper " On the Direction of the Diluvial Currents in Yorkshire " (1827), down to the last days of his life. Phillips continued a constanm contributor to the literature of science. The pages of the Philosophneal Magasine, the Jourmal of the Geological Sociely, the Ceological Magazine and other publica: tions contain valuable essays by him. He was also she author of nutrerous separate works, which were of great bemefit in extending a sound knowledge of geology. Among these may be specialiy mentioned: Illustrations of the Gedogy of Yorkskire (in two parts, 1829 and 8836 ; 2nd ed. of pt . i in 8835 , 3rd ed., edited by R. Etheridge. in 1875); A Treatise on Geolagy (1837-1839); Memoirs of Willieg Smush (1844); The Rerers, Nowntains and Sea-Coans of Yothstione (1853): Alamual of Geology. Pracical and Theoretical (i8s5): Lifa on the Earth. uts Onith and Swcession (1860); Veswits (i869); Geology of Oxford and the Valley of the Thames (187t). To these should be added his Mowograph of Brtish Belemmitidae (i865). for the Palacontographical Socicty, and his geological map of the British lgles (18.7).
See Biographical Mcmoir, with portrait, in Ceol. Maf. (July 1870).
PHILLIPS, 8AMUEL ($1814-1854$), English journalist, the son of a Jewish tradesman in London, was born on tho 28 th of December 1814. Ho was educated at University College, London, and then at Göttingen. Having renounced the Jewish faith, he returned to Engiand and entered Sidney Sussex College, Cambridge, with tbe design of taking orders. His fucher's death, however, prevented this, and in 1841 he took to literacy work. He wrote a novel, Caleb Stakely (1862), and other tiles, and about $\mathbf{8} 45$ began a connexion with The Times as literary criticIn the following year he purchased the John Bull newspaper, and edited it for a year. Two volumes of hin Essays from The Times appeared in 1852 and 1854 Phillips took an active part in the forrantion of the Crystal Palace Company, and wrote their destriptive grides. In 1852 the university of Gortionen
conferred upon him the honorary degree of Lh.D. He died at Brightion on the 14th of October 1854.

PHILLIPG, STEFRERN (1868-), British poet and dramatist, was born on the 28th of July 1868 at Somertown near Oxford, the son of the Rev. Stephen Phillips, precentor of Peterborough Cathedral. He was educated at Stratford and Peterborough Grammar Schools, and entered Queen's College, Cambridge; but during hin first term at Cambridge, when F. R. Benson's dramatic compary visited the town, he joined it, and for sir years played various amall parts. In 1890 a slender volume of verse was published at Oxford with the title Primavera, which contained contributions by him and by his cousin Laurence Binyon and others. In 1894 be pablished Eramus, a long poem of loose structure in blank verse of a philosophical complerion. In 1896 appeared Christ in Hodes, forming with a ffw other short pieces one of the slim paper-covered volumes of Elkin Mathews's "Shilling Garland." This poem arrested the attention of watchful critics of poetry, and when it was followed by a collection of Peems in 1897 the writer's position as a new poet of exceptional gifts was generally recognized. This volume contained a new edition of "Christ in Hades," together with "Marpessa," "The Woman with the Dead Soul," "The Wife" and shorter pieces, including the fine lines "To MItion, Blind." The volume won the prize of ftoo offered by the Acadeny newspaper for the best new book of its year, ran through half a dozen cditions in two years, and established Mr Philijps's rank as poet, which was surtained by the puhlication in the Ninetecuth Century in 1898 of his poem "Endymion." George Alexander, the sctor-manager, moved perhaps by a certain clamour among the critics for a literary drama, then commissioned Mr Phillips to write him a play, the result being Paolo and Francesca (1900), a drame Lounded on Dante's famous episode. Encouraged by the great success of the drama in its literary fotm, Mr Alexander produced the piece at the St James's Theatre in the course of 1901. In the meantime, Mr Phillips's next play, Herod: a Tragedy, had been produced by Beerbohm Tree on the 3 Ist of October 1900, and was published as a book in 1901; Ulysses, also produced hy Beerbohm Tree, was published in 1902; The Sin of Dosid, a drame on the story of David and Bathsheba, translated into the times and terms of Cromwellian England, was published in 1904; and Nere, produced hy Beerbohm Tree, was published in sgo6. In these plays the poet's avowed aim was, instead of attemptins to revive the method of Shakespeare and the Elizabethans, to revitalize the method of Greek drama. Paolo and Prancesca (which admitted certainly one scene on an Elizabethan model) was the most successful, the subject being best adapted to the lyrical cast of Mr Phillips's poetical temperament; but all contained fine poetry, skilfully stage-managed by a writer who had practical experience of stage crafl.
See the section on Stephen Phillips in Poets of the Younger Generasion, by William Archer (rgoz); also the articles on "Tragedy and Mr Stephen Ptuillipe," by Winiam Wetson, in the Fortmighly Review (Maxth 1898): "The Poetry of Mr Stephen Phillips," in the Edirourgh Review ($a n$ nuary 1900): "Mr Stephen Phillips," in the Century (January Igoi), by Edmund Goase; and "Mr Stophen Philips," in the Oucrierly Revieu (April 1902), by Arthur Symons.
For bibliography up to July sgo3, see Engtisk Ihwsfroted Magasime new earict, vol mix. p. 442.

PEHLLIPA, TEOEAS ($1770-1845$), English portrait and subject painter, was born at Dudjey in Warwickshire on the 18th of October 1770. Hisving acquired the art of glass. painting at Birmingham he visited London in 1790 with an introduction to Benjamin West, who found him employment on the windows in St George's Cbapel at Windsor. In 1792 Phillips painted a view of Windsor Castle, and in the next two years he exhibited the "Death of Talbot, Earl of Shrewsbury, at the Battle of Castilion," "Ruth and Naomi," "Elijah restoring the Widow's Son," "Cupid disarmed by Euphrosyne," and other pictures. After 1796, however, he mainly confined himself to portrait-painting. It was not long before be became the chosen painter of men of genius and talent, notwithstanding the rivalry of Hoppner, Owen, Jackson and Iavrence; and he left behind portraits of mearly all the illus-
trious characters of his day. In 1804 he was elected associate and in 1808 member of the Royal Academy. In 1824 Phillips succeeded Fuseli as profeswor of painting to the Royal Academy, an offico which be held till 1832. During this period he deHivered ten Lectares on the History and Principles of Painting, which wero published in 2833 . He died on the soth of April 1845.

PHILIPS, WEIDERIL (58II-1884), American ocator and reformer; was born in Boston on the 2gth of November $\mathbf{8 8} 1 \mathrm{I}$. His father, John Phillips (1770-1823), a man of mealth and influence, graduated at Harvard College in 1788, and -became successively "town advocate and public prosecutor," and in 1822 first mayor of Boston, then recently made into a city. Wendell Phillips himself attended the pubtic Latin achool, entered Hiarvard College before he was sixteen, and graduated in 1831 in the mane chass with the historian John Lohyop Motley. He graduated at the Harvard law echool in 1834, and was admitted to the bar in Boston. He soon came under the influence of the anti-slavery movement, witnessing in 183 s the mobbing, in Boston, of William Lloyd Garrison. On the 8th of December 8837 a meeting was beld at Faneuil Hall to express the sentiments of the people on the murder of Elijah P. Lovejoy, at Alton, Illinois, for defending his press from a proslavery, mob. In the courge of the meeting a speech was made in opposition to its general current by James T. Austin ($\mathbf{7 7 8 4}$ 1870), attorney-general of the state, who said that Lovejoy. had died "as the fool dieth," and compared his murderers to the men who threw the tea into Boston harbour just before the War of Independence. The speech seemed likely to divide the audience, when Wendell Phillips took the platform. "When I heard," he said, "the gentleman lay down principles which placed the murderers of Alton side by side with Otis and Hancock, with Quincy and Adams, I thought these pictured lip: (pointing to their portraits) would have broken into voice to rehuke the recreant American, the slanderer of the dead." This appeal not merely determined the sentiment of the meeting, it gave Wendell Phillips his first fame and determined his career. Although loving his profession, and this especially for the opening it gave in the direction of public life, he practically stepped outside the sphere dearest to young Americans, and lived henceforth the life of an agitator, or, like his father, that of a "public prosecutor." Accepting unbesitatingly the leadership of Garrison, and becoming like him gradually a disunionist, he lived essentially a platform life, intercsted in a variety of subjects, het first and chiefly an abolitionist. In 2865, however, after the Civil War, be broke with Garrison over the question of discontinuing the Anti-Slavery Society, and from that date until the society was disbanded in 1870 be, instead of Garrison, was its president. He was not, moreover, like his great leader, a non-resistant, nor was he, on the other hand, like John Brown, borne on by irresistible neecssity to overt action. Nor did he find, like his fellow-worker, Theodore Parker, tbe leisure to keep up his scholarship and lead in part the life of a student. Early study and travel had indeed furnished him with abundant material for rhetorical illustrations and he was also a great reader of newspapers, but he used to say that he knew in his whole life but one thing thoroughly, namely, the history of the English Civil War, and there were few occasions when he could not draw from it the needful illusiration. His style of eloquence was direct and brilliant, but eminently sell-controlled. He often surprised his hearers by the quietness of his beginnings, and these were very often the speeches which turned out most brilliant and most irresistible ere the close. He may he said to have introduced the direct and colloquial manner upon the American public platform, as distinct from the highly elaborated and often ornate style which had been established hy Edward Everett; nor has there ever been a reversion since his day to the more artificial method. He was capable at times, nevertheless, of bighly sonorous periods with supert climaxes; yet his favourite style was the conversational. Kis logic, while never abtraded, was rarely at fault; hut he loved the flash of the mapien, and
was never happier than when he had to face down a mob and utterly foil it by sheer superiority in fencing. The two volumes of his speeches, as edited by James Redpath, were fortunately made from verbatim reports, and they wiscly enclose in parentheses those indications of favour or dissent from the audience which transformed so many of his speeches into exhibitions of gladiatorial skill. He was a tribune of the people, associated unfinchingly not merely with the unpopular but with the unpolished; always carrying about him not merely a certain Roman look, but a patrician air. After slavery had fallen Phillips associated himself freely with reformers occupied in other paths, herein separating himself from the other patrician of the movement, Edmund Quincy, who always Irankly said that after slavery was abolished there was nothing else worth fighting tor. Among other things, Phillips contended, during his later years, for prohibition, woman suffrage and various penal and administrative relorms. He was not always the best judge of character, and was sometimes allied in these movements with men who were litte more than demagogues But the proof he gave by his transfer of energies that the work of reform was never quite finished-this was something of peculiar value, and worth the risk of some indiscretions. The life of a reformer did not in itself make him thoroughly happy; be chafed more and more under its fatigues, and he always felt that his natural place would have been among senators or ambassadors; but he belonged essentially to the heroic type, and it may well have been of him that Emerson was thinking when he wrole those fine words: "What forests of laurel we bring and the tears of mankind to him who stands firm against the opinion of his contemporaries." His domestic life was most happy, though his wife was a confirmed invalid, seldom quitting her room. She was a woman of heroic nature and very strong convictions. Her busband used to say that she first made him an abotitionist. They had no children, but adopted an orphaned daughter of Mrs Eliza Garnaut, a friend, and this young girl (afterwards the wife of George W. Smalley), brought much light and joy into the household. Their worldly circumstances were easy, though they were always ready to impoverish themseives for the sake of others. Wendell Phillips died in Boston on the 2nd of February 1884
See Lorenzo Sears, Wendell Phillips, Orutor and Agilator (New York, 1909) (T. W. H.)

PRILLIPS, WILLAA (1775-1828), British mineralogist and geologist, son of James Phillips, printer and bookseller in London, was born on the roth of May 1775. He early became interested in mineralogy and geology, and was one of the lounders of the Geological Society of Londen (1807). His Oudines of Mintralogy and Gealogy (1815) and Eicmentary Introduction to the Knowiledge of Mincralogy (1816) became standard textbooks. His digest of English goology, A selection of Facts from the Best Authorilies, arranged so as to form an Outline of the Ceology of Englowd and Wales (1818), formed the foundation of the barger work undertaten by Phillips in conjunction with W D. Conybeare, of which only the first part was published, entitled Oullines of the Gcolagy of England and Wales (182a). This volums made an era in geology. As a model of careful original observation, of judicious compilation, of succinct description and of luminous arrangement it has been of the utmost service in the dovelopment of geology in Britain. In this work Phillips reprinted his admirable description of the chalk cliffs of Dover and other parts of East Kent, published in 1819 in Trans. Geol Soc. vol v. Phillips was a member of the Society of Friends. He was elected a Fellow of the Royal Society in 1827. He died on the and of April 1828.

His brother, Ruchand Prillaps (1778-185i), was distinguished at a chemist, and became F.R.S. in 1822 . He was appointed chemist and curator to the Museum of Economic (alterwards Practical) Geology, then situated in Craig's Court (1839). He was the author of papers published in the Annals of Philosophy and Philospohical Magasine. In 1796 the two brothers, together with William Allen and Luke Howard, took part in forming the Askesian Society.

PHIHMPSDURG, a town of Warren county, New Jersey. U.S.A., on the Delaware river, opposite Easton, Pennsylvania, and about $\$ 1$ m. N.N.W. of Trenton, N.J. Pop. (1900) 10,052, of whom 990 were foreign-born; (1910 U.S. census) $13.90{ }^{2}$. Served by the Central of New Jersey and other railways, the town is situated in the river bottom and on a buff which commands beautiful views. The river is spanned here by several bridges. The town has railway shops and various manofactures. In 1905 the value of the factory products was $\$ 6,684,173$ ($\mathbf{4} \cdot \mathbf{8} \%$ more than in 1g00). Phillipaburg was settied about 1750 . It was only a straggling village when the Moris Banking and Canal Compeny was chartered in 1824, but its growth was accelerated by the canal (no longer used), by the establishment in 1848 of an iron furnace, asd by the completion of the Central Railroad of New Jersey to this point in 1852; the town was incorporated in 1861 .

PHILIIPATR a mineral of the zeolite group; a hydrated potassium, calcium and aluminium silicate, approsimating to $\left(\mathrm{K}_{2}, \mathrm{Ca}\right) \mathrm{Al}_{8}\left(\mathrm{SiO}_{2}\right)_{4} \cdot 4 \mathrm{H}_{3} \mathrm{O}$. It varies somewhat in componition, and a variety (" paeudophillipsite ") containing rather less silica has the formula $\left(\mathrm{K}_{\mathbf{1}}, \mathrm{Ca}_{2} \mathrm{Al}_{4} \mathrm{Si}_{4} \mathrm{O}_{\mathbf{n}} \cdot 9 \mathrm{H}_{8} \mathrm{O}\right.$. Cryatals are monoclinic, but only complex cruciform twins are known, these being exactly like twins of harmotome (q.v.). Crystals of phillipsite are, bowever, usually smaller and more transparent and glassy than those of harmotome. Spherical groups with a radially fibrous structure and bristled with cryatals on the surface are not uncommon. The hardness is 4h, and the specific gravity 2.2. The species was established by A. Livy in 1825 and named after William Phillips. French authors use the name christianite (after Christian VIII. of Denmark), given by A. Des Cloizeaux in 1847.

Phillipaite is a mineral of socondary origin, and occurs with other zeolites in the amygdaloidal cavities of basic volcanic rocks: e.g. in the basalt of the Giant's Causeway in County Antrim, and near Melbonrme in Victoria; and in lencitite near Rome. Small crystals of recent formation have been obeerved in the masonry of the hot baths at Plombières and Bourbonne-les-Bains, in France. Minute spherical aggregates embedded in red clay were dredged by the "Challenger" from the bottom of the Central Pacific, where they had been formed by the decomposition of lava.
(L. J.S.)

PHILLPOTTS, HENRY (1778-1869), English bishop, was bore at Bridgwater on the 6th of May 1778, and was educated at Gloucester College school and at Corpus Christi College, Offord. He became a fellow of Magdalen College, Oxford, in 1795, took orders in 1802, and was select university preacher in 1809In 1805 he received the living of Stainton-le-Street, Durham, and in addition was appointed to Bishop Middleham, Durham, in the succeeding year. For twenty years he was chaplain to Shute Barrington, bishop of Durbam. He was appoined vicar of Gateshead in 1808, prebendary of Durham in 1809, and vicar of St Margaret, Durham, in 18 ra. After holding the rich living of Stanhope, Durham from 1820, and the deanery of Chester from 1828, he was consecrated bishop of Exeter in 1831, holding with the see a residentiary canonry at Durham. Ris published works include numerous speeches and pamphlets, including those connected with his well-kaown Roman Cathoric controversy with Charles Butler (1750-1832). He wis an energetic supporter of the Tory party, even when it acted contrary to his views in passing the Roman Catholic Emancipar tion Act of 1829. He died on the 18th of September n86a " Henry of Exeter," as he was commonly called, was one of the most striking figures in the English Church of the 18th century. His intellect was strong rather than broad, his position being that of the traditional High Churchman, with little sympathy either with the Evangelicals or with the Tractarians. On the one hand the famous Gorham judgment was the outcome of his refusal to institute to the living of Brampford Speke a ciergyman George Cornelius Gorham ($1787-1857$), who had openly disavowed his belief in baptismal regeneration; on the other be denounced the equalty famous Tract XC. in his episcopal charye of 1843. As bishop he was a strict disciplination, and
did moch to restose oeder in a diecesciof which the clergy bad become extraordinarily demoralized. Though accused of avarice and pluratism, Philpotts was generous in his gifts to the charch, founding the theological college at Ereter and spending large sums on the restoration of the cathodral.
PHILO. Jewish Hellenist, and aurhor of an epic poem in Greck hexameters on the history of Jerusalem. Alexander Polyhistot (c. zo5-35 8.c.) quotes several passages of the poem, and is the source of the extracts in Eusebius (Pyoeparatio enargelice, ix 20, 24, 37). This is probably the Philo who is mentioned hy Clemens Alexandrinus (Stromm i. 25, 145) and by Josephus (Contra A pioncm, i. 23), who calls him "the elder."
See M. Philippeon's work on the Jewish poets Esechiel and Philo (Berlin, 1830).
PEIILO, often called Pumo Jumazus, Jewish philospher, appears to have spent his whole life at Alexandria, where he was probably born c. 20-10 в.c. His father Alezander was alabarch or arabarch (that is, probably, chief farmer of taxes on the Arabic side of the Nile), from which it may he concluded that the family was infuential and wealthy (fos. Ane. xviii. 8, 1). Jerome's statement ($D e$ vir. ill. 11) that he was of priestly race is confirmed by no older authority. The only event of his bie which can be actually dated belongs to A.D. 40, when Philo, then a man of advanced years, went from Alexandria to Rome, at the head of a Jewish embasty, to persuade the emperor Gaius to abotain from claiming divine honour of the Jews. Of this embassy Philo has left a full and vivid account (De legalione ad Caimm). Various fathers and thoologians of the Church state that in the time of Claudius be met St Peter in Rome;' but chis legend has no historic value, and probahly arose because the book DC vite contcmmpativa, ascribed to ${ }^{\circ}$ Philo, in which Eusebius already recognised a glorification of Christian monesticism, seemed to indicate a disposition towards Christianity.
Though we know so little of Philo's own life, his numerous extant writings give the fullest tnformation as to his views of the raiverse and of life, and his religious and scientific aims, and so enable us adequately to estimate his position and importance in the history of thought. He is quite the most important representative of Hellenistic Judnasm, and his writings give ws the clearest view of what this development of Judaism was and aimed at. The development of Judaism in the diaspora (q.v.) differed in important points from that in Palestine, where, since the successful opposition of the Maccabee age to the Hellenization which Andiochus Epiphanes had sought to cirry through by force, the attitude of the nation 20 Greek culture had been essentially negative. In the diaspora, on the other hand, the Jews had been deoply influenced hy the Greeks; they soon more or less forgot their Semitic motherfongue, and with the language of Hellas they appropriated much of Hellenic culture. They were deeply impressed by that fresistible forco which was bending all races and nations into one great cosmopolitan unity, and so the Jews too on their dispersion became in speech and nationality Greeks, or rather "Helletists." Now the distinguishing character of Helleniam is not the absolute disappearance of the Oriental civilizations before that of Greece hat the combination of the two with a preponderance of the Greek element. So it was with the Jews, but in their case the old religion had much more persistence than in other Hellenistic circles, though in other respects they too yielded to the superior force of Greek civilization. This we must hold to have been the case not only in Alexandria but throughout the diaspora from the commencement of the Hellenistic period down to the later Roman Empire. It was only after ancient civilization gave way before the barharian immigrations and the rising force of Christianity that rabbinism became supreme even among the Jews of the diaspora. This HellenisticoJudric phase of culture is sometimes called "Alerandrian," and the expression is justifiable if it only means that in Alexandria if attained its highept development and flourished most. For

here the Jews began to busy themselves with Greek literature even under their clement rulers, the first Ptolemies, and here the law and other Scriptures were first translated into Greek; here the process of fusion began carliest and proceeded with greatest rapidity; here, therefore, also the Jews first engaged in a scientific study of Greek philosophy and transplented that philosophy to the soil of Judaism. We read of a Jewish philosopher Aristohulus in the time of Ptolemy VI. Philometor, in the middle of the and century B.c., of whose philosophical commentary on the Pentateuch fragments have been preserved by Clement of Alexandria and Eusebius. So far as we can judge from these, his aim was to put upon the sacred text a sense which should appeal even to Greek readers, and in particular to get rid of all anthropomorphic utterances aboat God. Eusebius regards him as a Peripatetic. We may suppose that this philosophical line of thought had its representatives In Alexandria between the limes of Aristobulus and Philo, bet we are not acquainted with the names of any such. Philo certainly, to judge by his historical influence, was the greatest of all these Jewish philosophers, and in his case we can follow in detail the methods hy which Greek culture was harmonized with Jewish faith. On one side he is quite a Greek, on the other quite a Jew. His language is formed on the best classical models, especialy Plato. He knows and often cites the great Greek poets, particularly Homer and the tragedians, but his chief studies had been in Greek philosophy, and he speaks of Heraclitus, Plato, the Stoics and the Pythagoreans in terms of the highest veneration. He had appropriated their doctrines so completely that he must himself be reckoned among the Greek philosophers; his system was eclectic, but the horrowed clements are combined into a new waity with so much originality that at the same time he may fairly be regarded as representing a philosophy of his own, which has for its characteristic featute the constant prominence of a fundamental religious idea. Philo's closest affinities are with Plato, the later Pythagoreans and the Stoics:* Yet with all this Philo remained a Jew, and a great part of his writings is expressly directed to recommend Judaism to the respect and, if possible, the acceptance of the Greeks. He was not a stranger to the specifically Jewish culture that prevailed in Palestine ${ }_{i}$ in Hebrew he was not proficient, hut the numerous etymologies he gives show that he had made some study of that language. ${ }^{2}$ His method of exegesis is in point of form identical with that of the Palestinian scribes, and in point of matter coincidences are not absolutely rare.4 But above all his whole works prove on every page that he fett himself to be thoroughly a Jew, and desired to be-nothing else. Jewish "philosophy" is to him the true and highest wisdom; the knowledge of Cod and of things divine and human which is contained in the Mosaic Scriptures is to him the deepest and the purest.

If now we ask wherein Philo's Judaism consisted we must answer that it lies mainly in the formal claim that the Jewish people, in virtue of the divine revelationgiven to Moses, possesses the true knowledge in things religious. Thoroughly Jewiah is his recognition that the Mosaic Scriptures of the Pentateuch are of absolute divine authority, and chat-everything they contain is valuable and significant because divinely revealed. The other Jowish Scriptures are also recognized as prophetic, i.e. as the writings of inspired men, but he does not place them on the same lines with the law, and he quotes them so seldom that we cannot determive the compass of his canon. The
2 The fathers of the Church have specially noticed his Platoniam and Pythagoreanism; an old proverb even says, with some
 and Suidas, witypra). Clement of Alexandria directly cails him a Pythagorean. Eusebius ($H . E$. ii. 4,3) observes both tendencies. Recent writers, especially zeller, lay weight also on his Stoic affinities, and with justice, for the elements which he borrows from Stoicism are as numerous and important as those derived from the other two schoole.
${ }^{2}$ See the list of these in Vallarsi's edition of Jerome (iii. 731-734), and compare Siegfried, "Philonische Studien, ${ }^{\text {N }}$ in Merx's Arckit. ii' 143-163 (1872).
${ }^{4}$ See Siegried, Philo, pp. 142-159)
decidive and nomnative muthority is to him the " holy laws" of Moses, and this not only in the sense that everything they contain is truo but that all truth is contained in them. Everything that is right and good in the doctrines of the Greek philowophers had already been quite as well, or even better, taught hy Moses. Thus, since Philo had been deeply influenced by the teachings of Greek philosophy be actually finds in the Pentatench everything which he had learned from the Greeks. From these premises he assumes as requiring no proof that the Greek philosophers must in some way have drawn from Moses, a view indeed which is already expressed hy Aristohulus. To carry out these presuppositions called for an exegetical method which seems very strange to us, that, namely, of the allegorical interpretation of Scripture. The allegorical method had been practised before Philo's date in the rahhinical schools of Palestine, and he himself expresaly refers to its use by his predecessors, nor does he feel that any further justificstion is requisite. With its aid he discovers indications of the profoundest doctrine of philosoghy in the simplest stories of the Pentateuch.!

This merely formal pinciple of the absolute authority of Mopes is really the one point in which Philo still holds to genuinely Jewish conceptions. In the whole substance of his philosophy the Jewish point of view is more er lesa completely modified-sometimes almost extinguiahed-by what he has learned from the Greeks. Comparatively speaking, he is most truly a Jew in his conception of God. The doctrine of monotheism, the etress laid on the absolute majesty and sovereignty of Cod above the world, the principle that He is to be worshipped without inages, are all points in which Philo justly feels his auperiority as a Jew over popular heathenism. But only over popular heathenism, for the Greek philosophers had long since arrived at least at a theoretical monotheism, and their influence on Philo is nowhere more strongly seen than in the detailed development of his doctrine of God. The epecifically Jewish (i.e. perticularistic) conception of the election of Israel, the obligation of the Mosaic law, the future glory of the chosen nation, have almost disappeared; he is really a cosmopolitan and praises the Moasic lsw just because he deems It cosmopolitan. The true sage who follows the inw of Moses is the citizen not of a particular state hut of the world. A certain attachment which Philo still manifests to the particularistic conceptions of his race is meant only "in majorem Judacorum gloriam." The Jewish people has received a certain preference from God, but only because It has the most virtuous ancestry and is itself distinguished for virtue. The Mosaic law is binding, but only because it is the most righteous, humane and rational of laws, and even its outward ceremonies always disclose rational ideas and aims. And lastly, outward prosperity is promised to the pious, even on earth, hut the promise belongs to all who turn from idols to the true God. Thus, in the whole substence of his view of the universe, Philo occupies the standpoint of Greek philosophy sather than of matioul Judaism, and his philosophy of the world and of life can be completely eet forth without any reference to conceptions epecifically Jewish.

His doctrine of God starts from the idea that Cod is a Being absolutely bare of quality. All quality in finite beings has Imitation, and no limitation can be predicated of God, who is eternal unchangeable, simple substance, free, self-sufficient, better than the good and the beautiful. To predicate any quality (moubris) of God wrould be to reduce Him to the splene of finite existence. Of Him we can say only that He is, not what He is, and such purely negative predications as to His being appear to Philo, as to the later Pythagoreans and the Neoplistonists, the only way of securing His absolute elevation above the world. At bottom, no dotibt, the meaning of these megations is that God is the most perfect being; and 80 , conversely, we are told that God contains all perfection, that He fills and encompasses all things with His being.

A consistent spplication of Phild's abstract conception of
i For details, wee Gfrorer, Philo, i. 68 seq-: Zeller, Phit. der Gr. (and vd., vol. it., pt. in., pp. 346-352); Siegried, Philo, pp. 160 teq.

God woald exchode the poopibility of ang setive seintion of Cod to the world, and therefore of religion, for a Being aboolutely without quality and movement cannot be conceived as actively concerned with the multiplicity of individual thingen. And 30 in fact Philo does teach that the abeolute perfection, purity and lottiness of God would be violated hy direct contact with imperfect, impure and finite things. But the possihility of a eonnexion between God and the world is reached through a distinction which forms the most important point in his theology and cosmology; the proper Being of Cod is distinguished from the infinite multiplicity of divine Idens or Forces: God himetf is without quality, hut He disposes of an infinite variety of divine Forces, through whose mediation an active relation of Cod to the world is hrought about. In the details of his teaching as to these mediating entities Philo is guided partly by Flato and partly by the Stoics, hut at the aame time he makes wse of th: concrete religious conceptions of heathenism and Judainm. Following Plato, he first calls them Ideas or ideal patterrs of all things; they are thoughts of God, yet possess a real existence, and wrere produced before the creation of the sensible world, of which they are the types. But, in diatinction from Plato, Philo's idens are at the same time efficient causes or Forces (duphuas), which bring unformed matter into order conformably to the patterns within themselves, and are in fact the medit of all God's ectivity in the world. This modification of the Platonic Ideas is due to Stoic infuence, which appenss also
 operative ideas-parts, as it were, of the operative Reason. For, when Philo calls his mediating entities More, the sense designed is analogous to that of the Stoics when they call Cod the Logos, ice. the Reason which operatea in the mord. But at the asme time Philo maintaias that the divine Forces are identical with the "dacmons" of the Grecks, and the "angels" of the Jews, i.c. servants and messengers of Cod by means of which He communicates with the finite world. All this shows how uncertain was Philo's conception of the nature of these medisting Forces. On the one hand they are nothing else than Idens of individual things conceived in the mind of Cod, and as such ought to have no other reality than that of immanent eaistence in Cod, and so Philo says expressily that the totality of Ideas, the abouns montos, is simply the Reason of God as Creator (Oas) Xoros 珑 wogmorowderes). Yel, on the other hand, they are represented as hypostases distinct from God, individual entitie existing independently and apart from Him. This vacillation, bowever, as Zeller and other recent writera have justly remarked, is necessarily involved in Phibo's premises, for, on the one hand, it is God who works in the world through His Ideas, and therefore they must be identical with God; but, on the orher hand, God is not to come into direct contact with the world, and therefore the Forces through which He works mast be diatinct from Him. The same inevitahle amphiboly dominates in what is taught as to the supreme Ides or Logos. Philo regards all individus) Ideas as comprehended in one highert and moost generil Idea or Force-the unity of the individual Ideas-which he calls the Logos or Reason of God, and which is again regarded as ogerative Reason. The Logas, therefore, is the highest modiator between God and the world, the firsthom son of Cod, the archangel whe is the vehicle of all revelation, and the high priest who atand before God on hehall of the world. Through him the worle was created, and so be is identified with the creative Wond of God in Generis (the Greek Xhros meaning both "reacon" and "Ford"). Here agnin, we see, the philosopher is unable to escape from the difficulcy that the Logos is at once the immanent Reason of Cod, and yet also an hypostrsis standing between God and the world. The whole doctrine of this mediatorial bypostasis is a strange intert rining of very discimilar threads; on one side the way was prepared for lt by the older Jewish distinction between the Wisdon of Cod and God Himself, of which we find the begianingeven in the Old Testament (Joh zxviii. 12 seq.; Prov. vili., ix.), and the fuller development in the books of Ecclesiasticus and Wisdom, the latter oi which comen very mear to Philo's ideas if ve substitute for the term "windom "
that of (divine) "Reason" In Greek philosophy, again, Philo, as we have seen, chiefly follows the Platonic doctrines of Ideas and the Soul of the World, and the Stoic doctrine of God as the Abyos or Resson operative in the world. In its Stoic form the latter doctrine was pantheistic, but Philo could adapt it to hia purpose simply by drawing a abarper distinction between the Logos and the world.
Like his doctrine of God, Philo's doctrine of the world and creation rests on the presupprodition of an absolute metaphysioal contrast between God and the world. The world can be ascribed to God only in so far as it is a cosmos or orderly world; its meterial substratum in not even indirectly referable to God. Matter ($C_{n y}$, or, as the Stoics said, ofota) is a second priaciple, but in itself an empty one, its essence being a mere pegation of all true being. It is a jifeless, unmoved, shapeless mass, out of which God formed the actual world by means of the Logos and divine Forces. Strictly speaking, the world is only formed, not created, since matter did not originate with God.
Philo's docerine of man is also strictiy dualistic, and is mainly derived from Piato. Man is a twofold being, with a higher and a lower origin. Of the pure sools which fill airy space, those nearest the earth are attracted by the sensible and descend into sensible bodies; these souls are the Godward side of man. But on his other side man is a creature of sense, and so has in him a fountain of sin and all evil. The body, therefore, is a prison, a coffin, or a grave for the soul which seeks to rise again to God. From this anthropology the principles of Philo's ethics aro derived, its bighest maxim nocessarily being deliverance from the worid of sense and the mortification of all the impulses of sense. In carrying out this tbought, as in many other detaile of his ethical teaching, Philo closely follows the Stoics. But be is separated from Stoical ethics by his strong religious interests, which carry him to very different views of the means and aim of ethical development. The Stoics cast man upon his own resources; Philo points him to the assistance of God, without whom man, a captive to sense, could never raise himself to walk in the ways of true wisdom and virtue. And as moral effort can bear fruit only with God's help, so too God Himself is the goal of that effort. Even in this life the truly wise and virtuous is lifted above his sensible existence, and enjoys in ecstasy the vision of God, his own consciousness sinking and disappearing in the divine light. Beyond this ecstasy there lies but one further step, vis. entire liberation from the body of sense and the return of the soul to its original condition; it came from God and must rise to Him again. But matural death bringe this consummation only to those who, while they lived on carth, kept themsclves free from attachment to the things of sense; all others must at death pass into another body; transmigration of souls is in fact the necessary consequence of Philo's premises, though he seldom speaks of it expressly.
Phinto's fiterary labours have a twofold object, being directed either to expourd the true sense of the Mossic law, ie. the philosophy which we have just described, to his Jewish brethren, or to convince beathen readera of the excellence, the supreme purity anid truth, of the Jewish religion, whose boly records contain the deepest and most perfect philosophy, the best and most humane legiplation. Thus as a literary figure Phiio, in conformity with his education and views of life, atand between the Grteks and the Jews, peeking to gain the Jcwi for Hellenism and the Greeks for Judaism, yet alwaye caking it for granted that his standpoint really is Jewish, and just on that account truly phitosophical and comopolitan.
The titles of the numerous extant writings of Philo preaent at first sight a most confusing multiplicity. More than three-fourthy of them, however, are really mere sections of a mall number of larger works. Three such great works on the Pentateuch can be distinguished.

1. The smalleat of these is the Eqrimares mal Moras (Qmaestoones et solutiones). a short exposition of Genesis and Exodus, in the form of question and answer. The work is cited under this titie by Euseforus (H. E. ii. 18, 1. 5: Praep. B3. vii. 13), and by later writers, but the Greek text is now almost wholly lost, and only about one-hall preserved in an Armemian transiationt Gencois scems to have occupied six books.' Eusehius tells us that Exodus Gilled five books. In the Armenian trimatation, firat publiched by the learned Mechitarist, J. Bapt. Aucher, in 18z6, are preserved lour
 sob, 80 .
books on Groesis and two on Eroodus, but with lecumae. A Latio iragment, about hall of the fourth books on Genetia (Phil. Juc. CII, gmacsth. .., smper Gen.), was first priated at Parie in 1530 O the Greek we have numeroun but abort fragmente in variove Floricegia." The interpretations in this work are partly literal and partly allegorical.
2. Philo's moot important work is the Nomoer hefo duarropias (Eumb. H. E. ii. 18, 1; Pbot. BidU. Cod. 103), a vast and copiotio allegorical commentary on Genesis, dealing with chape. ii-iv. verse by verpe, and with celect pacyages in the later chapters. The renders in view are mainly Jews, for the form is arodelied on the rabbinic Midrash. The main idee is that the charactere which appear is Cenesis are properly alleyories of states of the soul (idorew
 sense, the work as a whole is a very extemsive body of peycholofy and ethics it begins with Gen. Ii 1 , for the De mimid opificio. which treats of the creation scoording to Gen. L. iti, does sot belone to this teries of allegorical commentaries but deals with the actual history of creation, and that under a quite difierent literary lorm. With this exception, however, the Nomp uniroolen iocludet all the treatioes in the first volume of Mangey's edition, vitN

 raita (Ley. all. lib. iii., M. i. 8y-137), on Gen. iti. 8b-19. The commentaries on Gen iii, $\mathrm{ib}-8 a, 20-\mathrm{za}$ are loat. (4) Ilapl roos xuemple
 (De charmoim of flowneo stadio, M. i. 138-16a), on Cen fin. 24 and
 af Caimi, M. L. 163-190), on Gen. iv. 2-4. The commentaries on Gen iv. 5-7 are lost. (6) Ied rof re xipen riv amirrom- unaim tmurbeper (Qwod detarius pationi insidiari shleat, M. i. 191-225), oa
 merartoris Thwe (Daposteritate Coimi, \&c, M. i. 226-261), on Gen. iv. 16-25; this book. which is wanting in editione prior to Mangy' 2 is incorrectly siven by hirm, but much more correctly by Tiechendof, Philonen; ppo 84-143. None of the preceding is mentioned by it: specisa tite by Euseb. H.E. ii. 18. while bo cites all that follow by their titkes. The reacon muat be that all up to this point, avd no further, are included by bim in the N6man loper duarroda; atree ing with this we find thet thene, and these only, are cited under that sencral tikle in the Fiorikgia, eapecially the mocalled Jehownas Tomachus inodius (gee Manety potes belore each book). We may therefore conclude with conifidence that Philo pablidbed the continuove commentaries on Gen. ii.-iv. under the title Alughorict of the Sacred Lowas, and the following commantaries on melect peccaige under apecial titlea, though the identity of literary character eatitlee us to regard the latter at part of the game great literaty plan with the lormer. (8) Ioel virturno (De gigentibut, M. 1. 262-272),
 M. 1. 272-299), on Gen. vi. 4-12. (so) Beil ymilion (De cerviculimes,
 (De plantatione Now, M. i. 329-356), on Cen. ix. 20b. (12) Inad wion (De abridtate, M. L. 357-391), on Gen. ix. 21 : tbe introduction showe that thls book wal preceded by another which put together the

 (15) Inpl kroulas (De malerafions A brahami, M. i. 436-472), on Gen. xit.
 rerum divinarwis hacres sib, M. i. 473-518), oa Gem. xv. 118.
 credidionis campa, M. i. 519-545), on Gean xvi. 1-6. (18) Hap poydive (De profuris, M. i. 546-577), on Gen xvi. 6-14. (19) Hipl res
 M. i. 57 a-619). on Gen. xvii. 1-a2; in this work Philo mentions that be had written two books, now wholly loet. Inal helqui- (M. in 586).
 6a0-658), on the two dreams of Jacob, Gen. axvili. and zaxi (21) Boak ii of the seme (M. 1. 659-699) on the dreame of Jowepl the chief butier. the chief baker, and Pharaoh, Gen. survii. and yl., xili. Eusebive makes Philo the anthor of five booke on dreame; threes, therefore, are lost.

- III. 1 work of a very different kind is the group of. writinge which we may call "An Exponition of the Monaic Law for Gentilea," which, in apite of their very various contents, present on meares examination induhitable macks of clove connexion. In them Philo weeke to give an orderly view of the chief points of the Momic Infialation in the Pentateuch, and to recommend it as valuable to Gentile readers. The method of exposition is cornewhat more popular that in the allegorical compentariea, for, thoutgh that method of interpretation is not wholly excluded, the main object is to qive auch 2 view of the legialation as Philo accepted as bit torical. This work has three mala divinions: (a) an Account of the creation (mopnowna) which Mowes put first to show that hit
- See Opp., ed. Mangey, ii. 649-680: Mai, op. cil., vol, vii. pe- it \% sect. : Euseb. Phasp. Ep. vii. 13. A fragmont oa the cherubiven Exod. xxv. 18, has been publishod by Mai, Class. Ancti, iv. 430 ment by Grosemana (1856) and by Tischendpef (p. 144 meq.)
legislation was conformed to the will of nature, and that theretore thbee who followed it were true comopolitans; (b) the Biographies of the Virtuous-being, so to speak, the living unwritten laws which, unlike written lawn, prement the general types of moral conduct; (c) Legislation Proper, In two subdivisions-(a) the ten principal chapters of the law, (β) the apecial laws belonging to each of these ten. An appendir sdds a view of such lawe as do not fall under the nubrics of the decalogue, arranged under the headiage of certain cardinal virtues.

The treatises which belong to this work are the following: (1) Mepl
 does not fall within the number of the allegorical commentaries. On the other hand, the introduction to the freatise D_{6} Abrahamo makee clear its immediate connexion with the De mundi opificio. Tbe position of the De mandi opificio at the head of the allegorical commentaries, which is at present usual in the editions, seems indeed to go back to a very early date, for even Eusebius cites a passage
 viii. I2 fin., ed. Gaiaford). The group of the BLac oophos is headed
 $[4]_{1} \delta 6+4$ rep 'Appak (DC Abrahamo, M. ii. $1-40$). Abraham there set forth as the type of subarchand toent, i.e. of virtue as a thing learned. This biography of Abraham was followed by that of lsasic as a type of surux iport, i.e. of innate or natural virtue, which in turn was auceeeded hy that of Jacob as representing somprux sprt, i.e. virtue acquired by practice; but both theae are now lost. Hence in the editions the next treatise is (3) Blos roluruds Erep iori real 'Tooft (De Josepho, M. ii. 4I-79), where Joseph is taken as the pattern of the wise man in his civil relations. The Biographies of the Virtuous are followed by (4) Iepl tio Aina horluy $\&$ opphain

 specialibus legion; the umbridged title is given by Eusebius, $B . B$. ii. 18, 5). Here under the ruhrics of the ten commanoments a cyotematic review of the special laws of the Mosaic coonomy is given; for example, under the first and mecond commandments (divine worship) a survey is taken of the cntire legislation relating to priesthood and sacrifice; under the fourth (ic. the Sabbath law, according to Philo's reckoning) there is a survey of all the laws about feaste; under the sixth (adultery) an accouat of matrimonial haw; and no on. According to Eusebius the work embraced four books, which cem to have reached us entire, but in the editions have been perversely broken up into a considerabie number of eeparate tractates. (a) The firt book (on the first and second commandments) includet the following: De circumcisione (M. ii. 210-212); De momarchie, lib. i. (ii. 213-222); De monarchio, lib. ii. (ii, 222-232); De procmitis sacerdotwnt (ii. 232-237); De pictivis (ii. 237-250); De sacrificeatibus, or De victimas offerentious (ii. 251-264); De mercede meretricis mon accipienda is sacrarium (i. 264-269). (b) The eccond book (on the third, fourth and fifth commandments, i.e. on perjury, Sabbath observance, and Gilial piety) is incomplete in Mangey (f. $270-298$), the section De seplenario (on the Sabbath and feaste in general) being imperfect, and taat De colendis paroutibus being entirely wanting. Mai to a large extent made good the defect (Decophini festo et de colendis parentions, Milan, 1818), but Tischendorf was the first to edit the full text (Philomen, Pp 1-83). (c) The thind book romites to the sixth and seventh commandments (adultery and murder; M. ©i. 299-334). (d) To the fourth book (relating to the last three commandmenta) belongs all that is found in Mangey, ii. $335-374$, that is to suy, not merely the tractates De judics (ii. 344^{-} 348) and De conczpiccentia. (iL. 348-358), hut also those De justhia (i. 358-361) and be creatione privecipnem (ii. 361-374). The lastmamed in, properly epenking, only a portion of the $D e$ jastitia, which, however, certainly belongs to the fourth book, of which the superscription expressly bears that it treats also mupi suraperiops With this tractate begins the appendix to the mork De specialibust legibus, into which. under the rubric of certain cardinal virtues, wich Mosaic laws are brought together as could not be denlt with under any of the decalogue nubrics. The contimuation of this appendix forme a book by itself. (6) Heql pone forion fres red Mrpolas cal pheapories ral meravotas ($D e$ forifindine, M. ii. 375 383: De cerilate, ii. 383-405: De portilentia, ii. 405-407). Finally, in less intimate connexion with this entire work is another treative
 paenit, M. ii. 400-428) and Leal 4pen (De execrutionifus, M. ii. 429-457), two parts which conutitute a aingle whole and deal with the promiecs and threateninge of the law.
IV. Beodes the above-atimed three great worlcs on the Pentateuch. Fhino was the author of a number of isolated writings, of which the following have teached us either in their entirety or in fragnente (i) Iad pto Manter (Vila Mosis, lib. i.-ill., M. ii. 80-179). It usual to group thin as being biographical in its churacter, with the Bter eapor, and thus to incopporate it immediately after the De Joceptho with the large woriz on the Mosic kefislation. But, as has been seen. the Blos acopy are intended to reprewent the general types of morality, while Moses is by no mears to dealt with. but to a unique individual. An that can be aaid is that the literary character of the Vits Mosis is the mame ts that of cle larger work. "Ae in the latter the Monaic legialation, 50 in the former the activity of the logialatot himwetr, ila delimmeted for the
 (Quod ownis probus liber. M. ii. 445-470). In the introduction to this treatise relerence is made to an earlier book which had for its theme the converse proposition. The complete work was till extant in the time of Eutebius (II. R. it. 18, 6): Eupt nol nomb
 The genuineness of the writing now poaseaced by ut it not undisputed: but see Lucius, Der Esienismas (1881), pp. 13-23. (3) Eis Фגdexop (Adversus Flaccum, M. ii. 517-544) and (4) Ilel ageri
 These two worise have a very intimate comnarion. la the firt Philo relates how the Roman governor Flaceus in Alexandria. towards the beginning of the reign of Caligula, allowed the Alexandrian mob, without interference, to insult the Jews of that city in the grosaest manner, and even to persecute them to the ghedding of blood. In the eecond he telle how the Jew bad been aubjected to still greater aufferings through the command of Caligula that divine honours should be everywhere accorded to him, and how the Jews of Alexandria in vain sought relief by a mismion to Rome which was headed by Phila. But both together wert only parte of a larger work, in five books, of which the fint two and the last have perished. For it is clear from the introduction to the Aduersus Floccum that it had been pregeded by another book in which the Jewish persecutions by Sejanus, under the reign of Tiberius, were spoken of, and the Chronicon of Euebbius (ed. Schoens, il 150, 151) informs un that these pernecutions of Sejapus tere related in the accond book of the work now under discuntion. But from the conclusion of the Legalio ad Gaium, which we still posess we learn that it was also followed by another book which exhibited the rahupsta, or change of Jewish fortunes for the better. Thus we malce out five books in ali-the number actully given by Lurebius (H.E. ii. 5, 1). (5) IIepl mponales (De providentig), This work has reached us only in an Armenian translation, which has been edited, with a Latin translation, by Aucher (see below), 1822. It is mentioned by ita Greek title in Eucebive (H.E. ii. 18, 6; ProepEv. vii. 20 fin., viil. 13 fin., ed. Cui (ord). The Ammenian teit gives two booke but of theme tho first, if genuine at all, at any rate appears oaly in an abridged and somewhat revised state Eusebius (Pracp. Ep. viii. 14) quotes from the second book to an extent that amount to a series of excerpts from the whole. The short passage is Pracp. De. vii 2I, is also talcen from this book: and it appears that Eunebius knew nothing at all about the firt.
 propriam rationem muth animalic habeant; so Jerome, De Vir. Ih. c. 11); the Greek titie is given in Euseb. H.E. if. 18, 6. This also now exitst only in an Armenian trapelation, which has been edited by Aucher. Two small Greek frasments occur in the Dlerilegien of Leontius and Johannes (Mai, Scr. vet, woo. coll. vii. 1, pp. 99, 100a). (7) Troderax \& a writing now known to us only through fragmente preserved in Euseb. Praep. Ev. viii. 6, 7. The title, as Bernays has shown, means "Counsels," "Rocommendntions" the ruference being to such lawe of the Jews as can be recommended aloo to nooJewish readers. (8) Meol 'lousatoet. a title met with in Euseh. EI E. H. 18,6. The writing is no doubt the same as "If brip' loubalig droverte, from which a quatation is given in Euseb. Praep. Ev. viil. 1t. To this place also, perhape, belongs the De novilitata (M. 3i. 437-444), which treats of that true poblome of wiadon ia which the Jeaish people also is not wanting ${ }^{2}$
V. The doubtful trealises: (1) Hepl plov Bimparuse 4 lertis Aper $2=$ ($D e$ vits contemplatias). This contains the sole original accournt of an ascetic community kroman as the Themapeution (I a) having their home on the chores of Latre Mareotic Thene weve held by Eusebius and many other Christian writers to be the ear riest Christian monks, which of course could not be the case if it wras a genuine work of Philo. On thin account, amongst others, it was held to be spurious by Graetz and P. E. Lucius; and this view gradually received the aspent of most modern echolare. Latterly, however, L. Maceebicau has hown with great thoroughness that in language and thought alike it is esentially Philonic and the genuineness of the book has also been affirmed by P. Weadiand.
 (De incorrapibilitale mandi), declared unauthentic by 2 . Frankel and J. Bernays, has been succeagfully defended by F. Curnont. (3) Iac ubopas (De mywdo). It is generally agreed that, in Lo Cohn'a words, this is "nothing but a compilation from various portions of the mapl depaplas abomoe and other Philonic wrorks." (4) Two discoursen, De Sampsone and De Ioma, extant only in Armesian, and certain other writing of the same kind. These eppeat only to have been impurted to Philo by chance, and certainly canoot claim to be his work. (5) Ilci rel fitra eroviaiop elman anelope (Quod cmnis grobus liber sit) has been questioned by Z. Frankel and R. Ansicld; hut their arguments would rather point to its bein an early work of Philo, which P. Weadland believes to be the cone (6) Iefl mpeotes (De providentia). which we posecat an a trole

[^30]Galy in an Armenian vehion, comests of two bools, the tirnt of whith appears to be in a Chrisian tecention, but there is no reason for denying its Philonic origin

Edirions.-Till recent days the best edition was that of Mangey (a vols., London, 174); the fandiest the Holtwo duedacimo (Leiprig. 18si). Both are still very useful, but for scholars they rill be auper. beded by the enlarged and critical edition of Leopold Cohn and Paul Wendiand (Berlin, 1896-1902). See also papera by Cohn in Hermes, xxxviii. (1903) and xiii. (1908). There is an English translation of the old text by C. D. Yonge (4 vols, London, 1854).
Literature. - The best special studies of thilo wifl be found in Slegtried, Philo nen Alex. (Jcna, 1875); Drummond, Philo-Judoeus (London, 1888). For his place in philosophy, tee Zeller, Phil. der Griechen (1885). For his relation to Palestinian spoculation, B. Ritter, Philo und die IIalacha (Leipzig, 1879). An excelicnt gencral account will be found in Scharer, The Jewish Prople in the tive of Jesns Christ (Eng. trans. 189!), or in Dr Edersheim's article on Philo in the Dictiontry of Chrisian Biogrophy. For the question of the genuinencsa and historical value of the $D e$ wita comemplation,
 1887): F. C Conybgare, Philo: A bout the Contemplatste life (Oxlord. 1895): G. Fayot, Etudes sur les therapeutes (Cenevc, It80). P E Lacius, Die Theropeutem (Straseburg, 1880): P. Wendland, Die Therapreuten (Leipzig, 8096). Also F. Cumont. Phila, de aet, mondi (1891): J. Bernays in the Abhand. der k. Ahad. dar Wiss, (1876).

PHILO OP BYZANTIUK, Greek writer on mechanics, flourished during the latter half of the and century b.c. (according to some, a century carlier). He was the author of a large work M $\eta \times a y(x)$ oiverats $)$, of which the fourth and (in epitome) fifth books are extant, treating of missiles, the construction of fortresses, provisioning, attack and defence (ed. R. Schönc, 1803, with German translation in H. Köchly's Gricchische Kricgsseliriflsteller, vol. i. 1853; E. A. Rochas d'Aiglun, Poliorcellique des Grecs, 1872). Another portion of the work, on pneumatic engines, has been preserved in the form of a Latin translation (De ingeniis spirilualihus) made Irom an Arabic version (ed. W. Schmidt, with German translation, in the works of Heron of Alexandria, vol. 1., in "Teubner Series," 1899; with French translation by Rochas, La Science des philosophes . . . dans C'antiquite, 1882).

A little treatise On the Stren Wonders of the World, wrongly attributed to Philo. probably belongs to the beh century A.D It is printed in R. Hercher's Aclian (i858).

PHILO OF LARIS8A, Greek philosopher of the first half of the sst century s.c. During the Mithradati wars he lelt Athens and look up his residence in Rome. He was a pupil of Clitomachus, whom he succeeded as head of the Third or New Acaderny. According to Sextus Empiricus, he was the founder of the Fourth Academy, but other writers refuse to admit the separate existence of more than three academies (sce AcaDEMy, GREEX). Ia Rome he lectured on rhetoric and philosophy, and collected around him many eminent pupils, amongat whom Cicero was the most famous and the most enthusiastic. None of his works is extant; our knowledge of his views is derived from Numenius, Sextus Empiricus and Cicera. In general, his philosophy was a petetion agninst the sceptic or agnuatic position of the Midcile and New Acrdemy in favour of the dogmacism of Plate.
Sce Grysar, Die Ahademiker Philannd Antiochus (1849); Hermann, De Philone Larissaco (Göttingen, 1851 and 1855).
PHILD, HEREINIUS, of Byblus, Greck grammarian, was born, according to Suldas, in a.d. 42. He lived into the reign of Hadrian, of which he wrote a history, now lost. He was the author of various works: On the Acquisilion and Choice of Books; Ois Cilics and their Fansous Men, epitomized by the grammarian Aclius Serenos, and one of the chief authorities used by IIesychius and Stephanus of Byzantium; On Synonyms, of which there is extant an epitome by Ammonius Grammaticus. But he is chicfly known for his tradslation of the Phoenician history of Sanch uniathon, who was said to have livert before the Trojan war Of this work considerable fragments have been preserved, chicily by Eusebius in the Pratparatio caangelica (i 9. 10; iv 16). They present a euhemeristic reckanfd of Phoenician theology and mythology, which is represented as translated from the original Phoeniciar. Sanchuniathon is probably an imaginary personage, whose name is formed from that of the Phoenician god Sanchom.

Ealitions of the frommoate by j. C. Orelli (1896) and C. Meller. Frag. kest gracc, vol. iti. In 1836 F . Wagconcld broveht out what clatined to be a complete translation by Pftlo (from a MS. discovered in a convent in Portugal. now considered spurious). There are Eaglish translatioas by I. P. Cory (1828) and Bishop R. Cumberiand (1720).
eHilochorus, of Athens, Greek historian during the zrd century a c., was a member of a priestly family. He was a seer and interpreter of signs, and a man of considerable influence. He was strongly anti-Alacedonian in politics, and a bitter opponent of Demetrius Poliorcetes. When Antigohus Gonalas, the son of the latter, besieged and captured Athens (261), Philochorus was put to death for having supported Ptolemy Philadclphus, who had encouraged the Athenians in their resistance to Macedonia. His investigations into the usages and customs of his native Attica were embodied in an Allhis, in seventeen books, a history of Athens from the earlien times to 263 B.c. Considerable fragments are preserved in. the lexicographers, scholiasts, Athenaeus, and elsewhere. The work was epitomized by the author himselt, and later by Asinius Pollio of Tralles (perhaps a frcedman of the famous Gaius Asinius Pollio). Philochorus also wrote on oracles, divination and sacrifices; the mythology and religious observances of the tetrapolis of Attica; the myths of Sophocles; the lives of Euripides and Pythagoras; the foundation of Salamis. He compiled chronological lists of the arcbons and Olympiads, and made a collection of Attic inscriptions, the first of its kind in Greece.
Fragments and Jife in C.W. Maller, Frapmemta hisloricormm graecorum, vol. i. (1841); A. Bockh. Cesameralle kleine Schriften, vol. v. (1871), on the plan of the work; I. Strenge, Quaestioncs philochoreae (Gortingin, 1868); C. Wachsmuth, Einleiluing in das Studiow der allen Gexchichie (1893).
PHLIOCTETES, in Greek legend, son of Poces king of the Malians of Mt Oeta, one of the suitors of Helen and a celchrated hero of the Trojan War. Homer merdy states that he was distinguished for his prowess with the bow; that he was bitten by a smake on the fourney to Troy and keft behind in the island of Lemnos; and that he subsequently retumed home in safety. Thase bricf allusions were elaborated by the "cyclic" poets, and the adventures of Philoctetes formed the subject of tragedies by Aeschylus, Sophocles and Euripides. In the later form of the story Philocittes was the friend and armour-bearter of Herackes, who prescnted him with his bow and poisoned attows as a reward for kindling the fire on Mi Oeta, on which the hero immolated himseff. Philoctetes remained at Lemmos till the tenth year of the war. An oracle having declared that Troy could not be taken whthout the arrows of Heracles, Odysetus and Diomedes (or Neoptolemus) wrere sent to fetch Philoctetes. On his arrival before Troy the was healed of his wound by Machaon, and slew Parts; shortly afterwards the dity was taken. On his return to his own coumtry, finding thot a revolt had broken out against him, be again took ship and sailed for Italy, where he founded Petilia and Cremissa. He fell fighting on the side of a band of Rhodian colonists against some later immigrants from Pallene in Achaea. His tomb and sanctuary were shown at Maenlle, on the coast of Brutium.
Of the Aeschyican and Euripidean rragedies only a Rew fragments remain; of the two by Soptrocies, one is extant, the other, deating with the fortures of Philocictes before Troy; is lost. Some light is thrown upon the lost plays by Dio Chrysostom, who in one of his discourses (52) describes his reading of the three tragedies, and in another (59) gives a prose version of the opening of the Philoclefes of Eusipides Philoctetes was also the aubject of tragedien by Arhereus of Erctria, Euphorion of Chakis and the Roman tragedian Accius. According to F, Marx (Nawe Jahrbuicher fur das Hassssche Allerlym. 1904, p. 673-685). Phitoctetes did not appear in the original tegend of Troy. He is a form of the Lemnian Hephaestus, who alighted on the ialand whem flave out of Olympus by Zera. Like him. he is tame and an outcast for nine qears; like hism, he is broughs back in time of need. His connexion with the fall of troy indicates that the fire-god himself set fire to the city; in fike manner no ot ther than the fire-poot was thought worthy to kindle the pyre of Heracles
See Homer. Jliad, iti. 718, Odysuy, iii. Sga, wiii, a19: Sophockea, Philocietes, and Jebl's Introduction ; Diod. Sic. iv. 3^{8}; Philostratua Herorct, 6: Strabo vi. 254: Hyginus, Fab. 36, 102.
PHILODEMUS, Rpicurean philosopher and poet, was born at Gadara in Cocle-Syria sarify in the ist century b.c., and
cetiled in Rome in the time of Cicero. He was a friend of Calpumius Pis, and was implicated in his profigacy by Cicero (in Pisonem, 29), who, however, praises him warmly for his philosophic views and for the elegans lascivia of his poems (cf. Horace, Satires; 1. 2. 120). The Greek anthology contains thirty-four of his epigrams. From the excavations of the villa at Herculancum (9.0.) there have been recovered thirtysix treatises attributed to Phifodemus, and it has been suggested that the villa was actually owned by him; but this is generally denied. These works deal with music, thetoric, ethics, signs, virtues and vices, and defend the Epicurean standpoint against the Stoics and the Peripatetics.
The Rheloric has been edited by Sudhaus (1892-1898); the De Ire and the De Pielate by Gomperz (1864 to 1865); the De Afustce by Kempke (188t) ; De Vitiis by Ussing (1868) ; De Morte by Aleker (1886). See Hercul. Volum. (Oxford, 1824 and 1861); Mayor on Cicero's De Nalure deorum (1871).
PHILOLAUS (b. c. 480), Greek pbilosopher of tbe Pythagorean school, was born at Tarentum or at Crotona ${ }^{1}$ (so Diog. Latert. viii. 84). He was said to have been intimate with Democritus, and was probably one of his teachers. After the death of Pythagoras great dissensions prevailed in the citics of lower Italy. According to some accounts, Philolaus; obliged to fice, took refuge first in Lucania and then at Thebes, where he had as pupiks Simmias and Cebes, who subsequently, being still young men (veaploxoc), were present at the death of Socrates. Belore this Philolaus had retumed to Italy, where he was the teacher of Archytas. He entered deeply into the distinctively Pythagorean number theory, particulariy dwelling on the properties inherent in the decad-the sum of the first four numbers, consequently the fourth triangular number, the iteratiys (ece Vil. Puhag. ap. Phol. Bibl. p. 71a)-which be called great, all-powerful, and all-producing- The great Pythagorean oatb was taken by the aacred telractys. The discovery of the regular solids is attributed to Pythagoras by Eudemus, and Empedocles is stated to have been the first who maintained that there are four clements. Philolaus, connecting these ideas, held that the elementary nature of bodics depends on their form, and assigned the tetrahedron to fire, the octahedron to air, the icosabedron to water, and the cube to earth; the dodecahedron he assigned to a fifth element, eether, or, as some think, to the universe (see Plut. de PL. Ph. ii. 6, \&x dt rồ boberaidpou rìy rồ тaurds aфаípar and Stob. Ecl. Phys. i. ioid râs σ фаlpas dлás). This theory, however superficial from the standpoint of observation, indicates considerable knowledge of geometry and gave a great impulst to the study of the science. Following Parmenides, Philolaus regarded the soul as a "mixture and harmony" of the bodily parts; be also assumed a substantial soul, whose existence in the body is an exile on account of sin.
Philolaus was the first to propound the doctrine of the motion of the earth; some attribute this doctrine to Pythagoras, but there is no evidence in support of their view. Philokass supposed that the sphere of the fixed stars, the five planeta, the sun, moon and earth, all moved round the central fire, which he calted the hearth of the universe, the bouse of Zeus, and the mother of the gods (see Stob. Ed. Phys. L. 488); but as these marie up only nine revolving bodics be conceived, in accordance with his number theory, tenth, which he called counter-carth, dyrixdwr. He supposed the sun to be a disk of glass wbich reflects the light of the universe. He made the lunar month consist of 291 days, the lunar year of 354 , and the solar year of 3651 days. He was the first who published a book on the Pythagorean doctrines, a treatise of which Plato made use in the composition of bis Timacus. This work of the Pythagorean, to which the mystical name Barxas is sometimes given, seems to have consisted of three books: (1) Mepl abowow, containing a general account of the origin and arrangetment of the universe; (2) Mept \$ioews, an exposition of the natare of numbers; (3) Mepi لuxis, on the nature of the soul.
${ }^{1}$ Boeckh places his life between the 7oth and 95th Olympiads ($496-396$ s.c.). He was a contemporary of Socrates and Democritus, but detion to them. and was prohalily somewhat junfor to Empedocles, so thic his birth may be placed at about sta.

See Boeckh, Phitolons des Pythogarears Lehren medof den Brat sticken seines' Werkes (Berlin, 18t9); Schaarmchmidt, Dio anpelicth Sechriftstellerci des Philolaus (186+): also Fabricius, Bibliation graeca: Zeller, History of Greek Philosophy; Chaignet, Pythaper et la philosophic pyltagoricienne, comienamt kes frapments de Philenan et d'Architas (1873); Th. Gomperz, Greek Thinkers (Eag. tram (1901), i. $123 \mathrm{mqg.} ,543 \mathrm{sq9}$. and authorities there quoted also art. Priilacoras. For fragments see Ritter and Preller, Hizi Philosopi. ch. ї.
PHILOLOGY, the gencrally accepted comprebensive name for the study of the word (Gr. Noros), or languages; it designates that branch of knowledge which deals with human speech, and with all that speech discloses as to the nature and history of man. Philology has two principal divisions, correspondiag to the two uses of " word " or "speech," as signifying either what is said or the language in which it is said, as either the thought expressed-which, when recorded, takes the form of literature-or the instrumentality of its expression: these divisions are the literary and the linguistic. Not all study of literature, indeed, is philological: as when, for example, the records of the ancient Chincse are ransacked for notices of astronomical or metcorotogical phenomenz, or the principles of geometry are leamed from the textbook of a Greek sege; while, on the other hand, to study Piolemy and Euclid for the history of the scienecs represented by them is philological more than scientific. Again, the study of language itself has its literary side: as when the vocabulary of a community (say of the ancient Indo-Europeans or Aryans) is taken as a document from which to infer the range and grade of knowledge of its speakers, their circumstances and their institutions. The two divisions thas do not adimit of absolute distinction and separation, though for some time past tending toward greater independence. The literary is the older of the two it even occupied until recently the whole field, since the scientific study of language itsell hat arisen only within the ioth century. Till then, ititerary philolog included linguistic, as a merely subordinate and auxiliary part, the knowledge of a language being the necessary key to a knowledge of the literature writen in that language. When, therefore, instead of studying each language by itself for the satet of its own literalure men began to compare one language with another, in order to bring to light their relationships, their structurce, their historics, the name "comparative philolog"" naturally cnough suggested itgelf and came into use for the Det method, and this name, awkward and trivial though it may be, has become so firmly fixed in English usage that it can be only slowly, if at all, displaced. European tusage (cspecially German) tends more strongly than English to restrict the name philotogy to its older office, and to employ for the recert branch of knowledge a specific tcrm, like those that have gained more or ka currency with us also; as glottic, glonsology, linguistics, linguistic science, science of language, and the iike. It is not a question of alsolute propricty or correctness, since the word philology is in its nature wide enough to imply all language-study of whatever kind; it ls one, rather, of the convenient distinction of methods that have grown too independent and importart to be any longer well included under a common name.

> 1.-The Scicnce of Language in general.

Pbilology, in all its departments, began and grew up as classical; the history of our civilization made the atudy af Greck and Latin long the cxclusive, still longer the predominant and regulating, occupation of secular

Noteref scholarship. The Hebrew and its literature were beld apart, as someching of a different order, as sacred. It was not imagined that any tongue to which culture and literatire did not lend importance was worthy of serious attention fram scholars. The first essays in comparison, likewise, were mode upon the classical tongues, and were as erroneous in method and fertile in false conclusions as was to be expected, considerivg the narrowness of view and the controlling prejudices of those who made them; and the adminaion of Hebreve to the comparisat only added to the confusion. The change which the past century has seen has been a part of the general acientific move ment of the age, which has brought about the calablishment
of so many new branches of knowledje, both historical and phyical, by the abandomment of shackling prejudices, the freedon of inquiry, the recognition of the dignity of all knowledge, the wide-reaching ausemblage of facts and their objective comparison, and the resulting constant improvement of method. Literary philology has had its full share of advantage from this movement; but linguistic philology has been actually created by it out of the crude observations and wild dedections of earlier times, as truly as chemistry out of alchemy, or geclogy out of diluvianism. It is unnecesary here to follow out the details of the development; but we may well refer to the decisive influence of one disoovery, the decisive action of one scholar. It was the discovery of the spocial relationship of the Aryan or Indo-European languages, depending in great measure upon the introduction of the Sanskrit as a term in their comparison, and demonstrated and worked out by the German scholar Bopp, that founded the exience of linguistic philology. While there is abundant room for further improvement, it yet appears that the grand features of philologic study, in all its departments, are now so distinctity drawn that no rovolution of its methods, but only their modification in minor respects, is henceforth probable. How and for what purposes to investigate the literature of any people (philology in the more proper scnse), combining the knoviledge thus obtaincd with that derived from other sources; how to sudy and set forth the matcrial and structure and combinations of a language (grammar), or of a body of related hanguages (comparative grammar); how to co-ordinate and interpret the general phenomena ol language, as variously illustrated in the infintely varying facts of difierent tongues, so as to exhibit its nature as a factor in human history and fis methods of tife and growth (linguistic science)-these are what philology teaches.

The study of language is a division of the general science of anthropology ($q . v$.), and is akin 10 all the rest in respect to its Rothetoe to objects and Its methods Man as we now" see him Amefrepe- is a twofold being: in part the child of nature, as beres to his capecitics and desires, his endowments of mind and body; \ln part the creature of education, by tralning in the knowledge, the arts, the social conduct, of which his predecesoors have gained possession. And the problem of anthropology is this: how natural man has become cultivated man; how a being thus endowed by nature shoold have begun and carried on the processes of acquisition which have brought him to his present state. The results of his predecessors' labours are not transmuted for his benefit into natural instincts, in language or in anything else. The child of the most civilized race, if iscotated and left wholly to his own resources, alded by nefther the example nor the instruction of his fellows, would no more speak the speech of his ancestors than he would build their houses, fashion their clothes, practise any of their arts, inherit their knowledge or wealth. In fact, he would possess no language, no arts, no wealth, but would have to g° to work to acquire them, by the same processes which began to win them for the first human beings. One advantage he would doubtless enjoy: the descendant of a cultivated race has an enhanced aptitude for the reception of cultivation; he is more cuitivable; and this is an element that has to be allowed for in comparing prescnt conditions with past, as influencing the rate of progress, but mothing more. In all other respects it is man with the endowments which we now find him possessed of, but destitute of the gradually accumuiated results of the exercise of his faculties, whose progress we have to explain. And it is, as a matter of necessity, by studying recent observable modes of acquisition, and transferring them, with due allowance for different circumstances, to the more primitive periods, that the question of first acqulsition or origin is to be solved, for language as for tools, for arts, for family and social organization, and the rest. There is just as much and just as little reason for assuming miraculous interference and aid in one of these departments as in another If men have been left to themselves to make and improve instriments, to form and perfect modes of social organization, hy inplanted
powers directed by natural desires, and undor the premare of circumstances, then also to make and change the gigns that constitute their speech. All expreanions, as all instruments, are at present, and have been through the known pati, made and changed by the men who use them; the same will have been the case in the unknown or prehistoric past. And we command now cnough of the history of language, with the processes of its life and growth, to determine with confidence its mode of origin-within certain limits, as will appear below.
It is beyond all question, in the first ptace, that the desire of communication was the only force directly impelling mea to the production of language. Man's sociality, cemeot his disposition 10 hand together with his fellows, Learneys for iower and for bigher purposes, for mutual belp antions and for sympathy, is one of his most fundamental characteristics. To understand those about one and to be understood by them is now, and must have been from the very begianing, a prime necessity of human existence; we cannot conceive of man, even in his most undeveloped state, as without the recognition of it. Commuaication is still the universally recognised office of speech, and to the immense majority of speakers the only one; the common man knows no other, and caz only with dificulty and imperfectly be brought to sce that there is any other; of the added distinctncss and reach of mental artion which the posecssion of such an instrumentality gives him he is wholly unconscious: and it is obvious that what the compana. tively cultivated being of to-day can hardly he made to realise can never have acted upon the first men as a molive to action. It may perhaps be made a question which of the two uses of speceh, communication or the facilitation of thought is the higher; there can be no question, at any rate, that the former is the broader and the more fundamental. That the kind and degree of thinking which we do nowadays would be impossible without language-signs is truc enough; but so also it would be impossible without written signs. That there was a time when men had to do what mental work they could without the help of writing, as an art not yet devised, we have no difficalty in realizing, because the art is of comparatively recent device, and thert are still communities enough that are working without it; it is much harder to realize that there was a time when epeaking also was an art not yet attained, and that men had to carry on their rude and rudimentary thinking withoul it. Writing too was devisod for conscious purposes of communication only; lis esoteric uses, like those of speech, were at first unsuspected, and incapable of acting as an indurement; they were not noticed until made experience of, and then only by those who look bencath the surface of things There is no analogy closer and more instructive than this bet ween speech and writing. But analogies are abundant elsewhere in the history of human development. Everywhere it is the lower and more obvious inducements that are first efiective, and that lead gradually to the possession of what serves and silmulates higher wants. All the arts and industries have grown out of men's effort to get enough to eat and protection againgt cold and heat-just ss language, with all its uses, ont ol men's effort to communicate with their fellows. As a solitary man now would never form even the beglnnings of speach, as one separated frum socicty uniearns his speech by disuse and becomes virtually dumb, so early man, with all his powers, would never have acquired speech, save as to those powers was added mociality with the needs it brought. We might conceive of a solitary man as housing and dressing himself, devising rude tools, and thus lifting himself a step from widness toward cultivation; but we cannot conceive of him as ever learning to talk. Recognition of the impulse to communication ms the efficient cause of language-making is an element of primary importance in the theory of the origin of language. No one who either leaves it out of account or denies it will, however ingenious and entertaining his speculations, cast any real light on the carliest history of speech. To inquire under what peculiar circumatances, in connexion with what mode of individual or combined action, a first outburst of oral expression may have taken phee, ia, on
the other hand, quike futile. The needed circumstances were sidways present when human beings were in one another's society; there was an incesmant drewing-on to attempts at mutual underatanding which mot with occasional, and then ever more frequent and complete success. There inherea in most reasoning upon this subjact the rooted assumption, governing oplnion even when not apenly upheld or consciously made, that conceptions have real natural names, and that in a state of nature these will somehow break forth and reveal themselves under favouring circumatances. The fabity of such a view is shown by our whole further discussion.
The character of the motive force to speech determined the charscter of the beginnings of speech. That was first signified Begtaslogs which was most capable of intelligible signification, of Speech not that which was first in order of importance, and Wition-as judged by any standard which we can apply to it, or first in onder of conceptional development. All attempts to determine the first spoken signs by asking what should have most impressed the mind of primitive man are and must be failures. It was the exigencies and possibilitics of practical life, in conditions quite out of reach of our distinct conception, that prescribed the earliest signs of communication. So, by a true and instructive analogy, the beginaings of writing are rude depictions of visible objects; it is now tharoughly recognized that ino alphabet, of whatever present character. can have originated in any other way; evcrything else is gradually arrived at from that-as, indeed, in the ingeniously shaping hands of man, from any central body of signs, though but of suall extent, all else is attainahle hy processes of analogy and edaptation and transfer. Now what is it that is directly signifiable in the world about us? Evidently the separale acts and qualities nf sensible objects, and nothing else. In writing, or signification to the eye, the first clement is the rude depiction of the outline of an objoct, or of that one of the sum of its charaeteristic qualitics which the cye takes note of and the hand is capable of intelligibly reproducing; from that the mind understands the whole complex objoct itself, and then whatever further may in the circumstances of its use be suggested hy it, So, for example, the picture of a tree signifies primarily a tree, then perhaps wood, something made of wood, and so on; that of a pair of outstretched wings signifies secondarily flight, then soaring, height, and whatever clse these may lead to. No concrete thing is signifiable in ils totality or otherwise than hy 2 facile analysis of its constitucnt qualities and a selection of the one which is both sufficically characterisuic in itself and capable of being called up hy a sign before the mind addressed.

And what quality shall be sclected depends in great measure upon the instrumentality used for its signification. Of such somstrume instrumentalities men possess a considcrable variety. tellose of We must leave out of acconnt that of depiction, as Expressione just instanced, bectuse its employment belongs to a much more advanced state of culcivation, and leads the way to the invention not of speech but of the analogous and aasiliary art of writing. There remain gesture, or changes of position of the various parta of the body, especially of the noost mobile parts, the arms and handa; grimace, or the changes of exprestion of the features of the countenance (in strictness, a variety of the preceding); and utterance, or the production of audibie sound. It cannol be doubted that, in the first stages of communicative expression, all these three were used together, each for the particular purposes which it was best calculated to serve. The nearest approach to such action that is now possible is when two persons, wholly ignorant of one another's speech, meet and need to communicate-an imperiect correspondence, because each is trained to habits of expression and works consciously, end with the advantage of long experience, towards making bimelf uaderstood, yet it is good for its main purpose. What they do, to reach mautual comprehension, is Hike what the first speechless men, unconucioully and infinitely moro dewly, learnod to do: face, hands, body, voice, are all pat to use. It is altogetber probable that gesture at first performed the principal part, even to such extent that the
carliest human language may be said to have been a language of gesture signs; indoed, there exist af the present day such gesture-languages as those in use between roving tribes of difierent speech that from time to time meet one another (the most noted example is that of the gesture-language, of a very considerable degree of development, of the prairic tribes of American Indians); or auch signs as are the nataral resort of those who by deafness are cut off from ordinary spoken intercourse with their fellows. Yet there never can have been a stage or period in which all the three instrumentalities were not put to use together. In fact, they are still all used together; that is even now an ineffective speaking to which grimace and gesture (" action," as Demosthenes called them) are not added as enforcers; and the lower the grade of development and culture of a language, the more important, even for intelligibility, is their addition. But woice has won to itself the chief and almost exclusive part in communication, insomuch that we call all communication "language" (i.e. "tonguiness") just as a racm of mutes anight coll it "handiness" and talk (by gesture) of a handiness of grimace. This is not in the least because of any closer conncxion of the thinking apparatus with the muscles that act to produce audible sounds than with those that act to produce visihle motions; not because there are natural uttered names for conceptions any more than natural gostured names. It is simply a case of "survival of the fittest." or analogous to the process hy which iron has become the exclusive material of swords, and gold asd silver of money: because, namely, experience has shown this to be the material best adapted to this special use. The advantages of voice are numerous and obvious. There is first its economy, as employing a mechanism that is available for litule else, and leaving free for other purposes those indispensable instruments the hands. Then there is its superior perceptibleness: its nice differeaces impress themselves upon the sense at a distance at which visible motions become indistinet; they are not hidden hy intervening ohjocts; they allow the eyes of the listener as well as the hands of the speater to be employed in other useful work; they are as plain in the dark as in the light; and they are able to catch and command the attention of one who is not to be reached in any other way. We might add as the third advantage a superior capability of variation and combination on the part of spoken sounds; but this is not to be insisted on, inasmuch as we hardly know what a gesture-linguage might have become if men's ingenuity in expression had been expended through all time upon its claboration; and the superiority, however real, can hardly have been obvious enough to serve as a malive: certainly, there are spoken languages now existing whose abundance of resources falls short of what is attainable hy gesture. Oral utterance is the form which expression has inevitably taken, the sum of man's endowments being what it is; but it would he a mistake to suppose that a necessity of any other kind is involved in their relation. The fundamental conditions of speech are man's grade of intellectual power and his social instinct; these being given, his expression follows, availing itself of what means it finds best suited to its purpose; if voice had been wanting it would have taken the next best. So, in certain well-known cases, a marked artistic gift on the part of individuals deprived of the use of hands has found means of exercise in the feet instead. But men in general have hands, instruments of exquisite tact and power, to serve the needs of their intellect; and so voice also, to provide and use the tools of thought; there is no error in maintaining that the voice is given us for speech, if only we do not proceed to draw from such a dictum false conclusions as to the relation between thought and utterance. Man is created with bodily instruments suited 10 do the work prescribed by his mental capacitics; therein lics the harmony of his endowment.

It is through imitation that all signification becomes directly suggestive. The first written signs are (as already noticed) the depictions of visible objects, and could be samiciova nothing clse; and, by the same necessity, the first
uttered signs were the imitations of audible sounds. To reproduce
any found of which the orioinating manso or the circumstances of production are known, brings up of course before the conception that sound, along with the originator, or circumatauces of origination, or whatever else may be natmanly associated with t. There are two special directions in which this mode of signmaking. is fruitful: imitation of the sounds of external nature (as the cries of animals and the noises of inanimate objects when in motion or acted on by other objects) and imitation of human sounds. The two are easentially one in principle, alhough by some held apart, or even opposed to each other, as respectively the imitative or onomatopoctic and the exclamatory or interjectional begiming of speech; they difier only in their spheres of significapce, the one being especially surgestive of external objects, the other of invand feelings. There are natural human tones, indicative of fecling, as there are natural gestures, poses, modes of facial exprcasion, which either are immediately intalligible to us (as is the warning cry of the hen to tho dayold chicken), or have their value tanght us by our carlicat experiences. If we hear a ery of joy oze shrick of pain, a laugh or a groan, we need no explanation in vords to tell ws what it signifies any more than when we see a sad face or a drooping attitude. So also the characteristic cry or act of anything outside ourgelves, if even rudely imitated, is to us theffective reminder and awakener of conception. We have no reanon to question that such were the suggestions of the beginning of uttered exprescion. The same means have made their contributions to language even down to our own day; we call words so produced "onomatopoctic" (i.c. " name-making"), ofter the example of the Greels, who could not conceive that actually new additions to language shoold be made in any other way. What and bow wide the range of the imitative principle, and what amount of language-signs it was capsble of yielding, is a subject for special investigalion-or rather, of apeculation, since anything like eanct knowledge is regard to it will mever be attained; and the metter is one of altogether secondary consequence; it is sufficient for our purpose that enough could certainly be won in this way to eerve 45 the effective. germs of speech.

All the natural means of expression are still at our command and are put to more or leas use by ns, and their products are as Lemerege. inteligible to us as they have been to any gencration of our ancestors, back to the very first. They are analogous also to the means of communication of the lower animals; this, so-far as we know, consists in observing and interpreling ono another's movements and natural sounds (where there are such). But language is a step beyond this, and different from it. To make language, the intent to signify must be present. A cry wrung out hy pain, or a lagh of amusement, though intelligible, is not language; either of them, if conscionsly reproduced in order to signify to another pain or pleasure, is language. So a cough within hearing of any one attracts his attention; hut to cough, or to produce any other sound, articulate or inarticulate, for the purpose of attracting another's attention, is to commit an nct of langrage-making, such as in human history preceded in abrundance the establishment of definite traditionel signs for conceptions. Here begins to appear the division between human language and all brute expression; since we do not know that any animal but man ever defnitely took this step. It would be highly interesting to find out just hove sear any come to it; and to this point ought to be especially directed the attention of those who are investigating the commanication of the lower animals in its relation to human communication. Among the animals of highest intelligence that associate with man and learn something of his ways, a certain amount of sign-making arpresdy for communiention is not to be denied; the dog that barks at a door because he knows that sormebody will come and let him is is an instance of it; perlimps, in wild life, the throwing out of sentinel birds from a fiock, whose vaning cry shall advertise their fellows of the threat of danger, is as metir an opproach to it as is enywhere made.

But bectual permanent beginning of speech are only
reached when the natural basis is still further abandoned, and signs begin to be used, not because their natural suggestiveness is seen in them, but by imitation, from the Learuase example of others who have been observed to use comver the same sign for the same purpose. Then for the thath first time the means of communication becomes something to be handed down, rather than made anew by each individual; it tales on that traditional character which is the essential chartcter of all human instltutions, which appears not less in the forms of social organization, the detaits of religious ceremonin, the methods of art and the arts, than in language. That all existing speech, and all known recorded speech, is purely traditional, cannot at all be questioned. It is proved even by the single fact that for any given conception there are as many different apoken signs as there are languages-asy a thousand (this number is rather far within then beyond the truth), each of them intelligible to him who has learned to use it and to associate it with the conception to which it belongs, but unintelligibic to the users of the nine hundred and ninety. nine other siges, at 2 these are all unintelligible to him; unless, indeed, he learn a fow of them also, even as at the beginning he learned the one that be calts his own. What single sign, and what set of sigms, sny individual shall use, depends opon the community into the midst of which he fo cast, by birth or other circumstances, doring his first years. That it does not depend upon his race is dernoostrated hy fects the most numerous and various; the African whoee purity of descent is attested by every feature is found all over the world speaking just that language, of jargon, into the midst of which the fates of present or former slavery have brought his parents; every civilized community contains elements of various lineage, combined into one by unity of speech; and instances ere frequent enough where whole nationt opeak a tongue of which their ancestors knew nothing; for enample, the Ceitic Gauls and the Cermanic Normans of France speak the dialect of a geographically inagnificant district in central Italy, while we ourselves can hardly utter a sentence or write a line without bringing in more or less of that game dialect. There is not an item of any tongue of which we know anything that is "matural " expression, or to the posecssion of which its speaker is bsousht by birth instead of by educetion; there is even very litule that is tracesbly founded on ouch natural expression; everywhore aros or bumath attribution reigns supreme, and the original thoes or natural tfgificance has disappeared and is only to be fotand by theoretic induction (as wre have found it above). It seems to some as if n name itic cnckoo (one of the most striking available caset of onomatopoeis) were " "matural" one; beut there is jast as much Mous hit it in any other name; it implles the observation of an agtregate of qualities in a certwin bird, and the selection of one antong them as the convenient basis of emutul underutanding when the bind is in question; every znimal consplcuous $t 0$ us must have its designation, won in one way or mother; and in this case to imitate the characteristic cry jo the moet available why. If anything but convenience and evallability were involved, alt out names for animala would have to be and to remain intitations of the-sounds they make. That the name of curhoo is applied also to the fernale and young, and at other than the singing scason, and then to related species which do not mate the tame somod-all helps to show the escentially conventionil chantcter of even this name. At analogoes procest of elimination of original meaning, and reduction to the value of conventional designation merely, is to be seen in every part of language throughout its whole history. Since men ceased to dertve their names from sigms having a matural suggestivemess, and began to make them from other names already in use with an understood value, every new name has had its etymology and its historical occasion-As, for example, the name querandine from the two-score (quaramlaite) of days of precantionary confinement, or volume from its being rolled up, or book from beech. wood staff, or copper from Cyprus, or lumacy from enncied influence of the moon, of priest from being an older (rpeoplrepos) person, of butterfy from the hutter-yellow colour of a certatis
common species: every part of our language, as of every other, is full of such examples-but, when once the name is applied, it belongs to that to which it is applied, and no longer to its relatives by etymology; its origin is neglected, and its form may be gradually changed beyond recognition, or its meaning 50 far altered that comparison with the original shall seem a joke or an absurdity. This is a regular and essential part of the process of name-making in all human speech, and from the very beginning of the bistory of speech: in fact (as pointed out above), the latter can only be said to have begun when this process was successfully initiated, when uttered signs began to be, what they have ever since continued to be, conventional, or dependent only on a mutual understanding. Thus alone did language gain the capacity of unlimited growth and development. The sphere and scope of natural expression are narrowly bounded; but there is no end to the resources of conventional sign-making.

It is well to point out bere that this change of the basis of men's communication from natural suggestiveness to mulual Brwe understanding, and the consequent purely convenArwie tional charecter of all human language, in its every aad Honate part and particle, puts an absotute line of demarcaSpecth tion between the latter and the means of communication of all the lower animals. The two are not of the same kind, any more than human society in its variety of organization is of the same kind with the instinctive herding of wild cattle or swarming of insects, any more than human architecture with the instinctive barrowing of the for and nestbuidding of the bird, any more than buman industry and eccumulation of capital with the instinctive hoarding of bees and beavers. In all these cases alike the action of men is a result of the adaptation of means at hand to the satisfaction of felt needs, or of purposes dimly perceived at first, hut growing clearer with gradually acquired experience. Man is the only being that has established institutions-gradually accumulated and perfected results of the exerciee of powers analogous in kind ta, but greatly differing in degree from, those of the lower animals. The difference in degree of endowment does not constitute the difference in language, it only leads to it. There was a time when all existing human beings were as destitute of language as the dog; and that time would come again for any number of human beings who should be cut off (if that were practicable) from all instruction by their fellows: only they would at once proceed to recreate language, society and arts by the same steps by which their own remote ancestors created those which we now possesa; while the dog would remsin what he and his ancestors have always been, a creature of very superípr intelligence, indeed, as compared with most, of infinite intelligence as compared with many, yet incapable of rising by the acquisition of culeure through the formation and development of traditional institutions. There is just tbe same salius existent in the difference between man's conventional speoch and the natural communication of the lower races as in that between men's forms of society and the instinctive associntions of the lower races; but it is no greater and no other; it is seither more absolute and characteristic-nor more difficult to explain. Hence those who put forward language as the distinccion between man and the lower animals, and those who look upon our language as the same in kind with the means of communication of the lower animals, only much more complete and perfect, fail alike to comprehend the true nature of language, and are alike wrong in their anguments and conclusions. No addition to or multiplication of brute speech would make anything like buman specch; the two are separated by a step which no animal below man has ever taken; and, on the other hand, language is only the most conapicuous among those institutions the development of which has constituted buman progress, while their possetsion constitutes human culture.

With the question of the origin of mas, whether of not developed out of lower anisul forma, intermediate to the anthropoid epes, langusge has mothing to do, nor can its study ever be made to contribute anything to the solusion of that quention: I there once existed cretiuses above the epes and
below man, who were extipated byprimitive man at sis experial rivals in the struggle for existence, or became extinct in any other way, there is no difficulty in supposing them to have postested forms of apeech, more rudimentary and imperfect than ours. At any rate, all existing hmman speech is one in the essential characteristics which we have thus far noted or shall bereafter have to conaider, even as humanity is one in its distinction from the lower animals; the differences are in noeessentials. All speech is one in the eense that every human being, of whatever race he miy be, is capabie of lagens acquiring any existing tongue, and of using it for ant the same purposes for which its present possessors ewnurn use it, with such power and effect as his individual capacity allows, and without any easential change in the mertal operations carricd on by means of speech-even as he many ecoquire any other of the items of culture belonging to a race not his own. The difference between employing one fanguage and another is like that between employing one instrument and another in mechanical arts; one instrument may be better than another, and may enable its user to turn out better work, but the hnman ingenuity behind both is tbe same, and works in the same way. Nor has the making of language anything whatever to do with making man what be is, as an animal species having a certin physical form and intcllectund endowment. Being what be is by nature, man has by the development of language and other instit utions become what he is by culture. His scquired cultare is the necessary result of his native condowment, not the contrary. The acquisition of the first stumbling beginaing of a superior means of communication had no more infuence to raise him from a simian to a human being than the present high culture and perfected speech of certain yeces has to tift them up to something more than human and specifically different from the races of inferior culture. It cannot be too absolutely hid down that differences of langrage, down to the pasestion of language at all, are differences only in respect to education and culture.

How long man, after he came into such beins at he now in, physically and intellectually, continued to communicate with imitative signs of direct significtnce, when the production of taditional lirne begeng hev ranidly Devalege they were accumulated, and how long any traces of Laerane their imitative origin clave. 60 them.-Hhese and the apmot like questions it is at prasent idie to try to ansurer even eomjes. turally: just as it is to sock to detespine whes the first instrtmients were used, how soon they were shoped instead of heins left crude, at what epoch fire was reduced tal service, and 30 on, The stages of developnent and their succession ate clear einough: to fix their chwonotery will doubtless never be fornd practicable There is much reason for holding, as aome do, that the very fart items of culture were hardest to win and coet moet time, the rate of accomulation (as in the case of capital) increasin. with the amount accumulated. Beyond all remomable question. however, there was a positively lons period of parely inaitavive signs, and a lomger one of mixed inititive and traditional ones, the latter gradually gaining upon the forcuer, before the. present condition of things was reached, when the production of new signs by imitation is only sportidic and of the atmost rarity, and all language-signs besides tete traditional, their increase in any community being solely by variation and combination, and hy homotring from other communitios

Of what nature, in rarious rexpects, this erilet tanguatematerial was is sufficiently clear. The signs, in the frot ploce, were of the sont that we call " roots." By this.in only meant that they were integral signs, sifoifonat in theit entirety, not divisithe indo-parts, of which one signifiod one thing and another another thing, or of which one gave the main agnificance, while another was an added atge of kind or rchation. In a language of developed struature lifre corr own, we arrive at such" roots" mainly by en ertificial strippiengoff of the signs of relation which almont every wond still has, or can be shown to have once had. In tol-cosl-bi-mess, for ecample. cost is the centrally timifiant dermot; 0 far as Endini is
cotcermed it it a reok, about wich ctuster a whole body of forms and derivatives; if we could' follow ise history no farther it would be to us an ultimate root, as much so as bind or sing or mean. But we can follow it up, to the Latin compound con-sta, a soot the with a prefixed formative element con. Then sta, which in slightly varied forms we find in a whole body of related tongues called "Indo-European," having in them all the same significance "stand," is an Indo-European root, and to us an ultimate one, beccuse we can follow its history no farther; but there ulwnys remaina tbe possibility that it is as far from being ectually original as is the English root coss: that is to say, it is not within our power ever to get back to the really primitive dements of apeech and to demonstrate their character by positive evidence. The reason for accepting a primitive root-agge of language is in great part theoretical: because nothing else is reconeilimble with any aeceptable vew of the origin of language. The law of the simplicity of beginnings is an absotute one for everything of the nature of an institution, for every gradually developed prodact of the exercise of human faculitics. That an original speech-sign should be of double character, one pan of it meaning the and another part that, or one part radical and the other formative, is as inconceivable as that the firts instruments should have tad handics, or the first sheters a front room and a back one. But this theoretical reason finds all the historical support which it needs in the fact that, through all the observable periods of language-history we see lormative elements coming from wopds originally independent, and not from anytbing else. Thas, in the example just taken, the-li-of costincss is a suffix of so recent growth that its whote history is distinctly traceable; it is simply our adjective like, worn qown in both form and meaning to a subordinate value in combination with certain words to which it was appended, and then added freely as a suffix to any word from which th was desired to make a derivative adjective-or, later but more often, a derivative sdverb. The ness is much older (though only Germanic), and its history obscurer; it contains, in faet, two parts, neither of them of demonstrable origin; but there are equivalent later suffixes, as ship in hordship and dom in wisfom, whose derivation from independent words (shape, doom) is beyond question. The wn- of uncoskliness is still more ancient (being Indo-European), and its probably pronominal origin hardly available as an illustration; but the comparatively modern prefix be-, of become, belic., tre., comes from the independent preposition by, by the same process as fy or di- from like. And the con which has contributed its part to the making of the quasi-root cosk is also In origin identical with the Latin preposition cxm, " with." By all the known tacts of later language-growth we are driven to the opinion that every lormative element goess back to some previously existing independent word; and hence that in analysing our present words we are retracing the steps of an earlier synt hesis, or following up the history of our formed words toward the unformed roots out of which they have grown. The doctrine of the historical growth of language-structure leads by a logical necessity to that of a root-stage in the history of all language; the only means of avoiding the latter is the assumption of a miraculous element in the lormer.

Of what phonetic form were the earliest traditional speechsigns is, so far as essentiais are concerned, to be inferred with

Eartherf
Phoortis Fonme nant and vowel sounds, like our present speech; and now probably contained a part of the same sounds which we now use. All human language is of this character; there are no sounds in any tongue which are not learned and reproduced as easily by children of one race as of another, an dialects admit a like phonetic analysis, and are representable hy alphabetic signs; and the leading sounds, consonant and vowel, are even practically the same in aH; though every dialect has its own (for the most part, readily definable and imitabic) niceties of their pronunciation, while certain sounds are rare, or even met with onty in a single group of languages or in a single language. Articulate sounds are such as are capable of being combined
 syltsbles which is the characterisicic of human speech-utterance. The name "articulate" belongs to this utterance, as dietinguished from inarticulate buman sounds and cries and from the sounds made by the lower animals. The word itsell is Latin, by translation from the Greek, and, though very widely misunderstood, and even deliberately minapplied in somse Languages to desigmate all sound, of whalever kind, nttered by any living creature, is a most happity choten and truly descriptive term. It signifins " jointed," or broken up into successive parts, like a limb or stem; the joints are the syllables; and the syllabic structure is mainly effected by the alternation of closer or consonant sounds with opener or vowel sounds. The simpleat syllabic combination (as the facts of language abow) is that of a single consonant with a following vowel; and there are languages even nove exdsting which refect any other. Hence there is mach plausibility in the view that the firat speech-signs will have had this phonetic form and been monosyllabic, or dissyllabic only by repetition (reduplioation) of one syllable. such as the epeech of very young children shows to have a peculiar case and naturaliness. The point, however, is one of only secondary importance, and may be beft to the further progress of phonetic study to setlie, if to can; the root-theory, at any rate, is not bound to any definite form of extent of root, but only denjes that there can have been eny grammatical structure in language except by development \ln connexion with experience in the use of language. What particular sounds, and how many, made up the first apoken alphabet is also a mater of conjecture merely; they are likely to have been the closent consonants and the openest vowels, modial utternaces being of later development.
As regards thetr significant value, the first languagesigms must have denoted those physical acts and qualities which are directly apprehensible by the senses; both because charactos thess alone are directly signifiable, and because it ofanty was only they that untrained humas beings had samem the power to deal with or the occasion to use. Such signs would then be applied to more intellectual uses as fast es there was occasion for it. The whole history of language, down to our own day, is full of examples of the reduction of physical terms and phrases to the expression of non-physical conceptions and relations; we can hardly write a line without giving inustrations of this kind of linguistic growth. So pervading is it, that we never regard ourselves as having read the history of any intellect ual or moral term tlif we have traced it back to a physical origin. And we are still all the time drawing figurative comparisons between material and moral things and processes, and calling the latter by the names of the former. There has never been any difficulhy in providing lor new knowledge and more refined thought by puting to new uses the earlier and grosstr materials of speech.
As a matter of course, whatever we now signify by our simple expressions for simple acts, wants, and the like, was intended to be signified through the first speech-signs by the users of themi. But to us, with our ciaborated apparatus of speech, the sentence, composed of subject and predicate, with a verb or spectal predicative word to signify the predication, is established as the norm of expression, and we regand everything else as an abbreviated sentence, or as involving a virtual sentence. With a view to this we must have "parts of specch": that is, words held apart in office from one another, each usable for such and such a purpose and no other, and answering a due variety of purposes, so that when they are combined they fit together, as parts composing a whole. and the desired meaning is made clear. Infexions, too, lend their aid; or else auxiliary words of various kinds answering the same purpose-namely, of determining the relations of the members of the sentence. But all our surcess in understanding the earliest stages of language depends upon our power to conceive a state of things where none of these distinctions were estuhlished, where one speech-sign was like another, calling up a conception in its indefinite entirety, and leaving the circumstances of the case to bimit its application.

Such a language is far below ours in expliettness; but it would suffice for a great deal of successful communication; indeed (as will be shown farther on) there are many languages even now in existence which are littlo better off. So a look of approval or disgust, a gesture of beckoning or repulsion, a grunt of assent or inquiry, is as mignificant as a sentence, means a sentence, is translatable into a sentence, and hence may even in a certain way be called a sentence; and in the same way, but only so, the original roots of language may be said to have been sentences. In point of fact, between the holophrastic gesture or uttered sign and the sentence which we can now subscitute for it-for example between the sign of beckoning and the equivalent sentence," I want you to come here "-lies the whole history of development of inflective speech.

What has been this history of development, how the first scanty and formiess signs heve been changed into the immense Devolve variety and fulliness of existing speech, it is of course aren of impoasible to point out in detail, or by demonstration Lagmaese of lacts, because pearly the whole process is hidden in the darkness of an impenetrable past. The only way to cast any light upon it is by carcful induction from the change and growth which are seen to have been going on in the recent periods for which we have recorded evidence, or which are going on at the present time. Of some groups of related languages we can read the life for three or four thousand years back, and by comparisoe can infer it much farther; and the knowledge thus won is what we have to apply to the explanation of periods and languages otberwise unkmown. Nothing has a right to be admitted as a factor in language-growth of which the action is not demonstrable in recorded language. Our own family of languages is the one of whose development most is known, by observation and well-warranted inference; and it may be well here to sketch the most important leatures of its history, by way of general illustration.
Apparently the earliest dass-distinction traceable in IndoEuropean speech is that of pronominal roots, or signs of position, mand from the more general mass of roots. It is not a amopee formal distinction, marked by a structural diflerence, 5 procelen but, so far as can be seen, is founded only on the assignment by usage of certain elements to certsin offices Formal distinction began with combination, the addition of one element to another, their fusion into a single word, and the reduction of the one part to a subordinate value, as sign of a certain modification of meaning of the other. Thus, doubtless by endings of pronominal origin, were made the first verbforms, or words used only when predication was intended (since that is all that makes a verb). conveying at first a distinction of persons only, then of persons and numbers, while the further distinctions of tense and mode were by degrees added. To the nouns, which became nouns hy the setting up of the separate and special class of verbs, were added in like manner distinctions of case, of number, and of gender. With the separation of noun and verb, and the establishment of their respective inficxion, the creative work of language-making is virtually done; the rest is a matter of differentiation of uses. For the noun (noun substantive) and the adjective (noun adjective) become two parts of speech only by a gradually deepened separation of use; there is no original or formal distinction between them: the pronouns as a rule merely add the noun-inflexion to a special set of stems; adverbs are a part of the same formation as nouncases; prepositions are adverbs with a specialized construction, of secondary growth; conjunctions are the products of a like specialization; articles, where found at alle are merely weakened demonstratives and numerals.
1 To the process of form-making, is exhibited in this history, belong two parts: the one external, consisting in the addition of one existing element of speech to another and their combination into a ingle word; the other internal, consisting in the adaptation of the compound to its special use and involving the subordination of one element to the other. Both parts appear also abundantly in other departments of language-change, and Aryoughout the whole history of our languages; nothing has to be
 in the latest. For esample, the has important eddition to the lormative apparatus of English is the cormmon adverb-racking suffix $d y$, coming, as already pointed out, from the independent adjective like. There was nothing at first to distinguish a compound like solly (goditite) from one tike slorm-lossed, save that the former was more adaptable than the other to wider uses; resemblance is an ides casily generolized into appurtemance and the like, and the conversion of godlike to gadly is a simple result of the processes of phonetic change described farther on. The extension of the same element to combination with adjectives instead of nouns, and its conversion to adverbmaking value, is a much more atriking case of adaptation, asd is nearly limited to English among the Germanic languages that have turned like into a suffix. A similar striking case of combination and sdaptation is seen in the Romanic adverb-making suffix mante or ment, coming from the Latio ablative mente, "with mind." So, to make a Romanic future like dommerei, "I shall give," there was needed in the first plece the preexisting elements, donmer, "to give," and ai, "I have," and their combination; but this is only a part; the other indiapensable part is the graduai adaptation of a phrase meaning "I have [something before me] for giving" to.the expression of simple futurity, donabo. So far as the adaptation is concerned the case is quite parallet to that of j 'ai downd "I have given," sc. (equivalent phrases or combinations are found in many languages), where the expression of posseasion of something that is acted on has been in like manner modified into the expresion of past action. Parallel in both combination and adaptation is the past tense lowed, according to a widely accepted theory, from love-did, while we have again the same adaptation withoat combination in the equivalent phrase did lose.

That these are examples of the process by which the whole intective structure of Ind.-European language was built upadmits of no reasonable question. Our belief that it is so rests upon the solid foundation that we can demonstrate no other process, and that this one is sufficient. It is true that we can prove such an origin for our formative elements in only a small minority of instances; but this is just what was to be expected, considering what we know of the disguising proccses of language-growth. No one would guess in the mere y of ably (for able-ly) the presence of the adjective like, any more than in the altered final of soat and the shortened vowel of led the effect of a did once added to send and lead. The true history of these forms can be shown, because there happen to be other facts left in existence to show it; where such facts are not within reach we are left to infer by enalogy from the known to the unknown. The validity of out inference can only be shaken by showing that there are forms incapable of having been made in this way, or that there are and have been other ways of making forms. Of the former there is cvidently bot small chance; if a noun-form meaning, "with mind " can become the means of conversion of all the adjectives of a language into adverbs, and a verb meaning "have" (and, yet earlier, "seize") of signifying both future and past time, there is ohviously nothing that is impossible of attainment by such means. As regards the latter, no one appears to have even altempted to demonst rate the genesis of farmative elements in any other way during the historical periods of. language; it is simply assumed that the early methods of language-making will have been something different from and superior in spontaneity and fruitfulness to the later ones; that certain lormas, or forms at certain periods, were made out-and-out, as forms: that signs of cormal distinction somehow cxuded from roots and stems; that original words were many-membered, and that a formative value settled in some member of them-a nd the like Such doctrines are purcly fancilul, and so opposed to the teachings both of observation and of sound theory that the epither absurd is hardly too strong to apply to them. If the later races, of developed intelligenco, and trained in the methods of a fuller expression, can only win a new form by a long and gradual process of combination and adaptation, why should the earlier and comparatively unirained generations have been able to do any
botter? The advantage ought to be, if aoywhene, on our side. The progress of language in every department, accompanying afforinal and representing the advance of the race, on the Etrimam whole, in the art of speaking as in other arts, is from cose Meterimat the grosser to the more refined, from the physical to the moral and intellectual, from the material
to the formal. The conversion of compounds anto forms, by the reduction of one of their elements to formative value, is simply a part of the general process which also creates auxiliaries and form-words and connectives, all the vocabulary of mind, and all the figurative phraseology that gives life and vigour to our speech. If a copula, expressive of the grammatical relotion of predication, could be won only by attenuation of the meaning of verbs signifying "grow," "breathe," "stand," and "the like; if our ausiliaries of tense and mode all go traceably back to words of physical meaning (as have to " seize." may to "be great or strong," skall to " be under penalty," and 80 on); if of cornes from the comparatively physical off, and for from "before, forward "; if relative pronouns are apecialized demonstratives and interrogatives; if right means etymologically "straight," and mong means "twisted "; it spivit is "blowing," and incellect a "picking out among," and mederstamding a "getting beneatb," and development an "unfolding"; if an event lakes place or comes to pass, and then drops out of mind and is forgollen (opposite of sotten)-then it is of no avail :o object to the grossness of any of the processes by which, in earlier language or in later, the expression of formal relations is won. The mental sense of the relation expressed is entirely superior to and independent of the means of its expression. He who, to express the piural of man, says what is equivalent to mas-man or heap-man (devicss which are met with in not a few languages) has just as good a sense of plurality as he wbo says men or homines; that semse is $n 0$ more degraded in him by the conersoness of the phrase be uses to signify it than is our own sense of eventuality and of peatness by the undiaguised coarseness of take place and hase bean. In short, is is to be kid down with the utmont distinctness and confidence, as a law of language-growth, that there is nothing formal enywhere in langunge which was not once material; that the formal is made out of the material, by procesess which began in the earliest history of language and are still in action.

Wo have dropped here the restriction to our own or IndoEuropean languige with which we began, because it is evident cowe of that what is true of this family of speech, one of the comeread most highly arganized. that axiat, may slao be true of arpwits the rest-mast be true of them, unlesp some valid evidence be found to the contrary. The unity of human nsture makes human speech alite in che character of its beginninge and in the general features of its alter-history. Everywhere among men a certain store of expresaion, body of traditional aigs of thourght, being given, as used by a certain community, it is capable of incrense on certain accondant lines, and only on them. In some langrages, and under peculiar circumstances, borrowing fan a great means of increase; but it is the most external and least organically important of all. Out-and-out invention (which, 30 far as we cas see, must be of the kind celled by us onomatopoetic) is found to play only an very insignificent part in the hintorical periods of hanguagt-clearly because there are ather and equer modes of grining new exprestion for what needs to be expressed. In the course of phowetic chagese a word sometimes varies into two (or more) formes, and makes so many wordh, which are differently turned to eccovint. Evarything beyond thin must be the product of comblnation; there is no other way, 80 far as concerns the externals of speech. Then, partly as ancompanying and aiding this external growth, pertly as separate from and supplementing it, there in in all hanguage an internal growth, making no appeareace in the audible part of speech, consiating in multiplication of meaniags, their modification is the was of precision of comprehemsion or correaness, the restriction of wrords to certain naes, and so an. Along with thase, too, a constant cluange of phonetic form comititutes an inseparable part of the life of language. Speech is no more stable with respect to the coumds of which it in composed than with reupect to its
gramamatical forms, ite vacabalary, or the body ol conceptions signified by it. Even nearly related languages differ as much in their spoken alphabets and the combinations of sounds shey admit, and in thetr uttered forms of words historically the same, as in any other part; and the same is true of local dialects and of class dialects within the same community. Phonetic change has nothing whatever to do with change of meaning; the two are the product of wholly independent tendencies. Sometimes, indeed, they chance to coincide, as in the distinction of minolle "small," and monale " moment "; but it is only by chance, as the spoken accordance of second in its two meanings ("] next " and " sixtieth of a minute ") shows; words that maintain their identity of value most obstinately, like the numerals, are liable to vary indefinitely in form (so four, fidvor, qiadxor, reorap-es, \&c., from an original kwetwor-; ;ow, quingwe, itere, cosc, tac., from penkwe-while, on the other hand, teo and thrce show as striking an accordance of form as of meaning tbrough all the same languages); what is far the most common is that the word becomes very unlike its former self in botb respects, like priast from the Greek тpeofiotepos (presbyter), literally "older man." Human convenience is, to be sure, the governing motive in both changes; but it is convenience of two different kisds: the one mental, depending on the fact (pointed out above) that a name when once applied belongs to the thing to which it is applied, to the disregard of its etymological connexions, does not need to he changed when the thing changes, and is ready for new application to anything that can be brought into one class witb the latter; and the other phynical, depending on the organs of speech and their succeasive movements, by which the sounds that make up the word are produced. Phonetic convemience is ecomomy of effoct on the part of those organs; and to no other law than that of economy of utterance have any of the phenomena of phonetic change been found tracemble (though it is also to be noted that come phenomena have not hitherto been successfully brought under it, and that the way of effecting this is still unclear). "Euphony," which used to be appealed to as explana. tion, is a fale principle, except $\mathbf{s o}$ far as the term may be made an idealised aynonym of economy. The ear finds that agreeable which the organs of utterance find facile. Economy in utterance is no isolated tendency; it is the same that plays its part in all other kinds of buman action, and in language appears equally in the abbrevintiom of the sentence by leaving out parts that can be spared without lows of intelligibility. It is an inaidious tendency, alwayt lying in wait, like gravitation, to pull down what is not sufficiently held up-the bolding-up force in lan. guage being the failhfulness of tradition, or accurate reproduction by the learner and user of the sigas which be has acquired. No generation of men has any intention to speat otherwise than an its predecessor has spoken, or any conscionseess that it is doing so; and yet, from generation to genaration, words are shoftened, sounds are assimilated to one another, and.one element passes out of use while a new one is introduced. Abbreviation and assimilation are the most consplicuons departments of phonetic change, and those in which the mature of the soverning tendency is mast plainly seen. - Taken by itself, one sound is sa easy as another to the person who has accustomed himself to it from childhaod; and those which the young child most easily acquires ene not thooe which in the history of epeech are least liable to alteratom; it is capecinlly in the combinations and transitions of rapid speaking that the tonges, as it wuse, finds out fos itself casier ways of performing its tagk, by dropping and alurring and adapting. To trace out the infinitely varied itema of this change, to co-ordinate and compare them and discover their remons, constituten a special department of languagoratudy, which is treated under the head of Pronserics. It only needs to be pointed out here that phometic chnage plays a necemary part in the structural development of language, hy integrating compound words through fuaion and loss of identity of their component parts, and, what is of yet more importance, by converting them into forms, through dinguise of identity of one of the parts and its phonetic subordination to the other part. It is this that turns, for exarmple, the compound goldibe inio.
the derivative golly, the compound lovedid tmto the verbal form lowd. And yet one further result sometimes follows: an internal change is wrought by phonetic influence in the body of a word, which change then may in the further bistory of the word be left as the sole means of distinction between one form and another. It is thus that, in the most recent period, the distinction of led from leod and met from meed and so on has been made, the added auriliary which ociginally made these preterites induced a shortening of the toot-vowel, and shis was left behind when the auxiliary disappeared by the usual process of abbreviation. It is \ln the same way that the diatinotions of mes from man, of eere from was, of sed from sit, with all their analogues, were brought about: by a modification of vowel-sound (Ger. U mamt) occasioned by the presence in the following syilable of an i-vowel, which in the older stages of the language is still to be seen there. And the distinctions of sing, sang, sung and somg, of bind, bound, hand and bond, are certainly of the same kind, though they so back so far in the history of our family of languages that their beginnings are not yet dearly demonstrable; they were in their origin phonetic accidents, inorganic, mere scoompaniments and results of external combinations which bore the office of distinction of meaning and were sufficient to it; in some of our languages they have been disregarded and efiaced, in others they have risen to prominent importance. To regurd these internal changes as primary and oiganic is parallel with assuming the primariness of the formative apperatus of language in general; like this, it ignores the positive evidence we have of the secondary production of such differences; they are, like everything else in linguistic structure, the outcome of combination and adaptation.
Borrowing, or the taking-in of material out of another lenguage, has been more than once refierred to above as sometimes an important edement in language-history, though less Browns - M1x配 deep-reaching and organic than the rest. There is nothing anomalous about borrowing; it is rather in essential accordance with the whole process of languageaequisition. All our names were adopted by us because they were already in use by others; and a community is in the same why capable of taking a new name from a community with which it comes in cohtact as an individual from individuls. Not that it seeks or admits in this way now names for old things; but it accepts new things along with the names that seen to belong to them. Hence any degree of intercourse between one community and another, leading to exchange of products or of knowledge, is sure to kead also to some borrowing of names; and there is hardly a language in the worid, except of races occupying peculiarly isolated positions, that does not contain a certain amount of forcign material thus won, even as our English has ciements in its vocabulary from half the other congues in the world. The scale of borrowing is greatly increased when one people becomes the pupil of another in respect of its civilization: hence the abundant classical elements in all the European tongues, even the non-Romanic; hence the Arabic material in Persian and Turkish and Malay; bence tbe Chinese is Japanese and Corean; and, as a further result, even dead languages, like the Greek and Latin and the Sanskrit, become stores to be drawn upon in that learned and conscious quest of new exprestion which in the school-stage of culture supplements or even in a measure replaces the unconscions growth of natural speech. So, in mixture of communities, wbich is a highly-intensified form of contact and intercourse, there follows such mixture of speech as the conditions of the case determine; yet not a mixture on equal terma, through all the departments of vocabulary and grammar; the resulting speech (just as when two individuals learn to speak alite) is exsentially that of the one constituent of the mev conmannity, with more or less material borrowed from that of the other. What is most carily taken in out of another language is the names of conerete things; every degree of removal from this involves additional Hifieulty-names of abstract thage, epithets, verbs, connectives, forms. Indeed, the borrowing of forms in the highest sense, or forms of infexion, is wellnigh or quite imposaible; no example of iz has been demonstrated in any of the Motorical periods of langage, thought it is some-
times adventurouly amamed ist a part of prehitotic growti. How nearly it may be approached is instanced by the presemce in Engliah of such learned plarals as thenoment and strula. This extreme resistance to minture in the department of inferion is the ground on which some deny the ponsibility of mixture in language, and bence the existence of auch a thing as a mixed language. The difference is mainly a verbal one; but it would seem about as reasomable to deny that a region is inundated so long as the tops of its highest mountains are above water. According to the simple and natural meaning of the term, nearly all languages are mixed, in varying degree and within varying limits, which the circumstances of each case must explain.

These are the leading processes of change seen at work in all present speech and in all known past speech, and hence to be regarded as having worked throngt the whole history of speech. By their operation every existing tongue has been developed out of its rudimentary madical condition to that in which we now see it. The variety of existing laguages is well-nigh infinite, not only th their material but in their degree of development and the kind of resulting structure. Just as the earlier stages in the history of the use of tools are exemplified even at the resent day by races which have never advanced beyond them, so is it in regard to language alsoand, of course, in the letter case as in the former, this state of things strengthens and extablishes the theory of a gradual development. There is not an element of lingaistic structare possemed by some languages which is not wanting in others; and thote are even tongues which have no beletre formal structure, and which cannot be thown ever to have advanced out of the radical stage. The most noted example of such a rudimentary tongue is the Chineme, witich in its present condition lecks all formal distinction of the perts of speech, all infeexion, all derivition; each of the words (all of them monosyllables) is an integral sigh, not divisible into parts of separate significance; and each in general is usable wherever the radical iden is wanted, with the value of one part of apeech or another, at determined by the connexion in which it stunds; a condition parillel with that In which Indo-European apeech miny be regarded as existins prior to the beginnings of its career of formal development brielly sketched above. And there are ocher toogues, related and unrelated to Chinese, of which the same deacription, or one nearly like it, might be given. To call much languages madiced is by no meuns to maintain that they exhibit the primal roos of human speech, unchanged or only phonetically changed, or that they hive hnown nothing of the combination of element wish element. Of some of them the roots are in greater or less part dissyllabic; and we do not yet know that all dib syltabism, and even that all complexity of syliable beyond a single consonant with following vowel, is not the resalt of combination or reduplication. Eut all combination is met form-making; it neede a whole class of comblnations, with a recognized common element in them produciag a recogmined common modification of meanlang, to make a form. The same elements which (in Latin, and even to some extent in Engdish also) are of formal value in apo-stand and prodict lack that character in coss and proack; the arme libe which malies adverbs to tru-ly and righrely is present without any sach valut in sweh and ahick (from so-like and mothike); cast and preach, and swah and wotich, are as purely racical to Eaglish as ofler words of which we do not happen to be able to demoastrate the composite charncter. And co a Chinese moovesyllable or an Egyptian or Polynestan dissyllable is radical, ualeas there can be demonstrated in some part of it a formative value; and a language wholly composed of such words is a root-langunge Recent Investigation goes to show that Chinese had at some period of its history a formal development, shoce extinowinhed hy the same procesoes of phonetic dechy which in Englinh have wiped out so many signo of a formad charncter and brought bact 30 conviderable a part of the vocabulary to monomylthbisen. It languages thus constituted the only poasiove extermal alteration is that phonetic change to which all humen speech, five tive
very begionins of its traditional life, is liable; the only growth is internal, by that multiplication and adaplation and improve: ment of meanings which is equally an inseparable part of all lenguago-history. This may include the reduction of certain elements to the value of aurilinries, perticles, form-mords, auch as phy an important part in analytical tongues like Engtish, and are perhaps also instanoed in prehistoric Indo-European speech by the clace of pronominal soots. Phrases take the place of compoandi and of inflexions, and the same element may have an auriliary value in certain connosions while retaining its fult force in others, like, for instance, our own haw. It is not easy to define the distinction between auch phrase-collocacions and the beginnings of acgutination; yet the distinction itsell is in general clearly enough to be drawn (like that in French between domerrai and ai donnd) when tbe whole habit of the language is well understood.

Such languges, constituting the small minority of human tongues, are woat to be called "isolating." ife using each Acter element by itself, In its intefral form. All besides "esto Leot are "agglutinative," or more or lese compounded gamean into words containing a formal part, an indicator of claservalue. Here the diferences, in kind and degree, are very great; the varioty ranges from a scantinoss hardiy enperior to Chinese isolition up to an intricacy compared with which Indo-European structure is hardly fuller than Chipese. Some brief charactariation of the various families of language in this respect will be given farther on, in conserion with their clamification. The attempt is also made to classify the great mass of aggiutinating tongues ander different heads: thome are renked as simply "aggutinative" in which there is n. germeal conservation of the separate identity of mool or stem on the ome haad, and of formative derment, suffix or prefix, on the other; while the mame "infloctive," used in a higher and prognant sease, is given to those that admait
remertue. a superior fusion and integration of the two parts, to the disguise and tone of separate identity, and, yet mores, with the developent of an internal change as auxiliary to or as substitute for the orifinal aselutination. But there is no term in linguiatic acience so encertain of meaning, so arbitrary of application, so dependent an the idionyncrasy of its user, as the term "inflective." Apy language ought to have the right to be called infective that has inflesion: that is, that not merely distiaguishea parts of speech and roots and stoms formally from one another. but also conjugates its verbe and declines its monns; and the mame is somothases wo uned. If, again, it be strictly limited to signify the possestion of immer flexion of roots and stems (as if simply acdutinated forms could be called "exflective" h, it marte only a difference of degree of afgiutination, and should be careffilly med as 50 doing. As describing the fuadumertal and prodominant character of language-strufture, it belonga to anly one family of languagen, the Semitic, where notet of the work of grangatical distinction is done by intermal changes of vowel, tho origin af which thus far cludes all attempts at explanap tion. By perhaps the majority of students of hagarger it is, sa a genernilly deacriptive titie, restricted to that family and one other, the Ledo-Europenn or Indo-Germasics, but such a chaedfication is not to be approved, for, in respect to this characteristic, Indo-European speech ranka not with Sepaitic but with the great body of agdutinative tongues. To few of thene can the name ho altogether denied, since there is herdly a body of related dielocts in existeace that does not exhibit some items of "infilective" stuncture; the Aryas is only the ane among thema that has mont to abow. Outside the Sebitio, at any tute, one should not speak of infective and nop-infective languages, but only of hanguages more infective and leas inficctiva.

To account for the groen and trikiag difigances of stractare anaping humen languages is boyond the perwer of the lingoistic
valoo of vancor
utudent, and will doubtlese always. continuo so. We are not likely to be able even to dempristrate a correlation of capacitios, saying that a rabe which has cone this and that in other departments of muman activity might hove beem expected to form anch and such a inagage.

Every tongue representa the general outcome of the capacity of a race as exerted in this particular direction, under the influence of historical circumstances which we can have mo hope of tracing. There are striking apparent anomalies to be noted. The Chincse and the Egyptinns have shown thernselves to be among the most gifted races the earth has known; but the Chinese tongue is of unsurpassed jejunenest, and the Egyptian, in point of seructure, little better, while among the wild triben of Africa and America we find tongues of every grade, up to a bigh one, or to the higheat. This shows clearly enough that mental power is not measured by language-atructure. But any other linguistic test would prove equally insufficient. On the whole, the value and rank of a language ace determined by what its users have made it do. The reflez action of its speech on the miod and culture of a people is a theme of high interest, but of extreme difficulty, and apt to lead its investigatogs away toto empty declamation; taking everything together, its amount, as is shown by the instances already reierred to, is but small. The question is simply one of the fecilintion of work by the use of one set of tools rather than another; and a poor tool in stilful hands cas do vastly better work than the best tool in unskilful handseven as the ancient Egyptians, without ateel or steam, turned out products which, both for coiosal grandeur and for exquisite finish, are the despair of modern engineers and artists. In such a history of development as that of human speech a fortunate turn may lead to results of unioreseen value; the earlier steps determine the later in a degree quite beyond their ewn intringic importance. Everything in language depends upon habit and enalogy; and the formation of habit is a slow procoss, while the habit once formed enercises a constmining es well as a guiding influence. Hence the persistency of languge-structure: when a certain sum and kind of expremion in produced, and made to answer the purposes of expremion, it remains the same by inertia; a shift of direction becomes of extreme difficulty. No other reason can at present be given why in historical time there has becp no marked development out of one grade of structure into another; but the fact no more shakes the linguistic scholar's belief in the growth of structure than the absence of new animal species worked out under his eyes shathes the confideace of the believer in aximal developenent. The modifying canses and their modes of action are chanly seen, and there is no ligait to the remults of their action except what is imposed by circumatances.
It is in vain to attempt to ve datea in language-history: to asy when this or that step in development was taken, and how long a period it cosit cepecially now that the changed viem as to the antiquity of man are making it probable that only a small part of the whole history is brought within the reach even of our deductions from the most ancient reconded dialects. At any rate, for anght that we know or have poaton to believe, all existing dialects Cintly artion are equally ald; overy one alike has the whole immeasorable past of language-life behind it, hat reached its present condition-by advence lang its own line of growth and change. from the finst beginaings of human exprewsion. Many of these separate lines we clearky sec to converge and unite, as we follow them back into the past; bet whether they all witimately converge to ane point is a question quite beyond our power to ansider. If in this immensity of time many languagea have mons so little, if overywhere language: gromth has beemso slew, then we. can only differ wh to whether it in reasonably certaia, or probable, or only possible, that there should have beon a considerable first pesiod of human existence vithout traditional apeech, and a yet more comsiderable one before the fixation of $\mathbf{2 0}$ much as should leave abiding traces in its-dencendants, and that meanwhilo the race should have multiplied and scattered into independent communities: And the mere ponsibility is enough to exclude all dogmatic asmertion of the unity of arigin of homan speech, even assuming anity of origin of the humari race. For to prove that identity by the still exiating facts of language is utterly eat of the quention!
the metamorphosing effect of constant change has been too great to allow it. In point of fact, taking languaged as they now exist, only those have been shown related which possess a common structure, or have together grown out of the more primitive radical stage, since structure proves itself a more constant and reliable evidence than material. And this is likely ever to be the case; at any rate, to trace all the world's languages so far back toward their beginnings as to find in them evidences of identity is beyond the wildest hope. We must be content with demonstrating for those beginnings a unity of Hind as alike a body of formless roots. But, on the other hand, eince this unity is really demonstrated, since all structure is the result of growth, and no degree of difference of structure, any more than of difference of material, refuses explanation as the result of diacordant growth from identical beginnings, it in equally inadmissible to claim that the diversities of language prove it to have had different beginnings. That is to say, the question of the unity of epeech, and yet more that of the unity of the race; is beyond the reach of the student of language; the best view he can attain is the hypothetical one, that, if the race is one, the beginnings of speoch were perhaps onebut probably not, even then. This negative conclusion is co clearly extablished as to leave no excuse for the still oftrepeated attempts to press langrage into service on either side of the controversy respecting human unity of race.
That all making and changing of language is by the act of its speakers is too obvious to call for discursion. No other

Urcoasoctere

 arouth alronat enronth force capable of acting and of producing effects is organiam, growing by its owth inherent powers, exempt from the interference of those who use it, is simply an indefensible paradox. Every word that if uttered is 50 by an act of human will, at frrst in imitation of others, then more and more by a formed and controlling habit; it is accessible to no change except by influences working in the speaker's mind and leading him to make it otherwise. Not that be is aware of this, or directs his action knowingly to that end. The whole procest is unconscions. If any implication of reflective or intended action can be shown to inhere in any doctrine of linguistic science, it vitiates that doctrine. The attitude of the ordinary epeaker towards his language is that of unreasoning acceptance; it seems to him that his games for things are tbeir real names, and all others unintelligent nicknames; he thinks himself to possess his speech by the same tearre as his sight or hearing; it is "natural" to him (or, is be reasons about it, he attributes it to a divine origin, as races beginning to philosophize are went to secribe their various social institutions to their gods); he knows nothing of its structure and relations; it never occurs to bitn to find fault with it, or to deem it insufficient and add to or change it; he is wholly unaware that it does change. Hie simply satisfies his social needs of communication by means of $i t$; and if he has anything to express that is different from what has bean expressed before, he takes the shortest way to a provision for the need; while any relaxation of tbe energy of utterance tends to a variation in the utcered combinations; and thus changes come by his act, though without his knowledge. His sole object is, on the basis of what language he bas, to make known his thought in the most convenient way to his fellow; everything else follows with and from that. Human nature and circumstancea being what they are, what follows actually is, as already ahown, incessant frowth and change. For it we have not to seek special diaturbing causes in the history of the speakers, although such may oome in to beighten and quicken the change; we know that even in a emall community, on a narrow ishet, cut off from all intercourse with other communities, the epeech would grow different-as certainly, if not as rapidly, as anywhere in the word-and only hy the action of its speakers: not that the epeakess of a language act in unison and simultancously to peoduce a given change. This must begin in an individual, pe more or has accoedanely in a limited number of individuals,and spread from such erample through the community. Inidintion by one or a few, acceptance and adoption by the restsuch is the necessary method of all linguistic change, and to be read as plainly in the facts of change now going on among ourselves as in those of former language. The doctrine of the inaccessibility of language to other action than that of its speakers does not imply a power in the individual speaker to create or alter anything in the common speech, any more than it implies his desire to do so. What he suggests by his example must be approved by the imitation of his fellows, in order to become language. The common speech is the common property, and no one person han any more power over it than another. If there are, for example, a thousand apenkens of a certain dialect, each one vields in general a thousandth part of the force required to change it-with just 80 much more as may belong to his excess of influence over his fellows, due to recogmized superiority of any kind on his part. His action is limited only by their assent; but this is in effect a very narnow limitation, ensuring the adoption of nothing that is not in near eccordance with the already existing; though it is also to be noted that he is as litule apt to strike off into stariling change as they to allow it; since the governing power of already formed habits of speech is as strong in him as in thern. That change to which the existing habits naturally lead is enay to bring about; any other is practically imposible. It is this tendency on the part of the collective spenkers of a bongmage to approve or reject a proposed change according to its conformity with their already subseisting usages that we are mocustomed to call by the fanciful name "the genius of a language"

On the relation of the part played in langage-change by the individual to that by the community, in coublinatica with the inevitableness of change, rests the explanation of the dialectic variation of language. If languago were

Dinete stable there would of course be no divarication; but
since it is always varying, and by items of difierence that proceed from individuals and become genernl by diffuion, there con be uniformity of change only 80 far at diffusion goes or tas the influenoes of communication extend. Within the limite of a single community, malli or large, whatever change andes epreads gradually to all, and so becomes part of the general apeech; but let that community becomo divided into two (or more) parts, and then the changes arising in elther part do not spread to the othar, and there begins to appent a differenter in linguistic osage betwean them. It is at first slight, even to insidoificance; not greater than exists between the diflocts of difierent localitiee or ranks of occupations in the same community, withoat detriment to the general unity of speech. This umity, namely, reste solely on mutual intelligibility, and is compatible with mo small amount of individual and clast diference, in vocabulary, in gramonar and in pronunciation; findeed, in the strictent sense, each individual has a dialoct of his own, diffement from that of every other, even as he has a handwriting, a countenance, a character of hin owin. And every item of change, as it takes place, mant have its senson of erittence an a local or clame or trode peculiarity, before it gains universal currency; some of them linger long in that condition, of never emerge from it. Ail these differences in the speech of diffenent sub-commanities within the same community are essentially dialectic; they differ not in kind, but only in dogree, from thoee which tepparate the best-marked dialects; they are kept down by generil communiention within the limit of general muteal intelligitility. Where that restraining lnfluence ceases the limit is gredsally but surdy overpassed, and real dialoets are the rewilt. From what we know of the life of language we can siny poitively that continued uriformity of speech withoent continued combmunity is not puecticabie. If it were ponefble to divide artificially, by an inapmable chasm or wall, a peopile one for agas, and continaing to occupy the same sents, the language of the divided parts would at once begin to be dialectically different; and after sufficient time had elapsed eech woold have become uninteligible to the other. That is to eay, whenever a compmaity of uniform apetoll breaks up, ite apeeck breaks
ap also; nor do we know of nay other canse of dialectic diversity.

In applying this explanation of dialectic growth we have to allow for modilying circumstances of various nature, which alter not indeed the fact but the rate and kind of divarication. Some langunges grow and change much more rapidly than others, with a corrouponding effect upon divarication, since this is but a result of discordant growth. Usually, when there is division of a community, the parts get into different external circumpances, come in contact or mingle with different neighbouring communities, and the like; and this quickens and increases their divergence of speech. But the modifying factor of by far the bighest importance here, as elsewhere in tbe history of language, is civilization. Civilization in its higher forms so multiplies the forces of communication as to render it possible that the widely-divided parts of one people, living in circumstances and under institutions of very different character, sbould yet maintain a substantial oneness of speech; of this there is no more striking example than the two great divisions of tbe Engish-speaking peopic on opposite sides of the Atlantic. On the other hand, a savage poople cannot spread even a litule without dialectic disunity; there are abundant examples to be met with now of mutually unintelligible speecb between the smallest subdivisions of a race of obviousty kindred tongueas the different clusters of huts on the same coral islet It is with linpuistic unity precisely as it is witb political unity, and for the same reasons. Before the attainment of civilization the human race, whether proceoding from one centre of dispersion or from several, was apread over the carth in a state of utter disintegration; but every centre of civilization becomes ako a centre of integration; its influences make for unity of speech as of all other social institutions Sinoe culture has become incontestably the dominant power in human history, the unifying forces in language have also been stronger than the diversifying; and with culture at its full height, and spread equally to every land and race, one universal lenguage, like one universal community, is not an absurdity or theoretic impossibility, but only a Utopian or millennial dream.
Dialectic varistion is thus simply a consequence of the movements of population. As the original human race or races, to the divisions or communities of liter formation, from point to point through the whok life of man on the earth, have spread and separated, but jostled and interfered, have conquered and exterminated or mingled and absorbed; and their speech has been affocted acoordingiy. Hence something of these movements can be read in the present condition of languages, as in a faithful though obscure record-more, doubtless, than can be read in any other way, however little it may be when viewed absolutely. Dielectic resemblances point inevitably back to an earlicr unity of speech, and hence of community; from what we know of the bistory of speech, they are not to be accounted for in any other way. The longer the separation that has produced the diversity, the greater its degree. With every generation the amount of accordance decreases and that of discordanco increases the common origin of the diniects is at first palpable, then evident on examination, then to be made out by skilled research, then perhaps no longer demonstrable at all; for there is plainly no limit to the possible divergence. So long, now, as any Fponectes of evidence of originai unity is discoverable we call spoecct . evidence of orisinal and langunges "related dialects," and combine them into a "family." The term "family" simply aignifies a group of languages which the evidence thus far at command, as estimated by us, leads us to regard as descended by the ordinary procesees of dialectic divarication from one original tongue. That it does not imply a denial of the poomibility of wider relationhip is obvious from what has been said above. That there is abumdant room for error in the classification reproeented by it is also clear, since we may take purely mocidental resemblances, or the results of borrowing, for evidence of common descent, or many overlook or wrongly estimate real evidences, which more study and improved method will bring to light.

Grouping ino familleas is nothing more than the beat clameincation aluinable at a given stage in the progress of linguistic science; it is in no amall part provisional only, and is aiways hedd liable to modification, even sweeping, by the results of further research. Of some familias we can follow the history by external evidences a great way back into the past; their scructure is so highly developed as to be traced with confidence everywhere; and their territory is well within our seach: such we regard with the highest degree of confidence, hardly allowing for more than the poosibility that some otber dialect, or group, or now-accepted family even, may zometime prove its right to be added on. But these are the rare exceptions; in the great majority of cases we have only the languages as they now exist, and in more or less scanty collections, of every degree of trustworthiness; and even their farst grouping is tentative and incomplete, and involves an adjournment of deeper questions to the day of more light. To complete and perfert the work of classification by relationship, or the establishment of families and their subdivisions, is the first object of the comparative study of languages. No other clascification has a value in the least comparable with it; that by grade of structure is a mere recreation, leading to nothing; that by absolute worth is of no account whatever, at any rate is the present state of our knowledge. On gonetic relationship, in the first place, is founded all investigation of the bintorical development of languages; since it is in the main the comparison of related dialects, even in the case of families having a long recorded history, and elsewhere only that, that gives us knowsedge of their earlier cendition and ensibles us to trace the lines of change. In the second place, and yet more obviously, with this classification is connected all that lenguage has to teach as to the affinities of human races; whatever aid linguistic science renders to ethnology rests upon the proved relationships of human tongues.
That a classification of languages, to which we heve now to proceed, is not equivalent to a classfication of races, and why this is 30 , is evident enough from the principles which have been hrought out hy our whole discussion Pica, of languages, and which, in their bearing upon this particular point, may well be recapitulated here. No language is a race-characteristic, determined by the special endowments of a race; all languages are of the nature of institutions, parallel products of powers common to all mankind -tbe powers, namely, involved in the application of tbe fitest available means to securing the common and of communicstion. Hence they are indefinitely trunsferable, lize other institutions-like religions, arta, forme of social orgenization, and so on-under the constraining force of circumstancea. As an individual can tearn any language, foreign as welh as ancestral, if it be put in bis way, so also a community, which in respeet to sucb a matter is only an aggregate of individuals. Accondingly, as individuals of very various race are often found in one community, speaking together one tongue, and utterly ignorant of any other, so there are found great cornmunities of various descent, speaking the dialects of one common tongue, which at some period historical circumatences have imposed upon them. The conspicuous example, which comes into every one's mind when this subject is discussed, is that of the Romanic countries of sonthern Europe, all using dialects of a language which, 1500 years a50, was itsell the insignificant dialect of a small district in central Italy; but this is only the most lmportant and striking of a whole clase of similar facts. Sucb are the results of the contect and mixture of races and languagen. If languago-history were limited to growth and divarication, and raco-history to apread and dispersion, it wourd be a comparatively easy task to trace both beckward toward their origin; as the case is, the confurion is inextricable and hopelces. Mixture of race and misture of apeech are coincident and connected processes; the latter never takes place without something of the former; but the one is not at all a measure of the otber, because circumstances may give to the speech of the one clement of population a greatly disproportionate
preponderance. Thus, there is left in French only an insignificant trace of the Celtic dialects of the predominant raceconstituent of the French people; French is the speech of the Latin conquerors of Gaul, mixed perceptibly with that of its later Frankish conquerors; it was adopted in its integrity by the Norse conquerors of a part of the land, then brought into Brituin by the same Norsemen in the course of their further conquests, this time only as an element of mixture, and thence carried with English speech to America, to be the language of 2 still further mixed community. Aimost every possible phase of languago-mixture is traceable in the history of the abundant words of Latin origin used by American negroes. What events of this character took place in prehistoric titte we shall never be able to tell. If any one chooses to assert the possibility that even the completely isolated diasect of the hit tle Basque community may have been derived by the Iberian race from an intrusive minority as small as that which made the Celts of Gaul speakers of hatin, we ahould have to admit it as a possibility-yet without detriment to the value of the dialect as indicating the frolated race-position of its speakers. In strictness, language is never a proof of race, either in an individual or in a community; it is only a probable indication of race, in the absence of more authoritative opposing indications; it is one evidence, to be combined with others, in the approach towards a solution of the confessedly insoluble problems of human history. But we must notice, as a most fimportant circumstance, that ita degree of probability is greatest where its aid is most needed, in prebistoric periods and among uncultivated races; since it is mainly civilization that gives to language a propagative force disproportionate to the number of its speakers. On the whole, the contributions of language to cthnology are practically far greater in amount and more distinct than those derived from any other source.

The genetical classification of languages, then, is to be taken for just what it attempts to be, and no more: primarily as a classification of languages only; but secondarily clesemince. as casting light, in varying manner and degree, on movements of community, which in their turn depend more or less upon movements of races. It is what the fates of men have left to represent the tongues of men -a record imperfect even to fragmentariness. Many 2 family once as important as some of those bere set down has perthaps been wiped out of existence, or is left only in an inconspicuous fragment; one and another has perhaps been extended far beyond the limits of the race that shaped it-which, we can never tell to our satisfaction.

1. Indo-Europanen (Indo-Germanic) Family.-To this family belongs incontestably the first place, and for many reasons: the historical position of the peoples speaking its dialects, who have now long been the leaders in the world's bistory; the abundance and variety and merit of its literatures, ancient and modern, which, erpecially the modern, are wholly unapproached by those of any other division of mankind; the period covered by its records; and, most of all, tbe great varicty and richness of its development. These advantages make of it an illustration of the history of buman speech with which no other family can bear a moment's comparison as to value, however important various other lamilies may be in their bearing on one and another point or department of history, and however necessary the combination of che testimony of all to a solution of the problems involved in speech. These advantages bave made IndoEuropean language the training-ground of comparative philology, and its study will always remain the leading branch of that ecience. Many matters of importance in its history have been brought up and used as illustrations in the preceding discussion; but as its constitution and ascertained development call for a fuller and more systematic exposition than they have found here, a special section is devoted to the subject (see Part II. below; also Indo-Eurorean Lancuace).
2. Semilic Family.-Thls family abso is beyond all quextion the second in importance, on account of the part which its peoples • (Hebrews, Phoenicians, Assyrians, Syrians, Arabs,

Abyasinians, fec.) have played in history, and of the rank of its literatures. For a special treatment of it see Sasanc Lancuages Some of the peruliarities of the language bave been alluded to above, in the monotony and rigidity of its triliteral roots, and in the extended use which it makes of unternal voweb-change ("infiexion" in the special sense of that term) for the purposes of grammatical distinction, it is more peculiar and unlike all the other known famalies of language than these are unilike one another. There are, and perhaps will always be, those to whom the peculiarites just mentioned will seem original, but if the views of language and its history taken above are in the main true, then that opinion is untenable; Semitic language must have grown into its present forms out of beginnings accordant in kind, if not identiced in substance, with those of other families; and the only question remaining to be solved is, through what processes and under what governing tendencies Semitic speech abould have arrived at its present state. And with this solution is most obviously and incointestably bound up that of the other interasting and much discussed question, whether the Sernitic family can be shown to be related with other families, eapecially with the Indo-European. To some the possespion in common of grammatical gender, or of the classification of objects in general as masculine and ferninine, is of itself enough to prove such selntionship; but, though the fact is a striking one, and of 30 small importance as an indication, this degree of value can by no means be attributed to $i t$ in the present state of our know-ledge-any more than to any other single item of structure among the infinite variety of such. distributed among the multitude of human tongues. Many others compare the Semitic and Indo-European "roots" with one another, and believe themseives to find there sumerous indications of identity of material and signification; but these also must pas for insuffcient, until it thall prove poscible by their aid to work out an acceptable theory of how Semitic structure should have grown out of such radical elements as underlic Indo-European suructure, or out of the accordant initial products of a structural growth that afterwarde diverged into two so discordant forms To show that, both the material and the method have been hitherto wanting, and any confident decision is at least premature; but present probabilities are atrongly against the solubility of the question. While many general considerations favour the ultimate unity of these two great civilimed and civilizing white races of neighbouring homes, and no discordance of speech (as was shown above) can ever be made to prove their diversity of origin, it seems in a high degree unlikely that the evidence of speech will ever be made to prove them one.
3. Hamitic Family.-The prominent impostance of this family (see Hanrric Langonges) is due to a single one of its members, the Egyptian. It occupics the north-eastern coener of Africa, with the border-Iends of that coatinent stretching westward along the whole shore of the Mediterrancan, and southward to beyond the equator. It falls into three principel divisions: (1) the ancient Egyptian, with its deacendant, the more modern Coptic (itself now for some centuries extinct; see Egypt, Corts); (2) the Libyan or Berber languages of northern Africa; (3) the Ethiopic langages of eastem Africa. Its situation thus plainly suggests the theory of its intrusion from Asia, across the isthmus of Suex, and its gradual spread from that point; and the theory is strongly favoured by the physical character of che Hiamites, and the historical position. especially of the Egyptians, so strikingly different from that of the African races in general. Linguistic evidences of the relationship of Hamite with Semite have also been songhe, and by many believed to be found; but the maintenance of the two families in their seperatencsi is an jndication that those evidences have not yet been accepted as antisfactory; and such is indeed the cace.' The Egyptian in a language of extreme simplicity of stracture, almost of no structure at all. lis radical worda are partly monosyliable, partly of more than owe ayllable but not in the latter case any more than to the former shomine traceable signs of ertension by formative procenes from singier
clements. It has no derivative apparatus by which noun-stems are made from roots; the root is the stem likewise; there is nothing that can he properly called either declension or conjugation; and the same pronominal particles or suffixes have now a subjective value, indicating use as a verb, and now a possessive, indicating use as a noun. There is no metbod known to linguistic science by which the relationship of such a tongue as this with the highly and peculiarly infective Semitic can be shown, short of a thorough working out of the histary of development of each family taken by itself, and a retracing in some measure of the steps by which each should have arrived at its present position from a commonstarting-point; and this has by no means been done. In short, the probiem of the relation of Semitic with Hamitic, not less than with IndoEuropean, depends upon that of Semitic growth, and the two must be solved together. There are striking correspondences between the pronouns of the two families, such as, if supported by evidences from other parts of their material, would be taken as signs of relationship; but, in the absence of such support, they are not to he relied upon, not till it can be shown to be possible that two languages could grow to be so different in all ot her respects as are Egyptian and Hebrew, and get retain by inheritance corresponding pronouns. And the possession of grammatical gender by Indo-European, Semitic and Hamitic speech, and by them almost alone, among ali human languages, though an extremely noteworthy fact, is (as was pointed out above) in the present condition of linguistic science quite too weak a basis for a helief in the original identity of the three families.

Egyptimn is limited to the delta and valley of the Nile, and is the only Hamitic language which has ancient records, of the others the existling forms alone are known.
The Libyan or Berber division of the family occuples the inhabitahle part of northern Alrica, so far as it has not been displaced by intrusive tonguts of other connexion-in later times the Arabic, which since the Mahommedan conquest has been the cultivated tongue of the Mediterranean coast, while the earlier Vandal, Latin and Punic have disappeared, except in the traces they may have left in Berber dialectic speech. The principal dialects are the Kabyle, the Shilha and the Tuarek or Tamashek, corresponding nearly to the ancient Numidiañ, Mauretanian and Gaetulian respectively.

The third or Ethiopic division includes as its chief members the Beja or Bisharin, the Saho, the Dankali, the Somali, and the more inland Galla; the first two lying along the Red Sea north of Semitic Abyssinia, the others south of it, to the equator. By some authorities (Lepsius, Bleek) there is added to the Hamitic family as a fourth division a group from extreme southern Africa, the Hotentot and Bushman languages. The ground of this classification is the possession by the Hottent ot of the distinction of grammatical gender, and even its designation by sigms closely corresponding to those used in the Ethiopic division. Others deny the sufficiency of this evidence, and rank the Hotentot as a separate group of African dialects. adding to it provisionally the Bushman, untii better knowledge of the latter shall show whether it is or is not a group hy itself. If the Hottentot he Hamitic, we shall have to suppose it cut off at a very remote period from the rest of the family. and forced gradually southward, while all the time suffering mixture botb of speech and of hlood with the negro races, until the physical constitution of its speakers has become completely metamorphosed, and of its original speech no signa are left save those referred to above; and while such exceptional phonetic peculiarities have been worked out ws the use of the clicks or clucking sounds: and this must he regarded as at least ext remely difficult.
4. Monosyllabic or Soutn-easters Arialic Family.-This body of languages may well enough he the next taken vp; and here again (as was the case with the preceding family) on account of the prominent importance of one of its dialects and of the people speaking it-the Chinese people and language. The teritory of the family includes the whole south-eastern corner
of Asia: China on the morth-east. Farther Indis in the south, and the figh plateau of Tibet, with the neighbouring Fimalayan regions, to the westward. The ulimate unity of all these languages reats chiefly upon the evidence of their form, as being all alike essentially monosyllahic and isolating, or destitute of formal structure; the material cornespondences among them, of accordant words, are not sufficient to prove them related. The Chinese itself can be followed up, in contemporary records, to a period probably not far from 2000 s.c., and the language, the people, and their institutions, are then already in the main what they have ever since continved to be (see Cmina); the other leading tongues come into view much later, as they receive culture and relision from Chins on the one hand (the Annamites), or from India on the other (the Tibetans, Burmese, Siamese); and the territory includes great numbers of wild tribes unknow until our own times, whose race-relations and language-relations are as yet very obscure. Current opinion tends to regard the Annamites, Pegtans and Cambodians (the Mon-Khmer group) as forming a more nearly related group or division, and as having been the earlier population of Farther India, in part dispossessed and driven forward by the later intrusion from the north of Siamese and Burmese, of whom the former are more nearly related to the Chinese and the latter to the Tihetana The Mon-Khmer group is iteelf more nearly related to the Kolarian and Malay-Polynesian.

The character of the languages of this family, especially as instanced by its mont important member, the Chinese, has been pretty fully set forth in the general discussions above. They are languages of roots: that is to say, there is not demone strable in any of their words a formative part, limiting the word, along with others similarly characterized, to a certain office or set of offices in the formation of the seatence. That the words are utimate roots, come down from the first period of language-making, we have no reason whatever to believe; and they may possibly have passed through processes of growth which equipped them with some acanty supply of forms; hut no evidence to that efiect has yet been produced. The indications relied on to show an earlier polysyllabimm in the family (though already in Chimese reduced to monosyllabism before the carliest historical appearance of the language, some 4000 years ago) are the comparatively recent loss of certain final mutes in Chinese words, and the presence on a considerable scate in Tibetan spelling of added initial and final consonants, now silent in the literary dialect, hut claimed te he still uttered in some parts of the country. If the theory connecting these phemoment be established, the Tibetan will approve itself to be by far the most primitive of the dialects of the family, furnishing the key to the history of the rest.
For further details respecting the various tongues of the monosyliahic family, the articles on the different divisions of its territory (Burma; China; Siam; Theet, acc.) may he comsulted. The languages all alike show an addition to the resources of distinction possessed by languages in general, in the use of tones: that is to say, mords of which the alphabetic elements are the same differ in mearins according as they are uttered in a higher or a lower tone, with the rising or the falling inflexion, and so on. By this means, for example, the monosyllabic elements of the literary Chinese, numbering but 500 as we should write them, are raised to the number of about 1500 words.
5. Ural-Allaic (Scythian, Tmaniaw) Pamily.-China ind Tibet are bordered on the north and west by the eastern branches of another immense family, which stretches through central and northern Asia into Europe, overlapping the European border in Turkey, and reaching across it in Ruscia and Scandinavia to the very shore of the Atlantic. Usage has not so definitely determined as in the case of moot other families by what name it shall be called; Turanian is perhaps the com-. monest appellation, but atso the moat objectionable. Five principal hranches are generally rectoned as compoding the family. The two easternmoat are the Tunguaian, with the Manchu for its principal division, and the Margol (neo Memones)

Of these two the language is exceedingly simple in structure, being raised but litule above the formlessness of the Chinese. The Tungusian, however, some authorities would couple with Japanese as a separate hranch. The three others are: the Turkish or Tatar, the dialects of which reach from the mouth of the Lena (Yakut) to Turkey in Europe; the Samoyed, from the Altai down to the aretic shore of Ania, and along this to the White Ses-an unimportant congeries of barbarous tribes; and the Finso-Hungarian, inchuding the tongues of the two cultivated peoples from which it takes its name, and also those of a great part of the population of northern and central Russia, to beyond the Ural Mountains, and finally the Lappish, of northern Scandinavia. The nearer relation of the Samoyed is with the Finno-Huggarian. The Turkish is a type of a well-deveioped langagge of purely agglutinative structure: that is, lacking that higher degree of integration which issues in internal change. Whether this degree is wholly wanting in Finnish and Hungarian is made a question; at any rate, the languages named have no reason to envy the tongues technically called "infective." Of a value not inferior to that of inflective characteristics is one that belongs to all the Ural-Altaic tongues, in varying measure and form, and helps to bind them together into a single lamily-the harmonic sequence of vowels, namely, as between noot and endings, or a modification of the vowels of the endings to agree with that of the root or its final syilahle.

While the physical raco-characteristica known as Mongolian are wanting in the speakers of the western dialects of this family, they are conspicuously present in the people of Japan and Korea; and hence the tendency of scholars to endeavour to connect the languages of the two latter countries, since they also are of agglutinative structure (see Japan and Korea) with the family now under treatment, as also with one anothor.

Other languages of north-enstern Asla, too litile known to group, and too unimportant to treat as separato families, may be mentioned here by way of appendix to their neighbours of the most diversified and widespread Asiatic family. They are the Aino, of Yezo and the Kurile Islands with part of the neighbouring coast; the Kamchatkan; and the Yukagir and Tchuktchi of the extreme north-east. These are sometimes combined with the Eskimo under the title of the Arctic or Hyperborean languages.

The opinion has been held by many scholars that the aggluunative dialects-Sumerain, Accadian, \&c.-ol the presumed founders of Mesopotamian culture and teachers of the Assyrian Semites (see Banyloma) belonged to the Ural-Altaic family, and specifically to its Finno-Ugrian branch; but the data for this view are still very uncertain. The mere possession of an agglutinative structure cannot be taken as proving anythins in the way of relationship.
6. Dravidian or South Indian Family. -This is an important body of nearly and clearly related tongues, spoken by about $50,000,000$ people, doubtiess representing the main population of an Indin at the time when the intrusive Indo-European tribes hroke in from the north-west, and still filling most of the southern peninsula, the Deccan, together with part of Ceylon. They are hanguges of a high grade of structure, and of great power and euphony; and the principal ones have enjoyed a long cultivation, founded on that of the Sanskrit. As they obviously have no Indo-European affinities, the attempt has been made to connect them aiso with the Ural-Altaic or Turanian family, but altogether without success, although there is nothing in their style of struct ure that should make such connexion imposaible.
7. Malay-Polynesian Family.-Not all the tribes that make up the mon-Indo-European population of India speak Dravidian dialects. The Santals and certain other wild tribes appear to be of another lineage. These are now generally known as Kolarian, and are connected with the Malay-Polynesian family.

The islands, greater and smaller, lying off the south-eastern coast of Asia and those scattered over the Pacific, all the way from Madagascar to Easter Ikland, are filled with their own peculiar families of languages, standing in a more or less distant selationalip to the languagee of the Mon-Khmer group, and the

Kolarians on the mainland and the Nicobar islanders. The principal one among them is the great Malay-Polynesian family. It falls into two principal divisions, Malayan and Polynesian. The Malayan includes, besides the Malay proper (see Malays), which occupies the Malaccan peninsula (yet doubtless not as original home of the division, but by immigration from the islands), the languages also of Sumatra, Java, Borneo, \&c., of the Philippine Islands, of part of Formosa, and of Madagascar, together with the coasts of Celebes and other islands occupied in the interior by Papuans. The Polynesian division includes most of the tongues of the remaining scattered groups of islands, and that of New Zealand. Probably to these are to be added, as a third division, the Melanesian dialects of the Melanesian Archipelago, of which both the physical and the linguistic peculiarities would in that case be ascribed to mixture with the hlack Papuan races. All these languages are extremely simple in phonetic form, and of a low grade of structure, the Polynesian branch being in both respects the lowest, and some of the Malayan dialects having reached a development considerably more advanced. The radical elements are much oftener of two syllables than of one, and reduplication plays an important part in their extension and variation. Malay literature goes back as far as to the 13th century, and there are Javan records even Irom the early ceaturies of our cra, the result of religion and culture introduced into that island from Brahmanic India. In recent years more active Investigation has been carried on with a view to tracing out the special laws of historical development prevailingin the family.
8. Other Oceanic Families.-At least two other families, unconnected with the preceding and with one another, are found among the Pacific Islands, and only there. The continental island of Australia, with its dependency Tasmania (whert, however, the native tonguc has now become extinct), has its own body of probably related dialects, as its own phyyical type. They have been hut imperfectly Investigated, their infiportance, except to the proiessed student of language, being.nothing; but they are not destitute of a rude agglutinative structure of their own. Still less known are the Papuan or Negrito languages, belonging to the hlack race with frizrled hair finhabiting most of New Guinea, and found also in the interior of some of the other islands, baving been driven from the coasts by superior intruders of the Malay race.
9. Camcasion Langwages,-Of the existing languages of Asiz there remain to be mentioned only those of the Caucasian moumtains and highlands, between the Black and Caspian Seas, pressed upon the north by Slavonians and Turks, upon the sounh by Armenians and Kurds and Turks. Its situation makes of the Caucasus a natural eddy in all movements of emigration bet ween Asia and Europe; and its linguistic condition is as if remmants of many families otherwise extinct had been stranded and preserved there. The dialects north of the principal range-Circassian, Mitsjeghian, Lesghian, \&c.-have not been proved to be related either to one another or to those of the soth. Amons the latter, the Georgian is much the most widespread and important (see Gromara) and, alone among them all, possesses a literature. The Caucasian dialects present many exceptional and difficult features, and are in great part of so high a grade of structure as to have been allowed the epithet inflective by those who attach apecial importance to the distinction thus expressed.
10. Remmants of Pamilies in Europe.-The Basque people of the western Pyrenees, at the angle of the Bay of Biscay, aire shown by their speech to be an isolated remnant of some race which was doubticss once much more widely spread, but has now everywhere else lont its separate identity; as such it is of extreme interest to the ethnologist (see Basquis). The Basque language appears to be unrelated to any other on earth. It is of a very highly agdutinative structure, being equalied ia intricacy of combination only by a part of the American dialects. Limited as it is in territory, it falls into a number of well-marked dialects, so that it also may not be refused the name of a "family."

The only other case of the kind worth noting is that of the

Strusean language of noriferm central Itnly, which long ago became extinct, in conseqnemse of the conquest and absorption of Eeruria hy Rame, bat which still exists in numenous brief inscriptions (see Erroma). Many attempts have been made to connect the language with other families, and it has even quite recencly been pronounced Aryan or Indo-European, of the Italican branch, by scholars of high rank. But its supposed Indo-European relatiomship was at ance shown to be arroneous when, in 189a, a shall book which had been used to pack a mummy was discovered in the museum at Agram, and published. The probability of relationship with the ancient Lydian, as was the opimion held in ancient times, has been increased by recent research, and is likely soon to be verified or disproved by the discovery of Lydian reconds.
In order to complete this review of the langaages of the Old Worid it only remains to sotice those of Africa which heve not been already raentioned. They are grouped under two heads: the languages of the south and those of the centre of the continent.
11. Soudh African or Barats Pamily.-TMis is a very extensive and distinctly marked family (see Bantu Langonems), occupying (except the Hottentot and Bushman territary) the whole southert peninsula of the continent from some degrees north of the equator. It is held apart from all other known families of language by a single prominent characteristic-the extent to which it makes use of prefixes instead of surfixes as the apparatus of grammatical distinction; its inflexion, both declensional and coajugational, is by appended elements which precede the stem or root. The most conspicuoun part of this is the variety of prefixes, different in singular and plural, by which the various classes or genders (not founded on sex; the ground of classification is generally obecure) of nowns are distinguished; these then reappear in the other members of the sentence, as adjectives and verbe and pronouns, which are determined by the noon, thus producing an alliterative concord that runs through the sentence. The pronominal determinants of the verb, both subject and object, alwo come before it; bot the determinants of mode of action, as causative, exc., are mostly suffixed. The language in general is rich in the means of formal distinction. Those dialects which border on the Hottentots have, apparenaly by derivation from the latter, the clicks or cluckiag-sounds which form a conspicuous part of the Hottentot epoken alphabet.
12. Central Africen Lamguages.-The remaining languages of Africa form s broad band across the centre of the continent, between the Bante on the south and the Fiamitic on the east and north. The Bantu group, extending from nortb of the equator to the Cape of Cood Hope, with a vast variety of dialects, is the most fmportant of all African languages. To it belongs Swahili, the language of Zanzibar, only less valuable as a means of communication and trade than the Haussa of the Sudan, the most important of the dialects under the influence of the Hamitic languages. The African languages are hy no means to be called a family, but rather a great mass of dialects, numbering by hundreds, of varying structure, as to the relations of which there is great discordance of opinion even ahong the most recent and competent authorities. It is no place here to enter into the vened questions of African linguistics, or even to report the varying views upon the suhject; that would require a space wholly disproportioned to the importance of African speech in the general sum of human language. There is no small variety of physical type as well as of speech in the central belt; and, partly npon the evidence of ligbter tint and apparently higher endowment, certain races are set off and made a separate division of; such is the Nuba-Fulah division of F. Müler, rejected by Lepsius. The latter regarded all the varietie of physical and linguistic character in the central belt as due to mixture between pure Arricans of the south and Hamites of the north and east; but this is at present an hypothesis only, and a very improbable one, since it implies modes and results of mixture to which no analogies are quotable from languages whose history is known; nor does it appear at all probable that the collision of two races and types of speech should produce such an inamense and diverse body of transitional types. It is far
from impossible that the present prominence of the South African or Bantu family may be secondary, due to the great expansion under favouring circumstances of a race once having no more importance than belonge now to many of the Central African races, and speaking a tongoe which diffared from theirs only as theirs differed from one another. None of the Centril African languages is a prefix-languate in the same degree as the Bantu, and in many of them prefixes play no greater part than in the world's languages in general; others show special forms or traces of the prefix structure; and some have features of an extraordinary character, hardly to be paralleled elsewhere. One group in the east (Oigob, \&c.) has a gender distinction, involving that of sex, but really founded on relative power and dignity: things disparaged, including women, are put in one class; things extolled, including men, are put in the other. This is perhaps the most significant hint anywhere to be found of how a gender-distinction like that in our own Indo-European languages, whicb we usually regard as being essentially a distinction of sex, while in fact it only includes such, may have arisen. Common among the African languages, as among many other families, especially the American, is a generic distinction between animate beings and inanimate things.
13. American Langwages. With these the case is closely the same as with the Central African languages: there is an immense number of dialects, of greatly varied structure (see Inolans, North Auerican). Even among neighbouring families like the Algonquin, Iroquois and Dakota, whose agreement in style of structute (polysynthetic), taken in connexion with the accordant race-type of their speakers, forbids us to regard them as ultimately different, r.o material correspondence, agreement in words and meanings, is to be traced; and there are in America all the degrees of polysynthetism, down to the lowest, and even to its entire absence. Such being the case, it ought to be evident to every one accustomed to deal with this class of suhjects that all attempts to connect American languages as a body with languages of the Old World are and must be fruitless.
Literalure.-Many of the theoretic points discussed above are treated by the writer with more fulness in his Langmage and the Sludy of Langmage (1867) and Life and Growth of Lanjuage (1875). Other English works to consult are M. Muller's Lectures on the Science of Language; Farrar's Chaplers on Language; Wedgwood's Origin of Language (all more or less antiquated); Sayce's Principles of Philology and Introduction to the Science of Language, \&c.; Sweet, The History of Lamguge (1900). In German, see Paul's Principien der Sprachgeschichus (Halle, 1880); Delbrück's Einleilung in das Sprachstudime (Leipzig, 1880; 4th ed., 1909; 5th ed., 1910; there is also an English version); Brugmann and Delbrack's Grundriss der vergleichenden Grammatik der indogermanischen Sprachen (1880-1900; a second edition of the first volume was published in 1897, two parts of vol. ii., including the stemformation and declension of the noun and pronoun appeared in roob and 1gog); also tbe works of W. von Humboldt and of H. Steinthal, the most important of whose linguistic works, Charakteristik der hauplsachlichsten Typen des Sprachbawes (1861), was recast and brought up to date under the same title by F. Misteli (1893). See also handy summarics covering the same ground, but without hibliography, in F. N. Finck's Die Sprachstemme des Erdkreises (1909) and Die Haupplypen des Sprachbaus (1gio). Many of the languages of India and Farther India have been treated in the Linguistic Surpey of India, edited by Dr G. E. Grierson (a government publication still in progress). A short popular account of the subject is given in Porzczinski's Einleilung in die Sprachwissenschofl (1910), a German translation of a Russian original. The Bantu languages have been treated hy Bleck, Torrand, and most recently by Meinhof, whose Laullekre der Bantu Sprachen (1910) is the most complete handling of the suhject. As to the classification and relationships of languages, see Hovelacque's La Lingmistique (Paris, $\mathbf{2 8 7 6}$) and F. Muller's Grundriss der Sprachovissenschafi (Vienna, 3 vols.; a fourth was left incomplete at the euthor's
death). Both works are alneady somewhat antiquated. As to the history of the study, see Lersch's Spractiphilosophic der Altan (1840); Steinthal's Guschichive der Sprachroissensechaft bai dem Grizchew and R'mern (1863); Benfey's Geschichec der Sprachwissemsehafl mad Oriealaliechen Philologis in Dewlschland (1869); Sandyt's History of Classical Scholarship (3 vols., 1906-1908); Vilh. Thomsen's Sfrogordenshatows Historicen Kontpattilfranckting (igon)
(W.D.W.)

II.- Comparative Phitology of the Imdo-Exropean Languages.

The study of Indo-European comparative philology has from its outset necessarily been in close connexion with the study of Sanskrit, a language unparalleled amongst its cognates in antiquity and distinctness of structure, and consequently the natural basis of comparison in this field. It is therefore not to be wondered at that we find no clear views of the mutual relationship of the individual members of the Indo-Earopean family or thelr position with regard to other languages until Sanskrit began to attract the attention of European philologists, or that the introduction of Sanskrit as an object of study was closely followed by the discovery of the original community of a vast range of languages and dialects hitherto not brought into connerion at all, or only made the objects of baseless speculations. We meet with the first clear concepshimetal tion of this idee of an Indo-European community of languages in the distinguished English scholar Sir Wiliam Jones, who, as early as 1786, expressed himself as follows: "The Sanskrit language, whatever may be its antiquity, is of wonderful st ruct ure; more perfect than tbe Greek, more copious than the Latin, and more exquisitely refined than either, yet bearing to both of them a stronger affinity, both in the roots of verbs and in the forms of grammar, than could have been produced by accident; so strong that no philologer could examine all the three without believing then to have sprung from some common source which, perhaps, no longer exists. There is a similar reason, though not quite so forcible, for supposing that both the Gothic and the Celtic, though blended with a different idiom, had the same origin with the Sanskrit." ${ }^{1}$ But neither Sir William Jones nor any of his older contemporaries who had arrived at similar conclusions ever raised this important discovery from a brilliant apercu into a valid scientific theory through a detailed and systematic comparison of the languages in question. To have achieved this is the undoubted merit of the German, Franz Bopp ($q . v$.), the founder of scientific philology of the Indo-European languages, and subsequently

Bopace through this example also the founder of comparative pbilology in general. Next to him Jacob Grimm (q.g.) must be mentioned here as the father of historical grammar. The first part of his famous Deulsche Grammatik appeared in 1819, three years after Bopp had published his first epochmaking book, Ueber das Conjugationssystem der Sanskrilsprache. Bopp's results were here at once utilized, yet Grimm's wbole system was entirely independent of that of Bopp, and had no doubt been worked out before Grimm knew of his illustrious predecessor. In fact, their scientific aims and methods were totally different. Ropp's interest was not concentrated in comparison as such, but chiclly inclined towards the explanation of the origin of grammatical forms, and comparison to him was only a means of approaching that end.
In this more or less speculative turn of his interest Bopp showed himself the true son of a philosophical period when general linguistics received its characteristic stamp from the labours and endeavours of men like the two Schiegels and Wilhelm von Humboldt. Jacob Grimm's aims were of a less lofty character than those of Bopp, whose work, to his own mind, was crowned by his theory of the origin of inflexion through agglutination. In confining his task to a more limited range than the vast field of Indo-European languages embraced in

[^31]Bopp's researches, and thus fixing his atteation on a eroup of idioms exhibiting a striting regularity in their mutual relationship, both where they coincide and where they differ, he made it his foremost object to investigate and illustrate the comtinuous progress, subject to definite laws, by which thene languages had been developed from their common source. He thus raised the bitherto neglected study of the development of sounds to an equal level with the study of grammatical formas, which had so far almost exclusively absorbed all the interest of linguistic research. Grimm's discovery of the so-called "Lautverschiobung,' or Law of the Permutation of Consonants in the Teutonic languages (which, however, had been partly found and proclaimed before Grimen by the Denish scholar Rask), became especially important as a stimulus for farther investigation in this line. Grimm's influence on eomparative philolosy (which is secondary only to that of Bapp, although be was never a comparative philologist in the sense that Bepp was, and did not alwayt derive the benefit from Bopp's works which they might have afforded him) is clearly traceable in the work of Boppis succeseors, amongat whom Friedrich August Pott (180r-1887) is universally judged to hold the farefnost rank. In his great work, Elymologische Forschmagen anf den Cebiete der imdogermanischen Sprachen, wit besonderem Bemg axf die Lentumsmandung im Sanshril, Griachischen, Lateimiechem, Litlanischen, wad Cothischen (Lemgo, 1833-1836), we find Indo-Euxopean etymology for the first time based on a scientific investigation of general Indo-European phonology. Amonget Pott's contemporaries Theodor Benfey deserves mention on accomont of his Griechisches Wursollexicon (Berlin, 1839), a wark equally remartable for copiousness of contents and power of combination, yet showing no advance on Bopp's standpoint in its conception of phonetic changes.

A third period in the history of Indo-Earopean philology is marked by the name of August Schleicher, whose Compendium der tergleichenden Gronnmatio der indogrmamischow Sprachen first appeared in $\mathbf{1 8 6 1}$. In the period subsequent to the appearance of Pott's Efymologische Forschwngen, a number of distinguished scholars, too large to be recordod here individually: had devoted their labours to the different branches of Indo-European philology, especially assisted and promoted in their mork by the rapidly progreasing Vedic (and Avestic) studies that had been inaugursted by Rosen, Roth, Benicy, Westergaard, Miller, Kubni Aufrecht and others. Morcover, new foundations had been linid for the study of the Siavonic languages by Miklosich and Schleicher, of Lichuanian by Kurschat and Schleicher, of Celtic by Zeuss. Of the classical languages Greck had found a most dixtinguished representative in Curtius, while Corseen, Mommsen, Aufrecht, Kirchhoff, \&cc., had collected most valuable materiala towards

[^32]the aliuctiation of Latio and thb cogmeto Italic idions. In his Compendium Schleicher undertook and solved the dificuk task of sifting down the countless details amassed shace the days of Bopp and Grimm, and thus making the individual lapguages stand sut clearly on their common beckground, while Bopp's attention had been especially occupied with what was common to all Indo-European tongues. Thero are two prominent fentures which characterize this part of Schleicher's wort-his assumption and partinl reconstruction of a prohistork parent speect, from which the seperate Indo-European languages were sopposed to have sprang, and the eitablishment of a long series of phonictic laws, regulating the changes by which that development of the individual idioms had taken place. On Schieicher's vicwi of and contributions towards general comparative philology (which he erroneously proposed to consider as a branch of natural science) we need not enter here. (See Enolution and the Science of Language in Darain and Modern Science, 1909, Pp. $526 \mathrm{sqq}$. .)
Por some time after Schlecicher's premature death (in 1868) Indo-Earopean philology cantinued in paths indicated by him and Curtius, with the exception, perhaps, of the school founded by Benfey, who bad always stood on independent ground. The difierence between the two schools, however, was less strikingly marked in their writings, because it chiefly concerns general views of language and tbe Indo-European languages in particular, ahhough the characteristic task of the period alluded to was that of working out the more minute details of comparison; but behind all this the general interest still clung to Bopp's. old glottogonic problems. In 2876, however, a new Mow movement, inspired in the first instance by the works of W. D. Whitney, began, and a younger stool school of linguists has sprung up who are united in their opposition to many theories of the older generation, yet often differ materially boch with regard 10 method and the solution of individual problems. In its present state this younger school (often branded with the name of. Neo-Grammarians, "Junggrammatiker," by its opponents real and imaginary) is marked by certain distinct tendencies. In the first place, they are inclined more or less, and the older members of the school perhaps more than the younget, to abandon glot togonic problems as insoluble, if not for ever, yet for the present and with tbe scanty means that Indo-European philology alone can furnish for this purpose. In this they are in opposition to the whale of the older school. In the second place, they object to the use of all misleading metaphorical comparisons of processes in the history of hanguage with processes of organic development-comparisons used at all times, but especially cherished by Schleicher. In the third place-and this has been of the greatest practical importance-they bold that our general views of huguage and our methods of compatison should be formed after a careful study of the living languages, because these alone are fully controllable in every minute detail, and can therefore alone give us a clear insight into the working of the different motive forces which shape and modify language, and that the history of earlier periods of language, consequently, can only be duly illustrated by tracing out the share which each of these forces has had in every incividual case of change. Of these forcess two are found to be espocially prominent-phonetic variation and formation by analogy. They generally work in turns and often in opposition to one another, the former frequently tending to differentiar tion of terlier unities, the letter to abolition of earicer differences, especially to restoration of conformity disturbed by phonetic charge. There are, however, other important differences in promecke the action of the two forces. Phonetic change change. another. From this simple fact it if sell-evident that phonetic changes as mact admix of no exceptions. Pro-nunciation-that is, the see of certain sounds in certain combinationa-is perfectly unconscious in matural anstudied apeech, and every apeaker or eemeration of speaters has
ooly one way of etternace for fadividual someds or thels combinations. If, therefore, a given sound was once changed into another under given circumstances, the new sound muit necessarily and unconsciously replace its predecestor in every word that falls under the same rules, because the older sound ceases to be practised and therefore diappears from the language. Thus, for instapce, the sound of the short so-called Italizn a in English has become exchanged for tho peculiarly Eagtish sound in man, hat, acc., which is so exclusively usod and practised now by English speakers that they feel great difticulty ta pednouncing the Italian sound, which at an earlier period was alnost as frequent in English as in any other language that has preserved the Italian sound up to the present day. Again, the sound of the so-called long Eaglish o in make, paper, dic., although once a monophthong, is now pronounced as a diphthong, combining the sounds of the English short e and i, and no trace of the old monophthong is left, except where it was followed by f, as in hore, mare (also air, their, where, ac.), where the a has a hroader sound somewhat approaching that of the short a in haf. This last instance may at the same time serve to illustrate the reatrictions made above as to sounds changing their pronunciation in certain groups or combinations, of under given circomstances only. We may learn from it that phonetic change need not always affect the same original sound is the same way in all its combinations, but that neighbouring sounds often infuence the special direction in which the sound ts modified. The different sounds of the English a in make and hare are both equivalents of the same Old English sonnd a ($=$ tbe Italian short a) in macion, hara. Tbe latter sound has been split in t wo, but this process again has taken place with perfect regularity, the one sound appearing before r, the other before all other consonamts. It is easy to sce that the common practice of comprising the history of the Old Eagish e in the one rulo-that it was changed into the sound of the in make except when followed by an m-an only be defended on the practical ground that this rule is convenient to remember, becuuse the words exhibiting the former change are more numerous than the instances of the latter; apart from this there is nothing to justify the assumption that one of these changes is the rule and the ocher the exception. The fact is, that we have two independent cases of change, which ought to be stated in two distinct and independent rules according to the different positions in which the original stood before the splitting began. It is alio ensy to observe that the variety of modifying influences may be much more mandfold than in the present instance of make and hare, and that the number of special phonetic rules in such cases must be increased in proportion to the protesess made in the inveatigation of the said modifying powers.

In truth, however, the study of phonetic laws falls into several different stages, and the meaning attached to the phrase phonetic law has varied at each of these stages. Moreover, the sweeping nature of the original generalizations has become so hedged in and contracted hy limitatious that a recent writer has been compelled once more to formulate the question whet ber phonetic laws actually exist. It must be admitted in the first place that the word law has been ill chosen for use in this comperion. In phonetic laws there is no clement which can be identified as coming under the definition of a law as propounded by a jurist like John Austin. There is no authority which enunciates the law, there is no penalty for the breach of it. But the philologists who first used the term mere not thinking of law in its strict signification, but of its me in such metaphorical expressiona ta scientific laws, for, as already mentioned, Schleicher and his followers in the middile of the roth century had taken a keen interest in the development of the natural sciences, and had to some extent asamilated their terminology to that employed in those sciences. It was, however, soon recognized that the haws of language and those of natural science were not really alike or akin. A scientific " law" is only a brief method of expresting the fact that undversal caperience shows that certair causes univenally produce certain effocts. In chemintry two atoms of
hydrogen and one of oxygen will make water, and they will make nothing else at any time or at any place the world over. Phonetic laws, bowever, do not hold true universally. They are often curiously limited in the area to which they apply, In ancient Greek, for erample, the sound -s-between two vowels, which had been handed down from the original language whence Greek and the sister languages are derived, regularly disappears; in Latin, on the other hand, it changes into $-r$-; thus an original genitive of a meuter substantive we find represented in Greek hy yeneor, a form which comparison with other languages shows to be traceable to an earlier "genes-as, preceding the separation of the lagguager, while the same original stem with a different vowel in the ending appears in Latin as gemer-is. Similarly an early *euso appears in Greek as eitw, in Latin as wo. This disappearance of original intervocalic s pervades all Greek dialects-the apparent exceptions come under the heading of analogical change; with a very few exceptions similarly explicable Latin intervocalic s has become r. But Latio was originally limited to a very smald part even of Italy, and the next neighbours of the Latins on the east and south-the Sabines, Campanians and Samnites-retained this intervocalic s without changing it into r. On the other hand, the neighbours to the north-east-the Umhrians in and beyond the Apenninesshared in this rhotacism. Yet the Celts, who bordered on the Umbrians along the Po, and who spoke a language in many respects very closely akin to the dialects of Italy, in this regard agree rather with Greek than the Italic languages. In Latin, again, the period of action of the law which changed intervocalic s intor did not in all probability exceed the century from ${ }_{4} 50$ a.c. to 350 s.c. So unlike, indeed, are phonetic laws to the laws of matural science in universality that an opponent of the dogma which deciares that phonctic laws have no exceptions has compared them with the laws of fashion. The comparison is not so outmageous as it may seem at first sight. For in language there are two kinds of sound change, that which is unconscious, universal at a given time and within a given area, and, on the other hand, that which belongs only to a particular class or clique, deviates consciously from the pronunciation of the majority, in therefore not universal, and exercises $n 0$ permanent influence on the language. The second kind of sound change corresponds exactly to the laws of fashion; it is in fact one of them. Such sound changes are the pronunciation of the English ending -ing as -in', which was fashionable in the middle of the ugth century. This had, though probably without the knowledgeof those who used it, an historical justification in the earlier forms from which most of the Engiish words now ending in -ing are descended, and which survive in numerous local dialects. A sineilar conventional mispronunciation was the lisp affected hy some would-be artistic persons at a somewhat later period. Belonging to an entirely different social stratumi, and now equally obsolete, was the London pronunciation of the first half of the 19 th century typified in Tony and Sam Weller's treatment of \bar{y} and w in the Pickwick Papers. This, however, made a much nearer approach to being a genuine dialect peculiarity. It undoubtedly pervaded the pronumciation of the lower classes in London at one time; had it survived it might conceivably have spread over a wider and vider area until it embraced the whole population of England. A later change, that of the diphthong as into ei (so that day, deify are pronounced $d y, d y l y$), has spread from Essex and the East End of London over a large part of London and of the adjacent counties, and is still widening its range both geographically and socially. The history of these sound changes has not yet been invertigated in detail with the thoroughness which it deserves.

There is, then, a part of sound change which is a matter of fashion and which is conscious. This sound change appears frequently in the pronunciation of individuals who have migrated from one part of a country to anotber. In many parts of Scotland, for example, the prepositions with and of appear in dialect only in the forms soi' and o^{\prime}, which were originally the unsccemed forms. In the conscious attempts to pronounce them as they eqpear in literary English, the educated Scotarnan,
it he remains in his native place, as a rule pronounces them at wifh (with the final sound unvoicod as it appean in the Scottish legal preposition outwilh) and as of, the fisal sound here also being unvoiced. If he migrates to England or to Australia be will probably in course of time adopt the pronunciation with a voiced final sound. In the course of years habit will become second nature, and in this reapect the speaker's pronuraciation will become identical with that of his neighbotma, It is clear, however, that changes of this nature cannot take place on a large scale. It a large number of persons migrate in a body and continue to live in close intercourse with ene another and hut little in contact with the outside morld, changes such as take place in the pronumciation of the individual emigrant do not occur. There can be poimitation of allen sounds, for there are none; $\mathbf{m 0}$ greater effort to he intelligible is required, for the audience has not changed. Heace it has been oftes remarived that a population which history shows to have remained undisturbed for very long periods in the same geographical atuation manifents but little change in its language. Thus in Arabia and Lithumia the population has remained practically unmixed in the atare habitat for thousands of years, with the result that the languages spoken there remain at the present day the most archaic members of the linguistic families to which they respectively belong.

From what has been said it will be ohvious that a phonetic law is only an observed uniformity in the trentment of a mound or a combination of sounds within a linguistic ares at a given time. In the definition the term Hinguistic arce is a very viriable quantity. Thus it is a phonetic law that a sound of the original Indo-European language, the precise pronumciation of which cannot be determined, but which was at eny rate e palatal mound (k), appears in the Indo-European group (Sensikrit, Zend, Old Persian, with their descendants), in Armenian, in Balto-Slavonic and Albanian, in the form of a sibilant, while in Greek, the Italic dialects, Germanic and Celtic, it appenes as a b-soumd (ane Indo-Europzan Languages). Here the linguistic area is extremely wide, and it is ciear that the difference between the two groups of languages must be dated back to a very early period. Agnin, it is a phonetic law of Greek that the original combination st at the beginning of words is retained in Greek. How then are we to explain the existence side by tide of orivos and revos? The former apparently complies with the law, the latter does not. The former has by its side the verb erify, while rifos is supported only hy the rare rivp- Yet the forms of the verb and sabstantive found in the Germanic languages leave no douht that the forms without s - represent an extremely old form, for the English thatah could not have changed its original t into $t h$ - if it had been preceded by so, the law being as strict for English as for Greek that initial of remains unchanged. On the other hand, a phonetic law may be limited to a very small aren. Thus in the dialect of Eretris, and nowhere clse within the area of the Ionic dialect of ancient Greek, do we find the change of the sound which appears elsewhere in Greek an - σ beiween vowels into -p-: ofinpup for olrpow (ace, sine.), тараßainopev for тараßaloway (3rd pl. subjunctive). Why this change should take place here and nowhere clae we do not know, although it may be conjectured that the cause was a mixture with immigrants speaking a difierent dialect, a mirture which ancient tradition supported. Undouhtedly auch mixtures are the chief conditions of phoinetic change, the effect of which is universal. The manner in which the change.takes place is that the basis of articulation, the method in which the sound is produced, becomes changed. Thus along the "Highland line" in Scotland, where the English and Gaclic-speaking popolations had their linguistic frontier for centuries, the wh- of English, the Angio-Saxon kso-, becomes universally f, whe f becoming fa $?$ while, file, \&cc. f being the sound which it was mont easy to substitute for the difficult hew. The history of Spanish in the different communities of South America excellently illastrates this point. After the discovery of America there was a large implas of Spaniards into Chile, who ultimately, and chiefly by intermanringe, incorporated amongst them a considerable clement from amongst the native Araucanian Indiana. The roselt has been
chat the lirguange of Chile is Spanish, pronounsod not with the genuine soumds of Spanish, but with the sounds of the Araucanian language substituted for therm. Ebsewliere in Spanish America the language of the conquerors remained comparatively pure, because the Spaniards were much fower in number, and had therefore to maintain thembelves as a caste appart. For the same reason Latin has aplit up into the numerous branches which wo know as the Romancal langunges. The particular line of development which, ag. Frexch fodlowed as compared with Spanieh or with the haugugge of the Rhectian Alps was condttivned by the nature of the sounds in the langrage which preceded it in the same area, and which was spoken by the ancient Gauls who adopted Latin. The difficulty found in all of these cuses is precisely of the same kind as that which an adult at the present day speaking one hanguage fands in attempting to learri the promunciation of another language. On the one hand, it is only with the greatest difficulty that munscies for many years accustomed to perform one set of movements can be forced into performing another set which are very similar but yet not identical; on the other hand, to an untraided ear the diffarence between the two sounds may remain unappreciated. The result is that the new language is pronnunced with the nounds of the speaker's original langunge. If the new language is adopted by a whole people to whom it was originaliy foreign, the children naturally leam it from their parents with the sounds of the odd language which has now become obeolete. Thus the basis of axticulation is changed, and if, as was the cate with Latin, this process be frequently repeated among peoples speaking lengunges with articulation widely differing one from another, it is clear that a series of different diabectis of the adopted language has been created. This kind of change is immediate and universal throughout the whole aren where linguistic change has taken place.
Analogical change, on the other hand, does not affect the pronunciaticn of a langurge as a whole in the way that phonetic change does. but is confuned to the formation, inflexion, syntex and meaning of single words or groups of words, and therefore is very apt to bear an antirely arbitrary and irregular character. A lew instances will be sufficient to illustrate this and also to show how the apparently irregulur phenomena of analogy may be closesified. (a) In Oid Engiach a certain number of subatandives lormed their plurals by mutation of the root vowels, as fob, fus or $b \delta e$, bec. In Modern English this system of inflexion has been preserved in some cases, as in foos, fect, and altored in others, as book, books. Now, while fool, foed and book are the regulax modern phonetic equivalents of the old ffot, fet, b $\delta \varepsilon$, the plural books can in no way be phonetically traced back to the old $b \bar{z} c$, the phonetical equivalent of which in Modern English would be -bsecth. The only possible explanation of a form tike books is that the older bec was at some date given up and replaced by an entirely new 'orination', shapend after the nnalogy of the numerous words with 2 plaral in $-s$ without modification of the root-vowel. Such changes, which are very numerous, exemplify the first kind of analogy, Thich is generaly termed formal analogy. Other examples an the almost entire dishppearance from the language of the forms in er and an, which were eariber wed as plurals in Engtish. That they wert originally stem and not case suffixes does not affect the point. In Middee Engliah, as in Modern English, oxen whes spett an aplurai; oxen survives, but eyan, except In such dialect forms as the Scotch e'cu, has been replated by the form in ed: eyes. Similarly in Middle English the suffix -er existed in many words which had been originally of the neuter gender. Thws the plural of child was childer, of calf wis calver, traces of wit ch, besides the survival in dialect of chisder and of caloer (become by the atoth century in zorthern Scotch carpronounced as cakr-which is still in common use), are to be found In the place, and benee pernonal, names Childer-ley and Calver-ley. The old plural of brather was brelher, where the suffix, bowever; contathed an original - , not -s changed into $-r$, as did childer and catore. In Old English, alongside the form for child maling a plural childer, there had been a masculine form making its phirtil in s. It would hot heve boen surprising theroxxI 8
foce if in Modern English the plutal of ckild had been childs. But in spite of the common tendency to make the plural of all nounstems in -s, child has gone in the opposite direction and has not only maintained its $-r$, but has added to it the -en of stems like oxen and aycm. In Wiclif we find a similar plural to calf, caloeren, but here calkes has long replaced in the literary language both the earlier forms.
(b) Let us now take another instance from the English verb. In Oid English the different persons of the preterite indicative in the so-called strong (irregular) verbs were generally distinguished by different root-vowels; ridan, "to ride," and bindam, "to hind," for instance, form their preterities tbus; ic rad, bit
 g^{d}, hiz busdon. In modern English this difference in the rootvowels has boen abandoped, and rode, bound now atand for all persons, rade being the modern phonetic equivatent of the rat and 3nd sing. rad, white bownd representa the u - form of bindan. When one form or set of forms ousts other varying forms from the same paradigan, the change is described variously as macterial or logical analogy. Inasmuch as a similar procoss of levelling to that seen in rode has becin carried through in all preterites of Modern English, regularity prevails even here, though a few traces of the old conflict are still visible in such poetic forms as sung for the preterite side by side with sang. But when we look to its results in the individual verbs we soon find that the choice amongst the different forms which might beve served as starting-points has been entirely arbitrary. It is indeed impossible to say why the old singular form ahould have been chosen as a model in one case, as in rode, and the old plural form in another, as in bownd. From these and numerous similar instances we must draw the conclusion that it is beyond our power to ascertain whence analogical changes start, and to what extent they may be carried through when ance begun. All we can do is to classify carefully the single cases that come under our obscrvation, and in this way to investigate where such changes are espocially apt to take place and what is their general direction. As to the latter points, it has been observed before that levelling of existing differences is one of the chief leatures in analogical change (as in the case of rode and bound). As to the former, it must be borne in mind that, belone any analogical change can take place, some mental connexion must exist between the words or forms serving as models and those which are remodelled after the types suggested to the minds of the speakers through the former. Of such natural mental combinations two classes deserve special notice: the mutual relationship in which the differeat, say inflexional, forms of the same word stand to each other, and the more abstract analogies between the infexional system of word-groups bearing a similar character, as, for instance, the different declensions of nouns and pronouns, or tbe different conjugations of verbs. The instance of rodes bound may serve to illustrate the former category, that of books the latter. In the first case a levelling has taken place between the different forms of the root-vowels once exhibited in the different preterite forms of rddan or bindas, which clearly constitute a netural group or mental unity in consequence of their meaning. The form of rode as a plural has simply been taken from the old singular ydd, the lang a of which has become in Modern English δ, that of bound as a singular from the old plural buidon, the y-sound of which has in Modern English come to be propeunced as a diphthong. In the case of book, books for $b d c, b e c$, this explanation would fall shott. Although we might say that the vowel of the singular here was carried into the plural, yet this would not explain the plural -s. So it becomes evident that the old declension of $b b c, b \notin$ was remodelled after the deciension of words like arm, arms, which had always formed their plurals in - . The changes indicated may generally be shown by a proportion, the new analogical formation being the unknown quantity to be ascertained. Thus in the case cited above, arm: arms mbook: x; and clearly the form to be ascertalned is books. Inolated words or forms which are no part of matural groups or systems, inffexional, formative or syntactical must be regarded as commonly safe from alterations
through analogy, and are therefore of especial value with regard to establishing rules of purely phonetic development.
(c) In syntactical analogy the mental connexion between the two series of constructions between whicb the change takes place is generally still more conspicuous. The connexion may he one of similar or of contrasted meaning. In Latin, adjectives of fullness, like other adjectives, no doubt originally were followed by the genitive case; participles, on the other hand, were followed by the instrumental ablative. Thus Plautus in the Auluiaria 813 and elsewhere could say aulom asti plenam, "a pot full of goid," or 802 aulam onsulam awao, "a pot laden with gold." From these the tranaition was easy to the constraction oudam onustam awri, as if in English one should say (as was possible in Earlier English), "a pot laden of gold." In English, contrasted words often tead to assimplate their syntactical constructions. Thus, the adjectives like and similar are followed hy the preposition to (though in Modern English like need have no preposition), and upon the analogy of such words, different and aserse, with which correct speakers and writers couple from, are by so means rarely followed by 10 . Nor is it uncommon to hear or to see differ swith instead of differ from, upon the analogy of agree wilk. Curiously enough, Latin, from which differ is descended, is found to follow the same analogy even in good writers. Thus Cicero (Academica Pr. ij. 143) combines dissidere with cwim, as later does Seneca ($\overline{\mathrm{E}}$ pistulae, 18. 1).
(d) In the development of analogy in meaning, similarity of sound is often the effective cause. Thus impertisent is properly imelevant, sol to the point, and is still so used in legal language; its more common signification of "saucy" srises from its accidental resemblance in sound to pert, a word which curiously enough has reversed its meaning, being now used in the sense of mal-apert, while the Old French apert, aspert (a confusion of Lat. epertus, " open," with expertus, "skilied "), meant both "open" and "skiliful." Thus from very early times the verbs fy and fee have been confused, though they are of entirely different origins. When Middle English began to lose its verb endings in en, it was very easy for the verb leren, "teach," and Lersen, " learn," to be confused. Hence frequently in Elizabethan English learn stands side by side with leache in the same gignification. Cr. Tottell's Miscellany, p. 129 (Arber):
${ }^{6}$ I would not have it thought bereby The dolphin swimme 1 meane to teuche: Nor yet to learn the Fawron flie: I rowe not so farre past my reache."
It is true that the distinction between phonetic and analogical change has elways been acknowledged in comparative philology. At the same time it cannot be denied that analogical changes were for a long time treated with a certain disdain and contempt, es deviations from the only course of development then allowed to he truly "organic" and natural, namely, that of gredual phonetic change (bence the epithet "false" so consiantly attached to analogy in former times). Amongat those who have recently contributed most towards a more correct evaluation of amalogy as a motive power in language, Professor Whitney must be mentioned in the first place. In Germany Professor Scherer (Zur Gaschichta der deulschen Spracke, 1868) was the first to apply anaioty as a principle of explanation on a larger scale, but in a vilful and unsystematic way. Hence he failed to produce an immediate and lasting impression, and the merit of having introduced into the practice of modern comparative philology a strictly systematic consideration of both phonetic and analogis changes as co-ordinate factors in the development of language rests with Professor Leskien of Lejpzis, and

The Now

School
a number of younger scholars who had more or less scuon Brugmann, Osthoff and Paul rank foremost as tbe most vigorous and successful defenders of the new method, the correctness of which has since been practically acknowledged by most of the leading philologists of all shades of opinion.

While the syntax of individual languages was one of the first features which attracted the grammarians' attention, at any mine in $\mathbf{s o}$ far as particular authors differed from a given
standard, it in only in very recent times that syntax has received methodical treatment from the comparative point of view. It may indeed be said that almost the whole fabric of the comparative syntax of the

Mhrorical Indo-European linguages as it exists to-day has
been reared by one man-Professor Berthold Delbrick of Jena. In a series of brilliant studies beginaing with a pamphlet on the Locative, Ablative, and Instrumental, published in 1867, and continued in his Syntoctical Resedrches (Syntaklische Forschmagen) in five volumes, comprising a treatment of the conjunctive and optative moods in Sanskrit and Greck (2871), the theory of the Sanskrit tenses ($\mathbf{2 8 7 7}$), the order of words in early Sanskrit prose (Catapathe Brahmena; 1878), the foundations of Greek syntax ($\mathbf{1 8 7 9 \text {), and the syntax of the oldert San- }}$ 3krit (Altindische Syndax), dealing exclusively with the literature of the Vedas and Brahmanias (1888), Professor Delbrtick laid the foundations for his treatment of comparative syntax in three volumes ($1893,1897,1900$), which has formed the completion of Brugmann's Grusdriss der vergleichenden Gramsmatik der indogermamischen Sprachen. The only work by another hand (on a large department of the subject) which deserves to be mentioned by the side of Delbrick's studies is the small treatise by Hübschmann on the theory of the cases ($Z_{w r}$ Casuslehre, 1875). For the comparative neglect of this field of investigation there are several reasonsThe earlier philologists had so much to do in deternoining the languages which should be included within the Iado-Europear group, and in organizing the field of rescarch as a whole, that it is not to be wondered at if they were unable to devote much attention to syntax. In the 'seventies, when attention began to be more directed towards comparative syntax, the remarkable discoveries made by Verner with regand to accentuation, and by Brugmann, Collitz and others with regard to the phonology of the Indo-European languages, again distracted attention from the subject. Moreover, the research in itself is infinitely more difficult than that into sounds and forms; for the latter may be carried on by the help of grammars and dictionaries with a comparatively small knowiedge of the literature of any individual language, while on the other hand the study of syntax is impossible without a thorough and intimate knowledge of the literature and modes of expression in each separate language. It is not, therefore, matter for wonder that Delbrick has confined himself in the investigation of syntax to a part only of the languages whose soonds and forms are discussed by Brugmann in the earlier volumes of the Grundriss. To cover the whole ground is beyond the powers of a single man, and there is a great lack of preliminary studies on the syntax of many of the languages.
One of the most difficult problems connected with syntax, but primarily, as it appears, a question of morphology, is the origin of grammatical gender. It cannot be said to be an advantage to the languages which possess it, while languages whirh, like English, have dropped it except for an occasional metaphor, suffer no loss. Nor is the problem confined to the history of gender in the substantive. Even more perplexing is the introduction of gender into the adjective. The pronouns of the first and second persons, which are certainly very old, show no trace of gender; the pronouns of the third person, which are more of the nature of deictic adjectives, generally poseess it. To the question how grammatical gender arose in the subatantive, the answer was till comparatively reconcly supposed to be that primitive man was given greatly to personification, endowing inanimate things with life and attributing to thent influences benign or the reverse apon his own existerice. The answer is not quite sufficient, for though this tendency to personification, which philologists have perhaps unduly dectied or altogether denied, might account for bife being attributed to inemimate objects, it hardly expliins why some should be treated as masculine and others as feminine. Nor is it true, as has also been suggested, that in the case of the lower animals the generic mame for the larger and stronger animals is masculine and that for the amaller or weaker feminime. In both Greek and Iatin tho wolf
is masculine and the fox feminine, but tho lamb or the chicken which the fox robs from the fold or the henxoost is rarely feminine, generally masculine. Nor does this explanation account for the mouse in those languages being of the masculine gender, while the ferret or cat which caught them is feminine (roiff, foles). An explanation which completes the theory of personification, if it does not altogether drive it from the field, has been pat forward by Brugmann.' In its briefest form this explanation is that gender was attached to certain suffixes because they chanced to occur frequently in words which markedly implied sex. In the Indo-European languages the commonest suffix indicating feminine gender is a. According to this theory it had originally nothing to do with gender, but as some early words for woman or wife ended with this sound it came to be identified with feminine gender. Similarly the ending os in o-stems occurred often in mames connected with males and so became identified with the masculine gender. But many stems indicate either gender indifferently, and even the very old sex words facher and molher have the same ending. But when masculine and feminine endings have been attached to certain suffixes in this way, how comes it that in one series of stems tbe neuter should be marked not by an absence of all suffix but by a separate suffix in $-m$? These are the 0 -stems, other forms of which have been markedly identified with the masculine gender. As this characteristic, like the others mentioned, goes back apparently to a time before the separation of the Indo-European languages, explanation can hardly pass beyond speculation. It is, however, to be noted that the neuter form of the nominative is phonetically identical with the accusative form of the masculine, and it has been ingeniously argued ${ }^{2}$ that such forms were used originally in the accusative, such neuters not forming the subject to a verb. To the same writer the most plausible cxplanation of the presence of gender in the adjective is due, viz. that gender began with the deictic pronoun "so "that man," *sa "that woman," and that bence it paissed to the adjective with which the pronoun was so frequently scoompenied. If this explanation be right, analogy has brought into the Indo-European languages the useless multiplication of gender marks in such sentences as the Latin hoe pulcree fomince coesce swnf, where the feminine gender is indicated no less than four times without any obvious gain over the Enghish There fair momen zase slain, wbere grammatical gender is no longer obviously indicated at all.

Closely related to this question is that of the history of the neuter plural, which was first fully worked out by Professor Johannes Schmidt of Berlin.: The curious construction, most common in ancient Greek, whereby a neuter plural is combined with a singular verb, is now demonstrsted to be an arcbaic survival from the time when tbe neuter plural was a collective singular. Thus a word like the Latin imgum was a single yoke, the plural ingo, however, which was earlier iuga, was a collection of yokes, with the same final d as is found generally in feminine substantives. The declension ought tberefore to have been originally: nominative iuga, genitive iugds, \&c., like menss, \&c., of the first declension. But as iugumm was used in the neuter singular for both nominative and accusative, iwgd when it was felt as the corresponding plural was used for the accusative as well as the nominative, while the other cases of tbe plural were taken over from the masculine o-stems, with which the singular neuter in -0 -w was so ciosely connected. That collective words should be used for the plural is not surprising; the English youth, first an abstract, next a collective, and finally an individual, is a case in point.

For the early history of the syntax of the verb Greek and Sanskrit are important above all other languages, because in them the original forms and the original usages are better preserved than they are elsewhere. And it is in the verb that the great difficulies of comparative syndax present themselves. The moun system is so well preserved in several languages that, when

[^33]the number of the original cases had once been determined, the sifting of the pro-ethnic usages attaching to each case was tolerably easy, for besides Sanskrit and (to a less crtent) Latin, Lithuanian and Slavonic have kept the proethnic case system almost complete. The ideas also which had to be expressed by the cases were on the whole of a very concrete character, so that here the problem was much simplified. On the other hand, the ideas expressed by the forms of the verb are of a much more sabtle nature, while the verb system in all languages except Greek and Sanskrit has broken down earlier and more completely than the noun. It is clear that the verb of the original IndoEuropean language possessed two voices, and forms corresponding to what we call the Indicative, Subjunctive, and Optative moods, and to the Present, Imperfect, Future, Aorist, and Perfect tenses. The imperative mood seems primitively to have been confined to the second person singular, Just as the vocative, which, like the imperative is a stem form without suffix, was confined to the singular. The infinitive, as is well known, is in all languages of this system not originally a verbal but a substantival form. The pluperfect, where it has developed, seems to be a mired form arising from the npplication of aorist endings to a perfect stem. Thus far the history of the verb system is tolerably clear. But when we attempt to define the original meaning of the moods and of the tenses we pass into a region where, in spite of assiduous investigation in many quarters during recent yeurs, the acanty amount of light throm on the problem thas only served to make the darkness visible. As regards the tenses, at least, it has been shown that withoul doubt there is no diference in formation between present, future and aorist stems, while the eandiest meaning of the perfect was that of a special kind of present expressing either repeated or intensive action or a state. It has also been proved that the original meaning of the aorist is not past in time, and that in fact the only clement whereby these languages could express remoteacss in time was the augment. The augment seems to bave been originally a pronominal deictic particie. Thus, as there was ne original pluperfect, as neither perfect nor aonist originally referred to past time, and as the fature, except in Lithmanian (with slight traces in Slavonic) and the Indo-Iranian group, cannot be clearly distinguished from the aorist, tbe system as a method of expressing time absolutely breaks down. The tenses in fact did not originally express the times when the action took place, but the type of action which took place. Thus the present system in the miain expressed continued or durative action, the aorist only the fact that the action had taken place. The action indicated by the aorist might have been of considerable durntion, or it might have been begun and ended in a moment; its characteristics in this respect are not in any way indicated by the aorist form, which intimates only that the action is viewed as a completed whole and not as a continuous procesa. The present system, however, is buitt up in a greal varicty of ways (thirty-two according to Brugmann's enumeration). It is a priori unlikely that such a multiplicity of formations bad not originally some reason for its existence, and Deibrick thinks that he bas discovered a differcmee in syntactical value bet ween various forms. The reduplicaled present forms of the type seen in Sanskrit jigali, Greek stfoume, \&c., be regards as expressing originally an action which consisted of repeated acts of the same nature (iterative), though this iterative meaning frequently passed into an intensive meaning. Presents of the type seen in Sanskrit or yyaf, "is thirsty," and Greek xaipo, " am glad" (for * x appus), where the $\&(y)$ of the suffix bas modified the first syllable and disappeared, he regards as cursive-i.e. they express continuous action without reference to its beginning or end. Verbs which have regard to the beginning or end of the action he calls terminative, and finds them represented (a) in verbs with $-n$ - suffixes, Sanskrit mofi, bpvorn, "sets in motion," ${ }^{\text {dinvop, " break to pieces "; (b) in werbs with the suffix -sko-, }}$ Sanskrit gechati, "goes" (to a definite destination), Greel Bhom, \& \& C. The roots he classifies as momentary (punktucll) or non-momentary, according as they do or do not express an action which is begun and ended at once.

This method of classification was no doubt suggested in the first instance by the characteristics of the Slavonic verb system. In this system a clear distinction is drawn in nearly all verbs between those which express a process (durative verbs) and those which express a completed action (perfective verbs). When perfective and durative verbs are formed from the same root, the perfective are distinguished from the durative forms (a) by having a preposition prefixed, or (b) by having a different stem formation. Thus in the Old Bulgarian (Old Ecclesiastical Stavonic) to strike (hit) and to strike dead are expressed by the same verb, but in the latter meaning a preposition is found which does not appear in the former, bili (infinitive), "to strike"; $\boldsymbol{\omega}$-bili, "to strike dead." To strike is durative; to strike dead is perfective. As an example of difference of stem formation expressing this difference of meaning, we may quote sdsti, "to sit down" (perfective), stdeti; " to sit" (durative). Verbs with a suffix in $-n$ - have often a perfective meaning: cf. the Sanskrit and Greek verbs quoted above. The perfective verbs correspond in meaning to the Greek aorist, and are to be carefully distinguished from perfect forms. The same distinction of meaning is often achieved in other languages also by means of prepositions, e.s. in Latin (Seneca, Epp. xciii. 10), Quid autem ad rem pertinet, quamdiu vites, quod evitace ron possis" "What does it matter how long you go on avoiding [durative] what you cannot escape fperfective]." From this example, however, it is clear that, though the means employed to make the distinction are different, there is no difference in meaning between such perfective verbs and those classified by Delbrick as terminative. Here, as in many other parts of this study, the ideas are new, and grammatical terminology has not yet sufficiently crystallized, and still leaves zomething to be desired both in clearness and in precision.

As regards the moods, the difficulty has been to find any criterion whereby the functions of one mood should be differentiated from those of the others. It has long been recognized that the difference between indicative and subjunctive is one of meaniag' and not one of formation; that, e.g., ih Sanskrit bharati (3rd sing. pres. indic.), "bears," is morphologically identical with homati, "may slay" (3rd sing. pres. subj.), and that the latter is described as a aubjunctive only because of the meaning, and because there exists a dissyllabic form, hanti, which makes the indicative "slays." Similarly in Greek it is impossible to distinguish morphologically between mabow, "I shall check" (fut. indic.) and rahow, "let me check" (rst aor. subj.). Moreover, in the earliest forms of the languages which preserve the moods best (Greek and Sanskrit), the connexion syntactically between the indicative and the subjunctive forms is closest. Not only does the future express futurity, but also the determination of the subject to carry out the action expressed, which, in Delbrack's discuesion of the moods, is precisely the point chosen as characteristic of the subjunctive. On the other hand, the present optative differs from the present (and future) indicative and present subjunctive in having a special mood suffix, and in having secondary while they have primary personal endings. Nevertheless its meaning orerlaps that of the other forms, and some excellent authorities, like Professor W. W. Goodwin, see in future indicative, subjunctive and oplative only different degrees of remoteness in the future, the remoteness being least in the future and greatest in the optative. Delbrick, however, abides, with slight modifications, by the distinction which he propounded in 1871 that the subjunctive expresses Will and the optative Wish. Here again the problem has not been solved, and it is doubtful how far any definite solution is likely to be arrived at, since there are so many gaps in our knowledge of mood forms. These gaps, owing to the break-up of the syatem at so early a period, it is hardly probable we shall ever be able to fill. It is possible, however, to do a great deal more than has yet been done even in the most familiar languages. In Latin, for instance, even now, the facts for the uses of the moods within the two centuries of the classical period are very imperfectly known, and it is no exaggeration to say that more has been done in the last hundred years for Sanskrit than has been done in two thousand years of continuous study forLatin or Greek.

A still later addition to the domain of Philology-the seudy of meaning-presents fewor difficulties, but until recent years has been equally neglected. The study is so recent that the literature of the subject is still extremely small. The only attempts to deal with it on a largo scale are M. Breal's Essai de Stmandique (1897), now translated into English under the title of Semantics (1900), with a valuable introduction and appendix by Dr Postgate, and M. de la Grasserie's Esani d'ume Sánantique integrale (x 908), a work which deserves mention for its attempt to make a thorough classification and a corresponding terminology for semantic phenomena, but the value of thich is much diminished by hasty compilation and imperfect knowledge of many of the languages quoted. From the practical point of view many of the phenomena have been classified in works on shetoric under the headings of Metaphor, Synecdoche and Metonymy. The psychological principle behind this superficial claesificition is that of association of ideas. Here, as elsewhere, changes proceed not by accident, but according to definite principles. Here, as elsewhere in language, in history, and the other moral sciences, the particular principle in operation can be ascertained only by beginning with the result and working back to the cause. In the development of meaning much more than in phonetics is this necessarily the case. In phonetics all speakers of the same dialect start with approximately the same sound. But the same combination of sounds which we call a word does not recall the same idea to all persons who use that word. The idea that the phrase railuay statios calls up in the mind of a Londoner is very different from that which occurs to the mind of a child acquainted only with a wayalde station serving the wants of a country village of a few hundred inhabitants. The word herrivs suggests one idea or train of ideas to the fisherman who catches the fish, another to the merchant who purchases it from the fisberman, a third to the domestic who cooks it, and so on. To members of the same family the same word may often have widely different associations, and, if so, the metaphors for which the word will be employed will differ in each case.
For the history of meaning it is neceseary to have regard to all the forms of ateociation of ideas which psychology recognizes. These are contiguity in place or in time, resemblance and contrast. Contrast, however, as J. S. Mill and Bain have shown, is not a simple form of association, but is evolved partly from contiguity, partiy from resemblance. An artificial hollow generally implics also an artificial height made of tho materials excavated from the hollow. Hence in most languages some words occur with the two contrasted meanings. Thus in English we find dyise in use both for a ditch and for a mound fronted by a ditch, the word ditch being, in fact, but a dialectal form of dyke. In Scotland, on the other hand, where earthen mounds'and stone walls form more frequent boundaries between fields than in England, the word dyke is now practically limited to elevated boundaries, while ditch is limited to excavated boundaries. Tbus the proverb, "February fill dyke", which in England implies that the February rains will fll the ditches, is often understood in Scothand to mean that in February the spow will be level with the tops of the stone or turf walls. Similarly in Latin Tacitus can eay fossos prorucre, which can only apply to levelling raised mounds; while in Greek Xenophon also talks
 is only matural, therefore, that other words with scveral meanings should be used similarly: moat, originally a mound of earth or peat, has come to mean a big ditch; while, conversely, solditirs in trenches are not so much in ditches, as the word ought to signify, as behind breastworks. Sometimes, when two actions opposed to one another are contiguous, a word seems to change to the exact opposite of its original meaning. Thus the English verb wean, which meant originally to accustom (to cooked food). has been transferred to the necessary preliminary, to disaccustom to the breast.

Resemblances may be (i.) genuine, and (a) of external appearance, or (b) of other characteristics; or (ii.) fanciful or analogical. From resemblance in the external appearance of the object. the word gem , which in Latin (gcmma) usually means a bod, has
come to mean first a pearl and then by entension of the meaning any precious stone. From the concentric coats which appeas in both, the Latin word for a pearl (mion, acc. wioncm) appears in English as onien. Examples where the characteristics are not of external appearance are such as the Cerman haiser and the Russian Lvar, which are descended from Julius Cacsax, while the Lithuapian word for king-karoling-is Cerolus, ise. Chartomagne. So in modern Persian, Xusrep, "Lond," comes from the Zend proper name Husravah (Chosroes). As already pointed out, the resemblances which have establishod a connexion between pert and imperliment (properly irrelevant) are in sound only. The same is true of the supposed retation of the verb cut to cellass, culler and cuiled. While train oil really meana oil in drops like tears (cl. German Thrane), most people conpect it with railway trains. The resemblance in eome casts is merely in function. Thus, though the fir and the oak have no resemblance one to the other, the word fir is now generally identified with the latin quercus in etymalogy (cf. fows, and qualkor), in the same way as the Latin fagus, "beech," is with the Greek \$rybs, " oak," the users of the word having, in the course of their. migrations, passed from a land with oaks to a land with firs in the one care, and from a land of beeches to at lend of oatea in tha otber. Resemblance as the basis of metaphor has a very widely extended influence on language.

The most numerous and most varied forms of change in meaning depend, however, upon the law of contiguity. Perhapa the commonest of all forms of contiguity is that where the word indicating some accompenying feature or condition replacea the word for the object referred to. In the countriet that border the Mediterranean the heat of midday is accompenied and inteasifind by the dying away of the wind, a characteriatic remarked upon by Aeschylus (Agom 565): "What time upon his noonday couch, windless and waveless sank the sea to rest." From the Greek word waipa, "hurning heat," arises through Late Latin the English calm, where the absence of wind in the only idea present, that of heat having altogether disappeared. Again, in bugle, which is abbreviated for buglehorm, the word which survives properly means wild ox, and the originally more important element is lost. In a combination like silper. bugie the word has gone a stage further; the original meaning of hom has also disappeared. There is no longer any thought of an animal's horn; the only idea that survives is that of a musical instrument. From the cope or cloak (capella) of St Martin, which was preserved as a sacred relic hy the Frankish kinge, comes the word chapel. The word was first transfarred from the cloak to the holy place wherein, it was kept, and thence to similar shrines, and ultimately to any place, not being a clurch, where prayers were said. A jig was originally not the dance, but the fiddle which supplied the music for the dance. The mames of liquars are oftern replacod by some accompaniment as of the place, fort, sherry, chanmagne, or by a qualifying adjective as in brandy, properly "burnt," from the Dutch brandowijn; or, again, only the less important element of the word is retained as in whisky, literally "water," for the older wsquebaugh, a corruption of Gaclic words meaning the "water of bifo" (aqua silas). Replacemant of substantives by their accompenying adjectives is common in most languages. One of the most common methods of coining a name for a new article is to give it the name of the place of people whence it comes. Thus we have arras, lawn (from Laon), cravat (Crott), coach from Koct in Hungary, bilboes (both fetters and swords) from the iron mines of Bilboa in Spain. Equally common are the names of inventors-pinchbeck, tontine, silhouette, guillotine, derrick: In the word cash, which comes indirectly from Latin copsa, "a box," the thing contained has taken its name from the container. Similarly mortar, "cement,". derives its name from the mortar in which it was mixed, while in box the material (boxwood, Lat. burus, Greek, riftos) has usurped the place of the article made. In leper the disease (Lat. Lepra, the rough disease, from Greek, herpd woos) has been made into the name of the sufferer, who was earlier called a leprous man. As a consequence, a new substantive keprosy has to be taben from the adjective to
indicate the disease. The varions changes in meaning, which are classed together. as syneedoche, have their origin in contiguity. Thus we have the apecies for the genus; the butcher, who properly kills goats only (OId French boc), has ousted the flesher. But we have also the genus for the species; corn, as a rule, means in Eagland wheat; in Scotland oats; in America, maize. Tho individual becomes collective as in corps, navy, body (of men); the collective becomes individual when Latin racemas, "banch of grapes," passes into English "raisin." Here would come the so-called meliorative and pejorative developments in word-meaning, whereby, ag. sleavard, "the aty-ward," becomes the title of a great officer of the realm and the name of a line of kings; or, on the other aide, som (Latin solides) passes from the name of a gold coin to that of ont of proverbially insignificant value. Here, too، would come many cuphomistic uses which ara for the most part, applications of more general terms to awoid the mention of some specific. act or object which is unpleasant; as death, murder, bankruptcy, debt, \&c., while metaphorical terns for the same thinga contie under resemblance. Theae ciamples do not exhaust the forms of contiguity which appear in languige, but they are enough to show how fartreaching the effioct of this type of association of ideas is upon hanguage, and how extensive the field is. which sill calls for invertigation before the stady of meaning attains the same development :as the investigation of the other branches of the hitory of language.

Authorities (since 1885).-For methods of Linguistic Study: Paul, Principien der Sprachgeschichte (3rd ed., 1898); Von der Gabelentz, Die Sprachroissenschoft (and ed., 1go1): Strong, Logeunan \& Wheeler, The II isfory of Langugge (1891), an adaptation of the ideas of Paul's Principien, with many excellent examples; van Ginneken, Pyincipes de Linguistique psychologique (1907). For the Con. troversy regarding Phonetic Laws: Curtius, Zwr Krilik der mewesfen Sprachforschung; Brugmann, Zum heuligen Sland der Sprachwissenschaft: Schychardt, Uber die Lautgeselse: gegen die Jungeranmatiker (all in 1885); Tarbell, "Phonetic Law." in Transachions of A mericas Philological Association for 1886, pp. I sqq.; Wechssler, "Giebt es Leutgesetze ?" (r900). Sonderabzug aus Forschangen gup pomamisohen Philologie: Festgabe fur Hermann Suchier; Wundt, Dis Volkeqpaychologie (1900), vol. i.: Oertel, Lectures ons the Sludy of Lenguage (1901). lecture iv. For Analogy: Whieler, "Analogy and the Scope of its Application in Language" (1887), Cornell Universicy Studics in Clossical Philology. Fur the Clasefication of Languages: Misteli, Cbarnckeriviit der hauplsdchlicheten Typen des Sprachbames (1893). For the Phonology, Morphology and Syntax of the Indo-European Languages: Brugmann and Delbrück, Grundriss der vergleichendes Grammatik der indogermamischem Sprochem ($1886-1900$) i a new edition of the Phomology by Brugmann in 1897, of the feem-formations and inflexion of Nouns, Adjectives, Promoluns and Numerals in two parts (1906, 1909); the firet edition of the Phonology and Morphology, translated into English in four volumes by Wright, Conway and Rouse. For Discussion of Contexted Points: Bechte, Die Hauplprobleme der indo-permanischen Lawdehre (s8ga). For Syntax: Dedorick, in the works mentioned, in the text. For Semantics: besides Breal and Pontgite, mee Wundt, Die Volkerpsychologie, vol. i. pt. 2, and articles by John Grote in the Journal of Philology, vols. iv. and y A bibliography of the works which have appeared since 1890 will be found in the Anseizer
 germamischemiforschnngen redigiert, by W.Streitberg. (P.Gı.;E.SL.)

Summary or Paulologicay Articles

In addition to the genetic classification of languiges given above (on pp. 426-429), some further guidance as to the actaal headings under which the philological section is arrariged may be of service to the student.
The pivot of the whole section is the atticle Aspanaset, which traces the history of language and writing to the earlient stages, embodying the results of archaeological studies in all countries, together with the general conclusions based. thereon. In this articie (with further detaits under CaETE) will be found as:account of the controversy regarding the Cretan discoverties of Dr A. J. Evans Supplementary to this comparitive survey are the articies Paladocrayny, Insciespicicoss, Whamenc and Phonetics. The first two deal with ancient documents of all kinds: Palazocraviay with those spectmens of ancient writing. literary, economic or legal, which wore committet to codices, tablets or rolls.by the use of the stilus, the reed or the pen; Imscraptioxs with documents engraved on stome or mefal.

Werrnso deals, chiefly from the anthropological standpoint, with primitive attempts to record ideas in an intelligible form, e.s. with " knot-signs," " message-sticks," picture-writing and the like. Phonetics covers the whole subject of speech sounds and pronunciation, the organs of speech and national sound systems.

Supplementary, from another point of view, to the article Alpinastr is a complete series of articles on the letters of the English alphabet. In these articles the history of the individual letters is traced from the Phoenician through Aramaic, Greek and Roman to modern times. All these articles may he read in connexion with a comparative table in the article Alphaser (ad fin.), which shows in parallel columns the earliest equivalents of the modern English letters, i.e. Brahmi, Kharosthi, oldest Ethiopic, Sabrean, Nashki, Tema, Sindjirli, the Moabite stone, Phoenician, Greek, Latin, Cyrilic and Glagolfic. Another important comparative table of written signs is contalned in the article SLavs, showing the various Cyrillic, Glagolitic and Latin letters used by the Slav peoples.

Passing from articles dealing with the method and general subject-matter of philology, the student will find articles on the great families of languages, each with its subordinate articles on special languages and dialects.

1. Ixdo-Europeon Languages.-Of articles on language-families, the most important is that under the heading Indo-European Languages. This grest division, which is dealt with from tho comparative standpoint in the second part of the article Philology, is under its own heading treated in detail. The article begins with a sub-classification into two main groupsthe so-called (A) centum and (B) satem groups-each of which is further divided into four sections. In accordance with this classification there are separate articles on the individual ancient and modern languages and dialects.
A. (x) Greek Language (supplemented by sections under Homer, Dorlans, \&c.); (2) Latin Languace (with Osca Lingua, Iguviuy, \&ic, and articles on the Italic tribes and places, e.g. Veneti, Carre); (3)Celtic, s.y. Celt (with subsidiary articles); and (4) Teutonic, s.v. Teutonic Langunges, Scandinavian Languages, and the like.

The modern descendants of these languages are all further treated separately. Thus following Latin Language is the article Romance languages, which traces the development of the Latin tongue during its gradual differentiation into Ita lian, French, Spanish, Rumanian, \&c.; while a more detailed acoount of these will be found under Italian Languace; Frencti Languace; Spann: Language; Rumania: Language. There is also a special article Provencal Languace, dealing with the Romanic speech of southern France. The Teutonic languages are similarly dealt with in detail under English Langonge (including Anglo-Saxon); Dutch Languace; German Language. Scandinavian Languace itsell includes Icelandic, Norwegian, Swedish, Danish.
B. In the salem group of the Indo-European family the four divisions are as follows:-
(1) Indo-Iranian or Aryan. This division may be subdivided into (α) Indo-Iranian, treated mainly in the article Pressu: Langmage ond Likeroture (including Zend, Old, Middle and New Persian, and the modern dialects), and (b) Indian. The Indian languages are discussed primarily under IndoAryan languages, which describes the relations of Pisaca, Samerit, Prakrit, and gives a paradigm of the various languages of the three great divisions of India. This central article refers to the separate anticles Pranca, Sansirart and Prakist, which in turn are supplemented by a number of articles on particular languages. Of these reference may be made to Bengant; Buan; Gujarati and Rajastiani; Hindostant; Kase. mari; Marathi; Pall. The gipsy languages, which may probably be assigned to the Indo-Iranian division, are described under Gipsies.
(a) The account of Armenian will be found under Ararmian Lamguace and Literature.
(3) The Balto-Slavonic Languages. Of these the three comprised in the Baltic group, via. Lithuanian, Lettic and Old

Prussian, are deacribed under the beading Litionanans and Letrs. For the Slavonic group, the chief article is Slavs: Language, which deals with the elements common to all the Slavonic tongues, with their early history and differentiation. It contains a comparative table of alphabets. It is supplemented by an article Olo Slavonic, and by further information under the headings Russia, Bulgabla, Servia, Poland, Boarema, Croath-Slavonla, Slovaks, Slovenes, Sorbs, Kashubes, Polabs.
(4) The Albanian dialects are treated under Albania.
2. Semitic Langnoges.-At the heading of this section stands the article Sempicic Languaces, supplomented by Herrew Langoage, Aramayc languages, and linguistic sections under Phoenicta, Ethiofla, and the like.
3. Homitic Languages.-The central article in this family is Hamitic Languages, which is supplemented, so far as the Cushitic or Ethiopian group is concerned, by further information in the articles Eoypt; Ethiopia; Abyssinia; Somaliland; and, so far as the Libyan group is concerned, by the articles Beraeses and Kabyles.
4. The chief feature of the Monosyllabic family is the section Language under China, supplemented again by similar seetions in articles on other countries of south-eastern Asia, and by the article Tibeto-Burman Languages. There is also a language section under Japan which discusses the affinities between Chinese, Korean and Japanese.
5. The Ural-Allaic family is described in outline in the article Upal-Altaic, which gives the general relationships of Turkish, Finno-Ugrian, Mongol and Manchu, and of minor subdivisions such as Syryenian, Mordvinian and Votyak. Turkish is discussed in the article Tupys: Language, which denk with Osmanli proper and the Tatar-Turkish languages generally. The article Finno-Ugrian is a comparative survey dealing with the language of the Finns, Lapps, Samoyedes, Erc.; whilo Magyar is treated separately in Hungary: Language. Under Moncols there is a special section Language, discussing the three groupe of East Mongol, West Mongol (including Kalmuck) and Buriat.
6. The principal languages of southern India, e.g. Tamil, Malayalam, Kanarese, Telugu, \&ce., are dealt with generally under the heading Dravidian; while there is a separate article Tamms, contalning a section on their language; and brief notes under the headings Brarit, Telucu, Malayitam, ezc.

7 and 8. The scattered languages of the Malay-Polynesian family and other Oceanic peoples are treated principally in the article Mazays, which further information is given under the headinge Polvnesu; Sayoa; Java; Negritos, Battas, ec.
9. The Caucasian family is described chiefly in the articte Georgla: Elhnology. Further information will be found in Caucasia: Eahmology.
10. Of the remaining European languages only two meed special mention: Basque, which is treated in a apecial section under the heading Basques; and the lest Etruscan, which is treated under Etrutai and Latis Language.
II. The principal languages of southern and central Africa are treated fully under Bantu Languages. There is a brief account of the Bushman language under Busmoen, and of the Hottentot languages under Hotrentors.
12. Intermediate African Langmages.-Among the numerons languages spoken by the people of the great central bele of the African continent, the most important is the Hauss, described under that heading.
13. America. -The whole question of the languages of the North American Indians is dealt with in the article Imorass, North Anerican, which contains an ciaborate Inguistic paradigm.
Bihliographical information will be found in practically all the above headings. In addition to the most modern authorities there quoted, there will be found in the article Dicnoware a very fom Hist of older lexicographical warks.
The above summary does not purport to present dogmatically a rigid philological classification. It disregards many probiems. and is intended solely to enable the student readily to find the material of which he enay be in search.

Pilinoret (Fr. Philomels; Ger. Phitomele or Svahlgeige), a musical instrument similar to the violin, but having four steel, wire strings. The philomel has a body with incurvations similar to those of the guitar; therefore, withont corner blocks, the outHine of the apper lobe forms a wavy shoulder reminimeent of the viols hut more ornate and fanciful. The peg-bor sometimes terminates in a fancy head instead of a scroll. The philomel, never used in the orchestra, is the instrument of the dijestanti, frequently played in Germany with the bowed zither. The sccondance of the philomel is the same as for the violia; the simbre is shrill and crystal-bike. There is also an alto philomel correaponding to the viols. The bowed melodion is simitar to the philomel, and has four steel strings of the same accordance as the violin, but arranged in inverse order; instead of being beld like the violin and philomel, under the chin, it is placed on the knees of the performer, so that a hook under the fiagtrboard rests against the table.
(K. S.)

PHILON, Achenian architect of the 4 th ceptury B.c., is known as the plamer of two important worke-the portico of the great Hall of the Mysteries at Eleosis and an arsemat at Athens. Of the last we have exact knowledge from an inscription: E. A. Gardser (Acciend Alhens, p. 557) observes that it " is perhaps hnown to us more in detail than any other lost monument of antiquity." It was to hoid the rigging of the galleys; and was so contrived that all its cantente were visible from a central hall, and so liable to the inspection of the Athenian democracy. (See Artens.)
PHILOPATRIS, the title of a dialogne formerly attributed to Lucian, but now generally admitted to be sputioni. Its date and parport have long formed the subject of discuscion. The tcene is laid at Constantinople. A cortain Triephon, who has been converted to Christianity by a bald, long-nosed Galilacmn, who was carried up through the air into the thind beaven (an evident allugion to St Paul), meets a friend, Crities, who is in a state of ereat excitement. Triepbon inquires the xeason, and the invocation of Zeus by Critiss leads to a discussion on paganism and Christianily, in which all the gods proposed by Critias are rejected by Triephon, who finally suggests that Critias should swear by the Trinity. (The sub-litie, if diouondeves, refers to this " instruction " of Critias in matters relating to Christianity.) Critias goes on to relate how he had befn introduced to a gathering of pessimists, who predicted all kinds of disturbances in the empire and defeat at the hands of its enemies. In the meantime a third person appears on the scene, with the news that the imperial armies have obtained a glorious victory. The hope is expressed that Babel (Bagdad, the chief city of the caliphs) may soon be destroyed, Egypt subdued (that is, reconquered from the Arabs), and the attacks of the Scythians (Russians or Bulgarians) repulspd. The whole concludes with thanks to the unknown god of Athens that they have been permitted to be the subjects of such an cmperor and the inhabitants of auch an empire. The Philopolris was for a long time regarded as an attack upon Christianity, and assigned to the time of Julian the Apostate (emperor $\mathbf{3 6 t - 3 6 3}$). Chronological Indica. tions (e.g. the allusion to a massacre of women in Crete) led Niebuhr to ascribe it to the reign of Nicephorus Phocas (663969), and this vicw is now generally supported. There being at that time no pagans in Constantinople, the "pessimists" referred to must be Christians-cither monks, especially the intimate friends of the patriarch of Constantinople, who, ag* grieved at the measures taken by Phocas in regard to the property of the Church, were ready to welcome the defeat of the imperial arms and the ruin of the empire; or harmless visionaries, who claimed to predict the future by fasting, prayer and vigil. In any case, the author, whet her he was a sophist commissioned by Phocas to attack the monks, or some profescor who hoped to profit by singing the imperial praiscs, represents the views of the "patriotic" (as the title shows) as opposed to the "unpatriotic" party. According to another view, which assigna the dialogue to the time of Heraclius ($610-641$), the author was a Cbristian fanatic, whose object was ta make known the existence of a conventicle of belated pagans, the enemics
atike of the Christian faith and the edapire; it is doubtiul, however, whether such a pagan community, sufficiently numerous to be of importance, actually existed at that date. The object of the first and longer portion of the dialogue was to combat the humanism of the period, which threatened a revival of polytheism as a rival of Christianity.

Bibliography.-Editions by J. M. Gesner (1715) and C. B. Hase in the Bonn Cor pus scriptor um hist. byz. (1828), vol., xi., also included in Jacobiti's edition of Lucian (1839). Sce R. Crampe. Philopatris. Ein heidnisches Konventikel des siebenter Johrhunderls zin Constantinopel (1894): R. Ciarnett, "Alms for Oblivion" in Cornhill Magaxine (May, 1901): C. Stach, De Philopatride (Cracow. 1894), who shows its late origin by linguistic icsts: S. Reinach in Repwe archiologique (1902), yol. i. B. G. Niebuhr, Ueber das Alter des Dialogs Philopatris "' in his Kleine historische Sehriften (1843), vol. it. and, for further zuthoritiec, article by Von Dobschutz in Hersog. Hauck's Realemyblopddie fir protestantische Theologie (1904).

PHILOPOEMEM (253 -184 B.c.), Greek general, was born at Megalopolis, and educated by the academic philosophers Ecdemas and Demophanes or Megalophanes, who had dis. tinguished themselves as champions of freedom. Avoiding the fashionable and luxurious gymnasia, be devoted himself to military studies, bunting and border forays. In 233-2 Philopoemen skilfully evacuated Megalopolis before the attack of Cleomenes H., and distinguished himself at Sellasia (212). The next elevan years he apent as a condottiere in Crete. Elected commander of the League's oavairy on his return, he reorganized that force and defeated the Aetolians on the Elean frontier (210). Appointed to the chief command two years later, be introduced heavy armour and close formation for the infantry, and with a well-trained army beat Machanidas of Sparta, near Mantinel. The new "liberator" was now so famous that Philip. V. of Macedon attempted to poison him. In 202-1 Philopoemen drove Nabis, the Spartan tyrant, from Messene and routed him of Teges. After another long sojoura in' Crete he again received the command against Nabis. Though unsuccemsfal at sea, he almost annihilated Nabis's land force near Gythium, but was prevented by the Roman Flaminipus from taking Sparta. In 190 Philopoemen protected Sparta, which mean while had joined the League and thereupon seceded, hut panished a renewed defection so eruelly as to draw the censure of Rome upon his country. At Messene be likewise checked a revolt (189), but when that city again rebeiled, in 184, he was captured in a akirmish and promplly executed. His body was recovered by the Achaeans and buried with great solemnity.

Philopoemen's great merit lies in his having restored to his compatriots that military efficiency without which the Acbactin League for all its skilful diplomacy could never atand. Towards Rome he advocated a courteous but independent attitude. In politics he was a demecrat, and introduced reforms of a popular character (see Acrazan Lifacue).

Potybius' Histories (x.-xxiii.) are our chief authority. These and a special treatise on Philopoemen (now loot) were uned by Plutarch (Philopormen), Pausanias (viii. 49-51), Livy (xaxi-xxxviii), and indirectly by Justin (xxx-xuxiv.).

PhiLOPONUS, JOANNES (Jome the Gralocarian), Greek philosopher of Alexandria, lived in the later part of the 5 tbaxd the beginning of the 6th century of our era. The surname Grammaticus he assumed in virtue of his lectures on language and literature; that of Philoponas owing to the large number of treatises he composed. He was a pupit of Amamonius Hermiae, and is supposed to have written the life of Aristotle sometimes attributed to his master. To Philoponus are attributed a large number of works on theology and philosophy. It is said that, though he was a pupil of Ammonius, he was at first a Christian, and he has been credited with the authorship of a commentary on the Mosaic Cosmogony in eight books, dedicated to Sergius, patriarch of Constantinople, and cdited by Balthasar Corderius in 1630. Other authorities maintain that this, as well as the Disputatro de paschale, was the work of another author, John the Tritheist. It was perbaps this Philoponus who tried to save the Alexandrian library from the caliph Omar after Amu's victory in 639 .

The more certain writings of Philoponus consist of commentaries on Aristoric. These include works on the Pkysica, the Prior and the Posterior Analytics, the Meleorologica, the De anıma, the De generatione animalium, the De generatione ei inkeritu and the Melophysica. These have been frequently edited and are interesting in connexion with the adoption of Aristotelianism by the Chriatian Church, They seem to have embodied the lectures of Ammonius with additions by Philoponus, and are remarkable rather for elaborate care than for originality and insight. He wrote also an attack on Produs (De delernilcle mundi). Two treatises on mathematics are ascribed to him: A Commentary on the Mathematics of Nicomachus, edited by Hoche (1864 and 1867), and a Treatise on the Use of the Astrolabe, published by Hase. The latter is the most ancient work on this instrument, and its authenticity is rendered almost certain by its reference to Ammonius as the master of the author.

PEILOSOPKY (Gr. filios, fond of, and roфla, wisdom), a general term whose meaning and acope have varied very considerably according to the usage of different authors and different agea. It can best be explained by a survey of the steps by which philosophy differentiated itself, in the history of Greek thought, from the idea of knowledge and culture in general. These steps may be traced in the gradual specification of the term. The tradition which assigns the first employment of the Greek word фelooroфla to Pythagoras has hardly any claim to be regarded as authentic; and the somewhat self-conscious modesty to which Diogenes Latertius attributes the choice of the designation is, in all probability, a piece of etymology crystallized into narrative. It is true that, as a matter of fact, the earliest uses of the word (the verb фinooropeîy occurs in Herodotus and Thucydides) imply the idea of the pursuil of knowledge; hut the distinction between the oopbs, or wist man, and the фiddroфos, or lover of wisdom, appears first in the Platonic writings, and lends itself naturally to the so-called Socratic irony. The same thought is to be found in Xenophon, and is doubtless to be attributed to the historical Socrates. But the word soon lost this special implication. What is of neal interest to us is to trace the progress from the idea of the philosbpher as occupied with any and every department of knowledge to that which assigns him a special kind of knowledge as his province.

A specific sense of the word first meets us in Plato, who defines the phitosopher as one who apprehends the essence or reslity of things in opposition to the man who dwells in appearances and the shows of sense. The philosophers, he says, "are those who" ere ahle to grasp the eternal and immutablo"; they are "those who ret their affections on that which in each case really exists" (Rep. 480). In Plato, however, this distinction is applied chiefly tn an ethical and religious direction; and, while it defines philosophy, so lar correctly, as the endeavour to express what thingo are in their ultimate constitution, it is not yet accompanied by a sufficient differentiation of the subsidiary inquiries by which this ultimate question may be approached. Logic, ethics and physics, psychoiogy, theory of knowledge and metaphysics are all fused together by Plato in a semi-religious synthesic. It is not till we come to Aristotlo-the encyclopaedist of the ancient world-that we find a demarcation of the different philosophic disciplines corresponding, in the main, to that still current. The earliest philosophers, or "physiologers," had occupled tbernselves chiefly with what we may call cosmology; the one question which covers everything for them is that of the underlying substance of the world around them, and they essay to answer this question, so to speak, by simple inspection. In Socrates and Plato, on the other hand, the start is made from a consideration of man's moral and intellectual activity; but knowledge and action are confused with one another, as in the Socratic doctrine that virtue is knowledge. To this correspond the Platonic confusion of logic and ethics and the attempt to sabstitute a theory of concepts for a metaphysic of reality. Aristotle's methodic intellect led him to separate the different uspects of reality here confounded. He became the founder of losic, psychology, ethics and aesthetics as separate sciences; while he prefixed to all such (comparatively) special inquiries the investigation of the ultimate nature of existence as such, or of those first principles which are common to, and presupposed in, every narrower field of knowledge. For this invest igation

Aristotle's most usual name is "first philosophy " or, as a modern might say, "first principles "; but there has since been appropriated to it, apparently by accident, the title "metaphysics." "Philosophy," as a term of general application, was not, indeed restricted by Aristotle or his surcessors to the disciplines just enumerated. Aristotie himself inctudes under the title, besides matheriatics, all his physical inquiries. It was ondy in the Alexandrian period, as Zeller points out, that the speciel sciences attained to independent cultivation Nevertheless, as the mass of knowledge accumalated it naturally came about thit the name "philosophy" cessed to be applied to inquiries concerned with the particudirs as such. The details of physics, for example, were abandoned to the scientifie specialist, and philosophy restricted itself in this department to the question of the relation of the physical universe to the ultimate ground or author of things, This inquiry which was long called "rational comeology," may be said to form part of the general subject of metaphysics, or at all events a pendant to it. By the gradual sifting out of the special sciences philosophy thus came to embrace primarily the inquiries grouped as "metaphynics" ot "first philosophy." These would embrace, according to the Wolffian scheme long current in philosophical textbooks, ontology proper, or the science of being as such, with its threc-branch sciences of (rational) psychology, cosmology and (rational or natural) theology, dealing with the three chief forms of being-the soul, the world and God. Subsidiary to metaphyaics, as the central inquiry, stand the sciences of logic and ethics, to which may be added aesthetics, constituting three normative sciencessciences, that is, which do not, primarily, describe facts, but rather prescribe ends or set forth ldeals. It is evident, bowever, that if logic deals with conceptions which may be considered constitutive of knowledge as such, and if ethics deals with the harmonious realization of human life, which $\$$ the highest known form of existence, both sciences must have a great deal of weight in the setuling of the general questlon of metaphysics.
In sum, then, we may say that "philosophy" has come to be understood at least in modern times as a general term covering the various disciplines jast enumerated. It has frequently tended, however, and still tends, to be used as specially convertible with the narrower term "metaphysics." This is not unnatural, sceing that it is only so far as they bear on tbe one central question of the nature of existence that philosophy spreads its mantle over psychology, logic or ethics. The particular organic conditions of perception and the associative laws to which the mind, as a part of nature, is subjected, are facts in themselves indifferent to the philosopher; and therefore the development of psychology into an independent science, which took place during the latter half of the rgth century and may now be said to be complete, represents an entirely nataral evolution. Similarly, logic, so far as it is an art of thought or a doctrine of fallacies, and ethics, $s 0$ far as it is occupied with a natural history of impulses and moral sentiments, do nether of them belong, except by courtesy, to the philosophic province. But, although this is so, it is perhaps hardly desirable to deprive ourselves of the use of two terms instead of one. It will not be casy to infuse into so abstract and bloodless a tern as "metaphysics "the fuller life (and especially the inclusion of ethical considerations) suggested by the more conerete term "philosophy."

We shall first of all, then, attempt to differentiate philosophy from the speciad sciences, and afterwards proceed to take up one by one what have been called the philosoplnical sciences, with the view of showing how far the usual subject-matter of each is really philosophical in its bearing, and how far it belongs rether to the domain of "science" strictly so called. The order in wheh, for clearness of exposition, it will be most convenient to consider these disciplines will be psychology, epistemology or theory of knowledge, and metaphysics, then logic, aesthelics and ethics. Fintly, the connexion of the last-mentioned with politics (or, to speak more modernly, with jurisprudence and sociology), with the philosophy of history and the philosophy of religion, will call for a few words on the relation of these sciencea to general philosophy.

Phiosephy and Na/wraf Saiouce.-In diatinguishing philowophy from the sciences, it may not be amiss at the outset to guard against the possible misuaderstanding that philosophy is concerned wich a subject-matter differnat foom, and in some obecure ray teanscending, the subject-matter of the sciences. Now that paychology, or the observational and experimental study of mind, may be said to have been definitively included among the positive sciences, thert is not even the apparent ground which ance existed for such an idea. Philosophy, even under its most discredited name of metaphysics, has no ether subjoctmatter than the nature of the real world, as that world lies arovand us in everyday life, and lies open to obeervers on every side. But if this is so, it may be acked what function oan remain for philosophy when every portion of the field is already lotted out and enclosed by specialists? Philosophy claims to be the science of the whole; but, if we get the knowledge of the parts from the different sciences, what is there left for philosophy to tell us? To this it is sufficient to athswer generally that the synthesis of the parts is something moro than that detsiled knowledige of the parts in separation which is gained by the man of science. It is with the ulhimate synthesis that philosophy concerns itself; it has to show that the subject-matter which we are all dealing with in detail really is a whole, consisting of articulated members. Evidently, therefore, the relation existing between philosophy and the sciences will be to some extent, one of reciprocal infuence. The sciences may be anid to furnish philosophy with its matter, but philosophical crivicism reacts upon the matter thos furnished, and transforms it. Such transformation is inevitable, for the parts only exist and can only be fully, i.e truly, known in theis relation to the whole. A pure specialist, if such a being were possible, woubd be merely an instrument whose results had to bo co-ordinated and used by others. Now, though a pure apecialist may be an abstruction of the mind, the tendency of epecialists in any department maturally is to lome sight of the whole in attention to the particular categories or modes of nature's working which happen to be exemplified, and fruitfully applied, in their own sphere of investigation; and in proportion as this is the case it becomes necessary for their theories to be co-ordinated with the results of other inquirers, and set, as it were, in the light of the whole. This task of co-ordinution, in the broadest senso, is endertaken by philo. sophry; for the philosopher is csemtially what Plato, in a happy momest, atyied him, owiporrude, the man who takes a "synoptic" or comprehensive view of the universe as a whole. The aim of philosophy (whether fully attainable or nok) is to exhibit the universe as a rational system in the harmony of all its parts; and accordingly the philosopher refuses to consider the parts out of thelr relation to the whole whose parts they are. Philosophy corrects in this way the abatractions which are inevitably made by the sciontific speciallst, and may claim, therefore, to be the only "cosacrete" scionco, tbat is to say, the only science which takes account of all the elements in the problem, and the only science whoee resulta can claim to be true in more than a provisional sense.
For it is evident from what has been said that the way in Which we commonly speak of "facts" is calculated to convey a fale impresion. The world is not a collection of individual facts existing side by side and eapable of being knownseparntely. A fact is nothing ercept in its relations to other facts; and as thesc relations are multiplied in the progress of knowledge the bature of the so-called hat is indefinitely modified. Moreover, every atatement of fact involves certain general notions and theories, so that the "facts" of the separate sciences camnot bo stated except in terms of the conceptions or hypotheses which are. assumed by the particular science. Thus mathematics assumes apace as an exfistent infinite, without investigating in what sense the existenre or the finfinity of this Unding, as Kaint calied if, can be saserted. In the same way, physics may bo said to assume the motion.of material atoms and forces. These and similar assumptions are wlthate presuppositions or working hypotheses for the sciences themselves. But it is the office of philowiphy, an theory of knowledge, to anbemit such conceptions
to a critionl ariolysis, with a vider to discover haw far they can be thought oul, or how far, when this is done, they reiute themseives, and call for a different form of statement; if they are to be taken as a staternent of the ultimate nature of the real.' The first statement may frequently turn out to have been merely provisionally or relatively true; it is then superseded by, or rathot inevitably mergee itself in, a lesa abstract account. In this the same "facts" appear differently, because no longer separated from other aspects that belong to the full reality of the known world. There is no such thing, we have said, as an individual fact; and the nature of any fact is not fully known unless we know it in all its relations to the syatem of the universe, or, in Spinoea's phrase, sub ispecie aefernilabis. In strictness, there is but one res completa or concrete fact, and it is the business of philosophy, as science of the whole, to expound the chicf relations that constitute its complex nature.

The last abstraction which it becomes the duty of philosophy to remove is the abstraction from the knowing subject which is made by all the sciences, including, as we shall siee, the science of psychology. The sciences, one and all, deal with a world of objects, but the ultimate fact as we know it is the existence of an object for a subject. Subject-object, knowledge, or, more widely, self-consciousness with Its implicates-this unity in duality is the ultimate aspect which reality presents. It has generally been considered, therefore, as constituting in a special sense the problem of philosophy. Philosophy may be said to be the explication of what is involved in this relation, or, in Kantian phraseology, a theory of its possibility. Any would-be theory of the universe which makes its central fact impossible stands self-condemied. On the other hand, a sufficient analysis here may be expected to yield us a statement of the reality of things in is leat terms, and chus to shed a light borkwaris upon the true nattire of bur subordinate conceptions.

Psychology, Epistemology and Metaphysics.-This leads to the consideration of the miain divisions of philosophy-Psycrozocy (q.D.), 'epistemology (theory of knowledge, Efkentnisstheorie), and metaphysics (ontology; see Metapriysic). A special relation has always existed between psycbology and systematic philosophy, but the closeness of the connexion has been characteristic of modern and more particulariy of English thought. The connexion is not difficute to explain, seeing that in psychology, or the science of mind, we stedy the fact of intelligence (and moral action), and have, so far, in our hands the fact to which ill other facts are relative. From this point of view we may even see a truth in Jacobi's dictum as quoted by Sir W. Hamilton: "Nature conceals God; man reveals God." Nature by itself, that is to say, is insufficient. The ultimate explanation of things cannot be given by any theory which excludes from its survey the fintelligence in which nature, as it were, gathers herself up. But knowledge, or the mind as knowing, willing, \&c., may be looked at in two different ways. It may be regarded simply as a fact; in which case the evolutions of mind may be traced and reduced to laws in the same way as the phenomena treated by the other sciences. This study gives us the science of empirical psychology, or, as it is now termed, psychology sans phrase. In ordet to give an adequate account of its sabject-matter, psychology may require higher or more complex categories than are employed in the other sciences, just as biology, for example, cannot work with mechanical eategories alone, but introduces the conception of devefopment or growth. But the affinities of such a study are manifestly with the sciences as such rather than with philosophy; and the definitive estahlishment of psychology as an Independent science has already been alluded to. Since it has been taken up by specialists, psychology is being established on a broader basis of induction, and with the advantage; in some departments; of the employment of experimentad methods of measurement. But it is not of mind in this aspect

[^34]that such assertions can be made as those quoted above. Mind, as studied hy the psychologist-mind as a mere fact or pheno-menon-grounds no inference to anything beyond itself. The distinction between mind viewed as a succession of "states of consciousness " and tbe further aspect of mind which philosophy considers was very clearly put by Croom Robertson, who also made a happy suggestion of two terms to designate the double point of view:
" We may view knowledge as mere subjective function, but it has its full meaning only as it is taken to represent what we may call objective fact, or ls such as is named (in different circumstances) real, valid, true. As mere subjective function, which it is to the psychologist, it is best spoken of by an unambiguous name, and for this there seems none better than Intellection. We may then say that psychology is occupied with the patural function of Intellection, seeking to discover its laws and distinguishing its various modes (perception, representative imagination, conception, \&c.) according to the various circumstances in which the lawa are found at work. Philosophy, on the other hand, is theory of K nowledge (as that which is known)."-" Psychology and Philosophy," Mind (1883), pp. 15, 16.

The confusion of these two points of view has led, and still ieads, to serious philosophical misconception. It is bardly an exaggeration to say that, in the English school since Hume, psychology superseded properly philosophical inquiry. And we find even a thinker with a wider borizon like Sir W. Hamilton encouraging the confusion by speaking of "psychology or metaphysics," ${ }^{1}$ while his lectures on metaphysics are mainly taken up with what belongs in the strictest sense to psychology proper, with an occasional excursus (as in the theory of perception) into epistemology. The distinction between psychology and theory of knowledge was first clearly made hy Kant, who repeatedly insisted that the Critigue of Pure Reason was not to be taken as a psychological inquiry. He defined his problem as the quid juris or the question of the validit y oi knowledge, not its quid facti or the laws of the empirical genesis and evolution of intellection (to use Croom Robertson's phrascology). Since Kaht philosophy bas chiefly taken the form of theory of knowledge or of a criticism of experience. Not, indeed, a preliminary criticism oi our faculties or conceptions such as Kant himself proposed to institute, in order to determine the limits of their application; such a criticism ab exlra oi the nature of our experience is essentially a thing impossible. The only criticism which can be applied in such a case is the immanent criticism which the conceptions or categories exercise upon one another. The organized criticism of these conceptions is really nothing more than the full expiication oi what they mean and of what experience in its full nature or notion is. This constitutes the theory of knowledge in the only tenable sense of the term, and it lays down, in Kantian language, the conditions of the possibility of experience. These conditions are the conditions of knowledge as such, or, as it may be put, of objective consciousness-of a self-consciousness of a world of objects and through them conscious of itself. The inquiry is, therefore, logical or transcendental in its nature, and docs not entangle us in any decision as to the conditions oi the genesis of such consciousness in the individual. When we inquire into subjective conditions we are thinking of facts causing other facts. But the logical or transcendental conditions are not causes or even lactors of knowledge; they are the statement of its idea. Hence the dispute between cvolutionist and transcendentalist rests, in general, on an ignoratio clenchi; for the history of the genesis of an idea (the historical or genctic method) does not contain an answer to-though it may throw light on-the philosophical question of its truth or validity. Speaking of this transcendental consciousness, Kant goes so far as to say that it is not of the slightest consequence" whether the idea of it be clear or obscure (in empirical consciousness), no, not cven whether it realiy exists or not. But the possibility of the logical form oi all knowledge rests on its relation to this apperception as a faculty or potentiality " (Werke, ed. Hartenstein, iii. 578 note). Or, if

1 It is true that he afterwards modifies this misleading identification by introducing the distinction between empirical psychology or the phenomenology of mind and inferential psychology or ontology, tes. metaphysics proper.: But he continues to use the terms "phiceophy," metaphysica," and "mental science" as eynony. mous.
we return to the distinction between epistemology and psychology, by way of illustrating the nature of the former, we may take the following summing up by Professor James Ward in a valuable article on "Psychological Principles" in Mind (April 1883, pp. 166, 167): "Comparing psychology and epistemology, then, we may say that the former is essentially genetic in its method, and might, if we had the power to revise our existing terminology, be called biology; the latter, on the other hand, is essentially devoid of everything historical, and treats, swo sperie ceternitatis, as Spinoza might have said, of human knowledge, conceived as the possession of mind in general."
Kant's problem is not, in its wording, very different from that which Locke set before him when he resolved to " inquire into the original, certainty and extent of human knowledge together with the grourids and degrees of belief, opinion and assent." Locke's Essay is undoubtedly, in its intention, a contribution to the tbeory of knowledge. But, because time had not yet made the matter clear, Locke suffered himself to digress in his second book into the psychological question of the origin of our ideas; and his theory of knowledge is ruiped by the failure to distinguish between the epistemological sense of "idea" as significant content and the psychological sense in which it is applied to a fact or process in the Individual mind. The same confusion ruas through Berkeley's arguments and vitiates his conclusions as well as those of Hume. But appearing with these thinkers as the problem of perception, cpistemology widens its scope and becomes, in Kant's hands, the question of the possibility of experience in general. With Hegel it passes into a completely articulated "togic," which apperently claims to be at the same time a metaphysic, or an ultimate expression of the nature of the real.

This introduces us to the second part of the question we are seeking to determine, namely the retation of epistemology to metaphysics. It is evident that philosophy as theory of knowledge must have for its complement philosopby as metaphysic: (ontology) or theory of being. The question of the trath of our knowledge, and the question of the uhimate nature of what we know, are in reality two sides of the same inquiry; and therefore our epistemological results have to be ontologically expressed. But it is not every thinker that can see his way with Hegel to assert in set terms the identity of thought and being. Hence the theory of knowledge becomes with some a theory of human ignorance. This is the cabe with Herbert Spencer's doctrine of the Unknowable, which he aidrances as the result of epistemological considerations in the philosophical protegomena to his system. Very similar positions were maintained by Kant and Comte; and, under the name of "' azposticism " (q.e.), the theory has popularised itself in the outer conits of philosophy, and on the shifting borderland of philosophy and literature. The treth is that the habit of thinking exclusively from the standpoint of the theory of knowledge tends to beget an undue subjectivity of temper. And the fact that it has become usual for mento think from this atandpoint is very plainly seen in the almest universal description of philosophy as an analysis of "experience," instead of its more old-fashioned designation as an inquiry into " the nature of things." As it is matter of universal agreement that the problem of being must be attacked indinectly through the prohlem of knowledge, this substitution may be regarded as an advance, more eapecially as it implies that the fact of experience, or of self-conacious existence, is the chiel fact to be dealt with. But if so, then self-cansciousness must be treated as itself real, and as organically related to the rest of existence. If self-consciousaess be treated in this objertive fashion, then we pass naturally from epist emology to metapbysios or ontology. (Fou, although the term "ontology" has been as good as disused, it still remains crue that the aim of philosophy must be to furnish us with an ontology or o coherentand adequate theory of the nature of reaiity.) But if, on the other band, knowledge and reality be abinitio opposed to one another-if consciousnces be set on one side as aver against reality, and merely holding up a mirror to it-then it follows with equal maturalnes that the traly real must be something which lurks unreveated
belind tha subject's ropresentation of it. Hence come the difierent varieties of a so-called phenomenalism. The upholders of sach a thoory would, in general, deride the term ' metaphysics " or "ontology"; but it is evident, none the less, that their powition itedf implies a cettain theory of the universe and of our own place in it, and the establishment of this theory constitutes their metaphyzics.
Without prejudice, then, to the claim of epistempology to constitute the central phibsophic discipline, we may simply sote its liability to be pressed top far. The cuclusive preeccupation of men's minds with the quextion of knowledge during the neo-Kantian revival is the 'seventics of the last oentury drew from Lotze the caustic criticism that "the continual sharpening of the knife becomes tirssome, if after all, we have nothing to cut-with it." Stillingflet's complaint against Locke was that he was "one of the gentlemen of this new way of reasoning that have almost discarded substance out of the reasoneble part of the world." The same may be said with greater truth of the devatees of the theory of knowledge; they socm to heve no need of so old-fashioned a commodity as reality. Yet, Iter all, Fichte's dictum holds good that knowiedge as know-bedge-i.e. so tong as it is looked at as knowledge-is, ipso facts, not reality. The result of the foregoing, however, is to show that, as soon as epistemology draws its conclusion, it becomes metaphysics; the theory of knowledge passes into a theory of being. The ontological conclusion, moreover, is not to be regarded as somelhing added by an external process; it is an inmediate implication. The metaphysic is the epistemology from another point of view-regarded as completing ilself, and explaining in the course of its exposition that relative or practical scparation of the individual knower from the knowable world, which it is a sheer assumption to take as absolute. This, not the so-called assumption of the implicit unity of being and thought, is the really unwarrantable postulate; for it is an assumption which we are obliged to retract hit by bit, while the other offers the whole doctrine of knowledge as its voucher.
Logic, Aesthetics and Rethics.-II the theory of knowledge thus passes insensibly into metaphysics it becomes somewhat difficult to assign a distinct sphere to logic (q.v.). Ueberweg's definition of it as "the science of the regulative laws of thought" (or "the normative science of thought") comes' ntar enough to the traditional sense to enable us to compare profitably the usual subject-matter of the acience with the definition and end of philosophy. The introduction of the term "regulative" or "normative" is intended to diferentiate the science from paychology as the science of mental processes or events. In this reference logic docs not tell us how our intellections connect themselves as mental phenomena, but how we ought to connoct our thoughts if they are to realize truth (either as consistency with what we thought before or as agreement witb observed facts). Logic, therefore, agrees with epistemology (and difers from prychology) in treating thought not as mental fact but as knowledge, as idea, as having meaning in relation to an objective world. To this extent it must inevitably form a part of the theory of knowledge. But, if we desire to keep by older landmarks and maintain a distinction bet ween the two disciplines, a ground for doing so may be found in the fact that all the main definitions of logic point to the investigation of the laws of thought in a subjective reference-with a view, that is, by an analysis of the operation, to ensure its more correct performance. According to the old plasase, logic is the art of correct thinking. Moreover we commonly find the logician assuming that the process of thought has advanced a certain length before his examination of it begins; he taken hir material full-lormed from perception, without, as a rule, inquiring into the nature of the conceptions which are tavolved in our perceptive experience. Occupying ${ }^{2}$ position, therefore, within the wider sphere of the general theory of knowledge, ordinary logic consists in an analysis of the mature of general statement, and of the conditions under which we pass validly from one general statement to another. But the logic of the schools is eked out by contributions from a variety of sources (e-g. from grammar on one side ind from psychology
on another), and cannot chim the writy of an independent ecienpe.

Acathetics (9.0.) may be treated as a department of psychology or physiology, and in England this is the mode of treztment that bas been most general. To what peculiar excitation of our bodily or mental organism, it is asked, are the emotions due which make us declase an object beautiful or sublime? And, the question being put in this form, the cttempt has been made in some cases to explain away any peculiacity in the emotiohs by analysing them into simpler elements, such as primitive organic pleasures and prolonged asoociations of usefulness or fitness. But, just as paychology in general cannot do duty for a theary of knowledge, so it holds true of this particular application of psychology that a mere reference of thesc emotions to the mechanism and interactive play of our faculties cannot be regarded as an account of the pature of the benutiful. Pechaps by talking of "emotions" we tend to give an unduly subjective colour to the investigation; it would be better to speak of the percaption of the beautiful. Pleasure in itsolf is unqualified, and affiords mo difiecentia. In the case of a beautiful object the resultant pleasure borrows its specific quality from the presence of doterminations essentully objective in their nature, though not reducible to the categories of science. Unleas, indeed, wo conceive oar faculties to be cosstructed on some arbitrary plan which puts them out of relatioe to the facts with wbich they have to doll, we have a prima facie right to treat besuty as an ohjective determination of things. The question of aesthetics would then bo formalated-What is it in things that makes them beautiful, and what is the relation of this aspect of the universe to its ultimete nature, as that is expounded in metaphysics? The answer constitutes the substance of aesthetica, considered as' 2 branch of philosophy. But it is not given simply in abstract terms: the philosophical treatment of aesthetics includes also an exposition of the concrete phases of art, as these have appeared in the history of the world, relating themselves to different phases of buman culture.

Of ethics (q.a.) it may also be said that many of the topics commonly erabraced under that title are not strictly philosophical in their nature. They are subjects for a scientific paychology employing the historical method with the conceptions of heredity and development, and calling to its aid, as such a paychology will do, the invertigations of all the sociological sciences. To such a peychology must be relegated all questions as to the origin and development of moral ideas. Similarly, the queation debated at puch length by Eoglish moralists as to the nature of the moral faculty (moral sense, conscience, \&c.) and the controversy concerning the frcedom of the will belong entirely in psychalogy. If wo axclude such questions in the interest of systematic correctness, and seek to determine for ethics a definite subject-matter, the science may be said to fall into two departments. The first of these deals with the notion of duty, and endeavours to defme the good or the ultimate end of action; the second lays out the scherge of concrete duties which are deducible from, or which, at least, are covered by, this abstractly stated prindplo. The second of these departments is really the proper subject-matter of ethics considered as a separate science; but it is often conspicuous by its absence from ethical treatises. However moralists may differ on first priaciplee, there seems to be remarkably little practical divergence when they come to lay down the particular laws of morality. It may be added that, where a systematic account of duties is actually given, the connexion of the particular duties with the universal formula is in geveral more formal than real. It is anly under the head of casuintry (q, s.) that ethics has been much cultivated as a separate science. The fisst departmeat of ethics, on the other hand, is the branch of the subject in virtue of which ethics forms part of philosophy. As described above, it ought rather to be called in Kant's phrase, the metaphysic of ethics. A theory of obligatipn is ultimately found to be inseparable from a metaphysic of personality. The connexion of ethics with metaphysics will be patent as a matter of fact, if it be remembered how Plato's philosophy is summed up in the idea of the good, and how

Aristotle also employs the essentially ethical notion of end as the ultimate category by which the tniverse may be explained or sechuced to unity. But the necessity of the cornexion is also apparent, unlese we are to suppose that, as regards the course of nniversal nature, man is altogether an imperium in imperio, or rat her (to adopt the forcible phrase of Marcus Aurelius) an abscess or excrescence on the nature of things. If, on the contrary, we must hold that man is essentially related to what the same writer calls " a common nature," then it is a legitimate corollary that \ln man as intelligence weought to find the key of the whole fabric. At all events, this method of approach must be truer than any which, by restricting itself to the external aspect of phenomena as presented in space, leaves no scope for inwardness and lifo and all that, in Lotze's language, gives "value" to the world. The argament ex analogia hominis has often been carried too far; but if a "chief end of maa" be discoverable-deofourwoy ayabdy, as Aristotle wisely insisted that the ethical end must be determined-then it may be assumed that this end cannot be irrelevant to that ultimate " meaning " of the universe which, according to Lotze, is the quest of philosophy. If " tbe idea of humanity," as Kant called it, has ethical perfection at lts core, then a universe which is really an organic whole most be oltimately representable as a moral order or a spiritual kingdom such as Leibnitz named, in words borrowed from St Augustine, a city of God.

Pkilosophy of the Slate (Political Phtlosophy), Philosophy of History, Pkilosophy of Religion.-In Plato and Aristotle ethics and politics are indissolubly connected. In other words, seeing that the highest human good is realizable only in a community, the theory of the state as the organ of morality, and itself in its structure and institutions the expression of ethical ideas or qualities, becomes an integral part of philosophy. The difficulty already hinted at, which individualistic systems of ethics experience in connecting particular duties with the abstract principle of daty is a proof of the failure of their method. For the content of morality we are necessarily referred, in great part, to the experience crystallized in laws and institutions and to the unwritten law of custom, honour and good brecding, which has become organic in the society of which we are members. Plato's Republic and Hegel's Philosophie des Rechts are the most typical eramples of a fully developed philosophy of the state, hut in the earlier modern period the prolonged discussion of natural rights and the social contract must be regarded as a contribution to such a theory. Moreover, if philosophy is to complete its constructive work, it must bring the conrse of haman history within its survey, and exhibit the sequence of events as an evolvtion in which the purposive action of reason is traceable. This is the task of the philosophy of history, a peculiarly modern study, due to the growth of a humanistic and historical point of view. Lessing's conception of history as an "education of the human race " is a typical example of this interpretaflon of the facts, and was indeed tbe precursor which stimulated many more claborate German theories. The philosophy of history differs, it will beobserved, from the purely scientific or descriptive studies covered by the general title of sociology. Sociology conceives itself as a natural science clucidating a factual sequence. The philosophy of history is essentially teleological; that is to say, it sceks to interpret the process as the realization of an immanent end. It may be said, therefore, to involve a complete metaphysical theory. Social institutions and customs and the different forms of state-organization are judged according to the degree in which they promote the realization of the human ideal. History is thus represented by Hegel, for example, as the realization of the idea of freedom, or rather as the reconciliation of individual freedom and the play of cultured interests with the stable objectivity of law and an abjding consciousness of the greater whole in which we move. So far as the course of universal history can be truly represented as an approximation to this reconciliation by a widening and deepening of both the elements, we may claim to possess a philosophy of history. But althouglı the possibility of such a philosophy acems Implied in the postulated nationality of the univerow,
many would hold that it remains as yet an unachieved ideal.

There only remains to be briefly noticed the relation of philosophy to theology and the mature of what is called Philosophy of Religion. By theology is commonly understood the sytutematic presentation of the teaching of some positive or historical religion as to the existence and attributes of a Supreme Being, including his rolation to the wosid and especially to man. But these topics havealso been treated by philosophers and religious thinkers, without dependence bn any historical data or special divine revelation, under the title of Natural Theology. Natural Theology is specially associated with the Stoic theories of providence in ancient timos and with elaborations of the argument from design in the 8 8th century. But there is no warrant for restricting the term to any special mode of approaching the problems indicatod; aad as these form the central subject of metaphysical inquiry, no valid distinction can be drawn betweem natural theology and general metaphysics. The philowophy of religion, on tbe other hand, investigates the pature of the religious consciousness and the value of its pronouncensents on human life and man's relation to the ground of things. Unity, reconciliation, peace, joy; "the vietory that overcometh the world "-such, in slightly varying phrases, is the content of religious faith. Does this conaciousness represent an authentic insight into ultimate fact, or is it a pilful illusion of the nerves, born of men's hopesand fearsand of his fundamentalignorance? The philosophy of religion assumes the first alternative. The function of philosophy in general is the reflective analysis of experience, and the religious experience of mankind is prima facie entitled to the same considerationas anyother form of conscions activity. The certainties of religious faith are matter of feeling or immediate assurance, and are expressed in the pictorial language of imagination. It becomes the function of philiosophy, dealing with these ntterances, to relate them to the resules of other spheres of experience, and to determine their real meaning in the more exact terms of thought. The philosophy of refigion also traces in the different historical forms of roligions belief and practice the gradual evolution of what it takes to be the trath of the matter. Such an account may be distinguished from what is mually called the science of religion by the teleological or metuphysical presuppositions it involves. The science of religioa gives a purely historical and comparative sccount of the varioos manifestations of the religious Instinct without pronouncing on their ralative truth or value and without, therefore, profeming ro apply the idea of evolution in the philosophical serme. That iden is fundamental in the philesophy of retigion, which therefore can be written only from the standpoint of a constructive metaphysical theory.
It is, indeed, only from the standpoint of such a theory that the definitions and divisions of the different philosophical disciplines adopted in this article cas be said to hold grod. But those who, like the positivists, agnostics and sceptics, deay the possibility of tataphysies as a theory of the ultimato mature of things, are gtill obtiged to retain phtiosophy as a theory α knowledge, in order to justify the assertod limitativa or impotence of human reacon:

Bibliography--The best gencral histories of philooophy are by J. E. Erdmann, Friedrich Ueberweg and W. Windelband. Windef band s being probably the freshest in its treatment and point of view. Ed. Zeller's History of Greeh Philosophy atill holds the field as the best continuous exposition of the subject, but mone recens work in the carly period in represented by H. Diels-and I. Burmer, while Zeller's view of Plato may be sald to have been superseded by the later researches of Lewis Campbell. H. Jackson and others T. Gomperz's Greek Thinkers is an able, if womewhat diffuse, survey of the philooghical devclopracnt in connocxion with the femeral movement of Greek life and culture. It does not go beyond Flara B. Haureau, A. Stockl and Karl licrner give the fullest and must trustworthy historics of the medieval period, but the subjecr is very carefully treated by Erdmann and Ueberweg. and a vasedul compendium, written from a Roman Catholic standpoint, is De Wulf's IIistory of Medienal Philospphy (1900; Eng. trans, 190j). For modern times. in addition to the general histories already named the works of Kuno Fischer, R. Falekenberg and H. Hoffding. and R. Adarnon's Lectures on tho Dovolopment of Modaris Philesiphth
emay be epecinily mapioned. Writem on the himtory of phationoplyy generally prefix to their work a discussion of the scope of philosophy. its divisions and its relations to other departments of knowiedge, and the account given by Windelband and Ueberweg will be lound epecially good. The Introductions to Philosophy published by \mathbf{F}. Pauleen, O. Kilpe, W. Wundt and G. T. Ladd, deal largely with this subject, which is also ereaterd by Henry Sidgwick in thls Philosophy, is Scope and Relalions (1902), by Ernest Naville, La Dafinition de la ptilosophie (1894) and by Wundt in the introduction to his Spoter der Philosophic (1889). A useful wort of gencrạ reference is J. M. Baldwin's Dictionar) of Philosophy and Psycholopy (3 vols, 1900-1905).
(A. S. P.-P.)

PHILOSTRATUS, the name of soveral, three (or four), Greek sophists of the Roman imperial period-(I) Philostratus "the Athenian" (c. 170-245), (2) his nephew (?) Philostratus " of Lemnos" (barn c. 390) ; (3) a grandson (?) of (2). Of these the most famous is Philostratus "the Achenian," author of the Life of A pollowins Tyemo, which he dedicated to Julia Domna, wife of Alerander Severus and mother of Caracalla (see Apollonids or Tyana). ${ }^{2}$ He wrote also Blae Eodrorion (Lives of the Sophists), Gymearsicus and Epistalae (mainly of an erotic character). Very little is known of his career. Even his name is doubthl. The Lives of the Sophistsgives the praenomen Flavius, which, however. is cound elsewhere only in Tretzes Eunapius and Synenius call him a Lemnien; Photius a Tyrian; his letters refer to him as an Athenian. It is probable that he was born in Lemnos, studied and taught at. Athens, and then settled in Rome (where be would naturally be called atheniemsis) as a momber of the learned circle with which Jolia Domna surrounded herself. He was born probably in 172, and is said by SuIdas to have been living in the reign of Philip (244-249). The fact that the author of Apollonims is also the author of the Lives of the Sopkists is confirmed hy internat evidence. The latter is dedicated to a consul Antonius Gordianus, perhaps one of the two Gordians who were killed in 238. The work is divided into two parta: the first dealing with the ancient Sophists, 4.g. Gorgias, the second with the later school, e.g. Herodes Atticus.

The Lives are not in the true sense brographical, but rather picturesque impressions of leading representatives of an aftitude of mind full of curiosity, alert and versatile, bot lacking scientific method, preferring the extermal encellence of style and manmer to the solid achievements of eerious Friting. The philopopher, as he says, investigates truth; the sophist embeliishes it, and takes it for granted. The Gymnafticus contains interesting matter concerning the Olympic games and athletic contests generally. The letters breathe the spirit of the Ner Comedy and the Alerandrine poetma portions of Letter 33 are almont literally translated in Ben Jonson's Sope to Calia, "Drint to me only with thine eyce" The Bpoucce, (ormerly attributed to Philostratus the Aehenian, is probably the work of Philostratus the Lemnian. If is a popular disquisition on the heroes of the Trojan War in the form of a conversetion between a Thracian vine-dresser on the shore of the Hellesponat and a Phoenician merclant who derive his knowledge from the hero Protesilaus, Palamodes is exalted at the expense of Odysseus, and Homer's unfaimess to him in attacked. It has been suggested that Philostratus is here describick a serice of heroic paintings in the palace of Julia Domns. His other work is the Expons (Imapines), ostensibly a description of 64 picturcs in a Neapolitan gallery. Gocthe, Welcker, Brunn, E. Bertrand and Helibig, among others, have held that the deacriptions are of actuarly existing works of art, while Heyne and Friederichs dery thiz in any case they are intereating mes Ahowing the way in which ancient antists treated mythological and other mubjects, and are written with artistic knowlodge and in attractive language. This work is imitatod by the thind Philostratus (or by mome later sophist) of whote deacriptions of pictures 17 remain.

There in great dificulty, due to a confused statement of Supias, in dinentangling the worls and even the personalitiea of these Philostrati. Relerence is there made to Philoatratus as the son of Verus, a rhetorician in Nero's time, who wrote srapedies, comedies and treatises. Suldas thus appears to give to Pbilostratus the Athenian a Bife of 200 ycarsl We mint be content to assume two Lemenian Philpernti, both sophiste, fiving in Rome. Sce further a fult discussion by K. Manscher, in Philologus (1907), suppl. x., pp-469-557-

Of works bearing the name Philostratus there is a collected odition by C. F. Kayecr (2urich, 1844; Leipzig, 1870-1871), and another by Westermana (Pasis, isio). with Latin transation; theoe supersede those by F. Morel (Paris, i608) and Oicarius (Leipaiz 1709). There are separate editions of the Eikones by Schenkl and Reisch (Leipriz, 1yo2); of the Gymmasticus by Mynas (1858), who discovered the M3., Daremberg (Paris, 1858), Yolekmar '(Aurich, 1862), and enpecially Julites Jothner (Igog), with imtrod., comments and Ger.
${ }^{1}$ As Licmnos pas an Aihenlan istand, any Lemnian could be corled an Athenim.
 A pollanime was lirst published by Aldus (1502); a French translaxion by Blaise de Vigenere appeared in 1596; an Engliah translation of the first two books was published in London (1680) by Charles Blount, with some nobes by Lord Herbert of Cherbary (prohibited in England in 1693, it wase reprinted on the Contineat); a (ull tranelation appeared in 1903. Critical works on the Eithomes are numeroms: K. Friederichs, Dre Fhilostratischen Bilder (:860); Goethe. "Philostrats Gemalde "in Consplete Works (ed. Stuttgart, 1879); Brunn, Dis Philostralicklom Bulder (reso); A. Bougot, Une Gaderio antione (1881): E Bertrand. Un Criligne dert daws fantipuile: Philastrede at som icole (1882); Bergty "Die Philontrate" in Finf A bhandlunger zur Geschichie der griechischen Philosophie mad Astronomie (1883); Schmid, Attiosismus iv. 7, on the attribution of the works.
Pilllonshus, of Cythera ($435-380$ b.c.), Greek dithyrsmbic poet. On the conquest of the island hy the Athenians he was taken as a prisoner of war to Athens, where he came into the possession of the dithyrambic poet Melanippides, who educated him and set him free. Philorenus afterwards resided in Sicily, at the court of Dionysius, tyrant of Syracuse, whose bed verses be decined to praise, and was in consequence sent to work in the quarries. After leaving Sicily he travelled in Greece, Italy and Asia, reciting his poems, and died at Ephesus. According to Suidas, Philoxenus composed twenty-four dithyrambe and a lyric poem on the genealogy of the Acacidae. In his hands the dithyramh seems to have been a sort of comic opera, and the music, composed by himself, of a debased character. His masterpiece was the Cyclops, a pastoral buriesque on the love ol the Cyclops for the fair Galatea, written to avenge bimself upon Dionysius, who whs wholly or partially blind of one eye. It was parodied hy Aristophanes in the Plutus (ago). Another work of Philoxenus (sometimes altributed to Philoxenva of Leucas, a notorious parasite and glution) is the Δ eitwon (Dinner), of which considerable fragments have been preserved by Athenaeus: This is an elaborate bill of fare in verse, probably intended as a satire on the luxury of the Sicilian court. The great popularity of Philoxenus is attested by a complimentary resolution passed by the Athenian senate in 393. The comic poet Antiphanes spoke of him as a god among men; Alezander the Great had his poems sent to him in Asia; the Alextandrian grammarians received him into the canon; and down to the time of Polybius his works were regularly learned and annually acted hy the Arcadian youth.
Fragments, with life, by G. Bippart (1843); T. Berght, Paeloe lyriki groexi.
PHILOXESTOS (Syriac, Aksenkyz), of Mabbog, one of the best of Syriac prose writers, and a vehement champion of Monophysite doctrine in the end of the 5 th and beginning of the oth centuries. He was born, probably in the third quarter of the 5th century, at Tahal, a village in the district of Beth Garmai east of the Tigris. He was thus by birth a subject of Persia, hut all his active life of which we have any record was passed in the territory of the Greek Empire. The statements that be had been a slave and was never baptized appear to be malicious inventions of his theological opponents. Hie was educated at Edessa, perhaps in the famous "school of the Persians," which was alterwards (in 489) expelled from Edessa ${ }^{2}$ on account of its connexion with the Nestorian heresy. The years which followed the Council of Chalcedon (451) were a stormy period in the Syrian Church. Philoxenus soon attracted notice by his strenuous advocacy of Monophysite doctrine, and on the expulsion of Calandio (the orthodox patriarch of Antioch) in 485 was ordained bishop of Mabbog' hy his Monophysite-successor Peter the Fuller (Barhebracus, Chron. eccl.i. 183). It was probably during the carlicr years of his episcopate that Philoxenus composed his thirteen homilies on the Christian life. Later he devoted himsel to the revision of the Syriac version of the Bible, and writh the help of his cborcpiscopus Polycarp produced in 508 the so-called Philoxenian verston, which was in some sense the received Bible of the Monophysites during the 6 th century. Meantime he continued his ecclesiastical activity, working as a bitter opponent of
*Acrording to Barhebracua (Chron. ecel. ii. 55) through the effort: of Philoxenus himself.

- Hierapolis of the Greeks, Manbij of the Arabe, a few mailes wat of the Euphrates about latitude $36{ }^{1}$.

Flavian II., who had accepted the decrees of the Council of Chalcedon and was patriarch of Antioch from 498 to 512 . The Monopbysites had the sympathy of the emperor Anastasius, and were finally successful in ousting Flavian in 512 and replacing him by their partisan Severus. Of Philoxenus's part in the struggle we possess not too trustworthy accounts by hostile writers, such as Theophanes and Theodorus Lector. We know that in 498 he was staying at Edessa ${ }^{\text {; }}$; in or about 507 , according to Theophanes, he wassummoned by the emperor to Constantinople; and he finally presided at a synod at Sidon which was tbe means of procuring the replacement of Flavian by Severus. But the triumph was sbort-lived. Justin I., who succeoded Anastasius in 518, was less favourahie to the party of Severus and Pbiloxenus, and in 519 they were both sentenced to banishment. Philoxenus was sent to Philippopolis in Thrace, and afterwards to Gangra in Paphlagonia, where be met his death by foul play in 523 .
Apart from his redoubtable powers as a controversialist, Philoxenus deserves cornmemoration as a scholar, as elegant writer. and an exponent of practical Christianity. Of the chice monument of his acholarship-the Philowenian verwion of the Bible-only the Gospels and certain portions of Iraiah are known to survive (see Wright, Syr. Lit. 14). It was an altempt to provide a more accurate rendering of the Creet Bible than had hitherto existed in Syriac. and obtained recognition among the Monophysites until superseded by the still more literal renderings of the Old Testament by Paul of Teila and of the New Testament by Thomas of Harkel (both in 6r6-617), of which the latter at least was based on the work of Philoxenus. There are also extant portions of commentaries on the Gompels from his pen. Of the excellence of his style and of his practical relifious zoal we are able to judge from the thirteen homilies on the Christian life and character, which have been edited and translated by Budge (London, 1894). In these he holds aloof for the most part from theological controversy, and treats in an admirable tone and spirit the themes of faith, emplicity, the fear of God, poverty, greed, abstinence and unchactity. His alfinity with his earlier countryman Aphraates is manifest both in his choice of subjects and his manner of treatmene. As his quotations from Scripture appear to be made from the Peshittit, he probably wrote the homilies before be embarked upon the Philoxenian verston.' Philoxenus wrote also many controverial worke asad some liturgical pieces. Many of his letters survive, and at least two have been edited. ${ }^{2}$ Several of his writings were translated into Arabic and Ethiople.
(N. M.)

PRILTRE (Lat. philtrum, from Gr. ф1גrpov, фк入eiy, to love), a drus or other medicinal drink supposed to have the magical property of exciting love.

PHINLOs, in Greek legend, son of Agenor, the blind king of Salmydessus on tbe coast of Thrace. He was skilled in the art of navigation, and Apollo had bestowed upon him the gilt of prophecy. His blindness was a punishment from the gods for his having revealed the counsels of Zeus to mortals, or for his treatment of his sons hy his first wife Cleopatra. His second wife having accused her stepsons of dishonourable proposals, Phineus put out their cyes, or exposed them to the wild beasts, or burfed them in the ground up to their waists and ordered them to be scourged. Zeus offered him the choice of death or blindness. Phineus chose tbe latter, whereupon Helios (the san-god), offended at the slight thus put upon him, sent the Harpies to torment him. In anotber story, the Argonauts (amongst whom were Calals and Zetes, the brotbers of Cleopatra), on their arrival in Thrace found the sons of Phineus half-buried ln the eartb and demanded their liberation. Phineus refused, and a fight took place in which he was slain by Heracles, who freed Cleopatra (who had been thrown into prison) and her sons, and reinstated them as rulers of the kingdom. Tragedies on the subject of Phineus were written by Aeschylus and Sophocles. These would directly appeal to an Athenian audience. Phineus's first wife having been the daughter of Orithyia (daughter of Erechtheus, king of Athens), who had been carried of by Boreas to bis bome in Thrace. The punishment of Phineus would naturally be regarded as a just retribu-
: Chronide of Joshua Stylites, ch. 30.
: On these and other pointa see Budge's introduction to his second volume, which conteins also a list of the other worke of Philoxenus and a number of illustrative extracts.
-One by Martin (in Crammatica chrestomathia et plossarimm linguce syriacae) and one by Guidi (Le Lellera di Filosseno ai monacs divell 'Adia).
tion for the insult pat upon a princeas of the royal horwe of Athens.
Apollodorus i.9. 21, ii. 25. 3: Sophocles, Antizone, 966, with Jebb'e notes; Diod. Sic. iv. 43, 44; Servius on Aeseid iii. 209; Schol. on Apollonius Rhodius ii. 178.

PHIPS (or PEIPPs), sIR WILHIAM ($1651-1695$), colonial governor of Massachusetts, was born on the and of February 1651, at Woolwich, Maine, near the mouth of the Kennebec river. He was a shepherd until he was eighteen, and then a ship carpenter's apprentice for four years; worked at his trade in Boston for a year, at this time learning to read and write; and with his wife's property established a ship-yard on the Sheepscot river in Maine, but soon abandoned it because of Indian disorders. In 1684-1686, with a commission from the British Crown, he searched vainly for a wrecked Spanish treasure ship of which he had heard whilo on a voyage to the Bahamas; he found this vessel in 1687, and from it recovered [300,000. Of this amount much went to the duke of Albemarle, who had fitted out the second expedition. Phips received $\{16,000$ as his share, was knighted by James II., and was appointed sheriff of New England under Sir Edmund Andros. Poorly educated and ignorant of law, Phips could accomplish bittle, and returned to England. In r 689 he returned to A.assachusetts, found a revolutionary government in control, and at once entered into the life of the colony. He joined the North Church (Cotton Matber's) at Boston, and was soon appointed by the General Court commander of an expedition against the French in Canada, which sailed in April 1600 and easily captured Port Royal. A mucb larger expedition led by Phips in July against Quebec and Montreal ended disastrously: Phips generously bougit at their par value, in order to give them credit in the colony, many of the colony's bills issued to pay for the expedition. In the winter of 1690 he returned to England, vainly sought aid for another expedition egainst Canada, and urged, with Increase Mather, the colonial agent, a restoration of the colony's charter, annulled during the reign of Charles II. The Crown, at the auggestion of Mather, appointed him the first royal governor under the new charter. On reaching Boston in May 1692, Phips found the colony in a very disordered condition, and tbough bonest, persevering and indisposed to exalt his prerogative at the expense of the people, he was unfitted for the difficult position. He appointed a special commission to try the witchcraft cases, but did nothing to stop the witcheraft mania, and suspended the sittings of the court only after great atrocities had been committed. In defending the frontier he displayed great energy, but his policy of building forts was etpensave and therefore unpopular. Having the manners of a 7 th-century sea captain, he became involved in many quarrels, and engaged in a bitter controveray with Governor Benjamin Fletcher of New York. Numerous complaints to the hame government restulted in his being summoned to England to answer charges. While in London awaiting trial, he died on the 18th of February 1695 .
See Cotton Mather'a Life of His Excellency Sir Williem Plifes (London, 1697 ; republished in his Magnalia is 1700): Francis

 ecrice 1, vol. ix (Portland, 1887); Erneat Myrand's Sir Whiliane Phipps deame Quebec (Qucbec, 1893); Thomas Hutchinson's Hislory of Massachuselfs (2 vols, Boston: 3 rd ed., r795) : and J. G. Palfrey? Gistory of New Ringland (5 vols, Hoston, 1858-1890).

PHLERIIIS (from Gr. $\phi \lambda \psi_{\text {, }}$ a vein), inflammation of a vein When a vein is inflamed the blood in it is apt to form a ciot, or thrombus, which, if loosened and displaced from its original position, may be carried as an embolus towards the heart and there be arrested; or it may pass throagh the cavities of the heart into the luogs, there to lodge and to give rise to alarming symptoms. If the thrornbus is formed in the inflamed vein of a pile it may pass as an embolus (see Haemonrioms) into the liver. If an embolus is carried through the left side of the heart it may enter the large vessels al the root of the neck and reach the brain, giving rise to serious cerebral diakurbance or
to a fatal paralysis. The thrombus masy be formed in gout and rheumatism, or in consequence of stagnation of the bloodcurrent due to slowing of the circulation in various wasting diseases. When a thrombus forms, absolute rest in the recumbent posture is to be strictly enjoined; the great danger is the displacement of the clot. An inflamed and clotted vein, if near the surface, causes an elongated, dusky elevation beneath the skin, where the vein may be feit as a hard cord, the sire, perhaps, of a cedar pencil, or a pen-holder. Its course is marked by great tenderness, and the tissue which was drained by tho branches of that vein are livid from congestion, and perhaps boggy and pitting with oedema. If, as often happens, the inflamed vein is one of those running conspicuously upwards from the foot-a saphenous vein (oradis, distinct)-the patient should be placed in bed with the limb secured on a splint in order to protect it from any rough movement. Should the clot become detached, it might give zise to sudden and alarming faintness possibly even to a fatal syncope. Thus, there is always grave risk with an infamed and clotted vein, and modern surgery shows that the safest course is, when practicable, to place a ligature on the vein upon the beart-side of the clotted piece and to remove the latter by dissection. When, as sometimes happens, the clot is invaded by septic organisms it is particularly liable to beconse disintegrated, and if parts of it are carried to various regions of the body they may there give rise to the formation of secondary abscesses. In the ordinary ereatment of phlebitis, in addition to the insistence on periect rest and quiet, fomentations may be applied locally, the limb being kept raised. Massage must not be employed so long as tbere is any risk of a clot being detached.
(E. O.)

PHEsGON, of Tralles in Asia Minor, Greek writer and freedman of the emperor Hadrian, flourished in the and century A.D. His chief work was the Olympiads, an historical compendium in sisteen books, from the 1st down to the 22gth Olympiad (176 B.c. to A.D. 137), of which several chapters are preserved in Photius and Syncellus. Two small works by him are extant: On Margels, containing some ridiculous stories about ghosts, prophecies and monstrous births, but instructive as regards ancient superstitions; On Lons-liod Persoss, a list of Italians who had passed the age of 100 , taken from the Roman censuses. Ohber works ascribed to Phlegon by Suldas are a description of Sicily, a work on the Roman lestivals in three books, and a topography of Rome.
Fraguents in C. Moller, Frag. kist. graec. iii.; of the Marods and Long-lived in O. Keller, Rerum naduralium scriptores, i (1877); noc also H Dicls, "Phlegons Androgynenorakel" in Sibylinische Bldter (1890).
PHLOCOPITE, a mineral belonging to the group of micas ($q . v$.). It is a magnesium mica, differing from biotite in containing only a litele iron; the chemical formula is $\left[\mathrm{H}, \mathrm{K},(\mathrm{MgF}) \mathrm{l}_{3} \mathrm{Mg}_{\mathrm{g}} \mathrm{A}\left(\mathrm{SiO}_{4}\right)_{s}\right.$. It crystallizes in the monoclinic system, but tbe crystals are roughly developed. There is a perfect cleavage paraliel to the basal plane; the cleavage flakes are not quite so elastic as those of muscovite. Sometimes it is quite colourless and transpirent, but usually of a characteristic yellow-inh-brown colour, and often with a silvery hustre on the cleavage surfaces, bence the trade name "silver amber mica" for some varietiea. The name phlogopite is from Gr. ϕ hophurbs (fierylooking), the mineral being sometimes brownish-red and coppery in appearance. The hardness is $2 \frac{1}{4}-3$, and the specific gravity 2.78-2.85. The optic axid plane is parallel to the plane of oymmetry and the axial angle $0^{\circ}-10^{\circ}$. Phogopite cocars chiefly as scales and plates embedded in crystalline limestones of the Archean formation. The mica mined in Canada and Ceyton is mainly phlogopite, and is largely used as an insulator for electrical purposes. In Canada it occurs with apatite in pyroxene rocks which are intrusive in Laurentian gneisses and crystalline limestones, the principal minting district being in Othawa county in Quebec and near Burgess in Lanark county, Ontario. In Ceylon, the mineral forms irregular veins, rarely excoeding one or two feet in width, treversing granulite, expecially near the contact of this rock with crystalline limestona
(L. J. S.).

PHLOE (Nat Ond. Polemoniaccae), a genus of about 30 specics, mostly perennial hardy plants of great beauty, natives of North America (one occurs in Siberia), with entire, usually opposite, leaves and showy flowers genesally in termina clusters. Each flower has a tubular calyx with five lobes, and a salvet shaped corolla with a long slender tube and a flat limb. The five stamens are given off from the tube of the corolid at different heights and do not protrude beyond it. The ovary is threecelled with one to two ovules in each cell; it ripens into a tbreevalved capsule. Many of the spocies and varieties are tall berbs yielding a wealth of bloom throughout the summer and early autumn. These require a decp, rich, and rather beavy loam, and a cool, moist position to flourish.

The dwarf perennial species and varietics, the "moss pinks" of gardens, are charming plants for the rockery and as edging to beds and borders. They are trailing and tuited in habit, tbe branches rooting at the nodes. They succoed in poodrer soil, and drier situations than the tall kinds. Seed is seldom produced. Propagation is effected by cuttings in July and early August, placed in a cold frame, and by division of the plants, which should be lifted carciully, and cut into rooted portions as required. The tufted kinds decay in patches in winter if the situation is moist and the weather mild and wet.

Phlox Drummondii and its numerous varieties are half-handy annuals in Britain. It is a small-growing hairy plant, flowering profusely during the summer monibs. For early flowering it should be sown in heat in March and April and tramsierred out of doors in June. It succeeds if sown out of doors in April, but the flowering scason is later and shorter.

The tall-growing border phloxes are divided into early and late flowering kinds respectively, the former derived mainly from P. glaberrima and P. suffruticosa, and the latter from \boldsymbol{P}. maculala and P. pamiculala. The salver-shaped flowers with cylindrical tubes range from pure white to almost bright scarlet in colour, pasaing through shides of pirk, purple, magenta likic, mauve and salmon. New varieties are obtrined by the selection of seedlings. Owing to the fcequent introduction of new kinds, the reader is referred to the current lists published. by growers and nurserymen. The " moss pinks," P. subulala and its varieties, are all worthy of a place in the alpine garden.
The varieties are relatively few. The following list includes mearly all the beat kinds:-
P. stbulata, pink with dark centre; A ldboroughensis, rose; annulata, bluish white, ringed with purple; atrolifacina, deep lilac: alropmepwres purple-rose and crimson; Brightness, bright rose with scarlet eye; compoctes, clear rose; Fairy, Hilac; G. F. Wilson, mwuve; gramdjearan pink, crimpon blotch: Littie Dot, white, blue centre; Nelsowi; pure white; Vivid, rose, carmine centre; all these are about s in. high. P. diearicala, lavender, height Ift.; P. ovata, rose, I ft.; P. reptans, rose, 6 in.; and P. amoena, rose, 9 in., are also charming elpines.
\boldsymbol{P}. Drommondii varieties come true from seed, but are usually sowa in mixture.
PHOCARA (mod. Fokia or Fokha) an ancient city on the western coast of Asia Minor, famous as the mother city of Marseilles. It was the most northern of the Ionian cities, and was situated on the coast of the peninsula which separates the gulf of Cyme, occupied hy Aeolian settlers, from the Hermaean Gulf, on which stood Smyrna and Clazomenae. ${ }^{1}$ Its position between two good barbours, Naustathmus ond Lampter (Livy Exxvii. 31), led the inhabitants to devote themselves to maritime pursuits. According to Herodotus the Phocseans were the first of all the Greeks to undertake distant voyages, and made known the comsts of the Addiatic, Tyrtheria and Spain. Arganthonius, king of Tartessus in Spain, invited them to emigrate in a body to his dominions, and, on their dectining, presented them with a large sum of money. This they employed in constructing a strong wall around their city, a defence which atood them in good stead when Ionia was attucktd by Cyrus in 546. Eventually they determined to seek a new home in the west, where tbey already had flourishing colonies, e.g-

[^35]Ahalia in Corsica and Massilia (mod. Marselles). A large part of the emigrants proceeded only as far as Chiow, returned to Phocaes, and submitted to the Persian yoke.
Phocaen continued to exist under the Persian government, but greatly reduced in population and commerce. Though it joined in the Ionian revolt against Persia in 500 it was able to send only three ships to the combined fleet which fought at Lade. But a Phocacan took the supreme command. It never again played a prominent part in Ionian history, and is sarely mentioned. In the time of Timur Fujah was a fortress of Sarukhan, but had been previously in Cenoese hands. The ruins still virible on the site bear the name of Palaca Fokin, but they are of little interest. The modern town in the immedinte aeighbourbood, still known as Fokia, was founded by the Genoese in 142 I on account of the rich alum mines in the neighbourhood. It has a falr natural harbour, which is the nearest outlet of the rich district of Menemen. About 1880, while the Gediz Chai was throwing its silt unchecked into the Gulf of Smyrna and gradually filling the navigable channel, there was talk of reviving Fokin as a new port for Smyrns, and connecting it with the Cassaba railway. But, in deference to Smymiote protests, a new eatuary was cut for the Gediz. Fokia has acquired local importance however as a port of call for coasting steumers, and it is ysed to some degree as a summer residence by Surymiotes.
(D. G. H.)

PROCAS, East Roman emperor (602-610), was a Cappadocian of humble origin. He was still but a centurion when choven hy the army of the Danube to lead it against Constantinople. A revolt within the city soon afterwards resolted in the abdication of the reigning emperor Maurice, and in the elevation of Phocas to the throne, which seems to have been accomplished by one of the efreus factions against the wish of the troops. Phocas proved entirely incapahle of governing the empire. He congented to pay an increasod tribute to the Avars and allowed the Pensians, who had deciared war in 604 under Choaroes II., to overran the Asiatic provinces and to penetrate to the Bosporus. When the African governor Heraclius dedared agninst him, Phocas was deserted by the ztarving populace of Constantinople, and deposed with scarcely a strugito (610). Ho died in the same year on the scafifold.

See J. B. Bury, The Later Roman Empine (Loodon, 1889), it. 197-206.
PHOCIOA, Athenian statesman and general, was bom about 402 B.C., ${ }^{1}$ the son of a small manufacturer. He became a pupil of Plato and in later life was a close friend of Xenocrates. This scedemic training left its mark upon him, but it was as a soldier rather than as a philosopher that he first came into notice. Under Chabrias he distinguished himself in the great sea-fight of Naros (376), and in the subsequent campaigns loyaliy supported his chief. He won the confidence of the allies by his justice and integrity. In $351-349^{2}$ he entered the Peritan eervice and helped to subdue a rebellion in Cyprus. Henceforward he alwaya held a prominent pocition in Athens, and sthough he never canvased be was elected general forty-five times in all. In politics he is known chiefly as the consistent opponent of the anti-Macedonian firebrands, headed by Demosthenes, Lycurgus and Hypereides, whose fervent eloquence he endeavoured to damp by recounting the plain facts of Athens'a military and financial weakness and ber need of peace, even when the arms of Athens seemed to prosper most. But although he won the respect of his audience, his advice was frequently discanded. Yet his influence was felt at the trial of Aeschines in 343, whom he helped to defend, and after the disaster of Chaeromeia (338), when he secured very lenient terms from Philip. He also rendered good service in the field: in 34^{8} be eaved the force operating against the philo-Macedonian tyrants in. Euboea by the brilliant victory of Tamynae. Uader the Macedonian predominance him reputation steadily increased.
${ }^{1}$ Diodorua' statement that Phocion was 75 at his death (i.e that he became general at 30 and was clected 45 years in succession) would give $394-393$ as the date of birth; but he muat have been quite 25 as nocond-rp-command at Naxon (376).
TThe chromology is uncertain; the dotes given for thin period are Beloch's (Grioclisethe Gescrivicite; ii).

Though by no means inclised to truckle.to the Macedoaians, as is shown by his protection of the relugee Harpalus and his spirited campaign in defence of Actica in 322, he won the confidence of the conquerors, and in the restricted denacracy which Antipater enforced he became the virtual ruler of Athers. Old age, however, was telling on him; when Polyperchon by his proclamation of "freedom " raised a new crisis in 318, Phocion's dilatoriness was interpreted as active treason on Cassander's behalf, and the people, incited by the restored democrats, deposed him from office. Phocion fled to Polyperchoo, but was sent back by the latter to be tried at Athens. The asoembly, containing numerous slaves and all the city mob, shouted Phocion down and condemaned him to death unheard. Not long after, the Achenians decreed a public burial and a statue in his honour.
Phocion'a character and policy were throushout inspired by his philosophic training, which best explsins his remarkable parity of character and his prudent councils. To the same infuence we may ascribe his reserve and his reluctance to co-operate heartily either with the people or with the Macedonian conquerons who put their trust in him: a greater spirit of energy and enterprise might have made him the saviour of his country. Phocion remained famons in anciquity for the pithy sayings with which he used to parry the cloquence of his opponenta. Demosthenes called him "the chopper of my periods"
Plutarch (Life of Phocions) drame weach pood information frow Philochorus and Duris (who reproduces Hieronymue of Cardia); his numerous anecdotes are repeated in other works of his and in Aclian (Var. kisf.). Diodorus (x vi.-xviii.) is likewise based on Duris See Holm. Gk. Hisf. vol. iti. (Eng. trans., London, 1896).
(M. O. B.C)

FBOCIS, en ancient district of central Greece (now a department, pop. 62,246), about 625 sq. m . in area, bounded on the W. by Ozolian Locris and Doris, on the N. by Opemtian Locris, on the E. hy Bocotia, and on the S. by the Corinthian Gulf. The masaive ridge of Parnassus (8068 ft .), which traverses the heart of the country, divides it into two distinct pertions. Between this central barrier and the northern froatier range of Cnemis (3000 ft .) is the narrow but fertile valley of the Cephisuss, along which most of the Phocian townships were gcattered. Under the southern slope of Parnassus wert situated the 2 wo small plains of Crisa and Anticyra, separated by Me Cirphty an offshoot from the main range. Being neither rich in material resources nor well placed for commercial enterprise, Phocis was mainly pastoral. No large cities grew up within its territory, and its chice places were mainly of strategic importance.

The early history of Phocis remains quite obscure. From the scanty notices of Greek legend it may be gulbered that an influx of tribes from the north contributed largely to its populstion, which was reckoned as Aeolic. It is probable that the country was originally of greater extent, for chere wasa tradicion that the Phocians once owned a strip of land round Daphnus on the sea opposite Euboea, and carried their fronticr to Thermopylac; in addition, in early days they controlled the great sanctuary of Delphi. The restriction of their territocy was due to the hostility of their neighbours of Bocotia and Thessaly, the latter of whom in the 6 th ceatury even carried their mids into the Cephissus valley. Moreover the Dorian population of Delphi constantly strove to eatablish its independence and about 590 E.c. induced a confition of Greck atates to procham a "Sacred War" and free the oracle from Phocisn supervision. Thus their influence at Delphi was restricted to the poascasion of two votes in the Amphictyonic Council.

During the Pcrsian invasion of 480 the Phocians at first joined in the national defence, buat by their irremolute conduct at Thermopylac lost that position for the Greeks; in the campaiga of Plataca they were enrolled on the Persian side. In 457 an attempt to extend their influence to the bead waters of the Cephissus in the territory of Deris brought a Spartan army into Phocis in defence of the "metropolis of the Dorians." A similar enterprise against Detphi in 44^{8} wat again frustrated by Sparta, bat not long afterwarde tho Phocians recuptured the sanctuary with the help of the Athenians, with whom they
had entered into alliance in 454. The subsequent decline of Athenian land-power had the effect of weakening this new connexion; at the time of the Peloponnesian War Phocis was nominally an ally and dependent of Sparta, and had lost coptrol of Delphi.

In the $4^{\text {th }}$ century Phocis was constantly endangered hy its Boeotian neighbours. After helping the Spartans to invade Boeotia during the Corinthian War (395-94), the Phocians were placed on the delensive. They received assistance from Sparta in 380, but were afterwards compelled to submit to the growing power of Thebes. The Phocian levy took part in Epaminondas' inroads into Peloponnesus, except in the final campaign of Mantinea (370-62), from which their contingent was withheld. In return for this negligence the Thebans fastened a religious quarrel upon their neighbours, and secured a penal decree against them from the Amphictyonic synod (356). The Phocians, Jed by two capahle generals, Philomelus and Onomarchus, replied hy seizing Deiphi and using its riches to hire a mercenary army. With the help of these troops the Phocian League at first carried the war Into Boeotia and Thessaly, and though driven out of the latter country hy Phillp of Macedon, maintained itself for ten years, until the exhaustion of the temple treasures and the treachery of its leaders placed it at Philip's mercy. The conditions which he imposed-the obligation to restore the temple funds, and the dispersion of the population into open villages-were soon disregarded. In 339 the Phocians hegan to rebuild their cities; in the following year they fought against Philip at Chaeronea. Again in 323 they took part in the Lamian War against Antipater, and in 279 helped to defend Thermopylae against the Gauls.
Henceforth little more is heard of Phocis. During the 3rd century it passed into the powerof Macedoniaund of the Aetolian League, to which in 196 it was definltely annexed. Under the dominion of the Roman republicits national league was dissolved, hut was revived by Augustus, who also restored to Phocis the votes in the Delphic Amphictyony which ft had lost in 346 and enrolled it in the new Achaean synod. The Phocian League is last heard of under Trajan.
See Strabo, pp. 40r, 418, 424-425; Pausanias x. 1-4; E. Fretman; Histery of Fideral Gowernment (ed. 1893. London), pp. 113-r34; G: Kazarow, De fowleris Phocempitam iventiutis (Leiprig, L899); B. Head, Historit mamorniz (Oxford, 1887), pp-287-288.
(M. O. B. C.)

PBOCYIIDEs, Greek gnomic poet of Miletus, contemporary of Theogris, was born about 560 .b.c. A few fragments of his " maxims" have been preserved (chiefly in the Florilegium of Stobeeus), in which he expresses his contempt for the pomps and vanities of rank and wealth, and setsforthin simplolanguage his ideas of bonour, justice and wisdom. A conplete didactic poem (230 hexameters) called Moizpa routcruby or γ к̂upah, bearing the name of Phocylides, is now considered to be the work of an Alexandrian Christian of Jewish origin who lived between 170 B.C. and A.D. 50 . The Jewish element is shown in verbal agreement with passages of the Oid Testament (especially the book of Sirach); the Christian by the doctrine of the immortality of the soul and the resurrection of the body. Some Jewish authorities, however, maintain that there are in reality no traces of Christan doctrine to be found in the poem, and that the author was a Jew. The poem was first printed at Venice in 1495, and was a favourite school textbook during the Reformation period.
See fragments and the apurious poem in T. Bergt, Poelae lyrici Gracci, ii (4th ed., 1882); J. Bernay Ober dos Phokylideische Gediche (roj8); Phocylides, Poem of Admonifion, with introduction and commentariea by J. B. Fending, and translation by H. D. Goodwin (Andover, Mass, 1879): F. Susemilhl, Gesehichle der griechischas Lineratur it der Alesamdrinermeil, (180), ii. 642; S. Krausa (s.e. "Paendo-Phocytides ") in The Jewish Encyelopedia and E. Schurer, Hist of the Jewist PeoNe, div. ii., val. ifi., 315-316 (Eng. trank, 1886), Where full bibliographies are given There ia an Engfish verte trensiation by-W. Hewett (Watford, 1840), The Perception Poem of Phocyider.
PROTSE, in atronomy, the ninth satellite of Satum in order of discovery, or the tenth and outermost now koown in
the order of distapce. It was discovered hy W. H. Pickering in 8899 by photographs of the ttars surrounding Saturn. It is remarkahle in that its motion around the planet is retrograde. (See Saturx.)
phozbus (Gy. for "bright," "pure,"), a. comman epithet of Apollo (q.s.). Artemis in like manner is called Phoebe, and in the Latin poets and their modern followers Phoebus and Phoebe are often used simply for the sun and moon respectively.

PROEnicla, in encient geography, the name given to that part of the seaboard of Syria which extends from the Eleutherus (Nahr el-Kchir) in the north to Mt Carmel in the south, a distance of rather more than two degrees of latitude. These limits, however, were exceeded at various times; thus, north of the Eleutherus lay Aradus and Marathus, and south of Carmel the border sometimes included Dor and even Joppa. Formed partly hy alluvium carried down hy perennial streanas from the mountains of Lebanon and Galilee, and fringed by great sand-dunes which the sea throws up, Phoenicia is covered with a rich and fertile soil. It is only at the mouth of the Eleutherus and at Acre ('Akla) that the strip of coast-land widens out into plains of any slec; there is a certain amonnt of open country behind Beirat; hut for the most part the mountains; pierced hy deep river-valleys, approach to within a few miles of the coast, or even right down to the sea, as at Ras en-Nakura (Scala Tyriorum, Jos. Bell. jud. ii. 10, 2) 2) and Ras el-Ahiad (Pliny's Promunturium Alhum), where a passage had to he cut in the rock for the caravan road which from time immemorial traversed this narrow belt of lowland. From the flanks of Lebanon, especially from the heigbts which lie to the north of the Qssimlyeh or Kasimiya (Lrtany) Rivet, the traveller looks down upon some of the finest landscape in the world; in general' features the scencry is not unlike that of the Italian Riviera, but surpases it in grandeur and a peculiar depth of colouring.

With regard to natural products the country has few worth mentioning; minerals are found in the Lebanon, hut not in any quantity; traces of amber-digging have been discovered on the coast; and the purple shell (murex trunculus and bratdaris) is still plentiful. The harbours which played so important a part in antiquity are nearly all silted up, and, with the exception of Beirat, afford no safe anchorage for the large vessols of modern times. A few bays, facing towards the north, break the coast-line, and small rocky islands are dotted here and there just off the shore. Sidon, Tyre and Aradus, though now connected with the mainland, were built originally upon isiands the Phoenicians preferred such sites, because they were convenient for shipping and easily defended against attack.

The chicf towns of ancient Phoenicia, as we know of them from the Amama tablets (isth century B.c.) and from Egyptian, Assytian and the Oid Testament documents, were the following: Acco (notr Acre or 'AkkI, Jodg. i. 3I), Achzib (now cz-Z7b, ibid.), Anlab (in Ascyrian Mahalliba, ibid.) -three towns on the coast south α Tyre, Kanăh (Josh. xix. 28), Tyre (Phoen. Sor, now Sür). Zarephath or Sarepta (I Kings Ivii. 9 now Sarnfand), Sidon (now Saida), Berytua (Biruta in Egyptian, Biruna in the Amarna tableta, dow Beirlt). Byblus (in Phocn and Hobr. Gehal, now Jebeil), Arka, 80 m . north of Sidon (Gen. x 17, now 'Arkī), Sin (Aseyr. Sianuu, ibid.) Simyra (Gen. x. 18, now Sumri), Marathus (now Amrit) not importapt till the Macedonian period, Arvad or Aradus (in Phoen. Arwad, now Ruid, Gen. $x_{1} 18 \mathrm{i}$ Exek. xovii. 8, 81), the moot northeriy of the great Phoenician towna, and always famoma an a maritime meatc.

Race and Language.-The Phoenicians were an eanly offshoot from the Semitic stock, and belonged to the Canaanite branch of it. Curiously enough in Gen. x. Sidon, the "first-born" of Canann, is classed among the descendants of Ham; hut the tahle of nations in Gen. x^{2} is not arranged upon strict ethnographic principles; perhaps religious antagonism induced the Hehrews to assign to the Canaanites an ancestry different from their own; at any rate the close connexion which existed from an early date between the Phoenicians and the Egyptians may have suggested the idea that both peoples belonged to the same race. The Phoenicians themselves retained some memory of having migrated from older seats on an eastern sea; Herodotus (i. 1 ; vii. 89) calls it the "red sea," meaning probably the

Persian Gulf; the tradition, therefore, seems to show that the Phoenicians believed that their ancestors came origioally from Babylonia. By settling along the Syrian coast they devcloped a strangely un-Semitic love for the sea, and advanced on different lines from the other Camanites who occupied the interior. They called themselves Canaanites and their land Canaan; such is their name in the Amarna tablets, Kinakhi and Kinahui; and with this agrees the statement assigned to Hecalacus (Fr. hisl. gr. i. 17) that Phoenicia was formerly called Xyâ, a name which Philo of Byblus adopts into his mythology by making "Chna who was afterwards called Phoinix " the cponym of the Phoenicians (Fr. hist. gr. iii. 569). In the reign of Antiochus IV. and his successors the coins of Laodicea of Libanus bear the legend "Of Laodicea whlch is In Canaan "; the Old Testament also sometimes denotes Phoenicia and Phoenicians by "Canaan" and "Canaanites" (Isa. xxiii. ri; Obad. 20; Zeph. i. it), though the latter names generally have a more extended sense. But "Sidonians" is the usual designation both in the Old Testament and in the Assyrian monuments (Sidunnu); and even at the time of Tyre's greatest ascendancy we read of Sidonians and not Tyrians in the Old Testament and in Homer; thus Ethbaal king of Tyre (Jos. Aul. viii. 13, 2) is called king of the Sidonians in I Kings xvi. 31. In the Homeric poems we meet with $\mathbf{\Sigma}$ LSbrrox, $\mathbf{\Sigma x b o p i \eta}$ (Od. iv. 618; IL vi. 290; Od. xiii. 285; II. vi. 291) and \$oimacs, фovikn (Od. xili. 272, xiv. 288 seq., \&c.), and both terms together (Od. iv. 83 seq., Il. xxiii. 743 seq. $)^{2}$ And the Phoenicians themselves used Sidonians as a geneml name; thus in the oldest Phoenician inscription known (CIS. I. $5=$ NSI., No. 11), Hiram II. king of Tyreia the 8th century is styled "Ling of the Sidonians." But among the Grecks " Phoenicians" was the name most In use, \$olmuss (plur. of фoinct) for the people and \$ouviny for the land (cf. Phoenix). The former was probahly the older word, and may be traced to фoubs =" "blood-red "; the Canaanite sailors were spoken of as the "red men" on account of their sunburnt skin; then the land frotr which they came was called after them; and then probabiy the original connexion betwcen \$oivis and $^{\text {and }}$ doubt was forgotten, and new forms and meanings were dnvented. Thus фoivis came to mean a "date-palm"; but the dato-palm is not in the least characteristic of Phoenicia, and can hardly grow there; \$oivt ξ in this sense has no connexion with the original meaning of Phocnician. A derivation has been sought elsewhere, and the Egyptian Fenh proposed as the origin of the name; but the word Fenk was apparently used of Asiatic barbarians in general, without any special reference to the Phoenicians (W. M. Müller, Asien u. Buropa, p. 108 seq.). The Lat. Poencs is of course merely an adaptation of the Greck lorm. ${ }^{2}$ Language.-Inscriptions, coins, topographical names preserved by Greek and Latin writers, names of persons and the Punic passages in the Poenulus of Plautus, alt show conclusively that the Phoenician language belonged to the North-Semitic groupy and to that subdivision of it which is called the Canaamite and includes Hetrew and the dialect of Moab. A comparison between Phoenician and Hebrew reveale clowe resemblances both in grammatical forms and in vocabulary; in some respects older featurcs have boen preserved in Phoenician, others are later, others again are peculiar to the dialect; many words poetic or rare or hate in Hebrew are common in Phoenician. Hence we may conclude that the two languages developed independently from a common ancestor, which can be no other than the ancient Capaanite. of which a few words have survired in the Canaanite gloseses to the Amarna tablets (written in Babyionian).4 But in forming an estimate of the lhocnician language it must be remembered that our materiat is scanty and limited in range; the Phoeniciana avefe in no acnse a litcrary people; moreover, with one exception (CIS. i. 5), almosi all the inscriptions are subsequent
ICooke, North-Semitic Inscriptions. (clsewhere abbreviated NSI.), Na. 149 B. 8.
"In this paskage "Phoenicians" is a general name for carriers of commerce, not the inhabitants of a particular country. Similarly "Sidonian "in J. Yi. 209, is taken to mean Semites in gencral. Elow where " Phoemicians" " are merchants, kidnappers, \&c., "Sidoniana " are artists; to indicate nationality boch namea seem to be used indiferenty, e.p. Od, xiii. 272, xiv. 288, xv. 414 .
${ }^{1}$ See especially Pietachmann, Gesch. d. Phönizier, 13 mqq.. and Winckier, Keilinschr. u. d. A. T.: 3 rd ed., 127 .
A vocabulary is given in KAT.' 652 seq.; see further Bohl, Die Sprache d. Amarnabricfo (1, OO).
to the 6th century B.C.; the majority belong to the ath century and later, by which time the language must have undergone a certain amount of decay. Indirectly, however, the Phoenicians rendered one grat eervice to literature; they took a large share in the development and diffusion of the alphabet which forms the foundation of Greek (Herod. v. 58) and of all European writing. The Phoenician letters in their earlier types are practically identical with those used by the Hebrews (e.g the Siloam ioscr. NSI. No. 2), the Moabites (e.g. the Mesha stone, ibid. No. 1), and the Aramaeans of north Syria (e.g- the Zenjirli inscrr. ibid. Nos. 61-63). They panyod through various roodifications in the couroe of time; alter leaving the mother country the script acquires a more cursive. flowing style on the stoncs from Cyprus and Attica; the tendency becomes more strongly marked at the Punic stage; until in the noo-Punic, from the destruction of Carthage (146 B.c.) to the 1 st century A.D., both the writing and the language reached their most degenerate form. As a rustic dialect the language tasted on in North Africa till the 5ih century A.D. In his sermons St Augustine frequently quotes Punic words.

History.-The Phoenicians, in imitation of the Egyptians; claimed that their oldest cities had been founded hy the gods themselves, and that their race could boast an antiquity of 30,000 years (Africanus in Syncellus, p. 31). Herodotus quotes (ii. 44) a more moderate tradition which placed tic foundation of Tyre 2300 years before his time, i.c., c. 2756 B.c. Accorling to Justin (xviii. 3) the Phoenicians, who had long been settled on the coast and occupied Sidon, founded Tyre in the year before the fall of Troy; possibly the date rigs a.c., given by Mcnander of Ephesus (in Jos. Ant. viii. 3، 1 and c. Ap. i. 18) as that from which the cra of Tyre begins, may refer to the epoch which Justin mentions. Little certainty, however, can be allowed to these traditional chronologics. It is probable that in remote ages Babylonia exercised a considerable influence upon Syria and its const towns; but Mr L. W. King has shown that thetradition, which was supposed to conncet Sargon I. (c. 3800 b.c.) with the western land and sca, has been misunderstood; it was the sea in the east, i.e. the Persian Gulf, which Sargon crossed (Chronicles coucernieg Early Bab. Kings, vol. i. ch. 2, (907).
The extension of the Egyption empire in the direction of Asia began about 1600 B.e. under Ahmosi (Aahmes, Amasis) I, the founder of the XVIIIth Dynasty, who carried. his arms into Syria, and conquered at least Palestine and Phoenicia, the latter being the country called De-hi on the Egyptian monuments (Muller, As. w.

Eur. p. 181). Whether the campaign of Thothmes (Tethmosis) I. to the Eaphrates produced any lasting results is doubtful; it was Thothmes III. (1503-1449) who repeated and consolidated the earlier conquest, and established Ebyptian surerainty over all the petly states of Syria and Phoenicia (see Egret: History, I.). For the geography and civilization of Cansan about 1400 n.c. we have valuable evidence in the Egyptian papyrus Anastasi I., which mentions Kepuaa (Gubna. Gebal-Byblus) the holy city, and continues: "Come then to Berytus, to Sidon. to Sarepta. Wherc is the ford of Nat-'ann (? Nahr el-Kasimlyeh, or a town)? Where is 'Eutu (? Usu, Palactyrus)? Another city on the sea is called a haven, D'ar (Tyre) is its mame, water is carricd to it in boats; it is richer in fish than in seads." "But the fullest information about the state of Phoenicia in the isth and 14th centurics b.c. comes from the Amarna tablets, among which aro many letters from the subject princes and the Egyptian governors of Phoenicia to the Pharaoh. ${ }^{1}$ It was a lime of much political disturbance. The Hittites ($q .8$.) were invading Syria; nomads from the desert supported the invasion; and many of the local chitfs were ready to seize the opportunity to throw off the yoke of Egypt. The towns of Phoenicia were

- For the Phoen. incerr. 00 Corposs inscriptionam spmiticarman, pt. i., brought up to date provisionally by Repertuire defpier. sfim. A selection is published by Lidzbarzti, Handomich d. neverem Epigraphih (1898); Cooke, Texthook of North.Scmitic Snderipmioni (1903), with translations and notes: Landau, Beitrige \&. Allerfmens. dOrimets (1899-1906) ; Lidzbarski, Alstem. Texte (1907), pe i.
©See W. M. Mutker, Loc, cii. pp. 57, 172 sq9., 184 sqq. : Jeremios Das A. T. im Lickte d. all. Orients, P. 302 seq. $;$ Records of the Pach ii 102 seg
; Winekler, Tell-el-Am. Letters Nos 37 sqq.; Petrie, Syria and Eave inthe Tdl d Am. Letcrs.
divided; Aradus, Simyra, Sidon supported the rebellion; Ribhabad, the vassal of Byblus, and Abi-melech, kigg of Tyre, held out for Esypt; but while all the towns made professions of fidelity, they were scheming for their own interests, and in the and Egypt lost them all except Byblus. The tablets which reveal chis state of affairs are written in the language and acript of Babylonia, and thus show indirectly the axtent to which Babylonian culture had penetrated Palestine and Phoenicia; at the same time they illustrate the closencss of the relations between the Canaanite towns and the dominant power of Egypt. After the reign of Amenophis IV. (1370-1366) that power collapsed altogether; but his successors attempted to recover in, and Ramses (Rameses) II. reconquered Phoenicia as far as Beirat, and carved three tablets on the rock beside the Nahr elKelb to commemorato his victories; under the XIXth and XXth Dyastios this seems to have remained the northern limit of the Egyptian Empire. But in the reign of Ramses III. (c. 1300) great changes began to occur owing to the invasion of Syria by peoples from Asia Minor and Europe, which ended in the entablishment of the Philistines on the coast near Ashikelon. The successors of Ramsea III. lost their hold over Canaan; the XXIst Dymasty no longer intervened in the affairs of Syria; but Sheshonk (Shishak), the founder of the XXILnd Dynasty, about 928 s.C. endeavoured to assert the ancient supremacy of Egypt (cf. I Kings xiv. 25 sqq.), but his successes were not lasting, and, as we learp from the Old Testament, the powiry of Egypt became henceforward practically ineffective. Not until 608 did z Pharaoh (Necho) lead an Eqyptian army so far north, and he was defeated by Nebuchadremzar. During the period which clapsed befone the rise of the Assyrian power in Syria the Phocpicians were left to themselves This was the period of their development, and Tyre became the leading city of Phoenicia.
Between the withdrawal of the Exyptian rule in Syria and the western advance of Assyria there comes an interval during mopeo: Which the city-states of Phoenicia owned no surerain. trace of The history of this period is mainly a history of Proealde Tyre, which not only rose to a sort of hegemony among the Phoenician states, but founded colanies beyond the seas (below). From 970 to 77^{2}. acc. the bare outline of events is supplied by extracts from two Hellenistic historians, Menander of Ephesus and Dius (largely dependent upon Menander), which have been preserved by Josephus, Ant. viil. 5, 3 and e. Ap. i. 17, 18. From the data given in these passages we learn that Hiram I., son of Abi-bani, rejgned in Tyre from 970 to 936 b.c. He cularged the island-town to the east, restored and enriched the temples, built new ones to Heracles (i.e. Melkarth or Melgarth) and Astarte, founded the feast of the arakening of Herteles in the month Peritius, and reduced the inhabitants of Utica to their allegiance. The Tyrian ennals, moreover, alluded to the connexion between Hirmm and Solomon. Before this time, indeed, the Phoenicians had no doubt lived on friondly terms with the Israelites ${ }^{1}$ (cf. Judges v. 17 ; Gen. vilix. 13); but the two nations seem to have drawn closer in the time of Solomon. 2 Sam. v. II, which brings David and Firam cogether, probably antedates what happened in the following neign. For Solomon's palace and temple Hiram contributed cedar end fir trees as well as workmen, receiving in exchange large annual payments of oil and wine, supplies which Phoenicia must have drawn regularly from Israclite districts (x Kings v. 9, 11 : cf. Ezek. xevii. 17; Ear. iii. 7; Acts xii. 20; Jos. And. xiv. 19, 6); finally, in return for the gold which he furnished for the tempie, Hiram received the grant of a territory in Gailee (Cahul, 1 Kings in. 10-14). This alliance hetween the two monarchs led to a
${ }^{1}$ In Iudges x .12 (cf. s. 6; iii. 3) the Sidonians are mentioned among the opprespors of Isracl; hut there is no record of any invasion of Israel by che Phoenicians, and the statement is due to the postexilic editor who introduced geseralizations of ancient history into the book of Judges.

Jos. AnL viti. 3. I. dates the building of Solomon's temple in the 11th year of Hiram, and 420 years after the foundation of Tyre. This gives a Tyrian eri which began in 1198-1197 s.c., i.a. at the time when the Philistines settied on the const of Canaan, an event
joiat expedition from Briongeber on the Gulf of Akaba (atrictly Aquba) to Ophir (? on the east coast of Arabia, see Opmrs) for purposes of trade. The list of Hiram's successocs given by Josephus indicates frequent changes of dyanty until the tims. of Ithobal L. priest of Astarte, whose reign (887-855) marks a return to more settied rule. In contrast to Hiram I., king of Tyre, Ithobal or Ethbatil is styled in 1 Kings avi. 31 " king of the Sidonians," i.e. of the Phoenicians, showing that in the interval the kings of Tyre had extended their rule over the other Phoenician cities. Under Ethbaal further expansion is recorded; Botrys north of Byblus and Aoza in North Africa are seid to have been founded by him; the more famous Carthage owed its origin to the civil discords which followed the death of Metten I. (830), his next successor hut one. According to tradition, Metten'a son Pygmation (8z0-773) slew the husband of his sister Elisza or Dido; whereupon she fied and founded Carthage (q.0.) in Libya. (813; Justin sviii. 4-6). At this point Jowephus's extracts from Menander come to an end.

From the time of Ethbeal onwards the independence of Phoenicia was threatened by the advance of Assyria. So far back as 1100 B.c. Tiglath-pileser I. had inyaded North Aequites Phoenicia, and in arder to secure a harbour on the andisiren coast he occupied Arvad (Aradus); but no permanent cerace occupation followed. In the gth ceniury, bowever, the systematic conquest of the west began. In 876 в.c. Asqur-naxir-pal III. "washed his weapons in the great sea," and exacted tribute from the kings of Tyre, Sidon, Byblus and pther cities, including Arvad (Keiliaschr. Bibliothak, i. rog). The inscriptions of his son. Shalmaneser II. mention the taking of tribute from the Tyrians and Sidonians in 846 and again in 849; the Byblians are included at the latter date, and amoag the kings defeated at Karkar in 854 or 853 was Metten-baal, king of the Arvadites (ibid. pp. 141, 143, 173). Thus Shalmaneser completed the copquests of his predecestor on the Phoenician coast, and established a supremacy which lasted for over a hundred years and was acknowledged by occasional payments of tribute In 745 Tiglath-pileser III. mentions on his tribute-lists " Hirafm of Tyre "; and here for the first time a piece of native evidence becomes available. The earliest Phoenician inscription at present known (CIS. i. $5=$ NSI. No. 1i) is engraved upon the fragments of a bronze bowl dedicated by a certain governor of Qarth-hadasht (or Karti-Hadasti, "New City," i.e. Citium), "servant of Hirim king of the Sidonians to Baal of Lehanon." It is to he noted that this Hiram II. was not only king of Tyre, as the Assyrian inscription calls him, but of Sidon too; and further, that by this time Tyre had established a colony in Cyprus (g.v.). In Tiglath-pileser's Philistine campaign of 734 Byblus and Aradus paid tribute, and an Assyrian chief officer (the Rab-shakeh) was sent to Tyre and extorted from the king, now Metten or Matton, the large sum of 850 taients of gold (KB. ii. 23). For the period which follows a certain amount of information is furnished by Menander (in Jos. AnI. ix. 14, 2). Elulacus IX., in Assyrian Lulk, who ruled under the name of Pylas, was king of Tyre, Sidon, and other cities at this time (c. 725-690), and at the beginning of his reign suffered from an invasion hy Shalmaneser IV. or Salampsas (Jos.); this was probably the expedition against Hoshea of Samaria in 725; "the king of Assyria... overran all Phoenicia, but soon made peace with them all 'and returned back." In the reign of Sargon Phoenicia itself seems to have been left alone; but the inhabitants of Citium revolted, showing that the authority of Tyre in Cyprus had grown weak; and Sargon received the submission of seven Cyprian princes, and set up in Larnaca (probably in 709) the triumphal stele now in the Berlin Museum (Schrador, Cwneif. Irascr. and O. T., and ed., vol. ii. p. 87). But Elulaeus, according to Mernander, suppressed the revolt of Citiom, and early in the reign of Sennacherib joined the league of Philistia and Judah,
which had comeiderahle effect upon the cities of Phoenicia (above, Justin xviii. 3). In the Tyrian annals (Yoa. c. Ap. i. 18) the refereace was probably to the felling of timber in Lebanon for Hiram's temples: Josephus then misinterpreted this by I Kingh v. 6
in allinace wish Egypt and Eehlopia, which ained al throwing off the oppreasive tyrany of Acsyria; as usual, however, the city-tentes of Phoenicia could not combine even against a common foe, and several broke away from Tyre, so Mensider tells us, and sided with Assyria. In the great campaign of 701 Sennacherib came down upon the revolting provinces; he forced Lult, king of Sidon, to fly for refuge to Cyprus, took his chicf cities, and set up Tuba'lu (Ethbaal) as king, imposing a yearly tribute (KB. ii. 91). The hlockade of Tyre by sea, significantly passed over in Semnacherih's inscription, is described by Menander. The island-city proved to be impregnable, but it was the only possession left of what had been the extensive kingdom of Elulaeus. Sennacherib, however, so far accomplished his object as to break up the combination of Tyre and Sidon, which had growe into a powerful state. ${ }^{1}$ At Sidon the successor of Ethbaal was Abd-milkath; in alliance with a Cilician chief he rebelled egainst Esarhaddon about the year 678 , with disastrous consequences. Sidon was annihilated; Abd-milkath fell into the hands of Esarhaddon, who founded a new Sidon on the meainland, peopled it with foreigners, and called it after his own name The old name, however, survived in popular usage; but the charactor of the city was changed, and till the time of Cyrus the kingdom of Sidon ceased to exist (KB. ii. 125 seq., 145; KAT: 88). Tyre also came in for its share of hardship. Elulaerus was followed by Baal, who in 672 consented to join Tirhali, the Ethiopian king of Egypt, in a rebellion against Assyria. Esarhaddon, on his way to Egypl for the second time, determined to deal out punishment; he blockaded Tyre, and ralsed earthworks on the shore and cut of the water-supply; but he did not capture the city itself. His monument found at Zenjinl represents the great king holding Baal of Tyre and Tirhake of Egypt hy cords fastened in their lips; there is no evidence, however, that he actually took cither of them prisoner. Early in the reign of Assur-bani-pal Tyre was besieged again (668), but Assur-hani-pal succeeded no better than his predecessors. Nevertheless Baal submitted in the end, along with the princes of Gebal and Arvad, Minasseh of Judah, and the other Conaznite chiefs; in the island of Cyprus the Assyrians carried all before them (KB. if. 149 seq., 169, 173). . On his return from the Arabian campaign Assur-bani-pal severcly punished the rebellious inhahitants of Ushu (Palaetyrus) and Akko, and tramsported the survivors to Assyria (ibid. 229). In Phoenicis, as elsewhere, Assyrian rule created nothing and left nothing behind it hut a record of barbarous conquest and extortion. An interesting sidelight is thrown upon this period by the list of the Thalassocracies in the Ckronicon of Eusebius (p. 226, ed. Schoene), which places the 45 years of the sea-power of Phocnicia at a date which, with much probability, may be conjectured to lie between 709, when Cyprus suhmitted to Sargon, and 664, when Egypt threw of the rule of Assyria. If this dating is correct, and the Phoenician sca-power was at its height during these years, we can understand why Tyre gave so much trouble to the Assyrian tings.'

In the last erisis of the dying power of Assyria the Egyptians for a short time laid hands on Phocnicia; but after their defeat Tho Noo at the hattle of Carchemish (605), the Chaldaeans Bemploning became the masters of western Asia. Jereminh's porod, cirs-allusion (xiv. 22) in 604 to the approaching downfall Ease.c of the kings of Tyre and Sidon and the const-land beyond the sea, i.e. the Phoenician settlements on the Mediterranean, seems to imply that the Phoenician states recovered some measure of independence; if they did it cannot have lasted Jong. In 588 Apries (Pharaoh Hophra) made an attempt

[^36]to displace the Chaldaean supremacy; he defoated Tyre and Sidon, and ternorized the other cities into subminaion (Fierod. ii. 16r; Diod. Sic. 1. 68). Some of the Phoenician chiefi, among them Ithobal II., the new king of Tyre, while forced to yield to a change of masters, were bold enough to declare their hostility to the Babylonians. This state of affairs did not escape the vigilance of Nehuchadrezzar. After the fall of Jerualem he marched upon Phoenicia; Apries withdrew his army, and the siege of Tyre began. For thirteen years the great merchant city held out (585 5-573; Jos. c. Ap. i. a1; cf. Erek. axvi. 1 seq.). Euckid says that Nehuchadrezzar and his host had no reward for cheir heavy service against Tyre, and the presumption is that the city capitulated on favourable terms; for Ithobal's reign ends with the close of the siege, and the royal family is subsequently found in Babylon. The ling appointed hy Nebuchadrezzar was Basl 11. (574-564), after whose death a repuhlic was iormed under a single suffete or " judge" (shofet). Josephus (loc.cif.) fagain our authority for the changes of government which followed until the monarchy was revived. At length under Hiram III. Phoenicia passed from the Chaldaeans to the Persians (53^{8}), and at the same time Amasis (Abmoai) II. of Egypt occupied Cyprus (Herod. H2. 182). There seems to have been no struggle; the great siege and the gobsequent civil disorders had exhausted Tyre, and Sidon took its place as the leading state. About this time, too, Carthage made an effort for independence under Hanno the Great (538-521), the real founder of its fortunes; the oid dependence upon Tyre wats changed for a mere relation of piety observed by the annual sending of delegates (ecopol) to the festival of Melikarth (Arrian ii. 24; Polyb. xxxi. 20, 12). The disasters and humillations which befell Tyre during this and the foregoing period might suggest that its prosperity had been seriously damaged. But Tyre always counted for more in commerce than in politics; and in the year 586, just before the great siege, Ezeckiel draws a vivid picture (ch. xxvii.) of the extent and spleadour of its commendal relations. Even when cut off from its posetasions on the mainland the city itself was not captured; its seafaring. trade went on; and though by degrees the colonies were lost; yet the ties of race and sentiment remained strong enough to hind the Pboenicians of the mother-country to their kindred beyond the seas.

Conuliutiom.-At this point it is convenient to mention what little is known about the constitution of the Plocenician states All Canaznite analogy apeaks for kingship as the oldext form of Phoenicimn governmemt. In the native inscriptions the chiva of the cing in Phoenicia itself and in Cyprus is almaya, anllod king. The royal houses claimed divine descent, ${ }^{1}$ and the king could not be chowen outside their members. His power, however, was limited by the wealthy merchant families, who posessed great influence in publie affalrs; shus it was poustble for wor or peace to be decided at Tyre in the king's absence, or at Sidon spainat his will (Arrian il. 15 and 16; Curtius iv. 1. 15). The priest of Melkarth at Tyre wes the second man in the kingdom. Associated with the prince was a council of ciders; such was the ease at Gebal (Byblus) from the earliest times to the latest (Exsek, xovili. 9); at Sidon this counncil conaisted of roas members (Diod. mi. 45). porhaps also at Tyre? Inscriptions of the 3nd and 2nd centuries B.c. mention a Rab (chicr) in Sidon, Cyprua and Gaulus (Gozo); what his position was it is difficult to say in the colonics he may have been a district governor. Dusing Neburchadrezrar's time, ns we have metm, a republic took the place of the monarchy at Tyre, and the government was adminittered by a succession of suffeten (judges); they beld office for short terms, and in one instance two ruled together for six years. Much later, in the 3 rd century s.c., an inscription from Tyre mentions a suffece (NSI. No. 8) without adding more to our knowledge. Carthage, of course. wais governed by two suffetex, and thene officern are frequently named in connexion with the Carthaginian colonics (NSI. P. 115 seg.): but we must be carcful not to draw the inference that Phoenicia itself had any such magistrates Under the Persiana a federal bond was formed comprising Sidon, Tyre and Aradus, whone duty it was to contribate 300 triremes to the Persian fleet (Herod. vii. 89).

[^37]the lenerr towas being under the commend of the great cities. Aradas presided over three eubordinate townshipe (Arnan ii. 13); Berytuc, which had no king of its own, probally formed with Byblus a ingte kingdom; wiile Tripolis consisted of a federation of three citics separated by a stadium from each okher. and provided a meetbysplace for the federal council, which waschinelly occupied il dealinga with the Persian gaverament (Diod xvi. 4). But (ederation on a Larger scale was never possible in Phoenicua, for the reason that no sense of political unity existed to bind the different states roget her. Commercial intercsts dominated everything ebse, and wille these stimulated a municipal tife mot wichout vigour, civil diaciptine and loyality were but licebly felt. On occation the towns could defend their indepeadence with strenuous courage; the higher qualities which make for a progressive sational life the Phoenticians did not possers.

Phoenicis now became part of the fifth satrapy of the Pervian Empire, and entered upos a spell of comparative peace and 7ioporsiengrowing prosperity. Favouned for the sake of popel cietheir floct, and having common intereats against $2 u s$ Ge Greece, ${ }^{1}$ the Pboenicians wers amons tho most loyal subjects of the empite. At this period Sidon oceupied the position of leading stato; in the fleet her king ranked mext to Kertes and befoto the king of Tyre (Herod. viil. 67); her siteation afforded advantages for expassion which Tyre on its small and densely populated island could not rival. The city was distinguished by its cosmopolitan character; the satrap resided there when be came to Phoenicia, and the Persian mosarch had his paradise outside the walls. In the first half of the 4 th century Straton I. (in Phoen. "Aod'asheart or Bod-'ochars) was king, e. 374-362. Ho cuhivated friendly relations with Athens, indicated in a docree of proxmia (Michel, Rec. dinuser. gr. No. 93 - CIG. No. 87); his court was fumed for its hurury; and the extent to which phil-Hellenic tendencies prevailed at this time in Sidon is shown by the royal surcophagi, noble specimens of Greek art, which have been excavated in the necropolis of the city. It was in the reign of Straton that Tyre fell into the hande of Evasoras, king of Salamis, who had already supplanted Phoenician with Greek civilization in Cyprus (Isocr. Egag. 6n, Ponces. 161; Diod. Iv. 2). Straton made friends with Nicocies, son of Evagoras, and with him camo to an untimely end through their implication in the great revolt of the satraps, 362 s.c. (see the story of Straton's death in Jerome, ado. Jowim. i. 45). A new rewolt of Sidon against the Persians took place under King Tennes owing to the insults offered to the Sidonians at the federal diet in Tripolis. With the aid of Nectanebus of Egypt, who had grievances of his own to avenge, the Sidoaians carried the rest of Phoenicia with them and drove the catraps of Syria and Cilicia out of the country. Tennes, bowever, betrayed his people and opened the city to Artaverces III.; the inhabicents to the number of 40,000 are sald to have set fire to their houses and perishied; Tennes himself was oxecuted after he had served the ends of the great king (346 s.c.; Diod. 2vi. 4I-45). The last king of Sidon was Streton II. (Abdiashtart, 346-312) before the Persian Empire came to an ead:

Towards the close of the 5th century the Phoenician coins begin to supplement our himetorical soarcea (sce Nomasmarics). From the time of Darius the Persian monarchs issued a gold coinage, and reserved to themselves the right of doing so; but they allowed their matraps and yassal states to coin silver and copper moncy at discretion. Hence Aradur, Byblus, Sidon and Tyre issued a coinage of their own, of which many epecimens exist: the coins are stamped as a rule with emblem or name of the city. sometimes with the nave of the ruler, ${ }^{3}$ Thus from the coins of Byblus we learn the mames of four kings, "El-pa'دl, Az-ba'al (between 360 and 340 B.e.), Adar-melek, Ainel; from the coins of the other cities it is difficult
'The naval expedinions against Creece in $480-449$ and Sparta
in $396-3^{877}$ were mainly firted out by Phocnicia. See PEesia: Anceust Hestory, for the whole of this section.
${ }^{2}$ Justin xvifi. 3 tells a story about Tyre during thin period: the city, after being worn out though not defeated in long wars with the Persiarts, was so enfeebled that it was seixed by the daves. tho sose and massacred their masters; one Straton alone eacaped and wate aftermards.made king. The refercnce to the Perians is obvioundy incorrect; the story, if it can be taken eriounly at all, must reler to one of the siexcs by the Assyrians or Chaldaeans, and, as Meyer augrests (Ency. Brb. col. 3760), may be derlved from the mory of Abdalonymus of Sidon mentioned below.
'Soe especially E. Babicion, Les Porses Achimbiniles, and of. NSI. No. 149
to obtain mach Informacion. The native' fuacriptione, however now beeome available, though most of them belong to the period which follows, and only a few have been discovered in Ptoenicia itself. One of che earliest of these in the inscription of Byblus (CIS. i. I $=$ NSI. Na 3), dating from the Perslan period; it records a dedication made by Yehaw-mille, ling of Gebat, and mentions the same of the king's grandfiather, Uri-mill, but the exact dates of their reign are not given.
When Alezander the Great entered Phoenicia after the battle of Issus (333 日.c.), the kings were absent with the Persian fleek in the Aegean; but the cities of Aradus, Byblus and ghe Sidon welcomed him readily, the last-named showing moonoonthe special zeal against Persia. The Tyrians also offered Prortoc submission, but refused to allow the conqueror $333-69$ B.C. to enter the city and sacrifice to the Tyrian Hieracles. Alexander was determined to make an example of the first who should offer opposition, and at once began the siege. It lasted seven months. With enormous toil the king drove out a mole from the mainland to the island and thos brought up his engines; ships from the other Phoenician towns and from Cyprus lemt him their aid, and the town at length was forced in July 332; 8000 Tyrians were slain, 30,000 sold as slaves, and only a few notables, the king Azemilkos, and the festal envoys from Carthage who had taiken refuge in the sanctuary of Melkarth, were spared (Diod. xvii. 40-46). It is not unlikely that Zech. ix. 2-4 reiers to this famous sicge. For the time Tyre lost its political existence, while the foundation of Alexandria presently changed the lines of trade, and dealt a blow even more fatal to the Phoenician cities.

During the wars of Alexander's successors Phoenicia changed hands several times between the Egyptian and the Syrian kings Thus in 312 Tyre was captured from Antigonus by Ptolemy 1 ., the ally of Seleucus; in 287 it passed into the dominion of Seleucus; in 275 again It was captured hy Ptolemy II. Philadelphus, and began to recover itself as an autonomous municipality. From the year 275 "the people of Tyre" reckoned their era (CIS. i. $7=N S I$. No. 9, cf. 10). Tho Tyrian coins of the period, stamped with native, Greek and Egyptian symbols, illustrate the traditional relations of the city and the range of her ambitions. A special interest attaches to these silver tetradrachms and didrachms (staters and halfstaters), because they were used hy the Jews for the payment of the temple tax as "¿shekels of the sanctuary" (NSI. pp. 351, 44).

Among the Phoenician states we know most about Sidon during this period. The kingship was continued for a long time. The story goes that Alexander raised to the throne a member of the royal family, Abdalonymus, who was living in obscure poverty and working as a gardener (Justin xi. 10; Curt. iv. 1; Diod. xvii. 47 wrondly connecting the story with Tyre). In 312 Ptolemy, then master of Phoenicia, appointed his general Pbilocies king of the Sidonians, and a decrec in honour of this king has been found at Athens (Michel, No. 387, cf. 1261); but he cannot have reigned long. For at the end of the 4 th and the beginning of the 3rd century we have evidence of a native dynasty in the important inscriptions of Tabnith, Esh-mun-inzar and Bod-'ashtart, and in the series of inscriptions (repeating the same text) discovered at Bostan esk-Sheligh ncar Sidon (NSI. Nos. 4, 5, 6 and App. i.). The last-named texts imply that the first king of this dynasty was Eshmun- azar; his son Tabnith sueceeded him, then came Eshmun-'azar II., who died young, then Bod-'ashtart, both of them grandson of Eshmun-'azar I. With Bod-'ashlart, so far as we know, the dynasty came to an end, say about 250 B.C; and it is not unlikely that the Sidonians recioned an era of independence from this event (NSI. p. 9S n.).
Of the other Phoenician cities something is known of the history of Aradus its era began in 259 B.C.. when it probably became a republic or frec city. White the rest of Phocnicia passed under the
-Tbe date of this dynasty has bura much disputed; but the reference to "the lord of kings" in the great inscr. of Esthmun'azar (line 18) pointa to the Prolemace period, For the Peryian monarch is always styled "king of kings." The interpretation al many gkicals of the macr. from Bostan enh-Sheth is atill uncertuin.
rule of Prolemy II. and hin suceessors between 28r and 197, Aradus remained in the kingdom of the Selcucids, who greatly favoured the city and increased its privileges (Strabo xvi. 2, 14; Polyb. v. 68). But its subject-towns availed themselves of the political changes of the period to throw off their allegiance; Marathus from 27^{8} begins to issue a coinage bearing the heads of the Ptolemies, and later on Karne asserted its independence in the same way; but in the end the Aradians recovered their supremacy. Diodorus records a barbarous attempt made by the Aradians, about 148 B.c. to destroy Marathus, which was frustrated by the piry and courage of an Aradian fisherman (xxxiii. 5). At last in the time of Tigrance, the Armenian holder of the kingdom of the Seleucids, or soon afterwards, the coins of Marathus cease; the city was levelled to the ground, and its land, with that of Simyra, was parcelled out among the Aradians (Strabo xvi. 2, 12). Akko issucd coins of its own down to 267 p.c., if the reckoning was from the Seleucid era (312 b.c.) ; in 267 it was converted into a Greek city by Ptolemy, and called Piolemais (Polyb. iv. 37; Strabo xvi. 2, 25; cf. Acts xxi. 7). Laodicea of Libanus was founded by Seleucus Nicator on the plain south-east of Hemesa (Homs) in the region of the upper Orontes, and became an important city; its coins of the 2nd century b.c. bear the interesting legend in Phoemician, "O Landicea which is in Canaan " (NSI. g .349 seg.). Another Laodicea "by the sea" (ad mars). also of Seleucid foundation, is probably to be identified with the ruined site called Umm el-'A wâmid near the coast between Tyre and Akko; several Phoenician inscriptions have been found there (e.g. CIS., i. $7=$ NSI. No. 9; Clermont Canneau, Recmeil, t. v.).

After the death of Antiochus IV. Epiphanes in 164 g.c., revolts and adventurers made their appearance in many parts of Syria, heralding the collapse of the kingdom of the Scleucids. Berytus was dest royed by the usurper Trypho in 140 B.c. Tyre In 120 and Sidon in isi received complete independence, and inaugurated new eras from these dates. Byblus and Tripolis fell into the hands of "tyrants" (Strabo xvi. 2, 18; Jos. Ant. xiv. 3, 2), and Arab robbers plundered their territorics from strongholds in the Lebanon. From 83 - 69 d.c. the entirc kingdom was held by the Armenian Tigranes.
At last in 64 B.c. Pompey arrived upon the seene and established order out of chaos. Phocnicia was incorporated into the Roman

Romen

rulas province of Syria; Aradus, Sidon, Tyre and Tripolis were confirmed in their rights of sclf-government and in the possession of their territories. In 14 b.c. Augustus rehuilt Berytus as a Roman colony and stationed two legions there; later on Ptolemais, Tyre and Sidon received colonial status. Under the beneficent government of Rome the chicf towns prospered and extended their trade; hut the whole character of the country underwent a change. During the Macedonian period Greek influences had been steadily gaining ground in Phoenicia; relations with the Greek world grew closer; the native language fell into disuse, and from the beginaing of the Roman occupation Greek appears regularly in inscriptions and on coins, though on the latter Phoenician legends do not entircly vanish till the and century A.D.; while the extent to which Hellenic ideas penetrated the native traditions and mythologies is seen in the writings of Philo of Byblus. For the purposes of everyday life, however, the people spoke not Greck. but Aramaic. As clsewhere, the Roman rule tended to obliterate characteristic festures of national life, and under it the native language and institutions of Phoenicia became extinct.

Navigalion, Trade, Colonics.-The Phoenicians were essentially a seafaring nation. Fcarless and patient navigators, they ventured into regions where no one else dared to go, and, alwoys with an cye to their monopoly, they carcfully guarded the secrets of their trade routes and discoverics, and their knowledge of winds and currents. At the beginning of tbe 7th century b.c. a Phoenician fiect is said to have circumnavigated Africa (Herod. iv. 42). To the great powers Phoenician ships and sailors were indispensable; Scnuacherib, Psammetichus and Necho, Xerxes, Alexander, all in turn employed them for their transports and sea-fights. Even when Athens had developed a rival navy Greek observers noted with admiration the discipline kept on board the Phoenician ships and the skill with which they were handled (Xen. Oec. viii.); all the Phoenician vessels from the round merchant-boat (railios-after which the island of Gaulus, now Gozo, near Malta was called) to the great Tarshish-ships, the "East-Indiamen" of the ancient world, excelled those of the Grecks in speed and equipment. As E. Meyer points out,
the wat between the Greeks and the Persians was mainly a contest between the sea-powers of Greece and Phoenicia. At what period did Phoenicia first rise to be a power in the Mediterrancan? We are gradually approaching a solution of this obscure problem. Recent discoveries in Crete (g.v.) have brought to light the existence of a Cretan or "Minoan" sca-power of remote antiquity, and it is clear that a great deal of what used to be described as Phoenician must receive quite a different. designation. The Minoan sea-power was at last hroken up by invaders from the north, and a Carian rule became dominant in the Acgean (Herod. i. 171; Thucyd. 1. 4, 8). It was a time of disorder and conflict due to the immigration of new races into the ancient seats of civilization, and it synchronised with the weakening of the power of Egypt in the countrics which bordered on the eastern Mediterrancan. This was in the 12 th ceatury b.c. The Tyrian trader saw that his opportunity was come, and the Aegcan lay opea to his merchant vessels. Where much is still obscure, all that seems certairt is that the antiquity of Phoenicia as a sea and trading power has been greatly exaggerated both ia encient and in modern times; the Minoan power of Cnossus preceded it by many centuries; the influence of Phoenicia in the Aegean cannot be carried beck much carlier than the rath century b.c., and, comparalively speaking, it was "foreign, late, spotadic."
A vivid description of the Phoenicians' trade at the time of Tyre's prosperity is given by Ezeiciel (xavii. 12-25), and It shows how extensive were their commercial relations not only by sea, but by land as well. It was they who distributed to the rest of the world the wares of Egypt and Babylonia (Herod. i. I). From the lands of the Euphrates and Tigris regular trade-routes led to the Mediterrancan with trading-stations on the way, geveral of whicb are mentioned by Ezekiel (xxvii. 23). In Egypt the Phoenician merchants soon gained a foothold; they alone were able to maintain a profitable trade in the anarchic times of the XXIInd and XXIIIrd Dynasties ($825-650$ B.c.), when all other foreign merchants were frightened away. Though there were never any regular colonies of Phoenicians in Egypt, the Tyrians had a quarter of their own in Memphis (Herod. ii. 112). The Arabian caravan-t rade in perfume, spices and incense passed through Phoenician hands on its way to Greece and the West (Herod. iii. ro7); these articles of commerce were mainly produced not in Arabia, but in East Africa and India, and the trade had its centre in the wealthy state of Sheba in Yemen. Between Israel and Phoenicia the relations naturally were close; the former provided certain necessaries of life, and received in exchange articles of luxury and splendour (Ezek. xxvii. 16-18). ${ }^{3}$ Israelite housewives sold their homespun to Phoenician pedlars (Prov. xxxi. 24 R.V.M.); in Jerusalem Phoenician merchants and-money-lenders had their quarter (Zeph. i. 11), and after the Return we hear of Tyrians selling fish and all manner of ware in the city (Neh. xiji. 16), and introducing other less desirable imports, such as foreign cults (Isa. Lxy. iv). The Phoenician words which made their way into Greek at an early period indjcate the kind of goods in which tbe Phoenicians traded with the West, or made familiar through their commerce; the following are some of them-X кimpos, ф0ккor, $\mu \nu \mathrm{a}$, та入入axis, Barrinos. Another valuable article of commerce which the Phoenicians brought into the market was amber. They can hardly liave fetched it themselves from the Baltic or the North Sea; it came to them by two wellmarked routes, one from the Baltic to the Adriatic, the other up the Rhine and down the Rhone. A deposit of amber has also been found in the Lebanon, and perhape aisi Phoericians worked this and concealed its origin.
${ }^{1}$ Burrows, Discoveries in Crete ($\mathbf{r g 0 7}$), $\mathbf{1 4 0} \mathbf{s q q}$. It may be noted that the traditional or eonjectural dates based upon the list of the Thalassocracies preserved by Euscbius carry us backMo the 1 the century B.c. See Professor John L. Myres's essay referred to above. sin1 (4).
${ }^{1}$ See Eupolemus ($\mathbf{t 4 0}-100$ b.c.) quoted by Aleminder Polyhistor, who, in a supposed letrer from Solomon to the kiag of Tyre mentions the lood-supplice required by the Tyrians and promisod from Palestine (Fr. Hist. Gr. iii. 226).

The Phoenician colonies were all supposed to have been founded from Tyre: with regard to tho colonics in Cyprus and north Alrica this was undoubtedly true. Cyprus posesesed resources of timber and copperwhich could not fail to tempt the keen-eyed traders across the water, who made Citium (from Kittim, the name of the original non-Semitic inhabitants) their chief settlement, and thence extablished themselves in Idalium, Tamassus, Lapethus, Laraka, Qarth-hadasht (Karti-hadasti) and other towns. In the inscriptions of the 4 th to 3 dd centuries, the Phoenician potentates in the island call themselves "kings of Kition and Idalion" (NSI. pp. $55-89$). But the Phomnician rule was not so amcient as used to be eupposed. At an early period Greeks from the south coast of Asia Minor had settled in Cyprus before the Phoenicians founded any colonies there; and it is noticeable that in the Assyrian trihute-lists of the latter half of the 7th century (KB. Ii. pp. 149, 241) not one of the ten Cyprian kings mentioned appears to be Phoenician by mame. Menander states (Jos. Ant. ix. 14, 2) that the kings of Tyre ruled over Cyprus at the close of the 8th century; but a clear proof that the Phoeniclan rule was neither ancient nor uninterrupted is given by the fact that the Cyprian Greeks took the trouble to invent a Greek cunciform character (Cypriole) modelled on the Asyrian.

Homer represents the Phoenicians as present in Greek waters for purposes of traffic, but not as settlers (II. $\mathbf{x x i i i}$. 744). They occupied trading-stations on some of the Acgean islands and on the Isthmus of Corinth. One of their objects was the collection of murex, of which an enormous supply was needed for the dyeing industry; specially famous was the purple of the Laconian waters, the isles of Elishah of Ezek. xxvil. 7. But a great deal of what was formerly assignod to Phoenician influence in the Acgoan at an early period-pottery, ornaments and local myths -must be accounted for by the vigorous civilization of ancient Crete. In the Greek world the Phoenicians made themselves heartily detested; their characteristic passion for gain (rd中enoxphwares, Plato, Rep. iv. 435 E.) was not likely to ingratiate them with those who were compelled to make use of their services while they suffered from their greed.

Farther west in the Mediterranean Phoenician settlements were planted first in Sicily, on the south coast, at Heracles or Ras Meiqarth; the islands between Sicily and Alrica, Melita (Malta) on account of its valuahle harbour, Gaulus and Cossura were also cccupied (Diod. v. 12); and a beginning was made with the colonization of Sardinis and Corsica; but farther west still, and on the Atlantic consts to the right and left of the straits, more permanent colonies were established. It was the trade with Tarshish, i.e. the region of Tartessus in south-west Spain, which contributed most to the Phoenicians' wealuh; for in this region they owned not only profitable fisheries, but rich mines of silver and other metals. The profits of the trade were enormous; it was said that even the anchors of ships returning from Spain were made of silver (Diod. v. 35). From Gadeira (Pomic Gudzr, Lat. Gedes, now Cadiz), the town which they built on an island near the mouth of the Guadalquiver, the Sidonian ships ventured farther on the ocean and drew tin from the mines of nortb-west Spain or from the richer deposits in the Cassiterides, i.e. the Tin Islands. These were discovered to be, not a part of Britain as was imagined at first, hut a separate group by themselves, now known as the Scillies; hence it is improbable that the Phoenicins ever worked the tin-mines in Cornwall.
The rich trade with Spain led to the colonization of the West. Strabo dates the settlements beyond the Pillars of Hertules soon after the Trojan War (i. 3, 2), in the period of Tyre's first expansiom. Iixus in Mauretania, Gadesand Utica, are said to have been founded, one after the ofher, as far back as the 12 th century 日.c. Most of the African colonies were no doubt younger; we have traditional dates for Aoza (887-855) and Carthage (8x3). A large part of North-west Africa was colonized from Phoenicia; owing to these firt settlers, and aker them to the Carthaginians, the Phoenician language became the prevailing one, just as Latin and Arabic did in later times, and the country ansumed quite a Phoepiciap character.

In the dayy of Tyre's greatness'her power rested directly on the colonies, which, unlike those of Greece, remained subject to the mother-city, and paid tithes of their reveaues to its chief god, Melqarth, and sent envoys annually to his feast. Then at the beginning of the 8th century B.c. the colonial power of Tyre began to decline; on the mainiand and in Cyprus the Assyrians gained the upper hand; in the Greek islands the Phoenicians had already been dieplaced to a great extent by the advancing tide of Dorian colonization. But as Tyre decayed in power the colonies turned more and more to Carthage as their natural parent and protector. For effective control over a colonial empire Carthage had the advantage of situation over far-away Tyre; the traditional bonds grew lax and the ancient dues ceased to bo praid, though as late as the middle of the 6th century Carthage rendered tithes to the Tyrian Melqarth. And the motber-country cherished its chams long after they had lost reality; in the sad century B.C., for example, Sidon stamped her coins with the legond, "Mother of Kambe (i.. Carthage), Hippo, Kition, Tyre" (NSI. P. 352).
Mamefaclures, Insomations. Arl.-From an eariy date the towns of the Pboenician coast were occupicd, not only with distributing the merchandive of other countrics but with working at industries of their own: eapecially purpledycing and textile fabrics (1l. vi. 289 s99.). metal work in siver, gold and clectrum (Il. xxiti. 741 sq9.; Od iv. 615 eqg., xv. 458 eqq.), and glass-work, which had its scat at Sidop. The iron and copper mincs of Cyprus (not Sidon, as Homer implics, α. xv. 424) furnisbed the ore which was manulactured into articles of commerce ${ }^{1}$ Egyptian monuments frequently mention the vesels of gold and silver, iron and copper, made by the Dahi, i.e. the Pboenicians (W. M. Muller, As. n. Eur. 306); and in Cyprus and at Nimrud bronse and silver paterae have been found, engraved with Egyptian designs, the work of Phoenician artists (see tablecases Cand D in the Nimrud gatlery of tbe Brit. Mus). The invention of these various arts and industries was popularly asaribed to the Phoenicians, no doube merely because phocnician traderis brought the products into the market. But dyeing aind embroidery probably came from Babylon in the first instance: glast-making ecems to have been borrowed from Efypt; tbe invention of arithroetic and of weights and meesumes must be haid to the credit of the Babylonians. The ancienta believed that the Phoenicians Invented the use of the alphabet (e.E. Pliny, N.F. V. 13, cf. vii. 57; Lucan. Bell. Civ. iii. 220 seq.); but it is unlikely that any genuine tradition on the subject existed, and though the Phoenician theory has found favour in modern times it is open to much question. The Pboenicians cannot be said to have invented any of the artsor Indostries, as the anciest morld imazined; but what they did was something hardly less meritorious: they developed them with singular skill, and disseminated the knowledge and use of them.
The art of Phoenicia is characterized generally by ite dependence upon the art of the neighbouring races. It struck out no original line of its own, and borrowed freely from foreign, especinlly Egyptian. models Remains of sculpture, engraved bronzes and gems, show clearly the source to which the Phocnician artists went for inspiration; for example, the uracus-fricre and the winged disk, the ankh or symbol of iife, are Egyptian designs frequently imitated. It was if the times of the Persian monarchy that Phoenician art reached its higheat deyelopment, and to this period belong the oldest sculptures and coins that have come down 10 us. A characteristic tpecimen of the former is the stele of Yehaw-milk, king of Gebal (CIS. i. 1), in which the king is represented in Persian dress, and the goddess to whom he is offering a bowl looks exactly like au Egyptian lsis-Hathor; the inscription mentions the various objects of bronze and gold, engraved work and temple furniture, which the king dedicated. The whole artistic movement in Phoenicia may be divided into two great periods: in the first, from the earliest times to the $4^{\text {th }}$ century B.c., Egyptian influence and then Babylonian or Asiatic influence is predominant. but the national element in strongly marked; while in the sccond, Greck influesce has obtained the mastery, and the native element, though making itself felt, is much less obtrusive. Throughout these periods works of art. such as atatues of the gods and sarcophagi, were imported direct at firat from Egypt and afterwards mainly from Rhodas. The oldeat example of native sarcophagi are copied from Egyptian mummy-cases, painted with colours and ornamented with carvinys in low relief; tomards and during the Greek period the contours of the body begin to be marked mone clearly on the cover. The finest sarcophagi that have been found in the necropolis of Sidon (now ia the Imperial Museum, Constantinople) are not Phocnician at all. but exquisite specimens of Greek art. The Phoenicians spent much care on their burial-placen, which have furnished the most important

[^38]monuments left to us. The tombs are subterrancan chambers of varied and often irregular form, sometimes arranged in two storeys, sometimes in several rows one behind the other. While in early times a mere perpendicular shalt led to these excavations, at a later date stairs were constructed down to the chambers. The dead were buried either ia the floor (often in a marcophasus), or, according to later custom, in niches. The mouthe of the tombs were walled up and covered with slabs, and occasionally cippi (Phoen. masszboth) were set up to mark the spot. The great sepulchral monuments, popularly called magharil, i.e. "spindica," above the tombs near Amrit, have peculiarities of their own; some of them are adorned with lions at the base and with roofs of pyramidal shape. Besides busti and figurines, which belong as a rule to the Greck period, the smaller objects usually found are earthen pirchers and lamps, glaso-wares, tesserse and gema. Of buildings which can be called architectural few specimens now exist on Phoenician soil, lor the reason that for ages the inhabitants have used the ruins as convenient quarrics. Not a vestige remains of the great sanctuary nil Melqarth at Tyre; a few traces of the temple of Adonis near Byblus were discovered by Renan, and a peculiar mausoleum, Burj al. Beazaq, is still to be seen near Amrit; secent excavations at Bostan esh.Shëkh near Sidon have uncarthed parts of the enclosure or foundations of the temple of Eshmun (NSI. p. 401); the conduits of Ras el-Ain, south of Tyre, are considered to be of ancient date. With regard to the plan and design of a Phoenician temple. it is probable that they were in many respects similar to those of the temple at Jerusalem, and the probability is confirmed by the remains of a sanctuary near Amrit, in which there is a cella standing in the midst of a large court hewn out of the rock, together with other buildings in an Egyptian style. The two pillars before the porch of Solomon's temple (i Kings vii. 21) remind us of the two pillars which Herodotus saw in the temple of Melgarth at Tyre (Herod. ii. 44), and of those which stood belore the temples of Paphos and Hierapolis (see W. R. Smith, Red. of Seas. p. 468 seq.).

Religion.-Like the Canaanites of whom they lormed a branch, the Phoenicians connected their religion with the great powers and 7 TH Procalelat Gede processes of nature. ${ }^{1}$ The gods whom they worshipped belonged essentially to the earth; the fertile field, trees and mountains, headlands and rivers and springs, were believed to be inhabited by different divinities. who were therefore primarily local, many in number, with no one in particular supreme over the rest. It seems, however, that as tima weot on some of them acquired a more extended character; thus Ba'al and Astarte assumed celestial attributes in addition to their carthly ones, and the Tyrian Melqarth combined a celestial with a marine aspect. ${ }^{2}$ The gods in general were called 'elonim; 'clim; Plautus uses alonium valonuth for "gods and goddesses:' (Poen. v. 1, 1). These plurals go back to the singular form 'EI, the common Sernitic name for God; but neither the singular nor the plural is at all common in the inscriptions ($N S I_{\text {i }}$ pp. 24, 41, 51) ; El by itself has been found only once; the fem. 'Elath is also rare (ibid. pp. 135. 158). The god or goddess was generally called the Ba'al or Ba'alath of such and such a place, a title which was used not only by the Canaanitcs, but by the Aramaeans (Beel) and Bahylonians (Bel) as well. There was no one particular god called Baal; the word is not a proper name but an appellative, a description of the deity as ouncer or mistress: and the same is the case with Milk or Melek, 'Adon, 'Amma, which mean king lord, mother. The god himself was unnamed or had no name. Occasionally we know what the name was: the Baal of Tyre was Melqarth (Melkarth). which again means merely" King of the city "; similarly among the Aramacans the Ba'al of Harran was the moon-god Sin. As each city or district had its own Ba'al the author of its fertility, the "husband" (a common meaning of ba"al) of the land which he fertilized, wo there were many Ba'als, and the Old Testiment writers could allude to the Ba'alim of the neighbouring Canajnites. Sometimes the god received a distinguishing attribute which indicates an association not with any particular place, but with some special characteristic; the most common forms are Ba'al-hammann, the chief deity of Punic north Africa, perhaps " the glowing Ba'al,'" the god of fertilizing warmth, and Ba^{\prime} 'al-shamém," Ba al of the heavens." The latter deity wal widely venerated throughout the NorthSemitic world; his name, which docs not appear in the Phoenician inscriptions before the 3 rd century b.c., implics perhaps a more universal conception of deity than existed in the eariicr days. ${ }^{2}$
${ }^{1}$ Cf. Hannibal's oath to Philip of Macedon: beside the named deities he invokes the gods of " sun and moon and earth, of rivers and meadows and waters " (Polyb. vii. 9),
${ }^{\text {B }}$ Thls is well brought out by G. F. Hill. Chwert Qwarterly Rev. (April 1908), pp. $\mathrm{tI8-141} \mathrm{}$, the Phoenician coins.
" To the lord 'E1, which Ba'al-khillem . . . vowred," \&re.; Clermont-Ganneau, Recueil, v. 376 .
"Probably "the detested thing that catuees horror " (coe pio) of Dan. xii. II, xi. 31. \&c., is an intentional diefigurement of oor hys. The mame han been found on on iraportant Aramaic Inacr. from North Syria. dating c. 800 घ.c., in which Zakir, king of Hamath and Laiash frequently apeaki of his god Be'el-shamin (Pognon, Inscr. stw. de le Syrie, 1go8).

The worship of the femalc alone with the male principle wa a strongly marked feature of Pboenician religion. To judge from the earlicst evidence on the subject, the Ba'alath of Gebal or Byblus, referred to again and again in the Amarna letters (Bili Za Gubla, Nos, 55-110), must have been the mont popular of the Phocaician deities, as her sanctuary was the oldest and most renowned. The mistress of Gebal was no doubt 'Ashtart (Astarte in Greek, "AshtOrcth in the Old Testament, pronounced with the vowels of bosheth, shame " $)$, a name which is obvioualy connected with the Babylonian lshtar, and, as used in Phoeniciar, is practically the equivalent of "goddese." She represented the principle of Iertility and zeneration; relerences to her cult at Gebal, Sidon, Ashkelon, in Cyprus at Kition and Paphos, in Sicily at Eryx in Gaulus, at Carthage. are Irequent in the inscriptions and clecwhere. The comanoa epithetsiKhmensand Evenaw (of Kuthera in Cyprus), Cyprisand Paphia. show that she was identified with Aphrodite and Venus. Though not primarily a moon-goddess, she sometimes appears in this character (Lucian, Dea syr. I 4 ; Herodian v. 6, 10), 筑d Herodotus describes her temple at Ashkcion as that of the heavenly Aphrodite (i. 105). We find her associated with Ba'al and called "the name of Ba"al,' ie. his manifestation, though this rendering is disputed, and some scholars prefer "Ashtart of the heaven of Baral" (NSI. p. 37). Another gordecs, specially honoured at Carthage, is Tenilh (pronunciation uncertain); nothing is known of ber characteristics; ane is regularly connected with Haial on the Certhaginian vocive tablets, and called "the face of Ba'al," i.e his representative or revelation, though again some question this rendering as too metaphysical, and take " face of $\mathrm{Ba}^{\text {'al }}$ " to be the name of a place, like Peni'cl (" lace of 'Ei"). Two or three other deitice may be mentioned here: Eshmun, the god of vital force and heming, wormhipped at sidon especially, but also at Carthage and in the colonies, identified by the Greeks with Asclepius; Mclqarth, the patron deity of Tyre, identilied with Heracles; Reshef or Reshuf, the "flame or " lightning "god, especially popular in Cyprus and derived originalily Ircin Syria, whom the Greeks called Apolla A tendency te form a dintinct deity by corabining the attributes of two produced such curious fusions as Milk-"ashtart, Miik-ba'al, Milk-osir, Eshmunmelqarth. Melgatth-resef, \&c. As in the case of art and indust ries. to in religion the Phoenicians readily assimilated fortign idems. The influence of Egypt was specially strong (NSI. pp 6a, 69, 148, 154): thus the istarie represtitac, in the otcie of Yehaw-milk, mentioned above, has all the appearance of Isis, who, according to the legend preserved by Plutarch (de Is. ct Os. I5). journeyed to Byblus, Where she was called Astarte. The Phoenician mettlers at the Peiraers worshipped the Assyrian Nergal, and their proper names are compounded with the names of Babylonian and Arabian deities (NSI. p. 101). Closer intimacy with the Greek world naturally brought about modifications in the character of the native gods, which became apparent when Ba'ai of Sidon or Ba'al-shamem was identifed with Zeus, Tanith with Deacter or Artenis, Anath with Athena, \&c.; the notion of a supreme Ba'al, which finds expression in the
 doubt encouraged by foreign influences. On the other hand, the Phoenicians produced a considerable effect upon Greek and Roman religion, especially from the roligious centres in Cyprus and Sicily. A great number of divinities are known only as clements in proper names, c.g. Sakun-yathon (Sanchuniathon), Abd-sasom, Sed-yathon, and fresh ones are continually being discovered. It was the custorn among the Phoenicians, as among other Semitic nations, to use the names of the gods in forming proper marmes and thas to express devotion or inyoke favour; thus Hanni-ba'al, 'Abd-meiqarih, Hanni'ashtart, Eshmun-azar. Tbe proper names further illustrate the way in which the relation of man to God was regarded; the commoneat forms are servan ('abd, e.g. "Abd-'ashtart), member or fineb bod. e.g. Bod-melqarth), client or gaesf (ger, e.p. Gcr-eshmun); the religious ldee of the guest of a deity had its origin in the social custom of extending hospitality to a stranger and in the old Semitic right of sanctuary. The interpretation of such names as "Abi-baral (father of Ba'al), Himilkath (brother of Milkath), Hiram (brother of the exalted one) is not altogether certain, and can hardly be discuseed here.

Probabiy like other Canaanites the Phoenicians offered worship "on every high hill and under every green tree "; but to judge from the allusions to sanctuaries in the inseriptions and elsewhere, the Ba'al or' Ashtart of a place was usully Smoral worshipped at a templa, which concisted of a court or opects an enclosurc and a roofed shrine with a portico or pillared hall at the entrance. In the court sometimes stood a conical stone, probably the symbol of Astarte, as on the Roman coins of Byblus (iliustrated in Rawtinson, Phomicis, 146, Perrot et Chipies, Brin de l'ard, iii. 60: sce also Ohnefplsch-Richter, Cypras. ph Ivi, the temenos at Idalion). Stone or bronve images of the gods were set up in the sanctuaries (NSI. Nos 13 seq, 23-27, 30, \&e., ; and besides these the baelylin (metcoric stones) which were regarded as symbols of the gods. Pillars, again, had a prominent place in the court or beIore the shrine (napah, ilid. pp; 502 seq.) ; but it is not known wheeher the sacred pole ('ashërah), an invariable leature of a Canannite sanctuary. was usual in a Phocnician temple (ibld. pp. 50 seq.). The

See Frazer, Adomis, Atis, Osinis, it meq.
 tariff which have gurvived we learn that the chiel types of amcrifict amone the Phoenicians were salogrous to thowe when we find in the OL Testament (ibid. p. 117). The ghastly practice of sacrificing human victims was resorted to in times of preat distress (e.g. al Carthage, Diod. xK. 14), of to avert national disacter (Pophyyy, de Abstis, in. 56): Philo gives the legend that Croung or $\$ 1$ amorinced his galy con when his conntry was threatesed with war (Fr. hish 87. Ii. $\$ 70$): it was regarded as a patriotic act when Hamilcar threw himseff upon the pyre after the disastrous battle of Himera (Herod. vii. 167). The god who demasded thewe victims and eqpecially tha burnine of children, meerma to have been Mith, the Mologh or Moloch of the Old Testanent. In this connexion may be mentioned the custom of burning the chicf god of the city in efigy, or in the person of a human representative, at Tyre and in the Tyran colonies, such as Carthage and Gades; the custom lasted down to lite time (cee Franer, lac. cit, ch. ∇.). Another horrible secrifige wad negularly demanded by Phoenician religion: women acrificed their virginity at the shrines of Astarte in the belief that they thus propitiated the goddess and won her favour (Frazer, ibid. ch. ti.); Ficeno tious riteas were the nat ural accompaniment of the worship of the neproductive powers of mature. Thery tempie prootitutes are called celishian gadishoth, ia sacred men, women, in the Old Testament (Dent rait. 18; I Kings xiv. 24, Kc.). Other persons attached to a temple were priesta, augurs, sterificers, barbers, officials in charge of the cartains, masoms, \&e. (NST. Na. Ao); we hear also of religious gilds and corporations, perhaps adoinintrative councile astocinted with the eancturies (ihid. $p p$. $94,12 \mathrm{I}, 130,144$ meq. ,
Ne doubt the Phoenicimas had theirilegends and myths to account for the origin of man and the universe; to some extent these wrould yrthong have resembled the ideas embodied in the book of
 - Koners in agreement. The one, of Sidonian origin, is preserved by Damascius (de prims. principiis, 125) and received at Lis hands a Neoplatonic interpretation; thia commogony was Probebly the writiag which Strabozacribea toa Sidomian phipwopher, Mochus, who lived before the Trojan times (xvi-2, 24). The other and more elaborte work was composed by Philo of Byblus (temp. Hadrian) ; he professed that he had used as his authority the writings of Sanchuniathon (q.v.), an ancient Phoenician sege, who again derived his information from the mysterieus tnocribed stones
 the Phoenician temples. Philo's cosmogony has been preserved, at lestet in Iragments, by Eusebius in Pracp. coases. vol. i. (Fr. hish. \$7. fii. 563 sgq .). It cannot, however, be taken serioudy as antaccount of tentime Phoenician bohiefs. For Sanchuninthon is in mere literary Ectioni atad Philo's treatmeat is vitiated by an obvionss attempt ta explais the whole system of relipion on the principles of Euhemerus, an agnostic who taught the traditional mythology as primltive history, and turned all the gods and goddewes into mea and women; and further by a patriotio dusire to prove thet Phomicia conld autdo Greece in the venerable charmoter of its traditione that in fact Greela Gytholegy was simply a fecble and distortad veraion of the Phoenician. ${ }^{\text {S }}$ At same time Philo did not invent all the nonsense which he has handed dowa; he drew upon various soarces, Greek and Etyptian, some of thein uttimately of Babylonian origin, and incidentally he montions matters of intercat which, when teated by other evidence, are lairly well supported. He dhowe at any rate that some sort of a theology existed in his day; particularly interesting is his destription of the symbolic fryure of Cronus with eyes before and behind and six winge open and fokded (Fr. Hide. ET, H. 559), Ggute which is represented on the coine of Gebal-Byblus (and century b.c.) as the mythical founder of the city. It is evident that the gods were regarded as being intimately concerned with the fives and fortunes of their worshippers. The vast number of mall votive tablets found at Carthage prove.thiss they were all Inncribed by grateful devotees" to the lady Tanith, Face of Ba'al, and the Iond Baial-hammin, becaute he heard their voice." The care which the Phoenicians bestowed upon the burial of the dead has been illuded to above; pillars (masizboth) were set up to commemorate the dead among the living (e.e. NSI. Nos. 18, 19, 21, 39): if there were no children to lulfil the pious duty, a monument would be eet up by a man during his lifetime (ibid. No. 16; ci. 2 Sam. xviii. 18). Any violation of the tomb was regarded with the greatest horror (hbad. Nos. 4, 5). The grave was calied a resting-place (ibid. Nos. 4 , 5, 16; 21), and the departed lay at rese in thic underworld with the Refasim, the weate one (the atme mond and idea in the Old Testament. Iss. xiv. 9, סovi. 14 19: Job rovi. 5; Pe loxavii. 11, \&e.) The curious notion prevailed, is it did also among the Greelcs and Romans, that it was possible to communicate with the gods of the underworld by dropping into a grave a mall roll of lead (labella dadionis, NST. No. 50), instribed with the metsage, generally curte, which it was desired to convey to them.

Bresjogmanyy-The principal works bearing on the subject have been mentioned in the text and notes of this article. The

[^39]following may be added: Movers, Dic Ph dnimier (184z-18n6), to be used with caution; Renan, Mission de Phenicis (1864); Schroder, Die phōmizische Sprache (1869); Stade in Morgenlandksche Forschwngex (1875); \mathbf{W}. Baudistin, Sladien ever semilfísehen Rodigionsfeschichle (1876, 1878); Baethgen, Beitpdge sup sewitischest Religionsesschicher (1898); LVvy, Siegel mad Gumanen (1862): I- L. Myres and Richter, Calalgets of lhe Cyprus Musewn (I8g9); C. F. Hill, Catalogue of the Greeh Coiss of Cyprus (igo4); V. Berard, les Phóriciens at TOdyssbe (I902-1903); Lidzbarski. Ephenueris fir semilische Epigraphik ($1902-1906$); H. Wincikler, AHoriendalisahe Forschangen (1893-1906); Freiherr von Lapudau, "Aic Bedertung der Phörizier
 Eindes Phent (igoz); the articles by Thatcher in Hatings's Dict. Bible (1900) and by E. Meyer in the Ency. Bio. (1902). The articles by A. Fon Gutschmid and Albrecht Socin in the Ency. Brif. (gth ed.) have been to some extent incorporated in the present article. (G. A. C. ${ }^{\circ}$)

FROSinX (Gr. 中own), a fabalous sacred bird of the Ebyptians. The Greek word is afso used for a datepalm, a musical instrument like a guitar, and the colour purplerred or crimson. According to the story told to Herodotus (ii. 73), the bind came from Arabia every 500 years, bearing his father chathoned in a ball of myrrh, and buried him in the temple of the sun. Herodotus, who had never seen the phoenix himself, did nof believe this story, but he tells us that the pictures of it represented a bird with golden and red plumage, closely resembling an eagho in size and shape. According to Pliny (Naf. hist. I. 2), there is only one phoenix at a time, and he, at the close of his long life, builds himsclf a pest with twigs of cassia and frankincense, on which he dies; from his corpse is generated a worm which grows into the young phoenix. Tacitus (Anr. vi. 28) says that the young bird lays his father on the altar in the city of the sun, of burns him there; but the most famitiar form of the legend is that in the Physiolagus (q.v.), where the phoenix is described as an Indian bird which subsists on air for 500 years, after which, lading his wings with spices; ho flies to Heliopelis, entein the temple there, and is burned to ashes on the altar. Next day the young phoenix is already feathered; on the thind day his pinions are full grown, he salutes the prictstand ites awey: The period at which the phoenix reappears is very variousty stated, some authors giving as much es ri6z of evet 7006 yeans, but 500 years is the period usually named; and Tecitus tells is that the bird was said to have appeared firtt under Seoostris (Senwoari); then noder Amasis (Atraosi) II., tunder Peoleny III., and once again in A.D. 34, 各ter an interval so short that the genufnentes of the last phocnix wras suspected. The phoenix that whs showit at Rome in the year of the secular games (A.D. 47) Fas untivertally admitted to be an imposture.

The form and variations of these stories charscterize then as popular tales rather than official theology; but they evidently must have had points of attachment in the mystic religion of Egypt, and indeed both Forspollon and Tactus speak of the phoenix as a symbol of the sun. Now we know from the Boel of the Dead, apd other Egyptian texts; that atoric, heron or egret

called the benes * was one of the sacred symbula of the worship

 of Heliopolis, and A. Wiedemann ("Die Phönix-Sage im alten Aegypten" in Zeilschrifl fily afyplische Speche, xvi, 89) has made-it tolerably clear tbat the benw was a symhol of the rising sun, whence it is represented as "self-generating" and called "the soul of Ra (the sun)," "the heart of the renewed Sun." A the myatic symbolism of the morning sun. especially in commexion with the doctrine of the future life, could thus be tramfersed to the benc, and the language of the hymns in which the Egyptians praised the luminary of dawn as he drew near3 Some atfer ancient mocounts may be here referred ta. That acribed to Hecataeve is, in the judgment of C. G. Gobet (Mnemosyne, 1883). stolen from Herodotus by a late forger. The poem of the Jew Evechiel quoted by Euscbius (Praep. ©v: ix. 29, 30) appears to refer to the phoentx. Here the sweet aong is firat mantiomed a song which according to the poom on the pheenix aecribed to Lectantive, accompanies the rising sun. The bird is often spoken of in Latin poetry, and is the subject of an idyll by Claudian. See also Solinus, Collectaned, ch. xxxifi. if, with Salmasius's Rwercily tiones: Tertulfian, De retter. camis, c: 137 Clenmens Rom. Ept. od Corintifios, i. 25 and the (? Clementine) Apestolical Constitution:s v. 7
from Arabia, delighting the gods with his fragrance and rising from the sinking flames of the moming glow, was enough to suggest most of the traits materialized in the classical pictures of the phoeniz. That the bewes is the prototype of the phoenix is further confirmed by the fact that the former wond in Egyptian menns also "palm-tree," just as the latter doea in Greek. The very various periods named make it probable that the periodical return of the phoenix belongs only to vulgar legend, materializing what the priests knew to be symbolic. Of the birds of the heron family the gorgeous colours and plumed head spoken of by Pliny and others would be least inappropriate to the purple heron (Ardea purpurces), with which, or with the allied Ardee cirverca, it has been identified hy Lepmins and Peters (Alleste Texte das Todtembuchs, 1867, p. 5i). But the golden and purple hues described by Herodotus may be the colours of sunrise rather than the actuil hues of the parple heron. How Herodotus came to think that the bird was like an eagle is quite unerplained; pechaps this is merely a slip of memory.

Many commentators still understand the word $3 / 3, c h \Delta x$, in Job yxix. 18 (A.V. "sand") of the phoenix. This interpretation is perhaps as old as the (original) Septuagint, and is current with the fater fews. Antong the Arabs the story of the phoenix wes confused with that of the malarnander; and the samand or samandal (Demiri, it. 36 seg.) is represented sometisnes as a quadruped, sometimes as a bird. it was firmly believed in, for the incombustible cloths woven of flexible asbestos were popularly thought to be made of ite hair or plumage, and were themselves culled by the same name (c. Yagut i. 309, and Dozy, s.e.). The entad (Pers simurgh) a stupendous bird like the rec (rukh) of Marco Polo and the Aposian Mights, aleo borrows some features of the phocnix. According to Kazwini (i .420) it lives 1700 years, and when a young bird is hatched the parent of opposite sex burms itself alive. In the book of Kalila end Dimasa the stmar or 'eniaia the king of birds, the Indian gernda, on whom Vishnu rides.

PHOENII, the capital of Arizona, U.S.A., and the countyseat of Maricopa county, situated on the Salt river, in the zouth centril pert of the state. Pop. (1890), 3152; (1900), 5544 (935 being foreign-born and 148 negroes); (1910) 11,134 It is served. by the Arizona Eastern and the Sants Ft, Prescott \& Phoemix railways, the former connecting at Maricopa (35 m distant) with the Southern Pacific and the latter connecting at Ash Fork, near Prescott (194 m . distant), with ibe Atchison, Topeka \& Santa FE. The city is a popular winter and health reeort, with a fine dry climate. The city is the gee of a Protestant Episcopal bishopric. About 3 m . north of the city is the Phoenir (non-reservetion) boanding-school for Indians, supported by the United States government, with an average attendance of about 700 pupila. The city lies in a great plain, in the centre of a region of pastures, gardens and orchards, the largest and most beautiful farming district of Arizona, irrigated with water stored by the great Roosevelt dam (about 70 m . northeast of Phoenix). Local interests are almost entirely in agriculture, stock-rasing and fruit-growing. In the surrounding region are several large ostrich farms and a small exhibition ranch. Phoenk wat settled in 1870 , became the county-seat on the organization of Maricopa county in 1871, was incorporated in 1881, and became the capital of Arizona in 1889.

PHOMIX IELAXDS, a group of eight small islands in the Pacific Ocean, about $3^{\circ} \mathrm{S}$., and $172^{\circ} \mathrm{W}$., beionging to Great Britin. They have a land area about 16 sq . m . and a population of 60 . Their names are Phoenix, Gardner (Kemin), Hult, Sydney, Birnie, Enderbury, Canton (Mary) and McKean. To the north-west of the group (between the equator and $:^{\circ} \mathrm{N}$. .) lie two more isiets-Baker and Howland. The inlands were zunexed by Great Britain in $\mathbf{1 8 8 9 - 1 8 9 2}$.

PHOMMIEVILLB, a borough of Chester county, Pennsyivenia, U.S.A., on the Schuylkill river at the mouth of French Creek, about 28 m . north-west of Philadelphia. Pop. (1890), 8514 ; (1900), 9196, of whom 2221 were foreign-born and 178 were negroes; (rgro census), so,743. It is served by the Pemsylvania (Schuylkill division) and the Philadelphia \& Reading railways, and by electric railway to Spring City (pop. in 1910, 2880), 3 m. north-west of Phoenixvilie on the Schuylkill. Phoenizville is chiefly a manufacturing borough. Its bast-furnaces and iron mills were long among the largest in the country, and the manu-
facture of steel is still the borough's prodominant induntry. Phoenixville was settled in 1732, and was incorporated in 1849 .
PHONETICS (Gr. 中心sif, voice), the science of apeech-sounds and the axt of pronunciation. In its widest sense it is the "ecience of voice," dealing not only with articulate, hut also with the inarticulate sounds of animals as well ats men. The originally synonymous term, "phonology," is now testricted to the history and theory of sound-changes. The most obvious of the practical applications of phonetics is to the acquisition of a correct pronunciation of foreign languages. But its applications to the study of the native language are not less important: it is only by the help of phonetics that it is possible to deal effectively with vulgarisms and provincialisms of pronunciation and secure uniformity of speech; and it is only on a phonetic basis that the deaf and dumb can be taught articulate speech. From a more theoretical point of view phonetics is, in the first place, the science of linguiatic observation. Without phonetic training the dialectologist, and the miasionary who is confronted with a ditherto unwritten language, can neither observe fully nor record accurately the phenomena with which they have to deal. Thete investigations have greally widencd the scope of the science of language. The modern philologist no longer despises colloquial and illiterate forms of speech. On the contrary, he considers that in them the life and growth of language is seen more clearly than in dead literary languages, om whose study the science of comparative philology was at first exclusively built up. It was not till phibologlsts began to ask what were tbe real facts underlying the comparisons of the written words in Sanskrit, Greek, Latin, and the other Indo-European langueges, exubodied in such generalizations as Grivan's Law, that "letter-science" developed into "sound-science" (phono: logy). The rise and decay of inflexions, and the development of grammatical forms generally, are, from the formal point of view, mainly phonetic problems; and phonetics entern, more ar less into every department of historical and comparative grammar.
Melhods of Sindy and Inneatigalion--Phonetics is the science of speech-sounds But sounds may be considered from two opposite points of view-the orgamic and theacoustic. From the organic point of view a sound is the result of certain actions and positions of the organs of speech, as when we define f as a lipteeth (dento-labial) consonant. This is the point of wiew of the speaker of a language. To the bearer, on the other hand, f ia not a lip-teeth, but a hiss consonant similar to that denoted by th. This is the acoustic point of view. Theoretically, the organic study of pbonetics is a branch of anatomy and physiology: that part of these sciences which denls with the organs of speech (see Mourn) and their functions (see Vorce); while, from the opposite point of view, the study of phonetics is based on that branch of physical science known as acoustics (see SOUND), together with the anatomy and physiology of the organs of Hearing (g.v.).

Unfortunately, this basis is still imperfect. The princtples of acoustics are well established, and we know much about the anatomy of the ear. But how the ear transmits to the brain the impression of sound is still a mystery. Again, although the mechanism of the vowel is clear enough, there is still no generally received acoustic theory of its formation. In fact, from the physical science point of view there is as yet $n 0$ science of phonetics.

The real function of phonetics is philological and literary. The oaly scand basis of a theoretical knowledge of phonetigs is the practical mastery of a limited number of sounds-that is to say, of the sounds which ere already familiar to the learner in his own language. It is evident that the more familiar a sound is, the easier it is to gain insight into its mechanism and to recognize it when heard. It is indispensable to cultivate both the organic and the acoustic sense. Thest processes we are continually carrying out in ordinary conversation. All, therefore, that we have to do in dealing with native sounds is to develop this uncopacious organic and acoustic sense into a conscious and analytic one. The fint step is to learn to isolate each sound: to
promonnoc it, as far as pomible, apart from ita conemat; and to preserve it unchanged chrongh every variation of lengh and force, and la every combination of sounda. The nont step is to enalyes ite formation. Let the stadent, for instance, compare the two consonants in mach a word as fow by isolating and lengthening them till he can both hear and foel the voico-vibration in the second one:- In the stime way let hims leam to feel the chancess in tho position of the tongse and lips in pascing from ano vowel to another. When the native sounds have been thorenghly atudied in this way, the learder will proceed to fortiga sounds, deducing each nowe sound from those which are already familiar to hima.

The natural method of tearning sounds is mainly a subjective ove. We listex patienthy tin our surn are steeped. as it were, in the sound; and then, alter repeated trials, we hit on the exact position of the organs of speech by which we can reproduce the sound to the speaker's sptifaction. But the natural method admits aiss of objective control and eriticism of the movements of the lips and jawn by direat obarvation. The movements and positions of the tongue and soft pelate, and other modifications of che mouth and throat passages are also more or less accessible to observationin the case of seff-abservation with the help of a small mirror held in the hasd. II the marror is small enough to go into the mourth, and ia fixed obliquely to a handles so that it can be beld against the back of the mouth at such an angle as to reflect a may of light down the throat, we have the laryngoscope. Laryngoscopy has confirmed carlier resulks, and has also added to our knowledge of the throut counds. But, on the other hand, it has been a fruitful morcce of entrox. There has beqa great discrepancy between the resulta obtained by different observers; and many reaulte which were at first received with implicit confidence for their supposed nigorously acientific and objective character have been fourid to be worthlesa. It geemed at first as if Rontgen's discovery of the w-called X.raye would meet the want of a means of direct observation of the positions of the tongue, not lengthways, but from the side, as also of the interior of the throat. But although the checke are to a certain extent transparent to these rays, the shadow of the tongue projected on the screen is too indistinct to be of any use.
But there are other methods besidea thome of direct observation by which the pouitions of the tongue may be objectively determined and measured with more or less accuracy. The interior of the mouth may be explored by the fingers. If the little finger is held againte the gunds during the articulation of the vowels in it, ate, of tha difference in the height of the tougue will at once becomt apparent: in the formation of the firt vowel the tongue is preseed atrongly against the artificial palate, while in that of the second it only just touches it, and in that of the third it does not touch at all
Several forms of apparatus have been devised for a more acearite determination of the positions of the tongue and the other movalie organs of speech. The best results hitherto as regardy the vowed positiona have been obtained by Grandyent, who uses chisks of card board of various sixes fixed to silver wires. A full description of this and other methods will be found in Scripture's Eloments of Experimential Phometics.
There are other methods whome resulte are obtained only indirectly. The simplest of these are the palatographic, by which are obtained "palatograms" recording the contact of the tongue wich the palate. The apparatus most tenerally used consitis of a thin, shell-tike artificial palate, which is covered mith chalk and diaced in the mouth; when the sound is made, the articulation of the tongue is inicrred from the contact-marks on the plate. This method is evidently limited in its application. It, too, has the drawbuck of not being applicable to the sounds formed in the back of the mouth. The outlipes of palatograme are much vaguer than they appear in the published drawings of them; and it is a question whether the thickness even of the thin oest plate does not modify the recort.
The methods hitherto considersd are all comparatively simple. They require no special knowledge.or training, and are accesedble to all. But there are more elaborate methode-with which the name "experimental phonetics" is more specially connectedinvolving ppecial truining in practical and theoretical physics and mathematics, and requiring the hetp of often eomplicated and contly. and not casily accessible, apparatus. The investigation of the apeech curves of phonograph and gramophone records is a typical eximple. Good examples of these methods are afforded by E. A. Meyer's movencigations of vowel-quantity in English (Englische Lautduser, Upprala, 1903). Their characteristic fenture is their deficacy, and the minuteness of their distinctions, which often go beyond the range of the human ear. Although their results are often of value, they must always be received wilk caution: the courcte of entor tre so numerous.
The claime of instrumental phonetica have betn so prominently brpught forward of late years that they can no longer be ignored, even by the mont conservative of the older generation of phoneticians.

But it is posible to 00 to0 far the other way. Some of the younger generation seem to think that the instrumental methoda have superseded the natural onea in the same way as the Arabic cuperroded the Roman aumerals. This asumption hiss had disastrous resolte. It cannot be too of pen repeated that instrumental phonetica is, strictly speaking, not phonctica at all. It is only a help: it only supplies materials which are useless till they have been tested and accepted from the linguistic phonetician's point of view. The final arbiter in all phonetic questions is the trained ear of a practical phonetician: differences which cannot be perceived munt -or at hast may bo-rignored; what contradicts the trined ear cannot be accepted.
Spwond-Notalions Spalling Reform.-Next to the analysis of the sounds themselves, lhe most intportant probiem of phonetics fa their meptesentation by meant of wrjtten and printed symbols. The traditional or "nomic" orthographies of anose languagen are only imperfectly photetic. And, maiontunately, of the languges in mest grmeral ue, twa are exceptionally urphonetic in their orthographies, Fremch showing the greatest divergence between sound and symbol, while English shows the maximom of irregulurity and erbitzuriness. The German orthography is comparatively phonetic: it has hardly any sitent letters, and it Eenerally has one symbol for each sound, each symbol having only one vaiue, the exceptions falling under a few simple itries, which are easily remembered. There ere othor languages which have atill more phonetic orthographies, such as Spanish, Welsh and Finnish. But aven the best of them are not perfect: even when they are not antually mislending, they are alway inadequate. On the other-hand, no system of writing is wholly unphonetic Even in French and English thero are many words whose spelling not oven the mont radical reformer wauld think of altering. In fact, all wriling which has once emerged from the bieroglyphic stage is at first purely phonetic, as far as its defective means will allow. The divergence between sound and aymbol which makes spelling unphonetic is the result of the retention of phonetic spollings after they have become unphonetic through changes in the pronunciation of the words themselves. Thus, such English spelling as knight and wright were still phonetic in the time of Chaucer; for at that time the initial consonants of those words were still pronounced, and the gh still had the sound of ch in Gcrman ich. So also see and sea are written differently, not hy way of arbitrary distinction, but because they were pronounced differently till within the last few centuries-as they still are in Irish-English.

Where there is no traditional orthography, as when Old English (Anglo-Saxon) was first wrilten down in Latin letters, spelling was necessarily phonetic; but where there is a large literature and a class of professional scribes, the influence of the traditional orthography becomes stronger, till at last the invention of printing and the diffusion of one standard dialect over a large area occupied ariginally hy a variety of other dialects make changes of spelling as inconvenient as they were once easy and natural. The ideal orthography for printers is one wbich is absolutely uniform over the whole territory of the language, and absolutely unchangeable. In such orthographies as chose of the present English and French there is no longer any living correxpondence between sound and symbol: they are, in intention at least, wholly unphonetic; they are preserved by graphic, not by oral, tradition.
But unphoneticncss has its practical limits, A purely unphonetic degradation of an originally phonetic system of writing -one in which there is absolutely no correspondence between sounds and letters-could not be mastered even hy the most retentive memary: it would be even mare difficult. than the Chinese writing. Hence a phonetic reaction is inevitable. In the middle ages the spelling was periodically readjusted in accordance vith the changes of pronunciation-as tar, of course, as the imperfections of the existing orthography would allow. This adjustment went on even after the introduction of printing In fact, it is only within the last hundred years or so that the orthographics of English and French have become fixed.

One result of this fixity is that any attempt to continue the process of adjustment assumes a revolutionary character. When, in 1849, the pioncers of the modern speling-reform
movement-A. J. Ellis and I. Pitman-brought out the Powefic Nux, few of those who joined in the chorus of ridicule excited by the new alphabet stopped to consider that this uncouthness was parely the result of hahit, and that the Authorized Version of the Bible in the spelling of its first edition would seem to us not less strange and uncouth than in the new-iangled phonotypy of Mesars Ellis and Pitman. Nor did they stop to consider that phonetics and phonetic spelling, so far from being innovations, ate as old as civilization itself. The Alexandrian grammarians were not only phoneticians-they were spelling-reformers; they invented the Greek accents for the purpote of making the promunciation of Greck easier to foreigners. The Romans, too, were phoneticians: they learnt freek hy phonetic methods, and paid great attention to nicetiea of pronunciation. The Sanskrit grammarians were still better phonaticians.
As a matter of fact, English spelling was still phooctic an late as the time of Shakespeare-in intention, at least. But although people still tried to write as they spoke, the inherited imperfec. tions of their orthography made it more and more difficult for them to do so. Hence already in the $\mathbf{x} 6$ th century a number of spelling-reformens made their appearince, includins classical scholars such as Sir John Cbeke, and A. Gill, who was head-master of St Paul's School in London. Gill has left va extracts from Spenser's Faerie Quoenc in phonetic spelling; hut, strange to sty, nothing of Shakespeare's, although be and Shakespeare were exact contemporaries. But Gill's and the other alphabets proponed were 200 incricate and cumhroas for popular ane.

Nevertheless, some important phonetic reforms wexe succespfully carried through, such as getting rid of most of the superfluous final e's, utilizing the originally zuperthones distinctions in form between i and j, wand $\%$, by using i, z only as vowels, j, vonly as consonants, instead of at random-a reform which seems to have begun in Italy. Asother important reform was the introduction of ca and oc, as in sea and book, which had hitherto been written with $e e$ and ∞, being thus confused with see and boot.

All these were as much phonetic reforms as it would be to utilize longs and tailed $s\left(\int, 5\right)$ to denote the final consonants in fish and rouge respectively; a reform first suggested by A. J. Ellis, who was himsell the first to call attention to the works of these early phoncticlans and to utilize them in the investigations enshrined in his great wort on Early English Pronmaciation.
With all its defects, the ptesent English spelling is still mainly phonetic; we can still approximately guess the pronunciation of the vast majority of words from their spelling. So when we any that Engiah spelling is unphonetic we merely mean that it is a bad phonetic spelling; and all that spelling-reformers aim at is to make this bad lnto a good phonetic spelling, that is, an efficient and easy one. Bat the difficulties are great; and the more we know of phonetics, and the more we experiment with different systems of spelling, the more formidahle do they appear. One of the dificulties, however, that is commonly supposed to stand in the way of spelling-reform is quite imaginary: namely, that it would destroy the historical and etymological value of the present system: Thus E. A. Freeman used to protest against it as "a reckless wiping out of the whole history of the language." Such critics fail to see that historical spelling, it carried out consistently, would destroy the materials on which alone history can be based; that these materials are nothing else hut a series of phonetic spellings of different periods of the language, and that if a consistent historical and etymological spelling could have been kept up from the beginning, there would have been no Grimm's Law, no etymology; in short, no comparative or historical philology possible.
The advantages of beginning a foreign language in a phonetic notation are many and obvious. In the first place, the leamer who has once mastered the notation and learnt to pronounce the sounds the letters stand for, is ahle to read off at once any text that is presented to him without douht or hesitation, and without having to burden his memory with rules of pronunciation and spelling. Another advantage of phonetic spelling is that when the bearner sees the words wfiten in a representation of theird
actual spoken form he is able to recognize them at once. when he bears them. And If tho learner begins with the phonetie notation, and uses it exclusively till be has thoroughly mastered the spoken language, he wit then be able to learn the oedinary spelling without fear of confusion, and quicker then be woald otherwise have done.

Spellingreform may be carried out with various degroes of thoroughneas. After the failure of many schemes of radien reform, an attempt was made to begin with those numeroos spellings which are both miphonetic and unhratorical, of are against the analogy of other traditional spellinga. Accortingty, in 1881 the Philological Socicty of London "aproevd (sic) of certain partial corections (sic) of English spellimps;" which were also approved of hy the American Spellime-reform Association; and a list of them was issued jointly hy the two bodies, and recommended for general adoption. A similar movement has been started in France. But the general feeling appears to be that it is better to keep the ordinary spelling unchanged, and wait till it is possible to supersede it by one on a more or less independent basis.
If the existing Romen alphabet is made the basis of the mew phonetic notation of any one language, the mod obvions course Is to select one of the varioos traditional representations of each sound, and use that one symbol exclusively, omitting, of course, at the same time all silent letters. A. J. Ellis's English Clossic is an example of such a phonetic spelling on a mational batis. The following is a specimen:-
Ingelish Glosik iz veri eeri too reed. Widh proper training a cheild foar yeerz oald kan bee redili taut too reed Glosik buoks

But a system which, like thin, writes short and long vowels with totally different symbols (i, ee) is only half phonetic: it \$ phonetic on an unphonetic basis.

A fully phonetic system, in which, for instance, lang vowels and diphthongs are expreased hy consistent madifications or combinations of the symbols of the short vowels, and in which simple sounds are, as far as is reasonable and convenicrt, expressed by single letters instead of digraphs such as sh, must necesarily discard any national basis. The best basis on the whole is obtained by giving the letters their original common European sounds, i.e. hy returning to the Late Latin pronunciation, whth such modifications and additions as may be advisable. As regards the vowels at lesst, this Latin basis is very well preserved in German and Italian. In French, on the other hand, the Latin tradition was greatly corrupted already in the eardiest period through the rapid changes which the language underwent. Thus when the Latin m in huse assumed the mound it now has in French luse, the symbol u was still kept; and when the sotind u afterwards developed again out of the diphthong on, this digraph was used to denote the sound. So when the French aystem of speiling came into use in England after the Nomman Conquest these unpbonetic symabols were introduced fnto Engtish epelling, so that such a word as Oid English and Early Middle Engfish has, "house," was written hous in the Late Middle English of Chaucer, although the sound was still that of Scotch hoos, on (ow) being also used to denote a true diphthong. (our) in such worde as knou, knote, from Old English codwan.

By returning, then, to the original values of the letters we get the "Romic "or international (Contineatal) basis as opposed to the Glossic or national basis. Thon the passage quoted above appears as follows in Sweet's " Broud Romic " notation:-
inglif glosik iz veri iizitu rid. wis prope treinin otfaild too jise ould kan bii redili tot to riid glosile buta.
Another important general distinction is that between " broad " and " narrow" systems of notation. A broad notation is one which makes only the practically pecessary distinctions in each language, and makes them in the shaplest manner possible, omitting all that is superfluous. From a practical point of view the necessary distinctions are those on which differences of meaning depend. A distinction of cound which is stgaificant in ont. lenguage may be unsignificant in apother. Thus the distinction between close ε and open \boldsymbol{E}, \boldsymbol{z} is significant in French, as in pecher, plecher; so if in Prench phonetic writing the Iotmer

If denoted by (e), it is necessary to find a new symbol (e) for the open sound. But in languages such as English and German, where the short e is always open, there is no practical objection to using the unmodified (e) to denote the open sound, even if we regand (c) as the proper symbol of the close sound. And in those languages in which the short $\&$ is always open and the long always close it is enough to mark the distinction of quantity, and leave the distinction of quality to be inferred from it (e, ee). In such a case as this it is, of course, possible to apply the principle of ignoring superfluous distinctions in the opposite way: by writing the long and short vowels in such a language (c, c), leaving the quantity to be inferred from the quality. But the former method is the more convenient, as it does not require any new letter. The " broad "principle is especially convenient in writing diphthongs. Thus in English Broad Romic we write the diphthongs in high and kow with the same vowel as ask (bal, hau, aask), although all these (a)'s represent different sounds in ordinary southern English pronunciation. But the pronunciation of these diphthongs varies so much in different parts of the English-speaking territory, and the distinctions are so minute that it would be inconvenient to express them in writing; and as these distinctions are non-significant, it would be uselesa to do so. (ai) and (su) are symbols, not of special diphthongs, but of two classes of diphthongs: they can stand for any diphthongs which begin with a vowel resembling the Italian a, and end with approximntions to i and s respectivcly. Theoretically it would be just as correct in English and German to write these diphthongs (ae, a0). But these notations are misleading, because they tuggest simple sounds.

In comparing the sounds of a variety of languages, or of dialects of a language, and still more in dealing with sounds in general, we require a "narrow," that is a minutely accurate, notation covering the whole field of possible sounds. It is evident from what has been said above that such a universal scientific alphabet is not suited for practical wosk in any one language. But the symbols of such a notation as Sweet's "Narrow Romic" are of the greatest use as keys to the exact pronunciation of the vaguer symbols of the Broad Romic notations of each language.

To prevent confusion between these two systems of notations Broad Romic symbols are enclosed in (), Narrow Romic in [1, Which at the same time serve to distinguish between phonetic end nomic epellings. This in English io (i) m [i means that the English vowel In firmy is the "wide" sound, not the " narrow" one in French fini, although in the Broad Romic notations of both languages (fini) is written for finny and fini alike:

Narrow Romic was originally based on A. J. Ellis's "Palaeotype," in which, as the name implies, no new letters are employed. The symbols of Palacotype are made up, as far as possible, of the letters generally accessible in printing-offices, the ordinary Roman lower-case letters being supplemented by italics and small capltals ($i, i, 1$) and turned letters (0,5), many digraphs (th, sh) being also used. This notation was a reaction from Ellis's eartier phonotopy, in which a large number of new letters were used. Some of these, however, such as $\int-$ (sh), $3=(\mathrm{zh})$, were afterwards adopted into Broad and Narrow Romic. In his Palaeotype Ellis also discarded diacritical letters, which, as he tightly says, are from a typographical point of view equivalent to new letters. In Narrow Romic a certain number of diacritical letters are used, such as (n, a), most of which are already accessihle. Palaeotype is a Romanvalue notation, the main differeace as regards the values of the symbols between ft and the later systems being that it is more complex and arbitraty. Enls afterwards had the unhappy idea of constructing a "Universal Glossic" on an English-values basis, which is even more cumbroas and difficult to remember than Palacotype.

Swreet's Romic systerns were made the basis of the "International" alphabet used in Le Moltre Phonetique, which is the organ of the International phonetic Associalion, directed by P. Passy. 'Aithough this system is at the present time mare widely known and used than any other, and although it is
constucted on the international Romic pinciple, it is not really an international system. It is rather an attempt to make a special adaptation of the Romic basis to the needs of the French language into a general notation for all languages. But the phonetic structure of Erench is so abnormal, so different from that of other lantuages, that the attempt to force a Broad Romic. French notation on such a language as English is even more hopeless than it would be to reverse the process. Although well suited for Freach, this alphabet moet from a wider point of view be regarded as a failure: it is too minute and rigid for practical, and yet not precise enough for scientific purposes. In ahort, although it has done excellent service, and has helped to clear the way for a notation which shall command general acceptance, it cannot be regarded as a final solution of the problem.

Of the aumerous other notations now in use, some still adhere to the diacritic pripciple of Lepsius's Standerd Alphabet (1855), intended for missionary use, but found quite uofit for that purpose because of the cmormous number of new types required. Most of them prefer to use dew letters formed by more or less consistent modifications of the existing italic letters. A. J. Lundell's Swedish dialect alphabet and O. Jespersen's Danish dialect alphabet are good specimens of this tendency. In the latter Roman letters are used for special distinctions, just as italic letters are used in the Romic systems.
But in spite of all diversity, there is much agreement. As regards the vowels, the following approximate valucs are now pretty generally accepted:-

Vowel.length is in some systems denoted by doubling (aa), in others by spectal marks ($\mathrm{a}:$: \&c.), the diacritic in a being used only in the nomic orthographies of dead and oriental languages.
The only consonant-symbols that require special notice are the following:-

All the systems of phonetic notation hitherto considered are based on the Roman alphabct But although the Roman alphabet has many advantages from a practical point of view, it is evidently impossible to build up a consistent and systematic notation on such an inadequate foundation of arbitrary signs. What is wanted, for scientific purposes especially, is a notacion indepiendent of tbe Roman alphahet, built up systematicallyan alphabet in which there is a definite efelation between sound and symbol.

This relation may be regarded either from the organic or the acoustle point of view. The tendency of the earlier attempts at an a priori universal alphabet was to symbolize the consonants organically, the vowels acoustically, as in E. Brtteke's Phonetische Transsctiption (1863). It is now generally acknowledged that the vowels as well as the consonants must be represconted on a strictly organic hasis. This was first done in A. M. Bell's Fisible Speech (1867), which appeared again (1882) in a shorier form and with some modifications under the title of Sounds and their Redations. Bell's pupil, H. Sweet, gave a detailed criticism of Visible Specch in a paper on Sound-notation (Trans. of Philological Society, 1880-188x), in which he described a revised form of it called the Organic Alphabet, which he afterwards employed in his Primer of Phonetics and other works. Sweet's Narrow Romle notation already mentioned is practically a transcription of the Organic Alphabet into Roman letters.

Such notations are alphabetic: they go on the general prinipip of providing separate symbols for each simple sound. But as
the nember of posabibic shades of sounds is almost infinite, even the most minutely accurate of them can do 30 only within certain limits. The Organic Alphabet especially makes a large use of " modifiers"-characters which are added to the ot her symbols to indicate nasal, palatal, \&c., modifications of the sounds represented by the latter, these modifiers being generally represented by italic letters in the Narrow Romic transcription; thas (ln) $=$ navalized (1).
In the Roman alphabet such symbols as f, tare arbftrary, showing no connection in form either with one another or with the organic actions by which they are formed; but in the Organic symbol of v, for instance, we can see the graphic representation of its components " lips, teeth, voice-murmur." By omitting superfluous marks and utilizing varions typographical devices the notation is so simplified that the symbols, in spite of their minute accuracy, are often simpler than in the correspondling Roman notation. The simplicity of the system is shown by the fact that it requires only about 130 types, as compared with the 280 of Lepsius's very imperfect Standard Alphabet.

All the systems hitherto considered are also alphabetic in a wider sense: they are intended jor continuous writing, the more cumbrous "parrow" notations being, however, generally employed only in writing single words or short groups. An " analphabetic " basis was first definitely advocsted by Jespersen, who represents esch sound by a group of symbols resembling a chemical formula, each symbol representing not a sound, but an element of a sound: the part of the palate, tongue, \&c., where the sound is formed, the degree of separation (openness) of the organs of speech, and zo on. The two great advantages of such a system are that it allows perfect freedom in selecting and combining the elements and that it can be built up on the foundation of a small number of generally accessible signs.

As regards Jespersen's scheme, it is to be regretted that he has not worked it out in a more practical manner: that in his choice of the thirty odd symbols that he requires he should have gone out of his way to mix up Greek with Roman letters, toget her with other characters which would be avoided by any one constructing even a scientific alphabetic notation. And his use of these symbols is open to much criticism. In fact, it cannot be said that the analphabetic principle has yet had a fair trial.

The Orgass of Speech.-Most speech-sounds are formed with air expelled from the lungs (voice-bellows), which passes through the two contractible bronchi or bronchial tubes into the also contractible wind-pipe or trachea, on the top of which is fixed the larynx (voice-box). Across the interior of the larynx are stretched two elastic ledges or cushions called "the vocal chords." They are inserted in front of the larynz at one end, and at the otber they are fixed to two movable cartilaginous bodies "the aretynoids," so that the passage between themthe glottis-can be narrowed or closed at pleasure. The glotis is, as we see, twofold, consisting of the chord glottis and the cartilage glotis. The two can be narrowed or closed independently. The ehords can also be tightened or relaxed, lengthened and shortened in various degrees.

When the whole glottis is wide open, no sound is produced by the outgoing breath except that caused hy the friction of the air. Sounds in whose formation the glottis is in this passive state are called "breath" sounds. Thus (I) is the breath consonant corresponding to the "voice" or "voiced" consonant (v). In the production of voice, the chords are brought close enough together to be set in vibration by the air passing between them. In the "thick" register of the voice (chest voice) the chords vibrato in their whoie length, in the " Lhin" register or falsetto only in part of their length. If the glottis is narrowed without vibration, "whisper" is the result. In the "weak whisper" there is narrowing the whole glottis; in the "strong whisper," which is the ordinary form, the chord glottis is entirely closed, so that the breath passes only through the cartilage glottis. In what is populariy called "whisper "that is, speaking without voice-the breath sounds remain unchanged, while voiced sounds substitute whisper (in, the phonetic sense) for voice. Thus in whispering such of word as feed
the (f) remains unchanged, while the following vowel and consonant are formed with the glotis only half closed. Whispered sounds-both vowels and consonamts-occur in ordinary lood speech in many languages. Thus the final consonants in such English words as leaves, obigs the whispered, except when followed without a pause by a voiced sotuad, as in oblfging, where the (3) is fully voioed.
Above the glottis-still within the latynx-comes the "upper" or "false" glottis, by which the passage can be narrowed. On the top of the larynx is fixed a leaf-like body, the "epigiot tis," which in swallowing, and sometimes in speech, is pressed down over the opening of the larynx. The contractible cavity between the larynx and the mouth is called the "pharynx." The roof of the mouth consists of two parts, the "solt " and the "hard palate." The lower pendulous extremity of the soft palate, the "uvtla," in its passive state leaves the passage into the nose open. In the formation of non-nasal sounds, such as (b), the uvula is pressed up so as to close the passage from the pbarynt into the nose. If (b) is formed with the passage open, it becomes the corresponding nasal consonant (m). The other extremity of the (hard) palate is bounded by the teeth, behind which are the gums, extending from the teeth-rim to the arch-rim -the projection of the teeth-roots or alveolars.
There is great diversity among phoneticians as regards the mapping out-the divisions-of the palate and tongue, and their names. Foreign phoneticians generally adopt very minute distinctions, to which they give Latin names. Bell In his V isible Specch makes a few broad fundamental divisions. In the arrangement adopted here (mainly based on his) sounds formed on the soft palate are called "back," and are subdivided into "inner" = nearer the throat, and "outer" $=$ nearer the tecth, further subdivisions being made by the terms "innermost," "outermost," the position exactly hall way between these tro last being defined as "intermediate back." Saunds formed on the hard palate or teeth may be included under the common term "forward," more accurately distinguished as "tceth" (dental), "gum," " front" (palatal, afterwards called "top" by Bell), which last is really equivalent to "mid-palatal," including the whole of the hard palate behind the gums. All of these divisions are further subdivided into "inner," \&ic., as with the back positions.

Of the tongue we distinguish the "back " (root), "front " or middle, "point" (tip), and "blade," which incudes the point and the surface of the tongue immediasely behind it. The tongue can also articulate against the lips, which, again, can articulate against the teeth. The lip passige can be cloeed, or narrowed in various degrees. Sounds modified by lip-narrowIng are called " lip-modified " (labialized) or " round " (rounded), the last being specially used in speaking of vowels.

Speceh-sounds.-The most general test of a simple as opposed to a compound sound (sound-group) is that it can be lengthened without change. As regards place of articulation, no sound is really simple: every sound is the result of the shape of the whole configuratlve passage from the lungs to the lips; and the ultimate sound-elements, such as voice, are never heard isolated. The most indistinct voice-murmur is as much the rosult of the shape of the superglottal passages as thd clearest and most distinct of the other vowels; and its organic formation is as definite as theirs is, the only difference being that while in what we regard as unmodified voice all the organs except the vocal chords are in their passive, neutral positions, the other vowels are formed by actively modifying the shape of the super-glottal passages-by raising the tongue towards the palate, narrowing the lips, \&c.

The most important elements of speech-sounds are those which are dependent on the shape of the glottis apd of the mouth passage respectively. It is on the relation between these two factors that one of the oldest distinctions between sounds is based: that of vowech and consonant. In vowels the element. of voice is the predominant one: a vowel, is voice modified by the different shapes of the supergiottal passages. In consonants, on the other hand, the state of the glottis is only secondary.

Comsonants ase generally the result of audible friction, as in (n, or of complete stoppage, as in (p). If the glottis is at the same time left open, as in (f, p), the consonant is "breath" or " voiceless "-if it is narrowed enough to make the chords vibrate, as in (v, b), the consonant is " voice " or " voiced "; intermediate positions producing the corresponding " whispered "consonants. Vowels are characterized negatively by the absence of audible friction or stoppage: if an (i) is formed with the tongue so close to the palate as to cause buzzing, it becomes a variety of the front consonant (j). There is, of course, no dificulty in forming a vowel with the glottis in the position for breath and whisper. Thus breatb (1) may often be heard in French in such words as ainsi at the end of a sentence, the result being practically a weak form of the front-breatb coneonant (c). The division between vowel and consonent is not an absolutely definite one. As we see, the closer a vowel is-that is, the narrower its conGgurative passage is-tbe more like it is to a consonant, and the more natural it is to devocalize it. Some voice consonants, on the other band, have so little hure that acoustically they constitute a class between consonants and vowelo-a class of "vowel-like" or " liquid" consonants, such as n, m, l).
The changes in sounds which result from activa narrowing of the passages admit of an important diatinction as "soundmodifying" and "sound-colouring," although the distinction is not always definite. Nasality and rounding are examples of sound-modifying processes. Thus we bear a certain resemblance between (b) and (m), (i) and (y), but wo regard all these four as distinct and practically independent sounds. Contraction of the pharynx, on the other hand, as also of the false glottis and windpipe, have only a sound-colouring effect:' if a vowel is formed with such contractions its quality (timbre) is altered, but it still remains the same vowel. It follows from the defipition of speech-sounds that they admit of a twofold classification: (1) organic and (2) acoustic. As alroady remarked, the older phoneticians used to classify the consonants organtcally, the vowes mainly from the acoustic point of view. The first to give an adequate organic classification of the vowels was the author of Visible Speoch Bell gave at the same time an independent acoustic classification of the consomants as well as the vowels. His acoustic classification consists simply in arranging the sounds in the order of their "pitches" (tone-heights). The pitches of the breath consonants are absolutely fixed in each individual promunciation, while those of spoken yowels can bo varied indefinitely within the compass of each voice by tighteaing the vocal chords in various ways and shortening their vibrating portions: the tighter and shorter the vibrating body, the quicker its vibrations, and the higher the tone. Bnt when a vowed is whispered or breathed nothing is heard bat the resonance of the configurative passages, especially in the mouth, and the pitches of these resonant cavities are as fixed as those of the breath consonants; in other words, a whispered (or breathed) vowel cannot be sung. Although the absolute pitchen of voiceless sounds may vary from individual to individual the relations of the pitches are constant: thus in all pronunciations (c) and whispered (i) are the bighest, breath (w) in what and whispered (u) neariy the lowest in pitch among consonants and vowels respectively.

If phonetics were an ideally perfect science there would be no occasion to discuss whether the acoustic or the organic study of the vowels and the other speech-sounds is the more important: a full description of each sound would necessarily fmply (r) an exact determination of its organic formation, (2) an acoustic analysis of the sound itself, both from the objective physical point of view and from the subjective one of the impression received by the ear, and (3) an explanation of how (2) is the necessary result of (1). Even this last question has already been soived to some extent. In fact, the connection between the organic formation and the acoustic effect is often sell-evident. It is evident, for instance, that (i) and (c) owe their clear sound and high pitch to their being formed by short, narrow passages in the front of the mouth, wbile (u) owes its low pitch to being formed in eractly the oppointo way, the sound being fartber
minffied and the pitch consequently still more lowered by the rounding.

One reason why it is impossible to classify the vowels exclusively on acoustic principles is that two vowels formed in quite different ways may have the same pitch. Thus the " high-front-round" (y) and the "high-mized" (1) have the samo pitch, the tongue-retraction of the mized position of the latter having the same effect as the rounding of the former. It is evident, therefore, that the fundamental classification of the vowels must, like that of the consomants, be purely organic. And althoush for practical parposes it is often convenient to classify sounds partly from the acoustic point of view, a full scientific treatment must keep the two points of view strictly apart, and make a special chapter of the relations between them.

Vomedr.-The most obvious distinction between wowels is that Which depends on the chare of the lips in their articulation. In such non-round vowels as (i) and (a) tho lips are passive, or even meparated and spread out at their corners by which the vowels afoume a clearer resonance. If, on the ocher hand, the lipe are actively, approximated, they become the round vomels (y) and -opent (o) respectively.
Vowels are formed with diffierent degrees of rounding. As t general rule, the narrowness of the lip-pacsage corresponds to the harrownces of the mosh-paserge. Thus, in pasing from the vowel of too to thove of no and soo the back of the tompe is progremively lowered, and the rounding is diminiched in the meme proportion.
But there is also abmormal rounding. Thus, if we pronounce (d) with the lipe in the position they have in forming (u), the resulting "over.rounded ", vowe sounds half-way between (o) and (u); the second element of the diphthong (ou) in po is formed in this way. Compercly, the (u) in put is "upder-rounded " in the North of England: the tongue position is loept, but the lipe are oniy brought together a little at the corners, as in (3).
The mouth positions of the vowels are the result of two factors: (i) the height of the tongue-its nearness to the palate-and (2) the degree of ite retraction. Bell distinguishes three degree: of height: in this oyttem (u), is " high,"' the (o) of boy is "mid." and the (2) of saso is " low., He aloo has threc degreen of retrac tion: in "back" vowels, such as (u), the root of the tongue is drawn to the bect of tbe menth, and the whole tongue slogee down fron back to front. In "front" vowels, such as (i), the front of the tongue is raised townats the hard pabte. wo that the tongue slopes down from front to back.
Most of these slope-positiona yield vomels of a distinct and elear rexonance. There is aloo a ciave of "flat" vowrels, such as (0), in which the congue is in a more or lem neutral ponition. If the tongue is taisud from the Jow fat position of (90) in bird to tho hig h position. we get the (I) of North Welsh dym "man." which, at alr cady obscried, is acoustically similar to (γ).
The flat vouels were callod " mixed" by bell, in accordatice with his view that they are the result of combining back and front artice: hation. And although this view is now generelly abandoned, the term" mixed "is still recained by the English school of phoneticiana In this well mapped out the whole mouth by the followint cardinal

high-back	hlph-mixed	high-front
mid-back	mid-mixed	mid-front
low-back	low-mixed	low-front

In this arrangement " high-back," \&c., are fixed points like thone of hatitude and ongitude. Ihus normal "high" means that the toague is raised as close to the pelate as is posmble without causing copsonantal friction, mad "back" implies retraction of the same kind. Intermediate ponitions are defined as "raised," " lowered," "incer," "outex."
The most original and at the same time the most disputed part of Bell's rowel-scheme is his distinction of "primary" and "wide." All vowcls fall under one of theme categories. Thus, the primary French (i) and the corresponding Engliah wide (i) are both bigh-front-vowels, and yer they are distinct in sound: the English vowel is a maxitone lower in pitch. Bell explained the greater opennesa of the wide vowels as the rezult of reater expansion of the pharynx; and he considered the other clase to "be most pearly pharynx; the comonanto-whence their name "primary "-the voice-passagtes in the formation of primary vowels bcing expanded. only 20 far as to remove all fricative quality. But alterations in the shape of the pharynx have only a sound-colouring. not a sound-modifying, effect; and Sweet chowed that the distinction depends on the shape of the tongues and accordingly wubetituted "marrow " for Bell's" primary." He also showed that the distinction applice to consonants as well as vowels: thus the nsmow French (w) is ouis is a consonantization of the nsrrow French (u) in som, while the Englich (w) preserves the wide quality of the (in) in prat
In forming narrow sounds there, is a feeling of temsion in that
part of the tongue where the sourid is formed, the tongue being clenched or bunched up lengthwise, $t 0$ as to be more convex than in ite relaxed or " wide " condition.

The distinction betweea narrow and wide can often be ignored in practical phonetic writing, for it generally depends on quantity: length and narrowness, shortness and wideness going together. When the distinction is marked, wide vowels may be expressed by italics ${ }_{4}$ as in Germaa (biino, bin).

Bell's category of "mixed-round " vowels had from the beginning been a source of difficulty to students of Visible Speech. But it was not till 190I that Sweet ahowed that they are only mixed ass regards position: they are really the corresponding back-round vowels moved forward into the middle of the mouth while preerving the slope of back vowels, instead of having the tongue flat as in the (unround) mixed vowels. They are " out-hack" vowels: there is an exaggeration of the outer back position of such a back-round vowel as the English (u) compared with the fuli back (s) in German mudire.

In the same way by moving the tongue backwards while forming - Iront vowel another series of "in-front" vowels is obtalned.

The "in-mixed " vowela are obtained by shifting the neutral mixed positions into the full back position, keeping the tongue Gat. 20 that these vowels might also be called " back-ilat."
The out-back, in-front and in-mixed vowels are included under the common dexignation of "shifted," as opponed to "normal vawels.
There in alarge number of other vowel-schemes, of which a murvey will be found in W. Vietor's Elementa der Phometih. Many of the older ones are in tbe form of triangles, with the chree chief vowels a, i, w at the three corners, the other vowels being inserted between these extremes according to their acouatic relations. Since the appearance of Visible Speech many attempts have been made to fit his new vowels into these older schemes.

Of all the vowel-schemes the one now most gencrally known is perhaps that of the Internationnl Phonetic Association already mentioned. In this scheme the distinction of narrow and wide, though admitted and occasionally marked, is not an integral part of the system, the vowels being classified first as "velar" (back) and "palatal" (front), and then according to openness as "close"" "halfclose," " medium," "hali-open " and "open""
Comsoneris. - Theso are the result of audible friction or stoppage, which may be accompenied either with brenth, voice or whisper.
Coosanants admit of a two-fold division (1) by form, and (2) by place. Thus (p, h) are by place lip-consonants, while by form they are stopped consonatit or "tops"
If the mouth-stoppage is leept, and the none-pasaage is opened, the stop becomes the corresponding " nasal "; thus (b) with the oft palate lowered becomes the nasal (m).

In "open" consonants the sound is formed by simply narrowings the passage, as in the back-open-breath (x) in Scotch and German loch. In some open consonsints, such as the lip-teeth ($($), there, is stight contact of the organs, but without impeding the flow of breath.

In " divided " codsomants there is central stoppage with openings at the sides, ss in the familiar point cdivided (1). These consomante are sosnetimes " unilateral "-with tbe opening on the side only-the chamacter of the eound not being gensibly modifed thereby.
When open and divided consonants are formed with the sosepassage open they are said to be "nazalixed." Thus (m) with incomplete lip-clasure becomes the nasalized lip-open-voice, conconant.
"Trils" (or molled) consonants are a special variety of ua-stopped consonant resulting from the vibration of flexible parts against one nother, es when the lips are trilled, or againgt bome firm aurface, an when the point of the tongue trills against the gums in the Scotch (r), or the uvula against the back of the tongue, es in the Northumbrian burred (r), and the French and German (r, , where-especially in German-the trill is often reduced to a minimum or suppressed altogether.
As regardi the place of consonants, there is, as already remarked, groat diveraity among phoneticians, both in mapping out the palate and tongue and in the names given to these divisions. The classiAcation and nomenclature given here is, in the main, that of Bell.
By place, thea, wo distinguish seven main classes of consonants: back, front, point, blade, fan, lip, and lip-teeth.

Back ${ }^{\text {I' }}$ (guttural) consonants are formed between the root of the tongue and the soft palate. In most languages the positions of these consonants vary according to those of the accompanying vowele: thus the back-atop and beck-nasal in hing are more forward than in congiuer.
"Front" (palatal) consonata are formed between the middle of the tongue and the hard palate, the point of the tongue lying passively behind the lower teeth. It Is easy to make the front-oper-voice (j) in yow into the corresponding stop (i) by narrowing the pussage till there is complete clowure, as in Hungarian mag (ninj) "world." In the mame way the open breath (c) in Cerman ch may be made into the stop (c) = Hungarian $4 y$. (j) nasalized

all simple sounds, distinct from the (ij), (nj) it Fresch and Engfish willion and English omien.

Point" consonants when formed against the teeth are called "point-teeth" (dental). English (b) in thim is the point-teeth. open-breath consonant: ((0) in then the corresponding voice consonant. If (δ) is modificd by turning the tip of the tongue beck iato the inner position-about on the areh.rim-it becomes the untrilled (r) in English rooring, in which position the tonque is easily trilled, the trilling becoming more and more dificult the more the tongue is approximated to the point-teeth position In French and many other languages all the point consonants $(t, d, n, 1), \& c c$.. are lormed on the teeth, except (r), which is always more retracted that the other point consonants. If the tip of the toague is turned so far back as to articulate with its lower edge against the arch of the palate-that is larther back than for the "inner " position-it is said to be "inverted." Inverted (r) is frequeat in the dialects of the south-wret of England The opposite of inversion is " protrusion," in which the tip of the tongue articulates argainst the upper lip.

Blade" consonants are formed by the blade or flattened tip of the tongue against the gums, as in English (3,2), or against the teeth, as in the corresponding French sounds. If these consonants are modified by turning the tongue a little back, so as to bring the point more into play, they become the "blade-point "consonants $(f, 3)$, as in fish, measure. (f) is acoustically a dull (s). In somo languages, such as German, sounds similar to (f) and (z) are formed partly by rounding, which lowers the pitch of the hiss in the amme way as retraction does, so that the tonguearticulation is only imperfectly carried out. When the rounding is very marked there is only a slight raising of the front of the tongue, as in some Swedish dialects; and if the tongue-articulation is progreasively shifted beck, and the rounding diminished in the same proportion, (f) can at last develop into the pure back-open consomant (x), as in the present pronunciation of Spariah x and 5 .
The English point consonants ($t_{1}, d_{1} n, 1$) are formed on the gums just behind the teeth, the point of the tongue being flattened, 20 that they are almost blade consonants.
"Fan" (spread) consonants-the "emphatic" consonames of Arabic-are modifications of point and blade consonants, in which the sidcs of the tongue are spread out, so that the hiss of ouch a consonant as (s) is formed partly between the sides of the tongue and the back teeth, which gives a peculiar deep, dull qualisy to theer sounds.
"Lip" consonants, such as (p, m), and " lip-teeth " corsonents, auch is (f, v), offer no difficulty. The simple lip-open-breath consonant does not oceur in English; it is the sound produced it blowing out a candle. The corresponding voice sound is frequeat in Gefman-espocially in Middle Germany-in such words as quelle.

If the lip-open consonants are modified by raising the bacik of the tongue, they become the "lip-back" consonants (wh, w) in Enelish whot, we, which may also be regarded as consonantized (x). In then the lip articulation predominaten. In the "buct-Pp" consonants, as in Cerman auch, the roverse is the cane.

This last is one of a large aumber of "lip-modified " comsonants, of which the already-mentioned Crerman sch is a lurther example.

In s similar way consonants may be "front-modified." (I) is peculiarly susceptible to such modlications. In French and other languages it is formed with the tongue more convex than in Engtish. and consequently with a tendency to froht-modification. Frontmodified (s) and point (r) may be heard in Russian in such mords as gust "goose," bsark " emperor," where the final vowels are silent.

Some consonants are formed below the mouth.
When the glottis is sharply opened or closed on a passage of breath or voice an effect is produced similar to that of a stop in the mouth. such as (k). This "glottal stop" is the sound produced in hiccuping; and is an independent sound in some languages, such is Arabic, where it is called " hamza." In German all words beginnint with a stressed (accented) vowt have a more or less distinct gloteal stop before the vowel.

Of the passages below the glottis, the bronchials and the windpipe are both susceptible of contraction.

Spasmodic contraction of the bronchial passages is the maia factor in producing what is known as " the asthmatic wheese." II this contraction is regulated and made voluntary it results in the deep hiss of the Arabic bh If this sound is yoiced, it causes a peculiar intermittent vibration of voice, which is bahitual with some speakers. especially in Germany. If this effect is softened by
 produced. which is that of the Arabic 'aits-

Contraction of the windpipe produces a sound similar to the Arabic ha, but weaker, which when followed by a vowel has the effect of a strong aspirate. When voiced it becomes a mere colourer of the accompaaying voice-anurmur, or voweh, to which it imparts a deep timbre.

Non-expiraiory Sounds-All the sounds hitherto descrited imply out-breathing or explration. Many of them can liso be formed with in-breathing or inspiration. In English it is anot uncommon trick of speech to pronounce wo in this manser, to exprest emphatic denial.

Some concomante art formed without efther in- or out-breathing, but aolely with the air in the throat or mouth. In forsing "suctionstops " or "clicks" the tongue or lips are put in the position for a stop. and the air is sucked out from between the organs in contact, so that when the stop is loosened, a smacking sound is produced by the ait fushing in to fill the vacsum. Thus the point-click is the interjection of impatience commonly written tual/ In many savage languges clicks are a part of ordinary speech.
Syndesis-Besides analysing each sound separately, phonetics has to deal with the phenomena which accompany synthesis or the combination of sounds. Athough a sentence may consist of a single word, and that word of a single vowel, counds mostly occur only in combination with one another. The ordinary division into sentences and words is logical, not phonetic: we cannot mark off sentences and cut them up into words until we know what they menn and are able to analyse them grammatically. But the logical division into sentences corresponds to some extent with the phonetic division into " breat b-groups," marked of by our inability to utter more than a cortain numbor of syllables in succession without pausing to take breath. Within each of these breath-groups there is no necessary pause bet ween the words, except when te pause for emphasis. The only necessary phonetic divisions within the breath-group are those into syllables, sounds and intervening " glides." But before considering these last it will be necessary to say something about the general factors of synthesis: quantity, strest and intonation.
As regards quantity, it is enough for ordinary parposes to dis tinguish three degrees: long, haliflong or medium and short. In English what are called long vowels keep their full length when atreseed and before final voice consonants, as in see, broad; and become half-long before voicelea conoonanits, as in coese bromght. In most other languages fall leingth is prewerved alike before all classes of consonants. The Romance languages have ehort final atressed vowrels, as in French si. Unstressed vowels tend to become abort in moat languagen. The diantinctions of quantity apply to consopanta as well as vowels. Thus English tends to lengthen final consomants after short atressed vowels, as in man compared with German mann, where the final consonant is quite short. Consonants, iike vowela, ternd to become short when unstressed. But In some languagen, wuch as Finnish and Humgerian, atrees has no effect on anantily, so that in these haguated long vowels and double conEonambs occur as frequently in usutrewed as in stressed syllablea. Even in English. we often lemgthen final unstrested vowels ia enclamations, as in what a pityl Sorme languagee such as the Romance languages and Rustian, tend to level the distinctions of vowel-quantity: most of their vomels are half-long.
Stress is, orgapically the result of the force with which the breath is expelled from the lungs; while acoustically it produces the effect of boudness, which is dependent on the sixe of the soundvibrations: the bigeser the waves, the louder the sound. and the greater the stress, of which we may distinguish infaite degreen If we distinguish only three, they are called weak, medium and stroxg. The use of strean in different languagce shows the same variety an quaatity. Some lapguagen, such as French, make comparatively little use of its distinctions, uttering all the syllabies of words and sentences with a more or lese even degree of force. English, on the other band, mabes great use of minute distinctions of stress both to distinguish the meaninge of words and so mark their rehations in sentences.
With stress is closely connected the question of syllable-division. A syllable is a group of sounds containing a "syilabic "or syllableformer, which is, of course, able to constitute a ayllable by itself. The distinction between syllabics and non-sylabics depends on conority, the mare sonorous sounds being the voiced ontes, while of these again, the most open are the most sonorous, the moat sonorous of all being the vowelm, among which, again, the openest are the most sonorous. But these differences are only relative. When in vowel and a consonant conop together the sonorousness of the vowel always overpowers that of the conemant. so that the two together only constitute one ayllable. But in such a word as litlle the second (i) is so much more wonorous than the accompanying voiceleas stop that it assumes syllabic function, and the whole group becomes dissyllabic to the ear. The beginning of a syllable corresponds with the beginning of the strem-impulse with which it is uttered. Thus in afome the arong strese and the socond syllable begin on the (\mathbf{t}), and in bookcase on the second (k), the first (k) befonging to the first syllable, oo that the (lk) is here double, not merely lopg, as in book (bukk) by itself.
Inelosation or variation of tone (pitch) depends on the rapidity of the sound-vibrations: the more rapid the vibrations, the figher the pitch. Intonation is heard only in voiced sounds, as being the only ones capable of variations of pitch.
In singing the voice generally dwells on each note without change d pitch, and then leape up or down to the next note as quicley
xx: 8 *
as posabie, withat the intervening thite" is not moticed-except in what is called portamento. In tpealing, on the other mand, the voice hardly ever dwelis on any one note, but is comstantly gliding upwards or downwands, so that an absolutely level tone hardly ever occurs in speceh. But in the rising and fafling inflections of speech we can distinguith between "voice-glides" (portamentoe or slap) and "voice-leapus" albbough the distinction in not to definite as in singing.

Of the thret primary forms of intonation the level tone () can pe approximately heard in well as an expression of musing-although it really ends with a shight rise; the riving (') in the question wall ; the falling (') in the answer yes. There are beaide cortupound sones formod by uniting the two last in one syliable. The componad fising tone (v) may be heard in lake caref the compound fallips tone (a) in the sarcastic ohf All these toncs may be varied accordin? toi the intervals through which they pase. I he greater the interval, the mote emphatic the tome. Thte a high rixe, which becios high and comsequently cona only rise a littie higher, expressen simple question, while the same word, if uttercd with a low rise extending over an interval of between a fifth and an octave-or even more -expremes varione degrees of surprise or indignation, is in the emphatic what/ compared with the Emphy internogative whatf

In English and most Eurmpean langunges, intonation eerves to modify the general meaning and character of sentences. This is sendemee-intomation. But some languages, such as Swedish and Norwegian, and Chinese, have morl-imbonation, by which morda which rocild cetherwime be ideptical in mound are diatinguished. The dintinction between Gr. oftes and ofles was no doabt one of intomation.
Gides.-Such a word as cat consists not only of the vowel and the two consonants of which it is made up, but also of "glides" or transitions between these sounds. The glide from the initial consonant to the vowel consists of all the intermediate. positions through which the tongue passes on its way from the (k)-position to the (ac)-position. The number of these positions is infnite, but they are all implied hy the mere juxtaposition of the symbols, for it is assumed that in all transiticas from one position to another the shortest way is taken. Although the direction of a glide is dependent on the positions of the two fuxed points between which it lies, its character may be varied both by the shape of the configurative passagesespecially the glottis-and by stress and quantity.

In the word given above the " of-glides" from the consonants are both breath-gides, the gloctis being kept open during the transition from the wiceless consonant to the following wowel, or, as in the case of the final consonant, to silence. The "onglide "from the vowel to the (t) is, on the other hand, a voicegide, the closure of the dottis being maintained till the stop is made.

In French and most of the languages of the south of Europe voiceless consonants are followed by voice-glides. Thus in French qui there is no escape of hreath after the (\mathbf{k}), as there is in English Key. Other languages again have breath on-glides before voicelcss stops.

If an independent strong stress is put on the breath-glide of English key, it is heard almost as a full independent consonant, and becomes an " aspirate." Aspirated steps may be heard in the Irish-Enghish pronunciation of such words as tell, and also in Dasish, and in Sanskrit as pronounced in India. II the voice-glide after a voice stop is emphasixed in a similar way the "sonant aspirates" of Sanskrit and its modern descendants are produced, as in Sanskrit dhanu.

Glides are especially important from an acoustic point of view. Acoustically speaking, indeed, voiceless stops are pure glidesounds, the stop itself being inaudible. In voice-stops, on the other hand, the stop itself can be made audible as well as the intervening glides. In English these latter are fully voiced when they come between voice sounds, as in ago; hut when preceded by voiceless sounds or by a pause, as in go! they are formed with imperfect vocality, full voice being heard anly just before the stop is loosened. So also initial English (z) as in zeal is formed with imperfect vocality under the same conditions, so that it sounds like (sz). In French and ather languages which have voice-glides after voiceless consonants initial (g, z) \&c. are fully voiced.

Consonant-glides may be further modified in various ways, In the formation of "implosive" stops, such as occur in Saron German, Armenian and other languages, voiceless stops followed
by voice-gides are modified by simultaneous clocure of the glottis, the laryax being raised by means of its muscles, so that it acts like a plug, compressing the air between the closed glotis and the mouth-stop, so that when the latter is relcased a peculiar chaky effect is given to the off-glide.
Rounded glides may be heard in Russian in such words as kommala, where the rounding of the (0) is anticipated in the proceding consonant, being heard, of course, only in the offgide of the consonant. The acoustic effect is between that of (kwo) and ordinery (ko).

Glideless consonant-combinations remain to be considered. The general articulative principle of taking the shortest way between sounds in juxtaposition necessarily results in certain transitions being effected without any glide at all. This is regularly the case when the consonants have the same place, and differ only in form, as in (nd, dit), where the point of the toague remains unmoved through the whole sound-group. In such combinations as (mf) the very slight glide is often got rid of entirely by assimilating the place of the first consonant to that of the second, so that the (m) becomes a lip teeth consonant, as in English nymph.

Even when consomants are formed in different parts of the mouth it is often possible to join them without any glide. In English such combinations as (kt, pt) are glideless, the point of the tongue being brought into position before the preceding stop is loosened. In French and most other languages such consonants are separated by a breath-glide.
Combinations of stops and vowel-like consonants (tr, gl, kw) are glideless in English and most other languages. In English the breath-glide after a voiceless stop unvoices the beginning of the following vowel-like consonant; thus lry is almost (trhrai).

Vowel-plides.-Vowiels are begun and ended In various ways. In the "gradual beginning." which is the usual one in Engtish and French. the glortis is gradually .narrowed while breath is being emitted. In the "clear" beginning the breath is leopt back till the glottis is closed for voice, which begins without any "breathiness." Cerman favours the clear beginning, generally exaggerating it into a glottal stop.
In the gradual as well as the clear beginning the ctrem begina on the vowel. If in the former it is throws back on the breathclide, the latter is felt as an independent element and becomen the "aspirate" or (h), which in English and most other languagen is a glide not only in the throat but in the mouth as well, the tongue and lipt gradually moving up into the position for the followind vowel while the glottis is being closed.
There is also a "strong" aspirate, which ockurs in Finnish and other languages, in the formation of which the futi vowel position in assumed from the beginning of the aspiration, which is therefore a voiceleses vowel.
In most hanguagea, when an aspipate comes between voiced sounde it in lormed with imperfect vocality, the contrast of which with the full vocality of the other sounds is enough to produce the effect of breath. Thus in Engish behold the voice runs on withous any actasal break, the glottal closure being simply relaxed, not fully opeoed for breath, at in the emphatic aha / In some languagea, such as Bohemian, this "voice-espirate" is used everywbere, nitially as well as medially.
Vorrele are fnished analogously, either by a gradual opening of the glotis, or by a ceseation of aspiration while the glottion is atill cloned for voice II atresit is put on the gradual ending it becomeo distinct aspirate, at in the Sanskrit "visarga "in such a word an manoh.
Otgamic Basis.--Every language has certain general tendencies which control the formation of its. sounds, constituting its "organic basis" or basis of articulation. The tendency of the present Engish is to flatten and lower the tongue and draw ft hack from the teeth, while the lips are kept as much as possible in a neutral position. The fiattening of the tongue makes our vovels wide and favours the development of mixed vowels, and gives the dull quality which is especially noticeable in our (1); and its retraction is unfayourable to the develogment of teeth sounds; while the neutrality of the lips eliminates frontround vowels. In such a language as French evergthing is reversed. The tongue is arched, and raised, and advanced, and the lips articulate with energy. Hence French sounds tead to narrowness, dentality and distinct rounding.
National Sownd-systoms.-Each language uses only a part of
the general phonetic material. Each one hat only a limited number of sounds; and each one makes only a limited nse of the synthetic distinctions of quantity, stress and intonation. As we have seen, many of these differences between individual languages are the result of, or may be referred to, differences in their orgaric basls.

Just as cognate languages differ from each other in phonetic structure, so also dialects of the same languages differ from each other more or less. Thus the sound-system of Lowland Scotchwhich is, historically, a dialect of Northern English-difers considerably from that of standard English. Standard English itself was originally that mixture of the Midland and the Sonthern dialect which was spoken in London in the middle ages, just as standard French is, historically, the dialect of that district of which Paris is the centre. Standard English, Iike standard French, is now more a class-dialect than a local dialect: it in the language of the educated all over Great Britain. But it is not yet perfectly unfform. It is still liable to be influenced by the local dialects in grammar and vocabulary, and still more In pronunciation.

Again, English, Fike all other living languages, changes from generation to generation. Pronunciations which wre vulgar in one century may become fashionable in the next. Sounds which are distinct in one generation may be confounded in another, and new distinctions may be made, new sounds may arise. A spoken language is, therefore, necessarily a vague and floating entity, and English is no exception to the rule. The very fixity of its written form gives all the freer play to the influences which cause change.

A standard spoken language is, strictly speaking, an abstraction. No two speakers of standard English pronounce eractly alike. And yet they all have something in common in every sound they utter. There are some divergencies, some peculiarities of pronunciation, which pass unnoticed, while others, bees considerable perhaps in themselves, are at once felt as archaisms, vulgarisms or provincialisms, as the case may be, by the majority of educated spenkers.

Sounds of English. -The following ia convenlant claseification of the vowela of atandard Engtioh:-

$$
\begin{aligned}
& \text { is } e e^{4}
\end{aligned}
$$

Here the vowels are in four rows: (1) normally short, or. more correctly, monophehongic, (2) long, or hall-diphthongic, (3) full diphthongs. (4) murmur-diphthongs.
Those under (I) are often lengthened in monosyliables such as Len. sood, but they always remain absolutely monophthongic. The onty one in the next row that is always strictly monophithongic is (30): all the others, as we shall eee, tend to become more or lese diphthongic, especially in the south of England, being often exaggerated into full diphthongs of the (ai) and (au)-type in vulgar speech.
(a), as in come $u p$, is the short vowel corresponding to the (a) in calm. (as) is the mid-back-wide vowel, and (a) differs from it only in being narrow. Acoustically, (a) is a muffled or obscure (as): and the ame effect may he produced by advancing the tongue from the mid-back to the corresponding out-back position, preserving the wide articulation: this pronunciation of है is common in the south of England. Historically, these soundi are the result of unrounding and older (u).
(ρ), at in sofa, is a mixed vowel, tending to wideness and mid position, which occurs only unstressed. (50) in thrat, earth, is low: mixed-narrow. It is the result of absorption of an older (\mathbf{r}), weakened into (0).
(z) 1 at in math, is low-front-wide, from older mid-back-wide.
(i) in if is high-front-wide. The long (ii) in eat is narrow in the north of England, while in the wouthlt is wide (i) followed by (i).
(e) In men is generally mid-front-wide. (ci) in wewe is the same vowel either narrow or wide, raised in its latter half towards (i).
(u) in good is high-back-wide-round. Narrow (eni) In too becomes (ww) in southern English.
(o) in mot is low-back-wide-round. In (on), as in me, the mid-back-round vowel, either nartow or wide, is over-rounded in ita latter hall. ($)$), as in all, is low-bact-marrow-round.
The full diphthongs (ai, au. oi), ast in exe, now, oii, all end fin lowered high yowels. Their first elemente are only roughly indicated by the transcription, and vary in the mouths of different apeakers. That of (ai) in generally the oot-mid-back-wide, that of (au) the broader low-mixed-wide, that of (oi) the mid-back-wide-round.

poor, all tend to broaiden their fint elementa. That of (ea) is the low-front-narrow vowel. The other two begin with lowered forms of the wide (i) and (x) respectively. In (ux) the lowering is often carried so far as to make poor almost, or completely, into pore (pos).

The following atrangement of the English consonants will show their organic relations to one another:

$$
\begin{aligned}
& \text { \& } \mathrm{s} \text { t, d } \\
& p, b
\end{aligned}
$$

* (h) may be regarded ${ }^{n}$

The " aspirate" (h) may be regarded cither as a throat-consomant or as a breath-glide.

Characteristic features of the English consonant-system are the large number of hisses and buzzes, the sharp distinction of breath and voice, and, negatively, the absence of the open-back consonants. and of the voiceless forms of the vowel-like consonants $(1, r)$ and the nasals, most of which still existed in Old Engtish.

Bibliography. - The most important peneral works are: H. Sweet, A Primer of Phonelics (3rd ed. Oxford, 1906): E. Sievera, Gruadzüge der Lauphysiologie (5th ed., Leipzig, 1901); W. Vietor, Elemente der Phonctik des Deutschen, Engliseken und Francosischen (5th ed., Lcipzig, 1904); O. Jesperson, Lehrbuch der Phonetik (Lejpzis, 1904); M. Trautmann, Die Sprochloute (Leipzig, 1884-1886); Le Maftre Phonéfique, organe de l'cssociation phonétique intcrnationale (apply to Dr P. Passy, Bourg-la-Reine, France). For the Laws of sound-change, sec the above-nientioned work of Sjevers; H. Sweet, A Iistory of English Sounds (Oxford, 1888): P. Passy, Les Changements phonéliques (Paris, I890). For phonetics in language-teaching see H. Sweet. The Practical Siudy of Languapes (London, 189g): O. Jesperson. How to Leam a Forcign Language (London, 1904). For phonetic shorthand, H. Sweet, A Manual of Current Shorthand (Oxford. 1892). For the application of phonetics and phonetic potation to the practical study of special languages, H. Sweet, \boldsymbol{A} Primer of Spohen English (2ad ed., Oxford, 1895): F. Beyer and P. Passy. EJententarbuch des gesprochenen Franebsisch (2nd ed., Cöthen, 1905): W. Vietor, Deuksches Lasebuch in Loutschrif! (Leipzig, 1899).
(H. Sw.)

PHOKOGRAPH (Cr. фawh, sound, रpá\$ay, to write), an betrument for imprinting the vibrations of sound on a moving surface of tinfoil or war in such a form that the original sounds can be faithfully reproduced by suitable mechanism. Many attempts had been made by earlier experimenters to obtain tracings of the vibrations of bodies emitting sound, such as tuning-forks, membranes, and glass or metallic disks. In 1807 Thomas Young (Lectures, 1. 191) described a method of recording the vibrations of a tuning-fork on the suriace of a drum; his method was fully carried out by Wilhelm Wertheim in 1842 (Recherckes sur l'elasticils, yrr. mem.). Recording the vibrations of a membrane was first accomplished by Leon Scott in 1857 by the invention of the "phonautograph," which may be regarded as the precursor of the phonograph (Comptes rendus, 53, p. 108). This instrument consisted of a thin membrane to which a delicate lever was attached. The membrane was stretched over the narro end of an irregularly-shaped funnel or drum, while the end of the lever or marker was brought against the surface of a cylinder covered with paper on which soot had been deposited from a flame of turpentine or camphor. The cylinder was fixed on a fine screw moving horizontally when the cylinder was rotated. The marker thus described a spiral line on the blackened surface. When sounds were transmitted to the prembrane and the cylinder was rotated the oscillations of the marker were recorded. Thus tracings of vibrations were obtained. This instrument was much improved by Karl Rudolph Konig, of Paris, who also made with it many valuable observations. (See Nature, Dec. 26, 1901, p. 184). The mechanism of the recording lever or marker was improved by William Henry Barlow, in $\mathbf{1 8 7 4}$, in an instrument called by him the "logograph" (Trons. Roy. Soc., 1874). The next step was Konig's invention of manometric flames by which the oscillations of a thin membrane under sound-pressures acted on a small remeryoir of gas connected with a flame, and the oscillations were viewed in a rotating rectangular mirror, according to a method devised by Charles Wheatstone. Thus flamepictures of the vibrations of sound were obtained (Poge Ans. 1864, cxxii. 242: 660; sce also Quelques experiences d'acow sfigue, Paris, 1882). Clarence Blake in 1876 employed the drumhead of the humap ear as a logograph, and thus obtained tracings. mimilar to thone made by artificiad memberane and diaks Grahio.
fur Ophehahinot., 1876, 7. 1.). In the same yeir Stsmond Theodor Stein photographed the vibrations of tuning-forks, violin strings, 8cc. (Pogs. Aimn 1876, p. 142). Thus from Thomas Young downwards auccoseful eforts had been mada to record graphically on moving surfaces the vibrations of sounds, but the sounds so recorded could not be reproduced. This was accomplished by T. A. Edison in 1876, the first patent being dated Jamuary 1877 .
In the first phonograph a spiral groove was cut on a brase drum fixed on a borixontal screw, so that when the drum was rotated it moved from right to left, an in the phonautograph. The recorder consistod of a membrane of parchment or gold-beater'a akin stretched over the end of a short brass cylinder about 2 in in diameter. In the centre of the membrane there was a stout steel needle having a chime-shaped edge, and a stiff bit of ateel apring was soldered to the needle near its point, while the other end a the spring was clamped to the edge of the brass cylinder over which the membrane was stretched. The recorder was then $\infty 0$ placed beaide the large cylinder that the farp edge of the needle ran in the middle of the spiral groove when the cylinder was rotated. The cylinder was covered writh a ewet of soft tinloid. During rotation of the cylinder, and while the membrene was not vibrating, the sharp edge of the marker Indented the tinfoil into the epiral groove; and when the membrane was caused to vibrate by sounds being thrown into the ahort cylinder by a funnel-shaped opening; the variations of preasure corresponding to each vibration caused the marker to make indentations on the tinfeil in the hottom of the groove. These indentations corresponded to the sound-waves, To reproduce the sounds the recorder was drawn away from tho cylinder, and the cylinder was rotated backwards until the recorder was brought to the point at which it started. The cylinder was then rotated forwards so that the point of the recorder ran over the elevations and depressions in the bottom of the groove. These elevations and depressions, corresponding to the variations of pressure of each wound-wave, acted backwards on the membratio through the medium of the marker. The membrane was thus caused to move in the same way as it did when it was made to vibrate by the sound-waves falling upon it, and consequently movements of the same general character but of smaller amplitude were produced, and these reproduced sound-waves. Consequently the sound first given to the phonograph was reproduced with considerable accuracy. In 1878 Flecming Jenkin and J. A. Ewing amplified the tracings made on this instrument by the sounds of vowels, and submitted the curves so obtained to harmonic analysis. (Trams. Roy. Soc. Edin. xxviaj. 745). The marks an the tinfoil were also examined by P. F. F. Gratzrier, Mayer, Graham Bell, A. M. Preece, and Lahr (see The Tclephone, the Microphone, and the Phonograph, by count du Moncel, London, 1884; also The Speaking Telephone and Talking Phonogroph, by G. B. Prescott, New York, 1878).

Tbe tinfoil phonograph, howover, was an imperfect instrument, both as regards the medium on which the innprints were taken (tinfoil) and the general mechanism of the instrument. Mant Improvements were attempted. From 1877 to 1888 Edisoh was engaged in working out the details of the wax-cylinder phonograph. In 1885 A. G. Bell and S. Tainter patented the "graphophone," and in 1887, Emile Betliner, a German dómalciled in America, patented the "gramophone," whereln the cylinder was coated with lampbleck, and the friction between it and the stylus was made uniform for all vibrations. Incidentally it may be mentioned that Charles Cross deposited in 1877 a sealed packet with the Academie des Sciences, Paris, containing a suggestion for reproducing sound from a Scolt phonautograph record. The improvements made by Edison conebsted chiefly (1) In substituting for tinfoil cylinders or disks made of a waxy substance on which permanent records are talen; (2) in substituting a thin glass plate for the parchment membrane; (3) in improving the mechsonical action of the marker; and (4) in driving the drum cartying the wax cylinder at a uniform and rapid speed by en electric motor placed below the instrument.

In the first place, permaneut cecords can be talen on the wax, which is componed of stearin and prafilin. This material is brittle. but it readily takea the imprintis made by the marker, which it now a tiny bit of sapphire. The maiker when used for recording, is shod with a chiselshaped edge of apphirs; but the eapphire fo rounded when the marker is used for reproducing the eound. The marker also, instead of beisg a stiff noedle coming from the centre of the membrane or glase plate, is not a lever, weighted to as to beep it In contact with the warface of the wax. A argle vibration of a pure tone consistr of an Increase of preasure followed by dimination of presenve. Whien the disk of dese ts mobritted to

the wax oxlinder if rotating, the point of the marter is angled downwards, and this cuts deeply into the wax; and when there is diminution of pressure the point is angled upwards. 30 as to act less deeply. In reproducing the sound, the blunt end of the marker rums over all the elevations, and depreacions in the bottom of the groove cut on the wax cylinder. There is thut increased preseure transmitted upwards to the glass dist when the point runs over an elevation, and less pressure when the point runs over a depression on the wax cylinder. The tlass disls is thus, as it were, pulled inwards and chrust outwarde with each vibrtion, but theee polls

Fig. 1a.-Extenor of Edison Phonograph.
and thruste follow each other to rapidly that the car takees no cognizance of the difference of phase of the vibrations of the glass plate in imprinting and ia reproducing. The vannione of premure are communicated to the glase plate, and theoe, by the medium of the air, are trant siittod to the drum-bead of the ear, and the oupd is reproducod with remarkable Gdelity. It is necemary for accurate reproduction that the point of the marker be in the contre of the groove. In the older phovegraphs this required mocurate adjustment by a fine screm, but in newer forma 2 certain amount of lateral occillation is atlowed to the marker. by which it dipe tulomatically iato the groove. Two other improvements have been effected in the construction of the instrument. A powerful triphe-spring motor has beea substituted for the electric mooror, and the inceumference of the wax cylinder has been licreacod from 67 in m 15 in. whitse the diask is 12 in in diameter. The cylinders make about two revolutions per econd, so that with the amaller cylinder the poiat of the marker suas over nearty 14 in. in ope second, while with the learger it runs over about 30 in. The markse correaponding to the individual vibrations of cones of high plech are therefore less bikely to be crowded topecher with tbe larger cylinder, and these bigher sooce in partioular are more scocurately reproduced. In a form of inderyment copled the 200-chread machine motion of the drum bearing the cylinder was taken of a ecreve the thread of which wai so to the inch, and by a syecem of gearing the prooves on the eylinder wexe 200 to the trech, or xtr of an inch spart. It was sorseexhat difficult to keep the raarker in the groovee when they were co close togetheri and the nomement io now taken directly of a screw the thread of which is : 100 to the inch, so that thy Eroves on the culinder ane sta of an
inch apart. Thus with the large cylinder a apiral groove of oves 300 yds. may be deacribed by the recorder, and with a spoed of about two revolutions per recond this distance is covered by the marker in about six minutea. By diminishing the speed of revolytion, which cas be casily done, the time may be considerably lengthered.
In the plate machine the disk is fixed to a table which is rotated at a fixed speed of about 76 revolutions a minute. The speed of the lateral movement of the table is also uniform, and by a regular progression brings the Fax blank under the mound-box to the sapphire cutting point, which detaches a fine unbroken thread of wax as it cuts into the surface of the blank to a depth of 3t-to 4 thousandths of an inch beginning at about half an inch from the circumference and continuing the spiral groove to within a couple of inches of the centre, according to the length of the music to be recorded. The essential difference between the disk and cylinder machine is that in the former the waves are recorded by horizontal motion over the disk, while in the latter the waves are recorded as indentations.
The following is the modus operandi of making a record. The person making the record sings or plays in front of a horn or funpel used for the purpose of locusing the sound-waves upen the diaphragm. The artist and the funnel are on one aide of a acrean and the recording apparatus in charge of an operator on the other. The arrangement of the various instruments in the recording room at proper relative distances from the horn is of the utmost importance in order to prescrve the balance of tone. At about 4 ft. (rom the horn are grouped the violins and the wrood wind (fluter, oboes and clarinets), behind the brass wind (borns, trumpets, trombones and tubers), and right at the back the violoncellos and double basscs and the kettic-drums and other instruments of percussion which may be required. On the other side of the screen is the sound-box and the recording cylinder or diak.
Cylinder records are duplicated by caking a plaster cast, electroplating, and then using it as a matrix. The disk recond admits of similar treatment. After dusting with graphite it is electroplated to about 9 mm . thick. This forms the permanent or master record, from which the working negatives are made by taking way impresses of it and obtaining copper electros in turn from them. The matrix is then nickel-plated and polished and is ready for use in presaing out the commercial records by means of an hydranic prese, the material used being a tough and elastic aubutance containing shellac and other compounds such as wood charcoal, barium sulphate, carthy colouring matters and cotton fock.

There is arill a defect to be overcome in the gramophose, and that is the hiseing of the needle produced by friction both during recordiag and intensified in reproduction. In one device for remedying this the stylus acts like a atylographic pen, depositing on a polished surface a fine stream of some liquid which solidifies and hardens very rapidly. forming a sinuous ridge intead of a groove ia a wax blank. A negative is taken of the recoed and the matrix in made from it in the usual say.

Fic. 1b.-Mfechanism of Edison Phonograph.
The auxeto-gramophone or auxetophone, patented by Short im 1898 and improved by the Hon. C. A. Perwose, is cixrilar in scope to the errasophone bus attalis ite remile $k=$ o diferent mamper. In the Preoptshort comudthint there is mo dinplumem, but a
column α-compremed ir is contrislled by a delicutely indjasted grid-valve consinting of a metal coomb rigidy y cormected to the wytas bar, so that as the ncedle moves the netal comb moves with it, following the lines of vibration fixed on the record and opening or eloning the, slots in the valve seat. The column of compresped air to which the valve gives actess thus receives teries of minute pukations identroal with thow which originally prodyced the sounds reciorded. In connaxion with the souped-box is the apparatus for supplying coropressed air, consinting of a sixth-horse power electric motor dnvint the compressor, an oil filter, a reservoir and a dust collector to keep the air absolutely free from foreign substances likely to interfere with the action of the valve.

The practical possibilities of the gramophone are being realized in many countrics. Matrices of the records of wellknown artists have been deposited at the British Museum and at the Grand Opera in Paris. Austria established a public phonogram record office in 1903, in which are collected folk. songst and records of all kinds for enriching the department of ethoography. The same idea is being carried out in Germany

Fio. 2.
by private societies and by royal museums. In Hungary records of the varions dialects have been secured. The possibilities of the gramophone as a teacher are fat-reaching, not only in the domain of music but in learning langaages, cc .
To understand how the phonograph records and reproduces musical tones, it is necessary to remember (i) that pitch or frequency depends on the number of vibrations executed by the vibrating body in a given period of time, or on the duration of each vibration; (2) that indensily or lowdwess depende on the amplitude of the movement of the vibrating body; and (3) that qualify, ilmbere or clang, first, depends on the form of the individual vibrations, or rather on the power the ear. possesses of appreciating a simple pendular vibration producing a pure tone, or of decomposing more or less completely a compound vibration into the simple pendular vibratiprs of which it is composed. If we apply this to the record of the phonograph, we find that, given a constant and sufficiently rapid velocity of the record, a note or tone of a ceitain pitch will be heard when the marker runs over a number of elevations and depressions corresponding to the frequency of that note. Thus if the note was produced by 200 vibrations per second, and supposa-that it lasted in the musif for 1 to of second, 20 marks, each made in ybt of a second, would be imprinted on the waz Consequently, in reproduction, the marker would run over the 20 marks in it of a second, and a tone of that frequency would be reproduced.

The loudness would correspond to the depth of each individual mark on the cylinder or the uidth on the disk. The greater the depth of a series of successive marks produced by a loud tone, the greater, in reproduction, would be the amplitude of the excursions of the glass disk and the louder would be the tone reproduced. Lastly, the form of the marks corresponding to individual vibrations would determine the quality of the tone or note reproduced, by which we can distinguish the tone of one instrument from another, or the sensation produced by a tone of pure and simple quality, like that from a pell-bowed tuning-fork or an open organ pipe, and that given by a trumpet or an orchestra, in which the sounds of many instruments are blended together. When the phonograph records the sound of an orchestra it does not record the tones of each instrument, but it imprints the form of impression corresponding to the very complex sound-wave formed by all the instruments combined. This particular form, infinitely varicd, will reproduce backwards, as has been explained, by acting on the glass plate, the particular form of sound-wave corresponding to the sound of the orchestra. Numerous instruments blend their tones to make one wave-form, and when one instrument predominates, or if a human voice is singing to the accompaniment of the orchestra, another form of sound-wave, or rather a complex scries of sound waves, is . imprinted. When reproduced, the wave-forms again exist in the air as very complex variations of pressure; these act on the drum-head of the human ear, there is transmission to the brain, and there an analysis of the complex sensation takes place, and we. distinguish the trombone from the oboe, or the human voice from the violin obbligato.

Many efforta have been made to obtain graphic tracings of wave-formsimprinted on the wax phonograph records. Thus (. G. N'Kendrick took (1) celloidin casts of the surface, and (2) microphotographs of a small portion of the cylinder (Journ. of Anct. and phys., July 1895). He also devised a phonograph recorder by which the eurves were much amplified (Trans. Roy. Soc. Edin., vol. xxxvill.; Proc. Roy. Soc. Edin., 1896-1897, Opening Address; Sound and Speact Mover as recated by the Phonograph, London, 1897; and Schäjer's Fhysiol., vol. ii., "Vocal Sounds.", p. 1229). As already mentioned, so long ago as 1878 Flecming Jenkin and Ewing had examined the marks on the tinfoil phonograph. Professor Ludimar Hermann, of Konigsbetg, took up the subject about 1890, using the wax-cylinder phonog taph. He obtained photographs of the curves on the wax cylinder, a beam of light reflected from a small mirror attached to the vitrating disk of the phonograph being allowed to fall on a sensitive plate while the phonograph was slowly travelling. (For references to Hermann's important papers, sce Schafer's Physiovgy, Hi. 1222,) Bocke, of Alkmaar, has devised an ingenious and accurate method of obtaining curves from the wax cylinder. He measured by means of a microscope the transverse diameter of the impressions on the surface of the cylinder, on differeat (generally equidistant) parts of the period, and he iniers
from theme measerements the depth of the imprewions on the same spot, or in other words, he derives from these measurements the curve of the vibrations of the tone which produced the impreasion

Fic. 4
(Archiv. f. d. ges. Physiol. Bonn, Bd. I, S. 297 ; also Proc. Roy. Soc. Edin., 1898).
From a communication to the Dutch Otorhinolaryngological Society Dr Boeke bas permitred the author to select the accompanying illustrations, which will give the reader a fair conception of the nature of the marks on the wax cylinder produced by various tones. Fig. 2 showa portions of the curves obrained by Hermann, and enlarged by Bocke one and a half times. The numbera it to 4 refer to periods of the vowel a (as in "hard"), sung by Hermann on the potes $c \in g c^{c}$. Numbers 5 to 8 show the curven of the vowel - (as in " go ") sung to the same notes. The number of vibrations is aloo noted. Bocke measared the marks for the same vowels by his method, from the same cyliader, and constructing the curves. found the relative leagthe to be the same. In Gg. 3 , we wee the indentations produced by the rame vowels mung by Hermann on the notee c e $g c^{\prime}$, on the same phonograph cylinder, but delineated by Boeke after his method. The curves are also shown in linear fashion beside each group of indentations. From thew masure-
ments the curves were cticilated and seproduced, as in far 4 Thus the curves of the same vomal sounds on the same cyhiocter are shown by two methods, that of Hermann and that of Boeke.

Fic. 5.
In fy. 5 we see the indentations on the vowel s , mung by Dr Boeke, aged 55, on the noten $c d \in f g a b c$, and near the frequencies of 128, 144, 160, 170.6, 192, 113.3, 240 and 256. The numbers 33 to 40 ahow the marks produced by the same vowel, cung by his roo, aged I3. It will be men that the boy ang the noter exactly an octave higher. Fig. 6 abow the marke produced by come musical

Fig. 6.
sounds. Each shows on the right-hand side the curve deduced from the marks, and under it a graphical representation of the results of its harmonic analysis after the theorem of Fourier, in thich the ordinates represent the amplitude of the subsequent harmonic constituents. No. 41 is the period of the wound of a pitch-pipe giving a^{\prime} (425 double vibrations per second), No. 42 the period of a Dutch pitch-pipe, also sounding a^{\prime} (434.64 double vibrations per second). No. 43 is a record of the periot of a sound produced by blowing between two etrips of indiarubber to ithitate the vocal corda with a frequency of 453 double vibrations per second. No. 44 is that of a telephone pipe used by Hermann (503 double vibra. tions per second). Noe 45 and 46 show the marks of a cornet wounding the notes a of +400 double vibrations per sccond, and e of 300 double vibrations per eccood. In fig. 7 are shown a number of vowel curves for the vowels 0,0 OE, A, E and L. Eech curve hat on the right-hand side a graphical representation of its harmonic analycis. The curves are in five vertical columas, having of the

Fia. 7.

Eot-hand inde of each drawines, by Boeke's method, of two periods of the marks of the vowel. The marks are shown for the Dutch. German, Enplich and Freach languages. The sounds of the vowels
 in "Fubrer ": a, tike a in "hard "; a, like a in" "take"; j, not in English, words, but somewhat tike ' in "bell"; and i, like ee in "beer." The first section containe only Dutch vowel sounds, either sung or spoken by Bocke or members of his family. The second section contains curves from the voice of Professor Hermann, the third from the voice of the author from a cytinder sent by him to Dr Bocke, and the fourth from the voice of Moma. H. Marichelle. professeur de l'Institut des Sounds-Muete, also forwarded by him to Dr Boeke. Thus curves and marks of the same vowel are ahown from the voices of men of four nationalities.
On the construction of the gramophone, see I. N. Reddie, Journ. Soc. Arls (1908).

PROMOLITB (Gr. фwah, sound, and XPos, stone), in petrology, a group of volcanic lavas containing much nephelineand sanidine felspar. The term "clinkstone" was formerly given by geologists to many fine grained compact lavas, which split into thin tough plates, and gave out a ringing sound when struck with the hammer. Some of these clinkstones were phonolites in the modern sense, but as the name elinkstone was used for a large variety of rocks, many of which have no close affinities with one another, it has been discarded and "phonolite" is substituted for ii. The group includes rocks which are rich in alkalis with only a moderate percentage of silica; hence they contain no free quartz but much alkali felspar (sanidine and anorthoclase) and nepheline. Large plates of sunidine are often visible in the rocks; the nepheline is usually not obvious to the unaided eye. Most phonolites show fiwxion structure, both in the oritntation of their phenocrysts and in the smaller crystals which make up the ground-mass; and this determines to a large extent the platy jointing- Allhough vitreous and pumiceous forms are known they are rare, and in the great majority of cases these rocks are forely erystalline with a dull or shimmering lustre in the groundmass. Marked characteristics are the readiness with which they decompose, and the frequency of veins and cavities oceupied by matrolite, arakite, scolecite' and other zeolites. Small black grains of augite or hornblende and sometimes blue specks of haüyne may be seen in the rocks when they are fresh.

The dominant minerals are sanidine, nepheline, pyroxene, amphibole, various fekpathoids and iron oxides. The sanidine is usually in two genemtions, the first consinting of large crystals of fiattened and tabular shape, while the second generation is represented by small rectangular prisms arranged $\ddagger n$ parallel streams in the ground-mass; these felspars are nearly always simply twinned on the Carlsbid plan. They contain often as much soda as potash. The nepheline takes the form of hexagomal prisms with fat ends, and may be completely repleced by fibrous zeolites, so that it can only be recognized by the outlines of its pseudomorphs. In some phonolites it is exceedingly abundant

	SiO_{3}	$\mathrm{Al}_{3} \mathrm{O}_{3}$	$\mathrm{Fe}_{2} \mathrm{O}_{4}$	Fco	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	Ks0	$\mathrm{H}_{2} \mathrm{O}$
I. Phonolite, Woll Rock, Comwall	56-46	22.29	$2 \cdot 70$	0.97	F	1.47	12.13	2.81	$2 \cdot 05$
11. Photolite, Teplitzer Schlossbery. Bohemia	58.16 58.48	28.57 19.56	2-77	4.99	1.26 0.53	2.00 2.60	$5-97$ 3.14	6.57 10.47	2.03 0.24

in the ground-mass, and these rocks form transitions to the nephelinites (nephelinitoid phonolites) (sce Petrolocy, Plate III. fig. 1); in others it is scarce and the rocks resemble trachytes containing a little mepheline (trachytoid phonolites). The felspathoid minerals, sodalite, hatyne and nosean, which crystallize in isometric dodecahedra, are very frequent components of the phonolites; their crystals are often corroded or partly dissolved and their outlines may then be very irregular. Small rounded enclosures of glass are often numerous in them. The pyroxenes may be pale green diopside, dark green acgixine-augite, or blackish green aegirine (soda iron pyroxene), and in many cases are complex, the outer portions being aegirine while the centre is diopside. Fine needles of aegirine are often found in the ground-mass. The commones hornblende is dark hrown barkevicite. Biotite and olivine are not really frequent in these rocks, and usually have been affected by resorption. The ordinary accessory minerals of igneous rocks, apatite,
magnetite and zircon occur in the phonolites, and sphenc is often rather common. Another mineral which is more frequent in phopolites than in many other rocks is brown melanite garnet.

The majority of the rocks of this group are of Tertiary or Recent age, but in Scotland Carboniferous phonolites occur in several localities, e.g. Traprain in Haddingtonshire, also in the Eildon Hills and in Renfrewshire. In Brazil phonolites belonging to the same epoch are also known. There are several districts in Europe where Tertiary or Recent phonolites occur in considerable numbers, as in Auvergne (Mont Dore), the Eifel, and Bohemia. The Woll Rock which lies off the south coast of Cornwall, and is the site of a well-known lighthouse, is the only mass of plonolite in England; it is supposed to be the remains of a Tertiary lava or intrusion: The Canary Islands, Cape Verde Islands, Sardinis, Aden, British East Africa and New Zealand contain many types of phonolites; they are known also in New South Wales, while in the United States phonolites occur in Colorado (at Cripple Creek) and in the Black Hills of South Dakote.
Leacite occurs in place of nepheline in a small group of phonolites (the keucite-phonolites), known principally from Rocca Monfina and other places near Naples. Blue haldye is rather a conapicuous mineral in some of these rocks, and they also contain a good deal of sphene. When sanidine, nepheline and leucite all occur together in a volcanic rock it is classed amons the leucitophytes (see Pexrolocy, Plate III. Gig. 2).
The chemical analywes of phonolites given below show that these rocks aso very rich in alkalis and alumina with ouly a moderate amoant of silica, while lime, magnesia and iron oxidea are present only in tanall quantity. They have a clowe resemblance in these rospects to the nephellae-syenites of which they provide the effusive types.
(J.S.F.)

PHongrs (Prorcus, Proxcyw), in Greek mythology, son of Pontus (Sea) and Gaes (Earth), father of the Graeae, the Gorgons, Scylla, and Ladon (the dragon that guarded the golden apples of the Hesperides). In Homer (Odyssey, xiii. 96) he is an agod sea deity, after whom a harbour in Ithaca wis named. According to Varro (quoted by Servius in Aeveic, v. 824) Phorcys was a king of Corsica and Sardinia, who, having been defeated by King Atlas in a naval engagement in the course of which be was deowned, was subsequently worshipped as a marine divinity.
Phorimitm, or New Zealand Flax (also called "New Zealand hemp"), a fibre obtained from the leaves of Phormiam tenax (nat. ord. Liliaceae), a native of New Zealand, the Chatham Islanda and Norfolk Island. This useful plant is one of tho many which were discovered by Sir Joseph Banks and Dr Solander who accompanied Captain Cook on his first voyage of discovery. The seeds brought home by Banks in 177 I did not succeed, but the plant was introduced by him to the Rqyal Gardens at Kcw in $\mathbf{1 7 8 9}$, and was thence liberally distributed
in Great Britain and the continent of Europe. It grows luxuri. antly in the south of Ireland, where it was introduced in 1798 , and also flou rishes on the west coast of Scotland, and is generally cultivated as an ornamental garden plant in Europe. It has been introducod for economic purposes into the Azores and California. The name Phormium is from Gr. фoppbs, a basket, in allusion to one of the uses made of its leaves hy the New Zealanders.

In its native country the plant is generally found near the coast. It has a flcshy rootstock, crecping bencath the surface of the soil and sending up luxuriant tufts of narrow, swordshaped leaves, from 4 to 8 ft . long and from 2 to 4 in . in diameter. The leaves are vertical, and arranged In two rows as in the garden flag; they are very thick, stiff and leathery, dark green above, paler below, with the margin and nerve reddishorange. From the centre of the tuft ultimately arises a tall flower-bearing stem, 5 to 15 ft . high, bearing on iss mumerous
branches a very large number of lurid red or yellow, somewhat tubular flowers, recalling those of an aloe, and from 1 to 2 in . long. After flowering the plant dies down, but increases by new lateral growths from the rootstock. The plant will grow in almost any soil, but best on light rich soil, by the side of rivers and brooks, where sheltered from the wind.
Phormium has been treated as a cultivated plant in New Zealand, though only to a limited extent; for the supplies of the raw material dependence has been principally placed on the abundance of the wild stocks and on sets planted as hedges and boundaries by the Maoris. Amony these people the fibre has aluays been an article of considerable importance, yielding cloaks. mats, cordage, fishing-lines, \&c., its valuable properties having attracted the attention of traders even before colonists settled in the islands. The leaves. for fibre-yiclding purposes, come to maturity in about six moaths, and the habit of the Maoris is to cut them down twice a year, rejecting the outer and leaving the central immature leaves. Phormium is prepared with great care by native methods, only the mature fbres from the under-side of the leaves being taken. These are collected in water, scraped over the edge of a shell to free them from adhering cellular tissue and epidermis, and more than once washed in a running stream, followed by renewed scraping till the desired parity of fibre is attained. This native procem is exocedingly wasteful, not more than one-fouth of the leal-6ibre being thereby utilized. But up till 1860 it was only native-prepared phormium that was known in the market, and it was on the material so carefulf, but wastefully, selected that the reputation of the fibre was built up. The troubles witb the Maoris at that period led the colonists to engage in the industry, and the sudden deraard for all availabie fibres caused soon alterwards by the Civil War in America greatly stimulated their endeavours. Machinery was invented for disintegrating the leaves and frecing the fibre, and at the same time experiments were made with the vicw of obtaining it by, water-retting, and by means of alkaline solutions and ocher chemical agencies. But the fibre produced by these rapid and economical means was very inferior in quality to the product of Maori handiwork, mainly because weak and undeveloped strands are. by machine preparation, unavoidably intermixed with the perfect fibres, which alone the Maoris select, and wo the uniform quality and strength of the material are destroyed. The New Zealand government in 1893 offered a premium of $\mathrm{f}_{1} 750$ for a machine which would treat the fibre satisfactorily, and a further $£ 250$ fer a procome of treating the tow; and with a view to creating furcher interest in the matter a member of a commission of inquiry visited England during 1897. The premium was again issued in 1899. In 1903 it was stated that a German chemist had discovered a method of working and spinning the New Zcaland fibre. An idea of the extent of the growth of the fibre may be gathered from the fact that the exports for 1905 amounted to 28,877 beles asia value of nearly $\$ 700,000$.

Phormium is a cream-coloured fibre with a fine silky gloss, capable of being spun and woven into many of the heavier textures for which flax is used, either alone or in combination with flax. It is, however, principally a cordage fibre. and in tensile strength it is second only to manila hemp; but it does not bear well the alternations of wet and dry to which ship-ropes are subject. The fibre bas come into use as a suitable material for binder-twine as used in welf-binding reaping machines.

PRORONIDEA, a zoological order, containing a single genus Phoronis, which is known to be of practically world-wide distribution, while there are many records of its larva, Actinotrocha, from localities where the adult has not been found. Phoronis is often gregarious, the tubes which it secretes being sometimes intertwined in an inextricable mass. These associations of individuals can hardly be the result of the metamorphosis of a corresponding number of larvae, but are probably due to a spontaneous fragmentation of the adult animals, each such fragment developing into a complete Phoronis (De Selys-Longchamps). The animal is from a quarter of an inch to six inches (P. ausiralis) in length. The free end of the long vermiform body eads in a horseshoc-shaped "lophophore," or tentaclebearing region (fig. $1, a$), which strikingly resembles that of the Pbylactolaematous Polyzoa (see Polyzon).
In some species (figs. 2, 3) the two ends of the lophophore are rolled into spirals. An oral view of this region (fig. 2) stows: the mouth (m), continuous on either side with the groove between the two ueries of temacles: the anus (a), in the middle line at no great distance from the mouth is transversely elongated epistome (ep), between the mouth and the anus: and, in the concavity of the lophophore, the apertures of the nephridia ($\kappa .0$.) which, according to De Selyy-Longchamps, open into the two large sensory or glandular "lophophoral organs' the orifices of which are seen at p. The mourh leads into the oesophagus, which extende straight down the body nearly to the aboral end or "ampulla," where it
dilates into a stomach, from which the inscending limb of the U-shaped alimentary canal parses directhy to the amer Tho coelomic body-cavity is divided by a transwerse ceprum (fig. 3. 3) which lics near the bases of the tertacles. The precseptal or lophophoral coelom is continued into each of the tentacles and inte the

(Abre Almand)
Fig. 1.-The Tentacular End of Pharonis, with mont of the tentacka removed.

a_{v} The horseshoe-shaped lopho-
 f. Efferent vessel.

 phoce.Mouth.
c, Optical section of the epistome (seen immediat ely below the end of the reference-fine). d, Oesophagun.
8. One of the two efferent lophophoral vessels, uniting to form f.
h, Dorsal or afferent vemel.
i, Body-tall.
a. latentine.
k, Fused beses of the tentacles.
epistome. The ponseptal coelorn is partially divided by a ventral menentery which is attacted along the entire leagith of the convex side of the loop of the alimentary canal (a, a°) and by two lateral mesenteries (a) which further connect the oesophagus with the

Fio. 2.-Dorsal View of Phoromis oustralis, chowing the spirally coiled ende of the lophophore.
a. Anus.
D. Posterior surface.
ep, Epistorne.
5. Lophophoral organ.
i., Bapes of inner tentactes.
m. Position of the mourh.
mio., Nephridial suriace. v.a., Nephridial opening. o. . . Bases of outcr tentacles. O., Ancerior surface. body-wall. Each nephridium is provided with cither one or two funnels which open into the postseptal division of the coelom (we.f). The mervous system hies in the epidesmis, externally to the bemementmembrane. A general nerve-plexus probably exista over coasiderable parts of the skin, and there are speciai nervous concentrations in the region of the epistome and along a double crescent (N) which follows the parietal attachment of the coelornic ceptum. The part which lies at the base of the epistonne is morphologically dormal in position. It is said by Schultz (11) to develop, in specimens which are regenerating the lophophoral end, from an invapinatio, of the ectoderm; and in this condition is compared by him with
cte bollow oental pervous pyatem of acme Enterognensta and of Vertebrates This comparison is not admitted by De SelysLongchamps. The vascuiar system contains numerous red bioodcorpuscles. The principal blood-channels are two longitudinal veasels which run down the entire length of the body, and are known as the "afferent" vessel (an) and the "eflerent" vesal (ef) respectively, from their relation to the tentacles. According to researches in 1907 by De Selys-Longchamps, the blood is driven by the afferent vessel ($a f$) to a crescentic lophophoral vessel (d.v.) which eupplies the tentacles. Each of these contains a single blindly

(From Fowler, after Benham.)
Fig. 3-Diagram of oral end of Phoronis asstralis; ecen from the left side.
a, Oemphageal (ventral) menen- $N_{\text {. }}$ Poat-oral nerve-tract at

tery.

a^{\prime}. Right Lateral mesentery.
a^{*}. Intestinal mesentery.
af. Afferent vescel.
as, Anos.
D. Posterior surface.
d.v., Afferent lophophoral vessel.
ef, Efferent vessel.
ep, Epistome.
Lophophoral organ.
Base of inner tentaciea Mouth.
base of kophophore.
me.d., Duct of nephridium
ne.f., Larger nephridial funrel.
te.o., Exterfal opening of nephridium.

e) Oepophagus

ob. . Bascs of outer tentacles.
t.v., Right efferent lophophotal vestel.

* Coelomic septur

6. Anterior side.
ending vessel which bifurcates at its base (sce fig. 3). One of these branches communicates with the afferent lophophotal vessel, while the other one opens into the crescentic efferent lophophoral vessel (r.eb). Erom this the blood pappea into two lattral vestels which pierce the coelomic eeptum (s.), the right vessel proceeding on the antcrior side of the oesophagus, as shown in fig. 3 , to effect a union with the left one, and thus to constitute the main efferent vessel, which gives of numerous caecal branches as it pases down the body. Heace the blood returne once more to the afferent vessel through a eplanchnic sinus which surrounds the stomach. The circulation is maintained by the rhythmical contraction of the afferent vessel and by less tegulat contractions of some of the other veasels. The reproductive organa lie on the left side, reear the aboesal end, both ovary and testis being present in the same individanal in some of the species. They are said to be developed from the coelomic epithelium which covers the efferent vessel or its caeca. The reproductive cells pass to the exterior by means of the nephridia. Reproduction by budding does not occur, although epontaneove fragunentation of the body, followed by complete regeneration of ench'of the precest is known to talce place Regeneration of the tentacular end of the antmal is of frequent occurrence.

Development and Afstifies.-The eggs of Phoronts are andill and uauelly undergo their early development attached to the tentacles of the adult. The attachment is probably effected (Misterman) by the secretion of the lophophoral organs (fig. 2, gl.). After the formation of an invaginate gastrula the larval form is rapidly acquired. On quitting the shelter of the parent tentacles the embryo becomes a pelagic larva, knowin ela Actindtrocha (fig, 4) characterized by the popession of a line of tentactes tunning obliquely round the body. Locomotion is effected principally by means of a posterior ring of cilia surrounding the anus. The mouth (o) is in front of the eentacles, on the ventral side, and ls overhung by a mobile prieores! hood, in which is the prinoipal part of the nervous wyateh.

An oblique eeptum which follows the basea of the tentacles and corresponds with that of the adult animal divides the body-cavity into two portions. The postseptal division is a coplomic space partially subdivided by a ventral mesentery. The praeseptal cavity is a vascular space, since it is in frec communication with the coceal veasel of the larva, and it persists ia part as the two lophophoral vascular crescents of the adult. It contains two tufts of peculiar excretory cells, described by Goodrich (5) as "solenocytes," which surround the blind ends of a pair of nephridia. These pass backwards through the septum and open to the exterior ventrally. After the Actenofrocha has led a pelagic life for eome time it develops a lagge ventral invagination of its body-wal (fig. 4, 2, iv,). At the metamorphosis, this eac is everted and the alimentary canal is drawn into it in the form of a loop (fig. 4. 3. 4), Mont of the praetentacular region and the larval tentacles ocparate of. being then taken into the alimentary canal, where they are digested. The relations of the surfaces after the metamorphosis are cleariy very different from thoee which obtained in the larva. The dorsal surface of the adult is the one between the mouth and the anos, while the median ventral line is the one which corresponde with the corvexity of the alimentary canal This view of the eurfaces is, however, disputed by De Selyo-Longchamps, who regards the aboral extremity of the adult as the posterior end.

The devclopment of Phoronis was supposed by Caldwell (2) to furnish the explanation of the relations of the surfaces in Brachiopoda. Polyzoa and perhaps the Sipunculoid Gephyrea, in which the ontogenetic evidence is less clear. Caldweil's views were accepted by Lankester (8) in the 9th edition of this work, the Phylum Podanoaia being there instituted to include the groups just mentioned, together with the Pterobranchia. The peduncle of the Brachiopoda was supposed to correspond with the everted ventral sac of Actimotrocho, but the question is complicated by the want of any compiete investigation of the development of the Brachiopoda, and by the absence of the anus in the majority of the genera. There is, however, a considerable amount of retemblance between the lophophore of Phoromis australis, with its spirally twisted ends, and that'of a typical Brachiopod;- nor do the structural details of the sedult Brachiopods forbid the view that they may be related to Phoronis. The comparative study of the development does not support the hypothesis that the Polyzoa (F.0.) are comparable with Phermis. In Podicellina, the only Polyroon it which the alimentary canal of the larva is known to become that of the first adult individual, the line hetween the mouth and anus is ventral in the larva; and since there is no reversal of the curvature of the digeative loop during the metamorphosis it must be regarded as ventrai in the adult. There are, indeed remarkable similarities between the external characters of the Phylactolaematous Polyzon and the Phoronidea, and notably between their lophophores. The sapposed occurrence of a pair of nephridia in certain Phylactolaemata, in a posltion corresponding with that of the mephridia of Phoremis, must also be mentioned,

Fic. 4.-Dingrams illustrating the Metamorphosis of Actinotrocha.

AB, Anteroposterior axia.
DV, Dorsovertral axis.
I, 2, Actinotrocha.
although it has been malntained that the " nephridia " of Phylactolaemata are merely ciliated portions of the body-cavity and not indeed nephridia at all. But a serious ohjection to the comparison is that the development of Phylactolaemata can be explained by axppoing it to be a modification of what occurs in other Polyzon, while it appears to have no relation whatever to that of Phoronis.
Most observers consider that Aclinolrocha is a highly modified Trochosphere, and this would give it some claim to be regarded as distantly related to the Entoproct Polyzoa and to other grougs which have a Trochomphere larva.

Phoreais has long been regerded as a posmble ally of Rhablowiows (see Premobranchia): and Masterman (io) has attempted to demonstrate the existence in Actinatrocha of most of the structures which occur in the Pterobranchia. According to his view the praeoral hood of Actinotrocina (cf. fig- 4) corresponds with the 5 proboscis" of Pterobramehia; the succeeding region, as far as the bases of the tentacics, with the collar; and the post-tentacular region with the metasome. Masterman's more detailed comparisons have for the most part been rejected by other morphotogists. One of the most formidable difficultics in the way of the attempt to reduce Achinolroche to the Pterobranchiate type of structure is the condition of the cociom in the former. There is indeed a perfectly definite transverse teptum which divides the body-cavity in the region of the tentacie-bases. Even if it be admixted that the posteeptal epace may be the metasomatic cavity, the procerptal ponce can hardly be regarded as codomic in nature, cince it is in continuity with the vascular system: while Masterman's conclusion that the cavity of the priteoral hood (the eupposed probonci-cavity) is eeparated from that of the supposed coltar has received no confirmation. In spite of these dificulties it must be conceded that the doral fiexure of the ahimentary canal of the Pterobranchis is very Phoremis-like. It has, moreover, been shown (sce especially Coodrich, 5) that shortly bcfore its metamorphosis, Actinotrocha develops a coelomic epace which lies immediately in front of the oblique septum, and gives rise later to the cavity of the lophophore and tentacles. Regarding this as a collar-cavity, it becomes possible to agree with Masterman that the region shown in fg. 4, I. between the tentacles and the pratoral hood, is really a oollat the coelom of which develops relatively late. It will be noticed that the lophophore of Phopowis is, on this atoumption, a derivative of the collar just as it is in the Pterobranchiap. The epistome of the adult Phoromis cannot well be the probowcia since its cavity ia continuous with the lophophoral coelom, and because the praeoral hood of Actinotroicho if entirely loot at the metamorphoet. It is possible that this consideration will account for the want of an anterior body-cavity in Phoromic. Since the proborcis is a purely larval organ in this genus, it may be euppoeed that the coelomic larval organ in this groperly belong to it fails to develop, but that the pracordl hood ittelf is none the less the morphological representative of the probosela. In spite of the criticisma which have been made on the conclusion that Phorowfs is allied to the Pterobrarchia, it is thus possible that the view is a sound one, and that the Phoronidea chould take their place, with the Enteropneesta and the Pterobranchia, as an order of the fremichordata,

Bibliography.-(I) Benham, Quarh Joupn. Mfic. Soc. xxx. 125 (1890); (2) Caldwell, Proc. Roy. Soc. xxxiv. 371 (1883); (3) Cori, Zeitsctr. viss. Zoal. li. 480 (1801); (4) Fowler, art. "Hemichorda," Ency. Bris, xxix, 249 (Iq0a): (5) Goodrich, Quart. Joura. Mic. Soc. xiviL Ios (1go4); (6) Harmer Sibopa Rep. xxvi. II4; bis (Pterebuvil ios (Iga4); (7) Ikeda, J. Coll Sci. Japom, xifi. 507 (Igoz); (o) Lanketcer, art. "Polyboa," Ewcy. Brit. zix 430. 433 (1895): 9) De Selys-Longchamps, Arch. Biol xviii. 495 (1902): Wiss. (cereswinh. (N. F.) vi. Abt. Helgoland (1903), IFef i.; Mím, classe sci. acad. belpigue, vol i. (1904): Fawna \&. Flors G. N. Neapel, 30 Monogr. (I907); (10) Masterman Quart. Journ. ific. Soc. xI. 281 (1898); xlfiL 375 (1900); (II) Schultt, Zeilschr. wiss. Zool.
 xvit. 487 (ı906); (13) Shipley, Cambr. Nat. Hiri, ii. 450 (1806).
(S. F. H.)

PHORORHACOS, the best-known genus of the extinct Patagonian Stereormithes (sce Brap: Fassil). Among the bones found in the strata of the Santa Cruz formation (now considered as mainly of mid-Miocene date) was the piece of a mandible which F. Ameghino described in 1887 as that of an edentate mammal, under the name of Phorysrhacos longissinns (Bolet. Mus. de lo Plola, i. 24). In 1891 (Rev. Argent. Hist. Nal. i. 225)

(Five like-lee seodel in Brit. Mus Noce Eicct.) Skull of Phosorhacon, longissimus.
he amended the name and recognized the bone as that of a bfrd, Phororhacos, which with Brontorwis and others constituted the family Phororhacidae. About six species of the type genus are now known, the most complete being Ph. inflatus, wih skull, mandible, pelvis, limbs and some of the vertebrae.

These birds were at firs consldared as erther beloaghg to the Ratitae, or at least related to them, until C. W. Andrews, after much of the interesting material had been acquired by the British Muscum, showed the gruiform affinities of Pherowhacos Ubis, 1896, pp. 1-12), a conclusion which be was able to further corroborate after the clearing of the adherent stony matrix from the skulls (Tr. Z. S. 1901, xv. pp. 55-86, pls. 14-17). The skul! of Ph. longissimus is about 2 ft . long and 40 in . hish; that of Ph. inflatus is 13 in . long, and this creature is supposed to have stood only 3 ft . high at the middic of the back. The under jaw is slightly curved upwards and it contains a large foramen as for instance in Psophia and in Mycleria. The strongly hooked upper beak is very bigh, and very much compressed laterally. The palate is imperiectly desmognathous, as in Dicholophus, with an inconspicuous vomer. The quadrate has a double knob for its articulation with the skvil, and basipterygoid processes are absent. What litule is known of the shoulder-girdle (breastbone still unknown) points to a llightless bird, and so do the short wing bones, allhough these are stout. The pelvis has an ischiadic foramen. The hind limbs are distinctly slender, the tibia of Ph. iffalus being between 15 and 16 in . in length.

For further detail see F. Ameghino, "Sur les, oiscaux fossiles de la Patagonic," Bolet. inst, geogr, argentino, xv., chs II and 12 (1895): F. P. Moreno and A. Mercerti, Calidogo de los pdjaros fosiles de la Repriblica Argentiona, Am. Mus. La Plata (189I; Wich 21 platea).
(H.F.C.)

PRosamirg, a rare mineral consisting of lead chlorocarbonate, (PbCl$)_{2} \mathrm{CO}_{2}$. The tetragonal (holosymmetric) crystals are prismatic or tabular in habit, and are bounded by smooth. bright faces: they are usually colourless and transparent, and have a brilliant adamantine lustre. Sometimes the crystals have a curious helical twist about the tetrad or principal axis. The hardness is 3 and the specific gravity $6 \cdot 3$. The mineral is rather sectile, and consequently was early known as "corneous lead" (Ger. Hornblei). The fanciful name phosgenite was given by A. Breithaupt in 1820, from phosgene, the old name of carbon oxychloride, because the mineral containg the elements carbon, oxygen and chlorine. At Cromford, near Manlock, it was long ago fourd in an old lead mine, being assocjated will anglesite and matlockite ($\mathrm{Pb}_{2} \mathrm{OCl}_{3}$) in cavities tn decomposed galens: hence its commonname cronlortite. Fine crystals are ako found in galena at Monteponi near Iglesiss in Sardinis, but the largest wro those recently found near Dundas in Tasmania. Crystals of phosgenite, and also of the corresponding bromine compound [$\mathrm{PbBrju} \mathrm{CO}_{3}$, have been prepared artificially.
(L. J. S.)

PHOSPHATES, in chemistry, the name given to sales of phosphoric acid. As stated under Prosprozos, phosphoric oxide, $\mathrm{P}_{8} \mathrm{O}_{5}$, combines with water in three proportions to form $\mathrm{H}_{2} \mathrm{O} \cdot \mathrm{P}_{2} \mathrm{O}_{3}$ or HPO_{4}, metaphosphoric acid; $\mathrm{LH}_{3} \mathrm{O} \cdot \mathrm{P}_{7} \mathrm{O}_{5}$ or $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$, pyrophosphoric acid; and $3 \mathrm{H}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{1}$ or $\mathrm{H}_{2} \mathrm{PO}_{4}$, orthophosphoric or ordinary phosphoric acid. These acids each give otigin to several series of salts, those of ordinary phosphoric acid being the most important, and, in addition, are widely distributed In the mineral hingion (see below under M imeral Phosphates).

Orthophosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, a eribasic acid, is obtained hy boiling a solution of the pentoxide in water; by oxidizing red phosphorus with nitric acid, or yellow phosphorus under the surface of water by hromino of iodines and aliso by decomposing a mineral phosphate with sulphuric acid. It umally forma a thin syrup which on concentration in a vacuum over sulphuric acid deposits hard, transparent, thombic prisms which melt at $41 \cdot 3^{\circ}$. On long heating the syrup is partially converted into pyrophosphoric and metaphosphoric acids, bul on adding water and boiling the ortho-acid is re-lormed. It gives origin to three classes of sales: $\mathrm{M}^{\prime} \mathrm{H}_{8} \mathrm{PO}_{4}$ or $\mathrm{M}^{4} \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{4} ; \mathrm{M}^{\prime}{ }_{2} \mathrm{HPO}_{4}$ or $\mathrm{M}^{\prime \prime} \mathrm{HPO}_{4}$ $\mathrm{M}_{4} \mathrm{PO}_{4}, \mathrm{M}^{\prime}{ }_{3} \mathrm{PO}_{3} \mathrm{O}_{4}$ or $\mathrm{M}^{\prime \prime}{ }^{\prime} \mathrm{PO}_{4}$, wherein $\mathrm{M}^{\prime}{ }^{\prime} \mathrm{M}^{\prime}, \mathrm{M}^{\prime \prime \prime}$ denote a mono-, di-, and tri-valent metal. The first set may be called monometallic. the second dimetallic, and the third trimetallic sales. Per-acid salts of the alkalis, e. $2 .\left(\mathrm{K}, \mathrm{Na}_{3} \mathrm{NH}_{4}\right) \mathrm{H}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, are also known; these may be regarded as compesed of a monometallic phosphate
with phopphoric acid, thus $\mathrm{MH}_{2} \mathrm{PO}_{4} \mathrm{H}_{3} \mathrm{PO}$. The three principal groups differ remarkably in their behaviour towards indicators. The monometallic salts are strongly acid, the dimetallic are seutral or faintly alkaline, whilst the soluble trimotallic salts are strongly alkaline. The monometallic salts of the alkalis and alkatine carths may be obtained in crystal form, but those of the heavy metals are only stable when in solution. The soluble trimetallic saits are decomposed by carbonic acid into a dimetallic salt and an acid carbonate. All soluble orthophosphates give with silver nitrate a charecteristic yellow precipitato of silver phosphate, $\mathrm{As}_{3} \mathrm{PO}_{4}$, soluble in ammonia and in nitricacid. Since the teaction with the scid salts is attended by liberation of nitric acid: $\mathrm{NaH}_{2} \mathrm{PO}_{4}+3 \mathrm{AgNO}_{3}=\mathrm{Ag}_{4} \mathrm{PO}_{4}+\mathrm{NaNO}_{4}$ $+2 \mathrm{HNO}_{3}, \mathrm{Na}_{4} \mathrm{HPO}_{4}+3 \mathrm{AgNO}_{2}=\mathrm{Ag}_{3} \mathrm{PO}_{4}+2 \mathrm{NaNO}_{4}+\mathrm{HNO}_{4}$. it is necesmary to neutralize the nitric acid if the complete procipitation of the phosphoric seid be desired. The three series also differ when beated; the trimetallic salts, containing fixed basea sre unaltered, whilst the mono- and dimetallic salts yield meta-and pyrophosphates reapectively. If the hoating be with charcoal, the trimetalic salts of the alkalis and alkaline earths are onaltered, whilst the mono- and di-salts give free phosphortus and a trimetallic salt. Other precipitants of phosphoric acid or its salts in solution are; anamonium molybdate in nitric acid, which gives on heating a canary-yelldw precipitate of amnonium phosphomolybdate, $12\left[\mathrm{MOO}_{3}\right]\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$, insoluble in acids but readily soluble in ammonia; magnesium chloride, ammonium chloride and ammonia, which give on standing in a warm place a white crystalline precipitate of magnesium ammonium phosphate, $\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, which is soluble in acids but highly insoluble in ammonia solutions, and on heating to redines gives magnesium pyrephosplate, $\mathrm{Mg}_{2} \mathrm{Pr}_{1} \mathrm{O}_{1}$ uranic nitrate and ferric chloride, which give a yeilowish-white precipitate, soluble in hydrochloric acid and ammonia, but insoluble in acetic acid; mercurous nitrate which gives a white precipitate, soluble in nitric acid, and bismuth nitrate which gives a white precipitate, insoluble in nitric acid.

Pyrophosphoric acid, $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$, is a tetrabasic acid which may be regarded as derived by eliminating a molecule of water between two molecules of ordinary phosphoric acid; its constitution may therefore be written (HO$)_{2} \mathrm{OP}-\mathrm{O}-\mathrm{PO}(\mathrm{OH})_{2}$. It may be obtained as a glassy mass, indistinguishable from metaphosphoric acid, by heating phosphoric acid to 215°. When boiled with water it forms the orthoacid, and when heated to redness the metaacid. Alter peatralization, it gives a white precipitate with silver nitrate. Being a tetrabasic acid it can form four classes of salts; for example, the four solium salts $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{Na}_{3} \mathrm{HP}_{3} \mathrm{O}_{7}$, $\mathrm{Na}_{2} \mathrm{H}_{4} \mathrm{P}_{3} \mathrm{O}_{7}, \mathrm{NaH}_{3} \mathrm{P}_{3} \mathrm{O}_{3}$ are known. The most important is the normal salt, $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$, which is readily obtained by heating disodium orthophosphate, $\mathrm{Na}_{2} \mathrm{HPO}_{4}$. It forms monoclinic prisms (with $\mathrm{oOH}_{2} \mathrm{O}$) which are permanent in air. All soluble pyrophosphates when boiled with water for a long time are converted into orthophosphates.

Metaphosphoric acid, HPO_{3}, is a monobasic acid which may be regarded as derived from orthophosphoric acid by the abstraction of one molecule of water, thus $\mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{H}_{3} \mathrm{O}=\mathrm{HPO}_{3}$; its constitution is therefore (HO) PO_{2}. The acid is formed by dissolving phosphorus pentoxide in cold water, or by strongly heating orthophosphoric acid. It forms a colourless vitreous mass, hence its name "glacial phosphoric acid." It is readily soluble in water, the solution being gradually transformed into the orthoacid, a reaction which proceeds much mare raplity en bolliag, Although the acid is monobasic, salts of polymeric forms exist of the types (MPO), whare n may be $1,2,3,4,6$. They may be obtainod by heating a monotuetallic orthophosphato of a fixed base, or a dimetalic rothophosphate of ope fixed and one volatile base, e.g. microcosmic salt: $\mathrm{MH}_{2} \mathrm{PO}_{4}=\mathrm{MPO}_{2}+\mathrm{H}_{2} \mathrm{O}$, (NH4) $\mathrm{NaHPO}_{4}=$ $\mathrm{NaPO}_{3}+\mathrm{NH}_{4}+\mathrm{H}_{3} \mathrm{O}$; they may also be obtained by ecting with phosphorus pentoxide on infmetabic orthophosphates: $\mathrm{Na}_{2} \mathrm{PO}_{4}+\mathrm{P}_{4} \mathrm{O}_{3}=3 \mathrm{NaPO}_{2}$. The salts are usually non-erystaline and fusible. On boiling their solutions they yield orthophosphates, whilst thona of the henvy metals on boiling with water sive a tapetnllic orthophpesphate and orthophosphoric acid:
$3 \mathrm{AgPO}_{4}+3 \mathrm{H}_{2} \mathrm{O}=\mathrm{Ag}_{2} \mathrm{PO}_{4}+2 \mathrm{H}_{3} \mathrm{PO}_{4}$. On heating wich an oxide or carbonate they yield a trimetallic orthophosphate, carbon dioxide being evolved in the latter case. Metaphosphoric acid can be distinguished from the other two acids by its power of coagulating albumen, and by not being precipitated by magnesium and ammonium chlorides in the presence of ammoria.
(C. E. ${ }^{\circ}$)

Mineral Phosphates.-Those varieties of native calciume phosphate which are not distinctly crystallized, like apatite (g.v.), but occur in fibrous, compact or earthy masses, often nodular, and more or less impure, are included under the general term phosphorite. The name seems to have been given originally to the Spanish phosphorite, probably because it phosphoresced when heated. This mineral, known as Estremadura phosphate, occurs at Logriossan and Cáceres, where it forms an important deposit in clay-slate. It may conrain from 55 to 62% of calcium phosphate, with about 7% of magnesium phosphate. A somewhat similar mineral, forming a fibrous incrustation, with a mammillary surface, and containing about 9% of calcium carbonate, is known as staffelite, a name given by A. Stein in 1866 from the locality Staffel, in the valley of the Lower Lahn, where (as also in the valley of its tributary the Dill) large deposits of phosphorite occur. Dahlite is a Norwegian phosphorite, containing calcium carbonate, named in 1888 by W. C. Brögger and H. Bückström after the Norwegian geologists T. and J. Dabll. Osteolite is a white earthy phosphorite occurring in the clefts of basaltic rocks, named in 1852 by J. C. Bromeis from the Greek barioy, bone.

Phosphorite, when occurring in large deposits, is a mineral of much economic value for conversion into the superphosphate largely used as a fertilizing agent. Many of the impure substances thus utilized are not strictly phosphorite, but pass under such names as "rock-phosphate," or, when nodular, as "coprolite" ($g .0$.), even if not of true coprolitic origin. The ultimate source of these mineral phosphates may be referred in most cases to the apatite widely distributed in crystalline rocks. Being soluble in water containing carbonic acid or organic acids it may be readily removed in solution, and may thue furnish plants and animals with the phosphates required in their structares. On the decay of these structures the phosphates are returned to the inorganic world, thus completing the cycle.

There are three sources of phosphates which are of importance geologically. They occur (a) in ctystalline igneous and metamorphic tocks as an original constituent, (b) in veins associated with igneous rocks, and (c) in sedimentary rocks either as organic fragments or in secondary concretionary forms.
The first mode of occurrence is of little significance practically. for the cryatalline rocke generally contain too little phosphate so be valuable, though occasionally an igneous rock may contain enough apatite to form an inferior fertilizing agent, e.f. the trachyte of Cabo de Cata in south-eart Spain. Which contains $12-15 \%$ of phosphoric acid. In many deposits of iron ores found in connexion with igneous or metamorphic rocks small quantities of phosphate occur. The Swedish, Norwegian, Ontario and Michigan mincs yield ores of this kind; and though none of them can be profitably worked 24 a source of phosphate. yet on reducing the ore it may be retained in the slags, and thus rondered availabte for agriculture.
Another group of phosphatic deposits connected with igneoua rocks comprises the apatite veins of south Norway, Ottawa and other districts in Canada. These are of preumatolytic origin (nee Pweumatol ysis), a nd have been formed by the action of vapours ematating from cooling bodies of basic eruptive rock. Veins of this fype occur at Oedegarden in Norway and Dundret in Lapland. From 1500 to 3500 tons of apatite are ohtained yearly in Norway from these veins. In Ontario a patite has been worked for a long sime in deposits of nimilar nature. The total output of Canada in 1907 was only 680 tons.

The phosphatic rocks which oocur among the sedimentary strata are the principal sources of phosphates for commene and agriculture. They are found in formations of all ages from the Cambrian to those which are accumulating at the present day. Of the latter the best known is guano (see Manurrs and Manuring).
Where guano-beds arc exposed to rain their soluble constituents are removed and the Insoluble matters left behind. The soluble phosphates washed out of the guano may become fixed by entering into combination with the elements of the rock beneath. Many of the oceanic islets are composed of coral limestone, which in this

Why beconviet phosphatized; there axe igoous contisting of trachyte or basalt, and these rocks are also phosphatized on their surfaces but are not so valuable, inasmuch as the presence of iron or alumina in any quantity renders them unsuited for the preparation of artificial manures.

The leached guanos and phomphatived rocien, which are grooped with them for commercial purposes, have been obrained in great quantities in many isiands of the Pacific Ocean (such as Baker: Howland, Jarvis and McKean Islands) between longe 150° to 180° W. and lat. 10° N. to 10° S. In the West Indies from Vencsucla to the Bahamas and In the Caribbean Sea many inlands yield sapplies of leached guanos; the following are important in this respect: Sombrern, Navasen, Aves, Aruba, Curagoa. Christmas Island has been a great source of phosphates of this type; also Ialuit Island in the Maldive Archipelago, Banaba or Ocean Island and Nauru or Pleasant leland. On Christmas laland the phosphate has been quarried to depths of 100 ft . To these leached guanoa and phosphatized limestone the name sombrerite has been given. It has been estimated that $\$ 00,000$ tons of phosphate were obtained in Aruba, $1,000,000$ tons lrom Curacoa gince the deposits were discovered in 1870, and Christmas Island in 1907 yielded 290,000 tons.

In the older formations the phosphates tend to become more and mort mineralized by chemical processes. In whatever form they were originally deposited they often suffer complete or partial solution and are redeposited as concretionary lumps and-bodules, often called coprolites. The "Challenger " and other oceanographic expeditions have shown that on the bottom of the deep sea concretions of phosphate are now gathering around the dead bodies of fishes lying in the oozes; consequently the formation of the concretions may have been cartied on dimultaneously with the deposition of the strata in which they occur.
Important deposits of mineral phosphates are now worked on a large scale in the United States, the annual yield far surpassing that of any other part of the world. The most active operations are earried on in Florida, where the phosphate was first worted in 1887 in the form of pebbles in the gravels of Peace river. Then followed the discovery of "hard rockphosphate," a massive mineral, often having cavities lined with rearly pure phosphorite. Other kinds not distinctly hard and consisting of less rich phosphatic limestone, are known as "soft phosphate": tbose found as smooth pebbles of varisble colour are called " land pebble-phosphate," whilst the pebbles of the river-beds and old river-valleys, uswally of dark colour, are distinguished as "river pebble-phosphate." The land pebble is worked in central South Florida; the hard rock chiefly between Alhon and Bay City. In South Carolina, where there are fmportant deposits of phosphate, formerly more productive than at present, the "land rock "is worked near Charieston, and the " river rock "in the Coosaw river and other streams near Beaufort. The phosphato beds contain Eocene fossils derived from the underlying strata and many fragments of Pleistocene vertebrata such as mastodon, elephant, stag, horse, pig, \&c. The phosphate occurs as lumps varying greatly in size, scattered through a sand or clay; they often contain phosphatized Eocene fossils (Mollusca, \&ec.). Sometimes the phosphate is found at the surface, but generally it is covered by alluvial sands and clays. Phosphate mining began in South Carolina in 1868, and for twenty years that state was the principal producer. Then the Florida deposits began to be worked. In 1892 the phosphates of Tennessee, derived from Ordovician limestones, came into the market. From North Carolina, Alabarna and Pennsyivania, also, phosphates have been obtalned but oaly in comparatively small quantities. In 1900 mining for phosphates was commenced in Arkansas. In 1008 Florida produced 1,67,3,651 tons of phosphate valued at in million dollars. All the other states together produce less phosphate than Florida, and among them Tennessee takes the first place rith an output of 403,180 tons
Aldoria contains important deposits of phosphorite, especially near Tebesse and at Tocqueville in the province of Constantine. Near Jebel Kouif, on the fronticr between Algeria and Tunis, there are phosphate workings, as also in Tunis, at Gafsa. The depoisits belong to the Lower Eocene, where it rests unconformably upon the Cretaceous. The foint production of Tumis and

Algeria in 1907 was not lebs than a million tons. Phowphatet occur also in Egypt, in the desert east of Kench and in the Dakla casis in the Libyinn dessert.

France is rich in inineral phosphatex, the chiof dopodits being the departments of the Pas-de-Calats, Somme, Aisne, Olve in and Micuse, in the north-east, and another group in the departments of Lot, Tarn-ot-Garonne and Aveyron, in the south-west: phosphates occur also in the Pyrenees. The depodts near Caylus and in Quercy occupy froures and pockets in Jurasmic limestone, and have yielded a remartable issemblage of the relics of Tertiary mammals and other fotsils. Phouphates cocur in Belgium, especially near Mone, and these, Hike thowe of north-east France, are principally in the Upper Callk. Two varielies of phosphate rock are recognixed in theme districts, vir. the phosphatic chalk and the phosphate tand, the latter resulting from the decompecition of the formet. Large and valuable depostes of the and have been obtained to staks and depressions on the surface of the chalk. The prodoction is on' the whole diminishing' in Belftam (tta000 tons in 2907), but in France it is etill large (375,000 tons in $\mathbf{~ r 9 0 7)}$).

In the Lahn district of Nassus (Cormany) there are phompate beds in Devopian rocke. The leposits were rich but frregular and local, and were much wodted from 1866 to 1884, but are no longer of economic thoportanca In morthern Petremaddure in Spain and Alemtezo in Poitugat there are veln depostes of phosphate of lime. As much is 200,000 tons of phomplate have been raised in these provinces, but in igos the totial production of. Spain was only 1300 tors Lerge dqposist of phosphate occur in Russia, and those in the neighbourtood of Kettch have attracted somes attention; it is sald that the Creteocolas nocks between the rivers Dajestet and Volge contain very lurge supplics of phorphate; though probably of low grade.

Phosphatic nocules and concretions, with phosphatived fowsis and their caste, occur at various geological hiorizons in Great Britais. Bands of black codules, hishly phospliatic, arte fousd at the top of the Bala limestone in North Whles; beds of concretions accur is the Jurassic series; and important deposita are known in the Cretaceous strata, especially in the Lower Greensand and at the base of the Gault. The Lowey Greensand phosphates have beet worked, under the mame of "coprolites," at Potton in Bedfordshire and at Upware and Wicken in Canbridgeshira. The Cambridge Greensand, rich in phosphatic nodules, occurs at the base of the Chalk Marl. The chalk occasionally becomes phosphatized, as at Taplow (Bucko) and Lewes (Sussex). At the base of the Red Crat in Eant Anglia, and cccusiogally at the base of the other Pliocere Crags, thare is a " nodule. bed, copsinting of phosphatic nodules with rolled teeth and bones, which were formerly worked as "coprolites ${ }^{*}$ for the preparation of artificial manure. Professor R. I. Strutt has found trat phosphatized nodules and bones are rich in radioactive constituents, and has broxeht chis into relation with their geological age.
Bibliography.-For American phomphates mee The Phosphatas of America, by Francie Wyatt (sth ed., New York and London, 1894); the Antual Reports on Mimeral Resowres of the U.S. (U.S Geol. Survey). iacluding mome vahaible reporta by C. W. Hayez also those in Rothwell's Mineral Imdumpy; "Nature and Origia of Deposits of Phosphate of Lime." by R.A.F. Penrose. Jun. Bull. U.S. Geal. Surney, No. 46 (1888): Florsda, Soulh Carolina and Canadian Phosphotes, by C. C. Hoyer Mifier (London, 189a); and The Nowmetalic Minerats, by G. P. Merrill (Ig04). Many of the above include descriptions of miperal phospbates in other perts of the world. For a general discumsion of the origin of the phogiphates see" The Natural History of Phosphate Depocits," by J. I. H. TaII, Proc. Geol. Assoc. xvi. 3^{69} (1900). Consult Iso Eywic complist swe las phosphates, by A. Dectrons (Lieges, 1894).

> U.S. R.;F. W. R.")

PROspionracesinus, a mame gives to a variety of physical phenomena tue to diblerent causes, but shl comsisting in the emistion of a pale, move or less ithdefined tight, not obviously dee to combustion. The word was fint utitit by physiciets to describe the property possessed by mary substances of therselves becoming laminous aftre exposture to lifht. This property has been noticed from' earfy times. Pliny speaks of varions gems which shine with a light of their own, and Albertus Magnus Knew that the diamond becomes phosphoreseent when noderately heated. But the first discevery of this property which apperently aftructed sciemfific attention semris to have beta that of the Bologga ctone (bariman sulphotie), which wabdiadoverei
by Vincenmo Cascurlolo, a cobbicr of Bologna, in about 1602. This was followed by the discovery of a number of other substances which become luminous eicher after exposure to light or on heating, or by attrition, and to which the general name of "phosphori" (from $\phi \hat{\omega}$ s and $\phi \delta p o s$, bringing light) was given. Among these may be mentioned Homberg's phosphorus (calcium chloride), John Canton's phosphorus (calcium sulphide) and Balduin's phosphorus (calcium nitrate). Of late years it has been found convenient to limit the strict meaning of the word "phosphorescence" to the case of bodies which, after exposure to light, become self-huminous (even if only for a fraction of a second). The general term "luminescence" has been proposed hy E. Wiedemann to include all cases in which bodies give ofl light not due to ignition. This general term embraces several subdivisions. Thus, fluorescence (q.o.) and phosphorescence are inctuded under the same heading, "photoluminescence," being distingushed from each other only by the fact that fluorescent bodies emit their characteristic light only while under the influence of the exciting illumination, while phosphorescent bodies are luminous for an appreciable time after the exciting light is cut off.
Phosphoreacence, in its restricted meaning as above explained, is most strikingly exhibited by the artificial sulphides of calcium, strontium and barium. If any of these wabstances is exposed for some time to daylight, of better, to direct sunlight, of to the light of the electric are, it will shine for hours in the dark with a moft coloured light. The colour dejends not only on the nature of the gubstance, but also on its physical condition, and on its temperature during insolation, that is, exposure to the aun's rays. Thus the phosphorescent light emitted by calcium sulphide may be orangeyellow, yellow, groen or violet, according to the method of preparation and the materials used. Balmain's luminous paint, a preparation of calcium sulphide, whines with a whise light. The colour also depends on the temperature during exposure to light. Thus A. E. Becquerel found that the light given by a specimen of etrontium wulphide changed from violet to blue, green, ycliow and orapge, as the temperature during the corresponding previous insoletion was $20^{\circ}, 40^{\circ}, 70^{\circ}$, 100° or $200^{\circ} \mathrm{C}$. The duration of phosphorescence varies greatiy with different subetanctios It may fast for daye or for oaly a fraction of a second.
As in the cate of fluorescent bodies, the light produced by phosphorescent mubatances consists commonly of rays less refrangible than thoee of the exciting light. Thus the ultra-violet portion of the spectrum is usually the most efficient in excitiag rays belonging to the visible part of the spectrum. V. Klatt and Ph. Lenard (Wied. Ann., 1889, rxaviii. go), have shown that the phosphorescence of calcium sulphide and other phosphori depends on the presence of minute quantities of other substances, such as copper, bismuth and manganese. The maximum intensity of phosphoreacent light in obtained when a certain definite proportion of the imparrity is present, and the intensity is diminished if this proportion is increased.
It appears likely that when a phosphorescent body is exposed to gight, the energy of the light is stored up in some kind of strain energy, and that the phoophorracent Bight is given out during a more or lees alow recovery from this mate of straic. Klatt and Lemard have shown that the sulphides of the allaline carths lose the property of phosphorescing when subjected to heavy prossure. Many fuorescent molutions become bricfly phosphorescent when rendered molid by gelatin.
When the duration of phosphorescence is brif, mome mechanical device becomes necessary to detect it. The earlient and bestknown instrument for this purpose is Becquerel's phosphoroscope. it consists essentially of a shallow drum, in whome ends two eccentric holes, exactly opposite one another, are cut. Inide it are fixed two equal metal diske, attached perpendicularly to an axis, and divided into the same number of sectors, the alternate sectors of each being cut out. One of these disks is close to one end of the drum, the other to the opposite end, and the eectors are so arranged that, when the disks are made to rotate, the bole in one end is open while that im the other is clomed, and vice versa, If the tye be phacod near one hole, and a ray of gunlight be admitted by the other, it is obvious that while the sun shines on an object inside the drum it is obverture next the eye is closed, and vice versa. If the disks be made to revolve with great velocity by meane of a train of toothed wheel the object. will be preseated to the eye alnonotinstantiy after it has been exposed to sunlight, and these preseatations succeed one another so rapidly as to produce a sense of continuous vision. By means of this apparatus we can test with considerable scecuracy the duration of the phewompion alter the light has been cut off. For this purpone we require to know merely the number of sectors in the disks and the rate at which they are turned.

Thermolywinescence.-Some bodies which do not emit light at ondinary temperatores In a dark room begin to do no If they are monted to a temperature below a vinlble red heat. if the cane of
chlorophata, a variety of Anor tppry the trat of the hand is sofficiens Many yollow diamonds exhibit this form of huminescence. It has been shown, however, that a previous exposure to light is alwayo necensary. Sit James Dewar found that If ammonium platinocyanide, Balmaia's paint and some other subatancea are cooled to the temperature of liquid air and exposed to light, they do not phosphoresce, but as soon as they are allowed to warm up ta the ordinary temperature they emit a brilliant light. On the other hand, some bodies, such as gelatin, cellulofd, paraffin and ivary; are phosphorescent at very low temperatures, Dut lose the property at ordinary temperatures.
Triboluminescence (from $+\alpha / \beta a y$, to rub) is luminescence excited by friction, percussion, cleavage or such mechanical means. Calclum chloride, prepared at a red heat, exhibits this property: If sugar is brolen in the dark, or two cryttats of quartz rubbed together. or a piece of mica cleft, a flash of light is ween, hut this is probably of electrical origin. Closely allied to this form of luminescence is crystalloluminescence a phosphorescent light seen vithen some substances crystallize from, polution or after fusion. This property is exhibited by arserious acid when crymallizing trom. solution in hydrochloric acid.
Cheminuminescence is the name given to thone cases in which chemical action produces light without any great rise of temperature. Phosphorus expoeed to moist air in a dark room shines with a soft light due to slow oxidation. Decaying wood and other vegetable substances often exhibit the eame property.
Electroluminestencs is luminescence due to electrical causea. Many gases are phosphorescent for a short tlme after an electric diacharge bas been passed through them, and some solid substances, especinlly diamonds and rubies, are strongly phosphorescent when exposed to lathode rays \ln a vacoum tubc.
Sce generally, Winkelmann, Handbuct der Physik, Bd. vi. (rgo6); E. Becquerel, Lo Lamitre (1867).
(J.R.C.)

Phospharescence iss Zoology.

The emission of light by living substance is a widespread occurrence, and is part of the general metabolism by which the potential energy introduced as food is transformed into kinetic energy and appears in the form of movement, heat, electricity and light. In many cases it is probably an accidental byproduct, and like the heat radiated by living tissues, is not necessarily of use to the organism. But in other caces the cepacity to produce light is awakened on stimulation, as when the wind ripples the surface of the sen, or when the water is disturbed by the blade of an oar. It has been suggested that the response to the stimulus may be protective, and that enemies are frightened by the fash of light. In huminous insects and deep-sea figh the power of cmitting light appears to have a special significance, and very elaborate mechanisms have been. developed. The pale glow of phoephorescence has a certais resemblance to the lisht enitted by phosphorus, and it was an. carly suggestion that the phenomenon in living organisms was due to that substance. Phosphorus, bowever, and its luminous compounds are deadly poisons to all living tistues, and never occur in them in the course of natural metaboliam, and the phosphorescerice of life cannot therefore be assigned to the oxidation of phosphorus. On the other hand, it is certainly the result of a process of oxidation, as the emission of light continues only in the presence of oxygen. J. H. Fabre showed in 1855 that the luminous fungus, Agaricus, discharges more carbonicacid when it is emitting light, and Max Schultze in 1865 showed that in insects the iuminous cells are closely associated with the tracheac, and that during phosphorescence they withdraw oxygen from them. In 1880 B. Radreszewski showed that many fats, ethereal oils and aicohols emit light when slowly combined with oxygen in alkaline fluids at appropriate temperatures. Probably the phosphorescence of organisms is due to a similar process acting on the many fats, oils and similar substances found in living cells. The colour varics much in different organisms; green has been observed in the glow-sworm, fire-flies, brittlestars, centipedes and annelids; bluc in the Italian fire-fy (Luciola ivalica); blue and light gocen are the predominant colours in the phosphorescence of marine organisms, but red and lilac have also been observed. The Laptern-Fly (Fulgora pyrorhynchus) is said to have a purple light, and E. H. Giglioli has recorded that an individual Appandicularia appeared first: red, and then blue, and then green. P. Panceri, chiefly in the case of Solps, and S. P. Langley and F. W. Very in the case of Pyropkorws, bave investigated the light spectroscapicallys and
found that it consisted of a continuom band without separate bright lines. The solar spectrum extends farther both towards the violet and the red ends, but is less intense in the green when equal luminosities are compared.
Many of the bacterfa of putrefaction ate phoaphorescent, and the Inght emitted by dead fish or molluecs of lesh is probably due in every case to the presence of these. Under the miscroscope, the individual bacteria appear as shining points of light. The phosphorescence of decaying wood is due to the presence of the mycelium of Agaricur mellexs, and various other eppecies of Aqaricus have been found to be luminous. The great displays of phosphorescence in sea-water are usnally due to the presence of very large number: of small luminous orranisms, either protozoa or procophyta. Of these Noctisuca mitiaris and species of Peridinixm and Pyrocystis are the mont frequent, the two former near land and the latter in mid-ocean.
In higher animals the phosphorescence tends to be limited to special parts of the body which may form elaborate and highly specialised luminous organs. Many coelenterates show the beginging of such localization: in medusae the whole surface may be luminous, but the light is brighter aloas the racial canals, in the ovarica, or in the marrinal sense-organs In Pennatulids each polyp has eight luminous bands on the outer surface of the digestive cavity. Some Chaetopods (Choctoplerus and Tomopleris) have Juminous oryans at the bases of the hateral processes of the body. Pyrosoma, a colonial pela pic ascidian, is reaponsible for some of the most striking dirplays of phosphorescence in tropical seas; it has two small patches of celis at the base of each inhalent tube which on stimulation discharge light, and the luminosity has been observed to spread through the oolony from the point of irritation.
Amongst the Crustacea, many pelagic Copepods are phosphoreucent. W. Giesbrecht has shown that the light is produced by a fluid secreted by certain dermal glands. A similar fluid in other Copepods hardens to form a protective case, and it may be that the display of light is in such cases an accidental hy-product. Glands in the labrum of the Ostracod Pyocypris and on the maxiliae of the Mysid Gualhoptaresios similarly produce a luminous necretion. In the Euphanaiaces, on the other hand, phosploorescence is produced by elaborate luminous organs which are sitnated on the thoracic appendages and the abdomen, and which were at first believed to be ocular organs. The deep-ma Decapod Crustaccans belonging to many families are luminowa. A. Aloock observed that in tome of the deep-mer prawns a luminous secretion was discharged at the bases of the antennae, but in most cases the luminous organs are numerous eye-like structures on the limbs and body.
The reck-boring mollusc, Pholas, which Pliny knew to be phosphoreacent, has Imminous or mente, two smanl triangular patches at the entrance of the anterior miphon, and two long parallel cords wishin the siphon. The cells of these organs have peculiar, granulated contents. W. E. Hoyle, in his presidcatial address to the Zoological Section of the British Association in 1907, brought together observations on the occurresce of luminous organa in no kess than thirty othrce opeciea of Cephalopods. In Hateroteuthis, Sepiola and Rossian the light is produced by the secretion of a glandular organ on the ventral side of the body behind the funnel. The secretion glows through the transparent wall with a greenish colour, but, at beast in the case of Freleralewthis, contiaucs to glow after beiag ejected into the water. In most cases the luminous organs are norglandular and may be simple, or possess not only a generator but a reflector. lens and dlaphragm. The different organs shinc with different coloured lights, and as the Cephalopods are for the most part inhabitants of the depths of the eea, it has been suggested that they serve as recognition marks-
Some centipedes (e.e. Geophilus electricus and G. phosphoreus) are luminous, and, if allowed to craw over the hand, are stated to leave a iuminous trail. Amongst insects, elaborate fuminous organs are developed in several cases. The abdomen of a Ceytoneso May-fly (Tclepgnodes) It luminous, The so-called New Zealand " glow-worm' is the larva of the fly Boletophile lumisoss, and some gnats have been observed to be luminous, although the suggestion In that In their case disease is present and the lighit emanates from phosphorescent bacteria. An ant (Orya) and oppoduran (Awarehhoras) aro ocoacionally luminous. The so-calied lantern fies are Homoptera allied to the Cicadas, and the supposed luminous organ is a huge projection of the front of the head, regarding the luminosity of which there is some doabt. The glow-worms and true fire-fics are beetles- Exgs, larvae and adulte are in some cases luminous. The ongans consist of a palo transparent superficial layer which gives the light, and a deeper layer which may act as a reflector. They are in close connexion wihh the tracheas and the light is produced by the oxidation of a substance formed under the influence of the netvous sytem, and probably some kind of organic fat. In the females the phoophorescence is probably a cexual lure; in the males its function is unknown.
Phosphorescent organs known as pholophores are characteristic atructures in many of the deep-mea Teleostome fishes, and have been developed in widely different fanilies (Siomiatinen, Scopolidee,

Halosaurides and Anomalopidac), whilet numerona simpla luminoma organs have been detected in many species of Selachii. The number, distribution and complexity of the organs very much in different fith. They are most frequent on the cides and ventral surface of the anterior, part of the body asd the head, and may extend to the tail. The simpler lorms are generally arranged in rows, sometimes metamerically distributed; the more complex organs are laryer and less numerous. In Opostomias micrionus there is a large organ on a median barbel hanging down from the chin, others below the eyca, and one on the eloggated firm ray of the pecteral fin. In Shermoptyx diaphame there is one on the lower jaw, and in many species one or two below the eyes. The luminous organs appear to be specinlized skin, plands which secrete a fluid that beconces luminous on slow adidation. The esatntial part of the organ remains a colloction of gland cells, but in the more compler types there are blood veasck and nerves, a protecting meunbrane. an iris-rike diaphragm, a refector and lens. As the distribution and probably the colour of the light varies with the species, these organs may serve as reoggaition marko. They may also attract prey, and from their association with tho eyes in anch a poition as to send light downwards and corwards it is probable that is the higher types they are used by the figh actually as lanterns in the dark abysses of the sea.
(P. C. M.)

PHOSPHORITR, in mineralogy, the name given to impure massive apatite (q.v.; see also Pzospratzs).

PHOSPHORUS (Gr. фŵs, light, ф'pen, to bear), the name originally given to any substance which possessed the property of phosphorescence (q.v.), i.e. the power of shining in the dart, but now generally restricted to a non-metallic element, which was first known as Phosphorws mirabilis or igncus. This element is very widely distributed in nature in combination, but is never found free. In the mineral kingdom it is exceptionatly abundant, forming large deposits of phosphates (g.v.). It is also necessary to animal and vegetable life (see Manure). It eccurs in the urine, blood, tissues, and bones of animals, calcium phosphate forming about 58% of bones, which owe their nigidity to its presence.

The element appears to have been first ohtained in 1669 by Brand of Hamburg; Krafft bought his secret and in $16-7$ exhibited specimens in England, where it created an immense sensation. Its preparation was assiduously sought for, and Kunckel in 1678 and Boyle in 1680 succeeded in obtaining it by the sume process as was discovered by Brand, i.e. by evaporating urine to dryness and distilling the residue with sand. This method was generally adopted until 1775 , whea Scheele prepared it from bones, which had been shown by Gahn in 1769 to contain calcium phosphate. Scheele treated bone ash with nitric acid, precipitated the calcium as sulphate, filtered, evaporated and distilled the residue with charcoal. Nicolas and Pelletier improved the process by decomposing the bone-ash directhy with sulphuric acid; whilst Fourcroy and Vauquelin introduced further economies. In modern practice degreased bones (see Gelatme), or bone-ash which has lost its virtue as a Eiltering medium, \&c., or a mineral phosphate is treated with sufficient sulphuric acid to precipitate all the calcium, thecalcium sulphate filtered off, and the filtrate concentrated, mixed with charooal, coke or sawdust and dried in a muffle furnace. The product is then distilled from Stourbridge clay retorts, arranged in a galley furnace, previously heated to a red heat. The temperature is now raised to a white heat, and the product led by malleable iron pipes into condensing troughs containing water, when it condensis. The chemical reactions are as follows the treatment of the calcium phosphate with the acid gives phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, which at a red heat loses water to give metaphoephoric acid, HPO_{2}; this at a white heat reacts with carbon to give hydrogen, carbon monoxide and phosphorus, thus: 2HPO_+ $6 \mathrm{C}=\mathrm{He}+6 \mathrm{CO}+\mathrm{P}_{\text {s. }}$.

Electrothermal processes are also empioyed. Calcium photphate, mixed with sand and carbon, is fed into an electric furnace, provided with a closely fitting cover with an outlet leading to a condenser. At the temperature of the furnace the silica (sand) attacks the calcium phosphate, forming silicare, and setting free phosphorus pentoxide, which is attecked by the carbon, forming phosphorus and carbon monoride. As phosphorus boils at $290^{\circ} \mathrm{C}$. ($554^{\circ} \mathrm{F}$.), it is produced in the form of vapour, wich, rangled with catboa monoride, pance to the
condenses, where it is condensed. It is then east under water. The calcium silicate remains in the furnace in the form of a liquid slag, which may be run off, so that the action is practically continuous. Kaolin may with advantage be used in addition to or in part substitution for sand, because the double silicate thus formed is more fusible than the single silicate of lime. The alternating current is generally used, the action not being electrolytic. One of the special advantages of the electrical over the older process is that the distilling vessels have a longer life, owing to the fact that they are not externally heated, and so subjected to a relatively high temperature when in contact with the corrosive slag formed in the process. The Readman-Parker process (see Jour. Soc. Chem. Ind., 1891, 2.445) appears to be very generally adopted. Readman, experimenting with a Cowles furnace in Staffordshire in 1888, patented his process, and in the same year Parker and Robinson, working iadependently, patented a similar one. The two inventors then cooperated, an experimental plant was run successfully, and the patents were taken over by the leading manufacturers. With the object of ohtaining a valuable by-product in place of the slag produced in this furnace, several patentees. (e.g. Hilbert and Frank, Billaudot, Bradley and Jacobs, and others) have sought to combine the manufacture of calcium carbide and phosphorus by using only calcium phosphate and carbon, effecting direct reduction by carbon at a ligh temperature.

The crude phosphorus is purified hy melting under water and then filtering through animal hlack and afterwards through chamois leather, or ly steating it, when molten, with chromic acid or a mixture of potassium bichromate and sulphuric acid; this causes the impurities te rise to the surface as a scum which can be skimmed off. It is usually sent on the martet in the form of sticks, which were at one time prepared by sucking the molten material up glass tubes; but the dangers to the workmen and other disadvantages of this method have led to its replacement by a continuous process, in which the phosphorus leaves the melting-pot for a pipe surrounded by water, to which it solidifies and can be removed as a continuous rod.

Properties.-When perfectly pure phosphorus.is a white, transparent, waxy solid, but as usually prepared it is yellowish owing to the presence of the allotropic "red phosphorus," J. BDeseken (Abs. Jour. Chem. Soc., 1907, ii. 343, 760) prepares perfectly pure phosphorus hy heating the crude product with chromic acid solution, washing and drying in a vacuum, first at 40°, then at 80°. It remains colourless in vacuum tubes in the dark, hut on exposure it rapidly turns yellow. At 25° to $30^{\circ} \mathrm{C}$. it is soft and flexible, but it hardens when strongly cooled, and can then only be cut with difficulty. The fracture is distinctly crystalline; large crystals, either regular dodecabedra or octahedra, may be obtained by crystallization from carbon bisulphide, sulphur chloride, \&ec, or by sublimation. It is 2 non-conductor of electricity. Its density at 0° is x .836 ; this regularly diminishes up to the melting-point, 44.3°, when a sudden drop occurs. Molten phosphorus is a viscid, oily, highly refractive liquid, which may be supercooled to 32° before solidification. It boils at 295°, forming a colourless yapour which just about the boiling-point corresponds in density to tetratomic molecules, P_{4}; at 1500° to 1700°, however, Biltz and Meyer detected dissociation into P_{2} molecules. Beckmann obtained P_{4} mojecules from the beiling-point of carbon bisulphide solutions, and Hertz arrived at the same conclusion from the lowering of the freezing-point in benzene solution; E. Paternd and Nasini, however, detected dissociation. Phosphorus is nearly insoluble in water, but dissolves in carbon hisulphide, sulphur chloride, benzene and oil of turpentise.

The element is highly inflammable, taking fre in alr at 34° and burning with a hright white flame and forming dense white clouds of the pentoxide; in perlectly dry air or oxygen, however, it may be distilled unchanged, H. B. Baker showing that a trace of water vapour was necessary for combination to occur. When exposed to the air a stick of phosphorus undergoes slow combustion, which is revealed by a greenish-white phosphorescence When the stick is viewed in the dark. This phenomenon was
minterely studied by Boyfe, who found that aclutions in some essential oils (oil of cloves) showed the same character, whilst in others (oibs of mace and anised) there was no phosphorescence He also noticed a strong garlic-like odour, which we now know to be due to owone. Frederick Slare noticed that the luminosity incressed when the air was rarefied, an ohservation confirmed by Hawisbee and Homberg, and which was possibly the basis of Berrelius's theory that the luminosity depended on the volatility of the element and not on the presence of oxygen. Lampadius, however, showed that there was no phosphorescence in a Torricellian vacuum; and other experimenters proved that oxygen was essential to the process. It depends on the partial pressure of the oxygen and also on temperature. In compressed air at ordinary temperature there is no glowing, but it may be hrought about by heating. Again, in oxygen under ordinary conditions there is no phosphorescence, but if the gas be heated to $\mathbf{2 5}$ glowing occars, as is also the case if the pressure be diminished or the gas diluted. It is also remarkable that many gases and vapours, e.g. $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{NH}_{4}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{NO}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{CS}_{3}$ $\mathrm{CH}_{4}, \mathrm{C}_{1} \mathrm{H}_{4}$, inhibit the phosphorescence.

The theory of this action is not settied. It is cestain that the formation of hydrogen peroxide and ozone accompany the glowing, and in 1848 Schonbein tried to demonstrate that it depended on the ozone. E. Jungfleisch (Comptes readus, 1905 ; 140, p. 444) suggested that it is due to the combustion of an oxide more volatile than phosphoras, a view which appears to be supported by the observations of Scharff (Zeif. physik. Chem., 1908, 62, p. 178) and of L. and E. Bloch (Comprat readur, 1908, 147, p. 842).

The element combines directly with the halogens, sulphur and selenium, and most of the metals burn in its vapour forming phosphides. When fmely divided it decompoees water giving hydrogen phosphide; it also redaces suiphurous and sulphuric acids, and when boiled with water gives phosphine and hypophosphosous acid; when slowly oxidized under water it yields hypophomphoric acid.
Allotropic Phosphorus.-Several allotropic forms of phosphorus have been described, and in recent years much work has been done towards setlling their identities. When the ordinary form immersed in water is exposed to light, it gradually loses its transparency and becomes coated with a thin film. This substance was regarded as an allotrope, but since it is not prodaced in non-aerated water it is prohably an oxide. More important is the so-called "red phospharus," which is produced by heating yellow phosphorus to about 230° for 24 hours in an inert atmosphere, or in closed vessels to 300°, when the change is effected in a few minutes. E. Kopp in 1844 and B. C. Brodie in 1853 showed that a trace of iodine also expedited the change. The same form is also produced by submitting ordinary phosphorus to the silent electric discharge, to sunlight or the ultraviolet light. Since this form does not inflame until heated to above 350°, it is manufactured in large quantities for consumption in the match industry. The process consists in heatingyollow phosphorus in iron pots provided with air-tight lids, which, however, bear a long pipe open to the air. A small quantity of the phosphorus combines with the oxygen in the vessel, and after this the operation ia practically conducted in an atmosphere of nitrogen with the additional safety from any risk of explosion. The product is ground under water, and any unchanged yollow form is climinated hy boiling with caustic soda, the product being then washed and dried and finslly packed in tin boxes. The red variety is remarkably different from the yellow. It is a dark red microcrystalline powder, insoluble in carbon bisulphide, oil of turpentine, \&c., and having a density of 2.2 . It is stable to air and light, and does not combine with oxygen until heated to above 350° in air or 260° in oxygen, forming the pentoxide. It is also non-poisonous. When heated in a vacuum to 530° it sublimes, and on condensation forms microscopic needles.
Hittorf's phosphorus ta another crystalline allotrope formed by heating phosphorus with lead in a sealed tube to redness and removing the lead hy boiling the product with nitric and
hydrochloric acid. It is also obtained by heating red phosphorus under presoure to 580°. It forms a lustrous, nearly black crystalline mass, composed of minute rhombohedra. G. E. Linck and P. Moller (Ber., 1908, 41, p. 1404) have affirmed that the product of the first process always contains lead. E. Cohen and J. Olie, Jun. (Abs. Jowr. Chom. Soc., 1909, ii. 998) regard red phosphorus as a solid solution of the white in Hittorf's, but this is contradicted by A. Stock (Ber., 1909, 42, p. 4510), who points out that ordinary red phosphorus melts at $605^{\circ}-610^{\circ}$, whilst Hittori's melts at 620°; moreover, the latter is less reactive than the former at high temperatures.

Another form was obtained by R. Schenck (Zeif. Elehtrochem, 1905, ii. 117) as a scarlet amorphous powder by deposition of solutions of phosphorus in the tri-iodide, tribromide or sulphide ($\mathrm{P}_{4} \mathrm{~S}_{3}$). It phosphoresces in asone, but not in air, and is nonpoisonous; from its solution in alcoholic potash acids precipitate the hydride $\mathrm{P}_{\mathrm{n}} \mathrm{H}_{6}$, and when heated it is tranfformed into the red modification. It has been used in combination with potassium chlorate as a composition for matches to strike on any surface. Finally a black phosphorus was described by Thenard as formed by rapidly-cooling melted phosphorus.

Phosphins (phosphorethed hydrogen), PH_{2}, a gas formed in the putrefaction of organic matter containing phoophorus, was obtaincd by Gengrmbre (Crell 's Aver, 1789, i. 450) by the action of potash upon phosphorus, the gas so prepared being spontaneously inflanimable. Some time later Davy, by heating phosphorous ac id, obtaincd a phosphoretted hydrogen which was not spoutaneousty indararabire. These gases were considered to be distinct until Le Verrier (Ansh. chim plys. $1835[2] .60$, p. 174) showed that the inflammability of Gengembre's phosphine was due to small quantities of liguid phosphoretted hydrogen, $P_{1} H_{L}$. Phoephine may be prepared by the decomposition of calcum phosphide with weter ($\mathrm{P}_{2} \mathrm{H}_{4}$ being formed cimultaneously): by the decomposition of phoophorous and hypophosphorous acids when etrongly heated; and by the action of solutions of the caustic allalis on phophorus: $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{3} \mathrm{O}=$ $\mathrm{PH}_{3}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2}$; hydrogen and $\mathrm{P}_{2} \mathrm{H}_{4}$ are produced at the same time, and the gas roay be freed from the latter substance by pessing into a hydrochloric acid solution of cuprome chloride, and heating the solution, when pure phosphine is liberated (Riban, Comples pemdur, 58, p. 581). The pure gas may also be obtained by heating phospbonium iodide with caustic potash (A. W. Hofmann, Ber., 187T, 4. p. 200): by the decomposition of crystalline calcium phosphide or of aluminium phouphide with mater (H. Moistan, Buil.
 p. 1391); and by the seduction of phosphocous scid with nascent hydrogen.

It is a colourlest, extremely poisonous gas, possessing a characterEstic offensive mell, resembling that of rotting fish. It becomes Equid at $-90^{\circ} \mathrm{C}$., and solid at $-133^{\circ} \mathrm{C}$. (K Olsmewski, Monats., 1866 , 7, p. 371). It is only slightly soluble in water, but is readily soluble in solutions of copper sulphate, hypochlorous acid, and acid solutions of cuprous chloride. It burns with a brightly luminous flame, and is spontaneously inflammable at ebout $100^{\circ} \mathrm{C}$. When mixed with oxygen it combines explosively if the mixture be under diminithed presoure, and is violently decomposed by the halogens. It is also decompowed when heated with sulphur or with most metals, io the latter case with the llberation of hydrogen and formation of phosphide of the metal. It combines with the hotile derivatives of bormen and silicon to form, e.g. $\mathrm{PH}_{3} \cdot 2 \mathrm{BF}_{\mathrm{h}}$ 2 $\mathrm{PH} \mathrm{SHCl}_{4}$ (Besoon, Comples rendus, 1890 , $110,80, \mathrm{pp}$. 240, 516 ; $\left.1891_{1}{ }^{113}, \mathrm{p}^{2} 7^{8}\right)$, with the halogen acids to form phosphonium salts, $\mathrm{PH} X(X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, and with eodammonium and potassammonium to form $\mathrm{PH}_{2} \mathrm{Na}, \mathrm{PH}_{2} \mathrm{~K}$ (Joannis, Comptes renders, 1894, 119. p. 557). It oxidises slow ly in air, and is a reducing agent. It decomposes when heated, hydrogen and red phosphorus being formed.

Liquid Phosphoretled Hydrogen, $\mathrm{P}_{2} \mathrm{H}_{4}$ first obtaiped by P . Thénard (Comples rendws, 1844, 18, p. 652) by decomposing calcium phosphide with warm water, the products of reaction being then passed through a U tube surrounded by a freezing mixture (see also L. Gattermann, Bor. $1890,{ }^{23}, p$ 1174), It is a colourless hiquid which boila at $57^{\circ}-58^{\circ} \mathrm{C}$. It is insoluble in water, but soluble in alcobol and ether. It is very unstable, being readily decomposed by heat or light. By passing the products of the decomposition of calcium phosphide with water over granular calcium chloride, the $\mathrm{P}_{4} \mathrm{H}_{4}$ giver a new hydride, $\mathrm{P}_{2} \mathrm{H}_{4}$ and phosphine, the former being an odourlews, canary-yellow, amorphous powder. When heated in a vacuum it evolves phosphine, and leaves an orange-red residue of a eccond new hydride, $\mathrm{P}_{3} \mathrm{H}_{2}$ (A. Stock, W. Bottcher, and W. Lenger, Ber., 1909, 42 , pp, 2839, 2847, 2853).

Solid Phosphoretted Hydrozen, P4H2, first obtained by Le Verrier the. rin. , is formed by the notion of phosphorts trichloride on gasous phoaphine (Beseon, Comptes rendus, II1, p. 972); by the action of water on phosphorus di-jodide and by the decomposition of calcium phoephide with hot copoentrated hydrochioric acid. It is a yellow
wolid, which is insoluble in mater. It burns when beated to sbout $200^{\circ} \mathrm{C}$. Oxidizing agents decompose it with great violence. When warmed with alcoholic potash it yields gaseous phosphine, hydrogen and a hypophosphite. It reduces silver malts

Phosptown u Sols. - The chloride, PH,C1, was obtained as a cryotalline solid by Ogier (Comptes randers, 1879, 89, p 705) by combining phosphine and hydrochloric acid gas under a pressure of from 14-20 atmospheres; it can also he ohtained at -30° to $-35^{\circ} \mathrm{C}$. under ordinary atmowpheric pressure. It crystallizes in large transpareat cubes, but rapidy dissociates into its constituents on exposure. The bromide, PH.Br, was first obtained by H. Roge (Pogs. Anss. 1832, 24 p. 151) from phosphine and hydrobromic acid; it also results when phosphorus is heated with hydrobromic acid to $100-$ $120^{\circ} \mathrm{C}$. in sealed tubea (Damoiseau, Beill, soc. chiw., 1881, 35, p. 49). It crytablizes in colourless cubes, is deliquescent, and often inflames spontaneouly on exporure to air. It is readily decomposed by water and also by carbonyl chloride (Berson, Comples rendes, 1896, 122 , $\mathrm{p} .140): 6 \mathrm{PH}_{4} \mathrm{Br}+5 \mathrm{COCl}_{2}=1 \mathrm{OHCl}+5 \mathrm{CO}+6 \mathrm{HBr}+2 \mathrm{PH}+$ $\mathrm{P}_{2} \mathrm{H}_{2}$ The iodide, $\mathrm{PH}_{1} \mathrm{H}_{\text {, first }}$ prepared by J. Gay-Lusac (Ampt. chion. phys., 1814, 91, p. 14), is usually obtained by the action of vater on a mixture of phomphorus and iodine (A. W. Hofmann. Ber., 1873, 6, p. 286). It is also prepared by the action of indine on gaseous phosphine, or by heating amorphous phosphorus with ooncentrated hydriodic acid solution to $160^{\circ} \mathrm{C}$. It eryatallime in large cubes and wulimes readily. It is a strong reducing agentWater and the caustic alkalis readily decompoee it with liberation of phosphine and the formation of iodides or hydriodic acid. It is also decomposed by carbonyl chloride (Besson, loc. cit.).
$4 \mathrm{PH}_{4}+8 \mathrm{COCl}_{2}=16 \mathrm{HCl}+8 \mathrm{CO}+\mathrm{P}_{2} \mathrm{I}_{4}+2 \mathrm{P}$.
Just as the amines are derived from ammonia, so from phosphine are derived the primary, secondary and tertiary organic phomphines by the exchange of hydrogen for alkyl groups, and corresponding to the phospbonium sals there exists a meries of organic phospho. nium bases. The primary and secondary phosphines are produced when the allyyl iodides are heated with phosphonium iodide and zine oxide to 150° C. (A. W. Hofmann, Ber. 187^{1}, 4, Pp, 430
 $2 \mathrm{RI}+\mathrm{PH}_{8} \mathrm{I}+\mathrm{ZnO}=\mathrm{R}_{4} \cdot \mathrm{PH} \cdot \mathrm{HI}_{2}+\mathrm{ZnI}_{3}+\mathrm{H}_{4} \mathrm{O}_{\text {. }}$. The restion mirture on treatment with water yields the primary phoephine, the secondary phosphine being then bberated from its fydrodide by caustic nodn. The tertiary phosphines, discovered by L. Theopard (Comples rendus, 1845, 21, p 144; 184\%, 25, p. 8ga) are formed
(corether with the quaternary phosphonium alts) by heating allyy codides with phosphonium iodide to $150-180^{\circ} \mathrm{C}: \mathrm{PH}_{4} \mathrm{I}+3 \mathrm{CH} I=$ $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{HI}+3 \mathrm{HI} ; \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{HI}+\mathrm{CH}_{3} \mathrm{I}=\mathrm{P}\left(\mathrm{CH}_{4}\right)_{4} \mathrm{I}+\mathrm{HI}$ (eee also Fireman, Ber-1 1897, 30, p. 1088). They are also formed by the interaction of phosphorus trichloride and zinc allyts (Cahonre and
 $2 P\left(\mathrm{C}_{2} \mathrm{H}_{b}\right)_{2}$
The primary and secondary phosphines are colourices compounds, and with the exception of methyt phosphine are liquid at ordimary temperature. They posscas an unplearant odour, fume on exposure to air, show a neutral reaction, but combine with acids to form alte. They oxidize very rapidly on exposure, in many cases being apontaneously inflammable. On oxidation with nitive acid the ptmary compounds give monoaikyl phosphinic acids, R.PO(OH) the eecondary yielding diallyl phomphinic acide, $\mathrm{R}_{2} \mathrm{PO}(\mathrm{OH})$. The primary phosphine are very wesk bases, their salfs with acida being readily decomposed by water. The tertiary phomphises are characterized by their readinest to pasa into derivativen containing pentavalent phosphorus, and consequently they form addition compounds with oulphur. carbon bibulphide, chiorine, bromine. the halogen acids and the allyl balides with great readinema. On oxidation they yield phoophine oxides, $\mathbf{R}_{\mathbf{1}} \mathbf{P} \cdot \mathbf{O}$. The quaternary phosphonium salts resemble the corresponding nitrogen compounds They are stable towards aqueous allalis, but on digeation with moist silver oxide yield the phosphonium hydrosides, which are atronger bases than the cauctic allatis. They differ from the organic ammorium hydroxide in their behavionr when heated, yielding phosphine oxides and paraffin hydrocarbons: $\mathrm{R}_{4} \mathrm{P} \cdot \mathrm{OH}=\mathrm{R}_{3} \mathrm{PO}+\mathrm{RH}$. The boiling-poiats of some members of the series are shown in the table:-

	Primery.	Secondary.	Tertiary.
Methyl	$-14^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$40-42^{\circ} \mathrm{C}$
Ethy : .	$+25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$128^{\circ} \mathrm{C}$
Isopropy . . .	$41^{\circ} \mathrm{C}$	$118{ }^{\circ} \mathrm{C}$	
lsobuty : . .	$62^{\circ} \mathrm{C}$	$\begin{array}{r} 153^{\circ} \mathrm{C} \\ 210-215^{\circ} \mathrm{C} \end{array}$	

The alkil phosphinic acids are colourless crystalline compounds which are easily sotuble in water and akohot. They yield two meries of mas viz $\mathrm{RHM}-\mathrm{PO}_{3}$ and $\mathrm{RM}_{2} \mathrm{mO}_{2}$ (Mmemetal). The diallyl phomphinic acids are also colourless compounds, the majority of which are insoluble in water. They yield only one series of aalth.

Oxides.-Phosphorus forms three well-defined oxides, PO. P1O4 and PO_{3}; two others, $\mathrm{P}_{2} \mathrm{O}$ and $\mathrm{P}_{4} \mathrm{O}$, have been described,

Phosphercs stiveride, $\mathrm{P} \mathrm{O}_{\text {, }}$ is gaid to be formed, mised vith the
other caiden, when the element is burnt in a Emited supply of ait or in pure oxygen under reduced pressure (E. Jungficisch, Aks. Jowr. Chem. Soc., 1907 fi. 761), and also when a eolution of phow phorus in the trichloride or tribromide ia exposed to hight. It in a yellow or red powder which becomes darts red on heating; it is stable in air and can be heated to 300° without decompoition. Its existenoe, however, has beem denied by A. Stock (Abs. Jowr. Cheme. Soc., 1910, ii. 121). The oxide PsO was obtained by Besson (Comples rendms, 1897, 124, p. 763; 1901, pp. 132, 1356) by heating a mixture of phosphonium bromide and phosphorus oxychloride in meated tubes to 50°.
Phosphorss oxide, PrO, discovered by Sage in 1777, is a product of the limited combustion of phosphorus in air. It may be conveniently prepared by passing a rapid current of air over burning phosphorus contained in a combustion tabe, and condensing the product in a metal condenser, from which it may be removed by freating the condenser to $50^{\circ}-60^{\circ}$ (Thorpe and Tutton, Jour. Chew. Soc., 1890, pp. 545, 632; 189r, p. 1019). Jungelich has obtained it by carrying out the combustion with oxygen under reduced pressure, or difuted with an inert gas. It forms crystals, apparently monodinic, which melt at 22.5 to a clear, colouriess, mobile liquid of boiling-point $173^{\circ} 1^{\circ}$. Its specfic gravity is $2 \cdot 135$ at 21°. Vapour density and cryoscoppic determinations point to the double formula, P.O. It is comperatively stable up to 200°, bat when heated in a sealed tube to 40° it gives phosphorus and the tetroxide PrO_{4} It is unaffected by ight when pure, but if phosphorus be present. even in minute quantity, it turns yellow and ultimately dark red. It oxidizes on exposure to air to the pertoxide, and with a brilliant inflammation when thrown into oxygen at $50^{\circ}-60^{\circ}$. It alowly reacto with cold water to form phosphorous acid; but with hot water it is energetically decomposed, giving much red phoophorus or the muboxide being formed with an explosive evolution of spontaneously Inflammable phosphoretted hydrogen ; phosphoric acid is also formed. With dilute allalis phosplites are slowly formed, but with concentrated eolutions the decomposition follows the same course as with bot water. With chlorine it gives phosphoryl and "metaphowphoryl "chlorides, the action being accompanied with a greenich hame; bromine gives phosphorus pentabromide and pentoside wich interact to give phoephoryl and "metaphosphory" " bromides; iodine gives phosptorns di-iodide, $\mathrm{P}_{2} \mathrm{I}_{6}$ and pentoxide, $\mathrm{P}_{2} \mathrm{O}_{4}$; whitat hydrochloric, acid gives phosphorus trichloride and phosphorous acid, which interact to form free phosphorus, phoaphoric actd and hydrochloric acid. It combines viokently with aulphur at 160° to form plospherws sulphoxide, PdOS, which forms highly Iustrous tetragonal plates (after mublimation), melting at 102^{8} and boiling at 295°; it is decomposed by water into sulphuretted hydrogea and metaphosphoric acid, the latter changing on standing into orthophosphoric acid. Sulphur trioxide and sulphuric acid oxidizo phosphorus oxide, giving the pentoxide and sulphur dioxide, whilst culphar chloride. $\mathrm{S}_{4} \mathrm{Cl}_{2}$, gives phosphoryl and thiaphosphoryl chlorides, free sulphur and sulphur dioxide. Ammonia also reacts immediately, siving phosphorus diamide, $\mathbf{P}(\mathrm{OH})\left(\mathrm{NH}_{2}\right)_{2}$, and the corresponding ammonium sahr. Phosphorous oride is very poisonous and is responsible for the caries set up in the jaws of those employed in the phosphorus industijes (see below). It is probable, however, that pure phosphorous oxide vapour is odourless, and the odour of phosphorus as ordinarily perceived is that of a mixture of the oxide with ozone.
Phosphorws tetroxide, $\mathrm{P}_{5} \mathrm{O}_{4}$, was obtained by Thorpe and Tutton by beating the product of the limited combustion of phosphorus in vacuo as a sublimate of transparent, highly hustrous. orthorhombic crystals. They are highly deliquescent, and form with water a mixture of phosphorous and phoophoric acids: $\mathrm{P}_{3} \mathrm{O}_{4}+3 \mathrm{H}_{3} \mathrm{O}=\mathrm{H}_{3} \mathrm{PO}_{3}+$ $\mathrm{H}_{3} \mathrm{PO}_{4}$ The vapour density at about 1400° is 230 , i.e. elightly leve than that required by PrOn (West, Jostr. Chem. Soc., 1902, p. 923).

Phasphoric oride, or phosphorus pertaxide, P, Mro, formed when phosphorus is burned in an excess of air or oxygen, or from dry phosphorus and oxygen at atmospheric pressure Uungfleisch, loc, cit.), was examined by Boyle and named "flowers of phosphorus" by Margernf in 1740 . It is a soff, flocculent powder, which on oublimation forms transparent, monoclinic crystals. It is extremely defiquescent, hissing when thrown into water, with which it combines to form phosphoric acid. It is reduced when heated with carbon to phopphorus, carbon monsoxide being formed simultanegualy. Its vapour density at 1400° pointe to the douhie formula (West, Jour. Chem. Soc., 1896, p. 154).

Oxyacids.-Phosphorus forms several oxyacids: hypophosphoroen acid. $\mathrm{H}_{3} \mathrm{PO}_{2}$, and hypophosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{O}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{\mathrm{h}}$ of which the anhydrides are unknown; phosphorous acid, $\mathrm{H}_{3} \mathrm{PO}_{3}$, derived from $\mathrm{P}_{1} \mathrm{O}_{4}$; monoperphosphoric acid, $\mathrm{H}_{2} \mathrm{PO}_{3}$; perphosphoric acid, $\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{1}$: and meta-, pyro-, and ortho-phosphoric acids, derived from $\mathrm{P} \mathrm{O}_{10}$, for which sec PHosprates.

Hypophdsphorous acid, $\mathrm{HP}(\mathrm{OH})_{\text {n }}$, dizcovered by Dulong in 1816, and obtained crystaline by Thomson in 1874 (Ber., 7, p. 994), is prepared in the form of ita barium salt by warming phosphorus with baryta water, removing the excess of baryta by carion dioxide. and crystalliting the filtrate. The acid may be prepared by evaporating in a vacuum the solution obtained by decomposing the barium talt with the equivalent amount of sulphuric acid. The acid forms a white crystalltie masa, melting at $\mathbf{5 7} \mathbf{4}^{\circ}$ and baving a strong acid
renction. Exposare to air gived phouphorout and ploophoric acida, and on heating it gives phouphite and phomphoric acd. A characterixic reaction is the formation of a red precipitate of cuprous hydride, $\mathrm{Cu}_{3} \mathrm{H}_{3}$, when heated with copper sulphate solation to 60°. It is a monobasie acid forming walts which are permaneat in air, but which are gradually oxidized in equecas solution. On heating they yield phosphine and leave a redidue of pyrophosphate, or a mixture of meta-and pyrophogphates, with a little phosphorus. They react as reducing arents. On boiling with caustic potach they evolve hydrogen, yelding a phosphate.

Phosphowows scid, P(OH)n, discovered by Davy in 1812, may be obtained by diseolving ita anhydride, P, O, in cold water; by immersing sticks of phospharss in a solution of copper eulphate contained in a well-closed flask, filtering from the copper sulphide and precipitating the sulphuric acid simultaneously formed by baryta water, and concentrating the solution in wacwo; or by passing chlorine into melted phowphorua covered with water, the Girst formed phosphorus trichkoride being decomposed by the water into phosphorous and hydrochloric acids. It may also be prepared by leading a current of dry air into phosphorus trichloride at 60° and passing the vapours into water at 0°, the crystals thus formed being drained, washed with ice-cold water and dried in a vacuum. The crystals melt at 70°. The acid is very deliquescent, and oxidizes on exposure to air to phosphoric acid. It decomposes on heating into phosphine and phosphoric acid. It is an energetic reducint agent; for example, when boiled with copper vulphate metallic copper is precipitated and hydrogen evolved. Although nominally tribasic the commonest metallic salts are dibasic. Organic etherr, bowever, are known in which one, two and three of dhe hydrogen atoms are subotituted (Michaclis and Becker, Ber., 1897, 30, p. 1003). The metallic phosphites are atable both dry and in molution; when atrongly beated they evolve hydrogen and yield a pyrophosphate, or, especially with the heavy metals, they give hydrogen and a mixture of phosphide and pyrophosphate.
Hypophosphoric acid, $\mathrm{H}_{2} \mathrm{Pr}_{\mathbf{I}}$ or $\mathrm{H}_{3} \mathrm{PO}_{3}$, disocovered by Salser in 1877 among the oxidation products of phosphorus by moist air, may be prepared by oxidizing phosphorus in an aqueous eolution of copper nitrete, or by oxidizing sticks of phosphorus under water, neutralizing with sodium carbonate, forming the lead salt and decomposing this with sulphuretted hydrogen (I. Cavalier and E. Cornea, Abs. Jowr. Chom. Soc., 1910, in. 31). The aqueous solution may be boiled without decompontion, but on ooncentration it yields phosphorous and phosphoric acids. Deliquescent rectangular tablets of $\mathrm{H}_{4} \mathrm{P}_{3} \mathrm{O}_{2} \mathrm{H}_{2} \mathrm{O}$ sepparate out on concentrating a solution in a yacuum, which on drying further give the scid, which melta at 55°, and decomposes suddenly when heated to 70° into phouphorous and metaphosphoric acids with a certain amount of hydrogen phosphide. The solution is stable to oxidiaing agents such as dilute hydrogen peroxide and chlorine, but is oxidised by potasaium permanganate to phosphoric acid; it does not redace salts of the heavy metale. With silver nitrate it given a white precipitate, $\mathrm{Ag}_{4} \mathrm{P}_{2} \mathrm{O}_{4}$. The sodium salt, $\mathrm{Na}_{6} \mathrm{P}_{1} \mathrm{O}_{4} \cdot 1 \mathrm{IOH}_{2} \mathrm{O}$, forms monoclinic prisms and in solution is strongly allcaline; the acid salt, $\mathrm{Na}_{3} \mathrm{HPP}_{2} \mathrm{O}_{4} \cdot 9 \mathrm{H}_{2} \mathrm{O}$, forms monoclinic tablets. The formula of the acid is not quite definite. Cryoscopic measurements on the sodium ealt points to the double formula, but the organic esters appear to be derived from $\mathrm{H}_{2} \mathrm{PO}_{2}$ (see A, Rosenheim and M. Pritze, Ber., 1908, 41, 3708; E. Cornee, Abs. Jour. Chems. Soc., 1910, ii. 121).

Monoperphosphoris and perphasphoric acids, $\mathrm{H}_{1} \mathrm{PO}_{5}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{4}$ were obtained by J. Schmidlin and P. Massini (Ber., 1910, 43, 1162). The first is formed when 30% hydrogen peroxide reacts with phot phorus pentoxide or meta. or pyrophosphoric acids at low temperatures and the mixture diluted with ice-cold water. The solution is etrongly oxidizins, even converting manganous salts to permanganates in the cold, a property not possessed by monopersulphuric acid. Perphosphoric acid is formed when pyrophosphoric acid is treated with a large excess of hydrogen peroxide.
Halogen Compounds.-Phosp̀korus trifuoride. PFs, discovered by Davy, may be obtained mixed with the pentaliuoride; by direct combination of its elements; from the tribromide and arsenic trifluoride (Maclvor); from the tribromide and zinc fluoride, and from dried copper phosphide and lead fluoride (H. Moissan). It is a colourless non-fuming gas, which gived a colouriess, mobile liquid at -10 and to atmospheres; the liquid boils at -95° and solidifies at -160° (Moissan, Comples rexder, 1904, 138, p. 7^{89}). It does not burn in air, but explodes, under the action of a flame or the electric sparic. when mixed with half its volume of oxygen, giving the oxyfluoride, POF. It is slowly decomposed by water giving hydrofluoric and phosphorove acids, or, in addition, finorphosphorous acid, HPP. It has no action on glass In the cold, but when heated it gives phoo phorus and silicon tetrafluoride. Phosphorus pentafineride, PF. discovered by Thorpe (Proc. Roy, Soc., 1877, 25, p. 122), may be obtained by burning the trifluoride in duorine, from the pentachloride and arsenic trifuoride and from the tritluoride and bromine, the first formed fluorobromide, PF, Bri, decomposing into the pentabromide and pentafluoride: $\mathrm{PPF}_{3} \mathrm{Br}_{2}=3 \mathrm{PF}_{3}+2 \mathrm{PBr}_{5}$. It is a colourless gas 4 times heavier than air, and liquefies at 15° under 40 atmospheres, solidifying when the pressure is diminished. It is incombustible and extinguishes flame. It fumes in moist air and is quickly decomposed by water giving hydrofluoric and phesphoric
mcids. It does not disuociate on heating as do the pentachioride and pentabromide, thus indicating the existence of pentavalent phosphorus in a gascous compound; dissociation, however, into the trifuoride and free fluorine may be brought about by induction sparks of 150 to 200 mm . in length. It combines directly with mmmonia in the proportion $2 \mathrm{PF}, 5 \mathrm{NH}_{2}$, and with nitrogen peroxide at -10° ia the proportion PFa:NO. Phosphorms trifiuarodichioride, $\mathrm{PF}_{3} \mathrm{Cl}_{3}$, prepared from chlorine and the trifluoride, is a pungentamelling gas, which at 250° gives the pertachloride and fluoride. The triftuorodibromide (see above) is an amber-coloured mobile liquid. Phesphoryl irifuoride, POF_{2}, may be obtained by exploding 2 volumes of phosphorus trifuoride with I volume of oxygen (Moissan, 1886): by heating 2 parts of hanely-divided cryolite and 3 parts of phosphorus pentoxide (Thorpe and Hambly, Jowr, Chem, Soc: 1889, p. 759); or from phosphoryl chloride and zinc fuoride at 40° to 50°. It is a colourless fuming gas, which liquefies under ordinary pressure at -50° and under a pressure of 15 atmospherce at 16°; it may be solidified to a snow-like mass. Water gives hydrofluoric and phosphoric acids. The corresponding sulphur compound, thiophosphoryl fuoride, PSF_{2}, obtained by heating lead fluoride and phosphorus pentasulphide to 200°, is a colourless gas, which may be condensed to a clear transparent liquid. It spontaneousty inflames in air or oxygen; and when the gas is isouing from a jet into air the flame is greyish green, with a faintly luminous and yellow tip; the flame is probably one of the coldest known. The combustion probably follows the equation $\mathrm{PSF}_{3}+\mathrm{O}_{4}=\mathrm{PF}_{3}+\mathrm{SO}_{\text {1 }}$, the trifluoride at - higher temperature decomposing according to the equations: $10 \mathrm{PF}+5 \mathrm{O}_{4}=6 \mathrm{PF}_{5}+2 \mathrm{P}_{5} \mathrm{O}_{5} \quad 2 \mathrm{PF}_{3}+\mathrm{O}_{3}=2 \mathrm{POF}_{3}$, the complete reaction tending to the equation: $10 \mathrm{PSF}_{3}+15 \mathrm{O}_{2}=6 \mathrm{PF}_{3}+2 \mathrm{P}_{3} \mathrm{O}_{3}+$ 10SO2. The gas dissolves in water on shaking; $\mathrm{PSF}_{3}+4 \mathrm{H}_{3} \mathrm{O}=$ $\mathrm{H}_{3} \mathrm{~S}+\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{HF}$, but is more readily taken up by alkaline molutions with the formation of fluoride and thiophosphate: PSF + t $6 \mathrm{NaOH}=\mathrm{Na}_{1} \mathrm{PSO}_{3}+3 \mathrm{NaF}$. Heated in a glase tube it gives silicon fluoride, phosphorus and sulphur, $\mathrm{PSF}_{3}=\mathrm{PF}_{1}+\mathrm{S}_{;} 4_{4} \mathrm{PF}_{3}+3 \mathrm{SiO}_{2}=$ ${ }_{3} \mathrm{SiF}_{1}+\mathrm{P}_{1}+3 \mathrm{O}_{2}$. Electric sparks give at first free sulphur and the trifuoride, the latter at a higher temperature splitting into the pentafluoride and phosphorus. With dry ammonia it gives ammonium fluoride and a compound $\mathrm{P}\left(\mathrm{NH}_{2}\right)_{2}$ SF.

Phasphorus trichloride or phosphorous ehloride, PCl_{2}, discoverea by Gay-Lussac and Thenard in 1808, is obtained by passing a slow current of chlorine over heated red phosphorus or through a solution of ordinary phosphorus in carbon disulphide (purifying in the latter case by (ractional distillation). It is a colourless, mobile hiquid of specific gravity I-6128 at 0° and boiling point 76°. With chlorine it gives the pentachloride, PCls, and with oxygen when beated phosphoryl chloride, POCl_{5}. Water gives hydrochloric and phosphorous scids, with separation of red phosphorus if the water be hot. When led with hydrogen into liquid ammonia it gives $\mathrm{NH}_{2}: \mathrm{PNH}_{2}$, which on elevation of temperature gives $\mathrm{P}_{3}(\mathrm{NH})$, (loannis, Comples rendus, 1904, 139, p. 364). By submitting a mixture of phosphorous chloride and hydrogen to an electric discharge A. Besson and A. Fournicr (Comples rendus, 1901, 150 p. 102) obtained phosphorus dichloride, $\mathbf{P}_{3} \mathrm{Cl}_{4}$, as a colourless, oily, strongly fuming liguid, freezing at -28° and boiling at 180° with decomposition. With water it gave phosphorous acid and a yellow indefinite solid. It decomposea clowly at ordinary temperatures. Phosphorus pertachloride, ${ }^{2} \mathrm{Cl}_{5}$, discovered hy Davy in 1810 and amalysed by Dulong in 18i6, is formed from chlorine and the trichloride. It is a straw-coloured tolid, which by fusion under pressure gives prismatic crystals. It sublimes when heated, but under pressure it melts at 148°, giving a normal vapour density, but on further heating it dissociates into the trichloride and chlorine; this dissociation may be retarded by vapourizing in an atmosphere of chiorine. It fumes strongly in moist air, giving hydrochloric acid and phosphoryl chloride, POCl_{3} : with water it gives phosphoric and hydrochloric acids.

Phosphoryd trichloride or phos pherws oxychloride, POCl_{3}, corresponding to phosphoric acid, (HO), PO, discovered in 1847 by Wurtz, may be produced by the action of many substances containing hydroxy gruups on the pentachloride; from the trichloride and potassium chlorate; by leaving phosphorus pentoxide in contact with hydrochloric acid: $2 \mathrm{P}_{3} \mathrm{O}_{5}+3 \mathrm{HCl}-\mathrm{POCl}_{2}+3 \mathrm{HPO}_{2}$; or by heating the pentachloride and pentoxide under pressure: 3 PClif $\mathrm{P}_{2} \mathrm{O}_{5}=5 \mathrm{POCl}_{3}$. It is a colourless liquid, boiling at $107 \cdot 2^{\circ}$, and when solidified it melts at 0.8°. Water gives hydrochloric and phosphoric acids; dilute alcohol gives monocthy! phosphoric acid, $\mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{PO}_{4}$ whilst absolute apohol gives triethyl phosphate, (CiH $\left._{3}\right)_{1} \mathrm{PO}_{4} \quad$ Pyrophesphoryt chloride, $\mathrm{P}_{2} \mathrm{O}_{3} \mathrm{Cl}_{4}$, corresponding to pyrophosphoric acid, was obtained by Ceuther and Michaclis (Ber., 1871, 4, p. 766) in the oxidation of phosphorus trichloride with nitrogen peroxido at low temperature; it is a colourless fuming liquid which boils at pbout 212° with some decomposition. With water it gives phosphoric and hydrochloric acids. Thiophosphoryl chloride, PSCl $_{2}$, may be obtained by the direct comhination of sulphur with the trichloride; from sulphurested hydrogen and the pentachloride; from antimony trisulphide and the pencachloride; by heatIng the pentasulphide with the pentachloride; and by dissolving phosphorus in sulphur chloride and distiling the solution: $2 \mathrm{P}+3 \mathrm{~S}_{2} \mathrm{Cl}_{2}=$ $4 \mathrm{~S}+2 \mathrm{PSCl}$. It is a colourlcse mobile liquid, boiting at 125.1° and having a pungent, slightly aromatic odour. It is stowiy decom. aoned by water giving phosphoric and hydrochloric acids, with
aulphuretted hydrogen; alkalis form a thiophosphate, e.g- PS(OK) and a chloride.
Phosphorus tribromile, PBra, prepared by mixing solutions of its elements in carbon disulphide and distilling, is a transpareat, mobile liquid, boiling at 173° and resembling the trichloride chemically. The penfabromides. PBra which results from phosphorus and an excess of bromine, is a yellow solid, and closely resembles the pentachloride. The bromochloride, $\mathrm{PCl}_{2} \mathrm{Br}_{3}$, is an orange-coloured solid formed from bromine and the trichloride, into which companente it decompoes at 35°. Phesphoryt tribromide, POBr_{3}, is a molid, melting at 45° and Looiling at 195°. Thiophosphoryl browide, PSBr. ebtained atter the manner of the corresponding chloride, forms yellow octahedra which melt at 38°, and have a penetrating, aromatic odour. With water it gives sulphur, sulphuretted hydrogen. hydrobromic, phosphorous and phosphoric acids, the sulphur and phosphorous acid being produced by the interaction of the previously lormed sulphuretted hydrogen and phosphoric acid. Pyrophosghery thiobrowide, ($\mathrm{PBr}_{3} \mathrm{~S}$) S , and metaphosohoryl thiobromide, $\mathrm{PS}_{4} \mathrm{Br}_{1}$ are also known.

Phosphorus forme three iodides. The subiodide. PAl, was obtained by R. Boulough (Comples rendus, 1905, 141, p. 256), who acted with dry iodine on phosphorps disoolved in carbon disculphide; with alkalis it gives $\mathbf{P}_{1}(\mathrm{OH})$. The di-iodide and tri-iodide are formed similarly; the first is deposited as crange-coloured prisms which melt at 1 to ${ }^{\circ}$ to a red liquid (see Doughty, Jour. Amer. Chems. Soc., 1905. 27, p. 1444), whilst the aecond forms dark-red hexagonal plates which melt at 55°.

Sulphides and Thio-acids.-Phosphorus and sulphur combine energetically with considerable rise of temperature to form sulphides. The researches of A. Stock (Ber., 1908, 41, pp. 558, 657; 1909, 42, p 2062; 1910, 43, Pp. 150, 414) show that three exist, $P_{1} S_{2} P_{S} S_{5}, P_{1} S_{4}$ The first is prepared by beating red phosphorus with finely powdered sulphur in a tube sealed at one end and filled with carbon dioxide The product is extracted with carbon disulphide and the residue distilled in carbon dioxide. It forms light yellow crystals from benzene, which melt at 1725° end boil at $407^{\circ}-408^{\circ}$ with slight decomposition. Alkalis give hydrogen and phosphine. The secood, $\mathrm{P}_{4} \mathrm{~S}_{\text {, }}$ is obtained by heating a mixture of red phosphorus and sulphur in the proportions given by $P_{4} S_{7}+5 \% P_{4} S_{3}$ and crystallizing from carbon disulphide in which $P_{4} S_{3}$ is readily soluble. It forms small, slightly yellow prisms, which melt at 310° and boit at 523°. The third, or pentasulphide, $P_{2} S_{h r}$ was obtained as a substance remembling flowers of sulphur by A. Stock and K. Thiel (Ber., 1905. 38, p. 2719 ; 1910, 43, p. 1223), who heated sulphur with phosphorus in carboa disulphide solution with a trace of iodine to $120^{\circ}-130^{\circ}$. It exists in two forms, one having the formula P4 S_{10} and the other a lower molecular weight. With liquid ammonia it gives $\mathrm{P}_{2} \mathrm{~S}_{\mathrm{p}} 7 \mathrm{NH}_{3}$, which is a mixture of ammonium iminotrithiophosphate, $P(S N H$) $: \mathbf{N H}$, and ammonium nitrilodithiophosphate, $\mathbf{P}\left(\mathrm{SNH}_{4}\right)_{1}: \mathbf{N}$. Water converta the former into ammonium thiophosphate, $\mathrm{PO}\left(\mathrm{SNH}_{4}\right)_{2} \mathrm{H}_{3} \mathrm{O}_{4}$ whilst the latter heated to 300° in a vacuum gives thiophosphoric nitrile, NiP:S (Stock, jbid, Igo6, 39, p. 1967).

Thiophosphates result on dissolving the pentasulphide in altalis. Sodium monothiophosphate, $\mathrm{Na}_{3} \mathrm{PSO}_{2} \cdot 32 \mathrm{H}_{3} \mathrm{O}$, is obtained by adding one $\mathrm{P}_{3} \mathrm{~S}_{5}$ to six NaOH , adding alcohal, dissolving the precipitate in water and heating to 90°. On cooling the salt separates as white six-sided tablets. Sodium dishiophosphate, $\mathrm{Na}_{2} \mathrm{PS}_{3} \mathrm{O}_{2} \cdot 11 \mathrm{H}_{3} \mathrm{O}$, is obtained by heating the above solution only to $50^{\circ}-55^{\circ}$, cooling and adding alcohol, which precipitates the dithio salt. On heating it gives the monothio salt. Sodium trithiophosphate appears to be formed when the pentasulphide acts with sodium hydrosulphide at 20°. All thiophosphates are decomposed by acids giving sulphuretted hydrogen and sometimes free mulphur. They also act in many caces as reducing agents.

Nutrogen Compownds.-Phosphorus pentachloride combines directly with ammonia, and the compound when heated to redness loses ammonium chloride and hydrochloric acid and gives phosphans, $\mathrm{PN}_{2} \mathrm{H}_{4}$ a substance first described by Davy in 18in. It is a white, infusible, very stable solid, which decomposes water on heating, giving ammonia and metaphosphoric acid, whilst alkalis give an analogous reaction. With methyl and ethyl alcohols it forms secondary amines (Vidal, Comptes rendus, 1891, 112, p.950; 1892, is. p. 123). The diamide, $\mathrm{PN}_{2} \mathrm{H}_{4}$, was obtained by Hugot (ibid., 19gs, 141, P. 1235) by acting with ammonia gas on phosphorus tribromide or tri-iodide at -70°; it is very unstable, and decomposes at -25°. Phosphorus combines with nitrogen and chlorine to form several polymeric substances of the general formula $\left(\mathrm{PNCl}_{2}\right) x_{\text {, }}$ where x may be $1,3,4,5,6,7$, or 11 ; they may be obtained by heating the pencachloride with ammorium chloride in a sealed tube and separating the mixture by fractional distillation (H. N. Stokes, A mer. Cherin. Jourf, 1898, 20, p. 740; also see Besson and Rosset. Comples readys. 1906, 37. p. 143). The commonest form is $\mathrm{P}_{3} \mathrm{~N}_{3} \mathrm{Cl}_{4}$, a crystalline solid, insolubie in water, but solubte in alcohnl and ether. Geveral phosphoamides have been described. The diamide, $\mathbf{P O}\left(\mathrm{NH}_{3}\right)(\mathrm{NH})$, results when the pentachloride is saturated with, ammonia gas and the first formed chlorophosphamide, $\mathrm{PCl}_{3}\left(\mathrm{NH}_{3}\right)_{4,}$ is decomposed by water. The triamide, $\mathrm{PO}\left(\mathrm{NH}_{2}\right)$ s, resules from ammonia and phosphorus oxychloride. Both these compounds on heating give phosphomonamide, PON, of which a polymer (PON), had been described by Oddo (Gast chim. Ilal., 1899, 29 (ii), p. 330). Stokes (A mer. Cheme Jote.
 and $\mathrm{PO}(\mathrm{OH})\left(\mathrm{NH}_{2}\right)_{2}$, whilst the compound $\mathrm{PO}(\mathrm{OH}) \mathrm{NH}$ was ohtained by Schit (Axer., 1857, 103. p. 168) by acting with ammonia on the pentoxide Numerous other mitrogen compounds have been obtained.
The atomic weight of phopphorua was detmrmined by Berzelius, Pélouze, Jacquelin, Dumas, Schrottcr, Brodie and van der Plants. More recent are the investigations of C. Ter Gazarian (Compl rend.. $1909,148, \mathrm{p} .1397$) on hydrogen phosphide, which gave the value $30-906$, and of C. P. Baxter and C. jones forarm. Amer. Chem Soc., 1910, 32, p. 298) on silver phosphate, which gave the value $31 \cdot 04$.

Thergpeutics.-The phosphorus used in the British pharmacopocia is obtained from calcium phosphate, and is a waxlike non-metallic substance soluble in cils and luminous in the dark. There are various medicinal preparations. In young animals phosphorus has a remarkable influence on the growth of bone, causing a proliferation of the jelly-like masses and finally a deposit in them of true bony material. Owing to this induence it has been used in rickets and osteamalacia. Its most effective use, however, is as a nerve tonic in paralysis agitans, locomotor ataxia, impotence and nervous exhaustion. In some skin diseases such as psoriasis, chronic eczema and acne indurata, phosphorus is very useful, and cases of diabetes mellitus and lymphadenoma have improved under some of lts compounds. The hypophosphites have been recommended in pulmonary affections, being said to act as free phosphorus without being irritant, and the glycero-phosphates are certainly useful to stimulate metabolism. Dilute phosphoric acid is used as gastric sticmulant. It does not resemble phosphorws in its physiological action and cannot be used to replace it.

Toxicology.-Poisonous amounts of phosphorus are Enequently taken or administered, criminally or accidentally, it being easily accessible to the public in the form of matches or of vernin pastes. They may have been swallowed several hours hefore symptoms of acute poisoning show themselves, with nausea and vomiting, and a bursins in the oosophagus, stomach and abdomen. The important thing is to prevent the absorption of the poison, so emetics and purgatives should begiven at once. Sulphate of copper, in doses of 3 to 5 gr., freciy, diluted and repented every few minutes forms the harmiess, black phosphide of copper, which is rapidly climinated by the kidneys. The stomach may be washed out with warm water and then with a 2% solution of permanganate of potash, an cnema of the same solution being given. The old French oil of turpentine is the best antidote to use in phosphorus poisoning, delaying the toxic effects; hut ordinary oils are not only useless but harmful. When some time has elapsed before treatment and the phosphorus has become absorbed, the organic degenerative changes cannot be easily controlled. For the chronic form of industrial poisoning in the manufacture of lucifer matches-a form of necrosis, known in England as "phossy jaw" and in France as "and chimique." a localized inflammatory infection of the periosteum, ending with the death and exfoliation of part of the bone-see Marcis.

PHOTIUS ($c .820-891$), patriarch of Constantinople ($858-867$ and 878 -886). From his early years be displayed an extraordinary talent and appetite for knowledge, and as soon as be had completed his own education he began to teach with distinguished sucress grammar, shetoric, divinity and philosophy. The way to public life was probably opened for him by the marriage of his brother Sergius to the princess Irene, sister of Theodora, who, upon the death of her husband Theophilus in 842 , had assumed the regency of the empire. Photius became captain of the guard and subsequently first imperial secretary. The diseensions between the patriarch Ignatius and Bardas, the uncle of the youthiul Emperor Michael III., brought promotion to Photius. Ignatius was arrested and imprisoned (Nov. 858), and upon refusing to resign his office was illegally deposed, while Photius, although a layman, received all the necessary sacerdotal orders within six days, and was installed as patriarch in his place Ifnatius, continuing to refuse the abdication which could alone have given Photius's elevation a semblance of legality, vas treated with extreme severity. His cause was subsequently expoused by Pope Nisholas in a manner highly offensive ta the

Independent feeling of the Eastern Church. Photius felt himeself the champion of Eastern Christianity againat Latin pretensions; and when in 863 Nicholas finally anathematized and deposed him, be replied by a counter-ercommunication. Meanwhile, the situation was suddenly changed by the murder of Photius's patron, Bardas, by order of the emperor Michael, who was himself assossinated by his colleague Basil in the following year (867). The fall of Photius immediately ensued; he was removed from his office and banished about the end of September 86\%, a few days after the zccession of Basil, and Igratius was reinstated on the 23 rd of Novemher, About 876 Photius was suddenly recalled to Constantinople and entrusted with the education of Basil's children. On the death of Ignatitus, probably in October 878, Photius, after a decent show of reluctance, again filled the patriarchal throne. He then proceeded to ebtain the formal recognition of the Christinn world. In Navember 879 a synod was convened at Corstantinople. The legates of Pope John VIII. attended, prepared to acknowledge Photius as legitimate patriarch, a concession for which John was much censured by Latin opinion. He stood firm, however, on the other two points which had long been contested between the Eastern and Western Churches, the ecelesiastical juriadiction over Bulgaris and the introduction of the "filioque" clatuse into the creed. He disowned his legates, who had shown a tendency to yield, again excommumicated Photius, and theis aroused the open hostility which has never been appeased to this day. Strong in the support of the council, Photlus simply ignored him. At the height of glory and success he was suddenly precipitated from his dignity by another palace revolution. After the death of Basil (886), his son and successor Leo, who had formerly been devoited to Photius, but in reoent years displayed great hatred towards him, deprived him of his office and banished him to the montastery of Bordi in Armenia. From this time Photius disappears from history. No letters of this period of his life are extant, which leads to the fnference that hia imprisonment was severe. The procise date of his death is not known, but it is enid to have occurred on the 6th of February 892.

For long after Photins's death hia memory was held in no apecial honour by bis countrymea. But when, in the crusading age, the Greck Church and state were alike in danger from Latin encroach: ments, Photius became a national hero, and is at present regarded as little chort of a saint. To this character he has not the least pretension. Few men, it is probable, have been more atrociously calumniated; hut, when every specific statement to his prejudice has been rejected, he still appears on a general review of his actions worldly, crafty and unscrupulous. Yet he shows to no little advantage as an ecclesiastical statesman. His frrmesi was heroic, his asgacity profound and far-seeing; be supported good and evil fortuae with equal dignity; and his fall was on both occasions due to revolutions beyond his control. In erudition, literary power, and force and versatillty of intcllect he far surpassed every contemporary.

The most laportant of the works of Photius is his renowned Biblioheca or Myriobiblan (ed. I. Bekker, 1824-1825), a collection of extracts from and abridgments of 280 volumes of classical authors (usually cited as Codices), the originals of which are now to a great extent lost. The work is specially rich in extracts from histotical writers. To Pbotine we are indebted lor almost all we poseess of Ctesias, Memnon, Conon, the lost books of Diodorus Siculus, and the lost writings of Arrian. Theology and ecclesiastical history are also very fully represented, but poetry and ancient philosophy are almost entirely ignored. It seems that he did not think it necessary to deal with those authore with whom every well-educated man would naturally be familiar. The literary criticisma, generally distine guished by keen and independent judgment, and the excerptos, vary considerably in length. The numerous biographical notices are probably taten from the work of Hesychius of Miletos. The Lewicon (A4Fewv 2nverayb), published later than the Bibliotheca, was probatiy in the main the work of some of his pupils. It was intended as a book of reference to facilitate the reading of old classical and sacred authnrs, whose language and vocabulary were out of date, The only MS. of the Lexicon is the Codex Galcanus, formerly In the possession of Thomas Gale (q.v.), and now in the library of Trinity College, Cambridge (ed. S. A. Naber, 1864, with introduction on the authorities, critical commentary, and valuable indexes). His most important theological work is the Amphilochia, a collection of some 300 questions and answers on difficult points in Scripture, addressed to Amphilochius, archbishop of Cyzicus (ed. Sophocles Oeconomus, Atheng 1858). Other timilar works are his treatiee in four bools
waint the Manichacans and Paulicians, and hin controveroy with the Latins on the Procesdion of the Holy Spirit. His Epistles, political and private, addressed to high church and state dignitaries, are valuable for the light they throw upon the character and vereatility of the writer (ed. J. Valettas, London, 1864). A large number of his epeeches and homilies have been edited by $\$$. Aristarches (1900). The oaly complete edition is Biahop Malou's in Migne's Palrologis praces, ci.-cv. R. Reifzenstein (Der Anfarg des Lexithons des Photswr, 1907) has published a hitherto-unedited MS. containing aumerous fragments from various verte and prose tuthore.

After the allusions in his own writings the chicf contemporary authority for the life of Photius is his bitter enemy ${ }_{1}$ Nicetas the Paphlagonian, the biographer of his rival Ignatius. The standard modern work is that of Cardinal Hergemoliher, Pholiws, Patriarch mon Comstamisioppel (i867-1869). As a dignitary of the Roman Catholic Church, Cardinal Hergenruther is inevitably biaged against Photius as an ecelesiastic, but his natural candour and sympathy with inteliectual eminence have made him just to the man.

See aloo article by F. Kattenbusch in Herzog-Hauck's Reol encylopeddie far prolestantische Thealogic (1904), containing full bibliographical details; J. A Fabricius, Bibliolleca praeca, x. $670-$ 776, xi. 1-37; C. Krumbacher, Geschichte der bytantinisches Lilleratwr. pp. 73-79; $515-524$ (2nd ed., 1897) ; J. E. Sandys, History of Classical Seinderatio (znd ed., 1906).
 the widest sense, the branch of chemical science which deals with the optical properties of substances and their relations to chemical constitntion and reactions; in the narrower sense it is conceraed with the sction of hight on chemical change. The first definition includes such subjects as refractive and ditpersive power, colour, fiporescence, phosphonescence, optical isomerism, spectroesopy, te-aubjects Fhich are treated under other headiags; hero we oniy discuss the sabject matter of the narnower definition.

Probably the earliest photochemical investigations were associated with the darkening of certain siver alits under the action of light, processes which were subsequently utilized in photography (q.v.). At the mane time, however, it had been observed that other chemical changes were regulated by the access of light; and the first complete study of such a problem was made by J. W. Draper in 1843, who investigated the combination of hydrogen and chlorine to form hydrochloric acid, a reaction which had been previously studied hy Cay-Lussac and Thenard. Draper concluded that the first action of sunlight consisted in producing an allotrope of chlorine, which subsequently combined with the hydrogen. This was denied by Bunsen and Roscoe in $\mathbf{1 8 5 7}$; and in 1887 Pringsheim eugsested that the reaction proceeded in two stages: $\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}=\mathrm{Cl}_{4} \mathrm{O}+\mathrm{H}_{y_{2}}$ $2 \mathrm{H}_{2}+\mathrm{C}_{8} \mathrm{O}=\mathrm{H}_{2} \mathrm{O}+2 \mathrm{HCl}$. This vien demands the presence of water vapour (H. B. Baker showed that the perfectly dry gases would not comhine), and also explains the period which elspses before the reaction commenced (the "photochemical Induction" of Bunsen and Roscoe) as taken up by the formation of the chlorine monoxide necessary to the second part of the reaction. The decomposition of hydriodic acid into hydregen and iodine was studied by Lemoine in $\mathbf{2 8 7 7}$, who found that 80% decomposed after a month's exposure; he also observed that the reaction proceeded quicker in blue vessels than in red. A broader investigation was published hy P. L. Chastaing in $\mathbf{2 8} 78$, who found that the red reys generally oxidized inorganic componnds, whilst the violet reduces them, and that with organic compounds the action was entirely oxidizing. These and other reactions suggested the making of actinometers, or instruments for meararing the actinic effect of light waves. Themostimportant employ silver salts; Eder developed a form based on the reactlon between mercuric chloride and ammonium oralate: $2 \mathrm{H}_{8} \mathrm{Cl}_{4}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}=2 \mathrm{H}_{8} \mathrm{Cl}+2 \mathrm{NH}_{4} \mathrm{Cl}+2 \mathrm{CO}_{2}$. the extent of the decomposition being determined by the amounts of mercurons chioride or carbon dioxide liberated.

The article Phorograpry (q.v.) deals with early investigations on the chemical action of light, and we may proceed here to modern work on organic compounds. That sumifight sccelerntes the action of the halogens, chlorine and bromine, on such compounds, is well known. John Davy obtained phosgenc, COCl_{2}, by the direct combination of chlorine and carbon monoxide in panlight (see Weigert, Ines. d. Phys, 1907 (iv.), 24, p. 55):
chlorine combines with half itis volpme of methone explopively in sunlight, whilst in diffused light it substifutes; with toluene it gives benzyl chloride, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{CH}_{2} \mathrm{Cl}_{\text {, }}$ in sunlight, and chlortoluene, $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CH})_{3} \mathrm{Cl}$, in the dark; with benzene it gives an addition product, $\mathrm{CaH}_{4} \mathrm{Cl}_{4}$, in sunlight, and substitutes in the dark. Bromine deports itself similarly, substituting and forming addition products with unsaturated compounds more readily in sunlight. Sometimes isomerization may occur; for instance, Wialicenus found that angelic acid gave dibromangelic acid in the dark, and dibromtiglic acid in sunlight. Many substances decompose when exposed to sunlight; for example, allyl todides darken, owing to the liberation of lodine; aliphatic acids (especially dibasic) in the presence of uranic oxide lose carbon dioride; polyhydric alcohols give products identical with those produced by fermentation; whilst aliphatic ketones give : hydrocarion and an acid.

Among aromatic compounds, benzaldehyde gives a trimeric and tetrameric benzaldehyde, benzoic acid and hydrobenzoin (G. L. Ciamician and P. Stiber, Alli. R. Acced Lincei, 1909); in alcoholic solution it gives hydrobenvoin; whilst with nitrobenzene it is oridized to benvoic acid, the nitrobenzene suffering reduction to nitrosobentene and phenyl- β-hydroxylamine; the latter isomerizes to ortho- and para-aminophenol, which, in turn, combine with the previously formed benzoic acid. Simibarly acctophenone and benrophenone in alcoholic solution give dimethylhydrobenzoin and benzopinacone. With nitro compounds Sach and Hilbert conchuded that those containing a - CH. side group in the ortho position to the $-\mathbf{N O}$ group wert decomposed by light. For example, ortho-nitrobenzaldehyde in alcoholic solution gives nitrowobeneoiceater and 22' asoxybenzoic acid, with the intermediate formation of nitrobenvaldehydediethylacetal, $\mathrm{NO}_{4} \mathrm{CH}_{4}-\mathrm{CH}\left(\mathrm{OC}_{4} \mathrm{H}_{8}\right)_{2}$ (E. Bamberger and $\mathrm{F}_{\text {. }}$ Elgar, Amin. 19ro, 371, p. 319). Bamberger also inventigated pitrosobenviene, obtaining asoxybenzene at chief product, together with various azo compounds, nitrobenmene, aniline, bydsoquinone and a resin.

For the photochemistry of diazo derivatives see Ruff and Stein. Ber., 1901, 34, p. 1668, and of the terpences see G. L. Ciatricion and P. Silber, Ber-, 1907 and Igos.

Light is also powerful in producing isomerization and polymerization. Icomerization chiefly appears in the formation of stable stereo-isomers from the labile forms, and more rarely in inducing real isomerization or phototropy (Marciwald, 1899). As examples we may notice the observation of Chattaway (Jowm. Chon. Sec. 7906,89, p. 462) that many phenyilhydramones Gellow) change into aso compounds (red), of M. Padoa and F. Grasiani (AUi. R. Accad. Lincei, 1909) on the β-miphthylhydrazones (the α-compounds are not phototropic), and of A. Senier and E. G. Shepheard (Jomen. Chem, Soc.; 1909, 95, p. 1943) on the arylidene- and mphthylidene-amines, which ehange from yellow to orange on exposure to sunlisht. Light need not act in the same direction as heat changes due to heat may be termed thermelroptic). For example, heat changes the a form of benzyl- β-aminocrotonic ester into the β form, wheress light reverses this; similarly hest and light have reverse actions with as-diphenyl ethylene, $\mathrm{CH}_{8}: \mathrm{C}\left(\mathrm{C}_{4} \mathrm{H}_{3}\right)$ (R. Stoermer, Ber., 1909, 42, p. 4865); the change, however, is in the same direction with Senier and Shepheard's comporiods. With regard to polymerization we may notice the production of bentene derivatives from acetylene and its homologues, and of tetramethylenes from the olefines.

Theory of Pholocientical Action.-Although much work has been done in the qualitetive and quantitstive study of photochemical reactions relatively little attention has been given to the theoretical explanation of these phenomena. That the molution was to be found in an analogy to electrolysis was suggested by Gnothoss in 18r8, who laid down: (1) only those rays which are abeorbed can produce chemical change, (2) the action of the light is analogous to that of a voltaic cell; and he' refauded light as made up of positive and negative electricity. The first principle received early acceptance; but the development of the second is due to W. B. Bancroft mho, in a eeries of
papers in the Jowrual of Physicel Chomitory for 1908 and 1909, has applied it generally to the reactioms under consideration. Any electrofytic action demands a certain minimum electro motive force; this, however, can be diminatied by suitable depolarizers, which generally act by combining with a product of the decomposition. Similarly, in bome photochemical reactions the low electromotive force of the light is sufficient to iaduce decomposition, but in other cases a depolarizer must be present. For example, ferric chloride in aqueoes colution is unchanged by light, bet in alcoholic solution reduction te ferrous chloride occurs, the liberated chlorine combining witb the alcohol. In the same way Bancroft showed that the solvent modia employed in photofraphic plates act as depolarizers. The same theory explains the action of sensitisers, which may act oplically or chemically. In the first case they are substances having selective absorption, and hence alter the sensitivity of the system to ecrtain rays. In the second case there are no strong aboorption bands, and the sabotances act by combining with the decomposition products. Bancroft applied his theory to the explanation of photochemical oxidation, and also to the chlorination and bromination of hydrocarbons. In the latter case it is supposed that the halogen produces fons; if the positive fons are in excess side chains are substituted, if the negative the nucleus.

Standard trieatises are: J. M. Eder, Fowabsek der Photoyraphia vol. i pt. 2 (rgo6); H. W. Vogel, Phovecientie (1906). An account of the action of light on organic compounds in eives in A. W. Soewart, Pacent Adoances in Orgamic Chemistry (1908).

PHOTCARAPHY (Gr. фÂs, light, and yphem, to write), the science and art of producing pictures by the action of light, on chemically propared (sensicized) plates or filme.

Hishory.

It would be anomewht difficult to fix a date when what we now know as "photographic action" whes first recorded. No doubt the tanning of the skin by the sun's rays was what was first noticed, and this is as truly the effect of solar radiation as is the darkening of the sensitive paper which is now in use in photographic printing operations. We may take It that \mathbf{K}. W. Scheele was the first to investigate the darkening action of sunlight on silver chloride. He found that when silver chloride was exposed to the action of Ught beneath water there was dissolved in the fluid a substance which, on the addition of lunar caustic (silver nitrate), caused the precipitation of new silver chloride, and that on applying a solution of ammonia to the blackened chloride an insoluble residue of metallic silver was left behind. He also noticed that of the rays of the spectrum the violet most readily blackened the silver chloride. In Scheele, then, we have the first who applied combined chemical and spectrum analysis to the science of photography. In 1782 J. Senebier repeated Scheele's experiments, and found that in fifteen seconds the violet rays blackened silver chloride as much as the red rays did in twenty minutes. ${ }^{1}$ In 1798 Count Rumford contributed a paper to the Philosophical Iransactions entitled "An inquiry concerning the chemical properties that have been attributed to light," in which he tried to demonstrate that all effects produced on metallic solution could be brought about by a temperature somewhat less than that of boiling water. Robert Harrup in 1801, however, comclusively showed in Nicholson's Joernal that, at all events, salts of mercury were reduced by visfble radiation and not by change of temperature.

In rion we come to the next decided step in the study of photographic action, when Johann Wilhelm Ritter ($1776-18 \mathrm{rb}$) proved the existence of rays lying beyond the violet, and found that they had the power of blackening silver chloride. Such a discovery naturally gave a direction to the investigations of others, and Thomas Johann Seebeck (1770-1831) (between 1802 and 1808) and, in 1812, Jacques Etienne Berand ($1789-1869$) turned their attention to this particular subject, eliciting valuable mformation. We need only mention two or three other cases
' It may here be remarked that had he noed a pure spectrum he would have ionnd that the red rays did not backen the material lin the efightest degriee.
where the infuence of light was noticed at the beginning of the 1gth century. William Hyde Wollaston observed the conversion of yellow gum guaiacum into a green tint by the violet rays, and the restoration of the colour by the red rays-both of which are the effect of absorption of light, the original yellow colour of the gum absorbing the violet rays, whilst the green colour to whicb it is changed absorbs the red rays. Sir Humpbry Davy found that pace-coloured lead oride, when darap, became red in the red rays, whilst it blackened in the vfolet rays, and that the green mercury oxide became red in the red rays-again an example of the necessity of absorption to effect a molecular or chemical change in a substance. U. R. T. Le Bouvier Desmorties in 18or observed the change effected in Prusalan blue, and Carl Withelm Bbekman noted the action of the two ends of the spectrum on phosphoros, a research which John William Draper extended farther in America at a later date.
To England belongs the hohour of first prodacing a photograph by utilixing Scheele's observations on ailvet chloride. In Jone 1802 Thomas Wedgwood (x771-x805) published in the Journol of the Royal Institution the paper-ma An account of a method of copying painting upon glass and of making profiles hy the agency of IIght upon nitrate of silver, with observations by H. Davy." He remarks that white paper or white lenther moistened with a solution of silver nitrate undergoes no change when kept in a dark place, but on being exposed to the daylight it speedily changes colour, and, after passing through various shades of grey and brown, becomes at length nearly black. The alteration of colour takes place more apeedily in proportion as the light is more intense.
"In the dirtet beam of the san two or three minutes are mafficient to produce the full effect, in the whade weveral hours are required, and litght transmiteed through different-colotred glanes acta upori it with different degrees of intensity. Thus it is found that red raye, or the common sunbeams passed through red glass, have very fittle action upon it ; yellow and green are more efficacious, but blue and violet light produce the moet decided and powerfol effecte."

Wedgwood goes on to describe the method of using this prepared paper by throwing shadows on it, and inferentially by what we now call "contact printing." He states that he his been unable to fix his prints, no washing being sufficient to eliminate the traces of the silver salt which occupied the tanexposed or shaded portions Davy in a note states that he hes found that, though the images formed by an ordinary camena obscure were too faint to print out in the solar microscope, thos fimages of small objects could easily be copied on such paiper.
"In comparing the effects produced by light upon mariate of silver (silver chlarite) with thoec upon the nitrate it seerned evident that tive muriate was the more susceptible, and both were more readily acted upon when moist than when dry-a fact long ago known. Even in the twilight the colour of the molst muriate of siver, spread upon paper, alowly changed from white to laint violet: though under umitar circomstances no intermediate alteration was produced upon the nitrate, . Nothing but a method of proventing the unshaded parts of the delineations from being coloured by exposure to the day is wanting to render this process as uscful as it is elegant."
In this method of preparing the paper lies the germ of the silver-printing processes of modern times, and it was only by the spread of chemical knowledge that the hiatus which was to render the "process as uscful as it is clegant" was filled up-when sodium thiosulphate (hyposulphite of soda), discovered by Francois Chaussier in 1799, or three years before Wedgwood published his paper, was used for making the print permanent. Here we must call attention to an important observation hy Seebeck of Jena in 1810. In the Farbendefire of Goethe he says:-
"When a spectrum produced by a properly constructed prism is thrown upor moist chloride of silver paper, if the printing be continued for from fifteen to twenty minutes, whilat a constant position for the spectrnm is maintained by any preans, I observe the following. In the violet the chloride is a reddish brown (sometimes more violet. sometimes more bluc), and this eoloration extends well beyond the limit of the violet; in the blue the chloride takes a clear blue tint. which fades away, becoming fighter in the green. In the yellow. I unally foumd the chloride unaltered; sometimea, however, it had a light yellow tint; in the red and beyond the red it took a rose or tilac tint. This image of the spectrum shows beyond the red and thi violet a region more or less light and uncoloured. This is how the decompontion of the ailver chloride is semen in this repion. Beypond
the brown band, . . . which wat produced in the vioict, the silver chloride was coloured a grey-violet for a distance of aeveral inches. In proportion as the distance from the violet increased. the tint became lighter. Beyond the red, on the contrary, the chlorile took a feeble red tint for a considerable distance. When moise chloride of silver, having received the action of light for a time, is exposed to the spectrum, the blue and violet behave as above. In the yellow and red regions, on the other hand, it is found that the tiver chloride becomes paler: . . the parts acted upon by the red rays and by those beyond take a light coleration."

This has been brought forward by J. M. Eder as being the first record we have of photographic action lending itself to production of natural colours. This observation of Seebeck was allowed to Hie fallow for many years, until it was agoin taken upand published as a novelty.

The first to found a process of photography which gave pictures that were subsequently nnaffected by light was Nicephore de Niepce. His process, which be called provisionally "heliographic, dessins, et gravurts," consists in coating the purface of a motallic plate with a solution of asphallum in oil of lavender and exposing it to a camera image. He recommends that the asphaitum be powdered and the oil of lavender dropped upon it in a wine-flass, and that it be then gently healed. A polished plate is covered with this varnish, and, when dried, is ready for employment in the camera. After requisite exposure, which is very long indeed, a very faint image, requiring development, is seen. Devalopment is effected by diluting oil of lavender with ten parts by volume of white petroleum. After this mixture has been allowed to stand two or three days it becomes clear and is ready to be used. The plate is placed in a dish and covered with the solvent. By degrees the pants unafiected by light dissolve away, and the picture, formed of modified aspinaltum, is developed. The plate is then lifted from the dish, allowed to drain, and finally freed from the remaining Eolvents by washing in water. Subsequently, instead of using oil of lavender as the asphaltum solvent, Niepce employed an anitnal ofl, which gave a deeper colour and more tenacity to the surface-film.

Later, Louis Jacques Mande Dagterre (1789-1851) and Niepce used as a solvent the brittle residue obtained from evaporaing the oil of lavender dissolved in ether or alcobol-2 2 transparent solution of a lemon-yellow colour being formed. This solution wes used for covering glass or silver plates, which, when dried, could be used in the camera. The time of exposure varied comewhat in length. Daguerre remarked that "the time required to procure a photographic copy of a landscape is from seven to eight hours, but single monuments, when strongly lighted by the sun, or which are themselves very bright, can be taken in about three hours." Perhaps there is no sentence that Illustrates more forcibly the advance made in photography from the days when this process was described. The ratio of three hours to Fitsth of a second is a fair estimate of the progress made since Niepce. The development was conducted by means of petroleum-vipour, which dissolved the parts not acted upon by light. As a aule silver plates seem to have been used, and occasionally glass; but it docs not appear whether the latter material was chosen because an image would be projected through it or whether simply for the sake of effect. Viewed in the light of present knowledge, a more perfectly developable image in half-tone would be oblained by exposing the film through the back of the glass. The action of light on most organic matter is apparently one of oxidation. In the case of asphaltum or bitumen of Judaca the oxidation causes a hardening of the material and an insoluhility in the usual solvents. Hence that surface of the film is generally hardened first which first fecls the infuence of light. Where half-tones exist, as in a landscape picture, the film remote from the surface first tecciving the image is not acted upon at all, and remains soluhle in the solvent. It is this readily seen that, in the case of half-tone pictures, or even in copying engravings, if the action mere not continued sufficiently long when the surface of the film tarthest from the giass was first acted upon, the layer next the glass would in some places remain soluble, and on development would be timelved amay, canyin: the tep layer of hardened recinous
matter with it, and thus give rise to fimperfect pictures. In carbon-printing develmpment from the back of the exposed film is absolutely essential, since it depends on the same principles as does heliography, and in this the same mode of procedure is advisable.

It would appear that Niepee began his recarchet as earty ea 1814, but it was not till 1827 that he had any success worth recounting. At that date he communicated a paper to Dr Bauer of Kew, the vecretary of the Royal Society of London, with' a view to its presentation to that society. Its publication, bowever, wet prevented because the procces, of which examples were showh, was a seeret one. In an authentic MS. copy of Niepce's "Memoire," dated "Kew le 8 Decembre 1827," he gays that "in his framed dravings made on tin the tone is too feeble, but that by the tare of chemical zgents the tonc may be darkencd." This shows thet Niepce was famillar with the idea of using appe darisening mediurn even with his photographs taleen on tin plates.

Dagnerreotype-We have noticed in the joint process of Daguerge and Niepce that polished silver plates were ansed, and We know from the latter that amongst the chemical agents tried jodine suggested itself. Iodine vapour ar solution applied to a silvered plate would cause the formalion of silver iodide on those parts not acted upon by light. The romoval of the resinous picture would leave an image formed of metallic silyer, whilst the black parts of tbe original would be represented by the darker silver iodide. This was probably the origin of the daguerreotype process. Such observers as Nicpee and Daguerre, who had formed a partnership for prosecuting their researches, would not lave thas formod siver iodide without noticing that it changed in colour when exposed to the light. What parts respectively Daguerre and Niepce played in the dovelopment of the daguerreotype will probably never be known with absolute accuracy, but in thetter from Dr Diner to Dr J. I. Bennett, F.R.S., dated the 7th of May 2839, the former says:-
"I received a very interesting letter from Mons. Isidore Niepce, dated 12th March fabout a month after the publication of the dagucrreotype procemb, and that lettor fulfy conerise what I masi pected of Dagucrre's mancuvrea with poor Nicephore, but Mr Isidore ohserves that for the present that fetter might be considered confidential."

Dr Bawer evidently knew more of "poor Nicéphore's" work than most people, and at that carly period he clearly thought that an injustice had been done to Niepce at the hands of Daguerre. It should be remarked that Nicephore de Niepce died in 1833, and a new agreement was entered into between his son Isidore de Niepee and Daguerre to continue the prosecution of their researches. It appears further that Niepce conmunicated his process to Daguerte on the 5th of December 1829. At his death some letters from Daguerre and others were left by him in which iodine, sulphur, pbosphorus, \&c., are mentioned as having been used on the metal plates, and their sensitivencss to light, when thus treated, commented upon. We are thus led to believe that a great part of the success in producing the daguerreotype is due to the elder Niepce; and indeed if must have been thought so at the time, since, on the publication of the process, life-pensions of 6000 francs and 4000 francs were given to Daguerre and to Isidore Nlepce respectively. In point of chronoloty the publication of the discovery of the daguerreotype process was made subsequently to the Talbottype process. It will, however, be convenient to continue the history of the daguerreotype, premising that it was published on the 6th of February 1839, whilst Talbot's process was given to the world on the 25 th of January of the same year.

Dagoserreotype pictuses mere originally talken on silver-piaced copper, and even now the silvered surface thus prepared serves better than electro-deposited silver of any thicknesa. An outline of the operations is an follows. A hrightly-polished ither piate id cleaned by fincly-powdered pumice and ofve oll, and then by dilute nitric acid, ind a moft baff is employed to give it a brilliant polish, the elightent trace of forcign matter or stain being fatal to the production of a perfect picture. The plate, thus prepared, is ready for the lodizing operation. Smanl fragments of iodine are scattered over a macer, tovered with gavao. Over this the phate is placed, face downwards, reatiog on supports, and the vapour from the iodine is allowed to form upon it a surface of silver iodidie. It is esmential to note the colour of the surface-formed iodide at its several magen, the varying colours being due to interferenon colowr
chased by the difereint thickomene of the mimutely this firwa of iodide. The stage of maximum sencitiveness is obtmited when it is of a golden orange coloutr. In this atate the plate is withdrawn and removed to the dark slide of the camera, reidy for expostaro. A plan frequently adopted to give an even film of iodide was to aturate a cald with iodine and hold the plate a short distance above the card. Loog expoenres were required, vacyins in Patia frome thive to thirty minutes. The length of the exposire was evidently a matter of judguent. more particularly as over-cxpoen re introduced en evil which was called "golorization," but which was in reality due to the midation of the iodide by petolonged enpueure to light.
As a matter of history it may be remartied thas the developmient of the indape by mercury vapour is enid to be due to a chance div covery of Daguerre. It appears that for some time previous to the publication of the daquerreotype method be had been experimenting with iodied siliver plates, producing imater by what woold now be called the "printing out promese. Tlis operatipa ithvolved mo long an exposure that he sought some means of roducing it by the application of diferent reagents. Having on one occasion exposed ouch a plate to a camera-Image, be accidentally placed it in the dart in a cupboner coataining various chemicaks, and found after the bpoe of a night that he had a porfect imape devoloped. By the procest of exhaustion he arrived at the fact that it was the morcury vapour, which even at ordinary temperatures volatilizes, that had caused this intensificition of the almost Invisible camera-image. It wras this discovery that emabled the expoturtes to be very considerbly shortened from those which it was foundnocemary to give in mere camera-prinling.

The development of the imafe was effected by placing the.exposed plate over a slightly heated about $75^{\circ} \mathrm{C}$.) cup of mercury. The *epaur of mercury condensed on those places where the light had acted in an almost exact ratio to the intensity of its action. This produced a picture in an amalgam, the vapour of which attached Piself to the altered silver iodide. Proof that such was the case was subsoquently afforifed by the fact that the mercurial image could be removed by heat. The developing box was so constructed that it was possible to examine the picture through a yellow glass window whilst the image was being brought out. The next operation was to fix the picture by dipping it in a solution of hyposulphite of sodn. The image produced by this method is $\infty 0$ deficate that it will not bear the elightest handing, and has to be protected from socidental touching-

The first great improvement in the daguerreotype process was the resensitiaing of the iodized film by hromine vapout. Jolm Frederick Coddand published his account of the use of bromine in conjumetion with iodine in I890, and A. F. J, Claudet (1797-1867) employed a combination of iodine and chforine vapour in 1841 . In 1844 Dageerte published his impreved method of preparing the plates, which is in reolity based on the use of bromine with lodine. That this addition points to additional sensitivencss will be retedily understood when we remark that so-called instantanoous pictures of yachts in full anil, and of hage siza, have been tater on plates so prepared-a feat which is utterly imposslble with the original process as described by Dagucrre. The next improvement in the process was toning or giding the image by a solation of gold, a practice introduced by H. L. Fiweau. Gold chloride is mizod with hyposulphite of soda, and the levelifed plate, bearing a mafficiont quantity of the fluid, is warmed by a spfitit-lainp until the roquired vigour is given to the image, as a consequence of which it is better seen in most lights. Noarly all the daiguerieotypes extant have been treated in this magner, and mo doubt their permanence is in a great measure due to this operation: Images of this class can be copied by taking clectrotypes from them, as shown by Sir W. R. Grove and others. These reproductions are admirable in every way, and farnish a proof that the angerrean imaze is a relief.
Fox-Tathot Process.-In January 1839 Fox Talbot described the first of his processes, photogenic drawing, in a paper to the Royal Society. He states that he began exporimenting in i834, and that in the solar mfloroecopt he obtaitied an outline of the object to be depicted in full bunshine in half a seceind. He published in the Philasaphical Magmaioe full details of his method, which consisted espentially in sonking paper in common salt; bruaking one side only of it vith aboirt a 12% solution of siver rittrete in water, and drying at the fire. Fox Talbot stated that by repeatints the alternate washes of. the silver and alb-always ending, however, with the former-greater semitiveness was attained. This is the same in every respect tas the melhod practimed by Wedgwood in vioa; but, when we come
to the next procest, which he called "calotype" or "beautiful picture," wh have a distinct advance. This process Talbot protected by a patent in 884 x .

It may be briefly described bs the application of silver iodide to a paper support. Carefully welected paper was brushed over with a colution of rilver nitrate (coo grains to the gunce of distislod water). and dried by the fire It was then dipped into a solution of potatsium iodide (500 grains belng dissolved in a pint of water), where it was allowed to tetay two or three minutes until silver tedide was formed. In this state the iodide is scarcoly sensitive to light, but is sengitizod by brushing "gallo-nitrate of ailver" over the gurface to which the eilver nitrate had been first applied. This "gallonitrate "is merely a misture, consisting of 100 grains of silver nitrate diasolved in $\mathbf{2 0 z}$. of water, to which is added oncsixixth of its volume of acetic acid, and immedinedy before applying to the paper an equal bulk of a saturated eolution of gallic acid in water. The preparod surface is then ready for exposture in the camera, and; after a short insolation, develops itself in the dark, or the development may be hastened by a fresh application of the "; gallo-nitrate of silver." The picture is then fixed bs warhing it in clean water and drying jlighthe in bloting paper, after whicb it is treated with a solution of potas sium bromide, and again washed and dried. Here there is no mention made of hyposulphite of soda as a fixing agent, that having been firsterscd hy Sir J. Hersehed in February 1840 .

In a strictly historical socice it ought to be mentionod that development by means of gallic acid and silver nitrate was frast known to Rev. I. B. Reade. When impressing images in the solar microscope hie employed gallic acid and silver in order to render more sensitive the silver chloride paper that he was using, and he accidentally fornd that the image conld be developed withoat the aid of light. The priority of the diecovery was claimod by Foz Talbot; and his claim wan sustained after a lawsuit, apparently on the ground that Reade's method had never been legally pubtished. Talbot afterwards made many slight improveinents in the process In one of his patents he recognizes the value of the proper tixing of his photogenic drawing by hyposulphite of soda, and almo the production of positive prints from the calotype negatives. We pass over his application of albumen to porcelain and its subsequent treatment with iodine vapour, as also his application of albumen in which silver jedide was held in auspension to a glase plate, since in this he was precoded by Niepce de St Vietor in 1848.

Alousen Process on Class.-It whes a decidod advance when Niepee do St Victor, a nephew of Nlofphore de Niepoe, employed a glase plate and coeted it with iodised albumen. The originator of this method did not meet with much success. In the hands of Blanquart Everard it bectame more practicable; but it was carried cut in Its graateat perfoction by G. Lo Gray.
The outline of the operations is as follows: The whiten of Ive fresh egge are mixed with about one hundrod grains of potassium iodide, about twenty graing of potamium bromide and ten graina of commonsalt. The mixture is beaten up into a froch and alowed to settie for twenty-fout hours, when the clear liquid is decantod of. A circular pool of albument in poured on a glass plase, and a straight ruker (iter chds being wrapped with waxed paper to prevent its edge from touching the phate anywhenc except at the margins) in drawa over the.plate, sweeping off the excess of albumen, and no leavine an even 6 km . The plate is firat allowed to dry spontaneously, a final heating being given to it in an oven or before the fire. The heat hardens the albumm, and it becomes insoluble and ready for the gilver nitrate bath. One of the difficuities is to prevent cryatalization of the saltt beld in solution, and thin can only be cffected by keeping them is defect rather than in excess. The piate is semsitized for five minutes in a bath of ailver nitrate, acidified with acetic acid, and exposed whilst still wet, or it may be alightly wached and again dried and exposed whilst in its desiccated state. The innage is developed by gallic acid in the umal way.

After the application of albumen many modifications wero introduced in the shape of starch, serum of milk, gelatin, all of which were intended to hold iodide ive situ on the plate; and the development in every case soems to have been by gallic acid. At one time the waxed-paper process subsequently introduced hy Le Gray was a great favourite. Paper that had been made translucent by white wax was immersed in a solution of potassium iodide until impregnated with it, after which it was sensitized in the usual way, development being by gallic acid. In images obtained by this process the high lights are represented hy metallic silver, whilst the shadowe are translucent. Such a print is called a "negative." When silver chloride paper is darkened by the passage of light through a negative, we get the highest lights represented by white paper and the shadows hy darkened chloride. A print of this kind is called a "positive." Collodion Procest.-A great inepet res was given lo photography
in 1850, on the introduction of collodion (q.v.), a very convenient vehicte on account of the facility with which the plates are prepared, and also because it is a substance as a rule totally unaffected by tilver nitrate, which is not the case with other organic substances. Thus albumen forms a definite silver compound, as do gelatin, starch and gum. The employment of collodion was first suggested by Le Gray, but it remained for Frederick Scott Archer of Landon, closely followed by P. W. Fry, to make a really practical use of the discovery. When collodion it poured on a glass plate it leaves on drying a hard tranisparent film which under the microscope is slightly reticulated. Before drying, the film is gelatinous and perfectly adapted for boldiag in silm salts saluble in ether and alcohol. Where such salts are present they erystallize out when the film is dried, hence such a film is only suitable where the plates are ready to be immersed in the silver bath. As a rule, about five grains of the coluble gun-cotton are dissolved in an ounce of a mirture of equal parts of ether and alcohol, both of which must be of low specific gravity, -725 and 805 respectively. If the alcohol or ether be much diluted with water the gun-cotton (pyroxylin) precipitates, but, even if less diluted, it lorms a film which is "crapey" and uneven. Such was the meterinl which Le Gray proposed and which Archer brought into practical use. The opaque silver plate with its one impression was abendoned; and the paper support of Talbot, with its inequalities of grain and thickness, followed suit, though not immediately. When once a negative had been obtained with collodion on a glase platethe image showing high lights by almost complete opacity and the shadows by transparency (as was the case, too, in the calotype proceas)-any number of impressions could be obtained by means of the silver-printing process introduced by For Talbot, and they were found to possess a delicacy and refinement of detail that certainly eclipsed the finest print obtained from a calotype negative. To any one who had practised the somewhat tedious calotype process, or the wazed-paper process of Ie Gray with its still longer preparation and development, the advent of the collodion method must have been extremely weloome, since it effected a saving in time, money and uncertainty. The rapidity of photographic action was much increased, and the production of a different character of pictures thus became poseiblo.

We give an outline of the procedure A glass plate it carefully cleaned by a detergent wuch as a cream of tripoli powder and spirits of wine (to which a little ammonia in often added), then wiped with a soft rag, and finally polishod with a selle handserchief or chamois lether. Acollodion containing solubbe iodides and bromides is made to fiow over the plate, all exces being drained of when it is covered A good ytandard formula for the collodion io- 55 grains of pyroxylin, 5 oe. of alcohol, 5 oe. of echer; and in this liquid are dissolved 21 grains of arsmonium iodide, 3 grains of cadmium iodide and 2 grains of cadmium bromide. When the collodion is set the plate is immerved in a bath of eilver sitract-a vertical form being that montly used in England, whilst a horizontal dish is used on the continent of Europe-a good formula for which is 350 grains of silver nitrate with 10 or. of whter. The plate is steadily howered into this solution, and moved in it ynatil all the repellent action bet ween the aqueous solution of the silver and the solvents of the collodion is removed, when it is allowed to reat for a conple of minutes, aiter which period it is taken out and placed in the dart sidide ready for exposure in the camera. After undergoing proper exposure the plate is withdrawn, and in a room lighted with yellow light the developing solution is applied, which ortigally was a colution of pyrogalic acid in water restrained in itse action by the addition of acetic aciod. One of the old formulae employed by P. H. Delamonte wat 9 grains of pyromillic acid, 2 drachme of elacial scetic acid and 3 or. of water. The mage gradually appears after the application of this solution, building itself up from the silver nitrate clinging to the film, which to reduced to the metallic state by degrees. Should the demity be inoufficient a few drope of cilver nitrate are added to the pryogallic acid solution and the developing action continued.
In 1844 Robert Hunt introduced another seducing agent, which Is etill the favourite, viz. ferrous sulphate. By its use the time of necessary exposure of the plate is reduced and the image develops with great rapidity. A tample of this developing molution is 20 graine of ferroun sulphate, 20 minithe of acetic acid, with 1.02 of Frater. This often leaves the image thinner than is requinite for the formation of a good print, and it is intensified with pyrogallic acid and silver. Other intensifiers are used to increase the deposit on a plate by means of mercury or uranium, followed by other solutione to ctill further darken the docble calts formed on the film.

Such intenaifying aluents have to bo applied to the hmaze after the plitte th fixed, Which is done by a copocontreted solution of hypogulphite of sodn or by potasium cyanide, the latter sule having been first introduced by Mrartin and Mare Antoine Augustin Gaudin in 8853. (La Lawnire, April 23, 1853). Twenty-five grains of poterecium cyanide to one onnce of water is the strongth of the soletion manaly
 the mentitive ealts of cilver double hypoenlphites or cyaniden, which are coluble in water and salt. The utility of bromides in the eoliodiom process meems to bave been reoognised in its carticat daye, Scott Archer (1859) and R. J. Bingham (z850) both mentioning it. We potice this, since as hate as 1866 a pateot-right in ite une wane cought to be enforced in Ammerica; the patent boing takea out by Jame Cuttiong in July 1854
Pasitine Pictures by the Collodion Procass.-In the infancy of the collodion process it was shown by Horne that a negative image coinld be made to assume the appearance of a positive by whitening the metallic silver deposit. This he effected by using with the pyrogallic acid developer a amall quantity of nitric acid. A better result wis obtained by P. W. Fry with ferrous sulphate and ferrous nitrate, whilst Fugh Diamond geve effect to the matter in a practical way. F. Soout Archer used mercuric chloride to whiten tho image, To Robert Hunt, however, most be rewarded the credit of noticing the action of this salt on the image (Phil. Trans., 1843). The whitened picture may be made to stand out against black velvet, or black varnich may be poured over the film to give the necessary black beckground, or, more recently, the positive pictures may be produced on japanned iron plates (frrotype plates) or on japanned leather. This process is still occasionally practised by itinerant photographers.
Moist Collolion Procass.-It is seen that for the successfuil working of the collodion process it was necessary that the plate should be exposed very shortly after its preparation; this was a drawback, inssmach as it necessitated taking a heavy equipment into the field. In 1856, Sir William Crookes and J. Spiller published in the Philosophical Magesine a process whereby they were enabled to keep a firm moist (so as to prevent crymatlization of the silver nitrate) several days, enabling plates to be prepared at home, exposed in the field, sund then developed in the dark soom. The plate was preptared in the usual may and a solution of rinc nitrate and silver nitrato in weter wes made to flom over it. The hygroscopic nature of the zinc salt kept sufficient moisture on the plate to attain the detired end. Various modifications in procedure have been made.

Dry Plotes.-It woold appear that the firit experiments with collodion dry plates were due to Matc Antoine Augrostin Gaucio. In La Lumizre of the and of April and the 27th of May z s4 he describes his researchea on the question; whilst in Enqjand G. R. Muirhead, on tha 4 th of August 2854, stated that light acts almost as energetically on a dry suriact as on a wet atter all the itiver has been washed away from the former previous to desiccation. J. M. Taupenot, however, seems to have been the first to use a dry-plate process that was really worksble. His original plan was to coal a plate with collodion, sensitiso it in the ordinary manser, wash it, causo a solution of albumen to flow over the surface, dry it, dip it in a bath of silver nitrate acidified with acetic acid, and mash and dry it agrin. The plate was then in a condition to be exposed, and wasto be developed with pyrogallic acid and silver. In this method we have a double manipulation, which is loag in erecution, thorgh perfectis effective.
A great edvance wes made in all dry-plate procemes by the introduction of that is known as the "altaline developer," which is, however, inapplicable to all plates on which silver mitrate is present in the free state. The developers previously described, either for collodion or paper processes, were dependent on the reduction of metallic silver by some such agent es fersoss sulphate, the reduction taking place gradaally and the reducod particles aggregating on thome portions of the film which had beem acted upon by light. The action of lisht being to reduce the silver iodide, bromide or chloride, these seduced particles raally acted as nuciei for the crystallized metal. It will be evideort that in such I method of devilopnant the moleculbre altopetion
acts at distances relatively great compared with the diameters of the molecules themselves. If it were possible to reduce the altered particles of silver salt it was plain that development would be more rapid, and also that the number of molecules reduced hy light would be smaller if the metallic silver coold be derived from silver compounds within shorter distances of the centres of molecuiar attraction. Alkaline development accomplished this to a very remarkable extent; but the method it only really practicable when applied to films containing silver bromide and chloride, as silver iodide in onky slightly amenable to the alkaline development. The introduction of this developer is believed to be of American origin; and it is known that in the year 1862 Major C. Russell used it with the dry phates he introduced.
An alkaline developer consists of an alkall, a reducing agent and a restraining agent. These bodies, when combined and applied to the solid wilver bromide or chloride, after being acted upon by light, were able to reduce the sub-bromide or sub-chloride, and to build up an image upon it, leaving the unaltered bromide intact. except so far as it was used in the building up. In 1817 Sir W. Abney investigated this action. A dry plate was prepared by the bath process in the usual manner (to be described below), and exposed in the camera. The exposed film was covered with another Gilm of collodiobromide emulsion, which of course had not seen the light. An image was obtained from the double film by means of the alkaline developer, which penetrated through the upper unexposed film. The development was prolonged until an image appeared through the unexposed film, when the plate was fixed, washed and dried. A piece of gelatinous paper was cemented on the upper film, and a similar piece on the lower after both had been stripped of the glass. When quite dry the two papers were forcibly separated, a film adhering to each. The upper film, cllhowgh mever exposed to light, showed an image in some cases more intense than the under film. The action of the alkcatine developer was here manifest: the silver bromide in close contiguity to the exposed particles was reduced to the metallic state. Hence, from this and similor experimenta, Abney concluded that silver bromide could not exist in the presence of a freshly precipitated or reduced metallic silver, and that a sub-bromide was immediately formed. From this it will be seen that the deposited silver is well within the sphere of molecufar attraction; and that consequently a less expoeure (i.e. the reduction of lewer molecules of the sensitive salt) would give a developable image
The alkalis used embraced the alkalis themselves and the mono-carbonates. The sole reducing agent up till recent times was pyrogallic acid. In the year 1880 Abney found that hydroquinone was even more effective than pyrogallic acid, its reducing power being stronger. Various other experimentalists tried other kindred substances, but without adding to the list of really useful agents until recently.
The following are some of the most effective:-

Eikomoren Depeloper.

This is a onesolution developer, and acts energetically.
Metal Demeloper.

Solution \mathbf{B}.

For use, take one part of A to from 1 to 3 parts of B.
A middol Developer.

Ored Dealoper.
Solution 1.

Sodium metabialphite : : 1000 \#

Solution B.

A and B solutions are mixed together in equal proportions.
Beaides thesa, there are several more, such as adurol, glycin, pyrocatechin, which have been used with more or less success, They all give a black in lieu of that dark olive-green deposit of silver which is so often found with pyrogallol developers. All are alkaline developers, and' the image is buit up from the sensitive salt within the film. They are applicable to gelatin or collodion plates, but for the latter rather more bromide of an alloli is added. to retard fogging.
Another set of developens for dry piates depondent on the reduction of the silver bromide and the metallic state is founded on the fact that certain organic salts of iron can he utilized. In 1877 M. Carey Lee of Philadelphia and William Willis announced almost imultaneorsly that a solution of ferrous oxalate in neutral potassium oxalate was effective as a devcloper, and from that time its use has been acknowledged. In 1882 J . M. Bder demonstrated that gelatino-silver chloride plates could be developed with ferrous citrate, which could not be so readily accomplished with iernous orelate. The exposure for chloride plates when developed by the latter was extremely prolonged. In the same year Abney showed that if ferrous oxalate were dissolved in potassium citrate a much more powerful agent was formed, which allowed not only gelatino-chloride plates to be readily developed but sho collodio-chloride plates. These plates were undevelopable except hy the precipitation method until the advent of the agents last-mentioned owing to the fact that the chloride was as reedily reduced as the sub-chloride.
Amongst the components of an alkaline developer we menLioned a restrainer. This factor, generally a bromide or chloride of an alkali, serves probably to form a compound with the silver salt which has not been acted upon by light, and which is less easily reduced than is the silver salt alone-the altered particles being left intact. The action of the restrainer is reganded hy some as due to its combination with the alkali. But whichever theory is correct the fact remains that the restrainer does make the primitive salt less amenable to reduction. Such restrainers as the bromides of the alkalis act through chemical meins; but there are others which act through physical means, an example of which we have in the preparation of a gelatin plate. In this case the gelatin wraps up the particles of the silver compound in a colloidal sheath, as ft were, and the developing solution only gets at them in a very gradual manner, for the natural tendency of all such reducing agents is to attack the particles on which least work has to be expended. In the case of silver sub-bromide the developer has only to remove one atom of bromine, whereas it has to remove two in the case of silver bromide. The sub-bromide formed by light and that subsequently produced in the act of deveiopment are therefore reduced. A large proportion of gelatin compared with the silver salt in a film enables an alkaline developer to be used without any chemical restrainer; but when the gelatin bears a small proportion to the silver such a restrainer has to be used. With collodion films the particles of bromide are more or less unenveloped, and hence in this case some lind of chemical restrainer is absolutely necessary. We may say that the organic iron developers require less restraining in their action than do the alkaline developers.

In Major Russell's process the plate was prepared by immersion in a strong solution of silver nitrate and then washed and a preservative applied. The last-mamed agent executes two functions, one being to absorb the halogen liberated by the action of light and the other to preserve the film from atmospheric action. Tannin, which Major Russell employed, if we mistake not, is a good absorbent of the balogens, and acts as a varnish to the film. Other collodion dry-plate processes carried out by means of the silver-nitrate bath were very mumerous at one time, many different ortanic bodies being also employed. In most cases ordinary iodized collodion was made use of a small percentage of soluble bromide being as a rule added to it. When plates were developed by the alkaline method this extra bromide induced density, since it was the silver beomide alome which was amenable to it, the iedide being almost entirely unaflectod by the weak developer which was at that time in general use.

Dry-Plate Bath Process.-One of the most successful bath dry-plate processes was introduced by R. Manners Gordon. The plate was given an edging of albumen and then coated with ordinary iodized collodion to which one grain per ounce of cadmium hromide had been added. It was kept in the silvernitrate bath for ten minutes, after whlch it was washed thoroughly. The following preservative was then applied:-

Gum arabic							20 grs.
1. Sugar candy	-	,	-	-	-		
(Water	.	,					6 dr.
2. Gallic acid		,	,		-	*	grs.
Water							

These ingredients were mixed just before use and, fter filtering, applled for one minute to the plate, which was allowed to drain and set up to dry naturally. Great latitude is admixsible in the exposure; it should rarely be less than four times or more than twenty times that which would be required for a wet plate under ordinary circumstances. The image may be developed with ferrous sulphate restrained hy solution of gelatin and glacial acetic acid, to which a solution of silver nitrate is added just before application, or hy an alizaline developer.

In photographic processes not only has the chernical condition of the film to be taken into account but also the optical. When Light falls on a bemi-opaque or translucent film it is scattered by the particles in it and passes through the glass plate to the back. Here the rays are partly transmitted and partly reflected, a very small quantity of them being absorbed by the material of the glase. Theory points out that the strongest reflection from the back of the glass thould take place at the "critical" angle. In 1875 Abney investigated the subject and proved that practice agreed with theory in every respect, and that the image of a point or light in development on a plate was surrounded by a ring of reduced silver caused by the reflection of the ecattered light from the bacip surface of the glass, and that this ring was shaded in wards and outwards in such a manner that the shading varied with the intensity of the light reflected at different angles. To avoid "halation," as this phenomenon is called, it was usual to cover the back of dry plates with some material which should be in optical contact with it, mad as nearly as possible of the same density as glass, and which at the same time should absort all the photographically active rays. This was called "backing a plate."

Collodion Ennulsion Processes.-In 1864 W. B. Balton and B. J. Sayce published the germ of a process which revolutionized photographic manipulations. In the ordinary collodion process a sensitive film is procured by coating a glass plate with collodion containing the iodide and bromide of some soluble salt, and then, when set, immersing it in solution of silver nitrate in order to form silver iodide and hromide in the film. The question that presented itself to Bolton and Sayce was whether it might not be possible to get the sensitive salts of silver formed in the collodion whilst liquid, and a sensitive film given to a plate by merely letting this collodion, containing the salts in suspension, fiow over the glass plate. Gaudin had attempted to do this with silver chloride, and later G. W. Simpson had succeeded in perfecting a printing process with collodion containing silver chloride, citric acid and silver nitrate; but the chloride until recently has been considered a slow working salt, and nearly incapable of development. Up to the time of W. B. Bolton and B. J. Sayce's experiments silver iodide had been considered the staple of a enasitive film on which to take negatives; and though bromide had been used by Major Russell and others, it had not met with 50 much favour as to lead to the omission of the lodide. At the date mentioned the suspension of silver iodide in collodion was not thought practicable, and the inventors of the process turned their attention to silver bromide, which they found could be secured in such a fine state of division that it remained suspended for a considerable time in collodion, and even wben precipitated could be resuspended by simple agitation. The outline of the method was to dissolve a soluble hromide in plain collodion, and edd to it drop by drop an alcohodic solution of silver nitrate, the latter being in excess or defect according to the will of the operator. To prepare a sensitive surface the collodion containing the emulsifed sensitive salt was poured over a glass plate, allowed to set, and washed till all the soluble salts resulting from the double decomposition of the soluble bromide and the silver nitrate, together with the unaltered solnble hromide or silver
nitrate, wert remoyed, when, the film was exposed wet, or adlowed to dry and then exposed. The rapidity of these plates was not in any way remarkable, but the process had the great edvantage of doing away with the sensitizing nitrate of silver hath, and thus avoiding a tiresome operation. The platps were developed by the alkaline method, and gave images which, if not primarily dense enough, could be intensified by the application of pyrogallic acid and silver nitrate as in the wet collodion process. Such was the crude germ of a method which was destined to effect complete change in the aspect of photographic negative taking ${ }^{1}$; but for some time it lay dormant. In fact there was at first much to discourage trial of it, since the plates often became veiled on devclopmeat.
M. Carey Lea of Philadelphia, and W. Cooper, jun., of Reading, may be said to have given the real impetus to the method. Carcy Lea, by introducing an acid into the emulsion, established a practicable collodion emulsion process, which was rapid and at the same time gave negative pictures free from veil. To secure the rapidity Carcy Lea employed a tair excess of silver nitrate, and Colonel H. Seurart Wortley gained further rapidity by a still greater increase of it; the free use of acid was the only means by which this could be effected without hopelessly spoiling the emulsion. The addition of the mineral acids such as Carey Lea employed is to prevent the formation of (or to destroy when formed) any silver sub-hromide or oxide, cither of which acts as a nucleus on which development can take place. Abney first showed the theoretical effect of acids on the sub-bromide, as also the effect of oxidizing agents on borh the above compounds (see below). A more valuable modification was introduced in 1874 by W. B. Bolton, one of the originators of the process, who allowed the ether and the aloohol of the collodion to evaporate, and then washed away all the soluble salts from the gelatinous mass formed of pyroxylin and eensitlve malt. Arter washing for a considerable time, the pellicle was dried naturally or washed with alcohol, and thea the pyroxylin rediswolved in ether and alcohol, leaving an emulsion of silver bromide, ailver chloride or silver iodide, or mixtures of all suspended in collodion. In this state the plate could be coated and dried at once for exporare Sometimes, in fact generally, preservatives were used as in the case of dry plates with the bath, in order to prevent the zemosphere from rendering the surface of the film spotty or insensitive on development. This modification had the grest advantage of allowing a large quantity of sensitive salt to be prepared of precisely the ame value as to rapidity of action and quallty of film.
A great advance in the use of the collodion bromide procent was made by Colonel Stuart Worley, who in June 1873 made known the powerful nature of a strongly allaline developer as opposed to the weak one which up to that time had usually been employed for a collodion emulsion plate, or indeed for any dry plate.
An example of the preparation of a collodion emulsion ind the de:clone is the following: as oz. of alcohol, 5 oz . of ether, 75 prains of pyruyslin. In 1 oz, of alcohol are dissolved 200 graine of ainc bromide : it is then acidulated with 4 or 5 drope of nitric scid, and added to half the above collodion. In a drachum of water are difsolved 330 grains of silver nitrate, 1 oz of alcohol being added. Tlie silversd alcohol is next poured into the other half of the collodion and the brominized collodion dropped in, care being talken to shake between the operations. An emulsion of silver bromide is formed in suspencion; and it is in every case left for 10 to 20 hours to what is technically called "ripen." or in other words, to become creamy when poured out upon a glass plate. When the emulsion has ripened it may be uned at once or be poured out into a flat dish and the solvents allowed to evaporate till tbe proxylin becomes gelatioous. In this state it is washed in water tifl all the soluble salts are carried away. After this it may be either spread out on a cloth, and dried or treated with two or threa doves of alcohol. and then tedissolved in equal parts of alcobol (specific gravity, -805) and ether (specific gravity, $\mathbf{7 2 0}$). Ia this condition it is a washed emulsion, and a glass plate cen be ooated with it and the film dried, or it may be washed and some of the gany prevervatives, such as albumen. beer, coffee, zum, \&cc., applicd.

The type of a useful allaline developer for collodion plates in as follows:-

1. $\left\{\begin{array}{l}\text { Pyrogallic acid . : . . . } 96 \text { gre }\end{array}\right.$

Alcohol
2. $\begin{aligned} & \text { Potasium bromide I gre } \\ & \text { Water distilled }\end{aligned}$
3. $\left\{\begin{array}{l}\text { Ammonium carbonate } \\ \text { Water. }\end{array}\right.$ 80 grs

To develop the plate 6 minims of No. 1, 1 drachm of No. 2, and 3 drachms of No. 3 are mised together and made to flow over the plate after washing the preservative ofi under the tap. Sometimes the

[^40]development is conducted in a fat dibl, mometimes the molution is poured on the plate. ${ }^{\text {a }}$ The unreduced ealts are eliminated by either cyanide of potassium or sodium hypooulphite. Intensity may be grven to the image, if requisite, either before or after the "fixing" operation. Where resort is had to ferrous oxalate development. the developer is made in one of two ways-(1) by saturating a eaturated solution of neutral potassium oxalate with ferrous oxalate, and adding an equal volume of a solution (10 grains to ioc. of water) of potassium bromide to restrain the action, or (2) by mixdng, according to Eder's plan, 3 volumes by measure of a saturated solution of the potassium oxalate with I volurne by measure of a saturated solution of fertous sulphate, and adding to the ferrous coxalate colution thus obtained an equal bulk of the abowe solution of potasdium bromide. The development in conducted in precisely the mame manner as indicated above, and the image in fixed by one of the anme agenta.

Gelatin Emulsion Process.-The facility with which silver bromide emulsion could be prepared in collodion had turned investigation into substitutes for it. As early as September 187I Dr R. L. Maddox had tried emulsifying the silver salt in gelatin, and had produced negatives of rare excellence. In November 1873 J. King described a similar process, getting rid of the soluble salts by washing. Elforts had also been made in this direction by J. Burgess in July 1873 . R. Kennett in 1874 may be said to have been the first to put forward the gelatin emulsion process in a practical and workable form, as the then published a formula which gave good and quick results. It was not till 1878 , however, that the great capabilitics of silver bromide when held in suspension by gelatin were fairly known; in March of that year C. Bennett showed that by keeping the gelatin solution liquid at a low temperature for as long as seven days extraordinary rapidity was conferred on the sensitive salt. The molecular condition of the siliver bromide seemed to be altered, and to be amenable to a far more powerful developer than had hitherto been dreamt of. In 1874 J. S. Stas had shown that various modifications of silver bromide and chloride were possible, and it seemed that the green molecular condition (one of those noted by Stas) of the bromide was attained by prolonged warming. It may be said that the advent of rapid plates was 1878 , and that the full credit of this discovery should he allotted to C. Bennett. Both Kennett and Benvett gor rid of the soluble salts from the emulsion by washing; and in order to attain soccess it was requisite that the bromide should be in excess of that necessary to combine with the silver nitrate used to form the cmulsion. In June 1879 Abney showed that a good emulsion might be formed by precipitating a silver bromide by dropping a solution of a soluble bromide into a dilute solution of silver nitrate. The supernatant liquid was decanted, and after two or three washings with water the precipitate was mixed with the proper amount of gelatin. D. B. van Monckhoven of Cbent, in experimenting with this process, hit upon the plan of ohtaining the emulsion by acting on silver carbonate with hydrobromic acid, which left no soluble salts to be extracted. He further, in August 188_{79} announced that he had obtained great rapidity by adding to the bromide emulsion a certain quantity of ammonla. This addition rapidly altered the silver bromide from its ordinary state to the green molecular condition referred to above. At this point we have the branching off of the gelatin emulsion process into two great divisions, viz. that in which rapidity was gained by long-continued heating, and the other in which it was gained by the use of ammonia-a subdivision which is maintained to the present day. Opinions as to the merits of the two methods are much divided, some maintaining that the quabity of the heated emulsion is better than that produced by alkalinity, and vice versa. We may mention that in 1881 Dr A. Herschel introduced a plan for making an alcoholic gelatin emulsion with the idea of inducing rapid drying of the plates, and in the same year H. W. Vogei of Berlin introduced a method of combining gelatin and pyrorylin together by means of a solvent which acted on the gelatin and allowed the addition of alcohol in order to dissolve the pyroxylin. This "collodio-gelatim emulsion "was only a shortlived process, which is not surprising, sipce its preparation involved the inhalation of the fumes of acetic acid.
${ }^{2}$ For further details the reader is referred to Instruction in Photoeradidy, 1Ith ed, p. 363:

The warming process introduced by Bennett wes soon superseded. Colonel Stuart Worley in 1879 announced that, by raising the temperature of the vessel in which the emulsion was stewed to 150° F., instead of days being required to give the desired sensibility only a few hours were necessary. A further advance was made by boiling the emulsion, first practised, we believe, by G. Mansfield in 1879. Another improvement was effected by W. B. Bolton by emulsilying the silver salt in a small quantity of gelatin and then raising the emulsion to boiling point, boiling it for from half an hour to an hour, when extreme rapidity was attained. Many minor improvements in this process have been made from time to time. It may be useful to give an idea of the relative rapidities of the various processes we have described.

Technique of Photography Celatin Emulsions.

The following is an outline of two representative processes. All operations should be conducted in light which can act but very slightly on the sensitive salts employed, and this is more necessary with this process than with others on account of the extreme ease with which the equilibrium of the molecules is upset in giving rise to the molecule which is developable. The light to work with is geslight or candielight passing through a sheet of Chance's stained red glass backed by orange paper. Stained red glass allows but few chemically effective rays to pass through it, whilst the orange paper difuses the light. If daylight be employod, it is as well to have a double thickness of orange paper. The following should be weighed out:-

Nos. 3 and 5 are rapidly covered with water or washed for a few seconds under the tap to get rid of any dust. No. 2 is diseolved in 12 oz . of water, and a litele tincture of iodine added till it asoumes a light strerty colour. No. I is dissolved in 60 minims of water. No. 4 is dissolved in 1 or. of water, and No. 3 is allowed to swell up in I oz. of water, and is then dispolved by heat. All the flaska containitr: these solutions are placed in water at $150^{\circ} F$. and carried into the "dark room." as the orange-lighted chamber is ordinarily called: N. 3 and 4 are then mixed wogerber in a jar or flask, and No. 2 adted drop by drop till half its bulk is gone, when No. 1 is added to the remainder, and the double solution is dropped in as before. When all is added there ought to be formed an emulsion wt ich is very ruddy when examined by gaslight, or orange by da light. The flask containung the emulsion is next placed in bowis's water. which is kept in a state of ebulition for ebout threequarters of an bour. It is then ready, when the contents of the flask have cooled down to about $100^{\circ} \mathrm{F}$., for the addition of No. s: which should in the interval be placed in 3 oz . of water to sweli and finally be dissolved. The gelatin emulsion thus formed is placed in a cool place to set, after which it is turbed into a piece of comerse canvas or mooquito netting made into a bag. By squeezing, threads of gelutin containing the sensitive salt can be made to fali 1ato cold water: by this means the soluble salts are extrected. This is readily done in two or three hours by frequenily changing the water, or by allowng running water to flow over the emationathreads. The gelatin is next drained by straining canvas over a kar and turning out the threads on to it, after which it is placed in a flakk, and warreed till it dissolves, half an ounce of alcohol being added. Finuly it is filtered through chamods leather or swanedown calico. In this state it is ready for the plates.

The other method of forming the cmuksion is with ammonia. The same quantities as before anc weighed out. but the volutions of Nos 2 and 3 are first mixed together-and No. 4 is dimolved in 1 or. of water, and strong ammonia of specific erravity $\mathbf{8 8 0}$ added to it till the oxide first precipitated is just redissolved. This solution is then dropped into No. a ind 3 as prevously deecribed, and finally No. I is added. In this case no boiline is required; but to secure rapudity it is as well that the emulsion should be kept an hour at a remperature of about $90^{\circ} \mathrm{F}$, alter which half the total quanity of No. 5 is added. When set the emulsion is washed, draincd, and redizootved as before: but in order to give tenacity
to the gelatin the remainder of No, 5 is added bafore the addition of the alcohol, and before filtering.

Coating the Plates.-Glass plates are best cleaned with nitric acid, rinsed, and then treated with potash solution, rinsed again, and dried with a cloan cloth. They are then ready for recciving the emulsion, which, after being warmed to about 120° F., is poured on them to cover well the surface. This being done, the platex are placed on a level shelf and allowed to stay there till the gelatin is thoroughly set; they are then put in a drying eupboard, through which a current of warm air is made to pase. It stould be remarbed that the warmith is only necessary to enable the air to take up the moisture from the plates. They ought to dry in about twelve hours, and they are ready for use.

Exposure,- With a good emulsion and on a bright day the exposure of a plate to a landicape, with a lens whose aperture is one-nixteenth that of the focal distance, should not be more than one-half to one-fifth of a cecond. This time depends, of course, on the nature of the view; if there be foliage in the immediate fores round it will be longer. In the portrait-studio, under the same circumstances, an exposure with a portrait lens may be from half a second to four or five scconde.

Deoelopment of the Plate--To develop the image either a ferrous oxnlate solution or alkaline pyrogallic acid may be used. No chemical restrainer such as potassium bromide is necessary, since the gelatin itself nets as a physical restrainor. If the alkaline developer be used, the following may be taken as a good standard:-
2. $\left\{\begin{array}{l}\text { Pyrogallol } \\ \text { Citric acid } \\ \text { Water } \\ \text { Potasium bromide } \\ \text { Water } \\ \text { Ammonia, } 880 . \\ \text { Water }\end{array}\right.$

10 ä
102
10 gre
102
1 dr.
One dram of each of theoc is taken and the mixture made up to 2 oz. with water. The plate in placed in a dish and the nbove poured over it without stoppage, whereupon the image gradually appears and, if the exposure has been properly timed, gains suffcient density for printing purposca. It is fixed in a solution of hyposulphite of soda, as in the other processes already described and then thoroughly washed for two or three hours to eliminate all the soluble salt. This long wathing is necesary on.eccount of the nature of the gelatin.

InLessifying the Negative.- Sometimes it is necessary to intensify the negative, which can be done in a variety of ways with mercury salts. An excellent plan, introduced by Chapman Jones, is to use a eaturated solution of mercuric chloride in water. After thorough washing the negative is treated with ferrous oxalate. This procese can be repeated till sufficient demsity is attained. With mont other methods with mercury the lmage is apt to become yellow and to fade; with this apparently it le not.

Varnishine the Negatiae.-The pegative is often protected by receiving first a film of plain collodion and then a coat of abellac or other photographic vamish. This protects the gelatin from moisture and also from becoming otained with the silver aitrate owing to contact with the rensitive paper used in silver printing. Another varnish is a colution of celloldin in amyl acetate. This is en excellent protection againat damp.

Printing Processes,

The first printing process may be said to be that of Fox Talbot (see above), which has continued to be generally employed (with the addition of albumen to give asurface to the print-an addition first made, we believe, by Fox Talbot).

Paper for printing is prepared by mixing 150 perts of ammonium chloride with 240 parts of apirits of wine and 2000 parts of water, though the proportions may vary. These ingredients are dissolved, and the whites of fifteen fairly-sized egze are added and the whole beaten up to a froth In hot weather it is advisable to add a drop of carbolic acid to prevent decompoeition. The albumen is allowed two or three days to settle, whea it is filtered through a aponge placed in a funael, or chrongh two or three thicknesses of fane muslin. and transferred to a flat dish. The paper is cut of convenient size and allowed to float on the solution for about a minute, when it is taken of and dried in a warm room. For dead prints, on which colouring is to take place. phain salted paper is useful. It can be made of the following proportions-90 parts of ammonium chloride, 100 parts of podium cotrate, 10 parts of gelatin, 5000 parts of distilled water. The getatin is first disoolved in bot water and the remaining components are added. It is next filtered, and the paper allowed to float on it for three minutes, then withdrawn and dried.

Sewsidising Bafi.-To sensitize the paper it in floated on a 10% solution of silver nitrate for throe minutes. It is then hung up and allowed to dry, alter which it is ready for use. To print the image the paper is placed in a printing frame over a negative and exposed to light. It is allowed to print till auch time as the image appears rether darker thath it shourds finally appear.

Towing and Fising aive Prite.-The next operation is to tone and fix the print. In the earlier days this wase accomplished by means of it bath of sel d'or-a mixture of hyposulphite of moda and gold chloride. This gilded the darkened parts of the print which light had reduced to the semi-metallic atate: and on the removal of the chloride by means of hyposulphite an image composed of metallic silver, an orgasic anlt of silver and gold was lefe behind. There was a suspicion, however, that part of the coloration was due to a combination of sulphur with the silver, not that pure silver sulphide is in any degree fugitive, but the sulphuretted orgatic male of eilver acems to be liable to change. Thas gave place to a method of alkaline toning, or rather, we should eay, of neutral toning, by amploying gold chloride with e salt, such as the cartonate or acetate of eoda, chloride of lime, borax, \&oc. By this mennt there was no danges of sulphurisetion duciag the toning, to which the method by sel d'or was prone owing to the deconponition of the hyposulphite. The subotances which can be employed in toning scem to be those in which an alfaline base is combined with a weak acid, the latter being readily displaced by a otronger acid. such as nitric acid, which must exist in the paper alter printing. This branch of photography owes much to the Rev. T. F. Hardwich, he having carried on extensive researches in connexion with it during 1854 and subsequent years. A. Davanne and A. Girard, a fittle later, also investigated the matter with fruitful results
The following may be taken as two typical toning bathat-

In the latter (a) and (β) are mixed in equal parts immediately before use Each of these is better used only once. A third bath is:-

These are mixed" together, the water being warmed. "When coot the solution is ready for use. In toning prints there is a distinct difference in the moders operandi according to the toning-bath ernployed. Thus in the first two baths the print must be thoroughly washed in water to remove all free silver nitrate, that salt forming no part in the chemical reactions. On the other hand, where free chlorime is used, the presence of Iree silver nitrate of some active chlorine absorbert is a nocesity. In 1872 Abrey showed that with auch a toning-bath free ilver nitrate might bo climinated, and if the print were imacrsed in a solution of a salt such as lead nitrate the toning action proceeded rapidly and without causing any fading of the image whitst toning. which was not the case when the free cilver nitrate was totally removed and no other chlorine absorbent substituted. This was an important factor. and one which bad been overlooked. In the third bath the free silver nitrate should only be partially removed by washing. The print, having been partially washed or thoroughly washed, st the case may be, in immersed in the toning bath tall the image attaine a purple or bluish tone, after whith it is ready lor fixing. The colution used for this purpore is a 20% solution of hyposulphite of soda, to which it is best to add a dew drops of ammonia in order to render it alkaline. About ten minutes suffice to effect the conversion of the chloride into hypostulphite of tlyer, which it atuble in hypowilphite of soda and can be removed by wastimg. The organic salts of silver seem, however, to form a diferent sali, which is partially insoluble, but which the ammonia belps to remove. If it is not removed there is a sulphur compound left behind. according to I. Spiller, which by time and exposure becemes yellow.

The use of potasinm cyanide for fincing prints io to be avoided. as this reagent nttealks the qrganic coloured oxide which, if removed, would render the print a ghost. The washing of silver prints should be very complete, since it is said that the leagt trace of hyposulphite left behind renders the fading of the imase a mere matter of time. The stability of a print has been muppoed to be increased by immering it, after waching, is a colvtion of alum. The sluan like any acid body, decomposes the hyposulphite into sulphur and sulphurous acid. If this be the casie, it seems probable that the destruction of the hyposulphite by time is not the occasion of fading, but that ita hygropoopic chanacter is. This, however, is a moot point It is tual to wash the prints aome bourt in runaing water. We have found that hall a dowen changes of water, and betwren succesaive changes the application of a spoage to the back of each priat eeparately, are equally or more enicecione On drying the print amomes adarler tone than it has after leavint the Gixing bath.

Differeat tomes can thus be given to a print by different tonings. baths; and the gold itrelf may be deposited in a ruddy form or in a blue form. The former molecular condition gives the red and sepia toncs, and the latter tha Hoo and black tonen. The dayree of minute subdivision of the gold may be conceived when it is
stated that, on a couple of sheets of albuminized paper fully printed, the gold necessary to give a decided tone does not exceed half a grain.

Collodio-choride Siloer Prining Process.-In the bistory of the emulaion processes we stated that Gaudin attempted to use silver chloride suspended in collodion, but it was not till the year 1864 that any practical use was made of the suggestion so far as silver printing is concerned. In the autumn of that year Gcorge Wharton Simpson worked out a method which has been more or less anoceserully employed. The formula appended is Simpenn's:-

1. $\begin{aligned} & \text { Silver nitrate } \\ & \text { Distilled water }\end{aligned}$
 Strontium chloride
 Alcohol Citric acid
 3. Alcohol

Washing it in water, when a white picture on an orange ground was obtained. In 1840 Edmond Becquerel announced that paper sized with iodide of starch and sooked in potassium bichromate was, on drying, more ensitive than unsized paper Josepl Dixon of Massachusetts, in the following year, produced copies of bank-notes by using gum arabic with potassium bichromate spread upon a lithographic otone, and, after exposure of the sensitive surface through a bank-note, by wanhing away the unaltered gum and inging the stone as in ordinary lithography. The same process, with slight modifications, has been used by Simonau and Toovey of Bruesels, and produces excelient results. Dixon's method, bowever, was published in the Scientific Americas for 1854, and consequently, as regards priority, it ranks after Fox Talbot's photoengraving procews (ree below), published in 1852. On the 13th of December 1855 Alphonse Poitevin took out a patent in England, in which be vaguely described a method of taking a direct carbon. print by rendering gelatin insoluble through the action of light on potassium bichromate. This idea was taken up by John Pouncey of Dorchester, who perfaps ㄴ..: the first to produce veritable carbon-prints, notwithstanding initt Testud de Beauregard took out a somewhat similar patent to I'oitevin's at the end of 1857 .

Pouncey published his process on the int of January 1859; but, as described by him, it was by no means in a perfect state, halftones being wanting. The caum if this was first pointed ont by Abbe Laborde in 1858, whilst tercribiag a kindred process in a note to the French Photographic . sciety. He agys. "In the sensitive film, however thin it may be, twa distinct surfaces must be recognized-an outer, and an inner which is in contect with the paper. The action of light commences on the outer surface; in the washing, therefore, the half-tones lose their hold on the paper and ane washed away:" J. C. Burnett in 1858 was the first to endeavour to get rid of this defect in carbon printing. In a paper to the Pbotographic Socicty of London he says, "There are two easential recuisites. :. (2) that in printing the paper should have its wnprcpared side (and not its prepared side, as in ordiaary printing) placed in contact with the negative in the pressure-frame, as it is only by jrinting in this way that we can expect to be able afterwards to remove by washing the unacted-upon portions of the mixture. In a potitive of this sort printed from the front or prepared side the attainment of half-tones by washing away more or less depth of the mixture, according to the depth to which it has been hardened, is prevented by the insoluble parts being on the, surface and in consequence protecting the soluble part from the action of the water used in washing: so that either nothing is removed, or by steeping very long till the inner coluble part is aufficiently soltened the whole depth comes bodily away, leaving the paper white." This method af exposing through the back of the paper was crude and unsatisfactory, and in 1860 Fargier patented a process in which, after expoaure to light of the gelatin film which contained pignent, the surface was coated with collodion, and the print placed in warm water, where it eeparated from the paper support and could be transferred to ghass. Poitevin successfully opposed this patent, for he had used this means of detaching the filma in his powder-carbon process, in which ferric chloride and tartaric acid were used. Fargier at any rate gave an impetus to carbon-printing, and J. W. Swan took up the matter, and in 1864 secured a patent. One of the great features in Swan's innovations was the production of what is now known as "carbon-tissue," made by coating paper with a mixture of gelatin, sugar and colouring matter, and rendered sensitive to Light by means of potassium or ammonium bichromate. After exposure to light Swan placed the printed carbon-tissue on an india-rubber surface, to which it was made to adhere by pressure. The print was immersed in hot water, the paper backing stripped off, and the soluble gelatin containing colouring matter washed away. The picture could then be retmonsferred to its final support of paper. In $1869 \mathrm{~J}, \mathrm{R}$. Johnson of London took out a patent in which he claimed that carbon-tissue which had been soaked in water for a short perlod, by lts tendency to swell further, would adhere to any waterproof surface such as glass, metal, waxed paper, \&c., without any adhesive material being applied. This was a most important improvement. Johnson also applied soap to the gelatin to prevent its exceasive brittleness on drying, and made its final support of gelatinized paper, rendered insoluble by chrome alum. In 1874 J, R. Sawyer patented a flexible support for developing on; this was a eized paper coated with gelatin and treated with an ammoniacal solution of shellac in borax, on which wax or resin was rubbed. The advantage of this flexible support is that the dark parts of the picture have no tendency to contract from the lighter parts, which they were apt to do when a metal phate was used, as was the case in Johnson's original process With this patent. and minor improvements made since, carbon-printing has arrived at its present state of perfection.

According to P. E. Liesegang, the carbon-tissue when prepared on a large scale consiste of from 120 to 150 grains of gelatin (a soft kind), 13 grains of soap, 21 grains of sugar and from 4 to 8 grains of dry colouring matter. The last-named may be of various kinda, from lamp-hlack pigment to soluble colours such as alizarin. The gelatin, sugar and soap are put in water and allowed to stand for an hour, and then melted, the liquid afterwards receiving the
colours, which have been ground on a slab. The mixture is filtered through fine muslin. In making the tissue in large quantities the two ends of a piece of roll-paper are pasted together and the paper hung on two rollers; one of wood about 5 in . In diameter is fixed mear the top of the room and the other over a trough containing the gelatin wolution, the paper being brought into contact with the surface of the gelatin by being made to revolve on the collera. The thickness of the coating is proportional to the rate at which the paper is drawn over the gelatin: the slower the movement, the thicker the coating. The paper is taken of the rollers, cut through, and hung up to dry on wooden laths. If it be required to make the tistue sensitive at once, 120 grains of potassium bichromate should be mixed with the ingredients in the above formula. The carbon-tissue when prepared should be floated on a sensitizing bath consisting of one part of potassium hichromate in 40 parts of water. This is effected by turning up about i in. from the end of the sheet of tissue (cut to the proper size), making a roll of it, and lettiag It unroll along the surface of the sensitizing solution, where it is allowed to remain till the gelatin film feels soft. It is then taleen of and hung up to dry in a dark room through which a current of dry warm air is passing. Tissue dried quickly, though not 00 eensitive, is more manageable to work than if more slowly dried. As the tisaue is coloured, it is not possible to ascertain by inspection whether the printing operation is sufficiently carried out, and in order to ascertain this it is usual to place a picce of ondinary silvered paper in an actinometer, or photometer, alongside the carbon-tiscue to ascertain the amount of light that has acted on it. There are several devices for ascertaining this amount, the simplest being an arrangement of a varying number of thicknesses of gold-beater's skin. The value of $1,2,3$, \&c., thiclrnesses of the skin as a ecreen to the light is ascertained by experiment. Supposing it is judged that asheet of tisue under some one negative ougtrt to bé exposed to light correspanding to a given number ol thicknemes, chloride of silver paper is placed alongside the negative beneath the actinometer and allowed to remain there until it takes a visible tint benearh a number of thicknesses cquivalent to the strength of the negative. After the tissue is removed from the printing-frame-supposing a double transfer is to be made-it is placed in a dish of cold water, face downwards, along with a piece of Sawryer's flexible support. When the edges of the tissue begin to curl up, its surface and that of the fexible support are brought together and placed fint. The water is pressed out with an indiarubber squeezer or " squeegee" and the two surfaces adhere. About a couple of minutes later they are placed in warm water of about 90° to $100^{\circ} \mathrm{F}$., and the paper of the tissue, loosened by the gelatin solution next it becoming eoluble, can be stripped off, leaving the image (reversed as regards right and left) on the flexible support. An application of warm water removes the rest of the soluble gelatin and pigment. When dried the image is transferred to its permanent support. This usually consists of white paper conted with gelatin and made insoluble with chrome alum, though it may be mixed with barium sulphate or other similar pigments. This transfer-paper is made to receive the image by being soaked in hot water till it becomes stimy to the touch; and the surface of the damped print is brought into contact srim the surface of the re-transfer-paper, in the same manner an was done with the flexible oupport and the carbon-tissue. When dry the retransfer-paper bearing the gelatin image can be stripped of the fiexible support, which may be used again as a temporary support for other pictures. If a ravorsed negntive be used the image may be iransferred at once to its fimal support instead of to the temporary fiexible support. which is a point of practical value, since single-transfer ate better than double-transfer printe.
Prinling with Salls of Iron.-Sir John Herschel and Robert Hunt entered into various methods of printing with alts of iron. At the present time two or three are practised, being used in diraughtemen's offices for copying tracings (see SUN-CofYing).

Photo-mechanical Printing Processes.-Poitevin claimed to have discovered that a film of gelatin impregnated with potassium bichromate, after being acted upon by light and damping, would receive greasy ink on those parts which had been affected by light. But Paul Orciolh seems to have made the dincovery previous to 1854 , for in his patent of that year he tates that his designs were inked with printing ink before being transferred to stone or zinc. C. M. Tessic de Motay (in 1865) and C. R. Marechal of Metz, however, seem to have been the first to produce half-tones from gelatin filme by means of greasy ink. Their general procedure consisted in coating metallic plates with gelatin impregnated with potassium or ammonum bichromate or tri-chromate and mercuric chioride, then treating with silver oleate, exposing to light through a negative. washing, inking with a lithographic roller, and printing from the plates as for an ordinary lithograph. The half-tints by this procese were very good, and iflustrations executed by it are to be found in everal existing works. The method of producing the plates, however, was most laborious, and it was simplified by A. Albert of Munich. He had been experimenting for many years, endea vouring to make the gelatin films more durable than thooe of Tessic de Motay, He added gum-resins, alum, tannia and other auch matters, which had the properyy of hardeniag gelatin; but the difficulty of adding cufficient to the mase in its liguid state bofore
the whole became coagulated rendered theae unmanageable. It at last occurred to him that if the hardening action of light were utilized by exposing the surface next the plate to light after or before exposing the front surface to the film and the image, the necessary hardness might be given to the gelatia without addins any chemical hardeners to it. In Tessie de Motay's procest the hardening was almost abeent, and the plates were consequently not durable. It is evident that to effect this one of two thinga had to be done: either the metallic plate used by Tessie de Moray must be abandoned, or else the film must be stripped off the plate and exposed in that manner. Albert adopted the transparent plate. and his success was assured, since instead of less than a hundred impressions being pulled from one plate he was able to talee over a thousand. This occurred about 1867, but the formula was not published for two or three yeare afterwards, when it was divulged by Ohm and Grossman, one of whom had been employed by Abert of Munich, and had endeavoured to introduce a process which resembled Albert's earlier efforts. The name of "Lichtdruck " was given about this time to these surface-printing processes, and Albert may be considered, if not the inventor, at all events the perfecter of the method. Another modification of "Lichtdruck" was patented in England by Ernest Edwards under the name of " heliotype."

Woodbury Type--This process was invented by W. Woodbury about the year 1864, though we believe that J. W. Swan had been working independently in the same direction about the same time. In October 1864 a description of the invention was given in the Pholographic News. Mare Antoine A. Gaudin claimed the principle of the promesa, insisting that it was old, and basing his pretensions on the fact that he had printed with translucent ink from intagio hlocks engraved by hand; but at the sarne time he remariced that the application of the principle might lead to important results. If was just these results which Woodbury obtained, and for which he was entitled to the fultest eredit. Woodbury subsequently introduced certain modifications, the outcome being what is known as the "stannotype process." of which in 1880 he read a description before the French Photofraphic Society (see Process).

Pholo-lithography.-Refcrence has been made to the effect of light on gelatin impregnated with potassium hichromate, whereby the gelatin becomes insoluble, and also incapable of absorbing water where the action of the liglit has had full play. It is this last phenomenon which occupies such an important place in photofithography. In the spring of 1859 E . J. Asser of Amsterdam proxluced photographs on a paper basis in printer's ink. Being an ious to prodtrte copies of such prints mechanically, he conceived the ided of tuble...... ide greasy ink impression to stone, and multiplying the impressions by mechanical lithography. Following very closely upon Asser, J. W. Osborne of Melbourne made a simitar application; his process is described by himself in the Photographic Journal for April 1860 as follows; "A negative is produced in the usual way, bearing to the original the desired maia.

A posilive is printed from this negative upon a sheet of (getatinized) paper, ∞ prepared that the image can be transierred to stone, it having been previously covered with greasy princer's ink. The imprestion is developed by washing away the soluble matter with hot water, which leaves the ink on the lines of print of the map or engraving." The process of transierring is secomplished in the ordiniry way. Early in 1860 Colonel Sir H. James, RE. F.R.S., brought forward the Southampton method of phooo-lithography, which had been carefully worked out by Captain de Courcy Scott, R.E. The " papyrotype process" was published by Abney in 187° (sce Lithography and Process).

Pholographs in Natural Colours.

The first notice on record of coloured ligbt impressing its own colours on a sensitive surface is in the pessage already quoted from the Farbeniehre of Goethe, where T. J. Seebeck of Jena (18 so) describes the impression be obtained on paper impregnated with moist silver chloride. In 1839 Sir J . Herschel (Achencewm, No. 62I) gave a somewhat similar description. In 1848 Edmond Becquerel succeeded in reproducing upon a daguerrootype plate not only the colours of the spectrum but also, up to a certain point, the colours of drawings and objects. His method of proceeding was to give the silver piate a thin coating of silver chloride by immersing it in ferric or cupric chiorides. It may also be immersed in chlorine water till it takes a feeble rose tint Becquerel preferred to chlorinize the plate by immersion in a solution of hydrochloric acid in water, at taching it to the positive pole of a voltaic couple, whilst the other pole he attached to a platinum plate also immersed in the acid solution. After a minute's subjection to the current the plate took successively a grey, a yellow, a violet and a blue tint, which order was again repeated. When the violet tint appeared for the second time the plate was withdrawn and washed and dricd over à spirit-lamp. In this state is
produced the apectrum colours, bat it was found better to heat the plate till it assumed a rose tint. At a later dlate Niepee de St Victor chlorinized by chloride of lime, and made the surface more sensitive by applying a solution of lead chloride in dextrin. G. W. Simpson also obtained coloured images on silver chloride emulsion in collodion, but they were less vivid and salisfactory than those obtained on daguerreotype plates. Poitevin obtained coloured inasges on ordinary silver chloride paper by preparing it in the ussual manner and washing it and exposing it to light. It was aftermards treated with a solution of potassium bichromate and cupric sulphate, and dried in darkness. Sheets so prepared gave coloured images from coloured pictures, which he stated could be fixed by suiphuric acid (Comples rendms, 1868, 61, p. it). In the Badletin de la Socied Francaise (1874) Colonel St Florent described experiments which ho made with the same object. He imanersed ondinary or albuminized paper in silver nitrate and afterwards plunged it into a solution of uranium nitrate and zinc chloride acidulstod with hydrochloric acid; it was then exposed to light till it took a violet, blue or lavender tint. Before exposure the paper was floated on a eolution of mercuric nitrate, its surface dried, and exposed to a coloured ingage.

It is aupposed-though it is very douhtful if it be so-that the nature of the chroride used to obtain the silver chloride has a great efficet on the colours impressed; and Nieper in 1857 made come observations on the relationship which seemed to exiat between the coloured flames produced by the metal and the colour impressed on a plate propared with a chloride of such a metal. In 1880 Abncy showed that tho production of colour really resulted from the oxidation of the chloride that was coloured by light. Plates immersed in a solution of bydrogen peroxide took the colours of the epectrum much more rapidly than when not immersed, and the size of the molecules seemed to regulate the colour. He further stated that the whole of the spectrum colours might be derived from a mixture of two or at most three sises of molecules.
In 184I, Robert Hupt published some results of colour-photography by means of silver fuoride. A paper was washod with silver nitrate and with sodium fluoride, and afterwards exposed to the spectrum. The action of the apectrum commenced at the centre of the yellow ray and rapidly proceoded upwards, arrivisg at its maximum in the blue ray. As lar as the indigo the action was unilorm, whilst in the viofet the paper took a brown tint. When it was previously exposed, however, a yellow space was occupied where the yellow rays had acted, a green band where the green had acted, whilst in the blue and indigo it took an intenae blue, and over the vioket there was a ruddy brown. In reference to these coloured images on paper it must not be forgoten that pure salts of silver are not being dealt with as a rule. An organic salt of silver is usually mixed with milver chloride poper, the organic salt being due to the sizing of the geper, which towards the red enal of the spectrum is usually more teasitive than the chloridc. If a picee of ordinary silver chloride paper is cxposed to the spectrum till an impression is made, it will usually be found that the blue colour of the darkened chloride is mixed with that due to the coloration of the darkened organic eompound of silver in the viotet reyion, whereas in the blue and green this organic compound is akone affected, and is of a different colour from that of the darkened mixed chloride and organic compound. This naturally gives an impression that the different rays yield different tinte, whereas this resula is simply owing to the different range of sensitiveness of the bodics. In the case of the silver chlorinized plane and of true collodio-chloride, in which no organic salt has been dispolved, we have a true coloration by the spectrum. At present there is no means of permanently fixing the coloured images which have been obtainod, the effoct of light being to dedroy them. If protected Jrom orysten they last logger than if they have free access to it, ats is the case when the surface is exposed to the air.

A method devised by Cabrielle LIppmann, of Paris, by which the natural colouru of objects are reproduced by means of interference, many be briefly described as follows: A sensitive plate is placed in contact with a film of mencury, and the exposure to the epectrum, or to the image of colourod objocts to be photographed, is made through the back of the plate. Oa devclopment, the image appears coloured when viewed at one particular angle, the colours being approxisuately thooe of the object. The precessary exposure to produce this reault was very prolonged in the first experimente in which the spectrum was photographed, and a longer exposure had to be given to the red than was required for the bluc. Lippmann at first employed collodion dry plates, prepared. is is believed, with alloumen, and it required considerabie manipulation to bring out the colours correctly. A. Lumidere used gelatin plate dyed with
appropriate dyes (orthochrematic plates); the expeoure was much diminwhed, and very exceltent representations were produced of all natural colours. The main point to aim at in the preparation of the plate ecems to he to obtain a very sensitive film without any, or, at all evente, with the least possible. "grain" in the ensitive galt. A formula published by Lumiere seems to attain this object. Viewed directly, the developed images appear like ordinary pega. tives, but when held at an angle to the light the colours are vivid. They are not pure monochromatic colours, but have very much the quality of colour obtained by polarized light. It appeare that they are produced by what may be termed " nodes " of differentcoloured lights acting within the Eilm. Thus in photographing the spectrum, rays penetrate to the reficcting mercury and are reflected back from it, and these, with the incident waves of light, form nodes where no motion exists, in a somewhat similar way to those obtained in a cord stretched betwoen two pointe when plucked In the negative these nodal points are found in the thickness of the silver deposit. When white light is gent through the film after the image has been developed, theoretically only rays of the wavelengths which formed these nodes are reflected to the eye, and thus we get an impression of colour.

Action of Light on Chemical Compounds.

Reference bas been made above to carly investigations on the chemical action of light. In 1777 Karl Withelm Scbecle (Hunt's Rescarches in Light) made the following experiments on silver salts:-

* 1 precipitated a solution of aitver by salammoniac; then I edulcorated it and dried the precipitate and exposed it to the beams of the sun for two weeks; after which I stirred the powder, and repeated the same several times. Hercupon 1 poured some caustic spirit of sal-ammoniac (etrong ammonia) on this, in all appearance. black powder, and set it by for digestion. This menstruum discolved a quantity of luma cornua (horn silver), though some black powder remained undisolved. The powder having been washed was, for the greater part, dissolved by a pure acid of nitre (nitric acid). which, by the operation, acquired volutility. This solution 1 precipitated again by means of ati-mmoniac into horn silver. Hence it follows that the Dlacknes which the luma cormua acquires from the sun's light, and likewise the molecion of cilver poured on chalk, is silver by reduclion. ... I mised to much of distilled water with well-edulcorated horn silver as wonla just cover this powder. The half of this mixture I poured into a white crystal phinl, exposed it to the beams of the sun, and shook it several times each day; the other half I set in a dark place. After having expoeed the one mixture during the space of two weeks, I filtrated the water standing over the horn silver, grown alseady black: I let mome of this water fall by drops in a solution of silver, which was immediately precipitated into horn silver."
This, as Iar as we know, is the first intimation of the reducing action of light. From this it is evident that Scheele had found that the silver chloride was decomposed by the action of light liberating some form of chlorine. Others have repeated these experiments and lound that chlorine is really liberated from the chloride; but it is necessary that some body should be present which would absorb the chlorine, or, at all events, that the chlorine should be free to escape. A tube of dried silver chloride, sealed up im pocmo, will not discolour in the light, but keeps its ordinary white colour. A pretty experiment is to scal up in vacwo, at one end of a bent tube, perfectly dry chloride, and at the other a drop of mercury. The mercury vapour volatllizes to a certain extent and fills the tube. When exposed to light chlorine is liberated from the chloride, and calomel forms on the sides of the tube. In this case the chloride darkens. Again, dricd chloride sealed up in dry bydrogen discolours, owing to the combination of the chlorine with the hydrogen. Poitevin and H. W. Vogel first enunciated the law that for the reduction by light of the haloid salts of silver halogen ahsorbents were necessary. and it was by following out this law that the present rapidity in obtaining camera images has been rendered possible. To put it briefly, then, the pisible action of light is a reducing action, which is aided by or entirely due to the fact that other bodies are present which will absorb the halogens.

In the above we have alluded to the wisible results on silver salts. It by no means follows that the exposure of a silver salt to light for such a brief period as to leave no visible effect must be due to the same effect, that is, that any of the molecules are absolutely reduced or split up by the light. That this or some other action takes place is shown by the fact that the salvet salt is capable of alkaline development, that is, the particies
which have suffered a change in their molecules can be reduced to metallic silver, whilst those which have not been acted upon remain unaltered by the same chemical agency. Two theories have been offered to explain the invisible change which takes place in the salts of silver. One is based on tbe supposition that the molecules of the salt can rearrange their atoms under the vibrations caused by the ether waves placing them in more unstable positions than they were in before the impact of light took place. This, it is presumed, would allow the developer to separate the atoms of such shaken molecules when it came in contact with them. The other theory is that, as in the case of the visible effects of light, some of the molecules are at once reduced and that the developer finishes the disintegration which the light has begun. In the case of the alkaline development the unaltered molecules next those primarily reduced combine with the reduced silver atom and again form an unstable compound and are in their turn reduced.
The first theory would require some auch action as that just mentioned to take place and cause the lnvisible image formed by the shaking apart of the light-atricken molecules to become visible It is hard to see why other unacted upon molecules close to those which were made unstable and which have been shaken apart by the developer should themselves be placed in unstable equilibrium and amenable to reduction. In the second theory, called the "chemical theory," the reduction is perfectly eary to understand. Abney adopts the chemical theory as the balance of unsubstantiated evidence is in its favour. There is another action which seems to occur almost simultaneously when exposure takes place in the absence of an active halogen absorbent, as is the case when the exposure is given in the air, that is, an oxidizing action occurs. The molecules of the altered haloid salts tale up oxygen and form oxides. If a sensitive walt be briefly exposed to light and then treated with an oxidizing substance, such as potassium bichromate, potassium permanganate, hydrogen peroxide, ozone, an image is not developed, but remaine unaltered, chowing that a change has been effected in the compound which under ordinary circumstances is developable. If such an oxidized salt be treated very cautiously with nascent hydrogen, the oxygen is withdrawn and the image is again capable α development. ${ }^{1}$

Spectrum Effecis on Siver Compounds.-The next inquiry is as to the effect of the spectrum on the different silver compounds. We have already described Seebeck's (i810) experiments on ailver chioride with the spectrum whereby he obtained coloured photographs, hut Scheele in 1777 allowed a spectrum to fall on the same material, and found that it blackened much more readily in the violet rays than in any other. Senebier's experiments have been already quoted. We merely mention these
have become the foundation of nearty all subsequent researches of the same kind. The effects of the spectrum have been studied by various experimenters since that time, amongat whom we may mention Edmond Becquerel, John William Draper, Alphonse Louis Poitevin, H. W. Vogel, Victor Schumann and W. de W. Abney. Fig. I is compiled from a cut which appeared in the Proc. Roy. Soc. for 1882, and shows the researches made by Abney as regards the action of the spectrum on the three principal haloid salts of silver. Na 7 shows the effect of the spectrum on a peculiar medification of sitver hromide made hy Abney, which is seen to be sonsitive to the infra-red rays.

Effect of Dyes on Sensitive Films.-In 1874 Dr H. W. Vogel of Berlin found that when films were stained with certain dyes and exposed to the spectrum an increased sction on development was shown in those parts of the epectrum which the dye absorbed. The dyes which produced this action he called "optical sensitizers," whilst preservatives which absorbed the halogen liberated by light ho called "chemical sensitizers." A dye might, according to him, be an optical and a chemical sensitizer. He further claimed that, if a film were prepared in thich the haloid soluble salt was in excess and then dyed, no action took place unicss some "chemical sensitizer" were present. The term "optical sensitizer" seems a misromer, since it is meant to imply that it renders the salts of silver sensitive to those regions of the spectrum to which they were previously Insensitive, merely by the addition of the dye. The idea of the action of dyes was at frst combated, but it was soon recognized that such an action did really exist. Abney showed in 1875 tbat certain dyes combined witb silver and formed true coloured organle salts of silver which were sensitive to light; and Dr Robert Amory went so far as to take a spectrum on a combination of silver with eosin, which was one of the dyes experimented upon by J. Waterhouse, who had closely followed Dr Vogel, and proved that the spectrum acted sinaply on those parts which were absorbed by the compound. Abney further demonstrated that, in many cases at all events, the dyes were themselves reduced by light, thus acting as nuclei on which the silver could be deposited. He further showed that even when the haloid soluble salt was in excess the same character of spectrom was produced as when the silver nitrate was in excess, though the exposure had to be prolonged. This action he concluded was due to the dye.
Correct Rendering of Colours in Monochrome.-In Plate IV., fite 14 the sensitiveness of a plate stained with homocol is shown, and it is evident that as it is sensitive throughout the visible spectrum there must be some aeans of cutting of by a transparent screen so much of the spectrum luminosity at different parts P. that every colour having the same luminosity to the eye shall be shown on a negative of equal density. P. When this is done the relative lominosities of all colours will be shown by the same relative densities or in a print by different depths of greys. Abncy devised a sensitometer which should be used to ascertain the colour of the screen that should be employed. By proper means the luminosity of the light of day coming through a red, a green, 2 blue and an orange glass can be very accurately measured; if h -in. squares of those coloured giasses, together with a white glass of the same ares, be placed in a row and ceraented on white glass, we have a colour-screen which we can make available P. for finding the kind of light-filter to be employed. This is readily done by reducing the luminosity of the light coming through all the glasses to that of the luminosity of the light coming through the blue glase. If the luminosity of the blue be 5 and that of the white light 100 ; then the luminosity of the former must be reduced to $\frac{1}{20}$ of its original value, and 80 with the other glassea The luminosity of the light coming through each small glass square can be made equal by rotating in front of them a dist in which apertures are cut correnponding to the reduction required. The

Portrait Study. By James Craig Annan.

Portrait. By David Octavius Hill, R.S.A.

Continuous Spectrum taken with the Electric Arc.

Fluorescent Spectrum of Eosin.

Spectrum of Volatilized Lithium and Sodium.

Absorption Spectrum of Eosin.

Graduation Scale on Homocol Stained "Seed" Plate.

Graduation Scale on Unstained Plate.

Impressed Continuous Spectrum.

Whe giana, for instance, woold not be covered by the disk at ath, while opposite the white square the disk would have an aperture of an angle of 18°. When a plate is exposed behind the row of glass equares, with the light passing through the rotating disk, having the appropriate apertures for cach glass, the negative obtained would under ordinary conditions, show square patches of very different opacity. A light-filter of some transparent colcur, if placed in the path of the light, will alter the opacities, and eventually one can be found which will oaly allow such coloured light to be transmitted as will cause all the opacities in the negative to be the same. As the luminosities of the white light passing through the glasses are made equal, and as the photographic deposits are also rendered equal, this light-filter, if used in front of the camera lens, will render all coloured objects in correct monochrome luminosity. Another plan, based on the same principles, is to place segments of annuluses of vermilion, chrome yellow, emerald green, French blue and white on a disk, and to complete the annuluses with black segments, the amount of hlack depending on the luminosity of the pigments, which can be readily measured. When the disk is rotated, rings of colour, modified in brightness by black, are seen, and each ring will be of the same luminosity. As before, a screen (light-filter) to be used in front of the lens must be found which will cause the developed images of all the rings to appear of equal opacity. It must be remembered that the light in which the object is to be photographed must be the same as that in which the luminosity of the glasses or pigments is measured.

Action of the Spectrum on Chromic Salts.-The salts most usually employed in photograploy are the hichromates of the alkalis. The result of spectrum action is confined to its own mostrefrangible end, commencing in the ultra-violet and reaching as far as in the solar spectrum. Fig, 2 shows the relative action of

Fig. 2.-The top detters have reference to the Fraunhofer lines: the bottom letters are the initials of the colours. The relative sensitiveness is shown by the height of the curve above the base-line. the various parts of the spectrum on potassium bichromate. If other bichromates are employed, the action will be found to be tolerably well represented by the figures. No. 1 is the effect of a long exposure, No. 2 of a shorter one. It shouid be noticed that the solution of potassium bichromate absorbs those rays alone which are effective in altering the bichromate. This change is only possible in the presence of organic matter of some kind, such as gelatin or alhumen.

Action of the Spectruss on Asphallum.-This seems to be continued into and below the red, the blue rays, however, are the most effective. The action of light on this body is to reader it less soluble in its usual solvents.

Action of the Spectrum on Sales of Iron.-The commonest ferric salt in use is the oxalate, by which the beautiful platinotype prints are produced. We give this as a representation (ig. 3) of

Fic. 3.-Same dencription as for fig. 2.
the spectra obtained on ferric salts in general. Here, again, we have an example of the law that exists as to the correlation between absorption and chemical action. One of the most remarkable compounds of iron is that experimented upon by Sir J. Ferscbel and later by Lord Rayleigh, viz. ferrocyanide of
potassium and ferric chloride. If these two be brushed over paper, and the paper be then exposed to a bright solar apectrum, action is exhibited into the infra-red region. This is one of the few instances in which these light-waves of low refrangihility are capable of producing any effect. The colour of this solution is a muddy green, and analysis shows tbat it cuts off these rays as well as generally absorbs those of bigher refrangibility.
Action of Light on Uranium.-The salts of uranium are aflected by light in the presence of organic matter, and they too are only acted upon by those rays which they absorb. Thus nitrate of uranium, which shows, too, abeorption-bands in the green blue, is affected more where these occur than in any other portion of the spectrum.
Some salts of mercury, gold, copper, lead, manganese, molybdenum, platinum, vanadium, are afiected by light, but in a less degree than those which we have discussed. In the organic world there are very few substances which do not change by the continuous action of light, and it will be found that as a rule they are afiected by the hlue end of the spectrum rather than by the red and (sce Photochematry).

The following table gives the names of the observers of the action of light on different substances, with the date of publication of the several observations. It is nearly Identical with one given by Dr Eder in his Gaseliochte der Photo-Chemie.

Substance.	Observer.	Date.
Silver. Nitrate solution mixed with chalk, pives in sunshine copies of writing	J. H. Schulze Hellot	1727
Nitrate solution on paper Nitrate photographically used	Hellot. Wedgwood and Davy.	1737 1802
Nitrate on silk $\{$	Fulhame	1797
Nitrate with white of egg. Nitrate with lead salts	B. Fischer	1812
Nitrate with lead salts : Chloride	I. B. Beccarius	1839 1757
Chioride in the apectrum.	Scheele.	1777
Chloride photographically used	Wedgwood	1802
Chloride blackened	Lassaigne. Davy.	1839 1814
lodide by action of iodine (on metallic silver).	Daguerre	1859
lodide photographically used	Herscher	1840
lodide with gallic acid	Talbot.	1841
Todide with Yerrous sulphate :	Hunt	18.44
Chloride and iodide by chlorinc and iodine (on metallic silver).	Claudet	1840
Bromide - - ${ }^{\text {a }}$	Batard	1826
Bromide by action of bromine. (on metallic silver).	Goddard	1840
Sulpho-cyanide Nitrite	Grotthus Hess	$\begin{aligned} & 18: 8 \\ & 1828 \end{aligned}$
Oxide with ammonia	Mitscherlich	1827
Sulphate	Bergmann.	1779
Chromate	Vauquelin	1798
Carbonate	Buchholz	1779
Benzoate	Trommsdorf	1793
Citrate	Vauquelin pliston	1798
Kinate	Henry and Pliston	1889
Borate . ${ }^{\text {Pr }}$	Rose	1830
Pyrophosphate Lactate .	Stromeyer Pelouze and Gay-	$\begin{aligned} & 1830 \\ & 1833 \end{aligned}$
Formiates	Lussac. . .	1844
Fulminates .	Hunt	1844
Sulphide by vapour of sulphur (on metallic silver).	Niepce.	1820
Phoephide by vapour of phos phorus (os metallic silver). Gold.	Niepoe.	1830
Oxide . .	Scheele.	1777
Chloride on paper	Hellot.	1737
Chloride on silk	Fulhame	1794
Chloride in ethereal solution and	Rumiord Hunt	1793
ferricyanide of potassium. Chloride and oralic acid	Doberciner	
Chromate.	Hunt	1844
Plate of gold and iodine vepour	Goddard	184

Substance.	Observer.	Date.
Platinum.		
Chloride in ether	Gehlen	1804
Chloride with lime	Herschel Herschel	1840 1840
Bromide		
Cyanide	Hunt	1844
Doubie chloride of platioum and potassium.	Dobereiner	1828
Mercury.		1811
	Thenard.	183
Oxide	Davy	1797
Oxide (mercuric) ${ }^{\text {Oxida }}$ (more accurate observa.	Davy ${ }^{\text {Abildgaard }}{ }^{\circ}$	18127 1797
tions)	Harup not till.	1×01
Chloride (mercurous)	K. Ncumann previously to	1739
Chloride (mercuric)	Boullay ${ }^{\text {a }}$.	1803
Chloride with oxalic acid.	Bergmann.	1776
Sulphate $\begin{aligned} & \text { Oxalate (mercuric) }\end{aligned}$	Meyer ${ }^{\text {Bergmann. }}$	1764
Oxalate (mercuric) : :	Bergmann.	17836
Sulphate and ammonia (mercurous).	Fourcroy	1791
Acetate (mercurous) Bromide (mercuric)	Carot	1826 1828
	Torosewicz	1936
lodide (mercurous).	Artus	1836
Iodide (mercuric) Citrate (mercuric)	Field	1636 1836
Tartrate and potassium (mercurous).	Carbonell and Bravo	1831
Carbonate (mercuric). . .	Davy	1812
Nitrate	Herschel	1840
Sulphide (mercuric) Iron.	Vitruvius	t B.c.
Sulphate (ferrous)	Chastaing.	1877
Choride (ferric) and alcohol	Bestuschef	1775
Oxaride and etaer	Dobbereiner	1782 1831
Ferrocyanide of potassium	Heinrich	1808
Sulphocyanide . :	Grotthus	1818
Prussian blue . . :	Scopoli	1783
Ferric citrate with ammonium . .	Herschel	1840
Ferric tartrate	Herschel	1840
Chromate .	Hunt	1844
Copper.	Gehlen	1804
Chloride (capric dissolved ia ether).	Gehlen	1804
Oxalate with sodium .	A. Vogel	1813
Chromate Chate with ammonium		
Carbonate	Huat	1844
lodide . . .		
Chloride (cuprous) : .	A. Vogel	1859
Copper plates (iodized)	Kratoch	$184!$
Manganese.	T	1841
Sulphate	Brandenburg	1815
Oxalate - . .	Suckow	1832
Potassium permanganate	Frommberg	1824
Peroxide and cyanide of potas-	Hunt	1844
Chloride	Hunt	1844
Oxide	Davy	1802
Iodide : ${ }^{\text {Sulphite }}$: $:$	Schönbein	1850
Proxide	Gay-Lussac	1811
Red lead and cyanide of potassium	Hunt .	1844
Acretate	Hunt	1844
$\left.\begin{array}{l}\text { Nitrate } \\ \begin{array}{l}\text { Nitrate with ferro-prussiates } \\ \text { lodide }\end{array}\end{array}\right\}$	Hunt	1844
Tin. Purple of cassius	Uncertain	
Various Substances. Cobelt salts	Hunt	1844
Arsenic sulphide (realgar) Antimony mulphide	Sage	1803
Antimony wulphide	Suckow	1832

Substance.	Observer.	Date
Biamuth sales. Cadmium salte	Hunt	18
Rhodium malte. . . .		
Vanadic salts.	Roscose	1874
Iridium ammorium chloride	Döbereiner	1831
Potassium bichromate ${ }^{\text {a }}$,	Mungo Ponton	1838
Potasdum with iodide of starch	Bocquerel.	1840
Metallic chrometes	Hunt	1843
Chlorine and hydrogen	Gay-Lussac and Thenard.	1809
Chlorine (tithonized)	Draper .	1842.
Chlorine and ether	Cahours	1610
Chlorine in water	Berthollet	1785
Chlorine and ethylene	Gay-Lussac and Thenard	1809
Chlorine and carbon-monoxide	Davy	1812
Chlorine and marsh gat	Henty	1821
Chlorine and hydrocyanic acid	Serulla	1827
Bromide and hydrogen Iodine and ethylene.	Faraday	1832
Cyanogen, solution of	Pelouze and Richardson.	1837
Various other methyl compounds	Cahours	1846
Hydrocyanic acid	Torosewicz	1836
Hypochlorites (calcium and potassium)	Dóbereiner	1813
Uranium chloride and ether	Gehlen	1804
Molybdenate of potasmium and ein sales.	Jagr	180
Crystallization of salts under influence of light.	Petit Chaptal Dize	1722 1788 1789
Pb sphorus (in hydrogen, nitro men, \&c.)	Bockmann.	1800
Phosphutcted hydrogen	A. Vogel	1812
Ni ric acid	Scheele.	1777
Hestat	Vogel.	1806
Palm oil	Fier ${ }^{\text {Niepee }}$	1832 1814
Resins (mastic, mandarac, gam-	Senctier	1814 1788
boge, ammoniacum, 8	Hagemana	1782
Bitumens all decomposed, all residucs of easential oils.	Digucre .	1839
Celured extracts from flowers	Senebier	1782
Sisi:ihar colouring matters spread upon paper.	Herschel	1842
Yellow wax bleached ;	Pliny	cent. A.D
Eudoxia macrembolitisea (purple dye).		soth cent.
Other purple dyes . . .	Cole	1684
Oils generally	Senebier	1788
Nitric ether -	Senebier	1788
Nicotine	Henry \& BoutronCharlard.	1836
Santonine	Merk	1883

Effecs of Hydrogen Peroxide on Sensilize Plates.-Dr W. J. Russell made a series of experiments on the effect of exposure of sensitive plates to the action of vapours and gases for long periods. It has long been known that contact of plates with such substances as wood caused a sensitive surface to show "fog" on devclopment. By a somewhat exhaustive series of experiments, Russell showed that the probable cause of this forg is hydrogen peroxide, since substances which favoured its formation produced the same effect. This is somewhat remarkable, as this same substance will completely destroy the effect that light has had on a sensitive plate; indeed, it affords one way of destroying a light image on a sensitive collodion plate. The experiments of Russell give a warning to store exposed plates for brief periods. It appears that negatives wrapped in paraffin paper are secure from this danger.

The Agplication of Photography to Quantitalive Mraswres.-In order to employ photography for the measurement of light it was necessary that some menns should be devised by which the opacity of the deposit produced on the development of a plate could be determined. It is believed that in 1874 the first attempt was made by Sir W. Abney to do this. In the Phil. Mag. he showed how density could be measured by means of an instrument, the diaphanometer, he had devised, in which transperent
black wedges were used to make matches between the naked light and the same light after passing through the photographic opecity that had to be measured. In 1887, owing to the perfecting of the rotating sectors, which could be made to increase or diminish the apertures at pleasure during its rotation, the measurement of opacities became easy. The Rumford method of comparing the light through the deposit with the naked beam, uming the sectors to equalize the illumination, was adopted, the deposit being placed between the light and the scroen, the comperison light being a beam reflected from the same light on to the screen.

Owing to the fact that photographic deposit scatters light more or less, the opacities measured by this plan were slightly greater than was shown when such opacitics were to be used for contact printing. The final plan adopted by Abney was to place the part of the plate carrying the deposit to lie measared bchind a screen
 constructed as above. CD (fig. © is a dull black card with an apmrture rut in it which may be of any de: \quad ad shayle. This aperture was covered parent paper, as was also a jwrtion B, the same size as A_{1} but pasticl on the black card itself. Light throwin isom behind A would be matched with light thrown on to \mathbf{B} from the front wisa a rod in the path of this last beam was made to prevent this light Lalling on A. When a portion of a plate bearing deposit was pliced behind and close to A, the bght thrown on B had to be diminished by the sector till the two squares appeared equally bright and the aperture of the sector was noted and compared with that required when the deposit was removed.

With this screen accurate measures of printing densitics can be made, and it can also be used in the determination of the comparative photographic brightness of the light issuing from different obiects. For instance, the relative brightness of the different parts of the corona as scen in a total eclipse can be readily determined if a " time scale" of gradation is impressed on the plate on which it is taken. Both acale and streamer can then be enlarged optically and thrown on the part of the screen' A. The measures of the streamer densities can then be directly compared with the densities of the scale and the relative "photographic " brightness of the different parts of the streamer be ascertained by comparison with this ecale also.

The mme method of measurcment was adopted in ascertaining quantitatively the sensitiveness of the spectrum of ordinary plates and of plates in which dyes are present. The figures on PI. IV show reproductions of plates which were exposed to the spectrum. No. I in a continuous spectrum taken with the electric light; no. 7 is an impressed continuous apectrum; no. 8 shows the bright lines of metals; no. 3 the line spectrum of volatilized lithium and sodium to indicate the position of the spectrum colours. Nos. 4 and 2 are the absorption and fuorescent spectra of eosin. No. 5 is the sraduation scale formed by a bromogelatin "Seed" plate stained Fith homocol, a cyanine derivative sensitive to the red; no. 6 is a similar scale formed by an unstained plate. The small zumbers placed below the different bands show an empiric scale thich is made to apply to each of them. The firot step is to measure

Fig. 5.
the opacity of the gradation scale, next the opacity of the continuous spectrum at the various numbers of the empiric scale, and also the opacity of the other bands at the same scale numbers. The contunuous apectrum will give the seasitiveness of the plate to the different parts of the apectrumia wben the measures of its different opacities are compared with those of the scale of gradation, and a curve of mensitiveness can be plotted from these comparisons. It is evinent that the measures of the other two bands will give us information as to the fluorescence and the absorption of the eovin. Fig. 5 shows the curve of opacity of the image of the spectrum at
its different paris, and alco the curve of senuitivenem of the plate to the different parts of the spectrum. This last is derived frome comparison of the measured densitics with those of the gradation scale.

Measuremens of the Rapidity of a Plate.-The first at tempt that was made to ascertain the rapidity of a plate was by Abney (Phil. Mag. 1874), who demonstrated that within limits the transparency of deposit varied as the logarithm of the exposure.

The hast formula has been accepted for general use, though it is believed that it is not absolutely correct, though very approximately true and sufficiently near to be of practical value. This belief is based on the further researches described below.
In 1888 Sir W. Abney pointed out that the speed of a plate could be determined by the cormula $T=E-\mu(\log E+C)^{2}$, where T is the transparency, E is the exposure (or time of exposure \times intensity of light acting), and C a constant. If the abscissae (exposures) are plotted as logarithms, the curve takes the sime form as that of the law of error, which has a singular point, a tangent through which lies closely along the curve and cuts the axis of Y at a point which has a value of $2 / \mathcal{J}$ E. If the total transparency be unity. this ordinate has a value of 1.212 , the singular point havinga value of o-606. The ordinate of the zero point of the curve will be where the tangent to the singular point cuts the line drawn at $\mathbf{1 . 2 1 2}$. The difference between the measurements of this zero point for two kinds of plates (i.e. C in the formula) from the points in the abscissae marking the same exposure, will give the relative sensitiveness of the two plates in terms of $\log x^{\prime}$. In 1890 Hurter and Drifficld (Journ. Soc. Chem. Ind. Jan. 19, 1891) worked out a less empirical formula connecting the exposure E with the density of deposit, which in an approximate shape had the form $D=\gamma \log (\mathrm{E} / i)$, where D is the density of deposit (or $\log 1 / \mathrm{T}$), i the "inertia "of the plate, T the transperency of the deposit. In the customary way a snall portion of a plate was exposed to a constant light at a fixed distance and for a fixed time, and another small portion to the same light for double the time, and so on. By measuring the densities of the various deposits and constructing a curve, a large part of which was approximately a straight line, it was fonnd possibte. by the production of the straight portion to meet the axis of \mathbf{X}, to give the relative sensitiveness of dificreat plates by the distance of the intersection from the zero point L. (See also Exposure Melers, below, under $\$ 1$, Apparatus.)

Effect of Temperature on Sensitiveness.-In 1876 Abncy showed that heat apparently increased, while cold diminished, the sensitiveness of a plate, but the experiments were rather of the qualitative than the quantitative order. In 1893 , from fresh experiments, ${ }^{2}$ he found that the effect of a difference in temperature of some $40^{\circ} \mathrm{C}$. invariably caused a diminution in semsitiveness of the sensitive salt at the lower temperalure, a plate often requiring more than double the exposure at a temperature of about $-18^{\circ} \mathrm{C}$. than it did when the temperature was increased to $+33^{\circ} \mathrm{C}$. The general deduction from the experiments was that increase in temperature involved increase in sensitiveness so long as the constituents of the plate (gelatin, \&c.) were unaltered. Sir James Dewar stated at the Royal Institution in 1896 that at a temperature of -180°. C. certain sensitive films were reduced in sensitiveness to less than a quarter of that which they posscss at ordinary temperatures. It appears also, from his subsequent inquiry, that when the same films were subjected to the tempersture of liquid hydrogen ($-252^{\circ} \mathrm{C}$.) the loss in sensitiveness becomes asymptotic as the absolute zero is approached. Presumably, therefore, some degree of sensitiveness would still be preserved even at the absolute zero.

Effect of Small Intensities of Light on a Sensitive Sals.2-When a plate is exposed for a certain time to a light of given intensity, it is commonly said to have received so much exposure (E). If the time be altered, and the intensity of the light also, so that tbe exposure (time X intensity) is the same, it was usually accepted that the energy expended in doing chemical work in the film was the same. A series of experiments conducted under differing conditions has shown that such is not the case, and that the more intense the light (within certain limits) the greater is the chemical action, as shown on the development of a plate. Fig. 6 illustrates the results obtained in three cases. The exposure E is the same in all cases. The curves are 30 drawn that the scale of abscissae
${ }^{1}$ Those applicable to the correction of star magnitudes as determined by photography have been verified and confirmediby Schwarzchild, Michalke and others.
: Abney, Proc. Roy. Soc. 1893.
${ }^{2}$ Abmey, Precs Roy. Soca 1893, and Journ. Camena Club, 1893 -
is the intensity of the light in powers of $\mathbf{- 2}$, and the ordinates show the percentages of chemical action produced. If the chemical action remained the same when the intensity of light was reduced, E remaining the same, each of the curves would be shown as a straight line at the height of 100 , which is the transparency of deposit with the unit of light. As it is, they show diminishing percentages as the light intensity is diminished.

Fic. 6.
Thus, whon the intensity of the ligbt is reduced to ${ }^{2}$ ' of the original, and the time of exposure is prolonged 64 times, the usciul energy expended on a lantern plate is only 50% of that expended when the light and time of exposure are each unity. In the cases to which the diagram refers, the light used was a standard amyl acetate lamp, and the unit of intensity taken was this light at a distance of 2 ft . from the plate, and the unit of time was 10 seconds. The lamp being moved to 16 ft . from the plate, gave an.intensity of $\frac{1}{8} x$ the unit, and the time of exposure had to beincreased to 640 seconds, so that E was the same in both cases. Further, it was found that when the times of exposure on different parts of the plate were successively doubled, light at a fixed distance being used for one series, and altered for a second series, the slopes of the curves of transparency (i.e. tho gradation) were parallel to one another. This investigation is of use when camera images are in question, as the picture is formed by different intensitics of light, not very different from those of the amyl acctate lamp, the time of exposure being the same for all intensities. The deductions made from the investigation are that with a slow plate the energy expended in chemical action is smaller as the intensity is diminished, while with a quick plate the variation is much less. As a practical deduction, we may say that to obtain proper contrast in a badly lightod picturo it is advisable to use a slow plate.

Fic. 7.

Effect of vary Intense Lighs on a Sensitive Salk. - Another investigation was made as to the effect of very intense light on sensitive surfaces. In this case a screen of step-by-step graduated opacities was made use of, and plates exposed through it to the action of lights markedly differing in intensity, one being that of the amyl acetate lamp, another that of the are light, and a third the light emitted from the spark of a Wimshurst machine. Tbe exposures were so made that one of the opacities produced on the plate from exposure to each source of light was approximately the same. The unit of
intensity of light is, of course, in each case widely differeat. The slope of the curve due to the spark light is less steep than that due to the arc light, and the latter, again, is much less steep than that due to the anyl acetate lamp. A further investigation was made of the effect of increasing the time of exposure when the intense light was diminished, and it was found that with all plates the useful chemical energy acting on a plate was least with the most intense light, but increased as the intensity diminished, though the time was correspondingly increased. This is the roverse of what we have recorded as taking place when a comparatively feeble light was employed. Further, it was proved that the variation was greatest in those plates which are ordinarily considered to be the most rapid. It follows, therefore, that there is some intensity of light when the useful chemical energy is at a maximum, and that this intensity varies for eacb kind of plate.
Intermittent Exposure of a Sensitive Sall.-The same investigator has shown that, if a total exposure is made up of intermittent exposures, the chemical action on a sensitive salt is less than it is when the same exposure is not intermittent. It whs also proved that the longer the time of rest between the intermittent exposures (within limits) the less was the chemical action. We may quote one case. Exposures were first made to a maked light, and afterwards to the same light for six times longer, as a rotating disk intervened which had 12 apertures of 5° cut in it at equal intervals apart, and 720 intermittent exposures per second were given. The plate was moved to different distances from the light, so that the intensity was altered. The apparent loss of exposure by the intervention of the disk increases as the intensity diminishes, the ratios of the chemical energy usefully employed of the naked light exposure to that of the intermitting exposures being:-

$$
\begin{aligned}
& \text { For intensity }
\end{aligned}
$$

These results appear to be explicable by the theoretical considerations regarding molecular motion.

Effect of Monochromatic Light of Varying Wavi-lenghts on a Sensitive Sall.-It has been a subject of investigation as to whether the gradation on a plate is altered when exposures are made to lights of different colours; that is to say, whether the shades of tone in a negative of a white object illuminated by, say, a red light, would be the same as those in the megative if illuminated by a blue light. Abney ${ }^{1}$ announced that the gradation was different; and, quite independently, Chapman Jones made a gencral deduction for isochromatic plates that, except with a certain developer, the gradation was steeper (that is, the curve shown graphically would be steeper) the greater the wave-lengths of the light to which the sensitive salt was subjected. For plates made with the ordinary haloid salts of silver Chapman Jones's deduction requires modification. When monochromatic light from the spectrum is employed, it is found that the gradation increases with wave-lengths of light which are less, and also with those which are greater, than the light whose wave-lengths has a maximum effect on the sensitive salt experimented with. Thus with bromo-iodide of silver the maximum effect produced by the spectrum is close to the blue lithium line, and the gradation of the plate illuminated with that light is less steep than when the light is spect rum violet, green, yellow or red. From the red to the yellow the gradation is much the steepest. Whether these results have any practical bearing on ordinary photographic exposures is not settled, but that they must have some decided effect on the accuracy of.three-colour work for the production of pictures in approximately natural colours is undouhted, and they may have a direct influence on the determination of star magnitudes by means of photegraphy.

Reproduction of Colourod Objects by means of Three Pholographic Positives.-Iocs's Process.-A practical plan of producing images in approximately the truc colours of nature has been devised by preparing tbree positives of the same object, ane
${ }^{1}$ Proc. Roy. Soc., rgoo.

Pruminated by a red, the otherby a green, and the third by a hloe Hight; the fronges from these three tramsparencies, when visually combined, will show the colours of the object. This plan was ecientifically and practucally worted out by F. E. Ives of Phila. delphia, though in France and elsewhere it had been formulated, especially by Hauron Da Cros.

The following description may be taken as that of Ives's process: by the trichromatic theory of colour-vision every colour in sature can be sccounted for by the muxture of two or three of the three-colour sensations, red, green and biue, to which the eye is soppesed to respond. Thus a mirture of a red and green sensation produces the sensation of yellow; of a green and blve, that of a blue-green; of red and blue, that of purple, and of all three, that of white. For the sensations we may substitute those colours Which most mearly respond to the theoretical sensations without any material loas of purity in the resulting sensation. We must take the spectrum of white light as the only perfect scale of pure colours. It has been proved that the red sensation in the eye is excited by a large part of the visihle speetrum, but with varying intensities. If, then, we can on a photographic plate produce a developed image of the spectrum which exactly corresponds in opectry and position to the amount of red stimulation excited in those regions, we shall on illuminating a trassparent positive taken from such e negative with a pure red light, have a representation of the spectrum such as would be seen by an eye which was only endowed with the sensation of zed. Similarly, if negatives could be taken to fulfil the like conditions for the green and for the blue sensations, we should obtain positives from them which, when illuminated by pure green and blue light respectively, would show the spectrum as seen by an eye which was only endowed with a green or a hive sensation. Evidently if by some artifice we can throw the coloured images of these three positives on a screen, superposing them one over the ot her in their proper relative positions, the spectrum will be reproduced, for tbe overlapping colours, hy their variation in intensity, will form the coloors intermediate between those tsed for the illumination ol the potitives. For the purpose of producing the three suitable negatives of the spectrum, three light-filters, through which the image has to pase before reaching the photographic plate, have to be found. With all present plates these are compromises. Ronghly speaking, the screens used for taking the three negatives are an orange, abluish-green and a blue. These transmit those parts of the spectrum which answer to the three sensations. When these are obtained an inage of a coloured object can be reprodsced in its true colours.

Abney devised sensitometers for determining the colours of the ecreens to be placed before the lens in order to secure the threecolour negatives which should answer thewe requirements Their production depends upon the same principles indicated as necessary for the correct rendering in monochrome of a coloured object. When the sensitometer takes the form of glasses through which light is transmitted to the plate, the luminositics of the coloured fights transmitted are determined, and also their percentage composition in terms of tha red, green, and blue lights, and thence are deduced the luminosities in terms of red, green and blue. For ascertaining what screen should be used to produce the red negative the Juminosity transmitted through each glass is so adjusted that the luminosity of the red components in each is made equal by rotating a disk with correct apertures cut out close to the row of glasescs. This gives a sensitometer of equal red valuea. A coloured screen has to be found which, when placed in front of the lens, will cause the opacities of the deposit on the plate, corresponding to each square of glise, to be the aame throughout. This is done by trial, the colour being altered till the proper result is obstained. In asimilar way the "green" and "blue "screens ase determined. Coloured pigments rotating on a disk can also be employed, as indicated in the paragraph on the correct rendering of colour in monochrome.
As to the camera for the amateur, whose plates are not as a rule large, wll of the three negatives should be obtained oa one plate, sinoe only in this way can they be developed and the densities increased together. (For commercial work the negatives often capnor be taken om the tame plate, an it would make the plate too large to manipulate.) The camera may be of an ordinary type, with a repeation beck, bringing succespively three diffeseat portions of the plate opposite the lens. It is convenient to have a slide, in front of which a holder containing the three acreens can be fixed, which will then be close to the plate; such a one has been devised which will then be close to the prate; such a one has been devised
one as the plate in moved into the three positions. The three exposures are giyen spparately, after which the plate is ready for devclopment. The three separate exposures are, however, a souree of trouble at times, particularly in the case of landscapes, for the lighting may vary and the sky may have moving clouds, in which ease the pictures would show variations which should not exist. Sanger-Shepherd has a " one-exposare" camera by which the three images are thrown aide by side on the plate. Thus any movement in the picture affects all three negatives alike. Abney has also introduced a "one-exposure" camera which takes in a larget angle than that of Sanger-Shepherd. The next point th the expoenres which should be given through each screen. This can be done by placing in front of the plate and extending ite whole length a scalc of gradation through which the light coming from a sun-illuminated white card passes, as well as through the screensIn the case of the three-exposure camera the times of exposure are varied till the densitits of the inage of the gradation appear the ame in each of the three innages. In the case of the one-expoture camera, the light reaching the plate through the acreens is altered by entting off with a shutter more or less of the lens used. As the plates enployed for the putpose of the three-colour negatives must be geasitive to every colour, the ondinary dark-room light should be mont cautiously used. If uned at all, it should be very feeble and development must be carried out in a dish with a cover to it. The plate is manipulated in the usual way.

Joly's Process.-Professor J. Joly, of Dublin, in 8897 introduced a colour process by which an image in approximately natural colours could be thrown upon a screen by an optical lantern, only one transparency being employed, instead of three, as in the Ives process. A" taking "screen was ruled with alternating orange, bluegreen and blue lincs ito to zto in. apart, touching one another and following one another in the above order. When such a screen was placed in front of a sensitive plate in the camera, and exposure made to the image of a coloured object, there were practically three negatives on the same plate, each being confined to the area occupied by lines of the came colour. The shades of colour and the depth of the colours used in ruling depended on the brand of plate. When a perfect triune pegative was obtained, a transpareacy was made from it, and in contact with this was placed a screen ruled with lines the same distance spart, but of the colours corresponding to the three colour sensations, namely red, green and blue. The red lines were made to fall on the image taken tbrough the orange lines, the greet on that of the blue-grean, and the blue or vialet on that of the blue. On the screen there are practically three difierently coloured inages shown by one transparency. The eyc blends the different colours together and a picture is seen in approximately the correct colours of the original.

Aulochrome.-A very remarkable process, founded on J Joly's process, was introduced in 1907 by A. Lumiere et ses File of Lyons. Starch grains of very minute sire, some of which were dyed with a red stain, a second portion with a green, and a third portion with a blue, are mixed together in such proportions that a fine hyer of them appears grey when viewed by transmitted light. Under a magnifying glass the grains are coloured, but owing to the want of focus in the eye the colours blend one with the other. Such a layer is embedded on the surface of a glasia plate in a waterproof vehicle, and a film of sensitive emulsion held ia silu in some material, the composition of which has not been published, covers this layer. When such a plate is placed in the camers, with the back of the plate next the lens, the light passes through the coloured granules, and again we have three negatives on one plate, but instead of each megative being represented by lines as in the Joly process they are represented by dots of silver deposit. Owing to the way in which the threecoloured fim is prepared, it is evident that a positive taken from such a negative could not be backed with granules of the right colour, as the granules are placed at random in the layer. Lumiżre, to overcome this difficuity, converted the negative into a positive in a very ingenious way. The plate was developed with pyrogalific and ammonia in the usual way, but instead of fixing it, it was plunged into a solution of potassium permanganate and sulpharic acid. This dissolved all the silver that had been deposited during development and left a film of unaltered sllver salt. On looking through the plate the colours of the coloured layer coming through the different dots where the silver was at
first deposited appeared in view, and the image was the image in colour of the object photographed. The plate after being washed was taken fato the light and redeveloped with an alkaline developer, which converted the sensitive sait of silver to the metallic state. The image now consisted of hlack particles of silver and the coloured image. The plate was next fixed in hyposulphite of soda to remove any unreduced silver salt that might be left, and the picture after washing was complete. The coloured image so ohtained is a very close representation of the true colours, hut as the "taking" screen is the same as the "viewing" screen some little variation must result.

Positives in Three Colours.-Ives was the first to show that a transparency displaying approrimately all the colours io mature could be produced on the same principles that underife the threecolour printing. This he effected by prunting each of the three negatives, produced for his triple projection process as already described, on gelatine films sensitized by hichromate of potach. Each of the three transparent films was dyed with 2 colour complementary to the colour of the light which he transmitted through the positives when used for projection. Thus the "red" positive he dyed with a blue-green dye, the "green" positive with a purple dye, and the." blue "positive with a yellow dye. These three films, when superponed, gave the colours of the original ohject. Sanger-Shepherd has made the process a commercial success (see Process) and produces lantern slides of great beauty, in which all colours are correctly rendered. Instead of using a dye for the " red " transparency, he converts the silver image of a positive image into an iron salt resembling Prussian blue in colour.
(W.DE W.A.)

II.-Protoginpeic Apparatos

Photographic apparatus consits ementially of the camera with lens and stend, lens shutters, exposure meters, prepared plates for the production of negatives or transparencies, sensitive papers and apparatus for producing positive prints, direct oc by enlargement. Beaides these there are many subsidiary accessories.
Since the introduction of highly sensitive dry plates and thetr extended use in band cameras, the art and practice of photography have been rovolutionized. Numeroos special forms of apparatus have been created suitahle for the requirements of the new photography, and their manufacture and sale have become important industries. The value of the exports of photographic materials from the United Kingdom io 2006 was $\mathrm{f} 22,7 \times 6$. The most important improvement has been in the construction of anestigmatic lenses, which, having grest covering power, flatness of field, and freedom from astigmatism, can be worked with very much larger apertures than was possible with the earlier forms of rectilinear or aplanatic lenses. The increased rapidity of worklog thus gained has rendered it easy to photograph objects in very rapid motion with great perfection. This has encouraged the construction of the very light and compact hand cameras now so univenally in use, whille, again, their use has been greatly cimaplified by improvements in the manufacture of sensitive plates and films and the introduction of light, flexible, sensitive films which can be changed freely in daylight. The introduction in 1907 of Mestrs Lamiere's "Antochrome "process of colour photography has also been a great advance, tending to popuiarize photographic work by the faclity it ofers for reproducing ohjects in the colours of nature.

The Camers.

Historical.-The camera obscura (q.e.) was first applied to photographic use by Thomas Wedgwood between 1792 and 1802 . No description of his camera is available, but it was probably one of the sketching camerns then in use. In $18_{12} \mathrm{~W}$. H. Wollaston found that by using a meniscus lens with a concave surface, towards the object and the convex towards the screen, a diaphragm being placed in front, the projected image of the camera obscurn was greatly improved in sharpness over a larger field. The first photographic lenses made by V. and Ch. L. Chevatier in Paris ($1830-1840$) were on this principle. The photographic camera in its simpleat form is a rectangular box,
one ead of which is fitted to carry a leas and the opposite ons with a recess for holding the focusing screen and plate holders, these ends being connected by a ngod or crpapding beneboard and body, constructed to beep out all light from the semaituve plate except that passing through the lens. In 1816 Jemeph Nictphore Niepce, of Chalon-sur-SaOne, for his photopraphac experiments rasde a little camera, or artifical eye, with a bor six inches aquare fitted with an elongated tube carrying a leotucular glass. There are now in the Chalon Muscumpaneras of his with an iris diaphragm for admitting more or leas light to the lens; some with en scoordion bellows, othere with a double expanding rigid body for adjustong the focua. The sis dimphragm whas adopted later by Chevaluer for his photographic lenser. In 1835 W . H. Fox Taboot constructed simple box cameras for taking view of his house on mensitive paper, and claimed them as the first photographs of a building (Phil Mas 1839, 14, p. 206). Fr. von Zobell and C. A Secinheil, carly in 1839, made a camere with an opert glass lens for taking landscapes on paper. Iater in 1839 J . W. Draper succesefully msed a camera for his daguerreotype experiments made of a spectacie lens, 14 in focus, fitted into a cipar bor. He also used a caroert. fitted with a concave mirror instead of a lens. Similar cameras were constructed hy A. T. Wotcott (1840) and R. Beard (1841) for reversing the image in daguerreotype portraith. They have also been recosmmended hy V. Zeager (1875) and D. Mach (2890) for scientific work.
L. J M. Dequerse's camera, as made hy Chevalier in 1839 for daguerreotype, was of Niepce's rigad double body type, fitted with an achromatuc meniscus lens with duphragm in front on Wollaston's principle, the back part with the plate moving away from the lens for focusing, and fixed in its place with a thumbscrew. This expanding errangement enabled lenses of different focal lengths to be used. With modifications cameras of this type were in use for maoy years afterwards for portrail and studio purposes. For work in the field they were found snconvenient, and many more portable forma were brought out, among them G. Knight's and T Ottewill's single and double foiding cameras (1853), made collapsible with hinges, so as to fold on to the base-board. Cameras with lught bodies made of waterproof cloth, \&c., also came into use, hut these were superseded hy cameras with collapsible bellows-body of leather, which, invepted by Niepce, were used in France, wo $\mathbf{1 8 3 9}$, by Baron A P de Sfguier and others for daguerreotype The first record of them in England 2s. apparently, J Alkinson's portable stereoscopic camera of parallel-side bellows form ($P A$ Jowrm 1857, 3, p 261), which was soon followed by C. T. H. Kinnear's lighter conical lorm, made by Bell of Edinburgh (Ph. Journ 1858, 4, p 166) They have since been made in various patterns, conical, ohlong and square, by P. Meagher, G. Hare and others, and are still, in modifed forms, in general use as st udio, field or hand cameras When wet collodion plates were used many cameras were futed with arrangements for developing in the field.
Information on thene and other carly cameras will be found in the photographic journals, in C. Fabre's Traist encycloptedaque de pholopropitie, vol. E_{2}, and in J. M. Eder's Auffiloriches Handbuch der Prolographee, 2nd ed., vol. i. pt. if.
The distinctive fenture of preseat day photography is the world-wide use of the hand camera. Its convenience, the ease with which it can be carried and worked, and the renarkably 10w prices at which good, useful cameras of the kind can be supplied, concurrently with improvements in rapld sensfive plates and lenses, heve conduced to this result. It has also had a valuable educational mfluence in quickening artistic perception and scientific inquiry, besides ite use in depicting acenes and pansing events for historical record. Small portable camerns had been made by B. G. Edwards (1855), T. Scaife (Pistolgraph, 1858), A. Bertsch (1860), T. Ottewill (1861), and others, but it was not until rapid gelatin dry plates were avaikabie in r8Br that T. Bolas brought oust his " detective " camers (Ph. Jokrs. 188t, p. 59). It consisted of a double camera (one as finder, the other for taking the picture) eacloned in another box, suitably covered, which also contained the double-plate carriers and had apertures
in front of the viewing and taking lenses. In another form the Ginder was omitted. A month later A. Loisseau and J. B. Germeuil-Bonnaud patented an opera glass camera. Various forms of portable magazine cameras followed, among them \mathbf{A} Pumphrey's "Repeating Camera "(1881), W. Rouci's" Eureken" (1887), R. Krugener's camera (book form, 1888), and others in collapaible or box forms disguised es books, watches, \&ce, hut they did not come into general use before 1888, when the Eastman Company of Rochester, U.S.A., brought out their very portable roll-film cameras, now known under the trade name of "Kodak." The manufacture of these and other light hand cameras has since become a very important and flourinhing industry in Great Britain, Germany, France and the United States. It is noteworthy that the most modern form of hand camera, the refiex, goes back to an early type of portable camera obscura, figured by Johann Zahn in 1686, in which a mirror was used for reflecting the image on to a horizontal locusing screen, at the same time reversing it. The first photegraphic camera on this principle was T. Sutton's (1860), which has served as a basis for many subsequent developments. A.D. Loman's (r889) and R. Krugener's (1891) were carly examples of the hand camera type, but great improvements have since been made.

Modern cameras differ so much in detaile of improved construction that only a few of the more important requirementa can be noticed. A camera should be well and atrongly made of measoned wood or of metal, perfectly rigid when set up, to avoid any ahifing of the axis of the lens in respect to the 'sensitive plate. The front and back of the camera should normally be vertical and parallel, and the axis of the lens perpendicular to the centre of the plate, but crrangements are usually made by vertical and lateral adjuotmenta on the camera front for raising the lens to take in less foreground or vice versa, or for moving it right or left, the latter becoming a vertical movement when the camera has to be turned on its side. In the Adams" Idento " camera the lens and finder can be rotated together on the rising front according as the camera is used horizontally or vertically, the finder showing in either case the identical view projected on the plate. The best modern field cameras are fitted with a swing-back or swing-front and sometimes with both. A swing-back is necessary for bringing back the plate to the vertical position, so as to prevent convergence of vertical lines, when the camera has to be tilted. A rising owing-front, in which the lens is tilted, answers the same purpose, provided the camera is kept level. If further tilting is necessary, when taking high buildings sac., the swing-back and front may both be required, but must be kept vertical and parallel and the effect is that of an abnormal riang front. Many modern cameras are firted with a double rising front. The vertical and side swings are also useful for equalizing the definition of objects at different distances from the camera, but they alter the perspective. These swing-movements should preferably be round the central horizontal or vertical axis of the back or front, but are frequently effected by simple inclination of the back or lens front on a hinge. When the rising front is used a lens of extended covering power is desirable, and it may be neces sary to stop it down to obtain good definition over the extended area of the picture. A slight inclination of the lens may also be useful in readjusting the cocus. The camera and plate carriers must be perfectly light-tight and all inner bright surfaces made dead black to prevent reflections from bright spots being thrown on the plate. The black varnish used, preferably of shellac and lampblack in spirit, must have no deleterious effect on the plates. Although the weight and bulk are increased it is convenient to have the carnera square and fitted with a reveruible back, 10 that the greatest length of the plate may be horizontal or vertical, es desired. Many cameras are fitted with revolving backs to be used in either position. In some French cameras the back part of the camera. with the bellows is reversible, to be used upright or horizontal.

Focusing - The earlier cameris were locused by drawing out the back and clamping it with a thumb-screw working in a slot in the base-board. When bellows cameras were introduced they were focused by an endless screw, and these are still used for large copylig cameras. Most modern cameras are fitted with rack and pinion movements working either in front or at the back of the camera or both. Many hand cameras requiring to be brought to focus at orace, are fitted with studs (infinity catches) which fix the front in focus for distant objects, nearer distances being noted on an engraved scale attached to the base-boord. Such scales should be verified by measurement, In hand cameras with fixed infinity focus, the mecescary adjustrments for distance of near objects are made on the lens mount. The focusing screen may be ruled with paralici cross lines for purposes of measurement. and as a check on the verticality of the camera when photographing buildings or other objects with vertical lines. The distance of the lens from the focusing screen and from the sensitive plate in the dark slide must coincide exactly. This can be tested by measurement or by focusing a
bright, well-defined object on the screen and then on a sroundglam plate placed in each of the slides to be examined. A level or orher means of showing that the camera is level and the plate vertical should be attached to the camern, also a view meter or fiader. Showing the exact extent of the picture on the focusing glass. In the view meter the picture in viewed directly througb a pin-hole mounted at the beck of the camera as it appears in a frame with croas wires on the rising front, adjusted to the sive of the plate and the focus of the leas Finders are practically small refler cameras. and a reduced image is seen reflected from a mirror or prism. A roctangular concave glase mounted on the camera is also a convenient form, it can be combinod with a mifror for vertical observation, and in Wation's new form is also arranged as a level and telemeter (B. J. A. P. 724, 1908). The image scen in the finders ahould correspond epletly with that on the plate. When the rising front is used special arrasgements have to be made to ensure the correspondence of the images in the finder and on the groundflass. This s done in the "Adams Identowcope" (igo8), which is fitted to the swing front and adjusted by a lever to follow the movement of the lens.
Plate-holders or Dapk-slides.-The dark-alides or backs, holding sensitive plates, are made cither single or double, the former usually for wet plate, the latter for dry plates. The ordinary book-form double dark-alide has been in use since the early daya of calotype paper negatives, and contains two plates ecparated by a blackened metal plate; three of them usually form a set, the shutters being numbered 1 to 6 , the odd numbers on the opening side. Inner frames can be used for amaller plates if desired. The slides ahould fit easily into the camera and the shutters run smoothly out and la. They must be perfectly light-tight, the corner joints, the binges in the chuttern, and the openings in the sides and top of the bookform olidee are all weak points requiring occasional caref ul examination or protection by metal platea. The ahutters of dark-alides are either jointed or solid and removable; the former is perhaps the more convenient, but botb forms may become liable to let in bight. Various forms of solid slides, single and double, are now made in wood or metal, or of wood for the frame and metal for the shutters; they are lighter, more compact and less liable to admit light to the plates. In some cases one slide can suffice for the exposure of several plates or stiff films, enclosed in separate envelopes, as in the "Wishart-Mackenrie" slide, the "Victrix" and other similar ones, or containcd in a single packet, as in the
"Premo Filmpack," and similar arrangements which enable twelve thin celluloid firms to be placed in the camera, exposed one after the other, and removed again mafely in daylight the pack being replaced, if necessary, by another. The packets of films are made of light cardboard, and effect a great saving of bulk and weight (fig. 1). Rollholders are alsoa convenient way of carrying sensitive celluloid films in lengths of six or twelve exposures, rolled on spools, which can be changed in daylight. Changing boxes for holding

Fig. 1.-Premo Film-pack.
 a reserve of plates or cellu-
loid films in sheaths, are used with some magazine and other cameras. They are arranged to fit on the camera in place of the dark-slide and the plates are changed automatically so that exposed plates are placed in order succeasively at the back, fresh plate soing forward for expocure and the number of the exposure being recorded at the same time.

Studio cameras. for portraiture, are usually of the square bellows type, of solid construction, to take large and heavy lenses; adjustable from front and back with rack and pinion movements, to enable long or short focus lenses to be used, with extra extension for copying or enlarging. They are generally fitted with repeating backs, allowing two or more exposures to be made on one plate. The backs are square or reversible, so that the plates can be used upnight or lengthways, and are fitted with double swing movements at the back. When single dark slides are used they are best fitted with a flexible shutter to avoid jerking and movement of the camers. For portraiture they are mounted on solid pillar stands, being raised or lowered with an endless screw or rack-work, and the table-top usually has vertical and horizontal angular movements. Large camerras with long extension for copying purposes are made in many forms vith special arrangements for the various photo-mechanical processes, and are mounted on substantial table-stands with screw adjustments for obtaining the various motions above noted, and also a rectilinear traversing motion right or left. All these stands should be absolutely rigid and free from tremor. Process camerap are, however, oometimes mounted,
together with tho copying board, on swinging teands, to avoid the effecter of vibration.

Portale and fred cameras include camerts of the Hare and Mengher typea for outdoor morts and general purpones on plates is in. $\times 12$ in. to 81 in. $\times 61$ in., and in lighter forms from 61 in. $X 4^{\frac{3}{3}}$ in. to $4 \frac{1}{4}$ in $\times 3 i \ln$. For general purpones they are usually made with equare bellows and folding tuil-board, rather more mubetantially than those with conical bellows intended for outdoor work. There are many patterns, the principal modern improvements in field cameras being swinging fronts, tripod head and turstable in the base-board, double and sometimes triple extension movements from the back and front for long or short focus lenses, and the use of aluminium for some of the metal-work. They are fitted with a focusing screen and are intended for use on a tripod stand, though some of the smaller sises of the modern light hased or stand cameras can be used as hand caneras with finders. The plates are carried in the usual dark-alides, but the emaller sizes, from half-plate downwards, can be fitted with roll-holders for flexible films, or with film packs or other daylight changing arrangements.

Folding and Hand Cameras.-Folding cameran form a clase of modern portable cameras which have many conveniences for hand or stand work Irom

Frc. 2.-Sinclair Folding Camera. quarter-plate to 7 in. X 5 in. They may have all the fittings of a stand camera and be made to taloe glass plates, fat or roll films, but have the advantage of forming when clomed a convenient package encloting canera, lens and shutter, all in ponition for immediate use when opened out (fig. 2). Most of them are fitted with focusing glass and finders, and may locus by ecale in the same way as hand cameras With an apparatus of this kind on a light stand any clisa of ordinary indoor or outdoor worls can be undertaken within the size of the plate, and the extension of the bellows, which should be quite double the focus of the lens

The multiplicity of forms and arrangements of hand cameras makes it difficult to classify them into distinct types; but they may be mainly divided into box and folding cameras, and further into (c) cameras with enciosed changing magazines for plates or flat films; (b) with enclosed roll film on spoois; (c) with separate changing magazines, changing boxes or roll-hoiders; (d) with single, double or multiple plate carriers or film-packs. Most cameras that will take glass plates in the ordinary pate-holders will take cut films in suitable sheaths or can be fitted with envelope alides, firm-packs or roll-holders. The normal size for hand cameras is the quarterplate ($4 \mathrm{l} \mathrm{in} . \times 3 \mathrm{i} \mathrm{in}$), or the continental size $9 \times 12 \mathrm{~cm} . ; 5 \mathrm{in} . \times 4 \mathrm{in}$. is also a popular size, and cameras for the poat-card size, $5 \frac{1}{2}$. $\times 3$ in. or $15 \times 10 \mathrm{~cm}$. have been largely adopted. Smaller sizes are also made for lantern plates and for the lighter pocket cameras, some in the form of stereoscopes, field-glasses or walches. as in the "Ticka," but the pictures are small and require enlarging. Hand cameras are constructed on the same principles as stand cameras, but, being epecially intended for instantaneous work, they are cimplified and adapted for rapid focusing and exposing. The focusing screen is superseded or supplemented by finders arranged to show the limits of the cubject on the plate, the focus being adjusted by the infinity catches and focusing scales above notioed. Swing-backs and fronte ars often dispensed with. but are desirable adjuncts, and a rising and falling front particulariy so. Lenses of fairly large aperture, $f / 6$ to $f / 8$, and good covering power, preferably of the anastigmatic type, or a rapid aplanat, should be used, but for very rapid work anastigmats working from $\mathrm{f} / 4$ to $\mathrm{f} / 6$ will be more useful. Hand cameras can also be fitted with telephoto objectives of large aperture. Some cheap hand cameras are fitted vith single landscape lenses or aplanats working about f/ir or lower, but the want of intensity limits their use to well-illuminated subjects. Shutters of the between-lens type are now generally used in hand cameras, and for ordipary purposes should give fairly sccurate exposures from it to do of a second or less and also time exposures. Some central shutters are speeded for shorter exposures to tho of a second, but for these focal plane shutters are preferable, and for the more rapid exposures to ritre of a second and less are necessary. The shutter should be efficient, regular in action, and readily released by gentie pressure, pneumatic or otherwise. Mechanimm for automatically changing plates or films in hand cameras of the box magazine type must be certain in aclion, simple and not readily put out of order, special care being taken to avoid rubbing or abrasion of the plates in changing or transport. In changing piates or films the number of plates exposed should be recorded automatically, and duplicate exposures prevented as
far an practicable. A circalar lavel placed aner the finder is useful.

The choice of a fand camera depends upon the circumatancen in which it Is to be used, and the purpoee for which it is prisipaly requrred. For generd work and with the modern facilitien for carrying and changing plates and film in daylight, the numerous folding hand or stand comeras for plates, flat or roll films, with full adjustments, will be found most userul. Box or magazine cameras in which a toupply of cut films or plates can be carried, changed mechanically, and expoeed rapidly in surcession. are convenient, but their use is limited and they are liable to get out of order. A third class are the refiex and other hand cameras with focal plane mutters for epecially rapid inatantar equs worls as moticed below. There are two types of light folding hand or stand cameras, epecially adapted for band camera work-thowe made for taking glass plates and cut films, and the folding pocket Kodak or other roll-film cannerts The former are now made of very light construction with mahogany or metal bodies, wooden or alumininm baseboands thin metal darkalides (ing. 3). The cameras of the pocleet Kodak type are of similar construction, but made to talke roll film:

Fig. 3.-Empemann's Pocket Camera. on spools, or with an attachment for focusing glas and dark-alides for taking pistes and cut films Attached to a sling-atrap the quarter-plate size can be quite conveniently carried in se side-pocket. Watson"s "Deft" folding camera is fitted with a foca plane shutter (fig. 4). The "Selfix carbine" camera has a self-erceling front bringing the lens at once into position for une on opening out. Thoee fitted with lenses of fairly large aperture, double extension, and rising and falling fronts are to be preferred. Of box or magazine cameras there is an immense variety. in some tbe lens is fixed in focus for all objects within a certain distance, in others it is adjunted by a focusing acale on the lens or by an extending front. Some have a single magazine, others two
 Focal-plane Camera. or more. Some take only glass plates, others plates or cut films All of them arc, however. self-contained and ready for immediate exposure. One of the earliest forms of single magazine cameras, still in use, as in the "Eurela" and "Yale," is the " bag," in

FIG. 5-Double-magazine Box Camera.

Fic. 6.-The Verascope, Richard.
which a supply of plates or films in sheaths, is kept in a magesine behind the camera, ready for exposure. the plates as exposed being lifted with the fingers into a bag or expanding chamber above the magavine and placed behind the rest of the plates at the back, fresh plate taking its place in front. In come forms the magazines are removable and replaceable by othery. The arrange ment is simple and eflective, bat the bag, usually made of ooft leather or cloth, is liable to wear and puncture, and may malre dust. The cameras with double magazines in which unexposed plates are lapt in one recess and transferred wuccesaively ofter exposure to a mecond recest are more complicated, and many
infatious devices have been invented for effective the change (ig. 5). Some forms are effective and populier an account of their compectnest and readiness for irmmedinte exposure, but there it always a risk of the mechaniom lailing. and care has to be telsen in charging them to lay the platee truly in their places. The very handy binocular cameras, or photo-jumelles. of which the " Veraacope" (fig, 6) is type, are of this class, and have additional

Fic. 7.-Beck's Dai-Cornex Daylight.Joading Camera. magazines. So also are hand cameras of R. and d. Beck's" Frena' type, specially constructed for using stif celluloid fims. The films are notched on two sides and packed in bundles alternately with cards similarly notched. The pack of films and cards is placed in a magaxine at the back of the camera. and by the movement of a lever, alter exposure, the exposed film and its following card are released, and by turning the camera down are dropped into a recond receptacle. A" "olding Frena" is now made as a folding camera with attached magazine for blms, wishout which it can be used separately for plates. R. and J. Beck's new " Dai-Cornex" is a great improvement in this form of camera, being a daylightloading box magazine camera for plates, the plates being packed in a bundle of ridged sheaths, so that they are quite protected from light and Frc. 8.-Wateon's "Vril " Camera. can be put into or taken out of the camera in full daylight. In other respects it resembles other magazine cameras (fig. 7). Another usefut magazine camera is the "Zambex." carrying either plates or films, held in skeleton lrames in envelopes which can be londed or unloaded is daylight, and are kept ready for use in the back of the camera and exposed consecutively. For work in which

Fic. 0 -Camera fitted with Twin Lenmes, eection to show working.
A, Hood of finder.
B. Ground glass screen.
c. Mirror.

D, Viewing lens.
E. Working lens.
F. Shutter.
6. Focusing pinion.
8. Plate parier.

1. Plate, epeed is of primary importance hand cameras fitted with very rapid lensee and focal plane shutters are pecestary, and ceveral forms of portable collapsible cameras of this kind are now available, such as the Goerz-Anschbtz, Zeiss': "Palmos," Wateon's "Vril" ($1 \mathrm{p}, 8$), Adams, "Idento," \&c., aod art lighter and more portable than the reflex cameras. Hand cameras are generaliy fitted with screw-buahes for mounting on a tripod stand when time exposures are wanted. The light folding wooder or aluminium stands moted below are specially suitable.

Twim-lens and Refex Cameras.-For photosraphing animals, objects in motion, public functions, suc., it is important to havo the means of watching the movement till the critical moment of exposure arrives. For this it is convenieat to have a camera fitted with twin lenses woricing in two eparate compartments (5g. 9) or more simply with a mirror throwiag a full-sized unreveraed image of the object from the lens on to the focasing ecreen (fig. 10). With the former, which has the advantage that the image is seen before during, and after exposure, the lenses murt be of exactly equal focus and focused together by the same motion of the racle-work, the object being viewed on the focusiag ecreen of the upper compariment, and the plate kept ready in the lower
to be exponed when desired. . Binbcuint hand earserat are also made on thas principle, one compartment werving for focuaing, the other holding tent and plates. Stercowcopic cameray are another form of twin-lens cameras, and are usually made for aloo taling single panoramic pictnres.

In wfiex cameral only one lens is necesary, though two are convenient, and can be usod tomewhat as in fig. 9 . They generally consiat of a cubical box camera containing a movable mirror facing the leas at an angle of 45° and throwing up the image projected from it on to a borizontal focusing mereen, on which it is viewed through a flexible hood which folds down in the upper part of the camera when not in use (fie 10). In order to get the greatest rapidity of exponure a focal-pane shetter is generaliy fitted, and by a single movespent of the relesse the mirror is moothly lifted and tbe plate exponed imultancously. They abould be finted with anastignatic lenses working at large apertures for very rapid work. In sompe forms the lens is fuxed, but usually there is a front bellows extension for long-focus kenses, with rising and fallise front, to which ewing motion may be given, a swing-back not being generally veed with the focal plane shutter. In tbe "Ernex" camera E. Husan has made an arrangement by which the carmera back, horizontal viewing screen and reflector are made to swing eimultamously, by a reck and pinion movement. They may also have reversing or revoiving backs for quickly changing the position of the plate. 5 in . $\times 4 \mathrm{in}$, and 31 in . $\times 4 \frac{1}{\mathrm{in}}$. are the usual sizes of the plates, but larger and smaller cises are also available. Thewe cameras require the beet workmanchip and perfect mechaniem for succestrul working and freedom from any jarring movement in releasing the shutter or mirror. The focusing screen must also be in accurate register with the focus of the lens an the plate. Those forms in which the image can also be viewed at the height of the eye, es in the Graficx
(fig. 10), are prelerable. Al. though relex cameras are rather hoevy atsd bulky as hand carneras, they have many adventages over the ordinary hand camera with finder and focuslos ecales for the purpore of the prese photographier, the naturallet and orhers, in observing and reconding very rapid movements, and have come into very seneral use for such purposes. They permit the accurate focusing of a fulfsized image on the groundglase up to the moment of exponure, expecially uteful when lenses of long or short focus are required and when the rising or swing front is in use. The atpect of this image on the ground-giase is also a great aid in the aelection and

Fic. 10 -Relex Camers.
A, Lens.
B, Mirror.
C, Ground-glase.
D, Plate.
I. Supplementary mirror. placing of the subject and in judging the expoare required for it. They prectically have all the sdvantegese of a stand camera and can be uned tw euch on stand for subjecte requiring prolonged exposure. They are also coming into increasing use in etudio mork for portraits of chidiren. Ac. Their use and adjustments are discussed by G. E. Brown in the Brilish Jourual A imanac for 1909.
Panoramic Comeras,-Many sp-called "panoramic" cameras have been introduced from time to time, among them T. Sutton's (1861), and J. R. Johnson's " Pantascopic" (186,), but did not

Fic. 11.-Section of " Al-Vista " Panoramic Camern.
come into general use till the use of curved surfacee of celluloid film enabled euch cameras of convenient sise and weight to be put on the market. They are on the ame priaciple as one made by F von Martens in 1845 for curved daguerreotype plates, sind covering an angle of 150°. P. Moessard's "Cylindrocriphe" of 1889 was the firtit of the modera type. It consists of a sumi-circular.
camers, the front of it formed of lightrpoof cloch and the back by the curved besible carriers. The lens is fatted on a vertical acis, so that the nodal point of emergeace remains motionlests and is revolved round it by means of a handle worked by hand and carrying a view meter. The illumination of the imase is regulated by an adjustable vertical slit in a tube attached to the lens inside the box, and by altering the rate at which tbe lens is revolved. The pictures taken embrace lese than 180°. The apparatus folds together and is quite portable; it is fully described in Mokand's Le Cylindragroph (Paris, 8899). The "AV-Vista" (1901) and the "Panoram Kodak" (1900) are on the aane principie, but arranged as roll-holder hand cameras, in two tives, carrying film for eeveral exposurea, 7 in. $\times 2 \%$ in. or 4 in. $\times 12$ in. They work instantineously, and by means of a clock-spring the lens rotates rapidly over 2 half-circle when releaned. The angle of view is about 120° (Gge 11 and 12). Tbe view talcea with this hind of camern are sometimes diapppointing, on account of the development of cylindrical perspective on a plane burfroce cauaing appareat dietortion. This distortion is avoided in Carl Zeise's "Palmos Panoram" camera for plates 64 in. X 3t ia., fitted with "Tesmar" lens and focal plane shutter, and other similas cameras which can be used for stereoscopic or single pictures. Other more elaborate intruments driven by clockwork have been made for making a complete tour of the horizon. Among them C. Damoiseau's "Cyclographe," which can be used with lenses of different foci and tatces the pictures on a roll-film, which is unrolled as the instrument revolves on its axis, the lens also rotating on its nodal point of emergence; and thus the imate always remains sharp (Bull. Soc. Fronc. d. Phol., 189, p. 183) Commandant A. Daubresse, hat improved on Motssard's apparatus, by placing the tens vertically between two right-angled prisms, the upper of which receives the imita and projects it through the lens on to the lower prism, from which, by rotation of the system on the vertical axis, it is projected on to a cylindrical film through an angle of 360° (Ibid. 1906, p. $430 ;$ E. Jh.; 1907, p. 91). The "Periphote" and Ernemann's Rundblick camera are improved forms (E. Jb., 1908, p. 322).

Many early forms of panoramic cameras are described in B. J. A. 1892; p. 517. Colonel R. W. Stewart's "Panoram" (1893). A. Chevalier's "Photographic Plane Table," J. Bridges Lees "Photo-Theodolite" (isg4), and smilar camerat fitted with telencopes, levels and divided circles, are instruments of precision euitable for photographic surveying. Improved instrumente for topographical surveying with stereo-photographic apparatus, on the principle worked out by Dr C. Pulfrich, of Mears zeina \& Co. in his stereo-comparater (1903), are beins practically developed, and much incormation regarding them will be lound ita papers by E. Dolezal and others is J. M. Eder's Jahrbicher, tgos to Igo8: also a paper by Lieut. F. V. Thompeon in Geepripitical Journat, 1906, xaci. 534

Cameras for Three-Colowr Pholography.-Many forms of camera have bee coastructed for maling the three negative required
 for trichromatic photography. They tall into two types: (i) thowe with a repesting back fitted with three colour-gcreens or filters-red, green and violet-through wich the colour imprencions are made successively with one lens upon a single colour sensitive plate, as in the Sanger-Shepherd system. The colour-mereens are placed immediately in front of the sensitive plate in the repeating back, which is moved on for each exposure. In a more recent form, by the eame
Fic. 13.-Diagram of Camera for Thrte-colour Photography. into three compartments, and fitted with a apecial diaphragm which can be requlated for the varying sensitiveness of diferent betches of plates. The central image is impresed directly on the plate; the other two by reflection from primong arranged so as to equalise the sizes of the three images on the sensitive plates, the light raym passing in each case through a suitable colvur-filter-red, green and blue-violet-pomewhat on the principle of F. E. Ives's camera of 1900 (fig. 13). It is convenient and succesoful ip working. (2) Carmerts made on the reflecting principle of L. Ducos du Hauron (1876), elabornted by F. E. Ives (1894) in his photochromoncope, in which three images are taken through three coloar-acreven on apportte plated with one lene, the seapective
expomares bein resulated by relection of tho light coming from the lens by plane mirrors on to the sensitive platea, ald its Gitration through the colour-tereens in front of them. Many varintions of this method have teen propowed, in which refecting prisms replace the mirrors. The different syatems have been dis cuared by W. Gamble (Ph. Jous; 1905, xlv. 150), the latter also by E. T. Butler (lbid. p. t99). Sir W. de W. Absey has described three-colour cameras for landmcape work. in Ph. Jow. tgon, sliv. 81, and 1908, xiviii. 331 .

Emergive Camerat. - Theme camers vary in form, acoording to the nature of the illumination, but ordinarily consist of a double or triple extention bellows camera, with a holder for the negative or tramparency at one end, and for the eensitive plate or paper at the otber, the lens being placed on a fixed partition between the two. Some recent forms of "daylight enlargers" can be used as an ordinary camera. Other cheaper ones are on the fixed focus principle. Enlargers for ute with artificial light are made like a magic lantern, with a condenser, piojecting an enlarged iusge on to a sensitive plate or peper fixed on an easel or acreen. A simple arrangement for daylight enlarging is to fax a suitable carnera on to a larger one by aliding front, and mount the two on a studio stand tilted so that the image may be illuminated by the open aky.

Cimemalograpks-Many opecial ameras and lenses have been introduced lor taking on a long fexible mensitive film an extended eeries of small photographs of the auccescive phases of movementa, and again projecting them on a acreen so as to reproduce the woene, with an illusion of motion, in what are known as " living pictures," biographs, \&c. As each photograph requires a certain minimum time for exposure and must be kept in true position in sequence with the rest, some means of regulating the intermittent exposures and keeping the $\mathfrak{l l m}$ in position have to be adopted; and there are many different ways of doing le, efther by a continuous or inter: mittent motion and exposure of the film while is is being unwound from one roller on to anotber. The filme used are timilar to the ordinary celluloid films, but in narrow bands from if in to 21 in in width, the length varying with the aumber of exposure required, at the rate of 16 to 20 per second. They are perforated on both sides, so that they may run true and have the necesary intermitient motion, the perforations fitting on to studs on a aprocket wheel in connexion with the driving wheel and crank hasdle. Special lenses of short focus, from I in. to 3 in., with good covering power and lagge aperture $\int / 4$ to $\mathrm{f} / 2$, are required both for photographing, and projecting; several such are noted below. Absolute rigidity in the camera is essential. Special stands are made for the purpose, but if a tripod stand is used it should be well braced. Special. apparatus is required for developing and fixing the expoeed films. They are wound on larse rollers supported over troughs containing the necesary solutions (see Cingmarociapa). the mechanical arrangements are treated in H. V. Hopwood, Liriatg Piciures (1899); F. P. Liesegang, Ha ndbeh der fraklischem Kinematographif (igo7); K. W. Wolf-Crapek, Die Kimemasographie (1908); G. Lindsay Johnson, Photographic Oplies (1909); Eder's Jahrbicher.
A method of cinematography in colour wis fintroduced by \mathbf{G}. A. Smith and C. Urban in 1gos, the main features of it beine the use of a fim mensitive to all colour waves to the furthest red; euper imposing the colour records by persistence of vision; the use of two-colour records instead of three, in order to reduce the interval between the euccescive presentations; adaptation to existing cinematograph machinery and films. Theme conditions are lulfilled by the use, in place of the ordinary revolving nector shutter in front of the lens passing intermittent white light, of a special, more rapidly revolving shutter divided into four aectors, one fitted with orange-sed glass, another with bluish-green glass and two intermediate opaque sectors, 60 that at every revolution of the shutter an exposure is made through the red and green glasees alternately. The former passes white and yellow, and then orante, scarlet to deepest red; whilst the latter also pasee white and yellow, green. blue-green, blue, all in proportion according to the red and green sensitivenest of the specially sensitized penchromatic emulsion on the fim. The same shutter and colour screens are used for projection, some supplementary blue rays being added. The resulta are satiffactory and the method promises to be of great practical value (see Jour. Roy. Soc. Arir, 1908, 57, No 2926).

Special cameras are made lor varions brenches of mientific research in photo-micrograpby, photo-mpectroscopy, astronomical photography, de.

Tripod Sinads.-Field cameras are usaally supported on wooden tripod atends, folding in two or more sections, the haod being separate or fited in the base-board of the camera. The kerp chould be capabie of extension to about 5 ft . and adjustable in length for use on uneven ground. A tripod stand may be light, but muat be firm and rigid when set up. To prevent slipping, shoes of indiarubber or cork may be fitted to the points of the legs, and in mome cases it may be desirable to strengthen the tripod by a folding adjustable brace. W. Butler's "Swincarn " camera ctand is made to enable the camera to be securely fixed in awkward positions, and has many valuable special features, great extension, mivel points to the feet, \&e. For hand cameras the very light, portable metal folding asd walking-tiek stands are coaveniem

Photographic Objectives or Lenses.

The objective is the most important item of photographic apparatur, because upon it depends the perfection with which a correct and well-defned pisture is projected upon the plame surface of the seasitive plate of objects in the different planes forming the field of view, wbich naturally would come to a focus on a series of curved surfaccs. This fiattened picture must be equally uluminated and sharply defined, within a limit of coafusion from iff to zth of an inch, over a sufficientiy wide angle. A good objective must also pass sufficient light to produce the required effect on the photographic plate with short exposures; the chemical and visual foci must coincide exactly, and it muat not distort straight or parallel lines. The fulfilment of these conditions it complicated by the presence of sundry focal displacements or aberrationsh (1) Spherical aberration, or non-ooincidence of the foci of the central and marginal pencils of rays paseing through the leas It is correcied by varying the curves of the component lenses and by the use of a diaphragm. (2) Coma, or blur, due to lateral spherical aberration of oblique rays, and mostly found in unyymmerrical combinations and single view lenses. It is partly eliminated by the diaphragm. (3) Astigmatism, which accompanics coma in single levses, and is usually present in symmetricai aplanata, manlfeste itself by forming two sets of images of points of the axis, lying in two separate curved surfaces, one set focosing tangentially as more or less horizontal tines, the other radially as more or less vertical lines. It increases with the obliquity of the rays and causes want of definition and dificrence of focus between horizontal and vertical lines away from the centre. (4) Curnoture of field, also increasing with the obliquity of the raym (5) Dislortion, outward or inwatd, according to the nature and construction of the objective. With the single meniscus view lens, used with its concave surface towards the object and a diaphragm in front, a equare will appear barrel shaped from inward consraction of the lines towards the centre: but with the convex surface towards the object and the diaphragm behind, it will appear with concave sides from outward expansion from the centre. It can be corrected by using two such lenses with the convex sides outwards and a central diaphragm. as in periscopic or rectilinear lenses. Lenses of the orthoscopic and telephoto typet generally show the latter form of distortion. (6) Chyomatic aberration. produced by the dispersion of the white light passing through the leas, and the different coloured rays composing it coming to a focus at different distances from the visual focus in the order of their wave-iengths. It thus affects both the posilions and sizes of the image for the different colours. For ordinary photographic wort it suffices for the biue-violet and yellow rays to be coincident, but for the new processes of photography in three colourt, apochromatic lenses, in which perfect coincidence of the coloured rays is tecured. are required to obtain the accurate register of the three images. The corrections are effected by compensating lenses of different refractive powers (sce Aberration).
In constructing photographic objectives these aberrations and distortions have to be neutralized, by regulating the curves of the different positive and negative component lenses, the refractive and dispersive indices of the glasses from which they are made, and the distances of the refracting surfaces, to as to make the objective as far as possible sligmartic or focusing to a point, giving an image well defined and undistorted.: This perfect correction could never be effected in objectives made before 1887, and very few could be cffectively used at their full apertures, because although linear distortion could be overcome there were always residual aberrations affecting the oblique rays and necessitating the use of a diaphragm, which by lengthening out the rays caused them to define clearly over a larger surface, at the expense of luminous intensity and rapidity of morking. The introduction of rapid gelatin dry plates erabled photographe to be taken with much greater rapidity than before, and led to a demand for greater intensity of illumination and better definition in lenses to meet the requirements of the necessarily very rapid exposures in hand cameras. For studio and copying work quick-acting lenses are lso valuable in dull weather or in winter.
The rapidity of a leas with a light of given intensity depend upon the diameter of its aperture, or that of the diaphragm ued, relatively to the focal length. In order, therefore, to obtain int ereased rapidity combined with perfect. definition, sone means had to be found of constructing photographic objectives with larger effective apertures. This necesaity had long been recosnized and met by many of the best makers for objectives of the single meniscu and aplanatic types, but with only partial succeas, becaume such objectives are dependent upos the diaphragm for the further correction necessary, to obtain good definition over an extended field. The diffeulty was in the removal of astigrmatism and curve ture of the field, which, as J. Pcteval had ahown. wist lmpossible with the old optical flint and crown glasses. In 1886 Mesers E. Abbe and O. Schott. of Jena, introduced several new varietica of optical glasses, among them new crown plasees which, with a lower. dispersion than flint glasa have a kigher instead of a loweer refractive power. It was thas rendered possible to overcome the old dificulties and to revolutionize photographic optice by
enabling objectives to be made free from astigmatiom, morking af their full apertures with great flatnese of ficld independently of the diaphragm, which is now chiefly used to extend the area of definition of angle of view, and the co-called "depth of focus" for objects in dififerent plases.

Photographic objectives may be classed as follows:-

1. Single achromatic combinations.,
2. Uniymmetrical doublets,
3. Symmetrical doublets.
4. Triple combinations.
5. Anastigmatic combinations-symmetrical and onsymmetrical.
6. Telephotographic objectivea.:
7. Anachromatic combinations.

They are also sometimes classified according so their rapidity. as expressed by their effective apertures, into "extra rapid," with apertures larger than $/ / 6$; " rapid," with apertures from $/ / 6$ to $/ / 8$; "slow," with apertures less than f/il. Another classification is according to the angle of view, " narrow angle " up to $35^{\circ}{ }^{\circ}$ " medium angle "up to 60°; "wide angle" up to $90^{\circ}, 100^{\circ}$ or more. Many leasen are made in serics, differing in rapidity and angle of vicw as well as in length of focus.

1. Single Achromatic Combination or Landscape Lens.-This is the earliest form of photographic objective, evolved from W. H. Wollaston's improved single periscopic meniscus camera obscura lens (1812). it was made achromatic by Ch. Chevalier, and so used by L. J. M. Daguenre, though is required correction for chemizal focus, as did the object glasses of telescopes or opera glames first used for photopraphy. The single landscape lens usually consists of an achromatic compound meniscus. formed of a biconvex positive crown cemented to a biconcave negative fint to secure achromatism and partially correct the spherical aberration, and may be taken as the type of the "old photographic achromat"
(fig. 14). It is used with its concave side towards the object and a diaphragm in front, thus producing inward or barrel-shaped distortion, inherent in this type of objective, and rendering it unsuitable fer capying or architecture, though not very noticeable in landscape work. The full aperture has to be largely reduced by a diaphragia to improve definition: to it is dow, though many improved forme have been brought out. It has aiways been pppular for pure landscape work on account of the equality of illumination over the plate, depth of focus, and the soltness and

Fic. 14-Single Landscape Lena. brilliancy of the image owing to its thinness and freedom from reflecting surfaces. In come of its improved and "long focus" forms it is prelerred by portraitists for large heade, on account of the general softaess it gives when used with large aperturcs.

The following are some of the best-known improved objectives of this type: T. Grubb's "Aplanatic" (1857), $f / 15$ to $/ / 30$

Fic. 15.-Grubbis - Aplanatic "Lens.

Fig. 16.-Rapid Lendscape Lena. Long Focus.
(Gg. 15); J. H. Dallmeyer's" Wide Angle Landscape Lens" (1865), f/rs, angle 75°. In it distortion was reduced and marginal definition improved. The 'Rapid (long focus) Landscape Lens " (1884), $f / 12$, angle 40° (fig. 16), was a modification of it, and at $f / 8$ is uselul for beads in portraiture. W. Wray's "Landscape Lens" (1886). f/11, is also useful for portraiture in the larger mizes at S/8. Fr. Voigtlander's "WideAngle Landscape Lens " (1888)

Fic. 17.-Rectilinear Landscape Lens.

In the diagrams of lenses which follow, a uniform system of indicating the nature of the glase employed by means of the shading has been adopted.

Flint glass is indicated thus:-
Crown glass of how refractive power thus:-
Crown glass of high refractive power thus:-
(These two are used indiscriminately in lenses made
before the introduction of the new Jena glas.)
Extra light flint glase thus:-
In mont cases the front of the lens ia on the right.
/ $/ \mathrm{S}_{5}$ angla 90°, with reat covering pomer and depth of focus T. R Dallmey's "Rectilinear Landscape Lems "(i888), f(i4, angle 60° (fig. 17), was of novel construction free from distortion, brilliant in working and useful for copying. Messes Rose's "WideAngle Landscape Lens " (18go). $\mathrm{f} / 16$, angle 70°. triple cemented and made of feas glass. Many other excellent objectives of this type have been made by British and foreign makers and are still used, though comewhat superseded by the fully corrected anastigmate specially made to work singly, or as single elements of anastigmatic doublets, as noticed in 5 .
2. Unsymmetrical Doublets: OUd TYens.-This clase includes objectives with comparatively large apertures formed of two diacimilar combinations, in most cares correcting each other, with a diaphragm between them. In some the single elements may be used independently. All the older "portrait" lenses, tome of the aplanatic doubleti and Fr. von Voigtlinder'e "Orthoscopic" Lens ($8 \$ 7$), now disuged, are of this type. Even with the present improved conditions, the portraitist working in atudio requires a quick-acting objective of large effective aperture and comparatively short locus, giving. a brilliant well-defined imare of near objects in different planes over a restricted field of view. The early single lemses were found to be too slow for portraiture by the daguerreotype and talbotype procesess, and the eforts of opticians were directed to the problem of obtaining the maximum amount of light, together with good definition and flatness of field, and bbout 1840 compound lenses were brought out by Andrew Rom and C. Chevalier, consisting of two achromatic compounds, one at each end of a tube. Rome's lens, made for H. Collen, is inveresting es the firt lens corrected photographically, 00 that the visual and chemical foci were coincident (19. 18). Ch. Chevalier also combined lemses of different foci, as is now done for "convertible" objectives, used singly or combired. He also fitted them with iris diaphragms. Theae forms were soon superseded by the compound portrait lens, calculated by J. Petzval and brought out by

Fic. 18.-First Englinh Portrait Lens.

Fig. 19.-Portrait Leam

Fr. von Voigtlander in 1841. It consista of two dissimilar achromatic combinations widely mparated. At first the diapbragms were in front, but now they are central. The front element is a plano-convex composed of a biconvex crown cemented to a planoconcave flint, while the back element is a double convex, componed of a biconvex crown separated by an air-space from a concavoconvex fliat (fig. 19) This form of objective quickly supplanted all other for portraitures, and is still largely used. though it bas defects which prevent its use for general purposes and is being superseded for'portraiture by some of the rapid anastigmats. \ln his "Quick Acting Portrait Lens" (1860), (14 , angle 45°, J. H. Dallmeyer Improved the correction for spherical aberration, and in bis "Extra Quick Acting Portrait Lens:"(1860), f/2.2. used for cinematograph wrork, attained greater rapidity. In the "Patent Portrait Lens"
 50° to 55° (fig. 20), he made great changes in the form and relative positions of the back elements, giving a flatter feld and freedom from fare spot. By separating the two components of the back element more or less spherical aberration could be introduced to give softer definition and greater depth of focus. In 1875 Dr. A. Steinheil made an unsymmetrical aplanatic portratt combination of peculiar construction, working al $f / 32$. It was an improvement on his similar symmetrical "Portrait-Aplanat,"

Fig. 21.-Portrait Antiplanet. Fig. 22.-Group Antiplanet. Form 1. of 1874, but was superseded in 1881 by the "Portrait

It had six reflecting aurfaces and seariy apposached a triplet (fig. 21). Steinhei's "Group Aplanats" (1879), $7 / 64$, angle 90°. were an improvement on the orrinary "Aphant: but were auperseded in 1881 by the "Groun Antiplanets," f/s, anple 70°, lensea of a distinct type (fig. 22). They wef: \& turtiot advance on the Aplanats, working at larger apertures and giving better definition. This lens is interesting as the first in which astigmatism was climinated by combining a "crown-shaped " lens of high refractivity, with a "flint-shaped " of lower relractivity, though made of the old glasses. In his "Rapid Antiplanet" (1893), f/6.5. angle $30^{\circ}, D r$ R. Steinheil improved the "Group Antiplanet as regards astigmatism and oovering power by replacing the thick back combination by a triple longforus negative element consisting of a crown between two lines, with a heavy barium crown in the front clement instead of a fint (6y. 23). Voigtlander, who originally constructed the Petival portrait lens, improved it in 1878 and 1885 . and now smakes two lenses on the same principle, series I. $/ / 32$, angle 28°, for andinary portraiture and projection, and series la., $f / 2 \cdot 3$, angle 22° (1900) for astrophotography, cinerpatography, dc., when iniense illuminition is required over a small field. Both are quite free from coma,

Fic. 23.-R. Steinheil's Improved Group Aatiplanet.

Fic. 24-Ordinary Angle
Actinic Doublet.

Most of the above are portrait objectives of larce aperture, bet unsymmetrical doubleta have also been made for tandscape wort. J. I. Coddard's "Combination Landscape Lens" (1859) was one of the first, and was free from distortion, gave a thet field. and could be uned as a convertible lens. In I864 T. Roes issued his "Actinic Doublets," modified from the Colken lens, in three series - "small angle", $/ / 8_{2}$ angle 40° to 50° : " ordinary angle" $/ / / 44$ angle 60° to 75° (Gig. 24); "Inge angle", $f / 16$, angle 80° to 95 . These lences were similar to the "Globe," but uniymmetrical and more rapid. The ceparate elements could be used alone. Some of them were fitted with a shutter near the diapbragm. They were superseded by the "Symmetrical ' lenses.
3. Symmetrical Dowblets. -This clase includes objectives formed of two similar combinations of lenses, usually of the convergent meniscus form, with their concave surfaces inwards and a diaphrazm between them; consequently they are rectilinear and practically free from marginal distortion. Until the introduction of anastizmatic doublets they were in general use for all purpones under the mames "Aplanat," "Rectilinear." "Symmetrical, "Euryscope," ac. They are still largely used and have been improved by the une of Jena glasmes in ther construction.

The first recorded lens of this type was Dr J. W. Draper's combination used in 1839 for daguerreotype portraits, consisting of two doubleconvex lenses 4 in. diameter, with a united focus of 8 in., mounsed in a tube with a diaphragm 3) in. In frout. In 184IT. Davidson made a combination of two single landscape lenses very similar to the later rectilinear doublets. Being slower than the Petzval portrait lens jts value as a non-distorting lens for general purposes was not recognized. G. S. Cundell (1844) combined two uncorrected meniscus lenses with a diaphragm between thern. In 1860 T. Sutton brought out his "Panoramic Lens," which worked on curved plates covering about 100°. It was followed

Fic. $25-C$ A. Steinheil's "Periskop."

Fic. 26-A. Steinheit's "Aplanat." by C. C. Harrisor's "Globe Lens" (186a), angle 75", compoed of a bymmetrical pair of deep compound menisci, the exterior surfaces forming part of a sphere. Though defective and slow it was popular lor a time. C. A. Steinheil's "Periskop" ($1865, / 713-5$, angle 90° : was a symmetrical doublet formed of two plain crown menigei with central diaphragin (fig. 25). It gave a lagger field than the "Globe," the lenses bcing cloaer together. Being nonachromatic it had to be adjusted for chemical focus it was quite free trom intortion, with a very lat feld, and both nodial pointa together. It is considered the best possibie combination of two piain levaes, and is still used in some of the cheaper hand cameras with fused focus, the difference of the chernical and visual foci being allowed Ior in the camera or by adjustable lens mounts. G. Rodeastock's "Bistigmats" are of this class. I. Zentmayer made a mimilar us symmetrical lens. In A. Steinheil's "Aplanat" (1866) the mane priociple was carried out with achromatised lemeen, and a grest
improvement was effected in the cometruction of eon-diatorting objectives of fairiy large aperture. It consisted of two potitive cemented fint menieci, each compoed of a dense fint with negative focus outside and a light flint with positive focus inside. its concave ourfaces facing the centre (fig. 26). This use of dint glasses alone was peculiar, former achromatic lensea having been made of flint and crown. Theme lenses were made in three rapiditics: "Ordinary." (/6 or $/ / 7$, angle 60° : "Landscape." $/ 112$ to $/ / 15$, angle 90°, also used in convertible sets: "Wide Angle Landscape:" $/ 20$ to $/ / 25$. angle 104° : " Wide Angle Reppoduction,", similas to the last, but with sharper definition. The "Aplanat" had many advantages over previous doublets and the triplet, being moke rapid, perfectly symmetrical, so that there was no necessity for turning them when enlarging, and free from distortion or flare. There was no chemical locus Emeth component could be used alone for landscape work with double focus, subject to the ordinary defocts of single lenses. By the use of Jena glasses in the "Universal Aplanat" (1886) the componente of this lens were brought closer together, its intensity increased, and it was made more portable. J. H. Dallmeyer had been working in the same direction simultaneously with Steinheil, and in $\mathbf{8} 86$ brought out his "Wide Angie Rectilincar," $5 / 15$, angle 100°, made of fint and crown, the front clement being larger than the beck (fig. 27). It was slow for ordinary purposes and was succeeded in 1867 by the well-known "Rapid Rectilinear," $j / 8$, on the same

Frg. 27.-Wide-Angle Rectilinear Lena.

Fic. 28.-Rapid Rectilinear Lens
principle as Stelnhell's "Aplanat. but made of flint and crown (6g. 28). Rows's" Rapid" and "Portable Symmetrical" jensea, Voigtlinder's "Euryecopes," and other similar lenses of British and foreign manufacture are of the same type, and still in use. They are excellent for generat purpomes and copying, but astigmatiom is always present, and although they can be used with larger apertures than the a riplets they displaced, they require stopping down to accure good marginal definition over the sibe of plate they are asid to cover. By the use of Jena glasses they have been improved to work at larger apertures, and tome are made with triple cemented elements.
4. Triple Combinations: Old Types.-Thisclass comprises objectives composed of three separatc combinations of glames widely separated Irom each other. An eariy form of this type was made by Andrew Rose (1841) for W. H. Fox Talbot, othert by F. S. Archer, J. T. Coddard (1899), T. Sutton (1860), but they never came into general
 use. J. H. Dallmcyer's "Triple Achromatic Lens" (1861), //10, angle 60°, now out of date, was an excellent non-distorting lens, very useful for gencral work and copying (fig. 29). As made by Dallmeyer, the inner surfaces of the front and back componente were dightly concave, but in T. Rose's " Actinic
Fig. 29.-Triple Achromatic Lens. fat. The centre lens was an Triplets "' (1861), f/16, they were hat.
5. Amastigmalic Combinations, Symmetrical and Unsymmetrical.As already stated, it was found practically impossible to obtain fla thess of field, toget her with freedom from astigmatiarn, in objectives constructed with the old optical glasese. A. Steinheil attempted it in the "Antiplanets," but with only partial success. The Abbe and Schote Jena glasses, issued in 1886, put a new power into the hands of opticians by largety increasing their choice of glasses with different refractive and diepersive powers. Whercas the old glasses had high refractivity with higher dispersion, in the new ones high refractivity with lower dispersion could be met against lower relractivity with higher disperaion.
Between 1887 and 1889 the firnt attempts to make anastigmatic

Fic. 30.-Concentric Lens. objectives with the new glasses were made by M. Mittennwel of Zwickau, R. D. Gray of New Jerney, E. Hartnach and A. Miethe of Berlin ("Pantoscope"). K. Fritsch of Vienna ("Apochromat ") and Fr. von Voigtlinder of Brunswick, with more or less succeas, but progress was hindered by the instability of some of the early glastes, which was af(erwards overcome by sandwiching the solt gilacees between two hard ones. In 1888 Dr H. L. H. Schroeder worked out for Mesers Rowe the "Concontric Lens" (fag. 30) issued in 1892 (Ph. Jour., 16, p. 276). It was a eymmetrical doublet of novel construction, each element consiming of a plano-convex crown of high refractivity cemented to a plano concave flint of lower cefractipricy. but above equal or bigher diapersion. Both the
uncomented andecen were aphericar and concentric: At f/16 it gave sharp definition and flatheis of field with freedom from atatismatiam, diatortion or Glare over an angle of 75°. It was an excelfent lens, though alow, and has been auperseded by the "Homocentric" and other more zapid anastigmatis Dr Pail Rudolph, of Memer Carl Zeim\& Co. Jema, worked out in 1889 a new and succemful met hod of conatructing a photographic objective by which astigmatism of the oblique raye and the want of margion defaition due to it could be

Eic. 31.-Anastigmat. Series II. $\int / 6 \cdot 3$.

Fic. 32.-Anastigmat. Series Ille. //9.
elimieated wit hout hom of rapidity, 30 that a comparatively extended field could be covered with a larpe aperture. This he did on the principle of the opponite or opposed gradation of the refractive indices in the lront and back lenses, by a combination of two dissimilar aystems of sing fe lences cemented together, the positive element of esch having in one cape a higher and in the other a coner refractive index than that of the negative clement with which it was aseociated. The front symtem, retied upon for the corroction of spherical aberration, was made of the old glasacs, a crown positive of low and a fint negative of high refractivity, whilto the back systern. relied upon for the anastigmatic fattening of the field, was rade of the new glasser, a crown positive of high and a fiine negative of low refractivity. Both systema being apherically and chromatically corrected for a large aperture, the field wat fattened, the astigmatism of the one being corrected by the opposite astigmatism of the other, without destroying the latness of the fietd over a large angle (see E. Jb. 1891 and 1893; M. von Rohr's Geschichte, and O. Lummer, Photo grapicic Optics, for (urther details). They were isuued by Messrs zcise and their licencees (in England, Mcsera Rous), in 1890, in two different types. The more rapid hed five lenses (fhy. 31), two of ordinary glasacs in the front normal achromat, and three in the back abnormal achromat, two crowns of very high refractive power, with a negative Aint of very low_refractive power between them.

Fic. 13.-Anastigmat.

Fic. 34-- Satz Anastigmat.

The fifth lens ascisted in removing apherical aberrations of higher orders with large apertures. The second type, series Illa., f/9, 1899 (fig. 32), had only two lenses, the functions of which were as above. These combinations could not be used separately as ningle lenses. They are now istued as "Protars," eeries Ile., /f8; IIla.. f/9: V., $/ / 18$. In 189: Dr Rudolph devoted himself to perfecting the xingle landscape lens, and constructed on the same pripciple a single combination of three lenses, the central one having a refractive index between the indices of the two others, and one of its cencented surfaces diverging. whike the other was converging. At $/ / 14 ; 5$ this lens gave an anastigmatically flat image with freedom from spherical aberration on or of the axia. It was, however, not brought out till 1893 as a convertible lens or "Satz-Anastigmat," series VI. $\{114$-5, and Vla., $/ 77 \cdot 7$ (figa. 33 and 34). In the meantime Dr E. von Heegh (C. B. Goerz) and Dr A. Steinheil had also been working at the problem and had independently calculated lenses similar to Rudopph's, but, whereas he had devoted himeelf to perfecting the single lens, they sought more perfect correction by combining two single anattismatic lenses to form a dooblet. Dr Rudoiph had had the asme idea, bat Messrs Goerz secured the priority of patent In 1899, and in 1893 brought oat their "Doublo Anastigmat," now known al

Fic. $35-$
Roso-Goerz " Dagor." Series III. Row-Goerz Series IV.
"Dagor." It way the first symmetrical anastiomat which combined freedom from astigmatism with flatness of fiedd and great covering power at the large aperture of $/ 17 \cdot 7$ (fig. 35). Both these types of Zeisc's "Protars" and Goeri's " bagor "anntigmats have since
beea made by Mensre Ross in England. Measrs Steinheit broaght out their first "Orthostigmats" in 1893, but, owing to patent diffculties, were unable to manufacture them in Germany, and they were fssued later in France and England. They were followed by a sceond type, which has since been issued in several series by Messrs Steinheil and by Mesers Beck in England (fig. 36). According to Dr R. Steinheil (E. Jb., 1897, p. 172) this tens was an application of two principles recognized by BrA . Steinheil as necessary for the spherical and anastigmatic correction of a lens. He attempted to carry them out in the "Antiplanet," but was prevented by the want of suitable glass. He found that for anastigmaric correction an objective should have the separating surface between two media concave towards the medium of higher refraction (new achromat), and for

Fig. 36--Steinheil's "Orthostigmat."

Fic. 37.-"Collinear." Series 11 .
spherical correction the separating surface should be conpex towards the higher refracting raedium. A fully corrected cemented tens cannot, therelore, be made with less than three glasses, but with uncernented lenses an air-space may form one of the media. In ${ }_{1} 895 \mathrm{Dr}$ D. Kaempfer worked out the "Collincar" for Messrs Voigtander, constructed on the same principles as the "Orthostigmat," type II., and similar to it (fig. 37). It is made in three series: II., f/5'4 and $\{/ 63$: $111 ., f / 6 \cdot 8$ and $/ / 777$ (convertible); IV., //125, and the apochromatic colfincar $/ / 8$, calculated by Dr H.'. Harting for three-colour reproduction, \&c. (Pk, Jour., 1901, 25, p. 323.)

In 1894 Dr Rudolph extended the application of his principle by combining the old achromat and the new achromat into a single quadruple cemented lens (fig. 38), which, according to T. R. Dallmeyer, was the most perfectly corrected single lens that had been

Series VII. $/ / 12 \cdot 5$. evolved up to 1900, Dr Rudolph having succeeded in obtainjing freedom from spherical aberration and astigmatism, and also in eliminating coma (Ph. Jowr. 1901, 25. P. 68). These lenses were issued in 1895 as series VII. sinsly and VIIa., in combinations now known as "Convertible Protars," and the earlier scrics VI. and Vla. were withdrawn. The single lenses of series VII., $/ 112 \cdot 5$, angle 85°, have great anastigmatic flatness of field and only very slight marginal distortion, acondition not realized before in a single lens. The relative rapidities of the double combinations of series VIle. vary from $f / 6: 3$ to $f / 8$, according to the lenses used. They are excellent lenses lor all general purposes.
In their "Convertible Protars," serics IV. (1908), $/ / 12 \cdot 5$, angle 60°. Messra Zeiss have simplified and cheapened the coastruction of these lenses by the use of new Jena glassen so that they consist of three instead of four lens etements cemented together, while possessing the same high efficiency as series VII. They are issued as "single" or "double" Protars, $f / 12$ '5 and $f / 6 \cdot 3$ or $/ / 7$, aleo in sets of three or four objectives of different foci, which are combined to give pictures of different angles of view from the same standpoint. With both series when using the "Protar" lens singly. it should be screwed behind the iris diaphragm of the mount, to a void curvacure of the field, and when two such lenses are combined the one with the ereater local iength should be placed in front.
In 1895 Messrs Gocrz patented a double anastigmat, $f / 5 \cdot 6$, with quintuple single lens components as a convertible iens. for which greater sharpness of definition and intensity, with perfect freedom from astigmatism and distortion in the single lens, were claimed. It was issued in 1898 , but, tike an earlier analogous quint uplet of Messrs Turner \& Reich (1895), it has not come into use on account of the cost and difficulty of construction. The latter firm, however, brought out in 1906 a new symmetrical quint toplet at $f / 6 \cdot 8$.
A triple enastigmatic combination containing remarkable new features, constructed and patented by H. D. Taylor, was issued in " 805 by Messrs Taylor, Taylor \& Hobson under the name of the "Cooke Lens." and later by Mesars Voigtlinder as the "Triple Anastigmat." It coussists of three single lenses, two of them positive crossed lensea of crown glass with high refraction and low dispersion, with their most convex sides out wards, and between them, in front of the diaphragme asingle biconcave of light flint (Gg, 39). All
these lenses are designed to be free from diaphragm correctiont while the focal power of the negative lens is made as closely equal to the combined local powers of the two positive lenses al may be

Fig. 39.-" Cooke " Portrait Lens Aperture $\int / 4 \cdot 5$.

Fig. 40.-" Cooke" Lens. Seriea III.
necessary for the flattening of the field and correcting marginal astigmatism. They are not convertible, but arrangements are made for replacing the back lens by a low-power extension lens (Pk Jour. 1895, 19, p. 64). Series III., f/6'5 (igg; 40), and series IV, f/56, are portrait lenses. In the larger objectives of series 11. the back lenses are adjustable for unilorm sharp definition or a solk diffusion of focus. In a latir scries VI. (1907), $/ 756$, this adjust meat for diffusion is given to the front lens and is so arranged for portraiture that the difusing adjustment and irjs diaphragm can be operated from the back of the camera while , viewing the focusing screen. A special fully corrected "Process" lens on the same gencral principle has recently been brought out for three-colour work and fine-line reproduction. Another distinctly new type of anasticmarix objective involving several new principles of consaruction was patented by H, L. Aldis in 1895, and brought out by Mesucs Dalt meyer in three sepics, under the name of "Stipmatic" (Ph. Jour. 1896, 20. p. 117). It also approaches the triplet construction and depends on the introduction of air-spaces between the component lenses. According to Aldis, three conditions mumt be observed to obtizin a fiat ficld (ree from marginal astigmatism: (1) The converging kenses must be of high, the diverging of low, refractive index; (2) the converging and diverging components must be eeparated by a considerable interval; (3) thick meniscus glaseen should be used. The first "Stigmatic" was a portrait lens, stries 1., 1896, f/4 It has been made in two forms, firgt with a triple front lens, and a back negative system formed of a single thick crown lens of high refrectivity with a megative cemented meniscus. In the second form (fig. 41) the front component consists of a cemented positive and negative, and both parts of the back component are cemented lenses All the converging lenses are of dense baryta crown,

Fig. 41.-Stigmatic Portrait Lena.
Serics I. while both the diverging lenses in the back component are a lighe silicate crown. It is fully corrected for spherical and chromatic aberration, free from distortion and nearly so for astigmatism, giving equal ilhmination over a flat feld of 60°. Diffusion of focus is obtained by unscrewing the back cell. Scrics II, (1897) is on the same principle but differs in construction, working at $5 / 6$ over an angle of 85° as a universal and convertible lens (fig. 42). The front or back component can be used alone, giving the choice of two focal lengths, If and twice the focal length of the complete lens. The principles of its construction wre described by T. R. Dalimeyer in Ph. Jоup. 1897, 21. p. 167. Series 111. S/75. wilf at $j / 46$ give sharp definition over a plate two sizen larger. The single components are not con-

Fig. 42.-Stizmatic Lens. Series 11 . vertible.
In 1897 Messrs Zciss issued the "Planar," an objective of large apert ure based on the principle of the Gauss telescope objective. It is a symmetrical doublet, each element consisting of three lensex, the two inner ones being a doable convex and a double concave. of equal refractive but different dispersive power, cemented together and separated by an air-space from the outer convex meniscus (fie43). Its special points are its good colour correction, large selative aperture and intensity, varying from $/ / 3.6$ to $/ / 6$, with perfectly sharp definition and an vastigmatic flatnem of fiefd over an angle of view from 62° to 79°. It is a very rapid wide-engle lens useful for instantaneous work with the cinematograph and hand carneras, also for portraits and groupas photo-micrography and enlargewente or reductions (see E. Jb., 1898, p. 79, Von Rohr, p. 390, and Lummer. p. 81). Apochromatic planars with reduced secondary spect rum were brought out in 1903 for threecolour photography, and are aiso useful for astrophotography, the circle of diffusion being very small. The "Unar" (1900). $/ / 45$ in the maller and $f 16.5$ in the larger miacs angle 65° and 60°, was a further improvemeat by Dr Rudetpho its
conmite of two ritsymmetricil coomlimations, ench formed of two single lenses of very transparent glase, dense baryta crown and light Bint, eeparated by positive and negative air-apices (fig- 44). The separate halved cansot be used as single lenses, neither being fully corrected for colour. It is well adapted for portiaiture, groups or landscapes, especially for rapid hand camera mork, on account of it covering power, with freedom from antgmatiem and tharp definition with large relative aperture.

Fic. 43.-Planar. Series Ia. S/4.
TiG. 44.-Zeiss's "Unar." In 1808 Mcssrs Goerz patented their "Double Anastigmat Celora" series Ib., $f / 4 \cdot 5$ to $/(5.5$. It is a symmetrical doublet, each element consisting of two thin single lenses: a positive of high and a negative of low refractive index, separated by an air-space (fig. 45). Ir is derived from the triple anastigmats by decreasing the refractive power of the central convex meniscus to the refractive power of air, to that it becomes a convex air-space between a double convex and a double concave lens. Less deeply curved surfaces can be given to the lenses, and the doublet gives anastigmatic flatness of field over an angle of 62° to 66°. equal to the best anastigmats with a still larger aperture. Series Ic., $f / 6 \cdot 3$. is similar and recommended for hand cameras, the aperture being amalier. Goerz's "Hypergon," (1900) $f / 22$, angle 135° " is a

Fic. 45-Goerr's "Celor." Fic. 46.-Goerz's "Alethar." symmetrical doublet of remarkable construction, consisting of only two single semi-globular, very thin lenses, with diaphragre at the centre of curvature between them. Astigmatism and curvature have been climinated, and definition is good over the above wide angie with no distortion. Chromatic aberration is uncorrected, but. compensated for by using a smali stop. A star mask is futed in front of the lena to allow for falling of of illumination towards the margin (E. J.o. 1901, P. 103). The "Syntor" (1903), Series Id., $\int / 6.8$, angle 64° to 70°. is on the same principle as the "Celor," but cheaper, for use in hand cameras or tetephoto combinations. The "Alethar," series V. (1003). $/ / 11$, is a lens with diminished secondary. spectrum, for three-colour reproductions, half-tone process work, and general purposes. It is a symmetrical doublet. each element consisting of a negative and positive eperated by an air-epace (fig. 46). The negative is composed of three cemented lenses, which correct the spherical and chromatic aberrations more fully than hitherto possible, so that all the colouss of the spectrum are tocused in the same invariable plane. It gives great crispoese of definition at full aperture (W. Zachokke, E. Jb.. 1904, p. 165). Goerz"s " Pantar," $/ / 6 \cdot 3$ (1904) is a convertible f-lens anastigmat. and an improvement on the "Dagor"" in that the single elements are completely corrected for coma, and thus form efficient long-focus kenses lor landscape, \&c.: at an aperture of $/ / 12.5$. while the doublets formed by various combinations of the single elements are universal objectives working from $/ / 6.3$ to $/ / 7 \cdot 7$. The singic elements are similar to those of the "Dagor." but have an additionai nggative

Fig. 4.-Aldis Lens.

Fig. 48. -Aldis Lens. Series IIL
lens at the back, so that the outer two of the three cemented surfaces have a collective and the inner one a dispersive action, by which cona ie elimineted (E. Jb., 1905, pi. 55).

In 1902 H. L. Aldis issued the 2 Aldis Lems" $f / 6$, a doublet componed of a cemented meniscus in front and a single double.
convex back lems." It it a long-foent objective with thort bact focust and is made in two lorms, weries 11., $f / 6$ (fig. 47), and series 11.. (1903), $f / 7.7$ (fog. 48). In the latter the back element is very thin; and the front combination of infinite focal length. By discarding the symmetrical formsimplicity is secured, while open or reflecting errfaces are avoided. Special attention has been paid to perfect correction of spherical aberration in the centre of the field. It is lighter, amaller and cheaper than series II. The "Duo " lens of the same maker (1907) is intended to replace the front lens and double the focus, but with less rapidity and without any loss of quality. The "Trio " (1908) is similar, but only increases the focus one and a hal times and is thus more suitable lor cameras of short extension. The Aldis "Oxys " anaxiguat, meries II. (1908), $f / 5-65$, angle $85{ }^{\circ}$; is an improved form. Being an unsymmetrical cemented doublet it is free from the defects incidental to air-spaces and is constructed to give more perfect correction for flatnese of field with large aperture and wide angle.

It is generally stated that it is impossible to make a spherically, chromatically and anastigmatically corrected photographic objective with the old optical glasee. K. Martin, of Messrs Busch of Rathenow, has, however, shown ($\mathcal{E}, J . h_{.}, 1902, p, 68$) that it is quite possible to do 00 with a syatem of ceparated lenses, and that it is immaterial whether the index of the fint or the crown is the bigher. An antetigmat on this prisciple was iseued by Messrs Busch in 1902, at the "Oranar"" series If1., f/7;7 (fig. 49). Series II., $/ / 5 \cdot 5$, angie 75* and $1 ., \mathrm{f} / 4.5$, have since been issued. It is a symmetrical

doublet, each element consisting of a negative fint meniscus of higher refraction, and a positive crown of lower refraction with an air-space between them in che form of a nesative lens. The back element can be used alone. The "Lumar "series, by C. Rodenstock, is similar. In 1902 Meass Ross brought out the "Homocentric." a symmetrical doublet. each element consisting of a negative and positive meniscus separated by an air-space (Gig. 50). It is constructed so that all rays of light emanating from any one point of the object ane converged again into one point in the iseage. It is aloo quite free from spherical zones, is not altered in focus with different diaphragms, and thus has exquisite defining power. The colour correction is so periect that the different coloured images are ideatical in size and position, thus rendering it specially suitable for three-colour aad process work. The back lens can be used alone, with diaphragas, as a single lens of about double the foces of the doublet. It is made ia several series: II., $/ / 5 \cdot 6$, and III., $/ / 6 \cdot 3$, for rapid and instantancous work; $V_{y}, j / 8$, for ordinary purpoees; Vi.r f/8, for process work and three-colour reproduction. A later serics, IV. (1907). "Compound Homocentric," $\int / 6 \cdot 8$, differs from the others in being a sympetrical doublet composed of two triple cemented elementa, very clone together and separated by a diaphragm. It is

Fic. 51.-Zeiss's

Fic. 52 "-Voigt länder's
specially suitable for outdoor work, also for copying and enlarging, having good covering power. Zeiss's "Tessar" (igoz) is a rapid unsymmetrical doublet, formed of two stparated uncemented posi. tive and nepative lenses In the front element and a cemented meniscus at the back (fig. 5i). The two halves cannot be used separately. The glasses used are very transparent, permanent and lessen the secondary spectrum. Three series are made by Messrs Ross, Ic., $f / 3 \cdot 5$ for cinematographic work and portraiture, and $f / 4 \cdot 5$ for handcattier work and portratture: $116.1 / 6 / 6 \cdot 3$ for general purposes. and VIII., the "Apochromatic Tessar." epecially corrected for threscolour work and reproduction. They all give fine definition over a large fiat field, free from any zonal aberration. The $f / 3.5$ portrait lenses, with double the field and covering power of the Petzval lens, are anastigmatic and free from distortion. Messrs Voigtlander's "Heliar" (1902). $/ 4 / 4$.5 angle 50°. calculated by Dr H. Harting. is an objective of large aperture, suitable for portraits and very mapid instantaneous work, heing well correrted for astigmatism, coma and curvature of feld, with friedom from thare. It is a triplet consisting
of a central negative lens, with cemented double front and beck lenecs (fos. 52). The negative kenses are of light silicate fint, the two posituve of the heaviest baryta crown. Beridet being a rapid universal lens, it is specially suitable for hal-tone process work, with a large diaphraym ((., Jb., 1903. p. 117). The "Dynar" (2903), $/ 16$, angle 60 is of somewhat similar construction, but differs from the "Heliar" in the positive lenses of the cemented pairs being outside instead of towards the central lens, It can only be used as a whole. It is made of hard colourless Jena glamen, giving great brilliancy and uniformity of illumination over a large angle, and is apecially adapted for very rapid hand-camera work.

Dr R. Steinheil's "Unofocal" (1903), $1 / 4 \cdot 5$ is a aymmetrical doublet, each element consisting of two singlo separated lenses of equal refractive power and of equal focus of opposite signs, hence its name. Each half can be used at a single lens with small stopa. In ite construction a quite new principle was followed, the meparation of the lenses fulfilling an important part in the colour correction, ae explained by Conrad Beck in Ph. Jowrn. (s904), 44, p. 177. This plan matisfies the Petzval condition and removes it reatrictions, to that a leas of $/ / 4.3$ can be produced with relescopic central definition. perfect freedom from distortion and flare over a fiat field of 60°, with great equality of illumination (fig. 53). They are mande by Messrs Beck in two eeries: 11.. $/ 14 \cdot 5$, for portraiture, rapid haudcamora work, telephotography and projection: and I., $/ 16$, in which the lensea are clower together, for hand-camera work and general purposes. E. Arbeit's "Euryphan "anastigmats (1903). made by Schulze Bros., Potsdam. are apochromatic objectives of quite new construction, giving perfect definition with large aperturea over a

Fic. 53:-Beck-Steinbeil

Fic. 54-Euryplan, f/4.5.
wide angle, made in four series: 1.0 . $/ 4 \cdot 5$, angle 80°; $11 ., 5 / 5 \cdot 6$, angle 90° : III., $\mathrm{f} / 6 \cdot 8$ to $7 \cdot 5$, angle 82°; IV., $/ 16 \cdot 5$. They are symmetrical doublets, each element consiating of three lensea, a new achromat formed of a biconvex of heavy baryta crown of higli refractivity and low dispersion, separated by an atr-apace from a poditive meniscus of the same baryta crown, with its concave side towards the diaphragm. In eerics $1 ., f / 4.5$, the two positives are placed outside (fig. 54), in scrics 11. and III, they are inside. The single elements are fully oorrected astigmatically and chromatically, and can be used singly at double the focme (E. J6. 1904, p. 35).

Beck's " leontigmat " (1907) is a new anaetigmat showing a distince departure from the ordinary principles of construction, in that it does not fulfi) the Petzval condition that the sum of the focal powers of its individual lenses multiplied by the reciprocals of their respective refractive indices should be equal to zero, or $2(1 / \mu)=0$ It is a 5 -lens combination, two separated thin single lenses in the

Fic. 55.-Beck': " Isostigmar.' front element and three in the back (fig. 55). In departing from the Petival condition very low power lenses caa be used, thus reducing the initial errors to be corrected; no individual component having a shorter focal length than one-half that of a complete objective. A special feature is the excellent correction of the oblique spherical aberrations and central aberrations, giving a practically flat field without astigmatism over angles from 60° to 90°. The half combinations can also be used alone with diaphragms as long focus lenses of different foci (Ph. Journ. t907. 47. p. 191). It is issued in six series: I. (1908), $\mathbf{/ 4} \cdot \mathbf{5 ,}$ large aperture, series, for reflex press work and portraiture; la., f/6.5, angle $60^{\circ}-65^{\circ}$,
 required, either at a wide or ordinary angle. V. (2908), $f(1)_{0}$ "Process" " benses specially corrected to give a flat feld for copping. They can be fitted with ruitable reverrine prisman VI. (1908), $/ 36$, variable portrait leases, adjustable for sharp or soft defiaition from the back of the camera while focusing.
The above represent the principal types of anastigmats, but many more objectives of the kind, triple or quadruple, cemented or uncemented, with air-spaces, in many modificetions, have beea issued by English and loreign makers.
6. Tdepholographic Objectises.-For come years patic epecial objectiven, or attechments, have been constructed for photographing near or distant objects on an enlarged acale with an ordinary camera, the extension required being very much less thaa would be peeded to obtain an image of the same sime with an ordinery long-locus lene without enlargement. They consist of a combination of a positive. conversing with a negative disperaing lens, by which the image is picked up and enlarged to varying degrees, according to the system of lenses used and the extension given to the camera, thus producing the arme effect as a positive lens of very much longer focus. Enlarged images of this kind can also be made by a combination of two converging lenses, one of then forming an iunage of the object, which is received on the other of sborter focus and projected on the sensitive plate, being enlarged more or less according to the optical coaditions and relative positions of the lensea and sensitive plate. The photoheliographs at Greenwich and other solar observatories, designed by Warren de la Rue, are on this principle. Portable apparatus of the kind was made in 1869 by MM. Boric and de Tournemire, and later by Jarret, but this system requires much greater extensioa of the camera, entailing more loss of intensity of the image, and has Dever come into use.
The modern telephotographic combination is generally looked upon as an application of the principle of the "Bariow " lens, but it really goes back to the Gabilean telescope (c. 1610). J. B. Porta mentions the combination of concave and convex lenses for giving enlarged and clearer images of near and distant objects (Lagia Nafuralis, lib. 17, cap. 10, 1589). J. Kepler showed that by a combination of a coavex with a concave lena images of objecte could be depicted on paper of a larger size than by the convex lens alone. hut reversed (Dioptrice, Prob. cv. t6tI). Christopher Scheiner made use of the same principle in his "Helioscope" for nolar obscrvations (Rosa Ursina, cap. vii. 1630). F. M. Deschales and P. Z Traber also dealt with the question, and in J. Zahn's Ocmus artifcialis Tededioplricus (t686) we find figured a reflecting camera fitted with a compound enlarging lens on this principle. In his Nova Dioptrica (1692), W. Molyneux has given some interesting problems for calculating the position of the compound focus of a corrvex with a concave lens, also the angles subtended by an object on the focal plane. If for the simple uncorrected glasses then used we substitute a system of photographically corrected positive and negatlve lenses, suitably mounted, and put a sensitive plate in place of the paper, we have the modern telephotographic arrangement. 1. Porro seerns to have been the first to use a combination of this kind for photographing an eclipse in 1857, and later for terrestrial objecta. It consisted of a small achromatic single lens combined with a concave lens. Many attempts were afterwards made in Frence, and also in England, to utilize the principle, but special lenset for the purpose were not available. Ad. Steinheil constructed one in $\mathbf{2 8 8 9}$ for the Brusels Observatory, and another in 1890 for the Marine Department in Berling In 1891, curiousy enough, three such combinations were worked out quite independently and patented, by T. R. Dallmeyer in London, A. Miethe in Berlin and A. Dubosco in Paris. Since that time these combinations have boen greatly improved by increase in the working apertures and reduction in size and weight, 50 that they can be used in hand cameras. They are exceedingly valuable for obtaining details of inaccessible objects at a distance, whether architectural or topg graphical, and lor photographing animals without approaching them too closely. Large poritaits can also be taken with much better perspective effects and more conveniently than by using longlocus lenses much nearer to

Fic. 56.
 III. $\mathrm{fl7} \cdot 7$, angle 65°, similar to II. but less rapid; IV. $\mathrm{f} / 6 \cdot 3$, angle 90° : wide angle. giving satisfactory definition at full aperture over an anglé from 80° to 85°. Having such a large reserve of covering power the which no doubt was the bar to early progress in this direction, bas been overcome, and definition has also beep improved, so that enap. shots can readily be made with combinations of high intensity, while
with those of ordinary intemsity the expomeree are not umbuly prolonged, and good definition can be obtained over an extended field.
The optical principle on which these combinations are based is very simple, and will be understood from fig. 56. It depends mainly on the lact that in order that a real image may be thrown oo the screen of an object AB, the rays proceeding from it, which pass through the positive system $L_{1,1}$, must come to a focur at a point f within the secondary focus $f^{\prime \prime}$ of the negative syatem L_{2}. Falling within this limit, they will be intercepted by L_{4} and made less convergent, so that instead of coming to a focus at f, they will continue to converge till they reach the screen at $f^{\prime \prime}$, and will there form a proportionally larger image $a^{\prime} b^{\prime}$ of $\mathbf{A B}$ than the image ab given by the positive lens alone at fi, just as stated in Kepler's problem. Moreover, this image $a^{\prime} b$ ' will be of the smme size as if it had been produced directly by a positive lens 1 , with a local length equal to $l^{\prime \prime \prime}$, and this distance is the equivalent focal length of the entire system. It can be found from the formula $F=f / \begin{aligned} & \text { fle } \\ & \text {, }\end{aligned}$ where f_{1} and f_{3} are the focal lengths of L_{1} and L_{1} reapectively, and $d=f_{1}+f_{2}-s$, s being the distance betwoen the lenses. Io many instruments of the kind a ecale showing the value of d is engraved oo the mount. If the rays from AB come to a focus in front of La, on it, or beyoad $f^{\prime \prime}$, no real image can be projected on the screes. There is therefore a certain limit, which is greater in proportion to the length of focus of the negative system, withio which the focus of the positive system L_{1} may fall and produce a series of well-defined images on the screen, which can be varied in sise by altering the amount of separation of the two syotems of lenses within the above limit, and the distance of the screen from L2. Every change in the position of the screen will involve a corresponding adjustment of the lenses. The greater the extension of the camera and the closer the lenses, the greater the size of the image. and vice verse. The camera extension for a given magnification can be found by multiplying the focal length of the negative system by the number of magnifications, less one. The magnification produced by a given camera extension is found by dividing the latter by the focal length of the negative system, and adding one.
In its usual form (fig. 57) the telephotographic combination consists of a quick-acting portrait lens, or an anastigmatic doublet of

Fig. 57.-T. R. Dallmeyer's Compouad Telephotographic Lens.
large aperture and reistive intensity of suitable focal length, fitted at one end of a tube, in which slides a smaller tube carrying a properly corrected negative system, which may vary in locus. but must be of ahorter focus than the positive (usvally about hali); the shorter the focus the greater the magnifying power for a given extension of camera. The amount of separation of the leness is limited on the one band by the position of the focus of the positive system, and on the other by the focus of the negative system, as explained above, and can be adjusted within these limite by a rack and pinion. The tubes are adjusted so that when closed up the two foci may coincide, or nearly so, and $d=0$, or its minimum value; and when opened to their fullest extent the focus of the pocitive may fall upon the pegative system, or so that d may not exceed the focal length of the megative syatera. Within these limits the local length of the combination will be positive, and a real image formed on the screen. Several forms of them have been brought out by various makea, some, as Zeiss's, with a special poeitive lens, others for use with anastigmats and other lenses of large apertures. The negative lenses are aloo made of various powers.

Memrs Dalimeyer's "Adon " (1902) is a telephotographic lens, lor use with hand cameras, composed of two achromatic combinations adjusted for parallel rays, a front positive lens $4 \frac{1}{3} \mathrm{in}$. focal length. and a back negative lenf of at in. focus. These are mounted to permit of great varistion in the separation, so that when the "Adon" is fixed on the frome of a mutrable lens, near or distant objects may be taken on an ealarged acale without altering the focus of the camera, or the enlargement can be varied with further eartension of the camera. Used alone it is a complete telephoto lens of moderate magnifying power, and will cover plates is in. X 12 in. In 1903 a special form, the "Juaior Adon," was made in three kinds for use with kodaks and smilar folding hand cameras, single and double extension, giving a fixed degree of magnification without ioss of rapidity. while focusisg can be effected by seale. It is intended to replace the front lens of an R.R. or anastigmatic lens and cannot be 'used independently. Messers Busch's "B BisTelar," f/9 (1905). is another compact fixed focus tefephoto lens, specially for ute with hand cameras. It is a complete lens in itself, sequiring no attachments and can be fitted to a central shutter. It is suade in three sizes magnifying from two to three times. An improved focm of this leps (3908), working at the large aperture of
$f / 7$, is amilar to an old form of "Dhalytic "lens worked out by J. Petzval, having a positive front and negative back meniscus. with their concave surfaces facing inwards (fig. 58). As in the old "Orthoscopic ${ }^{N}$ and lenses of that type there is some outward distortion, but it is very slight. These lenses are made in five sires with focl from 8 to 22 in., requiring cancera extensions from 4^{2} in. to $11 \frac{\mathrm{in}}{}$. They magnily about twice. According to K. Martin, a telephotocombination of the Bis-Telar type can be used in a reversed position at a projecting lens for the lantern, with the advantage of increasing the illumination from a given wource of light ($E . J 6.1908$, p. 46).

Captain Owen Wheeler proposed in 1907 a high-power telephoto arrangement, made by Messrs Staley, in which the negative attach. ment consists of three negntive lenses, a ny single one of which can be used separately, giving magnifications of about 6,9 , and 13 diametern with a camera extension of 14 in . By combining the-three a magnification of 30 diameters is attainable with the same short extension, which is a great advantage in many ways. In 1908 Mesers Zeiss isoued their "Special Pele-objectives" in two sises working at $f / 10$, the larger with an nperture of 3.14 in . and 32 in . focal length fitted in a special "tele-camera" for plates $9 \times 12 \mathrm{~cm}$. with a monocular field glass magnifying fout times as finder. The smaller one, with 18 in . focus, is adapted for hand cameras with 6 is. beliows extension. They consist of specially corrected positive and negative combination with a definite focal length and requiring a definite camera extension, and are specially suitable for balloon photography, instantancous portraiture, \&c. The theory, construction and use of telephoto lenses has been fully described by T. R. Dallmeyer in his Telephotography.
7. Anachromatic Lenses.-For large portraiture a certain amount of zortness and diffusion of the image has long been recognized by artists as desirable, and in 1895 the "Dailmeyer-Bergheim Lens" was constructed with this special object. It is composed of a single uncorrected positive meniscus front lens, with a diaphragm in lront of it, and an uncorrected negative meniscus back lens, and in the larger sizes it has great range of local length on the telephotographic principle. The spherical and chromatic aberration produced by the uncorrected single lenses gives the diflusion of focus which producen the peculiarly soft and delicate effect aimed at. It is most useful for large heads and life-size studies, the great depth of locus conducing to uniformity of definition. There is no distortion, and by stopping down to about one-third perfect definition can be obtained. It works with great brilliancy, both elements being single glassen It was the first of the anachromatic portrait lenses. Since 1903 Messrs C. Puyo and L. de Pulligny have been experimeating with various combinations of uncorrected lenses lor producing the same effect in portrait and landscape photography by the diffusion of focus produced by chromatic aberration, and suitable lenses of this kind have recently been brought out in Paris as Les Objectifs d'artista. In their construction the principal points to be coasidered art spherical aberration, to be minimized in the form and arrangement of the lenses selected; dislortion, corrected by using a symmetrical Jystem; astigmatism, a voided by. using combinations of low power. The lenses used by Puyo have been: (1) a plano-convex crown with convex side in front at $f / 8$ or $f / 9$, or even $f / 5$ for heads; (2) a simple thin concavo-convex meniscus, with concave side in front, is better and suitable for full lengths at $j / 10$; (3) a symmetrical sygtem formed of two similar crown menisci, concave sides iawards, is generally useful when worked at $/ / 10$, or even $/ / 5$. Arrangements are made in mounting these lenses for automatically making the necestary correction for colonr. Another form is the "Adjustable Landecape Lens," formed of an anterior piano-convex crown, 3 cm . diameter, and a posterior plano-concave crown, each of 10 cm . focus and the same radii of curvature. In contact they have an iofinite focus, but when alightly separated any focus can be obtained up to about 10 em . In such a telephotographic system, properly atopped dowo anastigmatism, flatness of field, and rectilinearity are secured over a fairly large field. These ienses are futly described in Les Objectifa dariste, by L. de Pulligny and C. Puyo (Paris, 1906), and various forms, portrait and landseape, have been made by Messrs Hermagis, Turillon \& M orin (sec Fabre, T. E. P. Suppl. D. 101).
Diaphragm A pertures.-In order to regulate the intensity of the illumination by the lens, to enlarge its field, and, in the case of the older forms of objectives, to extend the area of good marginal definition, diaphragms are used, usually with circular a perturea. They are made in different ways: (1) as single metal plates, futing ipto a slot in the lens tube (Waterhouse diaphragma); (2) Rotatory 1 a single plate revolving on a centrai axis and pierced with apertures cut to fit centrically in the opening of the lens: (3) Iris: a form of diaphragm now very generally used, and very convenient; because it can be easily adjusted as required for intermediate apertures As a rule they are placed at the optical centre between the elemento of a compound lens or in front of a single one.

In order to provide a uniform system of diaphngm apertures.
the Royal Photographic Society in I88t drew up ome rules, which were revised in 189! and again in 1901. The former standard unit (14. And the numerical notation used with it, bave been abolished in favour of the unit $f / 1$ established at the International Congrese in Paris 1900. Intensity ratio is defined as dependent upon the effective aperture of a lens, and not upon the diameter of the diaphragm in relation to the focal length of a lens. The effective aperture of the lens is determined as follows: The lens must he focused for paraltel rays. An opague screen is then placed in the principal local plane, and a pinhole is made in the centre of the plate (in the axis of the lens): an illuminant is placed inmediately behind the pinhole itaell, when the diameter of the bean emerging from the front surface of the lens may be measured. (It will be found that except in the case of the diaphragm being placed in front of the lens, the diameter of the diaphragm itself is reldom that of the effective aperture.) Every diaphragm is to be marked with its true intenaity ratio as above defined, but the present intensity ration are retained in their order of tequence: $\int / t_{1}, f / t \cdot 4 \cdot f / 2, f / 2 \cdot 8, f / 4, f / 5 \cdot 6, f / 8, f / 11 \cdot 3$. f/16, $/ / 22 \cdot 6, f / 32, f / 45 \cdot 2, f / 64$, Ac.. each daphragm requiring double the exposure required by the preceding one. In other caces apertures are to be made in uniformlty with the scale, with the exception of the highest intensity, e.g. a lens of $\int / 6.3$ would be marked for $\int / 6 \cdot 3$. f/s, \&c. The corresponding numbers are knawn as f numbers, but are only applicable for a lens focused for diatance Other sypterns of notation are in use, but the above is generally adopted (nee Fabre, T.E.P. Suppl. C. 38). Special diaphragms are in use for process work with ruled screens (see N.S. Amstuts, Handbooh of Pholethgroving, 1907). Standards for the screws of photographic lensflange fittings, and for the screws fitted to cameras for attachment to the stand or for fixing movable parts, have also been laid down (Ph. Journ, 190t, 25, p. 322).

Instentoncous Shxifters.

The general ase of rapid dry plates and hand cameras has rendered it necessaty to have some mechanical means of regulating exposures in smalt fractions of eecond, especially for objects in rapid motion, and this instantancous shutter has become an essential part of modern photographic equipment in many forms and patterns. but practically three types are preferred-the between-lens shutter, the roller-blind shutters, used before or behind the lens, and the focal plane shutter, in front of and close to the plate and forming part of the back of the camera. The usual limit of rapidity of the two former is nominally about ilv of a second, and for ordinary. purposes higher speeds are seldom required, while with the latter speeds of 1 tus to tive of a second may be attained.
two important factors in the use of lens chutters are the rapidity or speed, measured by the total duration of exposure from opening to closing, and the eficiency, measured by the watio of the time during which the shutter is fully open and the time occupied in opening and closing. Both factors are more or less variable, either Wheh díferences of construction, of diaphragm opening of of poxition of the shutter with regard to the plate and lena. In any case the eficient exposure is always less than the actacl, and may be considerably 80 .

The rapidity required of a shutter in photographing moving objects is regulated by the minimuma time neceseary to produce a well-exposed image upon the plate, with a loss of definition, of blurring, by displacement not exceeding ibs. or prelerahly to to y\}y of an inch, If enlargement is extended. This will depend on the etzte of the light and the illumination of the object, the relative intensity of the lens as measured by its effective aperture and focal length, the sensitiveness of the plate, and the amonat of effective light passing through the shutter during the exposure. The amount of displaceraent to be guarded against depends upon the rate of movement of the object, the direction in which it is moving with reference to the axis of the lens, its distance from the camera, and the focal length of the lens. It will be proportionately less as the distance of the object increases, and as the rate of its motion and the focal length of the lens lor a given distance decrase, and vice versa. It will be greatest when the object is moving at right angles to the axis of the lens, and teast when the motion is directly towards it; but in that case there will be some increase in the apparent size of the object as it approaches the camera. For example: An object moving 1 m . an hour advances 17.6 in. per second. With a lens of 5 -in. focus this would represent a displacement on the sround glass, for an object 50 ft . away, amounting $\mathbf{t d}-[46 \mathrm{in}$. per eroond, and it would require exposures between in and it of - second to give maximum or minimum displacements of the image between rotb and wiv of an inch. An object at the same distance moving ten times as fast would require i-10 of the above exposures. II, however, the distance be increased, the possibla exposure may also be increased in the same proportion, so that the object moving 10 m . an hour at 500 ft distance would only require the original exposures of it to 17 of a second. On the other hand, the litnits of exposure for an object moving 1 m . an hour within to ft . of the lent would be between tis and. Its of a second. This tsentirely independent of the sensitiveness of the plate. and only represents the maximum duration of exposure permissible in order to reduce the blarring of the image between certain limits. The ensitiveness of the plate, and the intensity and amount of light
acting upon it through the fene and shutter, must be adjusted to as to produce the deaired photographic eflect within that time. With a lens of 8 in . focal length the displacement would have ins cressed in the first instance to ${ }^{-1} 3$ in. per second, and the maximum expowore permismble would be from is to of of a second. This mows that there is an edvantage in using short-focus lenses for very rapid expocores. In practice, most work of thls kind is done upon quarter-plates (4×3 in.) with lensee of $4 \frac{1}{4}$ to 5 in . focus. As the displacenpent will be grentest for an object moving at a right angle ecrons the exis of the lens, an expomere sufficient for this case will he oufficient for any other. Sir Witlian Abney has diacussed this question practically in his linstanlamems Photogrophy, and it is treated mathematicnily by W. B. Coventry in his Tachmics of the Eand Camera, in which will be found formulee and tables for ascer. taining the distances and limiting exporures for moving objects.
 is usually calculated for a dieplacement of to of a millimetre, or about yla of an lach.

An efficient chutter chould fulfit the following conditfons: It should be light and competct, simpie in construction and action, trongly made, and not liable to get out of order; capabie of being ect without admittiag light into the camira; easily released with a alight pressure of the finger, if a pneumatic release is not fitted, and free from any teodency to thake the camera on retease. It should open and cloes quickly, allowing the largest possible proportion of the exposure to be made with the full aperture, and it must not cut of eny of the dective tight pasting through the lens, but should distributs it evenly all over the plate: though in landacape vork it is an advantare to give the foreground more exposure than the aky. It should be adjustable for variable instantaneous and for prolonged or "time" exposuret. With a sood shutter there is less rist of shaking the camera in short "cime "exposures, from $\frac{1}{8}$ to i socond, than there is in taking off a cap. Shutters working between the lentes must parnit of the use of diaphragms in the lenses, and of alterstions of speed while seb. Above all, a thutter must be conotant in its action, giving short and variable exposures always cor* rectly or relatively so, an important condition which cannot alwny be fulified, and the expoeures marked on the indicator should be capmble of being repeated with tolerable certainty.: Shutters ahould also be adaptable for use with different lenses. Three methods of varying the speed of a chutter are in use: (i) by altering the length of the slot; (2) by the retarding action of a pneumatic brake; (3) by varying the tension of a apring. The latter is considered by W. B. Coventry as far the beet. They ere woualiy releated by the presure of the finger on the end of a lever holding the moving part in a state of tension; or better, by J. Cadett's syetem of pmeumatic prespure, applied by means of a compressible rubber bulb and tube, which maydrive a piston acting on the lever holding the shutter, of infinte a collapeible bulb at the other end of the tube and thus emert the necessary pressure on the lever. With W. Watson's "Antinous." reloase a flexible wire acte directly on the piston or trigger releade of a cylinder shutter. It is also adapted for roller-blind, focal plane, flap, and various forms of between-iens shutters. It is durables effective and convenient (wee fig. 3). In many cases both metbode can be used as desired, the mechanical relcasc heing preferabie on account of its convenience and froedom from liability to shatee the camert.

The following are the principal types of ingtantaneotes abvetert (1) Flap, (2) drop, (3) combined drop and flap, (4) rotary, (5) roller blind, (6) focal plane, (7) moving blade central, (8) iris. Thery eat be applied in four diferent positions: (a) in front of the lens; ($($) centrally, near the diaphragm; (c) behind the lens (d) immediatehy in front of the sensitive plate. They all, however, come under two main clasees: Lateral, including those in which the exponare commences and ends at the circumference of the lens apertere: and Central, those in which the exposure begins and ends at the centre of the aperture. Sorne of them are " lateral " in their single form and "central" when donble. The form and position of the effective aperture of a shutter, relatively to the lens and plate, have en etroat unfuence, either favourable or unfavourable, on the amount of eflective light passing through the lens, and its even distribution over the plate. This is especially the case during the incomplete phaces of opening and closing the aperture. It meems to be agteed that the best position for lens shutters of the lateral type is behind the objective, and lor those of the ceatral zype, between the coarponent lenses. In this latter position the whole of the plate ia illuminated during the full perind ol exposure, with a gradeally increasing intensity, until the full opering is reached, apd then the illumination gradually falls of until the shutter is clowed. The modt effective shutter is ope in which the first and third phages of incomplete illumination, during the opening and ctoding. are the shortest compared with the second phase of full opening-

With the foca! plane shutters, however, different portions of the plate are exposed in succeasion, the lens working at ite full aperture and efficiency throu thout the exposure.

To secure suocessful remilts in using ingtantaneons shatters, the operator should male hirtself acquainted with the worlding of his shutter and its efficiency is various circumetances of expoane trith the lenses, plates and developer he proposes to use; agoertaining the actual value of the various exposares manleed on the indicator, ands

What is more important, how far they ean be depended on for regularity. There are many simple ways in which the actual time of exposure from opening to closing can be ascertained sufficiently clocely for practical purposes. They depend upon the measurement of the trace left on a sensitive plate by the passage of a brighty illuminated object revolving at a known speed or falling vertically through a known distance, when photogra phed with different speeds of the shutter against a dark background. These, and the more elaborate methods for obtaining more accurate determinations of the shutter-expoeure periods and of the corresponding effective exposures -i.e. Ahowing the actual effect of the shutter through its different phases trom opening to closing-have been described by Sir William Absey in the work already mentioned. by A. Londe in La Pholocraphie moderne and La Photographie instantance. An apparatus for testing shutters at the National Physical Laboratory was described by J. de Grail Hunter in the Optician. 1 go6.

1. Flap Shutfers.-Tbe imple flap shutters consisting of a hinged Alap opening upwards in front of the lens, though favourites in early days for landscape work, and still useful for intermittent exporures or as sky-shades for securing cloud effects or increasing forcground exposures, have been almost superseded by guicker and more compact forms. They are used with single and double flaps for portraiture and adudio work, for which purpose they are made to act moiseleady and not attract the attention of the sitters. Gurry's (figs. 59 and 60) is a good example of the type. W. Watson'e "Silent"

Fig. 59.-Guerry's

Fic. 60.-Guerry': Double-fap Sluiter.
shutter is hemispherical in form and collapsible, the two wings opening out and folding together, when actuated by a special "Antinous" relcase, and R. \& Beck's is another form, a aingle lifting flap with pnetumatic release.
2. Drop Shumers.- The old simple drop shutter, in which a plate having an opening in it falls in front of the lens aperture, has been cuperseded by the more compact and quicker-working roller-blind shutters, which act on much the same principle. It had a theoretical intercst in connexion with the effeet of different forms of aperturecircular, square, or clongated-used rith shutters of the lateral type, but it is now generally recognized that a more or less extended rectangular opening, of at least the full width of the lens aperture, is bett for securing the even admission of light from all parts of the image with shuters of the rectilincar laterai type, to which this and similar shutters, in which a single opening passes across the lens aperture, belong. In Busch" "" sky shade " hutter (1907). fitting on the iront of the lens a single leaf moves vertically upwards and descends again, giving les: exposure to the sky,
3. Combined Drop and Flap Shulkers.-In early dry-plate daye several forms of this kind of shutter were brought out, under the garmes of Phoenix, Phantom, \&c. but are now little used. in these shutters, in addition to the drop slide, there was also a fifting flap, which on relcase opened from below, and, having fully uncovered the aperture, released the drop slide, which fell and closed the shutter. They were useful and effective in the smaller sizes, but heavy and cumbrous in the larger. Speced could only be essimated very roughly by the use of india-rubber bands for glving tension.

4 Retary Shutlers. - These are of the la cral type, and consist of a circular metal disk revolving on an axis cccentric to the axis of the lens, and furnished with a radial sectur-sbaped opening. which passes laterally in front of the lens aperture when the tension of a
 spring is relcased (fig. 61). They are used in various patterns in cheap hand cameras, ubually in front nf the objecsive, though they may be placed behind it or between the component lenses. So fong as the opening is at least equal to the size of the lens aperture, the diumination is sufficiently even, but the openings are usually elongated so as to give a longer period of. full opening. Working by a spring they are more portable and convenient than drop shutters. Bect's "Ceiverex" between.lens shutter (1006) is of this type, the disk being revolved by
Fic. 6t-Rotary Shutter. e spring and the variations of exposure obtained by altering the sention of the opring. it is speeded for exposures of it. it t. कt vec.: also" buib" and "cime." It is fairly accurate and opptettent in action, but loses efficiency at the bighest speeds by the diminution of the opening.
5. Roller-BNind Simaters,- Por geteral use the meltiendwn rollery blind shutter of the single lateral type, as made by Thornton. Pickard and others, is undoubtedly one of the most popular and efficient. It possesses most of the qualities laid down as essential to a good shutter, gives good illumination. appears to be fairly regular in its action and can be used for time or instantaneous exposures. It consista of a light mahogany or aluminium box, arranged so that it can be ftted in front of or behind the objective. It is made in different sizes, and each size can be adjusted to smatler objectives (fig. 62). It is also made with a disappearing cord, and in an improved pattern, the " Royal," all the fittings are inside the box. By pulling the cord

Fio. 62.-Thornton-Pickard Roller-Blind Shutter with automatic exposure appliance.

Fic. 63.-Mechanise of the Thorntoe: Pickard Rolies. Blind Shutter.
A, Upper roller.
B, Lower rolker.
c, Cord.
D, Black curtain.
H. Aperture incurtain. n, Rubber ring adapter.
an opaque black curtain with an elongated rectangular aperture is unrolled from the bower roller an to the upper are, and held by coiled apring on the lower roller (fig. 63). Prossure on a pneurnatic bulb inflates a recond smaller butb, raining a bever which releases the spring. and thus bring the blind down wrth a rapidity which can be adjusted by turning a handle actuating the spring, the corresponding speed being shown on an indicator. For cime exposures, pressure on the buib opens the shutter, and another pressare clones it, but an arrangement is now made by which time exposures of 1 , 1 , 1, 2, 3 seconds can be given automatically, the pressure of the bulb opening the slutter, which closes of itself at the expiration nf the expesure required. The theory of shutters of this type has been very fully discused by Coventry (op, cit, p. so), who showa thet for any given tension of the spring the actual exponure decreases as the tre of the lens aperture diminisies, while the effective esposure remains constant for all aperturea. This is peculiar to the fateral shutter, He also shows that with plates of very different rapidities, though the exposure may be the same, the actual exposure cifective is lews with the repid plate and a anall stop than with the alow plate and a large stop; consequently the blur due to the movement of the object would be proportionately less on the rapid plate than on the clow one. Also thet for any given lens the smaller the shutter the more rapid the exposure can be made, though with the same lent a larger shutter is eapable of giving a more efficient thouth less rapid exposure. It is better, thereiore, for moderate exposures, to have a harger shutter than the size of the lens requires. Sir William Abney hed given diagrams of the action of a shutter of this kind in his book relerred to: they show clearly that the centre of the plate gets more exposure then the margins; but practically thit is not very noticeable, and the action is very regular.
6. Facal Plame Shatters.- Thewe are also roller-blind shutters with mechanism similar to the foregoing. but arranged so that the slit in the curtain may move rapidly close in froat of the sensitive plate, exposing differant portions of it in turn, the intessicy of the exposure being regulated by the width of the sjit, whether adjustable or not, a nd the rapidity with which it is moved by the unwinding of a sping. The adrantages of these shutters are now bein fully appreciated, the principal being that they are quiee iedependent of the lens. 20 that one shutter will serve for different lenses, and any suitable lens may be uned at its fuli intensity, without the lows of efficiency inherent in the ordinary forms of lens-mbuticrs. They thus add effectively, if not actually, to the speed of a sow iens, or if a kens be stopped down there is less lows of efficiency, with a gain in increased depth and definition. Tbey are particularly well adapted for the very short expowares required in photographing near and quickly moving objects, racing borses, divers, \&c., and many reflex and other hand cameras are fitted with them. They are constructed in different forms, either for whort exposures with high spceds alone, or for short and prolonged expomures: with e single slit of fixed of veriable width moved at requlated epeeds, or with a series of slits or openings varying in width, their spoeds being adjusted by the
temaions of the gring. Thuta the new Coert-Anchatz shutter has ten tensions and nine curtain apertures, providing for ninety differ-

Fic. 6\&-Goerz-Anschitit Focal Plane Shutter. ent speeds or exposures, ranging from it to t ts of a second, benides autobulb exposures from 1 to 5 seconds and time exposures (6g, 64). Most of these chutters ase now proo vided with a self-capping device for protecting the ensitive plate during the ectting of the shutter. As the slit moves progreasively over the plate, if It is too narrow or moving too slowly, it may cause distortion of the images of quickly moving objects, capecially if near the camera, but with due care in regulating the width of the alit and the duration of expoure this is practically not often perceptible, expecially if the dit is arranged to move in the earme direction as the object. The theory of these shutters is discusced by Coventry (op, cil. p. 69), more fully by Fabre (T, E. P. Suppl., C. p. 128), and their prictical wee in Focal Plame Pholography ("Photo-Miniature Series, "No. 77, 1007).
7. Moving Blade Central Shellers.-These shutters, in which two thin metal or ebonite glates or opaque curtains with round or rectangular apertures, or in other cases two curved bladea, pass very quickly over each other in opposite directions, are largely used in many patterns fitted between the lenses of a combination or attached to tbem in front or behind. Formed of two single lateral shutters opening and closing in the centre of the lens apert ure, they become central, the exposure taking place during the short period in which the openings are pasting each other or the curved blades opening out and closing again. To obtain the greatest efficiency the dze of the openings thould correspond with the full aperture of the lent. If each plate moves as last as a drop shutter the combination gives double the speed, corresponding to half the expowure. The sensitive plate will be most evenly and strontly aluminated when the leaves of the chutter work inside the lens mear the diaphragm, as in Bausch and Lomb's "Unicum" and other similar between-iens shutters, in general ute (6g. 65). This necessitates the fitting of the lens to the shutter, but with adapters

Fic. 65.-Hausch and Lomb's " Unicum "'Sbutter.

Fig. 66.-Lancaster's "See-Saw" Shutter.
it is possible to fit other lenses. Some forms are, however, suitable for use in front of the lens, such as the "Cosstant " and Lancaster's "See-Saw" (fig. 66), white those of the double roller-blind type ean be used either in iront of or behind the lens, though this position is not a favourable one. In thene the rectangular form of aperture is the best, circular apertures cutting of a good deal of light, as in the case of drop shutters. W. B. Coventry (op. cif p. 60) has discussed the action of the double roller-blind shutter as typical of the central class of shutters, and mows that wbile, under similar conditions, with the lateral shutter the effective exposure is constant and the actual exposure variable at all apertures, it is the reverse with the central shutters, and it will not be so easy to calculate exposures with difierent sized stops. A central shutter, acting as a diaphragm of variable aperture, gives a more efficient exposure than a lateral shutter of the same dimensions, as long as the opening is greater than the lens aperture, the coefficient of illumination of the lens varying as long as the shutter opening is smaller than that of the diaphragm used. It is desionble, therefore. to increase the speed and use as large an aperture as possible. so that the diaphragm used may be entirely uncovered during the greater part of the exposure.
8. Iris Slutlers.-Thewe are a further development of the doaible curved blade central shutters, and constructed on the principle of the "Iris" diaphragm, with averal leaves opening out from the centre of the lens and clowing again. They are usually fitted between the lenses of double objectives, and can be made very light and compact. Theoretically this central position of the shutter is the best, and the " lris" is the best form for ensuring the mont equal distribution of light over the plate, provided, a before, that the opening is equal to. the full aperture of the bens They are made so that the periods of opering and cloning may be as short at poesible compared with that of full opening. They require great care in construction and fitting to the lens, and so are expensive. They can. however, be used with convertible sets of lenses of different foci fitting the mame mount. Several forms are made by British and foreign makers, with three, four or more leaves Coerz's "Sector" shutter (fig. 67) may be taken as a type. Georgen" "Central" shutter is very light and amooth in working, and can be used in front of a lent for telephoto work. Further details regarding the difierent forms of shutters, theoretical and practical,

Fic. 67.-Coerr's "Sector" Shutter. will be found in the works by Absey, Coventry, Eder, Fabre and Loode.

Expposwe Meters.

When gelatin dry plates came into general use, and were made of many different degrees of sensitivencss, the want of a guide to the proper exposure for the various makes of plates under difierent conditions of lighting beran to be felt, and several methods were devised for meeting it. Some of them depend solcly upon data derived fron obeervations of the action of the principal factors affecting the reault, namely: (1) the speed of the plate; (2) the actinic power of the sun's light for the time of year in a given latitude and itis position at the particular time of day; (3) the effective diaphragm aperture of the lens; (4) the nature of the subject and its illumination as affected by local and atmonpheric conditions. With others these data are supplemented by, and practically based upon, actinometric observations of the action of the light upon ecnsitive paper exposed near the camera or the subject at the time. Both methods are in many cases of undoubted use, but the information given by instruments of this kind can only be considered as approximate, and much is left to the judgment of the operator, whose surest guide will be an intelligent study of the principles on which these instruments are based, together with carefully-recorded observations of the combined working of his ienses, shutters, plates and methods of development under the varying conditions of practical work. Before using any of these instruments it is necessary to know approximately the relative sensitivencss or "speed " of the plate in use. In the carly days of gelatin dry plates their rapidities were stated as so many times those of wet plates, or (as they, are still) " ordinary," "instantancous," "rapid "or " extra-rapid,' terms which, though suitable for one make of plate, may not be so for others. This was improved upon by the adoption. in 1878, of Leon Warnerke's "Sensitometer," which was in use as a standard for some years. It consisted of a transparent scale of 25 squares of different intensitics, marked with opague numbers and arranged so that each third number indicated a doubled rapidity. This was placed in a frame in front of the mensitive plate, and exposed for thirty seconds to the constant light emitted by phosphorescent tablet, supplied with the instrument, which was previously excited by burning one inch of magnesium ribbon in front of it. The exposed plate was then developed and fixed, and the highest number visible Indicated the rapidity of the plate. In 1890 F. Hurter and V. C. Driffield introduced an entirely new system of calculating the sensitiveness of plates of different rapidities. They make a series of exposures in seconds on diferent parts of the plate in geometrical progression with a standard candle at one metre distance. After development for a certain fixed period with a standard developer, fixing, washing and drying, the
densities " densities" or logarithms of the opacities of the different parts are measured by a special photometer and plotted on a skcketon diagram, producing a curve, one portion of which will practically be a straight line. The position of this line with reference to a scale of exponares Fiven on the diagram decides the rapidity of the plate, whie its length indicates the "capacity" of the plate for the trothiut rendering of tone. The elaborate investigations by which these resuits were obtaincd are of great interest, and were published in the Jowrnal of the Sociely for Chemical Industry (1890, 1891), and later ones in the Photographic Journal (I898). A complete account of the systern by V. C. Driffield was published in 1903, as No. 66 of the " Photo Miniature Series." The sensitiveness shown on the H. \& D. scale is directly proportional to the speed number given The method has been adopted by several dry-plate makers is
denoting the sensitiveness of their differeat branda, and is zore or less the besis on which the plate-speeds for the modern Eagish dry-plate actinometers and exposure metern are calculated. Several gystems of photometry and measurement of the speeds of dry plates bave been discussed at the meetinga of the Congres /nkernational de Pholographic, in 1889, 1891, 1900 and 1905, but no definite standard has boen finally adopted. In Germany the use of J. Scheiner's sensitometer has been adopted, and appears to be extending. it is based on a system of photographiag the graduated tints given by rotating sectors. A lull account of the instrument, and of a system of sengitometry based on its use, is given by J. M. Eder in the Pholographische Correspondens (1898) p. 469, and (ig00) p. 244° In 1901 Chapman Jones brought out a convenient plate-tester on the same principle as the Warncrke sensitometer. but extended by the addition of a colour mensitometer, which is uneful for the comparison of orthochromatic dry plates, colour ccreens, light filters, \&ec. It consists of a screen plate, $\left.4 \frac{1}{} \times 3\right\}$ in, containing a series of twenty-five tints of graduated desaities; a meries of coloured equares, blue, green, yellow and red, and a strip of neutral grey, all Give being of approximately equal luminosity; a series of four squares of special pure colours, each representing a definite portion of the apectrum; also a spece of line design, over which is superposed a hall-tone segative. To une the instrument, a quarter-plate of the brand to be tested is exponed behind the screen for a few econds to the light of a standard candie placed at the distance of a foot, developed, fuxed and wached. An examination of the plate will show the wenuitiveness, range of gradation, possible range of exposure, eensitivences to colour, eive of grain, amount of halation, and the most suitable light for development. It can be used for many other teats, and emabies any brand of platea to be readily tested by the user and compared with any standard he may find convenient. In making thene and similar terts, a standard developer should be allowed to act for a fixed period and at a unifortm temperature (Ph. Journ., 1901, 25. p. 246).

The neaxt important factor is the actinic power of the light. It depende sormally on the height of the sun for the latitude of the place at. the time when the photograph is taken, and exposures in bright sundight are found to vary approximately as the covaciant of the aun's altitude above the horison. The light of the sun itself is practically the same at aay given time and place year after year, but in liable to more or lews local and temporary diminution by the amount of cloud, haxe, dust. \&ec, prewent in the atmouphere at the time It is also affected by the time of day, increasing from surntive to noon, and theo decreasing to aunget. The remaining factor is the effective diaphragm aperture of the lens in relation to its focal kength. In mont cases of ordinary outdoor expourres this can be talien at its normal value, but becomes smalles and increases exposare if the focal length is much increased for photographing near objects. Besides these principal factors, the nature and colour of the objects, their distance, and the amount of light received and reflected by them under variowe atmospheric conditions, have a great infuence on the exposure required. W. B. Coventry has ghown (op, cit p. 75) how the "light coefficient L_{p} " for full surb light, can be found, and han given a table of values of L for the latitude of Londva for every hour of the day in periods of ten days throughoure the year, also the relative coefficients for "diffused light " cloudy," "duill" and "very dull." Tablee of exposores for different subjects under varying conditions of light have boen published by W. K. Burton, A. S. Platts, F. W. Mills, Sir D. Selomons and others, and in preparing them Dr J. A. Scott's tables, showing monthly and daily variations of light for countries abous N. lat. 53 . are generally used. The more modern tables, such as are publithed in the printed "exposure notebooks," also take into account the plate apeeds, but unfortunately there is no uniform standard of plate speeds, owing to the dificulty of fixing a deafinite standard of light. The subject is fuliy treated in the British Journal Almanac (1901), P. 675, the Walkins Manwal, H. Bourmalt's Calcul du cemps de pase on pholographic, and similar works by A. de la Baume Pluvine., G. de C, d'Espinassoux and others.
Based on the same principle as these exposure tables, various portable exposure meters have been brought out, in which scales representing the coefficients for plate-spoed, fight and diaphragm are arranged as in a slide rule, so that, when properly met, the normal exposure required can be found by inspection, and increased or diminished according to circumstances. In Hurter and Driffield's "Actinograph" the light coeffcient is given by a printed and showing the curves for every day in the year and for every bour ol the day, the unit being the its, part of the brightest poreable diffused daylight when the altitude of the sun ls 90°. The Plens" scale shows the ratios of aperture to focal length in genersl ues, and is calculated lor single, double and triple systems of lenses The "speed" scale is based on the exposure in seconds which with one actinograph degree of light will produce a perfect negative of an ordinary landscape. An additional scale is given for five \$fferent. degretes of illumination-" very bright." "bright,"" "mean," "dull," "very dull." A table of ractors' for "views," "portraitare," "interiors," "copying." is also givern, and these regulate the figure to be taken lor the exposure. The scales are egaraved oa boxwood, and there are two aliding pieces (fig. 68).

It is spechally adapeod for use whith plates of speed numbers agreeing with the H. a D. acale, but can be used with any plate of which the relative epeed number is known. Convenient exposure meters have been made rince 1890 by A. Watkins, of Hereford, in different

form besed upon an actinometrical test of the light at the time of expoeure. In the complete "Standurd Meter" (i890) scales corresponding to "speed of plate," "diaphragm f numbers," "light," "rubject "and "enlarging"" marked P. D.A. S. and E., are arranged on ringa adjustable round a cylinder. The plate-speeds are taken from a table and the "light coefficieat," or "actinometer aumber," is ascertained at the time by exposing a piece of eensitive paper in the actinometer at tbe end of the instrument for the number of eeconds required to match a fixed tint 24 shown by an attached pendulum. Many improvements have been made in it and the lateat pattern (1908) is made in magralium (fig. 69). The "Dial" meter (190t) is a simpler form in a circular metal case with four apertures marked ", plate,"

Fig. 69.-Watkinn's " Standard "Meter. "stop," "act " and "exp." above the corresponding acales, and an actinometer for testing the light. The numbers showing the peed of the plate in use, the f value of the diaphragm, and the actinometer exposure in seconds are bronght into the respective apertures and the exposure required is read off in the "exposure" aperture.

An "indoor meter "is aiso made, and a "hand camera calculator " for use with the "Standard "or "Bee" meters. The "Queen Bee" and " Bee" meters (1903) are later, smaller and more convenient patterns which have superscded the " Dial" meter and have the plate numbers and exposures marked round the case, and the scales of " $/$ numbers" and "light" on a revolving glase plate. This is revolved tili the f number on the right is oprosite the speed number of the plate: opposite the "actinometer number" on the left. found as above, will be found the exposure in seconds (fig. 70). The "Oueen Bee" meter is similar to the "Bee," but of better construction and

Fig. 70.-The Wathiac's fitted with a perduium.
G. F. Wynne's "Infallible " exposure meter (1893) id aloo in dial form, but the senaitive paper is exposed directly, to pendulum is used, and the scales are open on the dial. In use, the slass carrying the movable scale is turned unti the actinometer time in eecond upon the exposure scale is oppoaite the diaphragm number of the plate, as given in the list of plate speeds; the correct exposure will then be lound against each stop given on the acale. There are practically only two acales: the acale of draphragme representing the dist phragm apertures or numbers, the speed of plate and the variation of exposure due to subject; and the time scelc, representing the actinometer lime and tha exposure (fig. 71). The actino Fig. 71.-Wynne's Me Infal- exposure (fig. 71). The actino
lible ${ }^{\text {Expone }}$ Meter. meter is protected by a yellow glam screen when not in use. In a smaller form the scales are on the
circumference of a locket, and the actinometor at the back. An "Infallible" Printmeter is also made for showing expoustes in contact printing on sensitive papers, but can atro be used for teating speeds of plates aad papers. Becic's "Zambex" Exposure Meter gives the exposure and stop to be used, also the depth of focus to be obtained with different diaphragm apertures. The required exposure is set to the "apeed" number on the next scale of the meter. The thind scale corresponds to the times of darkening the sensitive paper in the actinomeser attached to the meter, and shows the diaphragm aperture suitable for the given exposure. Other scales show the distances that will be in focus with the different stops used, arranged so that the focal depth of four different lenses can be found. Several other exposure meters are made on the principle of the slide rule, with scale corresponding to the factors of " plate speed." " diaphragm number," "light," "subject," "exposure," and the expopure is found by simple inspoction without an actinometer. They are designed for use with particular brands of plates, but can be used for othere of similar speeds.

Another class of exposure meters comprises thowe in which the intensity of the light is estimated visually by extinction through a wemi-transparent medium of increasing intensity, such as J. Decoudun's (1888). in which the exposure is judged by the disappearance of a scries of amall clear openings on a graduated rcale of densities when kid on the most important part of the image as seen on the ground-glase. It indications are not very defnite, and the paper scale changet in density alter a rime, A better form is "E. Degen's Normal Photometer " (1903), consisting of two stiding violet glase prisms, one adjusted for the diaphragm apertures, the other for the actinic ilfumination of the object. They are mounted with their outer faces parallel. In use the upper slide with prism is drawn out so that the pointer coincides with tbe division indicating the diaphragm aperture to be used; the object to be photographed is then viewed directly through openings ot one end of the instrument, and the lower alide is drawn out and puched back slowly till the object viewed is almost obscured. The attached pointer will then indicate the expocure required, or, reversing the order, the diaphragm aperture for a given expooure can be found. Auxiliary scales are attached for very short or very long exposures. The principle of construction is that the logarithma of the times of exposure are proportional to the thicleness of the coloured prims. "G. Heyde"s Actino-Photometer" (1906) it on somewhat similar principle, and consists of a circular metal bor with daric viotet gtas viewing screens in the centre of both sides, with an obscuring iria inside the case worked by revolving the back of the bors. On the front of the instrument exposurt tables are given for plates of every rapidity, and for diaphragm epertures from $/ / 3$ to $/ / 45$. Exposure meters of this type are epecially applicable for open-air work where there is sufficient fight for ready measurement. Other simple actinometers are in use for carbon and procese printing, consisting generally of tramlucent sraduated males in different densities of paper, cotoured gelatin, sce, or of a photographed male, graduated by increasing exposures. The "Burton actinometer," for pigment printing. made on this primeiple, contains meveral small negatives of different densities, one of which is selected of equal depth to the one to be printed, and the progress of the printing is estimated by exposing a piece of sensitive paper under it and examining it from time to time.

Stingitive Plates, Films and Papers

Semsitive Dry Plates.-A special leature of modern photography is the use of trustworthy ready-prepared eensitive dry plates and films in different gradet of sensitiveneas, so that there is no necesaity for the photographer to prepare his own plates, nor, indeed, could he do so with any advantage. The practice of outdoor and studio photography has thus been very greatly simplified; and although with wet collodion there was the advantage of eceing the results at once and retaling a picture if necessary, the uncertainties conaected with the use of the silver bath and collodion, and the amount of cumbrous apparatus necessary for preparing and developing the plates, far outweighed it. There is also an enormous eaving of time, in using dry plates as compared with wet, by deferring devolopment. In tropical climatet, also, dry plates can be used when work with wet plates would be imposelible. On the other hand, the uncertainty of more or less random exposures on ready. prepared plates must not be overlooked. Besides their use in taking negatives, gelatin dry plates are also largely used for printing transparencies, iantern alides, enlargements, ac. For negative work they are prepared with an emulsion in gelatin of silver bromide. alone or with the addition of silver iodide or chloride and are to be obtained in five or eix $^{\prime}$ degrees of repidity: " skow, for photomechanical or "process" work; "ordinary," for general purposes when quick expourres are not required: "rapid," for landacape and portraits: "extra rapid," for instantaneous exposures; and "dauble extre rapid," for very quick snapshot work in dull weather or for special subjects. These latter kinds are exceedingly sensitive. and require great care in use to avoid fog In order to prevent halation, or frregular action by reffection from the back surface of she glace dry platee are coated with a non-actinic "backing"

Self-developing dry plates were introduced in 1906, in which the developing tgent is mixed in the film itself, as in the Iford "Amato" plate, which onty require immertion in a solution of washing coda for development, or, as in the Wellington "Watalu" plates, applied on the back of the plate, plain water oply being required for development, this application also preventing halation. The slow plates esed for printing lantern slides and transparencies are usually prepared wlth an emulgion of silver chlocide with ot without free silver nitrate aod other haloida

The rendering of photographic plates isochromatic or aensitive to all colours by dyeing them with eosin, or other suitable dyes, has been greatly improved by the use of new dyes, especially those of the locyanin group. prepared by $\mathrm{Dr}_{\boldsymbol{T}} \mathrm{E}$. Konig of the Hoechat factory, and known as "orthochrom T."" "dicyanin." ${ }^{4}$ pinaverdol," "pinachrom " and "pinacyanol," the lattor of which can confer on a silver bromide plate as high a degree of sensidvences for red as erythrosin does for yellow; alco F. Bayer's "Honnocol," Dr A. Miethe's "ethy! red," and other similar dyes (ree E. Jh., 390s, pp. 183, 336). Panchromatic plates are now largely manufactured and used for all photographic work in which a true rendering of the relative colour luminomities is essential, and more particularly for the various methods of colour reproduction in which plates are required to be tensitive to red, green and blueviolet. They are made in difierent deprees of geperal and colour eensitivenees, according to the purpose for which they are required the ondinary "inochromatic* being moot sensitive for yellow and green, and the "panchromatic" for red, orange and yellow, is well as for sreen, blue and violet. To obtain the beat results from ats these plates it is nectwary to wereen of the blue and violet ray: with ycilow or orange transparent screms, or colour fifters, madle of coloured glass, or ghass coated with coloured gelatim, colloction, \&c.e or with glase celle contsining wolutions of suitable dyee or atita. For the various proceses of threecolour reproduction panchromatic plates and apecial red, green and bhue-violet filters have to he used for taking the three negatives, their intensities and abooptions being carefully adjused to the particular plates in use: the same applics, bat len strictly, to the yellow tereeme used with ordimary mochromatic plates. Dres epecially atiteble for theee colour-filters have been prepared by Dr E. Konjt. Varioue kinds of colour screens for ordinary, microceopic and trichronatic work are made commercially, and Mews Schott of Jenim male a opecial yellow giate in three tints for the purpoet.

Plotes far Calonf Pholograpiry.-In 1868 Lonia Ducos du Hamron, among various trichromatic methods patented for photographically reproducing coioured objects in the colours of nature, dexcribed one in which the trichromatic prisciple, instead of being carried out on three eeperate plates, was to be combined in ore plate by meens of a trinsparemt medium covered by a trichromatic acreen divided into narsow justaponed tines or miaute speces, corresponding to the three primary colours, red, green and biue-violet, the trame parent colour of each of theme thee or apaces acting te colont Girer. A ensitive penchromatic plate wate to be expowed in contect with this wereen to peoduce a negative with lines or epots cocresponding to the relative strength of the three coloured tights pasaing through It, th that a diapocitive priet on glam properiy registered with the tricolour screen souid whow the object in ita proper colours. This method could not be carried out sucoesefully for want of efficient panchromatic plates and other difficulties
Between 1892 and 189% acveral patents were taiken out by J. W. MeDonough and J. Joly for various methods of preparing trichromatic ruled acieens (Fh, Jown., 1900, p. I91). The Joly method was Lairly suoceafin in action, but had several diadvantages owing to the coarsenest of the limes, the necessity for having two screens, one for taking and another for viewing, and the coot of malaing them (B. J. A., 1899, p. 671). The "Florence" chromatic plate (1905), worked out in America by J. H. Powric and Flarence M. Warner, was animprovement on the Joly method, the colour sereen being photographically priated on a glass plate, coated with panchromatic emulion and expoed to the coloured object through the screen (Penrose Piclorial Annmal, igos-igo6, p, 111). Some cood results were produced, bat it has not come into une.

After several years of laborious, research, Messrs Lumithe, of Lyons adopting Ducos du Hauron's coloured mrain method, succeeded where he had failed, and in 1907 brought out their "Autochrome "plates, in a very complete and practical form, maling it possible to produce photographs in the colour of matural objects by one exposure instead of three, as in the ondinary three-colour processes. Glas plates are coated with an adhesive medium over which is spread a mixture of potato starch grains, of microvoopic fineness, stained violet, green and orange, the interstices being filled in with fine earbon powder to form i tricolour mereen, carts by reflected and of a pinkish, pearly appearance by transmitted light. This is varnished and coated with a thin sensitive panchromatic emulsion of gelatino-silver bromide. The plates are expoeed in the camers from the back, through the tricolour films, psing also a epecial compensating orange-yellow screen, before or behind the lens, then developed as usual, producing a negative coloured image in the complementary colours, which is then treated and reversed so as to produce a positive coloured image by tranamicion,
ohowing the picture in its proper colours. The results thus obtained
are remarkably good and practically solve the problem of direct colour photography in a simple and fairly inexpensive manoer (rees Agenda Lmmiers, 1909).

In C. L. Finlay's "Thames" colour plate (1908) the tricolour screen io formed by rows of, circular dots coloured alternately orange-red and green and the internuediate spaces blue. It is used alone, the coated surface being placed in contact with a panchromatic plate, the uncoated side towards the lena. It carries register marks for adjusting it to the finished picture after development and reversal of the innage. These screens, being more transparent than the "Autochrome." require less exposure, but the colour rendering is not so perfect. In the Jougla "Omnicolore". plate (1909) the tricolour sacreen and sensitive surface are combined on one plate as in the "Autochrome." but the screen is made up of a seriet of blue-violet parallel lines, with intermediate alternate broken lines of orange-red and yellowish-green at right angles to them, the red narrower than the green. The relative sizes of the coloured dots in the three plates are approximately:-

$$
\begin{aligned}
& \text { "Autochrome" starch grains. Tl'so to shtir in. } \\
& \text { "Thames " plate, dots, diameter } \\
& \text { "Omaicolore" plates, blue line } \\
& \text { red square }
\end{aligned}
$$

chloride in collodion, and known as "C.C." or " collodiochloride." The basis of most of the developable bromide papers used for en. largements and direct copying, containiag no free silver bitrate. and with which an invisible image is brought out by development. much in the same way as with dry plates, is silver bromide. Thene. papers are made in great, variety of tints and surfaces "smooth" and "rough," "glossy" and "matt," for producing different effects. They are largely used for direct printing by artificial light or daylight, for enlargements; and for printing photographic post-cards, \&c., in large numbers by machinery, the prists being made on a long band with an amost instantaneous exposure, and developed and fuxed by being passed through the proper solutions on large rollers or otherwise. - Papers for the platinotype procemes sessitized with salts of platinuma and iron, are also manulactured cor printing out entirely or lor development ,with potassic oxalate. Prints on these papers have the advantage of being permanent.
Messrs York Schwartz and J. Mallabar's process of developing and toning printe made on a special seasitive paper prepared with an emulsion of silver phosphate was introduced by Messrs Houghton in 1908 under the name of "Ensyna." Very ahort exposures to day or artificial light are required, and with a special developer ("Ensynoid ") permanent prints are obtained with a varied scale of tones similar to those givea by toning with gold, the colour of the print being determined by the exposure, short exposures giviag purple and long exposures brown or reddish tones The procets is a rapid one, the operations of printing, developing, fixing and washing being completed within about ten minutes or even lese.
Fnr the various methods of printing in permanent pigments ("Autotype," \&ce.) timsues are prepared coated with pigmented gelatin in various colours, and very succensful reauhs in colour photography have been obtained by printing from suitable negatives in three coloura with specially prepared yellow, blue and pink tigsues. Sirmilar papers, prepared with pigmented gum instead of gelatio, are used in the "gum bichromate" process, and "single transier " papers, coated with plain gelatin, are ured in the pigment printing procesces to receive the developed print, and are also useful for photo-lithography, the new "oil-printing " methods and in trichromatic printing on paper by the Sanger.Shepherd method and Dr König's "Pinatype." For Manly's "Ozotype" and "Ozobrome" processes special gelatinized and pigmented papers are made. "Cyanotype" and "Ferrogallic" papers are prepared for the use of architects, engineers, \&c., in rolls of considerable width. for the direct reproduction of tracings and drawings as blue or black prints by these and similar methods.
Apparatus for Development.-The recognition of the fact that the two principal factors in the development of modern photographic dry plates with a suitable developer are time and temperature, and also that a prolonged immersion in dilute solutiona is in many cascs a more convenient and equally efficient racthod of development, has led to the construction of apparatus for enabling the operation to be carried out almost automatically and for timing its duration.
In 1894 A. Watkins brought out his factorial system of development based on the principle "that with a correct exposure on a given plate with a given developing agent, the time of development required for a given printing opacity has a fixed arithmetical ratio to the time of appearance of the high lighte of the image, provided the developing power of the solution remains constant during development; and this rule holds good for all variations of strength. amount of alkali or bromide, and temperature within those limits which have been found safe in practice " (Pholo. News, 1894. 38, pp. 115. 729; and (urther, Ph. Joxin., 1900, 24, p. 221). By a series of observations he ascertained the multiplying factors of most of the developers in ordinary use, and in 1905 brought out his "factorial calculator" and a "dark-room clock" lor facilitating the working of the method. The former is made of aluminium, and consists of two circular disks, the upper smaller one rotating and carrying a pointer. The outer disk is marked with a scale of Watkins" factors for the different developers, as given in the "instructions" accompanying the instrument, and is used to denote the "time of devclopment" in minutes. The scale on the inner

Fig. 72.-Watkins's Factorial Calculator.

Fic. 73.-Watkins's Dark: room Clock.
disk shows the "time of appearance " in seconds or minutes: In use the pointer is set to the factor for the developer in use, and against the "time of appearance " on the inner acale will be found the total number of minutes required for complete development ($\mathbf{i g}$. 72),

The "calculator" can be used with any ordinary clock or warch but the "dark-roons clock" (fig. 73) has been specially constructed for the factorial system. It is an improvement on the earlier forms of Watkins" "Eikronometer," and has a 4 in. dial with 10 minute and 100 eeconds divisions, very plain for darl rooms, centre seconds hand, stop action and oritside indicator to mark the completed time. The ecconds hand completes the revolution in 100 seconds, while the minute hand does 80 in 10 minutes, or sufficient for the longest ordinary development, though it runs on, if mecemary, very much longer, both hands starting together abrays at 0 .

In 1908 Watkins brought out another system of "thermodevelopment " by time dependent on the use of a standand "time developer," the duration of the development, at a given tennperature, being modified according to the make and speed of the particular plate in ute. The temperature variations are indicated by - movable scale, or " thermo-calculator," on the botic of developer, the variations for development speed of various plates, being given approximately on the "Watkins" Plate Speed Lirt," which thus shows the "speed of plate" and "epeed of development " with the standard developer at 60°. This method is well adapted for plates, films and stand development in tanks or machines, no observation of the plate being required, and the times are most conveniently observed with the "dark-room clock." Full details of these two distinct methods of development will be found in the 4 th edition of the Wabins' Manwal of Exposwre and Development.
C. W. Piper't "photographer's stop clock" (igo6) is more elaborate clock, intended for use not only in " time development " bet for all photographic operations in which accurate control in regard to time is of importance. It is fitted with a gong and arranged to work by " time" or " bulb." Once started, by pressure on a lever or on the bulb, it will continue to go until stopped, etriking the gong at the completion of every minute, when the seconds hand reaches the sero point. A second presture on the butb stops the clock, so long as the pressure is continued, while pressure on a lever stops it permanently. It is thus useful for timing any intermittent operations, whilst the clock adds up the separate times and preventa the occurrence of errors diffcult to avoid when timing with an ordinary watch. By an additional attachment a prolonged time exposure with the camera may be terminated, or an "instantaneous" or short "time" exposure given at any prearranged time. Mensar Houghton's "Ensign" clock for time development has a dial with 60 divisions, a siagle hand, and is fitted with a gong. It can be set to ring an alarm bell at the expiration of any prriod from one minute to one hour, can be started or stopped immediately and is easily read in the dark-room. It requires no winding up, the action of setting providing the tension for the recording movements. It can be stopped and started at fill and the bell arranged to give a short or prolonged ring. S. Stanley's is another convenient form, with a $4 \frac{1}{3}$ in. dial, divided into 60 seconds and 60 minutes, the thick hand recording the seconds and the thin hand the minutes.

Several forms of developing tanks and machines have been constructed for developing a number of exposed plates, together with ordinary or dilute developers, with the aid of the factorial system or independently of it. The Kodak "Automatic Developing Tank " (1905) is a useful arrangement by which bands of exposed roll films can be developed in daylight, without any need of a dark-room (fig. 74). The expoeed film is wound frorr the apool

Fig. 74-Kodal Developing Tank.
into a red celluloid apron contained in a box A. then placed in the tank B. where it is left in a.dilute developer for about twenty minutes, and requires no attention. It gives very good results. For the "Brownie " films a special daylight developing box is made. With the Kodak "Eastman Plate-developing Tank" (1908) the exposed plates are removed. in the dark-room, from the plate holders and placed, in pairs back to back, in a special framework holding six pairs, which is lowered into a metal tank containing the developer, and is fitted with a watertight Hd so that it can be inverted during development. A clock lace, with pointer, by Which the period of development may be noted is fitted outside the tank. Another apparatus of the kind is made for developing celluloid flms expoed in the "Premo Film Pacle". (fig. 75).

Other forms are made, and in some the furing and washing can alos be effected. Theae tanks undoubtedly mave much time and troubie in developing a large number of expowed plates or firma, and have been found to work with efficiency and regularity. Eastman Kodak Co. brought out in 1907 a machine for developing paper printe oa bromide or gaslight papers.

F1G. 75.-Premo Film Pack Tank (1908).
Photographic Peinting Appagatul
For ordinary printing purposes pressure frames, with or without glass fronts, are used for holding the negative and aensitive paper in close contact during exposure to light. They are fitted with hinged backs enabling the progress of the printing to be seen. The pressure is usually given with springs or with screws or wedges acting on the back. They are made in different kinds shown in the dealers' catalogues. For copying large tracings and engineers. drawings by the cyanotype and similar processes large glased Irames are used, mounted on a stand with axle, so that they may be easily tumed over for refilling or fixed at a suitable angle to the light. The pressure is given by an elastic cushion or vacuum arrangensent, by which air is pumped out from under an indiarubber sheet covering the back of the frame, thus securing a perfectly uniform pressure of about I4 to to the square inch without strain on the front glass. Such frames are also useful for various photo-mechanical printing processes with large negatives or metal plates.

For rapid printing of post-card and other negatives up to $8 \frac{1}{4} \times$ 61 in. a handy and simple apparatus the "Rapide" has been brought out, consisting of a lantern fitted for oil, gas or electric light, with a sloping front, in which a specia! printing frame is fixed and arranged so that the prints can be rapidly exposed one after another (B, J. A. 1g09), p. 691. In another form arrangements are made for exposing a large number of printing frames on a suitabic stand, in one or two ticrs round a central arc lamp, which may be provided, as in the "Westminster " revolving printing frame, with a shade to protect the cyes of the operator when examining the prints or changing the frames.

For printing tracings, \&c., in long rolls, cylinder and rotatory machines of various types are used, so that the tracing and sensitive paper may be drawn together at a regulated speed in close contact round a ghass cylindrical surface within which clectric arc or mercury vapour lamps supply the source of light. Several machines of this kind are described in Eder's Johrbuck for 1908, also in the patent records and photographic journals.
Authoritirs,-Apparatus in gemeral: Sir W. de W. Abney, Instruction in Pholography (I Ith ed., Igo5): R. C. Baytey. The Complete Photographer (1906): Dr J. M. Eder, A usfahtiches Handbuch der Photographie (2nd ed., pt. i. (2), 1892) ; Jahrbicher fer Pholographie und Reproductions Technik (E. Jb.). (1887-1908). Valuable for refcrence on all forms of apparatus: Dr C. Fabre, Traitf encyclopedique de photogrophic (T. E. P.) (vol. i., 1889; Smpple we $3 A, 1892 ; B, 1897 ; C, 1902 ; D, 1906)$, also gives much information about photographic apparatus and optics; Chapman Jones, An Introduction to the Science and Practice of Pholography (4th ed.. 1904): British Journal Photographic Almanacs to 1909 (B. J. A.): Patent Office. Abridgments of Specifications, class 98, "Photography ": Pholography A wntuals (1891 to 1899); Pholographic Jowrmal (Ph. Journ.); Year Books of Photography to 1907.
Lenses and Optics: C. Beck and A. Andrews, Pholotrephic Lenses (6th ed.): W K. Burton, Opsice for Photographers (1891); R. S. Cole, A Traatise on Photographic Optics (18g9): T. R. Dallmeyer, Telephotography (18gg); I. A. Hodger, Photographic Lenses (t895): Captain Houdaille, Sur wne methode d'essai scientifique at prateque des objectifs pholozephiques (i894): G. L. Johnson, Pholographic Optics and Colour Pholagraply (1909): O. Lummer, Conbributions to Photograpinc Optics. trenslated and augmented by Profesaor S. P. Thompson (rgoo): Dr A. Micthe. Optique photographiqme sans devellopenents mathematiques, translation by A. Noaillon and V. Haskreidter (1896); Lieut. Colonel P. Moessand, L'Ophiquy pholographique (1898), L'Objectif phologrophigue (189g); C. W. Piper, A First Book of the Lens (1901): $\mathrm{Dr}_{\mathrm{r}} \mathrm{M}_{\text {, von Rohr, Theorie ernd }}$ Geschiclite des photographischen Objectios (1899). a most valuablie theoretical and historical summary of photographic optics and its literature: Hans Schmidt. Das Fern-Objectio va Portrat Arci= teder- and Landschaftefoche (1898); Dr H.Schroeder. Dic Elemante
der pholographicalen Optit (18g1); I. T. Taylor, The Oplics of Photography and Photographic Lenses (3rd ed., 1904); The "Photo Miniature Series." No. 1 (1899). Modern Lenses, No. 36 (1901), Tacphologyaphy: No. 36 (1900), Lens Facts and Helps; No. 79 (1907). The Chicice and Use of Pholographic Leaser.

Hand Cameras, Shutters, Exparme Meders, öc.: Sir W.de W. Abney, Inslonleneous Pholoyaphy (I895); H. Boursault, Cakul du lemps \& pose en photographie (I896); W. B. Coventry. The Tecknics of the Hand Camere (1901), the working principles of lenses, shutters. de.. for instantaneous exponures are treated mathematically and gracticaly; L. David. Die-M(oment-Photograpleie (1898); G. de Chapel d Espinassoux. Traite pratique de la delermination du temps de pose (t8go); Dr R. Kragener, Die Hand Camera wnd Jike Amwendung fur die Moment-Pholographie (1898); A. Londe, Ls Pholofraphie inslanhande, theprie et pratique (3rd ed., 1897); F. W. Pilditch, Drop-Shulter-Photogeg phy (1886); A. de la Baume Pluvinel. Le Temps de pose (1890); A. Watkins, The Walkins Mranual of Exposure and Development (4th ed., 1908). The Practical Photographer, No. 8 (1904). "Hand Camera Work." The "Photo-Miniature Series," No. 3 (1899), Hand Camare Worh: No. 37 (1902), Fi/m Phobography: No. 56 (1903), The Hurter and Drigiald Syucem; No. 76 (1906), The Hand Camera; No. 77 (1907), Focal Plane Pholoprapky.

Colour Photography: Agenda Lumiere. Le pholographie des comlawes et les pluques amiochromes (1909); G. E. Brown and C.W. Piper. Colow Pholagraphy with the Lamitre Autochome Plales (1907): Baron A. von Hübl. Three Colowr Pholography, tranalated by H. O. Klein (904); Theorie und Praxis der Farben Pholographie wit Aurockrom Plattem (1908); G. L. Johnson. Pholographic Ophics and Colowr Pholography (1909): Dr E. König. Natural Colour Photegrophy (trans. by E. J. Wall (1906); Die A ntochrom Photograplkie wand die wermander Dreifarbenrauler-werfahrew (1908). (J. Wa.)

111.-Pictorlal Photocraphy

Pictorial photography difiers from other branches of photographic practice in the motive by which it is prompted. Employing the same methods and tools, it sceks to use photographic processes as a means of personal artistic expression. Thus in the early days of Fox Talbot's calotype, about 1846, David Octavius Hill, a succesafui Scottish painter, took up this method of portrayal, and, guided by an artist's knowledge and taste, and unfettered by photographic convention, which indeed had then scarcely begun to grow, produced portraits which for genuine pictorial quality have perhaps never been surpassed, eapecially if some allowance be made for the necessary m mperfections of the "Talbotype" (see Plate II). Whether they were in their day typical examples of Talbotype with all the latest improvements, Hill probably never cared. When, again, a few years later, Slr William J. Newton, the eminent minizture palnter, rend a paper before the pewly formed Photographic Society of Great Britain (now the Royal Photographic Society), his recommendation to depart from the eustom of defining everything with excessive sharpness caused his address to be almost epoch-making. "I do not conceive it to be necessary or desirable," he said, "for an artist to represent, or aim at, the attainment of every minute detail, but to endeavour at producing a broad and general effect. . . . I do not consider that the whole of the subject should be what is called 'in locus'; on the contrary, I have found in many instances that the object is better obtained by the whole subject being a little oul of focus." The doctrine has been persistently repeated ever since, but only within the last decade of the 1 ith century was the supprescion or diffusion of focus received by photographers generally with anything better than ridicule or contempe, because it was unorthodor. O. G. Rejlander, Mrs Julia Margaret Cameron, H. P. Robinson, and others, by precept or practice, strove against such photographic conventions as had arisen out of those technical exigencies to which pictorial qualities were so often sacrificed. As late as 1868, in the Manual of Photographic Manipulation, by Lake Price, the old advice to arrange a group of persons in crescent form, so as to adapt the subject to the curve of the fieid of the lena, was repeated with the additional recommendation of plotting out on the ground beforehand the "curve of the focus". as a guide. As a defiance of this dictum, Rejlander, in 1869, produced a group of the members of the Solar Club in which some of the chiel figures were set videly out of the "carve of the focus." The mere technical difficulties of this performance with wet collodion plates, and in an ordinary upper room, need not be touched upon
here, but it is to be moted as one of those triumphant departures from convention which have marked the progressive stages of pictorial photography. At about the same period, Mss Cameron, carrying the recommendation of "a littie out of focus " rather further, regardless of bow her lens was intended to be used by its maker, secured the rendering dictated by her own taste and judgment, with the result that many of her portraits, such as those of Tennyson, Carlyle, \&ec, are still in their way unsurpassed. Contemporaneously, Adam Salomon, a talented sculptor, "sunned " down the too garish lights of his photographic prints, and strengthened the high lights by working on the back of the negative.

But. during the concluding quarter of the roth century, probably the most powerful infuence in pictorial photography was that of H. P. Robinson, who died in February 1goi, and, but for a brief period about the year 1875, was one of the most prolific " picture makers." Inspired by Rejlander, of whom he was a contemporary, Robinson will perbaps be best remembered by his earlier advocacy of comhination printing. As eariy as 1855 Berwick and Annan exhibited a photograph which was the result of printing from more than one negative, a figure from one piate being cunningly introduced into a landscape print from another. Then came from Rejlander "The Two Ways of Life," in which, with wonderful ingenuity, thirty different negatives were combined. Robinson followed, and between 1858 and 1887 exhibited numerous examples of combination-printing, one of the most popular and fairly typical examples being "Carolling" (see Plate I), which received a medal in theexhibition of the Royal Photographic Society in $\mathbf{8 8} 7$.

Though in this combination-printing one may perhaps perceive the ger.n of incentive towards the production of special effects not seen in the original, yet the practice was not destined to become very popular, for even in the most capable hands there remains the difficulty, if not imposibility, of fitting a portion of one negative into a print from another and still preserving true relative tonality, and even Irue proportion. Skilfully produced ${ }_{\mathbf{r}}$ erninently popular in character thongh "Carolling" may be, such errors are not absent. Of this combination-printing Dr P. H. Emerson has said: "Cloud printing is the simplest form of combination-printing, and the only one admissible when we are considering artistic work. Rejlander, however, in the early days of photography, tried to make pictures by combinationprinting. This process is really what many of us practised in the nursery, that is, cutting out figures and pasting them into white spaces left for that purpose in the picture-book. With all the care in the world the very best artist living could not do this satisfactarily. Nature is so subtle that it is impossible to do this sort of patchwork and represent her. Even if the greater trulhs be registered, the besser truths, still important, cannot be obeained, and the softness of outline is easily lost. The relation of the figure to the landscape can never be truly represented in this manner, for all subtle modelling of the contour of the figure is lost."

Pictorial photography received a large accession of votaries in consequence of the greater facilities offered by the introduction of the gelatino-bromide, or dry-plate, process, which, although dating from 1880, did not notably affect photogriphic communities until some years afterwards; and although improvement in appliances and instruments had little to do with the advance of the pictorial side of photography. yot, indirectly at least, the dry-plate and the platinotype printing proces have had an undoubted effect. The former gave ethormounly increased facility, and dispensed with tedious manipulations and chemical knowledge, while its increased light-sensitiveness decreased the limitations as to subjects and effects. The platinotype process was discovered in 1874-8880 by W. Willis, who employed his chemical skill and knowledge to give the world a printing process more likely than the hitherto prevelent silver papers to ratishy artistic requirements.
Up to 1882 but few outdoor photographers had ventured to run counter to the general dictum that photographs should only be taken during sunshine or good hright light, and unqueatianins
congent would have been siven everywhere to the proposition that it would be absurd to work when anything like fog or atmoapheric hase was present. Isochromatic plates, introduced for the purpose of equalizing the actinic power of various colour luminosities, and so rendering coloun in correct relative value, were recommended by one writer, who applauded their supposed advantage of enabling the photographer to photograph distance without any suggestion of atmosphere. That evening or morning haze might enhance the beauty of a landscape, or that the mystery of hall-concealment might itself be beautiful, does not seem to have occurred to the photographer, who had become infatuated by the exquisite clearness and sharpncse which, with a minimum of tabour, he was able to achieve. It is therefore interesting to note one of the first photographic successes which broke away from this convention, just as Rejlander's Solar Cluh croup defied the formula of arranging human figures like the tiers of an amphitheatre. William M'Leish, of Darlington, a Scottish gardener who had taken to photography, and who seems to have been less under the influence, or it may have been that he was ignorant, of the old dicta, sent to the Royal Photographic Society's Exhibition in 1882 a photograph entilled " Misty Morning on the Wear," a very beautiful view of Durham Cathedral as seen through the mist from across the river. The judges, although they that year awarded cleven medals, passed this by: but appreciation came from outside, for newspaper critics, and practically all those who were not blinded by prejudice and coaventionality, declared it to be the photograph of the year. The exhibitions immediately succeeding revealed numerous imitators of M'Leish, and both figure and landscape work began to be shown in which there was evidence of greater freedom and originality.
Meanwhile the Photographic Society of Great Britain had drifted away from its artistic starting-point, and had become chiefly absorbed in purcly scientific and technical subjects. But the gencral apathy which existed in respect of the artistic aspirs. tions of some workers was the forerunner of a period of renaissance which was to end in lifting the pictorial side of photography into a greatly improved position. In 1886 Dr P. H. Emerson read hefore the Camera Club a paper on "Naturalistic Photography," which served as an introduction to the publication (r887) of his book under that title. Unquestionably this book struck a powerful blow at the many conventionalities which had grown up in the practice of photography; the chief doctrines set forth being the differentiation of focus in different planes, a more complete recognition and truer rendering of "tone," a kind of truthful impressionism derived from a close study and general acquaintance of nature, and a generally higher and more intellectusl standard. After the publication of a second edition in 3889 Dr Emerson publicly renounced the views be had published, by issuing in January of 1891 a bitterly worded, hlack-bordered pamphtet, entitled The Dealh of Nadiralislic Photography. But the thoughts which the book had stirred were not to be stilled by its withdrawal. Towards the end of the same year the conflict which within the Photographic Society had become apparent as between the pictorial enthusiasts and the older achool, culminsted in connexion with some matters respecting the hanging of certain photographa at the exhibition of that year; and a number of prominent members resigned their membership as a protest against the lack of sympathy and the insufficient manner in which pictorial work was represented and encouraged. This eecession was to prove the most important event in the history of that branch of photography. The secessionists being amons the most popular contributors to the annual exhibition gathered round them numerous sympathizers. In the following year they formed themselves into a brotherhood called "The Linked Ring," and in 5893 held their first "Photographic Salon," at the Dudley Gallery, Piccadilly. The most noteworthy of the early adherents attracted to the new body was Jemes Craig Annan, whose work was practically unknown until be exhibited it at tho first Salon; and almost at once be, by generad consent, took a position amongst pictorial photographers second to nene (tee Plate II).

Aroused into greater activity by these events, the Royal Photographic Society began to pay more attention to what had ndw become the more popular phase. At subsequent exhibitions the technical and scientific work was hong separately from the "Art Seetion," and a separate set of judges was elected for each section. It became the custom to allot by far the greater amount of space to the " artistic "; and later, artists were elected as judges, by way of encouraging those who were devoted to the pictorial side to send in for exhibition. In the autumn of 1900 the New Gallery was secured, and a comprehensive exhibition of all phases of photography was held.

It is interesting to note that as a distinct movement pictorial photography is essentially of British origin, and this is shown by the manner in which organized photographic bodies in Vienna, Brussels, Paris, St Petersburg, Florence and other European cities, as well as in Philadelphia, Chicago, \&c., following the erample of London, held exhibitions on eractly similar lines to those of the London Photographic Salon, and invited known British exhibitors to contribute. The international character of the "Linked Ring"encouraged an interchange of works between British and foreign exhibitors, with the result that the productions of certain French, Austrian and American photographers are perfectly familiar in Great Britain. This, in the year 1900, led to a very remarkable cult calling itself "The New American School," which had a powerful infiuence on contemporarics in Great Britain.

It may be well to glance at such improvements of process or apparatus as have not been direct and essential means to pictorial advance, but rather modifications and improvemente made in responce to the requirements of the artistic aspirant. Such improvements are of two orders-those, which are devised with the aim of securing greater accuracy of delineation, the correction of distortion and of apparent exaggeration of perspective. and the more truthful rendering of relative values and tones; and those which eeck to give the operator genater personal control over the finished result. While great advances have been made in photographic optics, it cannot be said that pietorial work has been ihereby materially ansisted. some of the most successfal exponents preferring to use the simplest form of uncorrected objective, or cven to dispense with the lens ahogetber, choowing rather to employ a minute aperture, technically called a "pinhole." This is but one example of many which might be quoted to bearout the statement that in photography the advance of anything in the nature of artistic qualitics has not been correlative with mechninical improvements. The hand camera can only be eaid so have had an indirect influence: it has increased the photographer's facilitics. and by removing the encumbrance of heavy tools has widened his sphere of operations; but it is perhaps in connexion with the plates and priating processes that more direct advantagea have beea gained. The fact that the actinic power of colours is mot proportional to their luminosity was long regretted as an obstacte 10 correct representalion; but by the introduction of orthochromatic or isochromatic plates in 1886 (when B. J. Edwards bought the Tailfer and Clayton patent, under which he shortly broughi out bis orthochromatic plates) this original disability was removed; while with increased rapidity in the isochromatic plate colour values may still further be corrected by the use of coloured screens or light filters, without interfering with the practicability of making sufficicathy rapid exposures for most subjects. Again, by a better knowledge of what is required in artistic represenlation, certain modifications in the formulated tratment of ordinary and un: corrected plates are found to do much towards removing the evil; hence, with an ordinary plate "backed" so as to counteract overexposure of the higher lights, an exposure may, except in extreme cases, be given of length sufficient to secure the feeble rays of the less actinic colours, and by subsequent suitable development 2 result hardly distinguishable from that of a colour corrected plate may be secured. Chemical experiment has placed in the photographer's hands improved and casier means of entire, unequal and local intensifcation and reduction, but utility of these is restricted. By the artistic worker it is claimed that the lens and camera are but the tools, and the negative the preliminary sketch or study the final print standing to him in the same relation as the fnished painting does to the artist. In the production of the print various means of personally controlling the formation of the imaze have been resorted to. Thus the local development of platinotype by means of glycerine has its champions, but it seems to have been little used, its resuscitation being chiefly due to two or three prominent warkers in New York. Here should also be mentioned the revival in 1898 of rough-surface printing papern chiefly chose sensitized with silver, the roughest texture drawing papers being employed to break up the excessive sharpness of the photographic image, and by the waperficial inequalitien introducing the efiect
of luminousaen to over-dark shedowi and variety to blank whites. The almone forgotten process of Pouncy, and of Portevin, now known as the gum bichromate procesa, was rehabititated in 1894 by M. Rouille Ladeveze expresely to meet the meeds of the pictorial worker. Perhaps the best results that have been achieved by it are those of M. Robert Demachy of Paris, though many English workers have used it with remarkable success. In it paper of any kind may be selected as the support. The power of the operator to modify the printed image to almost any extent, even to introducing and eliminating lighte and shadows, and in other ways to depart widely from the image given by the negative, depends upon the fact that the coating of gum and pigment (which, being bichromatized, becomes insoluble in proportion es it is acted upon by light) holds the pigment but imperiectly, and yields it up upon a vigorous application of water. According, therefore, to its application or retention, the operator can lighten or deepen in tone any portion. Numberless variations of other methods, such as brush development and local toning or stoppins, have been suggested with the mame object. Other workers have shown that by dexterously shutting off and admitting the light to variout parts of the negative whilst printing, the disposition of the lighte and shades in the print can be modified to so great an extent as to aleer the sencral contour of the scene. Examples of an original unaltered print, and one which has been thus modified, are shown in the accompanying plate. Portions are shaded in by allowing the light to have accese to the print, either through the negative-in which case the image with all its details, prints more decply-or by removing the negative. when the action of the light is to fatten and suppress booh detai and contratt. Latteriy some few have resorted to extensive working on the negative, both on the back and on the film; drawing by hand is practized on the fim to render too prominent features less obtrusive, and objects in the background are merged by an intricacy of lines and cross-hatching. Many of the results are very pleasing. although one hesitates to justify the means, however good the end. On the other hand, to exclaim for purity of method and the exclusion of extrancous aids is very like setting up an arbitrary atandard no less unreasonable than those conventions against which pictorial photography has so long striven.

AOthosities-P. H. Emerson, Nafseralistic Photography; H. P. Robinson, Picture-making by Photography; Art Pkolograph; Pictorial Effet in Photography; Elemenls of a Pictorial Pholografk; A. H. Wall, Artistic Landscape Pholography (18g6); A. Horsley Hinton, Practical Pictorial Photography (1898), and subsequent editions; C. Puyo, Notes sur la pholographis arlistigue (Paris).
(A. H. H.)

PHOTOGRAPHY, CELEsTIAL The requisites for celestial photography are best explained by a comparison with ordinary photography in several essential points.
a. Illamination.-In taking a portrait artificial light is used, being throwi on to the face of the sitter either directly or by refiection. If the day is duill a longer exposure is required, and artificial light may be used when the daylight tails. In photographing the stars there is no question of illuminating them by artificial light; for the strongest searchlight which we could throw In the direction of the heavenly bodies would have no sensible effect. The light used is their own, and its feebleness renders it necessary to make long exposures, the lengt h increasing as we attempt to get. images of fainter objects. The invention of the dryplate, by making it possible to give very long exposures, caused a revolution in celestial photography. With the wet plate, exposures were limited to the few minutes during which the film would remiain wet; but the dry plate can remain in the telescope for days, weeks or even years if necessary. On the approach of daylight, the cap is put on the camera, or the plate removed into the dark room; but when night returns the plate is put back in the telescope, which is accurately pointed to the same stars, the cap is removed, and the exposure is resumed without any loss from the interruption.
b. Ifagnification.-In taking a portrait we can obtain a large or small sixe by placing the camera near the sitter or far away. But this method is not available for the heavenly bodies, since we canaot sensibly approach tbem. To magnify ab image we must lengthen the focus of the camera. either directly or indirectly. The direct method is to construct a lens or mirror of long focus; the camera becomes similar in length to a telescope; and indeed resembles a telescope in other respects, except that we take away the eye-piece and put in a photographic plate instead. II, however, we already have a lens of shor! focus which we wish to use, we may lengthen the focus indirectly by using a secondsry magnifier, that is by pulting in another lens near the focus of the first. In either case the profitable magnification
is limited, not only by the imperfections of the optical apparatus but by disturbances in the atmosphere. Air currents, either outside or inside the telescope, act as irregular lenses of varying shape, and produce such defects in the image that we gałn nothing by enlarging it beyond a certain point. Such alr disturbances do not trouble the ordinary photographer at all, or scarcelyat all: he is only concerned with a few feet of air, whereas the celestial photographer cannot escape from the necessity of looking through many miles of it.
c. Steadiness.-In taking a portrait the photogropher is only concerned to fix his camera firmly and to induce his sitter to remain still. The heavenly bodies are in constant motion, though their real and apparent movements are fortunately smooth, except for air disturbances above mentioned. If, therefore, it were possible to devise perfectly smooth clockwork, we could keep the camera or telescope continually pointed to the required star or stars. But human workmanship has not yet made clockwork of sufficient strength and accuracy to keep a large telescope satisfactorily pointed. The clock work which had been found good enough for use with visual telescopes was soon found to be quite inadequate for photography. The first method adopted was to bind two telescopes, one visull and the other photographic, firmly together; and by looking through tbe visual one to keep some object steadily on the crosswires by using the slow motion acrews; meanwhile the other telescope was kept properly pointed for taking a photograph. As it was sometimes found that extremely fine movements were required, electrical arrangements were devised, whereby the observer, on simply pressing a button, could accelerate or retand the rate of the clockwork by a minute amount, instead of actually turning the screws by hand. And about the same time the idea arose of making these corrections automatically. This automatic correction is hased on the principle that a freely swinging pendulum, which has no work to do, will naturally keep much better time than the clockwork which has to drive a heavy telescope; and if such a pendulum is therefore arranged to send a current every second through certain electro-magnets, apparatus can be devised to detect whether the clockwork is going properly; and to correct it in the right direction, if it is not. One or more of these three methods, which may be called hand-guiding, ciectrical control, and automatic electric control, are used in taking all celestial photographs.

The Phelographic Image.- The image of a star on the plate should be, theoretically, merely a point; but in practice it is a small patch on the plate which grows in size as the exposure is lengthened, while at the same time it becomes darker in the middle. One reason for this is that lighe is many-coloured, and when we attempt to locus it by a lens, we can only get a very iew colours into even approximate focus; the other colours are not brought to focus at all, and form concentric patches of fninter light on the plate, which increase in size with the error of focus. Thus at best our focusing is only a compromise. When the exposure is short, those colours which have most nearly been brought to focus have an effect, while the faint light of the others may produce no sensible impression. It is natural to select for the colours to be brought most sharply to focus those which are most important photographically, viz. those at the violet end of the spectrum. As the exposure proceeds the faint light of the other colours affects the plate by accumulation, and hence the image spreads, while at the same time the central part naturally becomes hlacker.

A reflecting telescope brings all colours to the same focus; and it might appear, therefore, that images formed with it will not spread in this way. There is, however, another cause of spreading besides that due to colour; neither the reflecting telescope nor the iens can focus all the light received by them for more than one particular star. It is just theoretically possible to construct a mirror which would focus all the light from a star seen in the direction of its axis. but the light from another star scen in a slightly different direction would not be truly focused, since directly we leave the axis, some parls of the mirror have a focus slightly different from other parts; and it the image
produced is magnified, it is scen to have a shape like that of a kite. As the exposure is prolonged the small kite-shaped figure gradually increases in aize from the point towards the head, and this defect is the more pronounced the farther we depart from the centre of the plate. The result is, speaking generally, that the images near the centre of a plate may be fairly small and circular, but at a certain distance from the centre they become distorted and large. It is a practical problem of great importance to bave this distance as great as possible, so that the field of good definition may be large. Estimating in terms of angular distance from the centre of the feld, the refecting telescope bas a good field of not more than 40'; a telescope with one compound lens (the ordinary refractor) a field of aboyt I°, while if two compound lenses are used (as is the case in portrait photography) the field may be very greatly extended, 10° or 15° having been successfully covered. This fo naturally a very great advantage of the "doublet " over other forms of telescope, an advantage which has only recently been fully realized. But there is a compensating drawback; to get a large field we must either use a large plate, which is liable to bend or to have a permanent curvature; or if we use a amall plate the picture will be on a small scale, so that we lose accuracy in another way.

Star Charts may thus be made by photography with any desited combination of these advantages. The Cape Pbotographic Duockwwsterung is a photographic survey of the southern hemisphere by means of 250 plates each covering $5^{\circ} \times 5^{\circ}$ taken at the Royal Observatory, Cape of Good Hope; the plates being afterwards measured at Groningen in Holland by Professor J. C. Kapteyn who recorded the places to $\mathrm{O}^{\circ} \mathrm{I}$ and $\mathrm{O}^{\prime} \mathrm{L}$. A much higher degree of accuracy is aimed at in the international echeme for a map of the whole sky undertaken jointly by eighteen observatories in 1887. The plates are only $2^{\circ} \times 2^{\circ}$, and each of the eighteen observatories must take about 600 to cover its zone of the sky once, 1200 to cover it twice. Exponures of 6 min ., 3 min. , and 20 sec . are given, the telescope being pdinted in a elightly different direction for each exposure; so that each star to about the gth magnitude shows 3 images, and stars to the rith or 12th magnitude show 2; which has the incidental advantage of distinguishing stars from dust-specka. A reseas of lines accurately ruled at distances of 5 mm . apart in two directions at right angles is impressed on the plate by artificial light and developed along with the star images; and by use of these reference lines the places of all stars shown with 3 min. exposure are measured with a probable error which, by a resolution of the executive committee, is not to exceed $=0.20^{\prime \prime}$. An additional scheme for a series of charts enlarged from similar plates with much longer exposure has proved too costly, and only a few observatorics have attempted it. Meanwhile Professor E. C. Pickering of Harvard, by using doublet lenses which cover a much larger field at once, bas photographed the wbole sky many times over. The plates have not been measured, and would not in any case yield results of quite the same accuracy as those of the international scheme; but being systematically stored at the Harvard Observatory they form an invaluable reference library, from wbich the history of remarkable objects can be read backwards wben once attention is drawn to them. Thus the history of the asteroid Eros, discovered in 1898, was traced back to 1894 from these plates; new stars have been found on plates taken previous to the time of discovery, and the epoch of their blazing up recovered within narrow limits; and the history of many variable stars greatly extended. The value of this collection of photographs will steadily increase with time and growth.
Spectroscopic Star Charts.-By placing a glass prism in Iront of the object glass of a telescope the light from each star can be extended into a spectrum: and a chart can thus be obtained showing not only the relative positions, but the character of the light of the stars. This method has been used with great effect at Harvard: and from inspection of the plates many discoveries have been made, notably those of several novac.

The Ceometry of the Star Chart.-Let OS in the figure be the object Slase with which the photograph is taken, and let its optical centre
frce of the place. The point N is of fundamentel langertance in the geometry of the star chert and it is natural to call it the plate centre; but it must be carefully distioguiahed from two other poiste which thould theoretically, but may not in practice, coincide with it. The firat is the centre of the material plate, as placed in position in the telescope. In the figure NL is purpoely drawn larger than PN, and this material ceptre would be to the. right of N . The mecond point is that where the optical axis of the object glase (CG in the fogure) cuta the plate. The object pias is drawn with an exagyerated tilt so that CG falls to the righe of CN. To secure adjustment, the object glase should be "squared on" to the tube by a familiar operation, so that the tube ia paralle to CG: and then the plate anould be set normal to the tube and therefore to CG. This is done
 by obmerving reflected imagea, combowed with rotation of the place in its plane.
The field of the object glase will in eneneral be curved: to that the points of best focus for different stars jie on a surface such ms AGB (purposely exaggerated). The best practical remalts for focus will thus be obtained by compromine, placing the plate so that come stara, as A, are focused beyond the plate, and otbern, as B, nearer the object glass: exact focus only being poomible for a particular ring on the plate. The star A will thus be represented by a small patch of light, pon the plate, which will grow in aise as above explained. When we measure the position of ita image we welect the centre as beat we can: and in practice it is important that the point welected thould be that where the line Ca drawn from the star to the optical centre cuts the plate. If this can be dome, then the chart represents the geometrical projection of the henvens from the point Con 10 the plane PL. The stars are usually conceived as lying on the celestial sphere, with an arbitrary radius and eentre at the oboerver, which is in this case the object glam: describing such a sphere with C as centre and CN as radium the lines bCB and aCA project the spherical zurface oo to a tangent plane at the poins N, which we call the plate centre. If we point the telcecope to a difierent part of the sky, we select a different tangent plame on which to project. It in a fundamental property of projectionat that a straight line projects into a straight line; and in the present instance we may add that every atraight line corresponds to a great circle on the celcstial sphere. Hence if we measure any rectilinear coordinates (x, y) of a series of atars on one plate, and co-ordinates (X,Y) of the same stars on another plate, and (x, y) are connected by a linear relation, so must (X, Y) be. This property leads at once to the equations
$\mathrm{X}=(a x+b y+c) /(1-k x-l y), Y=(d x+c y+f) /(1-i x-l y),(1)$ the numerators being any linear functions of (x, y) but the denominators being the earne fincar function. When $x=0$, $y=a$, then $X=c$ and $Y \in f$ which are thus the coordinates of the origin of ($x y$) on plate (XY). The co-ordinate of the origin of (XY) on plate $(x y)$ can be shown to be (k, l) if proper units of iength be chosen.
As a particular case the co-ordinates

$$
\begin{equation*}
x=\cot 8 \cos a, y=\tan 8 \sin a \tag{2}
\end{equation*}
$$

represent the rectangular co-ordinates of a star of RA and declination E and i, projected on the tangent plane at the north pole. If the same star be projected on the teagen plane at the poini (A, D), then its rectangular co-ordinates ($\left(\xi_{0}\right.$) will be

$$
\begin{align*}
& \xi=\tan ((-A) \sin q \sec (q-D), \quad \pm-\tan (q-D) ; \\
& \text { where } \tan q=\tan \delta \sec (a-A) . \tag{3}
\end{align*}
$$

the axis of t being directed towards the pole. It can readily be verifed that (ξ, q) can be expressed in terms of (x, y) by relations of the form (t). The co-ordinates ($k .7$) have been named "rtandard co-ordinates: and represent star positions on an ideal plane free from the effects of refraction and aberration. For plates of not too large a field. differential refraction and abecration are so small that their product by squares of the co-ardinates may be neglected, and the accual star positions (x, y) are connected with ($\xi, ~ 4$) by linear relalions The fincarity of these relatione is obvioualy not disturbed by the choice of origin of axes and of orientation; in which the effects of procession and mutation for any epoch may be included. Hence to obtain the standard co-ordinates (k, t) of any object on a plate it is only necessary to know the position of the plate centre (the point N in fig. 1) and the six conctante in the relations

$$
\begin{equation*}
\xi=A x+B y+C, \quad=D x+E y+F \tag{4}
\end{equation*}
$$

where (x, y) are rectilinear co-ordinaten referred to any axes. The conmants can theoretically be determined when there are three atars on the plate for which E_{1}, 7 are known: bat in practice it is better to use as many " known" etars as ponsible. These equations
aten ainpted to molution by leat quare or any equivalent device.
Pholograpty of Nebulae and Clusters.-Some of the earliest and most strikug succesces in celestual photography were the pictures of nebulae. Dr A. A. Common (1841-2903), F R.S., of Ealing led the way in 188; with a successful pucture of the great nebula in Orion, taken with a 3 [t. concesve mitror by Calver. Dr Isanc Roberts (1829-1904) was the first to show the real structure of the great mebula in Andromeda, by a photograph also taken with a reflector. In the clear atmosphere of the Lick Observatory in Coliformia, small nebulae were photographed in great numbers by Professor J. E Keeler (1857-1900): and it was shown what a large percentage were spiral in form. Prof. G. W. Ritchey, at the Yerices Observatory, has followed up these successes with a 2 -ft reffector, and is constructing a g-ft., to be erected on Mt Wimon (Cai.); but he has also shown that pictures of clusters are best taken with a telescope of long focus, such as the great Yerkes refractor, and incidentally that this telescope, although intended for visat wort, can be adapted to photography by using a "colour screen " just in front of the plate, which ifts out the rays not brought to focus.

Pholograthy of the Moon-G. W. Ritchey has nsed the tame device of a colour screen for the moon, and obtained even better pictures than those obtained at Paris, which were previously the best. The positions of a large number of craters and other points have been measured by Dr J. H. G. Franz and S. A. Saunder on photographs, and a new epoch in luntr topography has thereby been created.

Photography of the Planels.-Some strikin's successes have been obtained at the Lowall Observatory, Ftisstaf, Aciwona: by cutting down the aperture of the object-glass some of the delicate markings, called canals, on the planet Mars have been photographed; but even these do not approach what can be seen by tbe eye.

Pholography of Comets--Some wonderful pictures have been obtained of comets by Profescor E. E. Barnand and others. Here, as in the case of nebulae, the photograph is superior to the eye in detecting faint luminosity, and delicate details of the tail structure have been photographed which could nevot be seen. In several pictures the tails have an appearance of violent shattering, and if successive pictures can be obteined at such times we may learn something of the nature of such disturbances.
Solar Pholography. - The light of the sun is $t 0$ fotense thr the chief difficulty is to ohtain a short enough exposure. When successfully taken, photographs of the aurface thow the wellknown spots and the motting of the suriace. The fimgo sensibly falls off in intensity towards the limb, owing to the absorption of light by the Eolar atmosphere; and the bright faculae (which are thus inferred to lie above the main absorbing layer) are seen near the limh. But an immense advance in solar pholography was made about doren years ago by the invention of the spectroheliograph, which in en instrument for photographing in the light of one very definite colour-ay a single hydrogen line. The faculous appearances can be photographed with this instrument all over the enn's disk, instead of merely near the limb. The appearance presented varied enormously with the line selected, or (in the case of the widd " lines" in the spectrum, such as the \mathbf{H} and K lines) with the particular part of the same line telected. But for a full accoont of such matters reference must be made to the articies Sun and SPECTROHELIOGRAPH.

Aut monuriss-Various papers in che Monathy Naticus of ale Resel A sfronowical Sacialy and in the Astrophysical Jowrmal. Ales the Bulletins end circulare of the Harvard, Lick and Yerkes Observatories; and of the Executive Committee for the A strographic Catalogue (published by Gauthier Villass for the Parla Acsdemie des Sciences), See also more especially a paper by G. W. Ritchey in the Decumid Papers of the University of Chicago, reprinted in vol. i. (1903) of the Yerkes Observatory Pubicalions.
(H. H. T.)
 sure), the ast and sciesce of comparing the intensitics or thuminating powers of two of moce sources of light. As im all mointicm
measurements, its methods are attempts to give quantitative accuracy to the crude comparisons made by the eye itself The necessity for this accuracy in practical affars of life has arisen becsuse of the great development of artificial lighting in recent tumes. The eye soon learns to associate with any particular source of light a quality of brightness or power of illumination which diminishes with increase of distance of the source from the eye or from the surface illuminated. This quality depends upon an intrinsic property of the source of light itself, generally known as its "candle power." The aim of photometry is to measore this candle power; and whatever be the experimental means adopted the eye must in all cases be the final judge.
In the photometric comparison of artificial lights, which frequently vary both in size and colour, direct observation of the sources themselves does not yield satisfactory results. It if found to be much better to compare the illuminations produced on dead white surfaces from which no regular reflection takes place, or through colourless translucent material uniformly illuminated by the light placed on the further side. By such proceses there is always loss of light, and we must be certain that tbe various coloured constituents of the light are reduced in the anme ptoportion. This necessary condition is practically entiafied by the use of white diffusing screens.

Two principles of radiation underlie many photometric applications, namely, the inverse square distance law, and J. H. Inmbert'a "cosine law." Both can be established on theoretical grounds, certain conditions being fulfilled. But these conditions are never absolutely antisfied, the applicability of the two laws

Anverse
Square
Dispaces
Lav. must in the end be tested by experiment. Since we find that within the errors of observation four candles, placed together at a distance of 2 ft. from a diffusing screen, produce the same illumintion as one candle at a distance of i ft., we may regard the inverse square distance law as satisfied. Thus if two lights of intensities \mathbf{A} and B produce equal illuminations on a screen when their distances from the screen are reapectively a and b, we at once Write down the relation between the two intensities in the form A : B $\boldsymbol{A} \boldsymbol{d}: \boldsymbol{b}^{2}$. The theoretical basis of the law folfows at one from the nnivertally accepted view that light is energy radiating outinands in all directions from tbe source. If we assume that there is no loss of energy in the transmitting medium, theh the whole amount of radiant energy passing in one second actoss any closed surface completely surrounding tbe source of light must be the same whatever the size or form of the surface. Imegine for simphicity a point source of light, or its equivalent, a uniformly radlating spherical surface with the point at its centre, and draw round this point a spherical surface of unit radius. Acrosa this surface there will pass a definite amount of radint energy, in otber words a definite total luminous fux, E, which will be the seme for all concentric spherical surfaces. Since the ares of a spherical surface of radius F is $4 \pi r^{2}$, the flux which crosses wnit ares is $E / 4 \pi r^{4}$. This quantity is the "Illumination." It is measured in terms of the unit called the ins, which is defined is the fllumination produced by a light of unit intensity on a perfectly white surface at a distance of I ft. In the great majority of photometers the illuminstions are compared, and the intensities are deduced by applying tho lav of the squared distances.

Lambert's cosine law has to do with the wiy in which a Inminous surface sends of its radiations in various directions. It it a matter of common observation that the dink of the sum appears equally bright all over the cumbere surface. Careful measurements show that this is not strictly true; but it is sufficiently near the truth Coction 4aw. to sugget that under certain definable conditions the law world hoid accurately. Again, wben a glowing surface is viewed through a small hole in an opaque plate, the brightness is very epproximately fndependent of the angular position of the trandescent sorface. This is the same phenomenon as the firit mantioned. and shows that themore oblique, and therefore larger, element of surface sends the same mpount of radiation thongis of hole. Hence the amont per unit rurfice sent of
at a given angle with the normal must be less than that sent of in the direction of the normal in tine inverse ratio of the areas of the corresponding normal and oblique elements, thet is, as the cosine of the given angle to unity. For most practical purposes, and so long as the obliquity is not great, Lambert's law may be assumed to hold.

In almost all accurate methods of photometry the aim is to bring the illuminating powers of the two sources to equality This may be effected by altering the dustance of citber light from the illuminated surface. Or we may use polarized light and diminish the intcasily of the stroager beam by suitable rotation of a Nicol prism, a method particularly useful in spectrophotometers. The same result may also be effected by interposing absorbent disks, the precise absorbing powers of which must, however, be known with great accuracy. Another useful
raiswo
Lav. method is that first described by H. For Talbot in Swan (1849), and more recently by Sir W de W. Abney. Talbot's haw is thus enunciated by H. von Helmalolta: "When any part of the retina is excited by regularly periodic intermittent light, and when the period is sufficienlly short, the resulting impression will be continuous, and will be the aame as that which would be produced if the whole light were distributed uniformly throughout the whole period." Talbot deduced the principle from the well-known experiment in which a continuous juminous line is produced by rapid rotation of a luminous point If the principle be granted, it is obvious that any meehanism by which a ray of light is obstructed in a regularly rhythmic manner during definite intervals σ. separated by intervals t, during which the light is allowed to pass, will have the eflect of reducing the apparent brightness of the ray in the mtio $t\left(t+t^{\prime}\right)$. This is frequently accomplished by placing in the ray a rotating disk perforated by radial sectors, the so-called Talbot disk.

If photometric results are to be of general value it is eseential to have a unit in wbich to express all other intensities. For example, electric lights are classified acconding to ernoterte example, elcetic their "candle-power." The candle, in terms of whose brightncss the brightness of other cources of IIght is to be expressed, must, of courne, fulfil the conditions demanded of all standards. It must give under definite ead easily realizable conditions a definite and constant luminous effect, and it must be easily reproducible. The earlier attempts to get a candle of constant brightness were not very matisfactory. The British standard is a sperm candle which weighs \& 1 b , and loses in burning 120 grains per hour. It is found that these conditions are not sufficient to determine the luminous power of the candle, since the length and shape of the wick, the beight of the fame, and the composition, temperature and humidity of the atmosphere all have an effect upon its brightoess. The same is true of other similar sources of light-for cxample. the German standard candle, which is made of parafin, has a diameter of a cm ., and has its wick cut until the flame is 5 cm . bigh, hut whicb with all precautions suffers continual alteratlons in brightness. For ordinary practical purposes, however, these candles are steady enough. Other kinds of flame have also been used as a standard source of light. The oldest of these is the French Cercel lamp, which is provided with a cylindrical Argand bumer, and gives the standard brightness Vorweo- when 42 grammes of colza ail are consumed per hour. Mercsert Pemene Semedrah The supply and draught are regulated by clockwork. A. G. Vermon-Harcourt's pentane standard, in which a mixture of gaseous pentane and air is burnt 50 as to maintain a flame $2 \cdot 5$ in. high at ordinary barometric pressure, gives good results, and is readily adjustable to suit varied conditions. Several forms of this standard have been constructed. one of the most important beins the 10 candle-power pention lamp, in which ait saturated with pentane vapour ís burnt in a specially-desimed burner resembing an Argand bumer. For photometric purposes a definite length of the lower part of the fiamo is used, the upper part being hidden withim an opaque tube. The amyl-acetate lamp dosimed hy H. von Hofmer-Alteneck heo
been elaborately studied by the Gernmen authortules, and at present is probably more used than any other fame for photometry. It is of situple construction, and gives the atandard bnghtness when it burns with a bame 4 cms. in beight un still air of humidity 0.88% and free of earbon diozde. The presence of carbon dioride and increase in the humidity have a marked effect in diminishing the brilliancy of the flame. If the vapour pressure is E and the barometric pressure p, the strength of the flame, when all other conditions are fulfilled, is given by the formula

$$
1.049-55 c /(p-e)
$$

One disadvantage for photometric purposes is the reddish colour of the flame as compared with the whiter artificind lights in gencral use.
For an interesting scoount of the various experimencal isvesigations into the propertics of the Hefner fiame see E. L Nicholt, F. Standards of Light." Trunsactions of the International Electrical Confress, vol. ii. (St Lovis, 1904). Angrtrom's determination of the radiation of the fikme in absolute energy units is also of apecial interest.

Attempts have been made, but hitherto with limited success, to construct a convenient standard with acetylene flame. Could a satisfactory burner be devised, so that a steady briliancy could be easily maintained, acetyiene would, because of its intense white light, soon displace all other fames as standards.
J. Violle has proposed to use as standard the light emitted by a square centimetre of surface of platinum at its meltingpoint, but there are obvious practical difficuhies in the way of realixing this saggested standard. J E. vomes Petavel, who carefully examined the necessary condi- mome tions for producing it (Proc. Roy. Soc. 1890), finds sememer that the platinum must be chemically pure, that the crucible must be made of pure lime, that the fusion must be by means of the oxy-hydrogen blow-pipe, that the gases must be thoroughly mixed in the proportion of 4 volumes of hydrogen to 3 of oxygen; and that the hydrogen must contain no hydro-carbons. Under these conditions the variation in the light emitted by the molten platinum would probably not exceed 1%. 0 . Lummer and F. Kurlbaum have propoeed as a standard a strip of platinum foil 25 mm . wide and or 5 mm . thick brought to incandescence by an clectric current of about 80 amperes. The temperature Is gradually increased until foth of the total radiation is transmitted tbrough a water trough 2 cm . in width. This ratio is deternined by means of a bolometer, and solong as it is adjusted to $\frac{1}{1}$ th the tight is practically constant.

For comparative photometric work the incandescent electric light is very convenient, having the one great advantage over candles and flames that it is not affected by atmospheric changes. But it docs not satisfy the requirements of a primary standard. It ages with use, and when run at constant voltage gradually loses in brilliancy, partly because of changes in the filament itself, partly because of the deposit of carton on the interior of the bulb. Professor J. A. Fleming has shown that very good results can he obtained if carbon filaments carefully selected fraviaga and run in ordinary bulbs for a definite time at a lacaodere little above their normal vollage are remounted combump in large clear glass bulbs 6 or 8 in . In diameter. $\mathrm{sem}^{2} \mathrm{man}$. If used tparingly, and never above their marked voltage, these large incandescent hulbs have been found to remain constant for years, and therefore to be eminently suitahle as secondary standards. In his Handbook for the Electrical Laboratory and Tasting Room (vol. ii.) Fleming concludes that the best primany standards are the Violle incandescent platinum and the VernonHarcourt pentane one-candle flame; and that the most convenient practical standards are the Hefner lamp, the ten-candle pentane lamp, and the Fleming large bulb incandescent electric lamp. Comparisons of the intensities of these various standards do not give quite concordant results. Thus three different nuthorities have estimated the ro-candle pentane lamp as being equal to $50-75,11-0,11.4$ Hefner lamps.

A epecially constructed instrument or piece of apparatus for comparing light intonshice or illuminations is called a
photometer. The earlier forms of photometers were very simple and not capable of giving very precise results. The principles of

manos

 construction are, however, the same in all the recog--aptris nized forms down to the most elaborate of recent inventions. Two of the earliest forms were described by P. Bouguer and W. Ritchie. The Ritchie wedge constitutes the basis of many varieties of type. The two lights to be compared illuminate the sides of the wedge, which
nacith's
 Wadee.

 is placed between them, so that the eye set in front of the wedge sees the two sides illuminated each by one of the lights. The edge should be as sharp as possible so that the two illuminated surfaces are in close contact. The flluminations are made equal either by shifting the wedge along the line jolning the lights or by moving one of the lights nearer to or farther from the wedge as may be required. The lights given out hy the sources are then as the squares of the distances from 'Asmbort's the matched parts of the surfaces, Count Rumford proto- suggested the comparison of the intensity of the meter. shadows of the same object thrown side by side on a screen by the two lights to be compared. In this case the shadow due to one source is hit up hy the other alone; and here again the amounts of light given out by the sources are as the squares of their distances from the screen when the shadows are equally intense. The shadow-casting ohject should be near the screen, so as to avoid penumbra as much as possible; yet not too near, so that the shadows may not overiap.R. Bunsen suggested the very simple expedient of making a grease-spot on white paper for photometric purposes. When amesen': the paper is equally illuminated from both sides phetor the greasc-spot cannot be seen except by very Eten close inspection. In using this photometer, the sources are placed in one line with the grease-spot, which lies between them and can be moved towards one or other. To make the most accurate determinations with this arrangement the adjustment shouid first be made from the side on which one source lies, then the screen turned round and the adjustment made from the side of the other source-in both cases, therefore, from the same side of the paper screen. Take the mean of these positions (which are usually very close together), and the amounts of light are as the squares of the distances of the sources from this point. The efficiency of the Bunsen photometer has bees improved hy using two inclined mirrors 30 that the eye views both sides of the paper simultaneously.

Sir Charke Wheatitone mugpened a hollow glam beed, silvered internally, and made to describe very rapidiy a closed path, for where afomer's Fiter semerter. use as a photometer. When it is placed between two sources we see two paralled curves of reflected light, one due to each eource. Make these, by trial, equally bright; and the ampants of light from the erarces are, again, es the mquancs of the distances.

William Swan's prism photometer, invented in 1859, is a beauriful application of the principle embodicd in Bunsen's grease-spot photoappication meter (sce Trams. Roy. Soc. DA vol. xxi.). The eseential
 pomber that described by O. Lummer and En Brodhun in 1889 . that described by O. Lummer and Eu Brodhun in 1889 . prisms placed with their diagonal faces rogether so as to form a cube

Fio. s .
(fig. 1), and cemented toget her by a small patch of Canada balsam, which spreads out into a circle when the prisms are pressed together. In the Gigure, which represents a central section of the bi-priss, the Canads batsam ts represented by the letier N. The light from two illuminated surfaces, PQ, RS, is allowed to fall perpendicularly on the faces AB, AD. In ench cuse that part of the iight falling internally on the portion of the dlagonal lace whith is not backed with the Canada balsam is totally refected. On the other hand, the light which falls on the portion backed by the Canada balian is almost wholly transmitted. Thus an eye placed
in the pocition gep seccives light from both worices; the surface RS aupplying nearly all the lisht that meemat to come from the patch N , and the surface PQ supplying all the light which seems to come from the region tmmediarely surrounding N. The patch N will in general be visibie; but it will quite dispppear when the luminosity of the ray T, which traverses the Canada balsam, ia exacty equal to the lumirosing of the rays PP, Op. Which have ceme after total reflection from the surface 9 Q . This condition of invisibility of N is arrived at by adjusting the positions of the sources of light which illuminate the surfaces $P Q$, RS. The brightnesses of the two sources will then be ss the cquares of their distances from their reapective screens.
The espertial part a Lummer and Brodhun's photometer in a combination of prisma very similar to Swan's In ita most improved form the bi-prism or "optical cube" has one of its component prisms cut ha a peculiar manner kamporged
 part only of this face can be brouktt into contact with
the diagonal face of the other prism. The Canada balsam is dispensed with, the surfaces being pressed closely together to that no tayer of air is ieft between them. In order to make the instrument convenient for uee with an optical bench, Lummer and Brodhun make the ilfurninated surfaces which are to be compared the opposite sides of an opaque screen tet in the continuation of the diagonal (CA) of the bl-prism, the rays being brought by refiection from symmetrically situated mirrors so as to enter the sides $A B$ and $A B$ perpendicularfy. An important modification, due also to Lumumer and Brodhun, is the fotlowing: By rieans of a aapd-plast a portion which may be called r, is removed from one hall of the diagonal $f_{2 c e}$ of the one prism, and from the other half of the same prism there is removed in fike manner all but a part i corresponding to the part 9 . The portions which have not been removed are presed close to the diaponal face of the other prista and become the parts through whicb light is freely trasmitted. On the other hand, the liphe which enters the second prism and falls on the portions of surface backed by the laycrs of air filling the cut-out party in rotally reflocted. The goweral result is the prosduction of two similar luminous patches I and r. each of which ia gurrounded by 2 fieid of the same intensity as the other patch. When the photometric match if made the whote region will bo uniformy bright. But, by insertion of ctrips of glass so as to weaken equally the intensery In the murrounding fields, the march will be obtained when there fietds are made of equal intensiny and when at the same time the two patches differ equally in intensity from them. Under these conditions the cye is able to judge more certainty an to the equality of intensity of the two patches, and an untrained observer is able to effect a comparison with an aecuracy. which is impossible with mont forms of photometer.
J. Joly"s diffusion photometer consists of ewo equal rectangulas parallelepipeds of a iranslucent uubstance like paraffin separated by a thin opaque disk. It la set between the sources of tithe to be compared in such a way that each paraffin detrs blopti is itiluminatod by one only of the courrocs, mani in Pbolometor. adjusted until the two blocks appear to be of the tame The merhod is The method is made more consitive by mounting the photometer and-fro oscillation about a mean position.
A form of photometer which is well adapted for measuriag the: Illumization in a region is that due to L. Weber. It consirte al a horizontal tube across one end of which is fitted another wevere tube at right angles. Thit second tube can be rotated posermeters. into any position peryendicular to the horizontal tube.
Where the avee of the two tabes meer is placed in the later formas of the instrument one of Loummer and Beodhunis modified Swan cubee. At the other end of the horizontal tube a standard fime is set illuminating a piece of ground glass which may be moved to any convenient position in the tube. The eye looks along the crosed tube. at the farther end of which is pheced another picee of groand glate illuminated from the outcide. The illaminations of the two pieces of ground glass as viewed through the photomcter double prism are brought to equality, either by shift of the ground glass po or from the standard light, or by means of two Nicol prisms placed in the crom tube. .One advamtage of the instrument in ite portability.
The photometry of incandescent electric lamps has led to several special modifications and deviees. The candle power varies distinctly in different borizontal directions, and one measurement in any particular direction is not sufficient. Sometimes the lamp is rotated
trane dextern Elepicia Ltyon about thrte thmes a scond abott 事 veticiel axfs and in average value thets obtained. But there is always a risk of the filament breaking; and in an cases the effect of centrifugal force must after the form of the flamemt and therefore the distances of the different parts from the screen. Accoracy demands either the measurement of the radiation intensity in a number of difections all round the lamp, or onie combined
measuremant of as many rags at can be convenicntly combincd. Onc of the best methods of effecting this is by means of MorthowreC. P. Mathews's integrating photometer. By the Iateriatlar use of twelve mirrors arranged in a semicircle whose Phetometer diameter coincides with the aris of the lamp, twelve rays are caught and reflected outward to a second set of twelve mirrors which throw the rays on to the surface of a photometric screen. This combined offect is balanced by the illumination produced by a standard lamp on the ot her aide of the screen (see Trans. Amer. Iast. Elect. Eng., 190a, vol. dix.).

So long as the lights to be compared are of the same or newny the same tint, the photometric match obtained by diferent neraro efreanate observers is practically the same. If, however, they preterentry re of distinctly difierent colours, not only do different observers obtain different results but those ohtained by the same observer at difierent times are not always in agreement. .Helmholtz was of opinion that photometric comparison of the intensities of different coloured lights possessed no real intrinsic value. There can be little doubt that in a rigorous sense this is true. Nevertbeless it is possible under certain conditions to effect a comparison which has some practical value. For example, when the intencities of two differently coloured lights differ considerahly there is no difficulty in judging whicb is the stronger. By making the one light pass through a fairly large range of brightness we may easily assign limits outside whichthe intensities are undoubtedly different. After some experience these limit get close; and many experimenters find it possible, by taking proper precautions, not only to effect a match, but to effect practically the Ahace'a same match time after time. According to Abncy, Axpert whose memoirs on colour photometry (Phil. Trans., mests

1886, 1892) form a most important contribution to the subject, the observer in making his judgment as to the equality of lumisosity of two patches of colour placed side by side must not begin to think about it, but must let the eye act as unconsciously as possihe. His method was to compare the coloured patch witb white light given by a particular standard and cut down to the proper intensity by use of a Talbot's rotating sector, which could be adjusted by means of a suitable mechanism white it was rotatling.
; At the same time, althougb the cye may be able to effect a definite matching of two patches of colour of a particular Iuminosity, it has been long known that a change in the luminosity will destroy the apparent equality. This depends upon a physiological property of the retina discovered by J. E. Purkinje in 1825 (sce below, Cclestial Pholometry). In virtue of this property the blue and violet end of the spectrum is more stimuLating to the eyc than the red end when the general luminosity is low, whereas at high luminositics the red gains relatively in brightness until it becomes more stimulating than the hlue. Unless therefore account is taken in some definite measurable manner of the absolute brightness, there must always be some uncertalnty in the photometric comparison of the intensitics of differently coloured sources of light.

Instead, however, of trying to effect a photometric match in any of the ways which have been found sufficient when the sources are of the same or nearly the same tint, we may effect important practical comparisons in what is called heterochromatic photometry by an appeal to other physiological properties of the eye. For example, the power of clearly discriminating patterns in differently coloured lights of various intensities is obviously of great practical importapce; and this power of detailed discrimination may be made the bacis of a method of photometry. According to this method two lights omentane are arranged so as to illuminate two exactly similar aton Piees palterns of lines drawn, for example, on the sides entor.
of a Ritchie wedre, and their distances are adjusted until the patterns are seen equally distinct on the two sides. Application of the usual distance law will then give the relation between the two lights. A discrimination photometer constructed on this principle has been desjgned by J. A. FlemingIts cepults do not agrec with the indications of an ordinary
luminosity photometer; for it is found thet the cye can dis criminate detail better with yellow than with blue light of the same apparent luminous intensity.

Another and very promising method of photometry depends upon the duration of luminous impressions on the retina. J.A.F. Plateau observed in 1829 that the blending into picker a homogencous impression of a pattern of alternate Photemetr sectors of black and some other colour marked on a disk when that disk was rotated occurred for rates of rotation which depended on the colour used. A form of experiment suggested in Professor O. N. Rood's Moderw Chromatics seems to have been first carried out by E. I. Nichols (Amer. Jowrm. of Science, 1881). A black disk with four narrow open sectors was rotated in Iront of the slit of a spectroscope. When the rotation was not too quick the yellow part of the spectrum appeared as a succession of flashes of light separated by intervals of darkness of appreciable length, whereas towards botb the red and violet eads no apparent interruption in the steady luminosity could be observed. As the rate of rotation increased the part of the spectrum in which flickering appeared contracted to a smaller length extending on each side of the yellow, and finally with sufficiently rapid alternation the ycllow itself became steady. This seems to show that the retinal image persists for a shorter time with yellow light than with light of any other colour; for witb it the intervals of darkness must be shorter before a con. tinuous impression can be obtained. Now yellow is the most luminous part of the spectrum as it affects the notmal human cyc; and E. S. Fcrty (Amer. Journ. of Science, 1892) has shown that the duration of luminous impression is mostly, if not entirely, determined by the luminosity of the ray. Hence the determina. tion of the minimum rate of intermittence at which a particular colour of light becomes continuous may be regarded as a measure of the luminosity, the slower rate corresponding to the lower luminosity. Altbough in the experiment just described the red part of the ordinary solar spectrum becomes contiouous for a slower rate ol intermittence than the yellow part, yet we have simply to make a red ray as luminous as the yellow ray to find that they become continuous for the same rate of intermiltence. It is, however, highly improhable that the duration of impression depends only on the luminosity of the light and not to some extent upon the wave-lengtb. There are indeed phenomena which require for their explanation the assumption that the duration of luminous impression does depend on the colour as well as on the brightness.

Neverthcless the luminosity is by far the more important factor, is shown hy Ogden N. Rood's experiments. He found (Awer. Journ. of Scicnce, 1893) that, when a disk whose halves differ in tint but not in luminosity is rotated rather peofs Ere slowly, the eye of the observer secs no flichering such as is at onco apparent when the halves differ slightly in Iuminosity. Rood himself suggested various forms of photometer based on this principle. In his latest form (Amer. Journ. of Science, Sept, 1899) the difierently coloured beans of light which are to be compared photometrically are made to illuminate the two surfaces of a Ritchie wedge set facing the eyc. Between the wedge and the eye is placed a cylindrical concave lens, which can be set in oscillation by means of a motor in sucb a way that first the one illuminated surface of the wedge and then the other is presented to the eye in sufficiently rapid alternation. The one source of light is kept fixed, while the other is moved about until the sensation of flicker disappears. From work with this form of instrument Rood concluded tbat " the accuracy attainable with the ficker photometer, as at pretent constructed, and using light of different colours almost spectral in hue, is about the same as with ordinary photometers using plain whise light, or light of exactly the same colour.*

[^41]in a peculiar manner. The sharp edze, which pasees alightly abliquely across the rim from one side of the wheel to the other and back again, is the meeting of two exactly similar conical surfaces facing different ways and having their axes parallel to, but on opposite sides of, the axis of rotation of the wheel. As the whed rotatcs with its rim facing the eye, the intersection of the two surfaces crosses and recrosses the line of vision during each revolution. Hence first the one illuminated side and then the other are presented to the eye in rapid alternation. The inventors of this instrument ciaim that their instrument can gauge accurately and easily the relative intensitics of two lights, whether of the same or of different colour (Phil. Mag., 1904). There is no doube that results obtained by different observers with a flicker photometer are in better agreement than with any other form of photometer. The comparative ease with which the balance in obtained even when the tints are markedly different shows that its action depends upon a visual distinction which the eye can readily appreciate, and this distinction is mainly one of brightness.

The spectrophotometer is an instrument which enables us to make photometric comparisons between the similarly coloured spectro- portions of the spectra of two different sources of phownetry. light, of of two parts of the same ociginal source after they have passed through different absorbing media, When it is desired to compare the intensities of the spectra from two different sources a convenient form is the one described by E. L. Nichols. A direct vision spectroscope mounted upon a carriage travels along a track between the two sources. In front of the slit two right-angled triangular prisms are set so that the light from each source enters the one side of one prism perpendicularly and is totally reflected into the spectroscope. The two spectra are then seen side by side. Attention being fixed on some chosen narrow portion, say, in the green, the instrument is moved along the track between the sources until the two portions appear of the same intensity. . The process is then repeated until the whole spectrum has beee explored.

In Lummer and Brochun's form of spectrophotometer the rays to be compared pass in perpendicular lines through the modified Evecar: Swan double prism, and then together side by side Spectro through a spectroscope. By means of a simple modifiphotometer. cation in the form of the two prisms, Professor D. B. serve to produce the spectra as well as to effect the desired comparison. In this arrangement the compound prism ABC (fig. 2) is made up of two

Fig. 2. equal right-anghed prisms ADB and ADC placed with their langer sides in contact, 0 that the whole forms an equilateral prism with three polished facer Part of the paterface AD is silvered, the silvering forming a narrow central etrip running parallel to AD. Along the rest of the interface the iwo prisum are comented together with Canada balsam or other material having as nearly as possible the same refractive fadex as the glash. When two rays R S enter symmetrically from opposite wides of the base of the compound prism as shown in the diagram, the cay R will pass through the prism except where the silver strip intercepts it, and will form a part of a epectrum visible to the eye placed at R ', while to the same eye there will be visible the similarly diapersed ray SS'refiected from the silvered surface, Thus two aymems of iacident paralel rays of white light will form on emergence two spectra with corresponding rays exactly parallel. With these and other forms of instrument the aim of the experimenter is to make the two spectra of equal intensity by a method which enables him to compare the original intensities of the sources. In mont cases the relative intensities of the portions of the spectra being compared cannot, conveniently be altered by varying the distancess of the sources. Recourse is therefore generally had to one of the other methods already mentioned, ameh as the use of polarizing priems or of rotating sectors. Uader certain conditionen K. Vierord's method of allowing the two rays to pass through slite of different width leads to good results, but too great confidence cannot be placed upon it.

In other typee of spectrophotometer. such as those associated with the names of H. Trannin, A. Crova, H. Wild, G. Hafner, J. Konigsberger, A. Konig, F. F. Martens and others, the equalination in brightness of two rays is effected by using polarized light. Which can be cut down at pleasure by rotation of a Nicol priem. For example, in the König-Martens instrument the two mays which are to be compared cater the upper and lower halvee of a
※x 19*
divided elit. After pasaing through a lene thay paen in exccemion through (1) a dispersing prism. (2) a Wollaston priern, (3) a biprism, and are finally focused where the eight spectra so produced can be viewed by the eye. Of these only two kastare made use of, the others being cut out. Theve two morions/s are polarised in perpendicular planes, ∞ that if be- Speanotween the spectrum images and the eye a Nicol prism notomotar. is introduced the intensities of any two narrow corresponding portions of the two spectra can be readily equalized. In terms of the angle of rotation of the Nicol the relative intensities of the original rays can be calculated. An important application of the spectrophotometer is to measure the absorptive powers and extinction coefficients of transparent substances for the differently coloured rays of light. By appropriate means the intensities of chosen corresponding parts of the two contiguous spectra are made equal-in of her words, a match is established. Into the path of the rays of one of the spectra the absorbent substance is then introduced, and a match is again establithed. A measure ni tha loss of Juminosity due to the interposition of the absorbent gubstance is thus obtained.
To lacilitate experiments of this nature Dr J. R. Milne has devised a spectrophotometer which presents some novelties of constraction (see Proccedings of the Opheal Comvention. 1905, vol. i.). The light from a bright flame is suitably manots projected by a lena so as to illuminate a:small hole in the Spectroend of the collimator. The rays from this point-source photocreter. are made parailel by the collimator, and then pass, partly through the ahsorbing medium, parily through the space above it. These two parts of the original beam are transmitted through a dispersing priam and then fall upon a acreen with two similar rectangular openings, the upper one allowing the unabsorbed part of the bean to pass, the lower that part which has been transmitted through the absorbing medium. The objective of the observing telescope converges the ray suitably upon a Wollaston prism, so that two spectra are meen side hy mede, having their light polarized in per* pendicular planes. A Nicol prism is placed between the Wollaston prism and ihe eye-piece of the telescope, and by its rotation in the manner already described the intensities of any two corresponding portions of the two spectra can be brought to equality. By careful attention to all neceseary details Milne showe that bis inatrument satisfies the requirements of a gaod spectrophotometer; for (I) the rays through the absorbing medium can be made strictly parallel: (z) the two spectre can be brought with ease accurately edge to edge without any diffraction effects: (3) the plane of the delimiting ocreen can be made conjugate to the retina of the observer's eye; (4) not only do the two spectra touch accurately aiong their common edge, but the two fans of rays which procecd from every point of the common edge the in one and the same plane: (5) the cye is called upon to judge the relative intensities not of two narrow slite but of two broad uniiomily illuminated areas Milne also points out that Ihis instrument can be used as a spectropolarimeter.
E. L. Nichols considers that spectrophotometers which depend for their action upon the properties of polarized light are necessarily open to serious objections, such as: selective absorption in the calcspar, altering the relative intensities of the constituents in the original rays; selective losses by reflection of polarized rays at the various optical surfaces; and the necessarily imperfect performance of all forms of polarizing media. To climinate these defects as far as possible great care in construction and arrangement is needed, otherwise corrections must be applied.

It is evident that if the successive parts of two spectra are compared photometrically we may by a process of summation obtain a comparison of the total luminosities of the lights which form the spectra. This process is far too tedious to be of any practical value, but sufficiently accurate results may in certain cases be ohtained by comparison of two or more particular parts of the spectra, for example, strips in the red, green and blue. Similar in principle is the method suggested by J. Mace de Lepinay, whn matches his lights by looking first through a red glass of a particular tint and then through a chosen green. If \mathbf{R} and G represent the corresponding ratios of the intensities, the required comparison is calculated from the formula $I=\frac{R}{1+0.308(1-G R)}$. A. Crova, one of the earliest workers in this subject, effects the photometric comparison of differently. coloured lights hy matchung those monochromatic rays from the two sources which have the same ratio of intensities as the whole collected rays that make up the lights. Careful experiment alone can determine this particular ray, but were it once ascertained for the various sources of light in use the method would have the merits of rapidity and accuracy sufficient for
practical seeds. Spectrophotometric observations are necemary to determine the position in the spectrum of the particular monochromatic ray, but wben it has been determined a coloured glass may be made which allows light in the neighbourhood of this ray to pass, and the photometric compariton mar then be effected by tooking through this glass.
This article has been confined stinctly to the methods of visual photometry, with very little reference to the results. Comparison of intentities of radiation by phorographic means or by mechods depending on the effects of heal introduces considerations quite dist inct (rom those which lie at the bass of photometry in its uymal signification.
(C. C. K)

Celesthal, or Stelinar, Protometry

The earliest records that have come down to us regurdug the relative positions of the stars in the hetvens have alwaya been accompanied with estumations of their relative brightness. With thus brightness was naturally associated the thought of the relative magnitudes of the luminous bodies from whence the light was assumed to proceed. Hence in the grand catalogue of stars published by Ptolemy (c. 150 A.D.), but which had probably been formed three hundred years before his day by Hipparchus, the 1200 gears readily vislble to the aaked eye at Alexandra wero divided into six classes according to their lustre. though instead of that term be uses the word mhyefor or "magnitude"; the brightest he designates as being of the first magnitude, and so downwards till he comes to the minimwm msibic, to whuch be assigas the sixth. These magnitudes he still further divides each into three. To those stars which. though not ranged in any particular order of brightness, nevertheless exceed the average of that order in lustre be attaches the letter μ, the intial letter in peif wy (greater), and to those in the same order which exhibit a lustre inferior to that of the average he affixes the letter e, the initial letter of dNaoown. With this sort of subdivision he passes through all the six onders of magnitude. He does not, indeed, tell us the precise process hy which these divisions were estimated, but the principle involved is obvious. It is one of the many remarkable instances of the acuteness and precision of the Greek mind that for upwards of 1500 years no real improvement was made in these enimations of lustre. J. Flamsteed extended the estimation of magntude of stars visible only by the telescope, and the improved Plolemy's notation by writing $4 \cdot 3$ instead of δ, pindicating thereby an order of magnitude brighter than the average of a fourth, but inferior to that of a third-and 3.4 for δ, e, and 50 on; but it was not till the year 1796 that any real advance was trade in stellar photometry. Sir W. Herschel, instead of assigning a particular magnitude to stars, amanged them in small groups of three or four or five, indicating the order in which they differed from each other in lustre at the time of observation. This method was admirably adapted to the discovery of any variations in brightness which might oceur in the lapse of time among the members of the group. Sir William observed in this way sopie 1400 stars, published in four catalogues in the Philosophical Transactions from 1796 to 1799; and (wo additional catalogues were discovered among his papers in 1883 by Professor E. C. Pickering of Harvard (see Haroord Arrals, xiv. 345), and have recently been published by Colonel J. Herschel (Phir. Trans., 1906). These researches of the elder Herschel were in due time followed by those of his son, Sir John, about the year 1836 at the Cape of Good Hope. He both extended and improved the methods adopted hy his father at Slough, and by a method of estimated sequences of magniturde he hoped to arrange all the stars visfble to the naked eye at tbe Cape or in England in tbe order of their relative lustre, and then to reduce his results into the equivalent magnitudes adopted by the universal consent of astronemers. Sir John, however, fike his father, left this important labour incomplete. Not only is the work one of great and continuous effort, but the effects of ever-varying meteorologeal conditiona greatly impede ft. Moreover, there is an unsalisfactory indefinitemess attending all estimations made by the unaided eye; numerical or quantitative compatisons are out of the question, and heace we find

Sir John, in the very midst of extablishing bly "sequences," adopting also an instrumental method which might lead him to more definite results.
In the year when Sir John Herschel concluded Mis photometric work at the Cape (1838) Dr F. W. A. Argelander commenced, and in 1843 completed, his Uramometria mow, io which the magnitudes of all stars visible to the unnided eye in central Europe are catalogued with a precision and completenema previouly unknown. It contains 3256 stars, and although it will probably be superseded hy instrumental pbotometry it must ever remain a monument of intelligent palience. Argelander's lebours were not confined to stars visible to the maked eye; hy the aid of his assistants, Dr E. Schonfeld and Dr A. Krtiger, three catalogues of magnitudes and celestial co-ordinates were ultimately published ($1859-1862$) as the Bonn Durchmustermang, including the enormous number of 324,188 stars, and an additional volume containing $\mathbf{8 3 3 , 6 5 9}$ stars south of the equator was published in 1886.
Dr B. A. Gould ($1824-1806$), in his Uramometric argentina (1879), has done similar work for 7756 stars visible only in the southern hemisphere, and his successor at Cordobs, J. M. Thome, has published (rgo4) three volumes of the Argentine (C6rdoba) Davchmusterung containing 489,662 stars betweer declination -22° to -52°. There have been other worthy labouress in the anme field, each of whom has rendered efficient service, such at Dr E. Heis and M. J. C. Houreau.

It is to Sir John Herschel that we are indebted for the first succeasful attempt at stellar photometry by what may be termed "artificial" means. He defected the light of the moon (by means of the Internal reflection of a rectangular prism) through a small lens 0.12 ln . in diameter and of very short focus $(0.23 \mathrm{fn}$.) 50 as to form a sort of artificial star in his focus. With strings and a wooden pole he could move this artificial star of comparison so as to be in the same line of sight with any actual star whose light be proposed to measure. Other strings enabled him to remove it to such a diatumce from the eye that its light was adjudged to be sensilly the amone as that of the star compared; and the distance was measured by a graduated tape. While be was thus busy at the Cape of Good Hope, K. A. Steinheil at Munich had completed for Dr P. L. Seidel an instrument peanty the same in principle but more manageable in form. He divided the small object-lase of a telescope into two halves, one of which was movable in the direction of its axis. The images of iwo stars whose light he desired to compare were formed by prismatic reflection, nearly in the same line of sight, and one of tbe lenses was then moved unfil the light of the two lmages seemed equal. The distance through which it was necessary to bring the movable less furnished the data for comparing the relative lustre of the two stars in question. More recently other photometers have been devised, and descriptions of three of them, with which considerpble researches have been conducted will pow be given. With the first mentioned below Prolessor Pickeripg of Harvard has made more than a million measures with his own eyes. The results of his observations, and of those of his assistants, will be found in the Harvard Amols especially in vol. xlv. published in 1gon, which contains a general catalogue of about 24,000 stans beighter than magnitude $7 \cdot 5$, north of declination -40°. With the 2ollner photometer Drs Custav Miller and P. Kempf of Potsdan have recenuly completed a similar piece of work, their catalogue of stars north of the equat or brighter than 7.5 containing 14,199 stars (Potsdam Publications, 1907, vol. avii.). The catalogue of Professor C. Pritchard was smaller, containing 2784 stars brighter than magnitude about 6.5 and north of declination -10°; but it was publinhed in 1886 , when very fittle had yet beem done towards the systernatic measurement of the brightness of the stars (Uranometria sropa oxoxicusis, vol. ii. of the Oxfard Universily Observatory publications).

Pickeringés merditin photometer (Amn. Aspom. Ols. Haro. vola xiv. and xuiti.) comestass of two telescopes placed aide by side poinging due eart, the ligte from the stars on the meridian being reflected into then by two gnimont finclined it an angle of 45^{-}to this direetions If there were a bear exactly it the poles ode of these mirriong
vould bebootucty Prod and mould conematy refoat the lifte of thit etar down the axie of itt telescope; in praction a alight motion

Matifla mantrose Pnemanamb can be given to the mirror so as to keep in view the polar star selected, whether Polaris, with which the brighter tars were compared, or λ Urmae Mimpris, which was used for fainter atare. The ecoond mirror (which projects a litlo beypnd the firnt 80 as to get an unobstructed view of the meridian) can bo rotated round the axis of the telescope by meant of a toothed-wheel gearing. and ean thrs be made to refect any gtar on the meridian down the econd teletoope; it is alo provided with a samall mation ut the perpendicular direction, te to command a degrea or two oneach ide of the meridian. Near the common eycpiect of the telescopes there is a double image prism which separates the light received from each into two pencils; the pencil of ondinary rays from one object. glase is made to coincide with thet of extroondinary trays from the other, and the $\mathbf{t w o}$ maminist pencits are expluded by a stop. The two coincident pencile then pass through a Nicol prism to the eye of the observer, who by rotating the prism round its axis can equalize them at a defirme reading depending on their relative intensities. This reading sives in fact the difference of meteseleude between the two bart eltected for comparioon. It may be remarted that the position of the double imate prism is important. It should be just wilkin, not af, the common locus thas poeition prevents any noticeable, colour in the images, and gives the ondinary and extrmondinary pencils a sufficinat aporntion at the eye-top to permit the emaire earclution of one withent the lowe of any part of the other. If the pritm were exactly at the focus, and any part of the superfluous images were admitted. the resulting econdary image would coincide with the others and thus lead to errors in oberving. But in the watual construction of the ingtru. ment the eecondary impage would appear, if ot all, only as additional stape near thoee under observation, and too faint to produce any inconvenience. It is worthy of note that Professor Pickering has exterded his survey into the southern hemusphere, wo that the Harvand photometry fie the mont complete of all. Exch obeorvativa conmita of four conpprisome; after the firt two she obeerver reverues the position of the star images in the field, and also reverses the double-image prism. The former precaution is mecensary in order to eliminate a curious error depending on the relative pouition of the images, which may anoont to meveral tenthe of a matnitude. Errose of this loind aftect all estimations of the nelative oriphtreme of $t w o$ giars in the gange geld, as has been repeatedly thown a a riking instance is given by A. W. Roberts, of Lovedale, South Africa (Mon. Nol. R.A.S. Apri 8897), who found that his ege-estimations of the brightness of variable tare required - cortection depetaltur on the porition-angle of the comperison tar ran ins over nearly two magitudea.

In Zanner's instrument an artificial star is taken as the miandard of comparison. There is only one telescope, and inside the tube near the eye end is a plate of glase placed at an angle zemoner of 45° with the axis, 0 that the rays froma taup which Fiohometor enter the tube from the dide ase neflectod down the tube to the eyepiece, while the light from the etar passes through the plate unobstructed. The lamplight passes through a Nicol prism and a plate of rock crystal, which give control over the colour: through two Nicols which can be rotated round the axds of the beam to definite positions read off on a graduated circk; and thea through a conver lens which formis an image reflected by the glate plate to iocus alongside the star. The whole of this apparatus is cargied in a compact form on the eye end of the telescope. a being arrauged that the hamp ehall always arand upight. The meanores are made by recatiog the Nicols until the brightneat of the artificial star is equal to that of the star viewed throush the object glass, and reading the graduated circle.

Professor Pritchard's (1808-1893) wedge photometer bs constructed on the principle that the aboorption of fight in pasaing 7ne whe through e uniforn medium depends, celerns paribs. Phatement apone the thickneas. On thla principle a thin wedge is conatructed of hopogemions and nearly neutraltinted glaes, through which the images of atars formed in the focus of a teleacope are viewed, Simple means are contrived for metauring with great easctnem the weveral thicknemes at whach the light of theoe telescopic etar-images in extinguished. In this way the light of any atar can be readily comparod with that of Polaris (or eny ocher selected star) at the moment of observation, and thus a catalogue of star-magnitudes can be formed. Two misterial Improvements uusested by Dr E. J. Spites afo wirthy of notice. The first (Proc. Roy Soc., 1889, 47, i5) corrects a stigt defect in the form of the inerument. If a pencil of reys paries through a thin wedge of tinted glass, the raya do not all past through the same thickncss of glass. Dr Spitta proposes to mubstr tute a pair of medzes with their thicknesmes incraang in oppoute
 ghate of siom of varying thicimest and \& uniform boam of hoht of censible dimentions can then be extiryuished asiffactorily. He has also pointed out a source of error in the method of "evaluating " the wedge and shown how to oorrect it. The meale value was Setermined by Profewor Pritchand by the ute of a doubly rafractumb cietermined by Fionearor Pritchand by the ane of a doubly rainactury
 interfered with the accuracy of the reault, but that this error could be eliminated by using a suitable diaphragm (Mom. Not. R.A.S. March 18go; Abney, ibid., June 1890).

Since 1885 aystematic catalogues of stellar brightness have been constructed with all these instrumente, and it has been of great interest to compare the results. The comparison has in general shown a satusfactory agreement, but there are small differences which are almost certainly systematic, due to the diference of method and instrument. One cause of such differences, the reality of which is undoubted, but the effects of which have an yet not been perhaps fully worted out, it the " Purininje phenomenon" (Pfigers Archio. Lx. 297). If a blue source of light and a red source appear equally bright to the eyc, and it the Intensity of each be diminished in the same ratio, they win no longer appear equally bright, the blue now appeazing the brighter; in more general terms, the equalizing of two diferently coloured lights by the eye depends upon their intensity. It is clear that this phenomenon must affect all photometric work uniess the stars are all exactly of the same colour, which we know they are not For let us suppose that both the comparison star of the meridian photometer and the artlicial star of the Zellner photometer were equalued with a bright star A, and that they could be also compared inter se and found equally bright. Then when a faint star B comes under observation and the inten. slties of the comparison st ars are both reduced to equallty with B, they will no longer appear equal to one another unless they are exactly the same in colour In other words, the observed ratio of Intensaties of A and B will vary with the colour of the comparison star, and smilariy it will also vary with the aperture of the telescope employed. Now it is one of the merits of the Potsdam catalogue above mentroned that it gives estimates of the colours of the stars as well as of their magnutudes- -0 that we now for the first time have this systematic information. In a most interesting section of their introduction it is shown that two of the Harvard photometric catalogues show systematic differences, due ta colour, and amounting to nearly half a magnitude. and that the Purkinje phenomenon is a satisfactory explanation of these differences. This is the first instance in which the effect of this phenomenon has been measured in the case of the stars, though it was known to be sensible. But there is a set of numerical resultc obtained in the laboratory which is of importance for all such works, viz. those obtained by Sir W. Abney (Proc. Roy. Soc. May 1891; and Mos. Nof. R.A.S. April 1892). giving the limiting intensity at which each pure colour vanishes. If we start with lights C D E F G of the colours usually denoted by these letters in the spectrum, and each 50 bright that it appears to the eye as bright as an amyl-acetate lamp at ift., and if then the intensity of each be gradually diminished. the C light will disappear when the original intensity has been reduced to 22,000 ten-milliont hs of the original value. The other colours will disappear at the following intensities, all expressed in ten-millionths of the original: D at 350 , E at 35 , F at 17 , and G at 15 . If then we had mixture of two lights, one of C colour as bright as before, and the other of G colour 1000 times fainter (a combination in which the eye would be nnable to distinguish the G light at all), and if we continnally reduced the combined intensity, the luminosity of the C light would diminish so much more rapidly than that of the G that the latter would begin to assert itcelf, and when the combined intensities were reduced to $\mathbf{1 2 , 0 0 0}$ ten-millionus of the anginal value, the C lught would have all disappeared, while the Glight would not Hence the colour of the light would appear pure volet, though it was originally deep red. This ertreme case shows that the " last ray to disappear" when a light is gradually extinguished may be very difierent in colour from that of the onginal light, and when more usual light-mintures are considered, such as those of sunlight and starlight, which appear nearly white to the eye, the " latet ray to disappear " is found to be in the green, very near E in the spectrum. This result has two important bearing on the use of the wedge photometer. In the frat place;
elther the wedse ftself should be of a greenish hve, or green light should be used in findiag the scale-value (the constant B in the formula $m=A+B w)$. In the second, star magnitudes ohtained hy extinction with the wedge will agree better with those ohtained by photography than those obtained with other visual photometers, since photographic action is chiefly produced by raya from E to G in the spectrum, and the E light of ulimate importance with the wedge photometer is nearer this light in character than the D light with which other photometers are chiefly concerned. It would also appear that results obteined with the wedge photometer are independent of the aperture of telescope employed, which is not the case with other photometers.

Passing now to the consideration of photographic methods, it is found that when a plate is exposed to the stars, the images phets of the brighter stars are larger and blacker thun grapth those of the fainter ones, and as the exposure is Pleco Pens. prolonged the increase in size and blackness contioues. Mucb of the tight is brought to an accurate focus, but, owing to the impossibility of perfect achromatism in the case of refractors, and to uncorrected aberration, diffraction, and possibly a slight difusion in both refractors and reflectors, there are rays which do not come to accurate focus, grouped in rings of intensity gradually diminishing outwands from the focus. As the brigbtness of the star increases, or as the time of exposure is prolonged, outer and fainter rings make their impression on the plate, while the impression on the inner rings becomes deeper. Hence the increase in both dimmeter and blackness of the star disks. As these increase concurrently, we can eatimate the magnitude of the star by noting either the increase in diameter or in blackness, or is both. There is consequently 2 variety in tbe methods proposed for determining star magniludes hy pholography. But before considering these different metbods, there is one point affecting them all which is of fundamental importance. In photography a new variable comes in which does not affect cye-observations, viz., the time of exposure, and it is necessary to consider how to make due allowance for it. There is a simple law which is true in the case of bright lights and rapid plates, that by doubling the exposure the same photographic effect is produced as by increasing the intensity of a source of light twofold, and so far as this law holds it gives us a simple method of comparing magnitudes. Unfortunately this law breaks down for faint lights. Sir W. Abney, who had been a vigorous advocate for the complete accuracy of this law up till 1893, in that year read 2 paper to the Royal Society on the failure of the law, finding that it fails when exposures to an amyl-acetate lamp at 1 ft . are reduced to $0 \cdot 001$, and "signally fails" for leeble intensities of light; indeed, it seems possible that there is a limiting intensity beyond which no length of exposure would produce any sensible effect. This was bad news for astronomers who have to deal witb faint lights, for a simple law of this kind would have been of great value in the complex department of photometry. But it seems possible that a certain modification or equivalent of the law may be used in practice. Professor H. H. Turner found that for plates taken at Greenwich, when the time of exposure is prolonged in the ratio of five star magnitudes the photographic gain is four magnitudes (Mon. Not. R.A.S. Irv. 775), and a closely similar result has been obtained by Dr Schwaraschild using the method presently to he mentioned.
Stars of different magnitudes impress on the plate images differing both in size and hlackness. To determine the magninmanderastude from the character of the image, the easiest Testof quantity to measure is the diameter of the image, macrettade and when measurements of position are being made with a micrometer, it is a simple matter to record the diameter as weli, in spite of the Indefiniteness of the border. Accordingly we find that various laws have been proposed for representing the magnitude of a star by the diameter of its fmage, though these have usually been expressed, as a prsliminary, as relations bet ween the diameter and time of exposure. Thus G. P. Bond found the dia meter to increase as the square of
the eaposure, Turner as the cube, Pritchard as the foortis power, while W. H. M. Christic has found the law that the dtameter varies as the square of the logarithm of the exposure within certain limits. There is clearly no upivernal law-it varies with the instrument and the plate-hut for a given instrument and plate an empirical law may be deduced. Or, without deducing any law at all, a series of images may be produced of stars of known brightness and known exposures, and, using this as a scale of reference, the magnitudes of other images may be inferred by interpolation. A most important piece of systematic work has been carried out by the measurement of diameters in the Cape Pbotographic Durchmustermugg (λ nn. Cape Obser. vols. iii., Iv. and v.) of stars to the tenth magnitude is the southern hemisphere. The measurements were made by Professor J. C. Kapteyn of Groningen, on photographs taken at the Cape of Good Hope Observatory; he adopts as his purely empirical formula

$$
\text { magnitude }=\mathrm{B} /(\text { diameter }+\mathrm{C}) \text {. }
$$

where B and C are obtained independently for every plate, from comparison with visual magnitudes. C varies from to to 28 , and B from 90 to 260. The part of the sky photographed was found to have an important bearing on the value of these conatants, and it was in the course of this work that Kapleyn found a systematic difference between stars near the Milky Way and those far fromit, which may be bnefly expressed in the law, the stars of the Milky Way are in gemerol dwer than ahe stars in other regions of the shy. It is intended, however, in the present article to discuss methods rather than results, and we cannot bere further notice this most interesting discovery.

Of methods which choose the blackness of the image rather than the diameter for measurement, the most interesting is that initiated independently by Piekering at Harvard and C. Schwaraschild at Vienia, wbich consists immen In taking star images considerably out of focus, The result is that these images no longer vary appreciably in size, but only in blackness or density; and that this gradation of density is recognizable througb a wide range of magnitudes. On a plate taken in good focus in the ordinary way there is a gradation of the same kind for the faintest otam; the smallewt images are all of approximately the same slze, hut vary in tone from grey to black. But once the image becomes black it increases in sise, and the change in density is not easy to follow. The images-out-of-focus method seems very promising, to judge by tbe published results of Dr Schwaraschild, who used a prepared comparison scale of densities, and interpolated for any given star fromit. The most satisfactory photograpbic method mould certianly be to take account of both sire and blacknean, i.e. to measure the total deposit in the flm; es, for instance, by interposing the whole image in a given beam of light, and measuring the diminution of the beam caused by the obstruction. But no considerable piate of wack has as yet heen attempted on these lines.

Even in a rapid sketch of so extensive a subject some notice must be taken of the application of photometry to the determination of the relative amount of light received on the bytht of ato earth from the sun, tho moon and the plapets, sime meoce -The methods by which these ratios have been eotPmeets obtained are as simple as they are ingenious; and for them we are mainly indebted to the labours of P. Bouguer and W. C. Bond ($1789-1859$). The former compared the light received from the sun with that from the moon in the following fashion in 1725. A hole one-twelfth of a Paris inch was made in the shutter of a darkened noom; close to it was placed a conoave lens, and in this way an image of the sun 9 in. in diameter whs recelved on a screen. Bouguer found that this light was equal to that of a candie viewed at 16 in . from his eye. A similar experiment was repeated with the light of the full moon. The image now formed was only two-thinds of an inch in diameter, and he found that the light of this image was comparable with that of the same candle viewed at a distance of 50 ft . From these data and a very simple calculation it followed that the light of the sus was about $256,28 \mathrm{~g}$ times thint
of the moon. Ohher eaperimenta followed, and the average of all the results was that the light of tho sun was about 300,000 timen the average light of a full moon, both being viewed in tbe heavens at the sume altitudes. The details will be found in Bouguer's Traise d'opsiqua. W. H. Woilsaton in 1829 tried a series of experiments in which the ratio 801,072 was obtained; but the omisvion of certain necessary precautions vitiates the result (Phil. Trans. 1819). Bond (MCme Amer. Acad. x861, p. 295) adopted a different process. He formed the image of the sun on a silvered globe of some io in. diameter, the light of this image was reflected on to a smali mercurial thermometer bulb; and then this sccond image was compared with a Bengal light so moved that tbe lights appeared to be equal. The same process was adopted with the full moon instead of with the sun. The result was that the sun's light was 470,980 times that of the moon. Seided long before this date had compared the light of the mean full moon with that of Jupiter in mean opposition; his result is 6430 . So aiso this light of Jupiter was found to be -4864 times that of Venus at her brightest; and Juplter was found to give 8.2 times the light of a Lyrue. If, then, these numbers could be accepted with confidence, we should have the means of comparing tbe light reeeived from the sun with that received from any of the stars. Adopting theso precarious numbers on the authorities of Bond and Seidel we have the following results:-

Lastly, Bouguer, oy comparing the light of the full moon viewed at different altitudes with an artificial light, found that the atmosphere absorbs - 1877 of the light incident on it at the zenith of any place. Professor Pritchard, from photometrie measures taken at Cairo, found this number to be 15%. At Oxford it was 209 . Thus Bouguer's determination indicates an absorptive capacity in the at mosphere of Brittany just midway bet ween those of Oxford and Cairo. Seidel at Munich expresses "surprise" at finding his own results so nearly accordant with Bouguefs. Although rather outside the domain of photometry in the strict sense, a word of two may be said here about recent attempts $t 0$ measure the heat received from the stars, the first being made witb tbe " radio-micrometer " of C. V. Boys. (Proc. Roy. Soc. 1890). This is an extremely delicate instrument for vary mucs measuring radiant heat, and consists of a very light mazem thermo-electric circuit (two tiny bars of antimony soostert and bismuth soldered together at one edge, the outer edges being connected by a boop of copper wire) suspended by a quartz fibre (a torsion fibre of the very greatest semsittveness) in a strong magnetic field. A minute quantity of radiant heat falling on one of the junctions of the circuit sets up a current in the circuit, wbich thus rotates in the magnetic field unlil brought to rest by the torion of the fibre. For use on the heavenly bodies the radiant heat is collected to focus by a reflecting telescope (an object-glass would absorb it), and when the telescope is pointed to the moon the varying radiation from different parts of the disk is beautifully shown. No heat comes from the unlit portion, and of the illuminated portion the maximum is obtained from near the limb. But when polnted to the brightest stars no indications were obtained, although the instrument is sensitive enough to detect the heat from a candle more than a mile off. It seems certain that indications of heat from the stars obtained by previous observers most be spurious. It is also manifest that to obtain satisfactory results even more sensitive apparatus must be devised, and by using a radiometer and the powerful resources of the Yerkes Observalory E. F. Nichols succeeded in $x 808$ and 1900 in obtaining indications of heat (rom Arcturus and Vega, as well as from Jupiter and Saturn (Astroghysical Journ. xiii, xo1), the heat received being comparable with that from a candle 6 m . a way. We may place alongside this result that obtained by W. J. Dibdin (Proc. Roy. Soc. April 1892), who compared candlebight with twenty-one stars ranging to the suth magnitude,
and found the light of a socond magnituide star equal to that of a candle at 1260 ft .
(H.H.T.)

Phimaties (Phrabates; Pers. Prahuld, modem Perhat), the name of five Parthian kings.
x. Phrantrs I., son of Prispatius, reigned c. 175-170' e.c. He subdued the Mardi, 2 : msountainous tribe in the Elburz (Justin zli. 5 ; Isid. Charac. 7). He died young, and appointed as his successor not one of his sons, but his brother Mithradates 1 . (Justin 디. 5).
2. Prenatrs II., son of Mithradates I., the conqueror of Babyionia, reigned 138-129. He was attacked in 130 by Antiochus VII. Sidetes, who, however, in 129 was defeated and Killed in a great battie in Media, which ended the Seleucid rule east of the Euphrates (see Sezeucio Dynasty). Meanwhile the kinglom was invaded by the Scythians (the Tochari of Bectris), wht had helped Antiochus. Phrates marched against them, but was defeated and killed (Justin xlii. I; Johannes Antioch, fr. 66).
3. Prazantes III., "the God" (Phlegon, fr. in ap. Photius cod. 97 and on some of his coins), succeeded his father, Sanatruces, in 70 B.C. at the time when Lucullus was preparing to attack Tigranes of Armenia, who was supreme in western Asia and had wrested Mesopotamia, and several vassal states from the Parthian kingdom. Naturally, Phraates declined to assist Mithradates of Pontus and Tigranes against the Romans (see Thorantis). He supported his son-in-law, the younger Tigranes, when he rebelled against his father, and invaded Armenia (65 s.c.) in allance witb Pompey, who abandoned Mesopotamia to the Parthians (Dio. Cass. xoxvi. 45, 51; Appian, Míhr. ro4; Liv. Epil. 100). But Pompey soon overrode the treaty; he acknowVedged the elder Tigranes, took bis son prisomer, occupied the vassal states Gordyene and Orrozne for the Romans, and denied the title of "king of kings," which Phraates had adopted again, to the Parthian King (Plut. Pomp. 33, 38; Dio. Cass. xaxvini. 5 seq.). About 57 Phraates was murdered by his two sons, Orodes I. and Mithradates III.
4. Prrantes IV., son of Orodes I., by whom he was appointed successor in 37 s.c., after the death of Pacorus. He soon murdered his father and all his thirty brothers (Justin vili. 5; Plut. Crass. 33; Dio Cass. xlix. 23). He was attacked in 3^{6} by Antonius (Mark Antony), who marched througb Armenia into Media Atropatene, and was defeated and lost the greater part of his army. Believing himself betrayed by Artavasdes, king of Armenia, he invaded his kingdom in 34, took him prisoner; and concluded a treaty with another Artavasdes, king of Atropatene. But when theswar with Octavianus Augustus broke out, he could not maintain his conquests; Phraates recovered Atropatene and drowe Artaxes, the $50 n$ of Artavasdes, back into Armenia (Dio. Cass. vilix. 24 sqq., 39 seq., 44; cf. K. 16; Plut. Antoniw, 37 seq.). But by his many cruelties Phrantes had roused the indignation of his subjects, who raised Tiridates II. to the throne in 32. Phrastes was restored by the Scythiams, and Tiridates fied into Syria. The Romans boped that Augustus would avenge the defeat of Crassus on the Parthians, but he contented himself with a treaty, by whicb Phraates gave back the prisoners and the conquered eagles ($20 \mathrm{s.C}$. , Xom. Anc. 5, 40 sqq.; Justin xili. s); the kingdom of Armenia also was recog: nized as a Roman dependency. Soon afterwards Phraates, whose greatest enemies were his own family, sent five of his sons as hostages. to Augustus, thus acknowledging his dependence on Rome. This plan he adopted on tbe advice of an Italian concubine whom he made his legitimate wife onder the name of "the goddess Musa"; her sop Phraates, commonly called Phrastaces (a diminutive form), he appointed successor. About 4 घ.c. he was murdered by Musi and her son (Joseph. Ant. xviii. 2,4).
5. Prrantes V., or Prevaracies, the younger son of Phrastes IV. and the "goddess Musa," with whom he is associated on his coins. Under him a war threatened to break out with Rome about the supremacy in Armenia and Media. But when Augustus sent his adopted son Gaius Cacsar into the east th order to invado Parthis, the Parthims preferred to corclude a
treaty (a.D. s), by which once agnin Arreenis was recogrised as in the Roman sphere (Dio. Case. Iv, 10; Velleius it. rot). So0n after Phrataces and his mother were slain by the Parthians, about a.D. 5 (Joseph. Ant. nviii. 2, 4).
(ED. M.)
PHRANTZA, GRORGE [GBongioe Prancties] (1401-c. 1477), the last Byzantine historian, was born in Constantioople. At an early age he became secretery to Manvel II. Palaeologus, in 1432 protovertiarfus (great chamberlain), in 1446 proefect of Sparta, and subsequently great logothete (chancellor). At the capture of Constantinople by the Turks ($\mathbf{1 4 5 3}$) he fell ginto their hands, but managed to escepe to Pelopoanesus, where be obtained protection at the court of Thomas Palaeologus, despot of Achaea. After the downfall of the Peloponnetian princes (1460) Phrantra retired to the monastery of Tarchaniotes in Corfu. Here be wrote his Chromicle, containins the history of the house of the Palsoologi from $1258-1476$. It is a moat valuable authority for the events of his own times.
Editions by I. Bekker (1838) in the Corpas scriplorum hish bys, and in J. P. Migne. Patrologies graeca, clvi; see aho C. Krumbacher, Geschichle der by acutinischen Lilleratur (1897).

PARAORTPs, the Greek form of Frovartisk, king of Medin. According to Herodotus (i. 102) be was the son of Deioces, and began the Median conquests. He firt subjugated the Persians, and then a great many other peoples of Asia, tifl at last he atuacked the Assyrians, but was defeated and killed in a battle, efter a reign of twenty-two years (about 640-6a5 B.c.; but perhaps, as G. Rawlinson supposes, the fifty-three years of Deioces ought in reality to be transierred to him). From other sources we obtain no information whatever about Phraortes; but the data of the Assyrian inscriptions prove that Assur-banipal (eee Babylonia and Assyru). at least during the greater part of his reign. maintained the Assyrian supremacy in Western Asia, and that in 645 he conquered Susi. The Medians too were subject to him as far as the Elhurz and the central Iranian desert.

When after the assassination of Smerdis all the Iranian tribes, the Babylonians and the Armenians rebelled against Darius and the Persian rule, "a man of the name of Fravartish (i.e. Phraortes), a Mede, rebelled in Media and spoke to the peopie thus: I am Khahathrita, of the family of Uvalchshatra (Cyazares)." He reigned for a short time, but was defeated hy Hydarnes, and afterwards hy Darius himself, taken prisoner in Rhagae (Rai), and executed in Ecbatans (520 b.c.; see inscription of Darius at Behistun).
(ED.M.)
PHRENOLOGY, (from Gr. фpotp, mind, and λ doyos, discourse), the name given by Thomas Ignatius, Forster to the empirical system of psychology formulated by F. J. Gall, and developed by his followers, especially by J. K. Spurzheim and G. Combe, by whom it was named "cranioscopy," "craniology," "physiognomy " or "zoonomy." The principles upon which it is based are five: (x) the brain in the organ of the mind; (a) the mental powers of man can be analysed into a defnite number of independent faculties; (3) these faculties are innate, and each has its seat in a definite region of the surface of the brain; (4) the size of each such region is the measure of the degree to which the faculty seated in it forms a constituent element in the character of the individual; (5) the correspondence between the outer surface of the skull and the contour of the brain-surface bencath is sufficiently close to enable the observer to recognize the relative sizes of these several organs by the examination of the outer surface of the head. It professes primarily to be a system of psychology, but its second and more popular claim is that it affords a method whereby the diaposition and character of the subject may be ascertained.

Hisfory.-That the phenomena of mind are in some measure connected with the action of the brain has been recognized from a very early age of philosophy. It is true that Aristotle ${ }^{1}$ describes the brain as the coldest and most bloodless of bodily organs, of the nature of water and earth, whose chief purpose Is to temper the excessive heat of the heart, as the cooler regions of the finmoment condense the vapours rising from the earth.
${ }^{1}$ De pertions animaliwm, ii. c. 7 (Paris, 1629, p. 986).

In his view, as in that of moot of the eariter writen of othep nations of antiquity, the heart is the seat of life; 20 it , $\mathbf{n o l}$ to the brain, the Hebrew writers refer choughts and affections, while they considered judgment as seated sometimes to the head, sonctimes in the kidneys. ${ }^{2}$ This was tikewiee che teaching of the ancient Esyptian philosophy; and hence, while meny rites wero practised and prayers offered for the preservation of the heart of the deceased, there were none for the conservation of the brain. ${ }^{3}$ We learn from Diogenes Laertius ${ }^{4}$ that Pythagoras heid more accourate physiological viewa, as be taught that the mind and the intellect have their seat in the brain. The theory of Hippocrates was Pythagorean cather than Aristotelian, for, athough in one passege in his work Decorde he expresees himself doubtuully, yet elsewhere he clearly states that he conciders the brain to be the inder and messenger of the intellect. ${ }^{3}$. The cerobral seat of sense-perception is also taught by Pleto," who puts into the mouth of Socrates the theory that the brain is the organ affected by the senses, whereby memory and opinion arise, and from whence knowledge springe. The clamic poets also notice this dependence of mind on brain; for example, in the Clonds (v. 1276) Strepsiades accuses Amynias of not being in his right mind, and, on being asked why, reaponds, "You seem to me as if you had had a concussion of the brain."

The two founders of anatomical acience, Erasistratus and Hcrophilus, who lived in the days of Ptolemy Soter, tanght not only that the brain was the seat of sensation and of intellect, but also that there was therein a certain degree of localization of function. Erasistratus believed that the sensory nerves arose. from the brain-membranes, the motor from the cerebral substance. Herophilus was apparently the first who held that the vital forces resided in and circulated from the ventricles of the brain, nt least so we gather from Celsus and the other authors who have preserved his views. By the influence of the writings of Galen,' which directly teech that the brain is the seat of soul and intellect the Pythagorean doctriae prevailed among the later philosophers. According to the Gatenical theory the animal spirits have their origin in the ventricles of the brain, and pass into the heart from which they are coaveyed by the arteries through the body. Gaten in one place (viii. 159) refers their origin to the brain-substance, but the ventricular theory was that adopted by his followers, somo of whom suggested that there was some relation between the shape of the head and the character and disposition of the mind. The Arabian physicians Averroes' and Rhazes ${ }^{10}$ adopted the Galenical doctrine and developed the hypothesis of a fourfold ventricular localization of faculties, which the Grecks had originated. Avicenna ${ }^{11}$ added to these a fifth region. Such of the early Christian authors as referred in
${ }^{\text {I }}$ In the Chaldee portion of Daniel (ii. 28. iv. 5, vii. i) visions and thoughts are referred to the head. For other particulars as to early views see Nasse on the psychical relations of the heart in Zeffechr. $\}$. psyckichele Aerte (18i9). vol. i. A few of the liter medical writers exprees similar views: sceSanta Cruz_Opuscmis medice, Madrid (i624).
Book of tho Dead, ch. xorvi.-xxx.

: Do morlo secro, on Opp. ed. Kahn, i. 6fa seq-: also Epias; 苗. 824-Among later writers Licetus of Genoa taught the co-extencion of soul and body, upon which subject he wrote two books (Padua, 1616). In this connexion may be noted a curious work by Schegkius, Dialogus if animae principalu, A ristotedis al Galeni rationes praeferens quibws ille cordi, hic cerchro, principalman altribuit (Tabingen, ss4a).
"Phoedo, Valpy's ed. 1833, ch siv., p. 128. See siso Haller': Bibl. anab., i. 30 .

 repulx colas haraiz. See also v. 288, viii. If9, XV. 360, In his Definitiones medicas (467, xix. 459) he mays that the brain has a |wxux \$ivanas, but does not specily in what part the power inheres.
SSee Paulus Acgineta, Stephen's ed. 1567, cap. 62, col. 363. aloo
 p- 22. c. 7.
-Coniting. in Arist.; Latin tr. (Verice, 1550), vi. 73.
no"Imaginatio quidem in doubas ventriculis anteriocibus perficitur. Cogitatio vero in medio expletur. Memoria autem posteriorem possidet ventriculam." De re wedica, Cerard's trame. (Basel, I 554), i.s.
is Lib. camomir (1507), p. 19, and De maturalibus, c. 6 .
their writings to the relation of soul to body naturally adopted the teaching of Galen which they accommodated to their theology, thereby conferring on it an importance which rendered correction difficult. Tertullian ${ }^{2}$ in a sense expresses his belief in a theory of localization as also at a later period does Thomas Aquinas. ${ }^{2}$
Escly in the $23^{\text {th }}$ century Albertus Magous' gave a detailed description of the distribution of mental and paychical faculties in the head. The anterior region he assigned to judgment, the middle to imagination, and the posterior to memory. A somewhat similar allocation was made by Gordon, professor of medicine in Montpellier ($\mathbf{1} 296$), ${ }^{4}$ who assigned common sensation and the reception of impressions to the anterior cornus of the lateral ventricles, phorfasia to the posterior, this power being two-fold (imaginativa and cogilativa), judgment or anstimation to the third ventricle, and memory to the fourth.' Figures of a similar division were given by Petrus Montagnans ${ }^{4}$ and Lodovico Dolce' still later by Ghiradelli of Bologna ${ }^{\frac{1}{2}}$ and by Theodore Gall of Antwerp." That the "vital spirits" resided in the ventricles was doubted by many, and denicd by a few of the anatomists of the 17 th century. G. Bauhin in $162{ }^{\circ}$ attacked the ald view, aod Hoffmann of Altorf showed that, as the ventricles were closed cavities, they could not transmit any material fluid. That these spirits existed at all was doubted by Alexander Benedictus," Plater, ${ }^{11}$ and a few others; but they were believed in by the great majority of inth and even of i8th cent ury medical writers, many of whom copceived that the ventricles were semfer pleni spiritibus animalibus famerulis similibus, quorum beneficiis incellitimus, sendimus, et movemos, ${ }^{\text {a }}$ and the opponents of this view were strongly assailed by J. Riolan and others as revolutionary. Columbus ${ }^{4}$ ridiculed the idea that the convoluted aurface can have anything to do with intellect, as the ass, a proverbially stupid animal, has a convoluted cerebrum. According to his view, the convolutions are for the purpose of lightening the brain and facilitating its movernents. The grey matter of the surface of the cerebrum was recognized as the true dynamic element by M. Malpighi ${ }^{14}$ and T. Willis. ${ }^{10}$
${ }^{1}$ De anime, cxiv. (ed. Franeleer, 1597), p. 268.
${ }^{2}$ Sum ma theologice, ed. Migne, i. 1094 1106-7. Prochasica and his translator, Laycock (Mind and Bram, ii. 16s), charge Duns Scotus with holdhng thin view; probably he did, but he does not express it; as he simply specifics the cerebrum and its root, the spinal cond, es the source of the nerves alons which nensory impulses travel. Comment. de akima, i, 5I5 (Leided, 1687).
${ }^{2}$ Opera. iii. 124. vi. 20 (Leiden, 1651).
4 Lilium medicince, Iot (Venice, 1494).

- Avicenna fifth recion is interposed between imoginatio and aertimation (D_{C} noturations, c. vi.). Thomas Aquines combines the last two, which be says are possesed by the same eminence On the other hapd, he says of ratio particularis, "medici assignam determinatum organum, scilicet mediam partern capitis" (i. IIO6).

Physiognomic (Padua, 1491).

- Dialogo nel quale si ragione del modo di accrescere e consernar lo meneoris. 27 (Yenice, 1562).
a PLysioginomin, 1670.
- Tabulae elemeni. scienliae (Rome, 1632).
se Thealr. astal. (Basel, 162y. ini. 314); Caspar Hofimann, De wsw cerchri (Leipzig, 1619). See also Spigelius, De corp. hwmaxi fabrich, 296 (Amsterdam, I645); Varolius (1591); P. 6! Wepfer, Hisloriarum apoplecficarum potissimw anatonioe subjectorvm auctarium (Amsterdam, 1681). See also many of the anatomical works of this age. wueh as those of Fernel, Cabrol, Argenterius, Rolfinck, \&c.
"Alexander Benedictus, Analomica, vol. Hii. (Basel, 1527). Quercetanus is said by Laycock (following Prochaska) to heve assailed ihis doctrine of spints; on what ground is not appareat, as he oertainly expresses himself as a believer in the old view; sce Tefras grapiss. totisus capilis afoct. x. 89 (Marburg, 1606), Possibly Prochasta may allude to an obscure passage in the work of the oiber Quercetanus (Eustachius). Acroamaton in librum Hippocratis. p. 14 (Basel, 1549). not to the better-known Joeephas Armenacus; but he giver no reference.
${ }^{13}$ Openg, col. 22, 89 (Basel, 7625).
is Jocis's opere medicr, 22 (Amsterdim, 1663).
${ }^{4}$ De re analonica, p. 350 (Frabkfort, 8593).
w "Epiet. de cerebto et cort. cereb. inl Fracanatum," in Opp., vol. il. (Ceneve, 1695).

14. De arima brulorww, p. 71 (Oxfond, 1677). "hate particulae subtilisamiae. opfitus animales dictue, partum istarum substantias corticales peino aubeuntes, exinde is merimsque meditullia." ge-; tso pi 76 seq.

The latter reamed the convoluted surfuce of the cercbrum at the seat of the mennory and the will, the convolutions being integded to retain the animal spirits for the various acts of imagination and memory. Imagimation he described as seated in the corpus callorum, senso-perception in the corpus striatum, and impatus at perturliatio in the basal parts of the cerebrum above the crorta. The thalumi he regarded as the centres of sight and the cerebellum of involuntary acts. Succeeding anatomista simply variad these loctliastions sccording to their respective fancies. G. M. Lencisi pleced sense-perception in the corpus callosum, R. Vieustens in the centrum ovale majus, R. Descartet supposed the toul to be seated in the placal gland, others in the brain-comminaures expecially the pons Varolii. ${ }^{12}$ Meyer considered abstrect ideas to arise in the cerebellum, and memory to have ite seat at the roots of the nerver.u
Of heter writers thres deserve special notice, as having largely prepared the way for the more modern mehool of phrenology. J. A. Unser, of Halle, in his wort on physiology extended the pre-existing theories of localization. Metzger, ${ }^{\circ}$ ewenty years before the publication of Prochecka's work, had proposed to make a series of obeervations on the anatomical characters of the brains of persons of marked intellectual peculiarity; but apparently he did not carry this into eflect. In a more apecial manner Prochaska of Vienne may be looked upon as the father of phrenology, as in his work on the mervous system, published in Vienna in 1784 , are to be found the germs of the later views which were propounded in that ciry twelve years later. ${ }^{\text {w }}$
The system formulated by Gall (g.a.) is thus a modern expansion of an old empirical philosophy, and fes immediate parentage is easily traced, ahthough, according to Gal's account, it was with him the result of independent observations. These, he telis us, he began to make at an carly age, by learning to corrclate the outward appearances and mental qualities of his schoolfellows. Gall's first published paper was a letter in the Dealscher Merkur of December 1908, but his principal expositions were oral, and attracted much popular attention, which increased when, in 1802, he was commanded by the Austrian government, at the instance of the ecclesiastical authoritles, to discontinue his public lectures. In 1804 he obtained the co-operation of Spuraheim (1776-1832), a natlve of Longwich, near Treves, who became his pupil in $\mathbf{1 8 0 0}$, and proved a powerful ally in promulgating the system Mlaster and pupil at frrst taught in harmony, but they found it advisahle to separate in 1813; and we find Spurzheim, several years after their parting, declaring that Gall had not introduced any fmprovements into his system since their separation (notes to Chenevir, p. 99). "My philesophical views," he also says. "widely difier from those of Gall."
In Paris, where he setted in 1807, Gall made many infuential converts to his system. F. J. V. Broussais, H. M. D. de Blainville, H. Cloquet. G. Andral, E. Gcoffroy St-Hilaire, Vimont and others adapted it and countenanced its progressa Gall visited Great Britain, but the diffusion of phrenology bere was chiefly due to Spurzheim, who lectured through the country and through America, and with the aid α his pupil, Gearge Combe, attracted a large popular following. His most influential disciples were J. Elliotson, Andrew Combe, Sir G. S. Mackenzie, R. Macnish, T. Laycock and Archbishop R. Whately, and in America Caldwell and J. Godman. On the opposite side many infuential men took up a strongly antagonistic position, prominent among whom were J. Barclay the anatomist, P. M. Roget, Sir Chartes Bell, Sir W. Hamillon, F. Jefirey, H. P. Brougham, T. Brown and Sir B Brodie. The nature of the system rendered it eminently fitted to catch public attention, and it rapidly attained to so great a

[^42]degree of popularity that in 8832 these were twenty-mine phremological societies in Great Britain, and several journals devoted to phrenology in Britain and America; of these the Phrenological Journal, a quarterly, edited chielly hy George Combe with aid from others of the Edinburgh confraternity, notahly Sir George Mackemzic and Macniah, "the modern Pythagorean," lived from 18a3 to 1847, through twenty volumes. The controversy in many places was heated and often personal, and this largely increased the popular interest. In the Edinburgh Revics the theory was severely criticized by Thomas Brown, and afterwards in a still more trenchant manner hy Jefrey. In Blachwood it was ridiculed by Profescor John Wilson, Being a subject which lent itself easily to hurlesque, it was parodied cleverly in a long rhyrne hy two authors," The Craniad," 87 pages long, published in 1817. while, on the other hand, verse was pressed into its service in the rhyme "Phrenology in Edinburgh" in $1824 .{ }^{\text {. }}$ The best defence of the system was that hy Chenevix in the third number of the Forcign Quarierly, aiterwards reprinted with notes by Spurzheim.

The Facullies and their Lacalities.-The aystem of Gall was constructed hy a method of pure empiriciem, and his so-called organs were for the most part identified on ilender grounds. Having selected the place of a faculty, he examined the heads of his friends and casts of persons with that peculiarity in common, and in them be sought for the distinctive feature of their characteristic trait. Some of his earlier studies were made amoag low associates, in geols and in lunatic asylums, and some of the qualities located hy him were such as tead to become perverted to crime. These he named after thoir excessive manifestations, mapping out organs of murder, theft, dec; hut as this cast some discredit on the system the names were changed by Spuraheim, who claimed as his the moral and religious considerations associated with it. Gall marked out on his model of the head the places of twenty-six organs as round enclosures with vacant interspaces. Spuraheim and Combe divided the whole scalp into oblong and conterminous patchea (see the accompanying Gigures). Other methods of division and other names have been suggested hy succeeding authors, especially hy Cox, Sidney Smith (not Sydney), Toulmin Smith, K. G. Carus of Dresden, Don Mariam Cubi i Solar, W. B. Powell of Kentucky, J. R. Buchanaa of Cincinnali, Hittel of New York. Some, like the hrothers Fowler, raise the number of organs to forty-three; but the system of Spurzheim and Combe is that which bas always been most popular in Britain.
Spuraheim separated the component faculties of the human mind into two great groupe and subdivided these as follows:-

1. Feelings, divided into-
2. Propensitics, internal impulsee inviting only to certain actions.
3. Sentiments, impulies which prompt to emotion as well. At to sction
A. Lowrer-those cmamon to man and the lotrer ianimals. B. Hibher-thove proper to man.

1I. Intellectual faculties

1. Perceptive faculties.
2. Reflective facultien.

In the following list the locality and the cireumstances of the first recognition of the organ are appended to the names, which are mostly the inventions of Spurxheim. Gall's names are placed in hrackets. ${ }^{2}$

-Propensities.

1. Amativenese (Instinct de to generation), median, below the inion; first determined by Gall Irom its heat in ant hyterical widow, stpponed to be confirmed by grany observations, and referred to the cerebellum ${ }^{2}$

[^43]2. Philoprogenitivemen (Amone is la progheitwis) andian, on the squama occipitios and elected as the organ for the love of children because this part of the ckull is usually more prominent in apes and in momen. is whos the love ol chidren is sempponed to be stronger than in meen.
3. Concentrativeneas, below the obelion and over the lambia. This is a region of uncertain function, unnoticed by Gell, but deacribed as Inhabitivencas by Spurzheim. because te found it large in cats and in a clergyman fond of his home. It has since been considered by Combe to be the eatt of the power of comeentration, whoreof he believed Inhabitivencse to be a special case.
4. Adbesiveness (Amitic), over the lateral area of the lambdoidal suture. This region wat prominent in a lady introduced to Gall as a model of friendship, and fa aid by him to be the region where pereone who are clonely attached pat their heads together.
5. Combativeneas (Unstinct de Lo defemse), above the asterion; it was found by Gall by examining the heads of the most quarrelsome of his law companions whom he had beforehand stimulated by alcohol. It was verifed by comparing this region with the same part of the bead of a quarreleome young lady.

6. Destructiveness (7mstimet camassier). above the ear meatus This is the widest part of the skulls of carnivorous animais, and was found large in the head of a student so fond of torturing animals that he became a surgeon, also large in the head of an apothecary who became an executioner.

6a. Alimentiveness, over the temporal muscle and above the ear. Hoppe deacribes it as being large in a gourmand acquaintance. and he therefore supposes it to be the origin of aelecting food.
7. Secretiveness (Kuse, Fiserse), the posterior part of the squamous suture.
8. Acquisitiveness (Sentiment de ba propticid), on the upper edge of the front half of the squamous suture. This part of the head Call noticed to be prominent in the pickpockets of his acquaintance.
9. Constructivenest (Sews de mecharique), on the stephanion: detected by its prominence on the heads of persons of mechanical genius. It was found large on the head of a milliner of urcommon taste and on a skull reputed to be that of Raphael.

The organ of Vitativeness, or love of life, is supposed by Combe to be seated at the base of the skull. To this locality Herophilus referred most of the intellectual powers.

Lowar Sentimenti.

10. Self-esteem (Orgweil; ficric), at and immediately ower the obelion: found by Gall in a begter who encused his poverty on acceunt of his pride. This wa confirmed by the obaervation that proud persons held their heads backwards in tbe line of the organ.
t7. Love of Approbation (Vamilt), outside the obelions the region in which Gall saw a protuberance on the head of a lunatic who fancied herself queen of France.
11. Cautiouspess (Circonspretion), on the parietal emimences ploced bere because an ecclesiastic of heffertimy dippoition and a vacillating councillor of atate had both large parietal emingurs.

Suppriep Sentiments.

13. Benevolence (Bowit), on the middie of the frontel bone in front of the coronal suture; here Gall noticed a rising on the head of the highly commendod servant of a friend, as well as on a benevolent ghoolmate who nursed his brothers and sisters when they were ill. To this epot Xenocrates referred the intellectual powcrs. 14. Veneration (Semtiment religirux), median at the bregma. Gall noted when visitiag churches that thoee who prayed with the greateat fervour were prominent in this region, and it was also prominent in a pious brother.
14. Conscientioumens, Believingness (Forster) unknown to Gall; mecognived by Sporcheim uaally from its deficiency, and placed between the last and the parietal eminence.
15. Firmness (Fermedt), median, on the sagittal suture from behind the bregma to the front of the obelion. Lavater first pointed out that persome of determination had lofty heads)
16. Hope, not regarded as primary by Gall, who betieved hope to be akin to desire and a function of every faculty which desircs and left this territory unallocated.
17. Wonder, said to be large in vision-seers and many prychic rescarchers. A second amilar organ placed between this and the next is called Mysterizingmess by Forster, and is said to be the seat of belicf in ghowts and in the supernatural.
18. Idcality (Podrie), noted.by Gall from its prominence in the busts of pocts; said to be the part touched by the haind when composing poetry.
19. Wit (Espril camstique), the Irontal eminence, the organg of the sense of the ludicrous, prominent in F. Rabelais and J. Swift.
2I. Imitation (Facules' eimilor), disposition to mimicry, placed between Benevolence and Wonder.

Perceplive Facultics.

27. Individuality, over the frontal sinus in the middle line: the capacity of recognizing external objects and forming ideas therefroms ataid to have been large in Michelangelo, and small in the Scots.
28. Form (Mémoize des personmes), capacity of recognizing faces; gives a wide interval between the eycs; found by Gall in a squinting girl with a good memory for faces.
29. Sipe, over the trochlea at the ortrital edge; deacribed by Spurzheim and Vimont as the capacity of eatiraling space and distance.
30. Weight, outside the last on the orbital edge and, like it, over the frontal sinus. The prominence of ridge here is due to large sious or a projecting bone. Certain old writers, euch as Strato Physicus, located the whole intellect in this ridge.
31. Colour, also on the orbital edge external to the hast.
32. Loeality (Sens de localite), placed above Individuality on each side, and corresponding to the upper part of the frontal sinus and to the region imenediately above it.
33. Number, on the external angular procese of the frontal bone. targe in a calculating boy in Vienna.
34. Order, internal to the last, first noted by Spurzheim in an orderty idiot.
35. Eventuality (Memoive des choses), the median projection above the glahello, suppoeed to be the sent of the mernory of eventa
36. Time, below the frontal eminence and a litile in front of the ternporal crest.
37. Tune (Swas desirepports des fows), on, the foremost part of the temporal mache, where Gail noticed a bulge on the head of a musica! prodigy of five.
38. Language (Sews des mots), behind the eye. This was the first organ noticed by Gall, as a ciever schoolfellow, quick at languages, had prominent eyes. Old authors had noted the connexion between prominent eyeballs and mental developmeat; thus Gazzali and Syenensis Medicus Cyprius place the intellect and nou! behind the eyeballs.

Refictive Faculies.

34. Comparion (Sagacio comparative), median, at the top of the bare region of the forchead, where a savint frlendi-of Gallis, fond of analopics, had a prominent boas.
35. Causality (Esprit métaphysique), the eminance on each side of Comprarison, noticed on the head of Fichte and on a bust of Kant; the seat of the faculty of correlating causes and effects.

The firt identification of each organ was made by an induction from very limited data, but the founders and exponents of the system have collected all available instances wherein enlargements of each of these regions coexisted with increased powers of the faculty supposed to reade therein, and in some tases they have discovered conncidences of a surprising, nature. When, however, such do mot exist, a oonvenient excuse is found by reference to the indefinite article of temperament, of by a supposed explanation of the faculty in question as not simple but produced by the co-operation of other influences. Thus, as Sheridan's bump of wit was small, he is mid not to have been truly witty; but to have had comparison and memory strongly developed. The girl Labrosece (described in Féruasac's Bullelin Jor October 183i). who exhibited strong amativesess but had a rudimentary cecebelhum, is said to have obliterated
it by over-ane. Thurtelt, a cold-blooded murdertr, whose organ of benevolence wats large, is sid to have becn generous, as he once gave half-a-guince to al friend, \&c.

The method whereby the sizes of organs are estimated is arbitrary and the boundarics of the regions indefinite. The attempts of Nicof, Straton and Wight to devise mechanical and accurate modes of measurement have not been very successful and have not found lavour with the profesaional phrenologist.

Andomical Aspect of Phrenology.-The phrenological con: troversy served the useful purpose of stimulating research into the anatomy of the brain; but we owe very little of solid progress to the advocates of the system. Gall is the only writer of his creed in whose works original observations of value are to be found, and Dr B. Hollander has cited many interesting and carefully recorded anatomical and clinical tacts in his writinga. Although the study of the surface of the cerebrum is of the essence of phrenology, yet nowhere in the circle of phrenological Hiterature are the convolutions of the brain accurately described; our knowledge of their order and disposition comes from the morphologist, not from the phrenologist. The first real step towards their systematic description was made by L. Rolando, ${ }^{1}$ who in 1830 described the fissure to which his name is attached, and very little advance was made until the publication in 1856 of L. P. Gratiolet's ${ }^{2}$ and Huschke's ${ }^{3}$ memoirs. These works for the first time placed the description of the surface of the brain, imperfectly attempted by L. A. Desmoulins in $\mathbf{1 8 2 5}$, on a satisfactory basis.

A description of the anetomy of the brain is given ander the heading BRAIN, so it is necemary bere ondy to reler to points not included in that account.

1. Any paychological theory which correlates brain-action and mental phenoment requires correspondence between brain-size and mettal power; and, spoaking generally, the braint of those whose capmaties are above the average are lasger than thowe of the general ram of their fellow-men.
2. Direct measurements of the relative developments of different portions of brains are difficult and troublesorne to make; but thelr importance to phrenologists is to great that it is remarkable that no at terapts to obtain any much were tande by them. The series given by R. Wagner of the relative cixc: of the cerebral lobets of lour brains is almost the only record of importance in this direction, and is appended.

Brico of		$\begin{aligned} & \frac{8}{3} \\ & \frac{3}{4} \\ & \frac{1}{4} \\ & \frac{8}{8} \\ & \frac{8}{6} \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{1}{3} \\ & \frac{3}{3} \\ & 8 \\ & 8 \\ & 6 \\ & \frac{8}{6} \\ & \frac{5}{3} \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \\ & 9 \\ & 8 \\ & 8 \\ & 8 \\ & 3 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$						
Fuchs dinical tescher	1434	60's	30	67 's	110	303	140	$110 \cdot 7$	2373	44	1700
Gaus: mathe matician.	139	70.6	50.4	68.4	407	1307	374	1128	138*3	34	'40\%
Workiman	113.2	63.3	503	68	3 S 5	14	385	074	1036	291	27
Focme	130	65	38	66.	4×8	2094	16	107's	300.9	3174	188

From this it appears that the moman exceeded Gauss in perceptive and reflective organs, exceeded Fuchs in senilment, and fell below the workman in propensities. It must be said, however, that the phrenological divisions do not accurntely coincide with the anatomical. It would furnish important physiological data if the hrains of men diatinguished for special quatities were examined in this or tome comparable way.
3. It is important in relation to phrenology to ascertain the constancy of the convolurions Many varicties in the detail of the eurface-patterns have been recorded by Tenchini, Poggi, Giacomini, N. Rudinger, Cunningham and Sernow, but the general plan is fairly uniform. A still more important question has becn recently raised by. J. N. Langley, viz. how lar identical spots on
${ }^{1}$ Della Shrutlmra degli emisferi cerebrali (Turin, 1830).
? Menoire sur les pis cerdbramx de thonme et det primates (Parts, 1856).

SChidel, Hirn mad Seele (Jena, 1856).

- Magendic and Desmoulins, Anat. ds sys. nerteux (Paris, 1825).
- Rivista sperimestale di fremiatria (1883), ii. 193: ibid. iv. 403; Archis für Authropologie (1879), xi. 289.
identical convolutions in different brains comerist of nerve-cella with preciscly the same connexions. The coavoluted arrangement results from growth of brain-surface under constraint, bence as the different tracts of surface undergo proportional overgrowth they may fold along different lines The occurrence of mall differences in the rate of overgrowth, testified to by the varietics of the resulting pattern, can hardly lail to cause considerable alteration in the place of definite territories of grey cells. Some method for the determination of the limits of these shiftings of place is required before comparisona can be of value as phrenological data.

4. The comparison of the rate of growth of braln with the development of mental facultice is important not only to the phrenologist but to the psychologist. No observations on this point were made by phrenological writers, who only refer to the first and rather crude observations of the carlier anatomista. We have, however, recently learned from the researches of T. L. W. von Bischoff, Tuczec, Cunningham, and S. Exner ${ }^{1}$ many perticulars as to the rate and progress of brain growtb. At birth the brain weighs one-tenth of the weight of the body, and averages about 11 oz. For the frot year brain-growth and consequently expansion of the skull proceed with great rapidity, the growth during a large part of this period averaging one cubic centimetre daily. This enormous increase is chicfly due to the rapid development of medulated nervefibres, which are deficient in the loetal brain. During the second and thind yeare growth takes place more alowly, the occipital and parietal lotes increasing more than the frontal or temporo-sphenoidal. During these and the four succeeding years the base elongates commensurately with the increasing depth of the face. In the sixth snd seventh years the frontal lobes grow faster than the parietals, and at sevea the average brain has attained the weight of 1340 grammen being the weight of the body as $1: 30$. In the period between seven years and puberty growth is slight, but at puberty the whole brain grows actively, especially the frontal lobes. This activity lasts until about eighteen years of age, then diminishes; but tho average brain does not reach it maximum size until about thirty, from a little after which period the brain tends to diminish towards senility.
5. The estimation of the relative development of grey and white matter in the eeveral lobes is important to any theory of cerebral dynamice which allocate functions specifically diverse to each separate part of the brain-surface: but no attempt has been made by the phremologist to obtain procise resules in this direction, nor even to determine the physical constants of the two forms of brin-matter. The recently introduced method of Bourgoin and B. Danilewaki, based upon the differing specific gravities of grey and white matter, proruises to give definite information as to the relative amounts of these forms of brain-matter; bưt further experiments are needed to perfect the method.'
6. The relations, if any, between the alterations which take place in the shape and position of the bead and alterations in brain-surface have beea speculated on by the phrenologist. Broussais is reported to have said that his organ of causality had entarged with increasing use, and a list of cases of similar alterations of head-shape ia givea by Deville (Pkrtw. Journ. xiv. 32), most of which are simply agechanges, of the kind described by Profescor 3 . Cleland (P hil. Trass., 1870). There are no exact measurements recorded which indicate the occurrence of topical increases of a normal brain in special directions coincident with the cultivation of definite facultics. All the so-called cases are given vaguely, with no measurements, and the careful measurements of George Combe in such caves as were available to him stowed no appreciable alterations in aduit heads even at long intervats of time (see also Andrew Combe, Pkren. Jowre. X 414).
7. The phrenological want of hnowledge of the topography of the brain-purface was necesterrily correlated with ignorance of the exact relations of the convolurions to the interior of the cranial bones; these have been carefully worked out by E. Huschke. Heffier. W. A. Turner, Cunningham and Reid. Some Latitude, however. must be allowed in topography, as the exact relation of convolution of skult varies with the shape of the skull. Giacomini showed that the fissure of Rolando is perceptibly farther back from the coronai suture in dolichocephalic than in brachycephalic skulls, and it is still farther back in the extreme boat-shaped form of long-headedness, Passet shows that there is a slight topographical difference in the two semes (Arch. f. Andirop., l882, xiy. 89), and in the heads of those with a symmetrically-shaped skull there is often a want of lateral sytnmetry of convolution. Artificial deformations likewise aiter the copographical relations of convolutions, and have served not a little to puzrle the phrenologist. Thus, the artificial dolichocephaly of the Caribs having bulged the equama occipitis, they decided that these people must be amiable fovers of children, ${ }^{4} \& c$.

[^44]8. The existence of structural differences between difierent areas of cerebral surface is importent to any theory of centeral focklim. tion, but no phrenologist has given us any original information on thin point. Since the investigation of 1. G. F. Baillarger "and BevanLewis it has been shown that some local differentintions of structure do really exist. Thus in the convolutions acound the fitare of Rolando the ganglion-cells of the fourth layer ace of lare aise frintcells of Betz), and in the convolutions of the tempero-sphencidal lobe a layer of small angular cells (granule-cells) it interpoed bet ween the larger pyramidal and the ganglion-cclis, to that, while in the perts of the brain above the fispure of Sylvius the grey cortex is for the most part tive-layered, below and behind thent hooure it is six-layered There is no abrupt passage from the one to the other, the only suddea transition of etructure of the grey cortex being at the hippocampal sulcus; and giant-cells, although of tontler size, and leas like thone of the antcrior cornu of the spinal cord, are coattered over other parts of the cerebral grey matter.

Other local variations in structure have been deacrlbed by Elliot Smith and other histologista.

The teaching of anatomy with regard to phrenology may be summarised thus: (1) the rate of growth of brain is concurrent with the rate of development of mental faculty; (2) there is some degree of structural differentiation as there are varying rates of developprent of different parts of the cerebral surface; (3) there is no accordance between the regioas of Call and Spuratheim and definite areas of cercbral surface.

Physiological Aspect.-The theory of some of the older metsphysicians, that the mind, in feeling and refection, mates uso of no material instrument is not now accepted by psychologists. It was advanced by Brougham and Jeffrey as against the theory of phrenology; but the doctrine that the brain is the organ of the mind is now universally received. While it is probable that certain molecular changes in the grey matter are antecedents or concomitants of mental phenomena, the precise nature of these processes, to what extent they take place, or how they vary among themselves have not as yet been determined experimentally; the occurrence of the chamge can orsy be demonstrated by some such coarse method as the altered pulsation of the carotid arteries,' the increase of the temperature of the head, the abstraction, during brain-action, of blood from other organs as shown by the plethysmograph, or the formation of lecithin and other products of metabolism in brain-substance. As yet no light has been shed on the connexion between the molecular changes in the nerve-cell and the phenomene of thought and fecling. While our knowledge of the anatomy of the brain, especially of the grey nuctei and of the white bands uniting them, has in recent years become much more accurate (see artides Brain and Muscle and Nerve), our knowledge of the physiology of the nervecentres is still indefinite and fragmentary, even when the utmost allowance is made for the experimental work of C. S. Sherrington, A.S.F. Grdnbaum, F. Goliz and others; and the hypotheses relating to the division of labour in the nervecentres is chiefly based on anntomical structure. Certain masses of grey nerve-matter situated in the spinal cord and medulla oblongata are so linked by nerve-cords to organs outside the nervous system which are set apart for the discharge of separate functions that they obviously form parts of the mechanism for the fulfilment of such functions. In cases where these can be subjected to experiment we learn that they are nervous centres presiding over the discharge of such functions; and it has been determined by experiment, or else deduced from anatomical structnre, that in those lower parts of the nervous centres which are more directly connected with the segmental elements of the body there is a certain localization of function; hence the centres of pelvic actions, of respiration, cardiac action, and inhibition of vaso-motor influence, deglutition, secretions, \&c., can be mapped out in ascending series. As certain of these centres are united by bands of fibres to the larger fatten and eat them, an abuse of the organ of philoprogenitiveness; see aloo Garcitano de la Vega, Hist. des Incas, 1.12.

M Mom. de l'acad. de medecine (1840). viii. 149.

- For further particulars of structure, in addition to the authore guoted at i. 878 , see Bevan-Lewis and Clark, P.R.S., (1878), and Pkil. Trams. (1880 and 1882).
${ }^{1}$ See Eugene Giey. "Sur len conditions physiologiques de th pensec.' in Archives de physiologie (1881). p. 742.
J. S. Lombard, N. Y. Med. Journal (June 1867), and Experimentai Restarches ow the Regional Temperature of ine Head (Loodon, 1873),
and higher-lying grey portions of the nervous centres there is an a priori presumption in favour of the extension of this principle of localization. This has been premised on metaphysical as well as on anatomical grounds. A. B. Bonnet long ago believed each portion of the brain to have a apecifically separate function, and Herbert Spencer has said that "no physiologist can long resist the conviction that diffarent parts of the-cercbrum subserve different kinds of mental action. Localization of function is the baw of all organization; separateness of duty is universally accompanied with separateness of structure, and it would be marvellous were an exception to exiat in the cerebral hemispheres. Let it be granted that the cercbral hemispheres are the seats of the higher psychical activities; let it be granted that among these higher paychical activities there are distinctions of kind which, though not definite, are yet practically recognizable, and it cannot be denied, without going in direct opposition to established physiological principles, that these more or less distinct kinds of psychical activity must be carried on in more or less distinct parts of the cerebral hemisphere."
For a masterly neview of the old and the new amociation and localization theories, see W. Wundt's Grwadexige der physiologischez Psychologic, i. 289 s99. i aiso the same author's Essays, Leipeig (1888). pp. 109 sqq.
There is a large weight of evidence in favour of the existence of some form of localization of function. So little is known of the physical changes which underlie psychical phenomena, or indeed of the succession of the psychical processes themselves, that we cannot as yet judge as to the nature of the mechanism of these centres. So much of the psychic work of the individual life consists in the interpretation of sensations and the translation of these into motions that there are strong a priori grounds for expecting to find that much of the material of the nervecentres is occupied with this kind of work, but in the present conflict of experimental evidence it is safer to suspend judgment. That these local areas are not centres in the sense of being indispensable parts of their respective motor apparatues is clear, as the function abolished by ablation of a part returns, though tardily, so that whatever superintendence the removed region exercised apparently becomes asoumed by another part of the brain. ${ }^{2}$ Experimental physiology and pathology, by suggesting other functions for parts of the brain-surface, are thus directly subversive of many details of the phrenology of Gall and Spurzheim.

Psychological Aspect.-The fundamental hypothesis which underlies phrenology as a system of mental science is that mental phenomena are resolvable into the manifestations of a group of separate faculties. A faculty is defined as "a convenient expression for the particular states into which the mind enters when influenced by particular organs; it is applied to the feelings as well as to the intellect, thus the faculty of benevolence means every mode of benevolence induced by the organ of benevolence " (Combe). In another work the same autbor says it is "used to denote a particular power of feeling, thinking, perceiving, connected with a particular part of the brain." The assumption is contained in the definition that the exercise of a faculty is the physical outcome of the activity of the organ, and in several of the standand porks this in illustrated by misleading analogies between these and other organs; thus the organs of benevolence and of firmness are said to be as distinct as the liver and pancreas. The mind, according to another author, consists of the sum of all the faculties. In this view the unity of consciousness is somewhat difficult to explain, and consequently there is assumed by others a single unifying substratum, and on this the organs are supposed to act; thus thoughts are defined as "relations of the simple substance, mind, to certain portions of the encephalon" (Welsh, Phren. Journ. i. 206). Gall himself believed that there was hut a single principle which saw, felt, tasted, heard, touched, thought and willed (Fonctions $d x$ ceroean, i. 243); and the American exponent of phrenology, Caldwell, says " the mind is as single in its power as it is in its substance;

- For cases, we Rochefontaine, Archives de Physiolagie (1883), 28; Einachi, Ze Prichiotrie, i. 97.

It a quictrentar and operating principle, emential to all the mental facuities, but does not, by any means, possess them itself" (Elememetr, p. 16). It is not easy to understand the sapposed relation of this hypothetteal subotmoum to the separate faculties acting on it. It must be both immaterial and unconnected with the brain, at the thole two thousand million cells supposed to evist in the cerebral hemispheres are all parcelled out among the facuities, and mone are left for the anifying nows.
Each organ is considered as engaged, either independently in bringing forth its own product, or collectively with others in elaborating compound mental states, and according to their several degrees of development and activity they are considered capable of perceiving, conceiving; recollecting, judging or imagining each its own subject. This mechanical conception of the division of labour in the production of the phenomena of mind has the charm of simplicity, but is attended with the difficulty that anses in discriminating the operstions of the different organs one from the other. Phrenologists are apt to be vague respecting the limits of the several faculties, es about the boundaries of the separate organs. It was pointed out by Jefley that the lines of demarcation between benevolence, adhesiveness and philoprogenitiveness were indeterminate, although the organs are not very close, and the same applies to other organs.

It is unfortunate for the clearness of the definition that, allhough historically the faculties were the first phenomena noted, independent of and previous to their localization, yet in the definition the faculties are defined in terms of their localities.

The following arguments are adduced in favour of the funds: mental meparatenese of the faculties: (1) analogy-elsewhere in the animal economy division of labour is the rule; (2) the variety of mental endowment observed among children before they are influenced by education, and the inequalities in the mental endowments of individuals; (3) the phenomena of insanity, especially of monomania; (4) the varying periods at which individual faculties attain their maximum development; (s) the phenomens of dreams, and the awakening of a limited number of faculties during them; (6) pain being felt in an organ when it is overtaxed.

Such lacultics are súpposed to be primary-(i) as exist in some animals and not in others, (2) as vary in their deveiopment in the sexes, (3) as are developed in varying proportions with regard to other faculties, (4) as may act separately from other faculties, (5) as are not necessarily simultaneous with other facultics in action, (6) as are hereditary, and (7) as may be singly diseated.

According to the development of their powers mankind may be divided into six classes: (1) those in whom the highest qualitiea are largely developed and the animal qualities feeble; (2) those with the reversed conditions developed, with large animal and feeble intellectual and moral faculties; (3) those in wbom good and evil are in constant war, with active animal and strong intellectual faculties and sentiments; (4) those partial genimses in whom a few qualities are unusually developed, while the rest are at or below the mediocre standard; (5) those men of moderate endowment in whom some faculties are nearly or quite deficient; (6) those with an unvarying standard of undistinguished mediocrity in all their faculties.

It is perhaps unfortunate that the word "faculty" has been used in this sense of original power by phrenologists. It would have been better to employ, as Mr Lewes suggests, the term
I It Is interesting in this connexion to note that in a case published by Prolessor Hamilton in Brain (April 1884). Where a tumour existed on the occipital lobe, the pain was persistently referred to the forehead. Many similar cases are to be noticed among the records of localized brain-lesions. Bearing on this point also it is worth noting. once for all. that in nothing is the purely hypothetical nature of phrenological description better realized than in the accounts of what these authors cail the "natural banguage of the facilties," -that poets are supposed to touch ideality when composing musicians to press on tone and time, and painters on form and colour, when in the exercise of their arts! Yet we are grairety taught this in the standard works on the tubject.
"function" for the mative activity of an organ, and to leave "faculty" for the exprescion of an acquired activity. " Faculty is property limited to active power, and therefore is abusively applied to the mere pascive affections of the mind " (Hamilton, Leclures, i. 177).

An attempt has been recently made by Dr Bernard Hollinder to correlate the doctrines of phrenology with the modern physiological and pathological observations which bear upon the localization of function. In his works The Mental Functions of the Brain, under the sub-title "The Revival of Phrenology" (1gor), and in Scienuific Phrenology (1902), the author endeavours to bring Gall's clinical and pathological instances into line with more modern observations. He deprecates the craniology of Gall, as far as it deals with mere "bumps," and honours him, with justice, as the recorder of many facts worth saving out of the wreck of his system; and he endeavours, though with doublful success, to establish an unbroken connexion between phrenology, in the Greck sense, and our present knowledge of cerehral localization.

The substance of Holländer's first work is of two kinds. The one kind is a tabulated statement of many hundred cases of different forms of mania. with injury or disease limited to one portion of the brain; the other lind is a tabulated statement of cases of injury or disease of the brain, foltowed by perversion, or exaltation, or boss of some definite instinct or faculty of consciousness.
He divides the tabulated cases of, mania into three groups: (i) Melancholia: (ii) Irascible Insanit y," Mania furiosa "; (iii) Mania -ith suspicion and delusions of persecution. For these three groupe of casea he laya down the following rules: (i) Melancholia is especially associated with injury or discase of the parietal lobe of the brain. more particulariy with injury or discase of the convolutions underlying the parictai eminences of the skull., i.e. the supramarginal and angular convolutions. (ii) Mania luriose is espetialiy sasociated with injury or disease of the central portion of the temporal lobe. (iii) Mania with suspicion and delusions of. persecution is especially associated with injury or disease of the posterior portion of the temporal lobe.

The second kind of cases, where injury or disease of the brain, atrictly localized to one part or another of its grey, matter, was antictly localized to one part or another of its grey maticr, was or faculty, inciudes cases of kleptomania, cases of voracious hunger and thirst, cases of scxual desire exalted or lost. and cases of loss of ertain special memories, as of words, tunes, numbers and the like.

These two collections of recorded cases, taken from a vast mase of clinical and pathological literature accumulated during the past century, have been arranged by Dr Holländer with great industry: 80 as to extend the limits of the study of cerebral locatization, and to advance it from the observation of the motor areas nad the special sense centres to the observation of the higher acts and states of coneciousnese. Modern physiology, from its objective point of view is engaged over finer and finer issues of microscopic and experimentai work; and, from its subjective point of view, is becoming more and more peychoiogical, seeking a higher level of interpretation, and a statement of the departmental fife of the brain in terms of everincreasing complaxity. The motor centres, graverning the voluntary purposeful movements of the body, are considered to be not simply motor, but "psycho-motor "; the speech-centres are not homogenoous, but are on experimental grounds differentiated into subcentres for the urterance of words, the recognition of words and the underspanding of words; the visual centres are in like manner subdivided according to the consciousness involved in the complete act of vision. There is room, therefore, for a "higher phrenotogy," if it can show chear evidence in lavour of the localization, in determinate regions of the brain, of the physical changes accompanying certain states of consciousness.

Of the two kinds of cases that Dr Hollander has tabulated, it cannot be said that the cases of maniz are convincing. Some of them are altogether beside the mark; e.g. he quotes two cares of melancholia, alter an injury dvet the left parictal bone. which were cured by an operation limised to the scalp (excision of a poinfui scar, removal of a small nerve-tumour of the scalp); in neither cave was anything done to the skull or to the brain, but borth patients were cured of their melancholy. Aqpin, the acceptance of these rules as to the localization of thesc insane 1 houghts involves the bocalization of ane thoughts in the same areas of the brain, and this in turn involves assumptions that are wholly unwarranted by our present knowledge. Moreover, cases of mania are so common that is might be poesible to find an equal number of cases to controvert his rules: we mani consecutise, not piched cascs. If 5000 consecutive fatal cases of these different kinds of mania. with the poat mortem record of each case, were tabulated. we should then begin wo zand on surer ground. Again. though Dr Holliander seems to argue well, where he says that the facial and other movements, induced by direct electrical stimulation of certain convolutions are
wach as express the mental states which he attributes to those
convolutions, yet this argument is insecure, partly because Shering ton's recent work, on the motor area of the anthropoid apes, has rendered it necessary to reconsider the present localization of the motor area in man, and partly because the Interprecation of lacial and nuscular movemeats as represepting this or that stasc of the emotions is always precarious.

The second kind of cases, where injury or disease limited to one portion of the brain is followed by perversion, exaltation or lose of some special instinct or habit, is more valuable and more convincisg: especially the cases of voracious hunger and thirst, thooe of true Eleptomania, and those of the loss of certain special memories It is not so easy to belicve that the cerebellum is in any primary way associated with sexual desire: its position, its structure and its proved association with the corordination of muscular movements veem clearly to indicate that its work is wholly mubordinate and complementary to the work of the cerebral hemispheres; and the evidence adduced in lavour of its being the "scat" of the sexual impolses hardly amounts to more than a probabinity that it may transmit or co-ordinate the performance of the eexual act.

Practical Application.-" Die Schledellehre ist allerdings nicht so sehr Irrthum in der Idee als Charlatanerie in der Ausfohrung." says one of its most acute critics. Even though no fault could be found with the physiology and psychology of phrenology, It would not necessarily follow that the theory could be utilized as a practical method of reading character; for, although the inner surface of the styil is moulded on the brain, and the outer surface approximates to parallelism thercto, yet the correspoodence is sufficiently variable to render conclusions therefrom uncertain. The spongy lisyer or diploe which separates the two compact tables may vary conspicuously in amount in differert parts of the same skull, as in the cases described by Professor Humphry (Jowrn. of Ancal. viii. 137). The frontal sinus, that opprobrikm phrenologicum, is a reality, not unfrequently of hage size, and may wholiy occupy the regions of five organs. Tbe centres of ossification of the frontal and parietal bones, the muscular crests of these and of the occipital bones also, difer in their prominence in different skulls. Premature synostoses of sutures mould the brain without doing much injury to its parts. In such cases there are compensatory dilatations in other directions modifying sometimes to an extreme degree the relation of brain-surface to skull-surface. The writer has found soch displacements in extremely scaphocepholic skulls; the same is true of accidental deformations due to pressure on the infantie skull before it consolidates. Artificial malformations alter the apparent skull shape considerably while they affect the relative development of the parts of the brain cortex but litlie. Al these and other cogent reasons of a like kind, whose force can be estimated by those accustomed to deal with the composert soft parts of the head, should lead phrenologists to be carcfal in predicating relative hrain-development from skull-shape. Paychology, physiology and experience alike contribute to discredit the practical working of the system and to show bow worthless the so-called diagnoses of character really are. Its application by those who are lts votaries is seldom worse than amusing, but it is capable of doing posikive social harm, ass in its proposed application to the discrimination or selection of servants and other subordinate officials. It has even been proposed to use it for the purposes of the guarantee society and for the selection of parliamentary representatives. The sarcestic suggestion which originated with Christopher North of moulding children's heads so as to suppress the evil and fonter the good was actually repeated in good faith by a writer on phremology. but experience of the effects of malformation leads one to be sceptical as to the feasibility of this mode of producions a socid Utopis.
 by Laycock, in Sydenham Society's scries, 1851); Gall, Rectierchers sur le syshime nerveux, \&ce. (Paris, 1809), A nalomie et prysteldu systime nerveux. \&c. (Paris, $1810-1819$), Trath des dispest:r - : innes de I'tme ei de respril (Paris. 1811) and Sur les fonctic:
 Schadellehre des Dr Galls (Leipzin, 1893); Marton, Lrichefassh: ir Darstellung der Gehirn-und Schadesehre (Leiprig. ison): MerzeT. Ueber den menschlichen Kopf (Konigsberg. 1803); Waliher. Ne Untersuchmetn der Galtschen Gehtro-wid Shadelletre (Munr 1804): Kessler, Privfung des Galt'schen Systems (Jena, 1805): Bisch, it Darstellung der Call schen Gehirn- und Shadclletre. \&c (Bertin. 2 Rovs Ackermann, Die Goffiche Gehirnfehre muderlegf iHeidefberg. I\$oc,:
 Forster, "Sketch of the New Anatomy and Physiology of the Brain," in Pamphletect (1815. vol. V, pt. ix., No. to, reprinted with additions, 1817): Spurzheim, The Physiognomical Synem of Goll and Spwacherna (Londoni, 1815), Phraudogy, of tine Doctrite of the Mond (1895), and The A natomy of the Hmaz Brose (1826), Corcton, Obseroations on the Structure of Dhe Brain, comprising an estimate of tite Cla 1 ms of Gall and Spuriheim, Ac. (1817); Three Familay Lectures on Cramological Physiognomy, asonymous and satincal (London, Wikon, 1816); G. Combe, Escays an Piratalogy (Edinburgh, 1819), Elemonts of Phrcioloty (1824), Syskem of Phramolozy (1825), Conctuintion of Man (1827). Lectures on Pkrenology by Boardman (1839), and Outlines of Phrerology (1847): Dewhurst. Gucde to Human and Comparatioe Phremolegy (London, 8331); Orto, Phranologien ellè Galls of Spmothine Hjerme- of Orgenlere (Copenhapen. 1825), Broumeis, Cours de purdnologic (Pars, 1836); Vimana, Traut de Phytnologie humajne es comparle (1836); Nocl, Grun 1aize der PhrenoLogie (Leipzig, 1836 and 1856), and Dre materelle Grundlage des Smelentebens (Leiprig. 1874): Macnish, Introduction to Phrenology (Glageow, 1836); Copen, Phrenologecol Labrary (Bcaton, 1836), Ferrarese, M(emporic nggmandanit ha doultma fremologice ($1836-1838$): Watson, Shatistics of Phrenology (1836); Azais, Trane de in phremolagre (Paris, 1839): Sidncy Smith, Prenciples of Phrenology (Edinburgh, 1838): Joshua T. Smith, Synopsss of Phremology: Forkion, Le Madrualisme at la phorindogit combatas (Paris, 18jo): K. G. Carum Grumdalige enuct memen mad wissearchagllict begrindeton Kranvosiogne (Stuttgart, 1841), and Allas der Kranioskopye (1864). Castle, ${ }^{2}$ Phrenologie (Stuttgart, 1845); Struve, Geschichte der Phrenol gu (Heidelberg, 1843); Idjien, Comps de phornologie (Paris.1847); Flourilis, Examets de la phrditologie (Paris, 1842). De Lo Phitnologue (1803): Serturier, Phetnologie morale (Paris, 1840), Martano Cubi i. Solar, Lecons de plstuologie (Paris, 1857); Moryan, Phrenology: Domovan. Phrenology: Struve and Hirschfeld, Zetlschriff fur Phienologie (Heidelberg. 1845-1845); Phrenological Journal (20 vols., 18231847); Lelut, Qu'asi ce que la phrtmologet (1836), and Rejed de Corganologie phintmologique (1843); Scheve, Katerhis smes der PhramoLogie (Leipzig, 1896); Tupper, Enguiry info Dr Galf's Syslem (1819); Wayte, Antiphrenolozy (1829); Stone, Obsernations on the Phrenolopical Development of 1furderers (Edinburgh, 1829); Epps, Horae Piremologices (1829); Crock. Compendrum of Phronalogy (1878): Aken. Phretalogical Bijom (1839): Hall, Phremo-Wagat (1843); Holliader. The Mental Functions of the Bratn (1901), Scientific Phrenology (1902).

PHRYGIA, the name of a large country in Asia Minor, inhabited by a race which the Greeks called Φ pilyes, fretmen. ${ }^{2}$ Roughly speaking, Phrygia comprised the western part of the areat central plateau of Anatolia, extending as fins east as the river Halys; but its boundaries were vagte, ${ }^{2}$ and varied so much at different periods that a aketch of fis history must precede any account of the geography. According to unvarying Greole tradition the Phrygians were most closely akin to certain tribcs of Macedonia and Thrace; and their pear relationship to the Hellenic stock is proved by all that is known of their language and art, and is accepted by almost every modern authority. The country named Phrygia in the better known period of history liea inland, separated from the sea by Paphlagonia, Bithynia, Mysia and Lydia. Yet we hear of a Phrygian "thalassocracy" at the beginning of the gth century в.c. The Troad and the district round Mt Sipylus are frequently called Phrygian, as also is the seaport Sinope; and a district on the coast between Sestus and the river Cius was regularly named Little Phrygia; names like Mygdones, Doliones and Phryges or Briges, \&rc., were widely current both in Asia Minor and in Europe. The inference has been generally drawn that the Phrygians belonged to a stock widespread in the countries which lie round the Aegean Sea. There is, however, no conclusive evidence whether this stock came from the cast over Armenia, or was European in origin and crossed the Hellespont into Asia Minor; but modern oppinion inclines decidedly to the latter view.

According to Greek tradition there existed in early time a Phrygian kingdom in the Sangarins valley, ruled by kirgs among whom the names Gordius and Mides were common It was known to the ancient Greeks of Ionia and the Troad as something great and balf-divine. When the goddess appeared to her fayourrite Anchises she represented herself as daughter of the leing of Phrygia; the Phrygians were said to be the oldest people,
© The meaning is given in Herych, 5.5, " Bplyw."
2 The difficulty of. specifying the limits gave rise, to a proverbxephtr Td touror.
and their inagage the exiginal speech of mankind, the Phrygian' kings were familiar associates of the gods, and the hervea af the land tried their skill against the gods themselves, we hear of the well-walled citics of Phrygia and of the raches of its kengs. Tradition is completely correborated by archneological evidence. In the monntainous region on the upper waters of the Saagarius, between Kutaiah Eski Shehr and Afium (Afiom) Kara Hissar, there exist numerous monuments of great antiquity, showng a style of marked individuality, and implying a high degree of artistic skill among the people who produced them On two of these monuments are engraved the names of "Midas the King " and of the goddess "Kybile the Mother." Even the ule " king" (defefis appears to have been borrowed by Greek from Phrygian.
It is trapoasible to fix a date for the beginning of the Phrygian kingdom. It appears to have ariven on the ruins of an older civiluation, whoee eriatence is revealed to us andy by the fem moouments which it has left. These monuments, which are found un Lydia, Phrygia, Cappodocia and Lyczonia, as well as in north and contral Syria, point to the existence of a homogeneous civilization over those countries; they show a singularty manked style of art, and are frequently inscribed with a peculiar kand of hieroglyphic, exgraved bomatrophedom; and they originaled prabably from a great Hittite kingdom, whose hings ruled the coluntries from Lydie to the borders of Egypt. There can be traced in Asia Minor an ancient road-system, to which belongs the "royal road" from Sardis to the Persian capital, Suri (Herod. V. 35). The royal road followed a route $s 0$ difficuit and circuitous that it is quite unintelligible as the direct path from any centre in Persia, Asayriz or Syria to the west of Asia Minor. It cap be understood ouly by reference to an imperinal centre far in the north. The old trade-route froma Cappadocia to Sinope, which had passed out of ase centuries before the time of Strabo (pp. 549, 546), fixes this centre with precision. Il must be far enough west to explain why trade tended to the diatant Sinope,' hardly socessible behind lofty and rugsed mountains, and not to Anpisus by the shoet and easy route which wis used in the Graeco-Ronan period. This roadsystem, then, points distinctiy to a centre in thorthern Cappadocia near the Halys. Here must have stood the capital of some great empire connected with its extremities, Sandis. or Ephesus on the West, Sinope on the north, the Euphrates an the enst, the Cilician Gates on tho south, by soads so well made as to continue in use for a lang time after the centre of power had changed to Assyria, and the old road-system had become circuitous and unswitable' The precise spot on which the city stood is matked by the great ruins of Boghas Keui, probably the ancicnt Pteria, of which the wide circuit, powerfut walls and wonderifl rocksculptures make the site indisputably the most remarkable it Acia Minor. On this site Winckler found in 1907 the records of the Hittite kings who fought agninst Egypt and Assyria.

The ancient road from Pteria to Sardis crossed the upper Sanganius valley, and its course may be traced by the monuments of this early period. Close to its track, on a lofty piateau which overhangs the Pbrygian monument inscribed with the name of "Midas the King." is a great city, inferior indeed so Pterla in exteat, bat surrounded hy sock-sculptures quite as remarkable as those of the Cappadocian city. The plateau is 1 m . in cixcumference, and presents on all sides a perpendicular lace of rock 50 to 200 ft . in height. This natural defence was crowned by a wall partly Cyclopean, partly built of large squared stones." This city was evidently the centre of the old Phrygien kingdom
Iforuree on the Midas tomb. It is expremely recorcled that rupantos is a Lydian word. Batidels resists all attempte to explaia It as a purely Greek formation, and the termination aspinilates it to certain Phrygian words.
4 Sinope was made a Greek colony in $75 I$ s.c., but it in said to have existed long before that time-
${ }^{3}$ When the Perians conquered Lydia they retainod, at least for a time, this route, which they found in existence.

- The stones have all fallen, but the line where they were fitted on the rocks can be traced by any careful explorer. The small fortress Pishmish Kalessi is a miniature of the great city beside it (See Perrot, Explor. Archtiol. p. 169 and pl. viii.)
of the Sanganus valley, but at least one of the monaments in it seems to beiong to the older period of Cappadocian supremacy, and to prove that the city already exasted in that earluer time. The Phrygian kungdom and art therefore took the place of an older cuviluation. It is probable that the aradition of battles between the Phrygians and the Amazons on the bankg of the Sanganus prescrves the mentory of a struggle between the iwo races and the victory of the Pbryges.

Of the monuments that exist around this city two classes may be confidently referred to the period of Phrygian greatness. That which is inscribed with the name of "Midas the King" is the most remarkable example of one class, in which a large perpendicular surface of rock is covered whth a geometrical pattern of squares, crosess and macanders, surmounted hy a pediment supported in the centre hy a pilaster in low relief. In some cases a floral pattern occupies part of the surface, and in one case the two sides of the pediment are filled by two sphinxes of archaic type. In some of these monuments a doorway is carved in the lower part; the door is usually cloeed, but in one case, viz. the sphinx monument just alluded to, the valves of the door are thrown wide open and give access to a little chamber, on the back of which is sculptured in relief a rude image of the Mother-goddess Cybele, having on each side of her a lion which rests its forepaws on her shoulder and places its head against hers. Sometimes a grave has been found hidden behind the carved front; in other cases no grave can be detected, hut it is probable that they are all sepulchral.s The imitation of woodwork is obvious on several monuments of this kind. The second chass is marked hy tbe heraldic type of two animals, usually lions rampant, facing one another, but divided hy a pillar or some other device. This type is occasionally found conjoined with the preceting; and various details common to both classes show that there was no great difference in time between them. The beraldic type is used on the monuments which appear to be the older, and the geometrical pattern is often employed on the inscribed monuments, which are obviously later than the earliest uninscribed. Monuments of this class are carved on the tront of a sepulchral chamber, the entrance to which is a small doorway placed high and inacoessible in the rocks There are also many rock monuments of the Roman time.

Early Phrygian art stands in close relationship with the art of Cappadocia. The monuments of the type of the Midas comb are obviously imitated from patterns which were employed in cloth and carpets and probably also in the tilework on the inside of chambers varying slightly according to the material. Such patterns were used in Cappadocia, and the priest in the rocksculpture at Ibriz wears an emhroidered robe strikingly similar in style to the pattern on the Midas comb; but the idea of using the pattera as the Phrygians did seems peculiar to themselves. The heraldic type of the socond class is found also in the art of Assyria, and was undoubtedly adopted by the Pbrygians from earlier art; but it is used so frequently in Phrygia as to be specially characteristic of that country. ${ }^{\text {a }}$ While Phrygian art is distinctly non-Oriental in spirit, its resemblance to archale Grock art is a fact of the greatest importance. It is not merely that certain types are employed both in Phrygia and in Greece, but several favourite types in early Greek art can be traced In Phrygiz, employed in eimilar spirit and for similar parposes. The heraldic type of the two lions is the device over the principal gateway of Mycense, and stamps this, the oldest great monument on Greek soid, with a distinctly Phrygian character. Mycenae was the city of the Pelopidae, whom Greek tradition unhesitatingly declares to be Phrygian immigrants. A study of the topography of the Argive plain suggesta the conclusion that Mycenae,
${ }_{1}$ Published in Journ. Hell. Stud. (1884).
${ }^{-}$The monuments of Phrygia fall into twogroups, which probably mark the eites of two cities about 16 m . distant from each other, Metropolis and Conni. One group lies round the villagen of YaziliKaya, Kumbet, Yapuidak and Bakshish; the other beside Liyen, Bei Keui, Demirli and Ayaxin.

1. The heraldic type continues on gravestones down to the latert period of paganism. Carpets with geometrical pstterna of the Midaetomb style are occasionally found at the prowent time in the houses of the peasantry of the district.

Midea and Tlryns form a group of citits founded by an immigrant people in opposition to Argos, the natural capital of the plain and the stronghold of the native race. Midea appears to be the caty of Mides, and the name is one more link in the chnin that bunds Mycenae to Phrygan. This connerion, whatever may have been its character, belongs to the remote period whed tbe Phryguans inhabuted the Aegean coasts. In the 84h and probably in the oth century s.c. communication with Phrygia seems to have been maintained especially by the Greeks of Cyme, Phocaea and Smyrna. About the end of the Sth ceniury Midas, king of Phrygia, married Damodice, daughter of Agamemnon, the last king of Cyme. Gyges, tbe first Mermnad king of Lydia (687-653), had a Phrygianmother. The worship of Cybele spread over Phocaez to the west as far as Massilia: rock monuments in the Phrygian style and votive retiefs of an Anatolian type are found near Phocaea. Smyrna was devoted to the Phrygian Meter Sipylene. It is then natural that the Homeric poems refer to Phrygia in the terms above described, and make Priam's wife a Phrygian woman After the foundation of the Greek colony at Sinope in 751 there can be no doubt that it formed the link of comnexion between Greece and Phrygia. Phrygian and Cappadocian traders brought their goods, no doubt on camels, to Sinope, and the Greck sailors, tbe dayairas of Miletus, carried home tho works of Oriental and Phrygian artisass. The Greek alphabet was carried to Phrygia and Pteria, eitber from Sinope or more probably direct east from Cyme, in the latter part of the 8th century. The immense importance of Sinope in early times is ahundantly attested, and we need por douht that very intimate relations existed at this port between the Ionic colonists and the natives. The effects of this commerce on the development of Greece were very great. It affected Ionia in the first place, and the mainland of Greece indirectly; the art of Ionia at this period is almost anknown, but it was probably closely allied to that of Phrygia.4 A striking fact in this connexion is the use of a very simple kind of Ionic capital in one carly Phrygian monument, suggesting that the "protoIonic" column came to Greece over Phrygia. It is obvions that the revolution which took place in the relations bet ween Phrygians and Greeks must be due to some great movement of races which disturbed the old paths of communication. Abel is probably correct in placing the inroads of the barbarous Eurupean tribes, Bthynians, Thyni, Mariandyni, erc., into Asia Minor aboat the beginning of the gth century b.c. The Phrygian element on the coast was weakened and in many places annihilated; that in the interior was strengthened; and we may suppose that the kingdom of the Sangarius valley now sprang into greatness. The kingdom of Lydia appears to have become important about the end of the 8th century, and to have completely barred the path between Phrygiz and Cyme or Smyrna. Lonian maritime enterprise opened a new why over Sinope.!
The downfall of the Phrygian monarchy can be dated with comperative accuracy. Between 680 and 670 the Cimmerians in their destructive progress over Asia Minor overtan Phrygia; the king Midas in despair pot an end to his own fife; and from henceforth the history of Phrygia is a story of slavery, degradstion and decay, which contrasts strangely with the earlier legends. The catastrophe seems to have deeply impressed the Greek mind, and the memory of it was preserved. The date of the Cimmerian invasion is fixed by the concurrent testimony of the contemporary poets Archilochus and Callinus, of the late chronologists Eusehius, \&c., and of the inscriptions of the Assyrian king Esar-haddon. The Cimmerians were fmally expelled from Asia Minor by Alyattes befort his war with the Medes under Cyarares ($590-585$ B.c.). The Cimmeriana, therefore, were ravaging Asia Minor, and ptesumably held possession of Phrygia, the only country where they achieved
${ }^{4}$ See Furtwingler. Goldfund won Vetherfolde, Wncitim. Progr.
 The clonest analogies of old Phrygian art are to be found in the earligit Greek bronve work in Olympla, Italy and the northern lande.

- Hipponax, fr. 36 [49], proven chat a trade-route from Phuygia down the Maeander to Miletus was used in the 6th century.
complete maceesa, tix mome time between 680 and 590 Phrygia then fell under the Lydian power, and by the treaty of 585 the Halys was definitely fixed as the boundary hetweer Lydia and Media (noo Lymu and Pressu). The period from 675 to 565 noust theralore be considered as one of great disturbence and probably of complete paralysis in Phrygia. After 585 the country was ruled again by its own princes under mubjoction to Lydian supremacy. To judge from the monuments, it appears to have recovered some of its old prosperity; but the aut of this inter period has to a great extent lost the strongly marked individuality of tis earlier bloom. The later sepulchral monuments belong to a clase which is widely spread over Aniz Minor from Lycia to Pontus. The greves are made inside a chamber excavated in the rock, and the front of the chamber imitates a bouse or temple. No attempt is made to conceal the entrance or to render it inaccrasible. The architectural detriis are in some cases unmistakably copied, without intentional modification, from the architecture of Greck temples; others point perhaps to Persian infiucnce, while several-which are perhaps among the early works of this period-abow the old freedom and power of employing in mew and original waya detnils partly learned from abroad. This style continued in use under the Persians, under whose rule the Phrygians passed when Cyrus defeated Croesus in 546, and lasted till the Roman period. One monument appears to presuppose a developtent of Greek plactic ast ister than the time of Alexander ${ }^{2}$ and is almost certainly of the Roman time. It would, however, he wrong to suppose that the infuence of truly Helienic art on Phrygin began with the conquest of Alexander. Under the later Mermned kings the Lydian empire was penetrated with Greek infuence, and Xanthus, the early Iydian bistorian, wrote bie history in Greek. Under the Persian rule perhape it was more ditificult for Greek manners to spread far east; but we nced not think that European influence was absolutely unfelt even in Phrygia. The probability is that Alexander found in all the large cities a party tavourable to Greek manners and trade. Very little is to be learned from the ancient writers with regard to the state of Phrygia from 585 to 300 . The slave-trade flourished: Phrygian alaves were common in the Greck market, and the Phrygian names Midas and Manes wero stock-mamea for slaver. Herodotus (i. 14) reconds that a king Mides of Phrygia dedicated his own chair at Delphi; the chair stood in the treasury of Cypselus, and cannot have been deposited there belore 680 to 600 8.c. It is not improbabie that the event belongs to the time of Alyaltes or Croesus, when Greek influence was favoured throughout the Iydian empire; and it is easy to understand how the offering of a king Midas abould be considered, in the time of Iterodotus, as the eariiest made by a forciga prince to a Greek god. The Phrygian troops in the army of Xerres were armed like the Armenians and led by the same commander.
It is to he presumed that the cities of the Sangarius valley gradually lost importance in the Persinn period. The final castastrophe was the invasion of the Gauls about 270 to 250; and, though the circumstances of this invasion are almost unknown, yet we may safely reckon among them the complete devistation of northern Phrygia. At hast Attalus I. settled the Gauls permanently in eastern Phrygia, and a large part of the country was hencelorth known as Galatia. Strabo mentions that the great cities of ancient Phrygia were in his time cither deserted or marked by mere villages. The great city over the tomb of Midas bas remained uninhabited down to the present day. About 5 m . west of it, near the modem Kumbet, stood Metropolis, a hishopric in the Byzantine time, but never mentioned under the Roman empire.
Alexander the Great placed Phrygia under the command of Antigonus, who retained it when the empire was broken up. When Antigonus was defeated and slain, at the decisive bative of Ipsus, Phrygia came under the sway of Seleucus. As the Pergameninn kings grew powerful, and at last confined the Gauls in eastern Phrygia, the western hall of the country was
${ }^{1}$ A gorgoneum of Roman period, on a tomb engraved in Jowra. Hedh Sime. (P1. xavi.).

Incorporated ta the kingdom of Pergatmum. Under the Rouan empire Phrygia had no political existence under a separate government, but formed part of the vast province of Asia. In autumn 85 3.c the pacification of the province was completed by Sulh, and throughout the imperial time it was common fc: the Phryginns to date from this era. The imperial rule was highly fayourable to the spread of Hellenistic civilization, which under the Greek kings had affected oaly a few of the great cities, lenving the mase of the country parely Phrygian. A good deal of local self-government was permitted; the cities struck their own broove coins, inscribed on them the mames of their own magistrates, ${ }^{2}$ and probably administared their own laws in matters purely local. The westarn part of the courtry was pervaded by Graeco-Roman civilization very much sooner than the central, and in the country districts the Phrygian language ${ }^{2}$ continued in common use at least as late as the third century after Christ.

When the Roman empire was reorganized by Diocletian at the end of the 3rd century Phrygia was divided into two provinces, distinguished at first as Prima and Secunda, or Great and Litule, for which the names Pacatiana and Salutaris soon came into general use. Pacatiana camprised the western hall, which had long been completely pervaded by Graeco-Roman manners, and Salutaris the castern, in which the native manners and language were still not extinct. Each province was governed by a praeses or itrepion about A.D. 412, but shortly after this date an oficer of consular rank was sent to each province (Hierocles, Sywecd.). About 535 Justivian made some changes in the provincial administration: the governor of Pucatiana was henceforth a comes, while Salutaris was still ruled by a conrwleris. When the provinces of the Eastern cmpire were reorganised and divided into thomale the two Phrygies were broken ap between the Anatolic, Opsician and Thracesinn themes, and the name Phrygia finally disappeared. Almost the whole of Byzantinc Phrygia is now included in the vilayet of Brusa, with the exception of a small part of Parorius and the district about Themisonium (Karayuk Bazar) and Ceretapa (Kayadib), which belong to the vilayet of Ronia, and the district of Laodicea and Hierapolis, which belongs to Aidin. The principal modern cities are Kutaiah (Cotymeum), Eaki Shehir (Dorylecum), Afiom Kart Hisear (near Prymneasus), and Ushak (Trajanopolis).

It is impossible to say anything definite about the boundaries of Phrygin before the sth century. Under the Persians Great Phrygia extended on the east to the Halys and the Salt Desert; Xenophon (Ancb. i. 2, 19) includes Iconium on the southeast within the province, whereas Strabo makes Tyriaeum the boundary in this direction. The southern frontier is unimown: the language of Livy (x.avin. 15) implies that the gouthera Metropolis (in the Tchul Ova) belonged to Pisidia; but Strabo (p. 629) includes it in Phrygin. Celaenae, beside the later city of Apamea (Dineir), and the entire valley of the Lycus, were. Phrygian. The Macander above its junction with the Lycus formed for a little way the boundary between Phrygia and Lydia. The great plateau now called the Banas Ova was entirely or in great part Phrygian. Mt Dindymus (Murad Dagh) marked the frontier of Mysa, and the entire valley of the Tembrogius or Temhris (Porsuk Su) was certainly inctuded in Phrygin. The boundaries of the two Byzantine Phrygias were not always the same.

Taling Fierocles as authority, the extent of the two provinces at the beginning of the 6th century will be readily gathered from the sccompanying list, in which those towns which coined money under the Roman empire are italicized and the name of the nearest modern village is appended.

1. Pacarnna-(1) Ladices (Eski Hissar); (2) Zicrapolị (Parmbuk Kaiemi): (3) Mosyan (Gevert); [(4) Morellopolis, only in Noulice

[^45] from Seri Keui): (') Colarsae (near Chonact) (8) Cerelappa Diocaesarea (Kayadibi); (9) Themisonium (Karayuk Bazar); (10) Tacina (YarMhli); (ni) Sanaus (Sari Kavak, in Dax Kiri); (12) Dionysopolis (Orta Keui) ; (i3) Anastasiopolia, originully a village of the Hyrgaleis (Utch Kuyular); (14) Attanampan (Escki Aidan); (15) Lunde (Erki Seid); (16) Pelise (Karayachlar); (17) Emmenea (Ishekli); (18) Siblia (Homa); (19) Pepuxi (Duman or Sureti); (20) Brıa (Bourgas); (21) Sebaste (Sivasij); (22) Eluza or Aladda (Hadjimlar); (23) Acmoria (Ahat Keui); (24) Alia (Kirka); (25) Siechayax (Otourak), (26) Dioclae (Dola): (27) Arislisum (Karaj Eurene, in Sitchandi Ova): (28) Cidyessus (Gculche Eyuk); (29) Apia (Abia); (30) Cotyocum (Kutaiah); (31) Aesoni (Tchavdir Hissar); (32) Tiberiopolis (Amed): (33) Cadoi (Gedir); (34) Ancyra (Kilise Keui); (35) Symams (Simav): (36) Flasiopolis Temenothyree (Ushak): (37) Trajanopolis Crtmenoungre (Giaour Euren, dear Orta Keui); (38) Bkanedus (Suleimanli)
IL. Salutarels- (1) Eucappic (Emir Aspar); (a) Hieropolis (Kotch Hissar): (3) Otrows (Tchor Hisear); (4) Stectorium (Mentesh); (5) Brutus (Kara Sandykly); (6) Bewdus (Aphri Kara); (7) Augustopolia, formerly Anabura (Surmeneh); (8) Sibidxude (Baljik Himar) (9) Lysios (Oinan); (10) Sywada (Tchifut Casmban); (i1) Prywnessus (Seulun); (12) Ipenc, afterwards Julia (near Sekly); (I3) Polybotus (Bolawadun); (14) Docimixm (Istcha Kara Hisear); (I5) Metropolis (Kumbet), inctuding Conni (B. Tchorgia) and Ambasus (Ambansz); (16) Meruas (Doghan Arslan); (17) Nacolea (Seidi Ghazi); (18) Dary Lacwu (Eski Sheher); (19) Midanu (Kara Euuk); (20) Lycsones (Kalejik); (21) Aulocra (in Dombai Ova); (22) Amadassus (unknown, perhape corrupt: it should include Kinnaborion near Geneli); (23) Praepenissus (Alityntash). In later times the important fortress (and bishopric) of Acroenus whe founded on the site of the present Afiom Kara Hisear.
Besides thene, certain citics beyond the bounds of the Byzantine Phrygias belonged under the Roman empire to the province of Asia and are usually considered Phryyian: (1) in Byzantine Pisidia, Philommelium (Ak Shebr), Hadrianopolis; (2) in Byzantine Galatia, Amorivim (Anear near Hamsa Hadf), Orcintus (Alikel or Alckinn), Tricomin or Trocmada or Trocnada (Kaimax); (3) in Byzantine Lycia, Cibyra (Horzum).
Phrygia contains several well-mariked geographical districts. (i) Paronius, the long, level, elevaned valley strecching north-west to south-east between the Suttan Dagh and the Enir Dagh from Holmi (about Tchai) to Tyriaeum (llighin); its waters collect within the valley, in three lakes, which probably supply the great fountains in the Xxylon and through them the Sangarius (2) Axylon, the vest treeless plalne on the upper Sanganius; there barst forth at various points great perenndal epringes the Sakaria Iountaina (Scrabo p. 543). Ifije Bashi, Bunar Rashi, Geuk Bunar, Uzuk Bachi, \&c., which leed the Sangarius. Great part of the Axylon was assigned to Galatia. (3) The rest of Phrygia is mountainous (except the great plateau, Banaz Ova), consinting of hill-country intersected by rivers, each of which flows through a fertile valley of varying breadth. The northern hall is drained by riven which run to the Black Sea; of there the eastern ones, Porsuk Su (Tembris or Tembrogitrs), Seidi Su (Parthenius), Bardakchi Tchai (Xerabates), and Bayat Tchai (Alindrus), join the Sangarius, while the westem.' Taushanly Tchai (Rhyndacua) and Simav Tcha! (Mncestub), meet and fow into the Proponlis. The Hermus drains a mall district included in the Byzantine Phrygia, but in carlier times assigned to Lydia and Mysia. Great part of socthern and westem Phrygia io drained by the Maeander wth its tributaries, Sandylty Tchai (Glaucus), Benar Tchai, Kopli Su (Hippuriua), and Tchuruk Su (Lycus); moreover, some upland plains on the south, especially the Dombai Ova (Aulocra), communicate by underground channels with the Maeander. Finally, the Karayuk Ova In the extreme wouthwest drains through the Kazanes, a tribatary of the Istidus, to the Lycian Sea. Phrysia Parorius and all the river-valleys are exceedinsly fertile, and agriculture was the chief occupation of the ancient inhabitants; according to the myth. Gordius was called from the plough to the throne. The high-lying plains and parts of the vast Axylon furnish grod pasturage, which formerly nourished countless Aocks of sheep. The Romans aleo obtained fine horses from Phrygia. Grapea, which stili grow abuadantly in various parts, were much cultivated in ancient times. Other fruits are rare, except in a few small districts Figs cannot be grown in the country, and the ancient references to Phrygian figs are either erroncous or dne to a loose use of the term Phrygia. "Trees are excendingly scaroe in the country; and the pine-woods on the western tributaries of the Sangarius and the valonia oaks in parts of the Banaz Ova and a few other districts form exceptions. The underground wealth is not known to be great. Iron was worked in the district of Cibyra, and the marile of Synnada, or more correctly of Docimium, was largely used by the Romans. Copper and quicksilver were mined in the Zizima district, north of loonium. The scenery is generally monotonous; even the mountaimous districts rarely show striking leatures
${ }^{1}$ Now. I-5 were called the Phrygien "Pentapolis."
This district was according to the Greek view part of Mysia.
 true to fact, and is probably the right reading. Olives cannot oow grope on these aplande, which are over 3000 ft . above sea-level.
or boldrees of chapacter; where the luadecape hap bequcy it is of a subdued melancholy character. The water-mupply is randy abapdant. and agriculure is more or less dependent on an uncertain rainfall. The circumitances of the country are well calculated to imprese the inhabitants with a senete of the overwhelmatre powr of nature ead of their complete dependence oe it. Their mytholeny 50 fer as we know it, has a melancholy and myatic tone and then religion partakes of the same character. The two chief deities were Cybele, the Mother, the reproductive and nowrithing power of Earth, and Sabaziup, the' Son, the life of nature, dyine and revivir every year (epe Gasat Motrez of THE Goos). Thm agnum vicivis tudes of the life of Sabaziun, the Greek Dionysua, were accompaniod by the mimic rites of his worshippers, who mourned with his sufferIngs and rejoiced with his joy. They enacted the story of his hirth and life and death; the Earth, the Mocher, is fertilised only by sen ect of violence by her own child; the representative of the god was prob ably slain each your by a cruel death, just as the god himsell died The rites were characterised by a frensy of devotion, unrestrained enthusiasm, wild orgiastic dances and wanderings in the foresta and were secompanied by the music of the fate, cymbal, and tur. bourine، At an early time this wordhtp was affected by Oriental influence, coming over Syria from Babylonia Sabacius was idemtified with Adonis or Attis (Atys), Cybele with the Syrian goddes: and many of the coarsest rites of the Phrygian worship, the mulia tion of the pricats, the promitution at the charise, chame from the countries of the touth -esest But one point of Semitic religion mever penctrated west of the Halys: the pify was always unclean aod abhorred among the Semites, whereas it was the animal regularly used in purification by the Parygians, Lydians, Lycians and Grecla The Pbrygian religion exercined a very etrong infuence on Greace. In the archaic period the Dionysiac rites and orjien apread froce Thract into Greece, in apite of opposition which has left many trace in tradition, and the worship of Demeter at Eleusis was modifed by Cretan influence ultimately traceable to Asia Minor. Piodar erected a mrine of the Moxber of the gods becide his houst, and the Atbenians mere dinected by the Delphic eracle to abpoe for the cyecution of a priest of Cybele during the Peloponpenisa War by building the Metroon. In these and other cases the Phrygina character was more or less Hellenized; but wave after wave of religious influesce froma Asia Minor introduced toto Creefe the unmodified "barbarian" cixual of Phryeia. The ritee spered firt among the common people and those engaged in fockipn arade The comic poets satirized them, and Plato and Demosthenes ior veighed zgamst them; but they continued to spread, with all their fervid enthusinem, their euperatition and their obseene practica wide among the people, whose religious crevings. were not atisfed with the purely external religions of Hellenism. The oryies ar mysteries were open to all, freemen or slaves, who had duly periormed the preliminary purifications, and secured to the participants
 tinction of character has boen pointed out between the true Hellenic mysteries, such as the Eleusinian and the Phryginn; but thert certainly existed much similarity between the two rituals In the Grat centuries after Christ only the Phrygian and the Egypian rites retained much real hold on the Greeco-Roman world. Parygi itmelf, bowever, was very early converted to Christianity. Chriatian inscriptions in the country begin in the and and are abundant in the 3rd century. There is every appearance that the great mass of the people were Christians before 300, and Eusebius (H.E. v. 16) is probably cosrect in his staternent that in the time of Diocletina there was e Phrygian city in which every living ooal was Christian The great Phrygtan saint of the 2nd century was named Avircius Marcellus (Abercius); the mass of legends and miracles in the late biography of him long brought his very existence into diapate, but a fragment of his gravestone, discovered in 1883, and now preserved in the Lateran Museum in Rome, has proved that he was a real person, and makes it probable that the wide-reaching conversion of the people attributed to him did actually take place. The strangt enthusiastic character of the old Phrygian religion was not wholly lost when the comntry became Christian, bart is clearly traced in the various bercsios that arose in central Anstolia. Eepeciolly the wild ecstatic character and the propheries of the Montanista recall the old type of religion. Montanus (see Montanism) was born on the borders of Phrygia and Mysia (probably sonth-east from Philadelphia), and was vehemently opposed by Aberciut.
Of the old Phryigian language very little is known; a few words are preserved in Fesychius and other writers Plato mentions that the Phrygian words lor " dog, "fire"" \$ce, were the same as the Greek; and to these we may add from inscriptions the words for "mother," " king," \&cc. A few ingcriptions of the ancient perind are known, and a lagger number of the Roman period have beea published in the Oesterreichitche Jahreshefte (1905).
Owing to the scantiness of pubished material about Phrygit frequent reference has been made in this article to unpublished

The influence which was exerted on Greek music and lyric poetry by the Phrygian music was great; see Marsyas; Onympus.
s There is no direct evidence that this was practised in the wopship of Cybele, but apalogy and indirect arguments make it pretty certain.
 eee Ritter's "Kleinacien," in his Erdinde ven Asien; Latre, Asic Mimor (1824); Kiepert appendix to Franz, Plinf Isecher. in finf Sudte Rlenmanesu (18q0); Hasse, in Erach and Graber's Exarybop ert" Phrypien "; Hantilton, Trath tw A se Minor (iequ); Hirsehfeld
 (1862); Steuart. Ancrost Monuments of Lydie and Phrygu, benides the epecial chaptert in the geographical treatuse of Cramer, Vivien Se Mertin. Fortiger, ice.; iumerous articles by recent traveliers: IG. C. Asdermon in Jownal of Hellenic Simities (1898 , ate); D. G.
 Gordixim (1904): Humans and Judeich. Hierapolis (1898); Radet in his work Em Phrysu: Ramsay (in addition to articles in Mithert. Instil. 'Alhen (1882 sqq.), Bulletim de corresp hellim (1883 sqq.), Jownal of Hederwc Siudres (1882, sgq.), A mericem Journol of Archacology, Rome des endes escrienmesi, Cuties and Buchoporics of Phryzic, vola. i. ii. (1895 sag .); Studies tr the History and Ant of the Eastern Provinces (1906); Pamline and other Simdees (1go6); Bistorical Commentary on Galatians, ore. (1899): Cities of St Paul (1907); see also T. Eicele, "Die Phrygischen Kulte" in New Jahtb dies klass. Aluertam (Sept, tg09).
(W. M. Ra)

Pinnyin, Greek courtesan, Fived in the sth century s.c. Her real name was Mnesarete, but owing to her complerion she was called Phryme (toad), a name given to other courtesans. She was born at Thespise in Boeotia, but seems to have lived at Athens. She acquired so much wealth by her extraordinary beauty that she offered to rebuild the walls of Thebes, which had been destroyed by Alexander the Great (336), on condition that the words "Destroyed by Alexander, reatored by Phrype the courteran," were inscribed upon them. On the accailon of a featival of Poseidon at Eleusis she laid aside her garments, let down ber hair, and stepped into the sea in the sight of the people, thus auggesting to the painter Apeiles his great picture of Aphrodile Anadyomene, for which Pliryne eat is model. She was aiso (according to some) the model for the stituc of the Caidian Aphrodite by Prasiteles. When accused of profaning che Eleusinian mysteries, she was defended hy the arator Hypereides, one of her lovers. When it seemed as if the vendict would be unfavourable, he rent her robe and displayed her lovely bosom, which so moved her judges that they acquitted her. According to others, she berself thus diaplayed her charms. She is said to have made an attempt on the virtue of the philosopher Xenocrates. A statue of Phryne, the work of Praxiteles, was placed in a templo at Thespise by the side of a statue of Aphrodite by the same artist.
See Athemacua, pp. 558, 567, 583, 505, 590, 591 ; Aelian, Var. Hist. ix. 32; Pliny, Nat Hish xuciv. 71.
PERYNICHUS-I. Son of Polyphradmon and pupil of Thespis, one of the earliest of the Greek tragedians. Some of the ancients, indeed, regarded him as the real founder of trasedy. He gained his first poetical victory in 518 g.c. His famous play, the Capture of Mileter, was probably composed ahortly after the conquest of that city by the Persians. The audience was moved to tears, the poet was fined for reminding the Athenians of their misfortunea, and it was decreed that no play on the subject should be produced again. In 476 Phrynichus was successful with the Phoewispos, wo called from the Phoenician women who formed the choros, which celebrated the defeat of Xerres at Salamis (480). Themistocles acted as choragus, and one of the objecta of the play was to remind the Athenians of his great deeds. The Parsious of Aeschylus (472) Was an imitation of the Phoenissac. Phrynichus is said to have died in Sicily. Some of the titles of his plays, Dawoides, Actacon, Alcestis, Tentalus, show that he ereated mythological as well as contemporary subjects. He introduced a separate actor as distinct from the leader of the chorus, and thus laid the foundation of dialogue. But in his plays, as in the early tragedies generally, the dramatic element was subordinate to the lyric element as represented by the chorus and the danco. According to Suidas. Phrynichus first introduced female characters on the stage (played by men in masks), and made special use of the trochaic tetrameter.
Fragmente is A. Nauck, Tragicormen graccorwn frogmente (1887)
2 A poet of the Old Attic comedy and a contemporary of Ariscophanes. His first comedy was exhibiled in 429 B.c. He
compoeed ten plays of which the Solitary (Mondroones) was exhibited in 414 along with the Birds of Aristophanes and gined the third prize. The Mmses cerried off the second prive in 405, Aristophanes being first with the Progs, in which he accusel Phrynichus of employing vulgar tricks to raise a hugh, of phagiarism and had versification.

Fragmente in T. Kock, Comicorwim avicornion fragmenta (1880).
3. Prinnicitus Azartus, a grammarian of Bithynla, lived in the and ceatury R.D. According to Suldas he was the author of (1) an Alticist, or On Altic Worls, in two books; (2) Taping ovpayovt, a collection of subjects for discussion; (3) Eopvoruxi тapaosath, or Sophistical Equipment, in forty-seven (or seventy-four) books. As models of Altic style Phrynichus ascigned the bighest place to Plato, Dernosthenes and Acechines the Socratic. The work was learned, but prolliz and garrulous. A fragment contained in a Paris MS. was published'by B. de Montinucon, and hy L. Bekker in hin Aneadola granca (1814). Another work of Phrynichus, not mentioned by Photius, but perhape identical with the Alticist mentioned hy Suldas, the Selection ('Eaxori) of Aluic Wonds and Phoases, is extant. It it dedicated to Cornelinnus, a man of literary tastes, and one of the imperial secretaries, who had invited the author to undertake the work. It is a collection of current words and forms which deviated from the OId Attic standard, the true Attic eqaivalents being given ide by side. The wort is thus a lericom antibarbarum, and is interesting as illustrating the changes through which the Greek language had passed between the tth century n.c. and the and century an.

Ediciona of the Tenont, with valuable notes, have been pobliabed by C. A. Lobeck (1820) and W G Rutherford (1881); Lobeck devotee his attention chiefly to the later. Rutherford to the eartier usape noticed ty Phrynchus See also J. Brenous, De Phrynicho Alvicita (1895).

4 An Athenian general in the Peloponsesian War. He took a leading part in establishing the oligenchy of the Pour Hundred at Athons in 411 D.An, and vas ascuminated in the same year (Thucydides viii.).

PHYHALAZINPS (benzo-orthodianines or bensopyridesines), in oreanic chemistry a group of beterocyclic compounds oontioning the ring compler shown in formula 1. They are inomeric with the cinnolines (g.e.). The pareat substance of the gromp, phthalarinc, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{2}$ is beat obtained from the condensation. of w-letrabromorthoxylene with hydrazine (D. Gabriel, Ber., 1803, 26, p. 1210), or by the reduction of chlorphthalazine with phoephorm and hydriodic acid (Ber., 1897, p. 3024). It pomesses basic propertien and forms addition peoducts with alkyl iodides. On oxidation with alkalise potasiume permanganate it yields pyridazine dicarbozylic acid. Zinc and hydrochjoric acid decompose it with formation of orthozylylene diamine.

The keto-hydro derivative phihalasome, $\mathrm{C}_{4} \mathrm{H}_{1} \mathrm{ON}_{2}$ ((formula Il.). is obtained by condensing hydrazine with orthophthalaldehydoacid. On treatment with phosphorus oxychloride it yields a chlorphthalasine which with rine and hydrochtoric scid gives isoindole, $\mathrm{C}_{\mathrm{C}} \mathrm{H}_{7} \mathrm{~N}$, and with tin and hydrochloric acid phthalimidine, $\mathrm{C}_{4} \mathrm{H}_{1} \mathrm{ON}$, the second nitrogen atom being eliminated as ammonia.

1. Phahalazine

II. Phthaksone.

PRHiALifo AGID, of Benzene Dicasaosimic Acme, $\mathrm{C}_{4} \mathrm{H}_{4}\left(\mathrm{CO}_{3} \mathrm{H}\right)_{2}$. There are chree isomers: (1) ortho, or phehalic acid; (2) meta, or isophthalic acid; (3) pera, or terephthalio acid.

Plelhatic acid was obiained by Laurent in $\mathbf{5} 836$ by coldixing naphthalene tetrachloride, and, believing it to be a naphthalene derfivative, he named it naphthalenic acid; Marignac determined its formula and showed Laurent's supposition to be incorrect, upoa which Laurent gave it its present name. It is manufactuted by oraficing naphthalene tetrachloride (prepared from maphthalene, potassium, chlorate and hydrochloric acid) with nitrio acid, or, better, by ardifzing the hydrocarbon with fumint sulphuric acid, ustag mercury or mercuric sulphate as a catalyst (German pat. 91, 208). It whto resultsan the oxidation of ortho-
diderivatives of bensene. It forms white crystals, melting at 313° with decomposition into water and phthalic anhydride; the latter forms long white needlea, melting at 118° and boiling at 184°. Heated with an excess of lime it gives benzene; calcium benzoate results when calcium phthalate is beated with one molecule of lime to $330^{\circ}-350^{\circ}$. The acid (and anhydride) are largely used in the colour induetry (see Floorescina; Pawnol phithalifun).

Phthalyl chloride, $\mathrm{C}_{4} \mathrm{H}_{4}(\mathrm{COCl})$ or $\mathrm{C}_{4} \mathrm{H}_{4}\left(\mathrm{CCl}_{4}\right)(\mathrm{CO}) \mathrm{O}$, formed by leating the anhydride with phopphorus chloride, is an oil which solidifies at 0° and boils at 275°. In eome reactions it behaves as having the first formula, in others as having the second. Phthalyt chloride with phomphorus pentachloride gives two phthalylene tetrachlorides, one metring at 88° and the other at 47°. Tbey cannot be changed into one another, and bave been given the ormulae $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CCl}_{4}\right)(\mathrm{COCl})$ and $\mathrm{C}_{4} \mathrm{H}_{4}\left(\mathrm{CCl}_{4}\right)_{2} \mathrm{O}$. Phthatimide, $\mathrm{C}_{4} \mathrm{H}_{4}(\mathrm{CO})_{2} \mathrm{NH}$, is formed by heating phthalic anhydride or chloride in ammonia pas or by molecular rearrangement of ortho-cyanbensoic acid. If forms N -metallic and alkyl mates. Bromine and porech cive anthranilic acid, $\mathrm{C}_{4} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right)\left(\mathrm{CO}_{4} \mathrm{H}\right)$. (See Indico.)

Isophethalic acid is obtained by oxidizing meta-rylene with chromic acid, or by fusing potassium meta-sulpbobenzoate, or meta-hrombenzoate with potasaium formate (terephthatic acid is also formed in the last case). It melts above 300°, and dirsolves in 7800 parts of cold water and in 460 of boiling. The barium salt ($+6 \mathrm{H}_{2} \mathrm{O}$) is very coluhle (a distinction between phthalic and terephthalic acids). Uvitic acid, 5 -methyl isophthalic acid, is obtained by oxidizing meaitylene or by condensing pyrorecemic acid with baryta water.

Terephthalic acid, formed by oxidixing para-diderivatives of benzene, or beat by oridizing caraway oll, a misture of cymene and cuminol, with chromic acid, as almost insoluble in water, alcohol and ether; it sublimes without meltigy when heated.

For the reduced phthetie acide see Pol tietaycionas.
PRTHESES (Gr. фefors "wasting "), a term formerty applied (iike "Consumption") to the disense of the lung now known as Tuberculoais (g.v.).
PHYLACHERY (фviacrfono), areck word moaning "guand" (sc. against misfortune), i.c. an amulet. It is applied in the New Testament to the kefllin or "prayer-hongs" warn by orthodox Jews daily at morning-prayer (whether at home or in the synagogue). The title employed in Hebrew, tefilin, seems really to be derived from an Aramaic term meaning "attachmente," "ornaments "; it corresponds to the Biblical Hebrew word readered "Irontlets" (totafolh). The tefilitin or phylacteries are worn, one on the left arm (the "hand-tefilla"), and the other on the head (the "hear-tefilla "). In each case the leather thongs support a small satchel which is fastened to the arm and the forehead respectively, and contains certain passages of the Eaw written (in Hebrew) on parchment, viz. Exod. xiii. 1-10 amd II-16; Deut. vi. $4-9$ and xi. 13-21. The custom of wearing phylacteries seems to have been derived in the first instance form the Pharisces. By the Sadducees and the generality of the people in the time of Christ it seems not to have been practised. Later it becarne-not without protest-one of the badges of orthodor Judaism. It is significant that the custom is entirely unknown to the Samaritan community.

The phylacteries, together with the "fringe" (tsidsuk) and door-post symbol (mezura)-which latter consists of a piece of parchment, containing the Hebrew text of Deut vi. 4-9 and ri. 13-21 enclosed in a glass or metal tube, and fixed upon the right hand post of the door of each dwelling-room in a bouse-fdrm the three sets of visible signs by which the Israclite in constaplly reminded of his duty to God (cf. Num. xv. 39-40; Deut. vi. 9 ;这. so). The " tringe" (or "tasocts") whe originally attached to the common outer garment-t hage square wrap-the looet end of which hung over the left shoulder. This garment with tasels is mentioned in the New Testament (cf. Matt is. 20; xiv. $36 ;$ rxiii. 5 and parallek). Among modern Jows it has survived in two forms: (r) the fringed praying shawd called tolith worth by every male orthodox Jew at the synagogue morning service; and (1) an under-garmeat, ehaped lite a cheat-protector,
one part covering the chest, the other the back, which h worn continuously by male orthodoz Jews. It is called Arba Kanfort (i.e. "Four Corners," Deut. xiii 12) or " litule Talith," and is, of course, "fringed." Both phylactery and merura were supposed to keep off hurtful demons (Targ. on Cant. viii. 3).
 Veff. d. hemigen Jwden, iv. 9 seq. (W. R.S., G. H. Bo.)

PHYMARCEUS, a Greck historizn, who foorished during the time of Aratus, the strategus of the Achacan League, in the grd century B.c. His birthplace in variously given as Athens, Naucrati, or Sicyon. He was probably a hative of Nevcratia, and subeequently migrated to Athenk. He wast the auther of a history in 28 books, covering the period from the expedition of Pyrrhus king of Epirus to Peloponnesus (272) to the death of the Spartap king Cleomenes (220) after his defeat by Antigous Doson. Polybius (ii. 56-63) charges him with undue partintity for Cleomenes and urfaimess towards Arstus; Mlutarch (Aretes, 38), who is of the same opinion, did not hesitate to ute him freely in his own biographies of Agis and Cleomenes.

Fragments and life in C. W Moller. Fragmenta kivericorws: (raccorum, vol. I. (1841), monographs by F Lucht (1836) and C. A. F Brictrner (1839), C. Wachsmuth, Etinbertung sin das Skudime dor allen Geabibichte (1895)

PHYLE, a mountelin fortress, on a pasa leading from Athens to Boeotia and Thobes, and comminding a fone view of the Attic plain. It is situated on the south-went end of Mt Purnea. It is chiely famous for lts occupation by Thrasybulus at the heed of the Athenian exiles during the rule of the Thirt y Tytents in 404 B.c. After defending himeolf from attack, with the help of a anowstorm, he succeeded by a venturesome sight manch in seixing Munychia. Close to Phyle to the cliff called Farma, over which the Pythisn lightoings were watched for from Athens.

PHYMITE (Gr (hndow, a leaf, probably because they yich leaf-like plates, owing to their fisaility), in petrology, a group of rocks which are in practically all cases mefamorphosed argillacoons sediments, consioting essentially of quarz, chlorite and muscovite, and possessing a well-marted parallel arrange ment or schistosity. They form an intermediate term in the serics of altered clays or shaly deposits between clay chates and mica-schists. The clay-slates have a very timilar mineral constitution to the phyllites, but are finer grained and sre distinguished also hy a very much better cleavage. In the phyllites also white mica (muscovite or sericite) is more abundant as a rule than in siate, and its crystalline plates ane larger; the abundance of mice gives these rocks a gloeny sheen on the smooth planes of fissility. Many of the besk Welah shatea are rich is senall scales of white micn, which polarize brighuly between cromed nicols. The Cornish slates are atill more micaceons and rathor coarser grained, so that they mighe be called mica-distes or ever phyllites.
A microcopical section of a typical phylite shows green chlonite and colourlest mica both in irregular plates dimposed in perallad order, with a greater or smaller amount of guartz which forms small lenticular grains clongated parallel to the loliation. Grains of iron oxide (magnetite and hatmatite) and blacle graphitic dust ape very commonly preseat. Feldspar is abeent or scarce, but sorate phytiven are characterized by the development of smali nounded grains of albite, often in considerable numbers. The minute needles of rutile, so often seen in clay-slates, are not often met with in phyllites. but this mineral forms small prisms which may be intergrown with black magretive; at ocher times it oceuts as networts of sagenite. Other phyllitea contain carbonates (umpally calcize but sometimes dolomite) in flat or spindle-shaped crystals, which of ten give evidencr of crushing. Very tiny blue needies of tournaline are by no meass rave in phyllites, though readily overlooked. Garnet nocurs sometimes, a good example of gerreciforous phylitite being farainhed by the whestoncs of the Ardennes, in which shere are many smanil isotropic crystals of maqnevian garnet. Hornblende, often in branching feathery crystali, is a less frequent accessory. In some phyllitee a mincral of the chioritold group makes its appearance; this may be otrrelite, nismondine or orher varieties of chloritoid, and occurs in large sub-heragonal platen showing compleas twinnting. and lying actom the foliation planes of the rock, $\mathbf{0 0}$ that they seen to have developed after the movements and presurte thich gave rive to the folintion had aeeod.

The etruetural variations presented by the phyflites are comparatively few. The most finely crystalline specimens have generally the most perfect parallel arrangement of their constituencs. The foliation is generally flat or linear, but in some rocks is undulose or crumplea. From the imperfection of their cleavage phyllites are ravely suitable for roofing materiale; their soltnes renders them valueless as road stonea, but they are not uncommonly employed as inferior building materials They are exccedingly common in all parte of the world where metamorphic rocks orcur; as in the Scottish Highlinds, Comwall, Anglesey, morth-west Ireland, the Ardennes; the Harz Mountaine, Saxoay, the Alps, Norway, the Appalachians, the Great Lakes district in America, \&ce (U. S. F.)
PHYLLOXERA (Gr. фidhon, leal, and Enpos, dry), genus of insects belonging to the family of Aphidae, or Plant-lice, in the Homopterous section of the order Hemiptera. It is chiefly known from the causal relation of one of its species to the most serious of vine-diseases. The name was first given in 1834 to a plant-louse which was observed to "dry up the leaves" of oaks in Provence. About twenty-seven species are now known, all characterized by length not exceeding of of an inch, flat wings, three articulations in the antennac, one or two articulations in the tarses, with digitules, but without cornicles on the abdomen.
The following full deacripion of the only apecies which attacks the vine, the Phylloxeru wastotrux, or grape-louse, is reprinted from the article VINE in the gth edition of this encyclopaedia.

The symptoms of the disease, by means of which an infected apot may be readily recognized, are as follows: The vines are stunted and bear few leaves, and thuet mall ores. When the disease reaches an advanced stage the leaves are diweoloured, yellow or reddish, with their edges turned back, and withered. The grapes are arrested in their growth and their skin is wrinkled. If the roots are examined numerous fusiform awellings are found upon the smaller rootleta. These are at firt yehowioh in colour and fleahy; but as they srow otder they become rotten and assume a brown or black colour. II the roote on which these swellings occur be examined with a lens, a number of minute insects of a yellowish-brown colour are observed;

these are the root-forms (radicola) of Phyillowere (fig. 1); they are about .8 mm long, of an oval outline and with a swollen body. No distinction between head, thorax and abdomen can be obverved. The bead bearu small red cyes and a pair of three-jointed antennee, the first two joints being short and thick, the third more elongated, whith the end cut off cbliquely and Fic. 1.-Root-inhabiting Form slightly hollowed out. Under(Radicola) of Phylloxera, with pro- neath, between the legs, lies the boecis inserted into tissue of root rostrum, which reaches back to of vine. rostrum, which reaches back to
the abdomen. The insect is fuxed by this rostrum, which is inserted into the root of the vine for the purpose of sucking the tap. The abdomen consists of seven segments, and these as well as the anterior segments bear four rows of small tubercles on their dorsal surface. These root-dwelling insects are females, which lay partbenogenetic exse. Tbe insect is fixed by its proboecis, but moves its abdomen about and lays thirty to forty yeilow eges in small clusters. After the lapee of six, eight or twelve days, according to the temperature, the larvae hatch out of the eggs. These are light yellow in colour and in appearance resemble their mother, but with relatively targer appendagea. They move actively about for a few days and then, having selected a convenient place on the young roots, insert their proboucis and become stationary. They moult five times, becoming with each change of skin darker in colour; in about three weeks they become adutt and capable of laying parthenogenetic eros. In this way the insect increase with appalling rapidity: it has been calculated that a single mother which dies after laying her eggs in March would have over $25,000,000$ descendants by Octobet. It, however, the insect were content with this method of reproduction the disease could he isolated by aurrounding the infected patches with a deep ditch full of some auch substance as ccal-tar, which would prevent the insccts epreading on to the roots of healthy vines. The fertility of the parthenogenctically produced insects would also diminish after a certain number of generations had been produced.

As the eummer wears on a escond form of insect appetrs amonget the root-dwellers, though hatched from the same eggs as the form described above. These are the nymphs, destined to acquire wings; their body is more slender in outline, and at first they bear weli-marked tuberclea, After several moults the rudiments of two pain of winga appear, and then the insect creepe up to the surface of the-earth, and on to the vine. Here it undergoes its fifth and last moult, and appears as a winged female, capable of reproducing, parthenogenetically, The winged form has a ciender body with distinct bead (fis.2). The eyes are well developed,

With numerous facets; the antotane have threp joints the ter minal one shaped fike that of the root-dwellers. The wing are transparent, with few nervures, and are well adapted for fight. The anterior pair reach far beyond the end of the abdomen; the ponterior are narrower and not so long. Theme winged forms are about 1 mm. long. They fly about from July vill October, living upon the sap of the vine, which is ancleed up by the roetrum from the leaves or bude. They lay their parthenogenetically produced egss in the angles of the veins of the leaves, in the buds, or, if the zaman is already far advanced, in the bark. In very damp or cold weather the insect remains in the pround near the surface, and deposits its egga there The egre are very few is number and of two sises, small and large (fig. $3, b$ and c). From the larger a female (fig. 4) is hatched in eight or ten days, and cimultaneously, for the firnt time in the life-history of the Phyllarera, a male (Gg 3) appears Irom the smaller egg. Neither male nor female has wings; the rostrum is replaced by a functionces tuberte: and there is no alimentary canal. The female is larger than the male and differs from it and the other forms in the last joint of the antennae. The life of these sexual forms lasts but a few days, and is entirely taken up with reproduction. The female is fertilized by the male and three or four days later lays a single egg-the winter exg-and then dies. This egg is laidin the crevices of the bark of thevine,

Fic. 2.-Pkylloxera Winged Female which lives on leaves and buds of vine, and lays parthenogenetically eggt of two kinds, one doveloping into a wingleas female, the other into a male.
and as it is protectively coloured it is almost impossible to find it. Here the winter eggs remain undeveloped during the cold months; but in the following spring, as a rule in the month of April, they give

Fic. 3-a, Male produced from small egt c, band by winged female (5g. 2); b_{4} large egg; c_{7} small egs.

Fig. 4-Wingless Female produced from large egs (fig. 3.b), laid by winged female (fig. $\dot{2}$).
birth to a fermele insect without wings, which resembles the rootdwelling forms, but bat pointed antennac. Thesc formas are termed the stock-mothers; they creep into the buds of the vine, and, as theme develop imo the young leaves, insert their proboscis into the upper side. By this means a gall is produced on the under side of the leaf.

Scheme of the Various Forms of Phylloxera pastatrix.
A. Root-infestiog forms, 8

The gall is cup-ahwped, and its outer wriace iscrumpled and covered
The gail is cup-ehaped, and its outer arlace iscrumpled and covered
of the leaf is protected by mimilar etructurea. Within this gell the mock-mother lives and currounds hermelf with numerous partbenopenetically produced eggo-mometimes as many as two hundred in a single gall; these cggs give birth after six or eight daym to a numerous progeny (gallicola), mome of which form mew galls and multiply in the jeaves, whilst others descend to the roots and become the root-dwelling forms alieady described. The galls and the gallproducing form are much commoner in America than in the Old World.
The particular species of phylloxera which attacks the vine is a native of the United States, probably originating among the wild vines of the Colorado district. It was first observed in 1856 by Asa Fitch ($1800-1878$), who did not suspect its mischief, and called it Pemphigus witifoliace. In 1863 it was independently discovered by Westwood in an English vinery at Hammersmith; be was ignorant of Fitch's observation, and called it Perifymbia vitisana. From 1858 to 1863 there were many importations of American vines for grafting purposes to Bordeaur, Roquemaure and other parts of France, England, Ireland, Germany, Portugal, \&c. It is practically certain that the deadly phylloxera was imported on these plants. A year or two later certain vine-growers in the South of France began to complain of the new vine-disease. M. Delorme, of Arles, in 1865 , appears to have been the first who recognized its novelty and had a presentiment of disaster. The disease steadily spread outwards in conoentric circles from its first place of lodgment near Roquemaure. Within two or three years whole departments were infested. In 1866 a second centre of infection made its appearance near Bordeaux. The vine-growers were at their wits' end to account for this new plague, which threatened to be even more costly than the ordium. The completeness of the ruin which threatened them may be illustrated by the statistics for a single commune, that of Graveson, whose average annual production of wine in the ycars $1865-1867$ was about 220,000 gallons. In 1868 this fell to 121,000 gallons, in 1869 to 48,400 gallons, in 1870 to 8800 gallons, and by 1873 to rroo gallons.

In 1868 Planchon proved that the discase was due to a new species of phyllozera, which was invariably found on the roots of the affected vines, and to which he accordingly gave the prophetic name of Phyllonera sastatrix. During the neat ten years a series of students, of whom only Riley and Balhiani need be mentioned here, worked out the natural history of Phylloxera sastatris, and proved its identity with the American grape-louse. Its devastations rapidly assumed gigantic proportions. In France, where the discase was by far the most prevalent-owing In great part to the obstinacy with which the vine-growers at first refused to take any reasonable precautions against its spread-M. Lalande, president of the chamber of commerce at Bordeaux, in 1888 calculated the direct loss to the country by the phylloxera at 10 milliards ($(400,000,000$), or double the indemnity which had been paid to Germany in 18711

The phylloxers has made its appearance in almost every vinegrowing country in the world. Thus it appeared in Austria-Hungary in 1868; in Italy, in apise of the frantic efforts made-as in ocher countries- to keep it out by strict legislation against the import of vines, in 1879; in Russin in 1880; in Germany, on the Rhine and Moselle, and in Switzerland in 1872 : in Madeira, Spain and Portugal. about 1876. The pest even crosed the oceans, and appeared in Australia, at Geelong, about 1880: it has since twice broken out in Victoria, and has ravaged the vincyards of South Austraila and New South Wales. At the Cape, in spite of a long endeavour to prohibit the import of the phylloxera, it appcared about 1884 . In 1885 it crossed the Mediterrancan to Algeria. There was only one country where its ravages were long unimportant; that was its home in the United States, where the native vines had become, by the operation of natural selection, immune to its attacka. Yet no imported vine has ever lived here more than five years, and in 1890 the phylloxera cosssed the Rocky Mountains, and seriously damaged the vineyards of Caiifornia, where it had previoudy been unknown.

Three different methods of fighting the pest have been successfully adppted. One is to kill the phylloxera itself; anotber, to destroy it along with the infected vines, and plant fresh and healthy plants; the tbird, to adapt the secular therapeutics of nature, and to introduce American vines which a long acquaintance with the phylloxera has made immune to its zavages. Insecticides, of which the bisulphide of carbon (CS_{2}) and the
sorpbo-carbonate of potantium (ESCSH) semain in sue, were infected into the earth to kill the phyllozera on the roots of the vine. These methods were chiefly advocated in vineyards of the firnt class, where it was worth while to spend a good deal of money and labour to presorve the old sind famous vines: the Chaleau Leoville Poyferte and Clos Vougeot are instances. Some good judges attribute the peculiar and not unpleasing flavour of certain clarets of 1888 to means thus adopted to kill the phyllozera. The second plan was largoly adopted in Switzeriand and on the Rhine, where measures resembligg those taken with cattle suspected of amthrax were applied to all diseased vineyards. The third plan, which consists in replanting the affected vineyard with American vines-such as the Vitis labrusca, V. riparia, V. rupertris or V. monticola-has proved the most generally successful.

A very good bibliography will be found in Les Inecetes de ha viguc. by Professor Majet of Montpellier (1890), which is the beat book on the subject. Reference may also be made to the clacic memoin of Ptanchon, culminating in Lai Merurs de la phylloxera de la vigne (1877); Dreyfus, Ober Phylloxerinen (1880): Lichtenatcin Histoire dus phylloxera; the Rapports annuels o La commision suptrieure dn phyllowern; and the excellent Refport on Phyllosera drawn up by the Hoo. J. W. Taverner (Victoria, 1809. No. 68).
(W. E. G. F.)

PHYsharmomica, a keyboard instrument fitted with frecreeds, a kind of harmonium much used in Germany. The physharmonica resembles a small harmonium, hut is differentiated from It by having no stops; being withont percussion action, it does not spenk readily or clearly. As in the harmonium, the bellows are worked by the feet by an alternate movement, which also affords a means of varying the dynamic force of the tone according as more or less energetic pedalling increases or decreases tbe pressure of the wind supply. The physharmonica was invented in $\mathbf{1 8 1 8}$ by Anton HIckel, of Vienna; in the original instrument the bellows were placed right and left immediately under the shallow wind-chest, and were worked by means of pedals connected by stout wire. A specimen, having a compass of four octaves and a very sweet tone, is preserved in the collection of Paul de Wit, formerty in Leipzig, now transferred to Cologne.
(K. S.)

PHYSICAL PHESONENA, in the terminology of spiritualism and psychical rescarch, molar or molecular phenomena in the physical world not traceable to ordinary causes and referred to the action of spirits or of mediums in abnormal psychical states. Among the phenomena or alleged phenomena are: matcrializa. tion, levitation or elongetion of the medium; passage of matter tbrough matter, alteration of weight in a balance, tying of knots in an endless cord, apports (objects brought from a distance) and movements of objects (iclekinesis); the production of writing. imprints of plaster or other objects; raps, voices and other sounds, including music; eptrit photographs; lights and perfumes To these may be added immunity against the effects of fire and the untying of ropes.

Analogous phenomena are found im many parts of the word (see Poliergeist; Firewalizing); spectral lights are associated with the tombs of Mahommedan saints, with Buddhist shrines, with religious revivals, with Red Indian and other magicians, \&c., and as sporadic phenomena in the Highlands and Norway. Levitation is asserted of Australian wizards, the rope-trick of Eskimo angekoks; glyphs and direct writing are found in Mexican and Tibetan cults.
See F. Podmore, Modern Spirimalism; F. W. H. Myers, Hman Personality, ii. 506; Jeurnal S. P. R., vi. 309 sq.
(N. W.T.)

PHYSIOCRATIC SCHOOL, the name given to a group of French economists and philosophers. The heads of the school were Francois Quesnay (q.a.) and Jean Claude Marie Vincent, sicur de Gournay (1712-1750). The principles of the achool had been put forward in 1755 by R. Cantillon, a French merchant of Irish extraction (Essai sur ia sature ds commerce en gentral). whose biography W. S. Jevons has elucidated, and whom he regards as the true founder of political economy; but it was in the hands of Quesnay and Gournay that they acquired a systematic.form, and became the creed of a united group of chinkess
and practical macn, bent on carrying them ialo action. The members of the group called themselves fes doonomistes, but it is more convenien, because unamhignous, to designate them by the name physiocrates (Gr. deocs, nature, and apareery, to rulc), invented by P. S. Dupont de Nemours (1739-8817), who was one of their number. In this name, intended to express the fundamental idea of the school, much more is implied than the subjection of the phenomens of the social, and in particular the economic, world to fixed relations of coexistence and auccession. This is the positive doctrine which Hes at the bottom of all true science. But the law of nature referred to in the title of the sect was something quite different. The theblogical dogasa which represented all the movements of the universe as directed by divine wisdom and bencvolence to the production of the greatest possible sum of happiness had been transformed in the hands of the metaphysicians into the conception of a jus netreas, a barmonious and beneficial code established by the favourite entity of these thinkers, nature, antecedent to humen institutions, and furnishing the model to which they should be mode to conform.

The general political doctrine is as follows: Socicty is composed of a number of individuals, all having the same natural rights. If all do not possess (as some membera of the negativa school maintained) equal capacities, each can at least best understand his own interest, and is led by rature to follow it. The social union is reaily a contract bet ween these individuals, the object of which is the limitation of the natural freedom of cach just so far as it is inconsistent with the rights of the others. Government, though necessery, is necessary evil; and tho governing power appointed by consent should be limited to the amount of interference absolutely required to secure the fulfilment of the contract. In the economic sphere this implies the right of the individual to such natural enjoyments as be can acquire by his labour. That labour, therefore, should be undisturbed and unicttered, and its fruiss ahould be guaranteed to the possessor; in other words, property should be sacred. Each citizen must be allowed to make the most of his labour; and therelore freedom of exchange should be ensured, and competition in the market should be uarestricted, no monopolics or privileges being permitted to exist.
The physiocrats then proceed with the economic analysis as follows: Only those labours are troly "productive" which add to the quantity of raw materials available for the purpoess of man; and the real annual addition to the weath of the community consists of the excess of the mass of agricultural products (including, of course, metals) over their cost of production. On the amount of this produil net deponds the well-being of tbe community and the possibility of its advance in civilization. The manufacturer meroly gives a new form to the materials extracted from the earth; the higher value of the object, aftar it has passed through his handa, only represents the quantity of provisions and other materials used and consumed in itselaboration. Commerce does nothing mpre than transfer the wealth already existing from one hand to another; what the trading classes gain thereby is acquired at the cost of the nation, and it is desirable that its amount should be as small as possible. The occupations of the manufacturer and merchant, as well as the liberal professions, and every kind of personal scrvico, are "useful" indeed, but they are "sterile", drawing their income, not from any fund which they themselves create, but from the superfuous earnings of the agriculturist. The revenue of the state, which must be derived altogether from this net product, ought to be raised in the moed direct and simplest way-namely, by a single impost of the nature of a tand tax.

The special doctrine relating to the exclusive productiveness of agriculture arose out of a confusion between "valuc" on the one hand and "matter and energy" on the other. A. Smith and others have shown that the attempt to fix the character of "sterility" on manulactures and commerce was founded in error. And the proposal of a single intpot ferricorial falls to the ground with the doctrine on which it was based. But such infuence as the achool excried depended little, if at wh, on these
peculiar tenets, which indeed some of its members tid not holid The cfiective result of its teaching was mainly destructive. It continued in a more aystematic form the efforts in favour of the freedom of industry aircady begun in England and Erance. It was to be expected that the reformers should, in the spirit of the negative philosophy, exaggesate the vices of established syatems; and there can be no doubt that they condemned too absolutely the coonomic action of the state, both in principle and in its historic manifestations, and puabed the laisserfoire doctrine beyood its just limits. But this was a necessary uncident of their connexion with the revolutionary movement; of which they really lormed one wing. In the course of that movement, the primitive social contruct, the sovereignty of the prople and other dogmas now scen to be untenable, were habitually invoked in the region of politics proper, and had a transitory utility as ready and effective instruments of warlare. And so also in the economic sphere the doctrines of natural rights of buying and selling, of the sufficiency of enlightened selfishness as a guide in mutual deelings, of the certainty tbat each member of the society will understand and follow his true interests, and of the cotncidence of those interests with the public welfare, though they will not bear a dispassionatc examination, were temporarily useful as convenient and serviceablo weapons for the overthrow of the established order.
These conclusions as to the revolutionary tendencies of the school are not at all affected by the fact that the form of government preferred by Qucsnay and some of his chiel followers was what they called a legal despotism, which should embrace within itself both the legislacive and the executive function. The reacon for this preference was that an enlightened central power could more promptly and efficaclously introduce the policy they advocated than an assembly representing divergent opinions and fettered by constitutional checks and limitations. Turgot used the absolute power of the Crown to carry into effect some of his mcasures lor the liberation of industry, thougb he ultimately lailed becuuse unsustained by the requisite force of character in Louis XVI. But what the physiocratic ideat with respect to the normal method of government was appears from Qucsnay's advice to the dauphin, that when he became king be should "do nothing, but let the laws rule," the laws having been, of course, first brought into confornity with the jus noturce. The partiality of the school for agriculure was in harmony with the sentiment in favour of "nature" and primilive simplicity which then showed Itscll in so many forms in France, especially in combination with tbe revolutionary spirit, and of which Rousseau was the most cloquent exponent. The members of the physloeratic group were undoubtedly men of thorough uprightness, and inspired with a sincere desire for the public good, especially for the material and moral elevation of the working classes. Quesnay was physician to Louis XV., and rosided in the palace at Versailles; but in the mildst of that corrupt court he maintained his integrity, and spoke with manly frankness what he believed to be the truth. And never did any statesman devote himself with greater singleness of purpose or more earncst endeavour to the service of his country than Turgot, who was the principal practical representative of the schoot.
The physiocratic school never obtained much direct popular influence, even it its nalive country, though it strongly attracted many of the more gifted and carnest minds. Its members, writing on dry subjects in an austere and often heavy style, did not find accoptance with a public which demanded before all things charm of manner in those who addresaed it. The physiocratic tenets, which were mfact partly erroneous, were regarded by many as chimerical, and were ridlculed in the contemporary literature; as, for cxample, the imp8i unigue by Voltaire in his L'Homme ant quaranke eowr, which was directed in particular against P. P. Mercier-Lariviere (1720-1794). It was justly objected to the group that they were too absolute in their view of things; they supposed, as Smith remarks in speaking of Quesnay, that the body politic could thrive only under one precise regime-that, bamely, which they recommended-and
thought their doctrines universally and immediately applicable in practice. They did not, as theorists, sufficiently take into account netional diversities or different stages in social development; nor did they, as politicisns, adequately estimate the impediments which ignorance, prejudice and interested opposition present to enlightened atatesmanship.

The physiocratic system, after guiding in some degree the policy of the Constituent Assembly, and awakening af few echoes here and there in foreign countries, moon ceased to exist as a Ilving power; but the good eloments it comprised were not lost to mankind, being incorporated into the more complete construction of Adam Smith.

See the article on Qussanay. with biblisography appended thereto, abso the articles on Mianagav and TURGor. Moct French historices coatain an account of the school $;$. sce especially Tocquevilic, L'Ancien regrme el la rtoolution, ch. liti.; Taine, Les Oripines de La France contemporaine, vol. i.i R. Stourm, Les Finantes de l'anciex preme at de la raolmion (i885); Drox, Hiscoire du regme do Lowis $X V I_{\text {; }}$ also L de Lavergne. Economistes francais da X VIII' siedt ; H. Higge, The Physsocrats (London, 1897, with authorities).

PHYSIOONOMY, the English form of the middle Greek фuowornujula, contraction of the classical pevorymmovia (from (wors, nature, and puipmov, an interpreter). (i) a term which denotes a supposed science for the "discovery of the disposition of the mind by the lineaments of the body " (Becon); (2) is also used colloquially as a synonym for the face or outward eppearance, being variously spelled by the oid writers: fysenamy by Lydgate, phismomi in Udall's translation of Erasmus on Mark iv., physnomie in Bale's English Volarics (i. 2. p. 44), and fasnomic in All's well that ands well, iv. 5 (firat folio).

Physiognomy was regarded by those who cultivated it as a twofold acience: (x) a mode of discriminating character by the out ward appearance, and (2) a method of divination from form and feature. On account of the abuses of the tatter aspect of the subject its practice was forbidden by the English law. By the act of parliament 17 Ceorge II. c. 5 (1743) all persons pretending to bave skill in physiognomy wore deemed rogues and vagabonds, and were liahle to be publicly whipped, or sent to the house of correction until mext sessions. ${ }^{1}$ The pursuit thus stigmatized as unlawful is one of great antiquity, and one which in ancient and medleval timos had an extensive though now almont forgoten literature. It was very early noticed that the good and evil passions by their continual exercise stamp their impress on the face, and that each particular pasaion has its own expression. Thus far physiognomy is a branch of physiology. But in its second aspect it touched divination and astrology, of which Galen ${ }^{2}$ says that the physiognomical part is the greater, and this aspect of the subject bulked largely in the fanciful Merature of the middle ages. There is evidence in the earlicst ciasical literaturo that physiognomy formed part of the most incient practical philosophy. Homer was a close observer of expression and of appearance as correlated with character, as is shown by his description of Thersites ${ }^{2}$ and elsewhere. Hippocrates, writing about 450 s.c., expresses his belief in the influence of environment in determining disposition, and in the reaction of these upon feature,' a view in which he is supported later
 discussed the nature and immortality of the soul, proceeds in ch. vii. to a brief study of physiognomy (ed. Kuhn iv. 795). In this passage he deprecates current physiognomical speculations, saying that he might criticies them but ieared to waste time and become tedious over them. In chapler viii. be quotes with approbation the Hippocratic doctrine referred to above; and
${ }^{3}$ The Act 39 Elizabeth c. 4 (${ }^{1597-1598)}$ declared "all persons fayning to have knowledge of Phisiogoomie or like Fantasticall Ymaginacious" liable to "be stripped naked from the middle upwards and openly whipped until his body be bloudye." This was modified by 13 Anne c. 26 (1713), still further by 17 George 11. c. 5 . which was re-enacted by the Vagrancy Act 1824 . This last act only specifies palmistry.
${ }^{2}$ Galen. Thei sereantomen mpoymontued (ed. Kuhn xix. 530).
${ }^{3}$ Iliod. ii. 214 . See also Blackwell's Inquiry, (2nd ed. 1736), p. 330 . A physiognomical study of the Homeric heroes is given by Malalas, Chirnigr. ed. Dindorf, v. sos.

in a Later work, Hepi maracknoes rpormoornit, he speaks of the advantage of anowiedge of physiognomy to the physician: We kearn both from Iamblichus ${ }^{\text {a }}$ and Porphyry ${ }^{7}$ that Pythsgoras practised the diagnosis of the characters of candidates for pupilage before admitting them, although he seems to have discredited the curreat physiognomy of the schools, as be rejected Cylo, the Crotonian, on account of his professing these doctrines, and thereby was brought into some trouble: Plato alco tellis us that Socrates predicted the promotion of Alcibiadet from his appearance; and Apuleius sapeaket of Socrates reoognixing the abilities of Piato at first view. On the other hand, it has been recorded by Cicero ${ }^{\text {a }}$ that a certain physiognomist, Zopyrus, who profemed to know the habfes and manners of men from their bodies, eyes, face and forehead, charecterized Socrates as stupid, eensual and dull (bardus), " in quo Alcibiades cachirnum dicitur sustulimse." Alezander Aphrodisiensis adds that, when his disciples laughed at the judgment, Socrates said it was true, for such had been his nature before the study of philosophy had modified it. Zopyrus is also referred to by Maximus Tyrius" as making his recognitions "intuitu solo."

That one's occupation atampe its impress on the outward appearance was also noliced at an early period. In the curious poem in the Sallier papyrus (II.), written about 1800 B.C., Duan, son of Khertu, expatiates on the effects of divers handicrafts on the workmen as compared with the elevating influences of a literary life. ${ }^{18}$ Josephus tells us that Caesar detected the pretence of the spurious Alexander by his rough hands and surface. ${ }^{\text {r }}$

The first systematic treatise which has come down to us is that attributed to Aristolle, ${ }^{14}$ in which be devotes six chapters to the consideration of the method of study, the general signs of character, the particular appearances characteristic of the dispositions, of strength and weakness, of genius and stupidity, of timidity, impudence, anger, and their opposites, \&c. Then he studies the physiognomy of the sexcs, and the chazarten derived from the different features, and from colour, hair, body, limbs, gait and voice. He compares the varieties of mankind to animals, the male to the lion, the female to the leopard. The general character of the work may be gathered from the following specimen. While diseussing noses, he says that those with thick hulbous ends belong to persons who are insensitive, awinish;" sharp-tipped belong to the irascible, those easily provoked, like dogs; rounded, large, obtuse noses to the may. manimous, the lion-like; slender hooked noses to the eagle-like, the noble but grasping; round-tipped retrousse noses to the luxurious, like barndoor fowl; noses with a very slight notch at the root belong to the impudent, the crow-fike; white snub noses belong to personts of luxurious habits, whom he compares to deex; open nostrils are signs of passion, $\mathbf{8 c}$.

The practice of physiognomy is alluded to in many of the Greek clasaics." Apion speaks of the metoposcopists, who judge by the appearance of the face, and Cleanthes the Stoic says it is
Sp. cis, xia 530.
4 Mepl plov Iiferopuct Abros, i. 17, 59 (Amsterdam, 1707).
'De vila Pyihagorae, p. 16 (Amsterdam. 1707). This author tell us that he applised the same rule to his friends See also Avius Cellius, i. ix.

Iamblichess, Bu 49.

- De dogmate Platonis, 1. 367, p. 34 (Leiden, 1714).
- Tusent. quactionnv, iv. 37. De fato, v.
u Dies., xv. 157 (Cambridge, 1703).

u Ane., xvil. 12, 2.
14 Authors differ in their views as to its authenticity, but Diogenes LaErtius (v, 22) and Stobaeus (Serm. clxxxix.) both believe it to be fenmine. The chiof dificulty is the weference to a certain sophist. Dionysius, but this is problably an interpolation. There sere physiognonic references in other wrilings of Aristotle (cf. Asal. ge., i. c. 30 ; H ist anim. i. 8, \&c.) sufficient to justily the atribution of the treatise to him. On this, see Franz, Preface. p. vi. seq., of his Scriptoves physioquamias malares (Leiprig, 1780).
It See an hrteresting paper on "Seretching and Yawning at Sis of Madness," hy Prolessor Ridgeway (Trams. Camb. Phit. Sec, i. 201), which refers to Aristoph. Wasps, 642, with which he compares Plautus, Mewaechmi. 279. Other references exist to physiognomy in Castodorus, Iridorys, Meletius and Nemesius, but mowe of any great ingortance.
possible to tell habits from the aepect (cf. Ecclus. xix. 29, 30). Polemon (c. A.D. 150) compiled a treatise (published 1534, in Latin) on the subject, similar in character to that of Aristotle; but he excels in graphic descriptions of different dispositions, and differs only from Aristote in some of his animal comparisons. A more important work was written by a converted Jew, Adamantius, about A.D. 415. This is in two books, the first on the expression of the eye, the second on physiognomy in general, mostly Aristotelian in character.
Among the Latin classical authors Juvenal, Suetonius and Pliny in well-known persages refer to the practice of physiognomy, and numerous allusions occur in the wrarks of the Christian Fathers, especially Clement of Alexandria and Origen (far example, the familiar passage in his work against Celsus, i. 33). ${ }^{2}$
While the earlier classical physiognomy was chiefly dencriptive, the later medieval autbors particularly developed the predictive and astrological side, their treatises often digressing into chiro. mancy, onycbomancy, clidomancy, podoscopy, spasmatomancy, and other branches of prophetic folk-lore and magic.
Along with the medical science of the period the Arabians contributed to the literature of physiognomy; 'Ali b. Ragel wrote a book on naevi; Rhares (ro40) devoted aeveral chapters to it; and Averroes (1 I65) made many relerenoces to it in his De sanitate, p. Bz (Leiden, is37). Avioenns also makes rome acute physiognomical remarks in his De animalions, which was truaslated by Michael Scot about 1270. Among medieval writem Albertus Magnus (born 1 205) devotes much of the second section of his Dr animatibss to physiognomy; but this chiefly consists of extructs frima Aristotle, Polemon and Lorus. He doea not enter into the animal comparisons of his predecessors, but occupies himself chicfy with simple dececriptive physiognomy as indicative of character; and the aame is true of the acattered references. in the writings of Duns Scotus and Thomas Aquinas. The famoua sage of Balwearie, Michael Scot, while court astrologer to the emperor Frederick II., wrote his treatise De hominis phisiognonia, much of which is physiological and of curious intereat. It was probably composed about 1272, but not printed until 1477. This was the first printed work on the subject. Physiognomy also forms the third part of his work De sectedis naturec. In 1335 Pietro d'Abano of Padua delivered in Paris 2 comrse of lectures on this subject (afterwards edited by Blondus, 1544), a few years before he whs burned for beresy.
The 16th century was rich in publicationa on physiognomy. The works of the classical anthors before mentioned were printed, and other treatlies were published by John de Indagine, Cockes, Andreas Corvis, Michael Blondua, Janus Cornaro, Anscim Douxciel, Pompeius Ronnseus, Gratarolus, Lucas Guuricus, Tricassus, Cardanus, Taisnierus, Magnus Hund, Rothman, Johannes Padovanus, and, greatest of all, Giambattista della Porta. The eartiest Englich works were anonymous: On the Art of Porcteting Pudure Ebents by Inspection of the Hand (1504), and A Pleasant Ineroduction to the Arl of Chiromancie and Physiognomic (1588). Dr Thomas Hill's work, The Contemplation of Mankynde, cortayning a singular Discourse after the An of Physiognowde, published in 1571 , is a quaintly written adaptation from the Italian authors of the day. The undated book on moles and naevi by "Merlin Britamicus," aftur the model of 'All ibn Ragel, E of about the same data.
The development of a more accurato asatorny in the xyth otentury seems to have diminished the interest in physiognomy, by substituting fact for fiction; und consequently the literature, though as great in quamity, became less valuable in quality. The principal writers of this age were T. Catripunclia, R. Cocelenius, Clement, Timpler, J. E. Gullfmard, Moldemarius, Septallus, Saunders, C. Lebron (a precursor of Charies Bell), Elisholz, do la Bellitere, J. Evelyn (im the appendix to-Numiometa), Baldea, Bulwer (in his Palhomydomia), Fuchs, Spontoni, Ghiradelli,

[^46]Chiaramonti, A. Ingegneri, Finelia, De is Chambre, Zamardus. R. Fludd, and others of less importance.

The 18th century shows a still greater decline of interest in physiognomy. Historians of philosophy, like J. Meursius and Franz, re-edited some of the classical works, and G. G. Fillebom reviewed the relation of physiognomy to philosophy. Indeed, the only name worthy of note is that of J. K. Lavater (q.v.). The other authors of this century are Peuschel, Spon, Schutz, Wegelin, J. Pernetti, Girtanner, Grohmann, and several anonymous writers, and from the anatomicaloside G. M. Lancisi, J. Parsons and Peter Camper. The popular style, good illastrations and pious spirit perrading the writings of Lavater have given to them a popularity they bittle deserved, as there is no system in his work, which chiefly consists of rhapsodical comments upon the several portraits. Having \& happy knack of estimating character, especially when acquainted with the histories of the persons in question, the good pastor contrived to write a graphic and readable book, but one much inferior to Porta's or Aristotle's as a systematic treatise. The treatises of Nicolai and of Lichtenberg were written to refute his theory. With Lavater the descriptive school of physiognomists may be said to have ended, as the astrological physiognomy expired with de la Bellière. The few works which have since appeared, before the rise of the physiological school of Sir Charles Bell and Charles Derwin, ara undeserving of notice, the development of phrenology having given to pure physiognomy the cou $\phi d e$ grace by taking into itself whatever was likely to live of the older science. The writers of the 19 th century are Horstig, Maas, Rainer, Thone, A. Stohr, Sehler, Dr Rubels, Polli, Cardona; Mastriani, Diez, Carus, Piderit, Burgess and P. Gratiolet.
The physiological school of physiognomy was foreshadowed. by Parsons and founded by Sir Charles Bell, whose Essay on: the Amatomy of the Expression, published in 1806, was the first ecientific study of the physical manifestation of emotions in the terms of the muscles which produce these manifestations. In the later editions of this essay the thesis is ciaborated with greater detail. Moreau's edition of Lavater, in 1807, was somewhat along the same lines. In 1817 Dr Cross of Glasgow wrote his defence of a scientific physiognomy based on general physiological principles. The experiments of G. B. A. Dechenne (Mtconisme de la physiognomic humoine, Paris, 1862) showed that by the use of electricity the action of the separate muscles could be studied and by the aid of photography accurately represented. These observations confirmed by experimental demonstration the hypothetical conclusions of Beli. The machinery of expression having thus been indicated, the connexion of the physical actions and the psychical state was made the subject of speculation hy Iferbert Spencer (Prychology, 1855). These speculations were reduced to a system by Darwin (Expression of Emotions, 1872), who formulated and illustrated the following as fundamental physiognomical principles:-
(1) Certain complex acts are of direct or indirect service, under certain conditions of the mind. in order to relicve or gratify certain sensations or desires: and whenever the same states of mind are induced the same sets of actions tend to be performed, even when they have ceased to be of use. (2) When a directly opposite tate of mind is induced to one with which a definite action is correlated, there is a strong and involuntary tendency to perform a reverse action. (3) When the mensorium is strongly excited nerve-force is generated in excess, and is transminted in definite directions, depending on the connexions of perve-cells and on habit.

The last of these propostions is adversely critlcived by P. Mantegarza as a truism, but it may benllowed tostand with the qualification that we are ignorant concerning the nature of the influence called "nerve-force." It follows from these propositlons that the expression of emotion ts, for the most part, not under control of the will, and that those st riped muscles are the moat exprossive which are the least voluntary. To the fore going may be added the following three additional propositions, so as to form a more complete expression of a physiognomical. philosophy:-
(4) Certain musclea concerned in producing there shan-folds belicome strengthened by habitulal action, and when the alkin dimiaiebon
in elasticity and fulness with advancing age, the wrinkles at right angles to the course of the muscular fibres becorse permanent. (5) To some extent ha bitual muscular action of this kind may, by affecting local nutrition, alter the contour of such bones and cartilaqes as are related to the muscies of expression. (6) If the mental ditpoaition and pronenese to action are inherited by children from their parents, it may be tha! the facility in, and disposition towards, certain forms of expression are in like manner matters of beredity.

Hllustrations of these theoretic propositions are to be found in the works of Bell, Duchenne and Darwin, and in the later publications of Theodor Piderit, Mimike und Pkysiognomis (1886) and Mantegazza, Physiognomy and Expression (i890), to which the student may be referred for further information.

For informatioa on artistic anatomy as applied to physiognoray mee the catalogue of sixty-two authors by Ludwig Choulant, Geschichte und Bibfiographie der analomischen Abbildung, \&c. (Leipzig, 1852), and the works of the authors enumerated above, expecially those of Aristotle, Frans, Porta, Cardan, Corvis and Bulwer. For physiognomy of discase, besides the usual medical handhooks, moe Cabuchet, Essai sur l'expression de la face dans les maladies (Paris, 1801); Mantegazza, Phyriology of Pain (1893), and Polli, Sagrio di fissognomonice e potognomonia (1837). For ethnological physiognomy, see amongst oldor nuthors Gratarolus, and amongst moderns the writers cited in the various textbooks on anthropology, eipecially Schadow, Physionomies nationales (183s) and Park Harrison, Journ. Anthrop. 1nst. (1883). The study of the physical characteristics of criminals is discussed at great length by Lombroso, L'Uomo delinquonte (1897); Ferri, L'Owicidio (1895); von Bacr, Der Verbrecther (1893): Laurent, Les Habitwer des prisoms (1890); and Havelock Ellis, The Criminal (igol).
(A. MA.)

PHYSIOLOGUS, the tite usually given to a collection of some fifty Christian allegories much read in the middle ages, and still existing in several forms and in about a dosen Eastern and Western languages. As nearly all its imagery is taken from the animad world, it is also known as the Bestiary. There can be hardly a doubt about the time and general circumstances of its origin. Christian teachers, especially those who had a leaning towards Gnostic speculations, took an interest in natural history, partly because of certain passages of Scripture that they wanted to explain, and partly on account of the divine revelation in the book of nature, of which also it was man's sacred duty to take proper advantage. Both lincs of study were readily combined by applying to the interpretation of descriptions of natural objects the allegorical method adopted for the interpretation of Biblical texts. Now the early Christian centuries were anything but a period of scientific rescarch. Rhetorical accomplishments were considered to be the chief object of a liberal education, and to this end every kind of learning was made subservient. Instead of reading Aristotle and other naturalists, people went for information to commonplace books like those of Aelian, in which scraps of folk-lore, travellers' tales and fragments of misapprehended science were set forth in an elegant style. Theological writers were not in the least prepared to question the worth of the marvelious descriptions of creatures that were current in the schoois on the faith of authorities vaguely known as "the history of animals," " the naturalists," and "the naturalist " in the singular number (фuowondors). ${ }^{1}$ So they took their notions of strange beasts and other marvels of the visible world on trust and did their best to make them available for religious instruction. In some measure we find this practice adopted by more than one of the Fathers, but it was the Alexandrian school, with its pronounced taste for symbolism, that made the most of it. Clement himself had declared that natural lore, as taught In the course of higher Chrlatian education according to the canon of truth, ought to proceed from "cosmogony" to "the theological idea," ${ }^{2}$ and even in the little that is left of the works of Origen we have two instances of the proceeding in question. And yet the fact that these reappear in the Physiologus would not suffice to stamp the work as a series of extracts from Alexandrian writings, as parallels of the same kind can be adduced
 Epiphan. Ads. haer. i. 3. P.. 274 (ed. D. Petav.), ep prop al tronodyed; Origen, Fiom. xvii, in Gen zliv. 9, "nam physiologus de catulo teonis seribit."

from Epiphanius (loc. cil.) and Ephraem Syrus ($\mathrm{Opp}_{\text {P. }}$ Sy. il 17, 130). Father Cahier would even trace the book to Tatian, and it is true that that heresiarch mentions a writing of his own upon animals. Stil, the context in which the quotation occurs makes it evident that the subject-matter was not the nature of particular species nor the spiritual lessons to be drawn therefrom, but rather the place occupied by animal beings in the system of crestion. On the other hand, the opinion of Cardinal Pitra, who referred the Physiologus to the more orthodox though somewhat peculiar tesching of the Alexandrians, is fully borne out by a close examination of the irregularities of doctrine pointed out in the Physiologus by Cahier, all of which are to be met with in Origen. The technical words by which the process of allegorizing is designated in the Phyriologws, like qpupptin, $^{\text {a }}$ ocupla, dnayout, diAnrropla, are familiar to the students of Alexandrian exegesis. It has, moreover, been remarked that almost all the animals mentioned were at bome in the Egypt of those days, or at least, like the elephant, were to be seen there occasionally, whereas the structure of the hedgehog, for instance, is explained by a reference to the sea-porcupine, better known to fish-buyers on the Mediterrancan. The fables of the phoenix and of the conduct of tho wild ass and the ape at the time of the equinox awe their origin to astronomical symbols belonging to the Nile country. In both chapters an Egyptian month is named, and elsewhere the antelope bears its Coptic name of "antholops."

That the substance of the Pkysiologur was borrowed from commentaries on Scripturet is : confirmed by many of the sections opening with a text, followed up by some such formula at "but the Physiologus says." Whem zoological records failed, Egypto-Hellemic ingenuity was never at a loss for a fancilyi invention distilled from the text itself, but which to succeeding copyists appeared as part of the teaching of the original Physiologus. As a typical instance we may take the chapter on the ant-lion-not the insect, but in imaginary creature suggested by Job. Iv. 11. The exceptional Hebrew for a lion (layish) appeared to the Septuagint translators to call for a special rendering, and as there was said to exist on the Arabian cosst a liontike animal called "myrmer" (see Strabo xvi. 774; Aellan, N.A., vii. 47) they ventured to give the compound noun "myrmekoleon." After so many years the commentators had lost the key to this unusual term, and only knew that in common Greek "myrmex " meant an ant. So the text " the mytmekolcon hath perished for that he had no nourishment " set them pondering, and othera reproduced their meditations, with the following result: "The Phoriologus relates about the ant-lion: his father hath the shape of a lion, his mother that of an ant; the father fiveth upon flesh, and the mother upon herbs. And these bring forth the ant-lion, a compound of both, and in part like to either, for his fore part is that of a lion, and his hind part like that of an ant. Being thus composed, he is neither able to eat flenh like his father, nor herbs like his mother; therefore he perisheth from inanition "; the moral follows.
At a later period, when the Church had learnt to look with suspicion upon devotional books likely to provoke the scoffing of some and lead others into heresy, a work of this kind could hardy meet witb her approval. A symod of Pope Gelasius, hedd in 496, passed censure, among others, on the "Liber Physiologis, qui ab haereticis conscriptus est el B. Ambrosli nomine signatus; apocryphus," and evidence has even been offered that a similar senteme was promounced a century before. Still, in spite of such measures, the Physiologws, like the Church Hislory of Eusebius or the Pastor of Hermas, continued to be read with general interest, and even Gregory the Great did not disdinn to allude to it on occasion. Yet the Oriental versions, which had certainly nothing to do with the Church of Rome, show that there whs no systomatic revision made according to the catholic

[^47]standard of doctrine. The book remaiped emeontially the same, albeit great libertics were taken with its details and outward form. There must have been many imperfect copies in circulation, from which people transcribed such sections as they found or chose, and afterwards completed their MS. as occasion served. Some even rearranged the contents according to the alphabet or to zoological affinity. So little was the collection considered as a litcrary work with a definite tert that every one assumed a right to abridge or enlarge, to insert ideas of his own, or fresh scriptural quotations; nor were the scribes and trasslators by any means scrupulous about the names of natural objects, and even the passages from Holy Writ. Physiologus had been sbandoned by scholans, and left to take its chance among the tales and traditions of the uneducated mass. Nevertheless, or rather for this very reason, its symbols found their way into the rising literature of the vulgar tongues, and helped to quicken the fancy of the artists employed upon church buildings and furniture.

The history of tbe Physiologus has become entwined from the beginning with that of the commentaries on the account of creation in Genesis. The principal production of this kind in our possession is the Hexaemeron of Basil, which contains severa! passages very like thuse of the Physiologus. For instance, in the seventh homily the fable of the nuptials of the viper and the conger-cel, known al:cady to Aelian and Oppian, and proceeding from 2 curious misreading of Aristotle (Hist. An. v. 4, 540 b , Bekk.), serves to point more than one moral. Notwithstanding the difference in theology, passages of this kind could not but be welcome to the admirers of the Alexandrian allegories. In fact a medley from both Basil and the Physiologus exists under the title of the Hexaemeron of Eustathius; some copies of the first bear as a title IIepl фvowhorias, and in a Milan MS. the "morals" of the Physiologes are ascribed to Basil. The Leyden Syriac is supplemented with literal extracts from the latter, and the whole is presented as his work. Other copies give the names of Gregory Theologus, Epiphanius, Chrysostom and Isidore.
As tax as can be judged, the emblems of the original Physiofogus were the following: (4) the lion (footprints rubbed out with tail; sleeps with eyes open; cube receive life only three days after birth by their lather's breatb); (2) the sun-lizard (restores its sight by looking at the sun); (3) the charadrius (Deut. xiv. 16; presages recovery or death of patients); (4) the pelican (recalls its young to life by its own blood); (5) the owl (or nyktikorax; loves darkness and solitude); (6) the eagle (renews its youth by sunligbt and bathing in a fountain); (7) the phoenix (revives from fire); (8) the hoopoe (redeems its parents from the ills of old age) ; ($($) the wild ass (suffers no male besides itseln); (10) the viper (born at the cost of both its parents' death); (II) the serpent (sheds its skin; puts aside its venom before drinking; is afraid of man in a state of uudity; hides its head and abendons the rest of its body); (12) the ant (orderly and laborious; prevents stored grain from germinating; distinguishes wheat from barley on the stalk); (13) the sirens and onocentaurs (Isa. xiii. 21, 22; compound creatures); (14) the hedgehog (pricks grapes upon its quills); (15) the for (catches birds by simulating death); (10) the panther (spotted skin; enmity to the dragon; sleeps for three days after meals; allures its prey by sweet odour); (17) the sea-tortoise (or aspidochelone; mistaken by sailors for an island); (18) the partridge (hatches eggs of other birds); (19) the vulture (assisted ln birth by a stone with loose kernel); (20) the ant-lion (able neither to take the one food nor to digest the other); (ai) the weasel (conceives by the mouth and brings forth by the ear); (22) the unicorn (caught only by a virgin); (23) the beaver (gives up its testes when pursued); (24) the hyaena (a hermaphrodite) ; (25) the otter (enbydris; enters the crocodile's mouth to kill it); (26) the ichneumon (covers itself with mud to kill the dragon; another version of No. 25); (27) the crow (takes but one consort in its life); (28) the turtle-dove(same nature as No. 27); (29) the frog (either living on land and killed by rain, or in the water without ever seeing the sun); (30) the stag (destroys Its enemy the serpent); (3x) the salamander (quenches fire);
(32) the diamond (powerful against all dinger); (33) the swallow (brings forth but once; misreading of Aristotle, Hist. Ax. v. 13); (34) the tree called peridexion (protects pigeons from the serpent by its shadow); (35) the pigeons (of several colours; led by one of them, which is of a purple or golden colour); (36) the antelope (or hydrippus; caught by its homs in the thicket); (37) the fireflints (of two sexes; combine to produce fire); (38) the magnet (adheres to iron); (39) the saw-fish (sails in company with ships); (40) the ibis (fishes only along the shore); (41) the iber (descries a hunter from afar); (42) the diamond again (read "carbuncle"; found only by night); (43) the elephant (conceives after partaking of mandrake; brings forth in the water; the young protected from the sexpent by the father; when fallen is lifted up only by a certain mall individual of its own kind); (44) the agate (emeployed in pearl-fishing); (45) the wild ass and ape (mark the equinox); (46) tbe Indian stone (relieves patients of the dropsy); (47) the heron (touches no dead body, and keeps to one dwellingplace); (48) the sycamore (or wild fig; grubs living inside the fruit and coming out); (49) the outrich (devours all sorts of things; forgetful of its own eggs). Besides these, or part of them, certain coples contain sections of unknown origin about the bee, the stork, the tiger, the woodpecker, the spider and the wild boar.
The Greek text of the Physiotoqus existe only in late MSS., and has to be corrected from the translations. In Syriac we have a full copy in a 12 th-century Leyden MS.. published in J. P. N. Land's A needote syriaca; thirry-two chapters with the " morais " left out in a very late Vatican copy, published by Tychsen; and about the same number in a late MS. of the British Museum (Add. 25878). In Armenian Pitre gave some thirty-two chapters from a Paris MS. (13th century). The Aethiopie exists hoth in London and Paris. and was printed at Leipsig by Dr Hommel in 1877 . In Arabic we have fragments at Paris, of which Renan cranslated a specimen for the Spicilagium solesmense, and another verion of thirty-seven chapters at Leiden, probably the work of a mont at Jerusalem, Which Land translated and printed with the Syriac. The Laiin MSS. of Bern are, after the Vatican glomary of A nsileabus, the oldest of which we know; there are ochers in several libraries, and printed editions by Mai, Heider and Cahier. Bemides these, a few fragments of an old labridgment occur in Vallarsi's edition of Jerome's works (vol. xi. col. 218). A metrical Physiologes of but twelve chapters is the work of Theobaldus, probably abbot of Monte Cassino (a.d. 1022-1035). From this was Imitated the Old-English fragment printed by Th. Wright, and afterwards by Maetznerf also the OldFrench Sensuyl Le bestioire d"emours. The prose Physiologus was done into Old High German before 1000, and afterwards into rhyme in the asme Idiom; since Von der Hagen (1824) its various forme have found careful editors among the lending Cermanista. The Icelandic, is a Copenhagen MS. of the 13th century, was printed by Professor Th. Mobius in his Analecta norroenc (2nd ed., 1877): at the zame time he gave it In German in Dr Hommel's Aethiopic publication. Some Antlo-Saxon metrical fragments are to be found in Creins Bibliothet, vol. i. The Provencal (a 1250), pub; linhed in Bartach's Chrestomolhis provencale, omits the "morats," but is remarkable for its peculiaritien of form. Before thia there had been translations into French dialects, as by Philippe de Thaun (11a1), by Guillaume, "clere de Normandie," aloo, about the same period, by Pierre, a clergywan of Picardy. Ali the Old. French materials have not yet been thoroughly examined, and it is fer from improbable that some versions of the book either remain to be detected or are now lost past recovery. A full account of the himtory of the Physiologws whould also embrace the subjects taken from it in the productions of Christian art, the parodies suggerted by the original work, e.f. the Beatiaire d'amoury by Richard de Fournival, and finally the traces left by it upon the encyclopardical and literary work of the later middle ages.

Nearly ell the information now obtainable la to be found in the following works and wuch as are there quoted: S. Eplphanius ad. physiologum, ed. Ponce de Lean (vith woodcuta) (Rome, 1587); another edition. with copper-plater (Antwerp. t588) : S. Euscathii is hexalemeron commentorius, ed. Leo Allatius (Lyons, 1629: cf. H. vin Herwerden, Exercial. Crin., pp. $180-182$, Hague, $186 z$; ; Physio-
 ed. Mai vii. 585-596 (Rome, 1835); G. Helder, in Archis für Kande osterreich. Geschichtsquellen iiL 545 seq. (Vienna, 1850); Cahier and Martin. Melamger d"archeologie ac. ii. 85 seq. (Parit. 18 sI), iii. 203 seq ((1853), iv. 55 seq . (1856); Cahier, Nowveaut muanges (1874). p. 106 seq.iJ. B. Pitra, Spicileriums solemmenps iti. xlvii. geq, 338 seg. 416, 35 (Paris, 1855): Maetzner, A Lengh. Spract. proben (Berlin. 1867), vol. i. pt. i p. 55 seq.i ${ }^{\text {b }}$. Vict or Carus, Gesch. der Zoofogle (Munich, ${ }^{18} 7_{2}$), p. 109 seq ; J. P. N. Land. Amecdola syriaca (Leiden, 1874), (v. 3i seq., Its seq., and in Varslaper en Medededingen der kow. Alhod man Weuenchappen, and weries. vol. iv. (Amsterdacn, 1874); Mabius and fompel in their
publications quoted above. Seo. also Lauchert. Gesshichus des Phystologks (Strassburg. 1889) and E. Peters, Der griechisehe Phystologws und saine orientalischen Oberseasungen (Berlia, 1898).

PHYSIOLOGY (from Gr. фígas, nature, and λ dosos, discourse), the science or theory of the propertics, processes and functions of living organisms. Physiology is distinguished from anatomy as dealing specifically with the functions of an organism, rather than its structure. The two main branches of the science are animal and plant (vegetable) physiology, and in animal physiology that of man stands out as primerily astociated with the word.

Ever siace men began to take a scientific intereat in the problems of life two diatinct rival explanatory principles of vital mbitary of phenomena bave claimed altention: a natural and Theory. a mystical principle. The first outcome of the scientific attempt to explain vital phenomena after the natural method and by a unitary principle was the doctrine of the Pmesma, held by the followers of Hippocrates, which found its clearest expression in Gakn's system. According to this doctrine, the origin of all vital phenomena was a very fine substance, the Pneuma, which was supposed to exist in atmoapheric air, to be inhaled into the lungs of man, and thus through the blood to reach all the parts of the body, where it produced vital phenomena. This doctrine-an attempt to explain the phenomena of lile which was not altogether natural, but even materialistic-was accepted by the niddie ages together with Galen's system. With its trasslation into the Latin spirifus, however, the conception of the Pneuma lost its original force. The spiritus animales of the middic ages developed ere long into mystical powers, the result being the explanation of vital phenoroena by a supernatural theory. Not until the scientific renaissance of the 16th and 17th centuries did views again undergo a change. Alter the establishment of a scienific method in physiology by Wiliam Harvey, and the development of Descartes' mechanical system of regarding living bodies, the natural explanation of vital phenomena once more universally found favour. Two schools arose, which endeavoured by dissimilar methods to find a mechanical expianation of vital phenomena: the ictrophysical, originating with the gifted and versatile Borelli, and the iatrochemical, founded by the Dutchman, F. de la Boz (Sylvius). But when both chemical and physical methods of explanation failed at such problems as, for instance, irritability and evolution, another change in opinion took place. By degrees there emerged once more the tendeney to explain vital phenomena by mystical means, finding expression in the Animism of Stahl, to quote an example; and in the second hall of the 88 th century Vitalism, originating in France, began its victorious march throughout the whole scientific world. Again the opinion came to be entertained that the cause of vital phenomena was a mystical power (force hypermecaniguc)-that "vital force" which, neither physical nor chemical in its mature, was held to be sctive in living organisms only. Vitalism continued to be the ruling idea In physiology until about the middle of the 1gth century, and its supremacy was only gradually overthrown by the great discoveries in natural science of that century. The chemical discoveries resulting from Wohler's synthesis of urea first showed that typical products of the animal body, the production of which had hitherto been supposed to be solely the result of the operation of vital force, could be obtained artificially by purely chemical methods. Then above all came the discovery of the law of the Conservation of Energy by Robert Mayer (1814-1878) and Herminn von Helmholtz (18a1-1894), and its application to the living organism by Mayer, Helmholtx, Pierre Louis Dulong ($1785-1838$), Edward Frankland, Max Rubner and others, to prove that the manifestations of energy by the organism are simply the result of the quantity of potential energy received into the body by means of food. Finally, the stupendous results arrived at by Darwin and the establishment of the fundamental law of "biogenesis" by Erast Haeckel, prepared the way for a natural explanation of the enigma of evelution and structure of organiams. Thus hy the second half of the soth century the doctrine of vital force was definitely
and finally overthrown to make way for the triumph of the natural method of explaining vital phenomena, which down to the present time has continued to spread and flourish with an unparalleled fertilisy. It would, it is true, appear as if in our day, after the lapse of half a century, mystical tendencies were again disposed to crop up in the investigation of tife. Here and there is heard once more the watchword of Vitalism. But all the so-called neo-vitalistic efforts-such as those of Alexander von Bunge ($1803-1800$), Georg Evon RindAcisch (b. 1835), Johannes Reinke (b. 1849) and others-have nothing to do with the old vitalism. They originate solely in a widespread confusion with regard to the boundaries of natural science, their principal tendency being to amalgamate psychological and speculative questions with problems of purely natural. science. In the lace of all these cfiorts, which by their unfortunate designations of Vitatism and Neo-vitalism give rise to entirely false conceptions, and which by their intermingling of psychological questions and questions of natural science have led to mere confusion in research, it is essential that natural philosophy should be called upon to realize lis own timits, and above all clearly to understand that the sole concern of physical science is the investigation of the phenomems of the material world. Physiology. as the doctrine of life, must therefore confine itself to the material vital phenomena of organisms. It is self-evident, however, that only such laws as govern the material worid will be foued governing material vital phenomena-the laws, that is, which have hitherto been brought to their most exact and most logical development by physics and chemistry, of, more generally speaking, by mechanics. The explanatory principles of vital shenomens must therefore be identical with those of inorganic nature-that is, with the principles of mechanics.
The investigation of vital phenomena in this sense requires in the first place, an exact knowledge of the substratum in which these phenomena are manifested, just as in chemistry antace and physics a thorough knowledge of the composition Etmanan of the material world is a necessary premise to the Lm_{m}.
investigation of the phenomena of inorganic nature. The knowledge of the composition and structure of organisms has in the course of the scientific development of anatomy attained to an ever-increasing minuteness of detail, without having as yet reached a definite limit. The last important step in this direction was the discovery by Matthias Jakob Schleiden (1804-1881) and Theodor Schwann (1810-1882) that all organisms are built up of elementary living structural components, namely of cells (see Cyrolocy). The details of the anatomical construction of organisms are described under various appropriate headings, and a general guide to these will be found undet Anatomy and Zoology. We would here raerely point out that a cell is the simplest particle of living substance which appears to be permanently capable of life. Different elements are essential, however, to the existence of the cell-two, at least, so lar as has hitherto been discovered-the protoplasm and the nucleus. It must at present be regarded as at least very doubtiul whether the centrosome, which in recent times it has been possible to demonstrate as existing in very many cells, and which appears sometimes in the protophasm, sometimes in the nucleus, is a general and third independent cell-constituent. On the other hand, the number of special constituent parts which appear in various cell-forms is very large. A question which has long been discussed, and which has received special and animated attention, is that with regard to the finer structure of the cells-with regard, that is, to the protoplasm and the nucleus lying in lt. Views on this subject have diverged very widely, and several totally diverse theories have been opposed to one another. One theory maintains that the living cellsubstance has a reticular structure; another, that it is fibrillous. According to a third theory, the essence of the construction of the cell-substance lies in the granules which it contains; and according to a fourth, it lies in the ground-substance in which these grapules are embedded. One view holds this ground substance to be homogeneous, anotber regards it as possessing a fine fom-structure. It may at present be regarded as
incontrovartible that liviog sumbanaee is mort or leme fuid, and that there does not exist any general structure for all celi-forms. But in come special cases all the theories which bave been quoted are to a certain extent correct. In different cells there are reticular, fibrillous and granular differentiations reapectively, and differentiations in foam-structure; in many cells, however, the protoplasm appears to be beyond doubt homogeneaus and without a dietinct structure, and only under certain conditions to assume changing structures. But the fact which is of mont importance for the right understanding of vital phenomena is that the cell-substance is always more or lest fluid, for oaly in a fluid substratum can such intense chemical processes be enacted as are to be found in every living cell.

Where the andytical powers of the microscope in anatomy an go no farther, chemical analysis of the composition of the cell steps in. By ite means the discovery is made that there is no clementary difierence between organic and inorganic niture, for only such chemical elements ass are known to exist in the inorganic world are found in the organic. On the other hand, however, the living cell-substance paseesses chemical compounds which find analogues nowhere in inorganic nature. The characteristic organic. substances which are present in every cell are protcids and proteid-compounds. Besides these there occur. widely disseminated, carbohydrates, fats and other organic substances, which partly originate in the decomposition of proteids and their compounds, and are partly used for their construction. Lastly, there are In addition great quantities of water and some inorganic salts.
Such are the structure and composition of the subsiratum in which vital phenomens play their part. When we consider anowal vital phenomena themselves in the various living phenomeas organisms-in protista, plants, animals, man-ithere of Lith. appears an incalculable diversity of phenomena. Here, however, as in the case of the structure of organisms, we have to analyse and to penctrate ever farther and deeper till we reach the fundamental phenomena. We then find that the great variety of vital manifestations may be traced back to a few fundamental general groups, which are precisely the same groups of phenomena as those to be observed in inorganic nature. All the processes that take place in the arganic world may be regarded from the three different standpoints of their changes in substance, in energy and in form; for substance, rncrgy and form are all neceseary to our conception of matter. Accordingly, the general elementary vital phemomena likewise fall into three groupo-metabolism, the mechanism of energy, and the assumption of form. Every cell, $\boldsymbol{c o}$ long as it is living, takes in certain substances from ite environmeat, submits them to chemical transformation in its interior, and gives ont other substances. This melaboliom is manifested in sevezal apocial functions-in nutrition and digestion, respiration and circulation, secretion and oxcretion. The essence of the whole process is the fact that while out of these ingosted stufis living substance is always again being formed by, the living substance which already exists, it is itsell continually undergoing decomposition, and the prodects of this decomposition are what the cell gives off agais to the ourside. With metabolism, however, there is inseparably asociated a transformalioz of emergy. These substances taken in by the cell contain a large quantity of potential eneryy, which is transformed into kinetic energy. This has for its result the manifold activities of the organism, more especially motion, heat, electricity and light. Finally, the chemical erenaformations in living substance may also manifest themselves outwardly in changes of form, as is the case generally in the matter of growth, reproduction and development. The three general elementary groups of vital phenomena are therefore in reality merely the expression of the various aspects of one and the same process -of the actual vital process itself. The ultimate object sf all physiology is to discover what this-vital process is-chat s to say, what is the exact cause of these manifold vital phenomena-a goal from which it is at the present day still very enote

As every physical and chemical phenomenon of inorganic nature occurs only under distinet conditions, so vital phenomens are also dependent upon certain conditions of life. Every living body, overy living cell, requires food, Cosdtlome water, oxygen, and, furthor, a certain temperature and a certaio preswure in its environment. These ase the gemeral conditions of life. But the spociol conditions on which depende the continued existence of the individual forms of organism are as numerouss as the forms of crganisons themselves. Now, just as the phyisiciat or chemiast variea those conditions under which a phenomenon occurs in order to get at its causes, so does the physiologist try to experiment with vital phemomens, altering the vital conditions: and testing the changes which are thereby produced. The grest importance of this method comsists in the power it gives the experimenter of anslysing vital phonomena systematically from definite points of view. Every change in its normal vital conditions which produces any effect whatsoever upon an arganism is termed astimulus. This is the only general definition we have for a conception which is of such vast importance to physiology. According to it, experimental physiology is entirely a physiology of atimuli. It further follows from this conception of stimulation that there must be an enormous multiplicity of stimuli, since each particular vital condition may be aubjected to some change capable of acting upon it as a stimulus. But, besides this, othet factors may be brought to bear upon organistas which have absolutely no place among their vital conditions: for instance, many chemical reagents and electric currents. These influences come under the general definition of stimulus, because they likewise imply a change in the conditions under which the organism lives. From their qualitative nature stimuli are distinguished as chemical, thermal, photic, mechanical and electrical. Each of these several varieties may, however, be applied quantitatively in various degrees of intensity, and may in consequence produce quite different results. This opens up to experimental physiology a vast field of research. But the physiology of atimulation is not only of the greatest value as a means of research: its importance is much increased by the fact that in nature itself stimuli are everywhere and constantly acting upon the organism and its parts. Hence the inveatigation of their action comes to be not merely a means, but a direct and of remearch.

Although it is not at present poesible to define all the laws that govern stimulation, on the one hand because the number of stimulating effects known to us in the whole organic world is as yet too limited, and on the other because those already known have not yet been thoroughly aadysed, yet it is within our power to clanify stimulating effecte acconding to their varions charactaristios, and. to ascertion a few facts comcerning theiz general and fundameatal conformity to law. The first fact, apparent from a glance at a grent many of the various forms of stimalation, is that all their effects are manifeated in either a grantivelise or a gualitative alteration of the characteristic vital phenomens of each living object. The quantitative is the usual mode of action of stimuli. It is gencrally found that a stimulus either increases or diminiehes the intensity of vital phemomena. In the first case the eflect is one of excitation; in the second of depression. It is the more important to bear in mind this twofold operation of atimali, owing to the fact that in former tirses physiologista were very apt to conccive of excitation and etimulation as identical. It is now, however, an undisputed fact that depression may abo occur as a typical cilect of stimulation. This is most apparent in cases where the same stimulas that produces excitation may en being applied for a longer period and with greater intensity, produce depression. Thus narcotics (alcohol, ether, chloroform, morphia, ex.) on certain form of living substance produce the phenomena of excitation when their action is weak, whertas when it is stronger they ptoduce complete depression. Thus, likewise, temperature stimuli act differenily upon vital phenomena according to the degree of temperature: very low temperacure depresting
modium temperaturee exciting with incroasing intensity, and higher temperatures from a certain height upwards again depressing. The effects of stimulation are not, however, always manifested in merely quantitative changes of the pornal vital phenomens. Sometimes, especially in the case of long uninterrupted and chronic stimuli, stimulation is found gradually to peoduce phenomena which are apparently quite foreign to the normal vital phenomena of the cell in question. Such gualitation alterations of normal vital phemomena are perceptible chiefly in chronic maladies in the cells of different organs (the heart, liver, kidneys, spleen, \&xc.), in thich the vital conditions become gradually more and more modified hy the cause of the malady. To this category pertain all the eo-called chronic processes of degeneration which in pathology are known as fatty degeneration, mucous degeneration, amyloid degeneration, and so forth. The characteristic element in all these proceases is that the normal metabolism is diverted into a wrong channel by the altered vital conditions of the cells of the organ affected, so that substances are formed and accumulated in the cell which are entirely foreign to its normal life. But this clase of stimulation is still very obscure as regards causes and inner processes, and it is within the range of possibility that the ultimate cause of the qualitative changes in the normal metabolism is to be found aimply in the processes of excltation and depression which chronic stimulation produces in separate parts of the metabolism. Thus, at least with regard to fat-metamorphosis (fatty degeneration), it is highly probable that fat is deposited in the protoplasm simply because, owing to an inadequate supply of oxygen, it cannot, when it originates, be oxidized in the same proportion as it is formed, whereas in the normal cell all fat which originates in metabolism is consumed as soon as it is produced. According to this conception, therefore, fatty degeneration is attributable. primarily to a depression of the proceses of oxidation in the cell. If we may accept this view as correct with regard to the other metamorphic processes loo, the qualitative changes in vital phenomena under the infuence of stimuli would after all depend simply upon the excitetion or depression of the constituent parts of the vilal process, and, acconding to such a view, all stimull would act primarily ouly as exciting or as depressing agents upon the normal process of life.

In accordance with the three groops into which general vital phenomena are divided, it follows as a matter of course that the excitation or depression produced by a stimulus can manifest itself in the cell's metaboltsm, asmumption of form, and manifestation of energy. The efiects of oxcitation upon the production of energy are the most striking, and were therefore In former times frequentiy thought to have a claim por excellence to rank as stimulating effects. These reactions attract most attention in cases where the production of energy is proportionately very great-as with muscle, for instance, which is made to twitch and perform work hy a feeble stimulus. Processes of discharge (Auslosungsvorginge), however, lie at the bottom of cases like these. Potential chemical energy, which is stored up in an considerable quantity in hiving substance, is converted by the impulse of the stimulus into kinetic energy. Therefore the amount of the effect of stimulation-that is 20 say, the quantity of work performed-rbears no proportion whatever to the amount of energy acting as a stimulus upon the muscle. The amount of energy thus acting may be very small as cont rasted with an enormous production of energy on the part of the living substance. It will not do to make generalizations, however, with regard to this proportion, as was frequently done in former times. All processes of stimulation are not processes of discharge. The infuence of many stimuli, as has been observed, consists far more in deprestion than in excitation, so that in certain circumstances a stimulus actually diminishes the normal liberation of energy. There is therefore no general law as to the proportion which the amount of energy acting as a stimulus upon tiving substance bears to the amount of energy liberated.

Among special varieties of stimulation there is one class of stimuli which has attracted particular ettention-namely, those which act unilaterally upon free-moving organisms. It is
principally with the lowent comes of life that we have bere to do -unicellular protista and free-living cells in the bodies of higher organisms (sperm-cells, leococytes, fec.). When from one direction a stimulus-be it chemical, thermal, photic, electrical, or of any other kind-acts upon these organiams in their medium, they are impelled to move in $\frac{1}{2}$ course bearing a definite ralation to the source of the stimuluseither directly towards that soutroe or directly away from it, more rerely in a course transwerse to it. This directive action of stimulation is under sach a fixed conformity to law, that it vividly recalls such purely physical processes as, for instance, the attraction and repulsion of iron particles by the poles of a magnet. For example, if light falls from one side upon a vessel full of water containing uniceltular green algae, tccording to the intensity of the light these organisms swim cither towards the Bluminated side, where they form a compact mass on the edge of the vessel, or away from it, to ciuster on the opposite edge. In the same way infusoria in water are observed to hasten towards or to flee from certain chemical substances, and leucocytes in our bodies act in the same manner towards the metabolic products of pusforming bacteria which have peactrated into an open wound The suppuration of wounds is always accompanied by an amazing conglomeration of leucocytes at the seat of the lesion. Perhaps the most striking effects are thoee of the constent electric current uponi unicelluiar organisms, since in this case the motion follows the ceuse with absointely zutomatie regularity, certainty and rapidity. Thus, for example, after the establishment of the current many Infusoria (Paramaccium) secumbiate at the negative pole with great celerity and without deviation, and tum round agaln with equal celerity as soon as the direction of the current is altered. As such cases of directive stimulation may occur among all varieties of stimuli whenever stimull act unilenterally, they have been detignated; acoording to the direction in which they occur in relation to the source of the stimulas, as positive or negative chemotaxis, phototatis, thermotaris, galvanotaxis, and so forth. The strange and perplexing elememt in these phenomena becomes ciear to us as soon as we know the characteristlic method of locomotion for each form of organism, and whether the stimalus in question in the given intensity exercises an effect of excitation or of depression upon the special form. The direction of motion is the essential mechanical result of unimeteral stimulation of the organs of locomotion. Seeing that these reactions ere exceedingly widely distributed throughout the whole organic work, and possess a deep tiohogical significence for the existence and continuance of life, the interest they have awakened is thoroughly justified.

One of the most important physiological discoveries of the 1gth century was that of the "Specific Energy of Sense-substances." Johannes Moher was the first to establish. the fact that very difierent varieties of stimuli applied "Sonease
to one and the same organ of aense always produce one and the same variety of senstion, and that, conversely, the same stimulus applied to the different organs of sense produces a different sensation in each organ-the one, in fact, which is its specific ettribute. Thus, for example, mechanical, electrical and photic stimull applied to the optic nerve produce no other sensation than that of light; and, conversely, any one variety of stimulus-take the electrical, for example-produces sensations of light, hearing, taste or smell, acconding as it affects the optic, auditory, gustatory or olfactory nerves. This law of the "Specific Energy of Sense-substances," as Johannes Miller (1809-1875) called it, has come to have a highly important bearing upon scientific criticism, since it proves experimentalty that the things of the outer world are in themselves in no way discemible by us, but that from one and the same out wand object -the electric current, or a mechanical pressure, for instance- Te receive altogether diferent sensations and form altogether different conceptions according to the sense-orgtan afiected. But this law does not possess significance for psychology aloae; as regards physiology also it has a much more general and more comprebensive lorce than Muller ever anticiptated. It boids good, as demonstrated by Ewald Hering (b. 1834) and others,
not of semse-substances only, bort of tiving sebstance generally, Each cell has its specific energy in Johannes Muller's sense, and in its extended form there is no more general law for all the operations of stimuli than this law of specific energy. To take examples, whether a muscle be stimulated by a chemical, mechanion, thermal or electrical stimulus the reult is in each case the same-namely, a twitching of the muscle. Let a salivary gland be stimulated chemically, mechanically, electrically or in any other way, there always follows the same specific actiona secretion of saliva; no matter what be the kind of stimulus acting upon it, the liver-cell always reacts by producing bile, and so on. On the otiser hand, one and the same stimulus-the electric current, for reximple-gives in each form of living substance a specific result: twitching in the muscle secretion of saliva in the salivary glasd, prodaction of bile in the liver-cell, sc. That is, of course, with the proviso that the effect of the stimulus be exciting and not depressing. The following general formulation, however, of the law of specific energy brings the depressing stimuli also within las scope: "Different stimuii produce in anch form of living substance an increase or a dimination of its specific activity." As already observed, it will probably be found that those weak chronie forms of stimulation which peoducte qualitative changes may abo be comprised under this ganceal ham.

The tenowiedge the far acquired from anslysis of vital phenomena and their changes under the influence of alimuli

Mechention

 Whim. aflords but a very indefinite temporary basis for Which vital phenomena are the outwand manifestation. The conceptions to which physiological rescarch has hitherto attained in this matter are of a more or lests doubtful nature. The facts contaimed in them still require to be Haked togecher by hypotheses if we are to obtaín even a vigue outline of what lien hidden behind the great riddle of hife. Such hypotheses, serving as they do to link facts consistently together, are abooincely essential, bowever, to the further progress of reacarch, and without their aid any systematic investigation would be impracticable. But at the same tlme it must never be forgotten that these hypotheses are merely provinional, and that whenever they are found to be no longer in harmony whith widening range of new experiences and idess they must either be proved to be facts or be subjected to modifation. This is the point of view from which we must deal with modern ideas concerning the nature of the actual vital procest--the mechantsm of life.The fupdamental fact of life it the metabolism of living sabotance which is contimually and epontaneously undergoing

mereloneme

 decomposition, and building itself up anew with the help of the food-sabstances it takes in. These processes of decomposition and of reconstruction may be briefly designated as distimilation (catabolism) and assimitation (anabolism) respectively. Now the question arises: How are we to understand this process of dissimilation and assimilation from a mochanical standpoint? H is quite evident that we have to do with some chemical occurrence; but how are the chemical transformations brooght about? There are obviously two poasibilities. It is conceivable that the decomposition of food-stuffs and the formation of excretion-products in the cellbody are caused by the repeated casual encounter of a great series of chernical combinations and by their repeatedly reacting upon one another in the same manner, bringing about transformations and forming waste products which are excreted, while at the same time certain chemical affinities are always taking in from without new chemical combinations (food-stuffs) and uniting them. This theory was in fact occasionally advanced in former times, particularly in its chemical aspect, and the belief was especially entertained that the enzymes in living substance might play an important part in these transformations. This assumption, bowever, leadr to no clear mand lucid image of what takes place. and, moredver, draws too lergely upon auxiliary hypotheses. It hea therefore met with but little acceptance. The other possibie explenation of metabolism is that its whole process is confinedto one single class of chemical combhations whose tendency it is to be constantly undergoing spontancous decomposition and regeneration. This latter theory was founded by Ludimat Hermank (b. 1838), Eduard Friedrich Paiger (b. 1829) and others, and has met with universal recognition because of its naturalness, simplicity and clearness.

Starling with this hypothesis, the path of furtber remearch lies ciear and well defined before us. In the first place, we are obviously met by the question: What conception are we to form of these combinations on which hinges the
whole vital process? Among the organic matters which compose living substance, proteids perform the most important part. Proteids and proteid-compounds form the only organic matter which is never absent from any cell. They form also the greater part of all the organic compounds of the ceil, unless reserve-stuffs are accumulated to a considerable extent, and they are by far the most complicated of the compounds of living substance. While animal life is impossible without proteid lood, there are, on the other hand, animals which can continue to sobsist on proteid alone. This series of facts proves very conclusively that proteids and their compounds play by far the most important part of all organic matter in the processes of tife. The idea thus naturally presents itself that the required hypothetical compound forming the central point of metabolism will be found to bear a very close relation to proteids. But another point must be bere considered. The proteids and their compounds known to us are, comparatively speaking, stahle compounds, which never undergo spontaneous decomposition se long as they are protected from outward lnjury, whereas the hypothetical combination which lies at the centre of organic metabolism is extroordinatily liable and continually undergoing spontaneous decomposition. Therefore we have to think not of ordinary protefids in this case, but of still more complicated combinations, the atoms in the molecule of which bave a strong temdency to group themselves in new errangements. Owing to their fundamental importance, these combinations have been termed "biogens." When we come to inquire bow such labile biogen molecules are built up out of the proteids of food, we find our knowledge very much restricted. Doubtless the intramolecular addition of inspired oxygen has much to do with it; for living sabstance when deprived of oxygen loses its inritability -that is to say, its tendency to decomposition. The fact that the decomposition of living substance is always associated with the formation of carbonic acid-a circumstance obviously nocesdtating the ad of oxygen-also points to the absolute indispensableness of orygen in the matter. Pfiager has further suggested that the molecule of living substance owes its lability and lts tendency to form carbonic acid when joined by oxygen atoms priscipially to cyahogen groups which are contained in it. According to this-view, the following is supposed to be the process of the formation of blogen molecules: It is asaumed that the biogen molecules already present in living substance take out of the proteids of food certain groups of atoms, and dispose them so as to produce cyanogen-like compounds. The addilion of oxygen atoms then brings the biogen molecale to the maximum of its power of decomposition, so that-parily spontaneously, but more especially when impelled by a stimulus-it breaks down somewhat explosively, causing the formation of cantonic acid. In this proceeding, according to the hypothesis which is the most widely accepted and the most fruitiul in results, would lie the very germ of the vital process.

If we accept these views as far as their general principle is concerned, masimilation is the re-formation of blogea molecules by those already existing, aided by food-atuff; dissimilation, the decomposition of biogen molecules. of Conthre To this primary process, however, is attached a whole series of secondary chemical processes, which serve partly to work upon the food so as to fit it for the building up of biogen molecules, and partly to form out of the direct decomposition-producta of tho bjogen molecties the charncteristic secretion-products of living substance (excretions and secretions). The vatious workings of matter in the cell ate rendesed very much mors
complex by the circumstanco that the living cell exhibits various morphological differentiations-above all, the differentiation in protoplasm and nucleus. Again, a transformation of epergy is inseparably connected with metabolism. Along with food and oxyzen potential chemical energy is continually being introduced into the cell, to be accumulated in the biogen molecules, and at their decomposition transformed into kinetic energy, which finds an outlet in the various manifestations of energy in the cellmotion, heat, and so forth. In the light of this hypothesis the operations of simuli also become comprehensibic. Seeing that there is an initial tendcacy to the occurrence of certain definite chemical processes, which are associated with the reconstruction and decomposition of biogen molecules, various stimuli will cither further or hinder the course of this metabolic serice. A cell which is exposed to no outward disturbance, and which continues always in the unvarying medium provided by an exact sufficiency of food, will be in " metabolic equilibrium "-that is to say, its assimilation and its dissimilation will be equal ($A=D$). When, however, the influence of extermal stimuli is brought to bear upon them-that is to my, any change in theit envlroning vital conditions-A and D will cither be altered in similar proportion, or their mutual equiliorium will be disturbed, In the former case the vital processes will merely be intensified in their course; in the latter and usual case the result will be determined according to the part of metabolism excited or depressed. When the effect of a stimulus is to excite D conilnuously in a high degree without correspondingly increasing A, the resull is a dying off-an atrophy. In the contrary case, when A remains continuously greater than D, the result is growth, increase and Mefetele reproduction of the cell. Experience proves, howFqualp ever, that A and D stand in a certain relation of ortumb mutual dependence to each other, with the result that when D has been increased by a stimulus, for example, A correspondingly increases during the stimulation, and continues to do so after its cessation, till the loss in living substance produced by the stimulation of D is eventually made good, and metabolic equilibrium is restored. The muscle may be taken as an ezample of tbis self-regulation of metabolism common to all living substance (Hering's Selbststawermesg des Sloffrechseds). When a muscie hes been fatigued by some stimulation cavsing an enormous increase of D, there is a corresponding spontaneous increase in A. After some time the muscle is observed to have recovered. It has once more become capable of perfomming work; its metabolism is again in equilibrium.

The vital phenomens of the cell may be derfved mechanically from metabolism and the changes it undergoes under the infuence of stimuli. Our ability to do this will increase more rapidly as we become better acquainted with the details of the asetabolism of the cell itself. The foregoing outline must be regarded, of course, ts embodying only a fregmentary hypoChesis, which can serve as a guide for further researcb only $\mathbf{s o}$ long as it does not clash with facts, and which must be amplified, specialized and developed with the widening of specific kpowledge regarding'the cell's metabolism. The relations already known ere 50 exceedingly complex that only by siow degrees can we pursue the investigation of separate fragments of the entire metabolic serics. The differentiation of nucleus and protoplasm in the living substance of the cell alone gives rise to an extraordinary complication in the metabolic process, for these two parts of the cell stand in the most complicated correlation with Cors one another as well as with the environing medium-a propaaes fact of which the experiments made by vivisection sespent in various free-liviag cellforms have furnished of LMA. abundant evidence. The farther such knowledge edvances, the more rounded, cleat and free from hypotheses will become our conception of the cell's metabolism. But the cell is the elementary component part of all ougenisme, and from the life of individual cells is constructed the life of the separace tiagues and various organs, and thus of the entire organism. Hence the cell is the only vital element which the orgapism possesses, and therefore the investipation of the vital procosses in its repartite cells leads
ultimately to a kpowledge repardins tho mechenism of ife in the whole.

Vesetable phymology is dealt with in the erticle Plants: Plysielogy. For details of different parts of the animal body, see Ammal Heat; Respinatoey Systbm; Vascular System; Tauch; Suerl; Taste: Vision: Hearing: Voice: Muscle and Nerve; Sletep; Hypnotism: Brain; Spmal Cond; Stheathethe Ststex; Blood; Lymet; Phacocytosis; Digestive Ongans: Nutrition, \&ec.

The principal modern English textbooks of animal physiolocy are those of Sir Mithael Foster (1885), A. E. Sch Paton (1908), Halliburton (1g09), and Searling (1909). See, how. ever, the bibliogra phical motes to the eparate articies. (M. V.)

PIACEnza (Lat. Plactntia), a town and episcopal see of Emilia, Italy, the capital of the province of Piacenza, 42) m. S.E. of Milan and 91 m . N.W. of Bologen by rail. Pop. (ago6), 39,786. It lics on the Lombard plain, 217 ft . above see-level. near the right bank of the Po_{p} which here is crossed by road and railway bridges, just below the confuence of the Trebia. It is slill surrounded by walls with bestions and fogse in a circuit of 4 m . The cathedral was erected between 1122 and 1233 . In the Lombard Romanesque style, under the direction of Sinto da Sambuceto, on the site of a cburch of the gth century which hand been destroyed by earthquake. The west front has three doors with curious pillaged porches. The campanile is a maselve square brick tower 223 ft. high; the iron cage attached to one of its windows was put up in 1495 by Ludovico il Moro for the confine ment of persons guilty of treason or secrilege. The cypt is a large churcb supported by one hundred columns. The entire edifice has heen restored since 1898, and the frescoes by Guercino and Caracci, which decorate parts of its roof, though good in themselves, are inappropriate to its severe style. Sant' Antonino, which was the cathedral church till 877, is supposed to have beea founded by St Victor, the first bishop of Piscensa, in the 4 th century, and restored in 903 ; it was robuilt in Iro4, and allered in 1857. It was within its walls that the deputies of the Lombend League swore to the conditions of peace ratifed in in83 at Constance. The Gothic brick vestlbule (II Paradiso) on the north side is one of the older pafts of the building. San Francenco, a spacious Gothic edifice begun by the Frandiacans in 1278, wis erected on the site of the paince of Ubertino Landi, a lendr of the Ghibelline party. S. Savino, a fine Rovanceque berildingof A.D. 903 (well restored in 1903), contrins a mpenic pavernett of this period with curious representations, incloding one of a erme of chess. S. Sisto, which dates from 1499, and trikes the prince of the church founded in 874 by Angilberget (consort of the enpena Lovis II.). last its chici attraction when Raphael's Sistive Madonsa (now in Dresden) was sold by the moaks in 3754 te Fredarick Augustur III. It place, bowever, is accupied by a copy by Avanzini, and there are aleo several good intaries bs Bartolomeo da Buseto. S. Sepolcro and S. Maria della Campagas are boih good early Remaiscance churcher; the latter is rich in frescoes by Pondenone. S. Annt, dating from 1334, wase the chusch of the barofooted Carmelites. Of the secular buildings the most interesting is the Palezzo Conamunale, begna in 288. one of the fipost buildings of its kind in Italy. The square in front is known as the Piseth dei Cavalli, from the two bronte equestrian statues of Ranuccio (1620) and his father Alexapder: prince of Parma, gevernor of the Netherlands (16a5). Boeh wert designed by Francesco Mocchi. The Palazeo dei Tribanali and the Palazzo degli Scoli yre fine early Rensisuance brick building with terra-cotta decorations. The huge Farnese palace was begul after Vignola's designs hy Margaret of Austria in $155^{8,}$ but it تas nover completed, and since 1800 it hes been nged as barracks Other buildings or institutions of noto are the old and the nee bishop's palace, the fine theatre designed by Lotinio Tombs ia 1803, the great hospital dating from 1471, the library presented to the commune in 1846 by the marquis Ferdinando Landi, and the Paseerini library founded in 1685 . The Museo Civica, formed in 1903, contains collections of antiquities (though many of the Roman antiquities of Piacensa have paseed to the raverent of Parma). sorne good Flemish tapestries and a fey pictures The castle erected by Antonio da Sargallo the younger has been demolished. Piacenza is the junction of the Milan and Poivges line with that from Voghera and Turin. Fram Codoroo, 7 z

Io the Horth, a branch Ine runs to Cremona. By road Placenas is 88 m . north-east of Gonom. The town has an arsenal, a technical and arta school, and various industries-iron and brass works, foundries, sill-thowing, priating works and flows mills.

Piacenas was made a Roman colony in 218 a.c. While iks walls were yet unfinished it had to repulse an attack by the Gauls; and in the latter part of 218 it afforded protection to the remains of the Rornan army under Sciplo which had been defeated in the great batile on the Trebia. In 205 it whethood a protracted siege by Haedrubal. Five years later the Cauts bertaed tbe city; and in $\mathbf{g} 90$ it had to be recrulted with three thoumad families. In 887 it was connected with Ariminum and the south by the construction of the Via Aemilia. Later on it became a very mportant road centre; the continuation northwards of the Via Acmilin towards Milan, with a branch to Ticinum, crossed the Po there, and the Via Postumia from Cremona to Dertona and Genoa passed through it. Later still Augustus reconstructed the road from Dertona to Vade, and into Gallia Narbonensis, and gave it the name of Julia Augusta from Placentia onwards. The rectangular arrengement of the streets in tbe centre of the town, through which passes the Via Aemilia, is no doubt a survival from Roman times. Placentia is mentioned In oonnerion with its capture by Cinas and a defeat of the forces of Carto in tbe neighbourtood ($82 \mathrm{~m} . \mathrm{C}$.), a mutiny of Julius Caesar's garrison (go m.c.), another mutiny under Augustus (40 b.c.), the defence of the city by Spurinna, Otho's general. against Caecina, Vitellius's general (A.D. 69), and the defeat of Aurelian by the Marcomanail outside the walls (a.D. 271). In 546 Totilereduced Pincemaz by tamine. Between 997 and 1035 the city was governed by its bishops, who had received the title of count from Otho III. At Roncaglia, 5 m . to the east, the emperor Conrad II. held the diet whicb passed the Salic law. In the latter part of the ath century it was one of the leading members of the Lombard League. For the most part it remained Guelph, though at times, as when it called in Galeazno Visconti, it wat glad to appeal to a powerful Chibelline for aid against ths domestic tyrants. In 1447 the city was captured and sacked by Francesco Sforsa. Having been occupied by the papal forces In $\mathbf{1 5 1 2}$, it was in 1545 united with Parma (q.v.) to form an bereditary duchy for Pierluigi Farnese, son of Paul III. In 1746 a betlle between the Franco-Spanish forces and the Austrians was fought under the ctty walls, and in 1796 it was occupied by the French. In $\mathbf{3 8} 8$ Piacemza was the first af the towns of Lombardy to join Piedmont; but it was reoccupied by the Austrians till 1859.
PLANOPORTB (Ital. piamo, soft, and forse, loud). The group of keyed stringed rousical inst ruments, amolig whicb the pianoforte is latest in order of time, has been invented and step by step developed with the modern art of music, which is based upon the simultaneous employment of difierent musical sounds. In the 10 th century the "organum" arose, an elementary system of accompaniment to the voice, consisting of fourths and octaves below the melody and moving with it; and the organ (g.v.), the earliest keyed instrument, was, in the first instance, the rude embodiment of this idea and convenient means for its expression. There was as yet no keyboard of balanced key levers; sliders were drawn out like modern draw-stops, to admit tbe compressed air necessary to make the pipes Mitery of sound. Ahout the same time arose a large stringed instrument, the organistrum, ${ }^{1}$ the parent of the now obsolete hurdy-gurdy; as the organ needed a blower as well as an organist, so the player of the organistrum required a handle-turner, by whose aid the three strings of the instrument were made to sound simultaneously upon a wheel, and, according to the well-known sculptured relief of St George de Boscherville, one string was manipulated hy means of a
In ocgepittrun it shown in the lower right hand corner of the full pete miniature of a fre sxh century palter of Enclish workmanship, forming part of the Hunterian collection in University Court Library, Glasgow. No. 31 in Catalogne of the Exhibition of

tov of steppers or imgents presed inwads to produce the notes. The other trings were drones, analogow to the drones of the begpipes, but originally the three strings followed the changing organum.

In the in th ceretury, the epoch of Guido d'Areszo, to whom the beginning of musical notation is attributed, the Pythagorean monechord, witb lts shifting bridge, was uned in the singing schools to tesch the intervals of the plain-soms of the church. The practical necesity, not merely of demonstrating the pro. portionate relations of the intervals, but aloo of initiating pespis into the different gradetious of the charch tomes, had soon ifter Caido's time brought into use quadruplex-feshioned monochonds, which were comstructed witb scales, analogous to the modern practice with thermometers which are mede to show both Reaumur and Cencigrade, so that four lines indicated as many anthentic and es many plagal cheoctiont; tones. This arrangement found great accepisnce, for Aribo, writing about fifty yeas sfter Guido, mays that few monochords were to be found without it. Had the clavi. chord then been known, this makeshift contrivance would not have been used. Aribo strenuously endeavoured to improve it, and " by the grace of God" invented a monochord measure which, on account of the rapidity of the leaps he could make with it, he named a wild-goat (caprea). Jean de Muris (Musice speculotion, 1323) leaches how true relations may be found by a stagle. string manochord, but recommends a four-stringed one, properly a tetrachord, to gein a knowledge of unfamiliar intervals. He describes the musical instruments known in his time, but does not mention the clavichord or monochord with keys, which could not bave been then invented. Perhaps one of the earliest forms of such an instrument, in which stoppers or tangents bad been adopted from the organistrum, is shown in fig. 1 , from a wrood carving of a vicar choral or organist, preserved in St Mary's church, Shrewibury. The latest date to which this interesting figure may be attributed is 1460 , but the conventional representation shows that the instrument was then already of a past fashion, although perhaps still retained in use and familier to the carver.

In the Weimar Wunderbuch,' a MS. dated 1440, with pen and ink ministure is given a "ciavichorditum" having 8 short and apparently 16 long keys, the artist bas drawn 12 strings in rectangular case, but no langents are visible. A keyboard of balanced keys existed in the litite portable organ known as the regal, so often represented in old carvings, paintings and atained windows. Vitruvius, De archilectere, lib. x. cap. xi., transiated by Newton, describes a balanced keyboard; but the key apparatus is more patticularly shown in The Preumotics of Hero of Alexandria, translated by Bennet Woodcroft (London, 1851). In confirmation of this has been the semarkable recovery at Carthage ${ }^{4}$ of a terra-cotta model of a Hydraulikon or water organ, dating from the and century a.b., in which a balanced keyboard of 18 or igkeys is shown. It seems likely the balanced keyboand was lost, and afterwards reinvented. The name of
${ }^{2}$ See "Musica aribonls scholastici," printed by Martin Gerbert in Seripleres ecclesiastici de musica sacres (1784), ii. 197; and in J. P. Migno, Patrologice cersus complefus, vol. 130, col. 1307.
-Grossherzogliche Bibliotheh. See also Dr Alwin Schuls, Dewlscies Luben in xiv, and zv. Jathemed. (Vienna, 1892), pu 58, fig. 522.

- For an illustration of this important piece of evidence, see under Ongan: Amcient Histery: and for dexcription and illustration of belanced leys, see KEYBOA nd.
repal was derived from the rule (rosulas) or eraduatod scale of keys, and its use was to give the siagen in redigiona procemions the nose or pitch. The only instrument of this kind knowe to erist in the United Kingdom is at Blair Atholl, and it bears the very late date of 1630 . The Brasels regall may be as modern. These are instances of how long a somo-time admied mostical instrument may remain in use after its first intention is forsolten. We attribute the admptation of the narrow regal keyboard to what was still calied the monochord, hut was now a complex of mosochords over one resonance board, to the latter hali of the 14 lh century; it wasaccomplisbed by the subeatitution of tangents fixod in the luture ende of the balanced keys for the movable bridges of the monochord or such stoppers 20 are shown in the Shrewsbury carving. Thus the monochordium or "payre of monochordia" became the clavichordium or "peyre of clavichordis "-pair being applied, in the old sense of a "pair of steps," to a veries of dequrees. This use of the word to imply gradation was common in England to all keyed instruments; thus we read, in the Tudor period and later, of a pair of regals, orgins, or virginals. Ed. van der Stracten ${ }^{2}$ reproduces a socalled clavichord of the isth century from a MS. in the public library at Ghent. The treatise is anonymous, but other ueatises in the same MS. bear dates 1503 and 1 go4, Van der Stracten is of opinion that the drawing may be amigned to the middle of the 15 th century. The scribe catts the instrument a clavicimbalum, and this is undoubtedly correct; the 8 stringe in the drawing are stretched from back to fromt over a long sound board, the longest strings to the left; 8 keys, 4 long and 4 short with levers to which are attactred the jacks, are seen in a horizontal line behind the teyboard, and behind them again are given the names of the notes $a, b, c, d_{4} e, i, g$, h. In the Weimar Wunderbuch is a pen-and-ink sketch of the "clavicimbalum" ${ }^{2}$ placed upon a table, in which we recognite the familiar outline of the harpsichord, but on a malier scale. The keyboard shows white and black notes-ihe iatter short keys, one between each group of two white keys, precisely as in the instrument reproduced by Van der Seracten-but no mechanism is visiblo under the strings.
The earliest known record of the clavichord eccurs in some rules of the minnesingers, ${ }^{4}$ dated 1404 , proverved at Viemna The monochord is named with it, showing a differentiation of these instraments, and of them from the ciavicyabbalum, the keyed cymbal, cembaio (Halizn), or psaltery. From this we learn that a keyboard had been thus early adapted to that favourite medieval stringed instrument, the "cembalo" of Boccaccio, the "sautrie" of Chaucer. There were two forms of the pealtery: (1) the trapese, one of the oldest representations of which is to be found in Orcagna's famous Trionlo della Morte in the Campo Santo as Pisa, and another by the same painter in the National Gallery, London; and (2) the contemporary " teate di porco," the pig's hood, which was of triangular shape as the name suggests. The trapere psaltery was strung horitontally, the "istromento di porco" either horizontally or verticallythe notes, as in the common dulcimer, being in groups of three or four unisons. In these differences of form and stringing we see the cause of the ultimiate differentiation of the spinet and harpsichord. The compass of the psalteries was nearly that of Guido's scale; but according to Mersenne, ${ }^{\text {b }}$ the lowest interval was a (ourth, G to C , which is wort hy of notice as anticipaling the later "short meensure "s of the spinet and organ.
The simplicity of the clavichord inclines us to place it, in order of time. before the clavicymbalum or clavicemmbalo; but we do not know how the sounds of the latter wera at finst excited. There is an indication as 10 its early form to be seen in the church of the Certoses near Pavia, which compares in probable date with

[^48]the Shrowabery emapla. We quato the reforeace to it trom Dr Ambroa. He says a carving represents King Devid as holding na " istromento di poaco" which has eiche etrings and as meay keys lying parallel to them; inside the body of the inatrument, which is open at the side nearest the right hand of King David, be couches the keys with the right hand and dampe the string: with the left. The attribution of archnism applica with equal force to this carving as to the Shrewsbury ope, for when the monastery of Certosa dear Pavia was built by Ambrogio Fomenaa in 1472, chromatic keyboards, which imply a considerable advance, were already in use. There is an authentic representation of a chromatic keyboard, peinted not Inter then 1426, io the St Cecilis panel (now at Berlin) of the famous Adoration of the Lamb by the Van Eycks. The ingummeas depictod is a posilive

FiG. 2.-Diatonic Clavichord Keyboard (Guido's Scale) from Virduag. Before 1518.
organ, and it is interesting to notice in this realistic painting that the keys are evidenuly boswood, as in the Itclino spinets of heter drec, and that the angel plays a coonmon chord-A with the right hand, F and C with the lelt. But diatonic organa with eight stepe or keys in the octave, which included the B flat and the B natural, as in Guido's scato, were long preserved, fore Proetorius speaks of them as atill exiating nearly two hundred years later. This diatomic keyboard, we learn from Sebastian
 keyboard of the carily clavichord. We neproduce his diveram an the only autbority we have for the dispocition of the one abort key.

The extent of this scale fs exactly Guido's. Virdung'a diagrats of the chromatic is the sume as our own familiar keyboard, and comprises three octaves and a mote, from \bar{F} below the bese stave co G above the treble. But Virdung tells us that even then ciavichords were made longer than four octaves by repelition of the same order of keys. The ineroduction of the chromatic order be attributes to the atudy of Boecius, and the consoquent endea vour to restore the three musical ecnere of the Greeke-the diatonic, chromatic and enbarmonic. But the last-mamed had not been alleained. Virdung gives wood cuts of the clavichordium, the virginal, the clavicymbalum and tbe clavicytheriam. We reproduce three of them (gign 3, 6 end 12), omitting the drainal

Fic. 3.-Virdung's Clavichordiom, isIt ; reversed facsimile.
as obviously incorrect. Writers on mussical instruments have continually repeated these drawings without discerning that in the printing they are reversed, which puts the keyboards entirely wroag, and that in Luscinius's Latin translation of Virdung (M/usurgia, sive praxis musicae, Strasburg, 1586), which has been hitherto chiefly followed, two of the engravings, the clavicimbalum and the claricy therium, are transposed, another cause of error. Martin Agricola (Mwsica instrumentalis, Wittenberg, 1529) has copied Virdung's illustrations with some differences of perspective, and the addition, here and there, of errons of his own.
'Geschichle der Macih, ii 544-555.

Still vulgarly known as monochord, Virdung's clavichord was really a box of monochords, all the strings being of the same length. He derives the clavichord from Guido's monochord as he does the virginal from the psaltery, hut, at the same time, confesses he does not know when, or by whom, either instrument was invented. We observe in this drawing the sbort sound-board, which always remained a peculiarity of the clavichord, and the straight soundboard bridge-necessarily so when all the strings were of one length. To gain an angle of incidence for the tangents against the strings the keys were made crooked, an expedient further rendered necessary by the "fretting "-three tangents, according to Virdung, being directed to stop as many notes from each single group of three strings tuned in unison; each tangent thus made a difierent vibrating length of string. In the drawing the strings are merely indicated. The German for fret is Bund, and such a clavichord, in that language, is known as a "gebundenes Clavichord" both fret (to rub) and Bund (from binden, to bind) having been taken over from the lute or viol. The French and Italians employ " touche " and "tasto." touch. Practorius who wrote a hundred years later than Virdung, says two, tbree and four tangents were thus employed in stopping. There are extant small clavichords having three keys and tangents to one pair of strings and others have no more than two tangents to a note formed hy a pair of strings, instead of three. Thus seven pairs of strings suffice for an octave of twelve keys, the open notes being F, G, A, B flat, C, D, E flat, and by an unexplained peculiarity, perhaps derived from some special estimation of the aotes which was connected with the church modes, A and D are left throughout free from a sccond tangent. A corresponding value of these notes is shown by their independence of chromatic alteration in tuning the double Irish harp, as explained by Vincentio Galilei in his treatise on music (Dialogo della musica, Florence, 1581). Adlung, who died in 1762, speaks of another fretting, but it must have been an adaptation to the modern major scale, the "free" notes being E and B. Clavichords were made witb double fretting up to about tbe year $1700-$ that is to say, to the epoch of J. S. Bach, who, taking advantage of its abolition and the consequent use of independent pairs of strings for each note, was enabled to tune in all keys equally, which bad been impossible so long as the fretting was maintained. The modern scalcs having become cstablished, Bach was now able to produce, in 1722, Das wohllemperirte Clavier, the first collection of preludes and fugues in all the twenty-four major and minor scales for a clavichord which was tuned, as to concordance and dissonance, fairly equal.

The oldeat clavichord, here called manicordo (as French maniconde, from monochord), known to exist is that shown in fig. 4. It will be observed that the lowest octave is here already

Fig. 4.-Manicordo (Clavichord) d'Eleonora di Montalvo, 1659; Kraus Museum, Florence.
"bundfrei" or fret-free. The strings are no longer of equal length, and tbere are three bridges, divisions of the one bridge, in difierent positions on the sound-board. Mersenne's "manicorde " (Harmonie universelle, Paris 1636, p. 115), shown in an engraving in that work, bas the strings still nearly of equal lengtb, but the sound-board bridge is divided into five. The fretted clavichords made in Germany in the last years of the 17th century bave the curved sound-board bridge, like a spinet. In the clavichord the tangents always form the second

スx: 10
bridge, indispensable for the vibration, besides acting as the sound exciters (fig. 5). The common damper to all the strings is a list of cloth, interwoven behind the tangerits. As the tangents quitted the strings the cloth immediately atopped all vibration. Too much cloth would diminish the tone of this already feeble instrument, which gained the name of "dumb spinet " from its use. In the clavichordin Rubens's St Cecilia (Dresden Gallery)-interesting as perhaps representing that painter's own instrument-the damping cloth is accurately painted. The number of keys

Fic. 5. -Clavichord Tangent. there shown is three octaves and a third, F to A - the seme extent as in Handel's clavichord now ia the museum at Maidstone (an Italian instrument dated 1726, and not fretted), but with the peculiarity of a combined chromatic and short octave in the lowest notes, to which we shall have to refer wben we arrive at the spinet; we pass it by as the only instance we have come across In the clavichord.
The clavichord must have gone out of favour in Great Britain and the Netherlands early in tbe ath century, before its expressive power, which is of the most tender and intimate quality, could have been, from the nature of the music played, observed, -the more hrilliant and elegant spinet being preferred to it. Like the other keyboard instruments it had no German neme, and can hardly have been of German origin. Holbein, in his drawing of the family of Sir Thomas More, 1528، now at Basel, indicates the place for "Klavikordi und ander Seytinspill." But it remained longest in use in Germany-until even the beginning of the 19th century. It was the favourite " Klavier " of the Bachs. Besides that of Handel already noticed there are in existence clavichords the former possession of which is attributed to Mozart and Beethoven. The clavichord was obedient to a peculiarity of touch possible on no other keyboard instrument. This is described by C. P. Emmanuel Bacb in his famous essay on playing and accompaniment, entitled Versuch uber dis toahre Arl das Klavier zu spielen ("An Essay on the True Way to play Kcyboard Instruments.") It is the Bcbung (trembling), a vibration in a melody note of the same nature as the tremolo frequently employed by violin players to beighten the expressive effect; it was gained by a repeated movement of the fleshy end of the finger while the key was still held down. The Bebung was indicated in the notation by dots over the note to be affected by it, perhaps showing how many times the note sbould be repeated. According to the practice of the Bachs, as handed down to us in the above mentioned essay, great smoothness of touch was required to play tbe clavichord in tune. As with the monochord, the means taken to produce the sound disturbed the accuracy of the string measurement by increasing tension, to that a key touched too firmly in the clavichord, by unduly raising the string, sharpened the pitch, an error in playing deprecated by C. P. Emmanuel Bach. This answers the assertion whicb has been made that J. S. Bach could not have been nice about tuning when be played from preference on an instrument of uncertajn intonation.

The next instrument described by Virdung is the virginal (virgim-' alis, proper for a girl), a parallelogram in shape, having the same projecting keyboard and compass of keys the same as the clavichordium. Here we can trace derivation from the psaltery in the sound-board covering the entire inner aurface of the instrument and in the triangular disposition of the strings. The virginal in Virdung's drawing has an impossible position with reference to the keyboard, which renders its reproduction as an illustration useless. But in the next drawing, the clavicimbalum, this is rectified, and the drawing, reversed on aceount of the keyboard, can be accepted as roughly representing the instrument so called (fig. 6). There would be
no differences between it and the virginal were it not for a peculiarity of keyboard compass, which emphatically refers itself to the Italian "spinetta," a name unnoticed by-Virdung or by his countryman Arnold Schlick, who, in the same ycar 1515 , published his Spiegel der Orgelmacker (Organ-builders' Mirror), and named the clavichordium and clavicimbalum as familiar instruments. In the first place, the keybnard, beginning apparently with B natural, instead of F, makes the clavicimbalum smaller than the virginal, the strings in this arrangement being shorter; in the next place it is almost certain that the Itaiian spinet compass, beginning apparently upon a semitone, is identical with a "short measure" or "short octave" organ compass, a very old keyboard arrangement, by which the lowest note, representing B, really sounded G and C sharp in like manner \mathbf{A}. The origin of this may be deduced from the psaltery and many representations of the regal, and its object appears to have been to obtain dominant basses for cadences, harmonious closes having early been sought for as giving pleasure to the ear. Authority for this practice is to be found in Mersenne, who, in 1636 , expressly describes it as occurring in his own spinet (espinelte). He says the keyboards of the spinet and organ are the same. Now, in his Latin edition of the same wort he renders

Fig. 6.-Virdung's Clavicimbalum (Spinet), $1511:$ reversed facsimile, espinette by clavkimbalum. We read (Harmonic Universelle, Paris, 2636, liv. 3, p. 107-"Its longest string [his spinet's] is little more than a foot in length between the two bridges. It has only thirty-ane keys [marches] in its keyboard, and as many strings over its sound-board lhe now refers to the illustration], so that there are five keys bidden on account of the per-spective-that is to say, three diatonic and two chromatic 4 cintes, same as the Latin ficti], of which the first is cut into two [a divided sharp forming two keys]; but these sharps serve to go down to the third and fourth below the first step, C sol [tenor def C], in order to go as far as the third octave, for the eighteen principal steps make hut an eighteenth, that is to say, a fourth more than two octaves." The note we call F, he, on his engraving, letters as C_{1} indicating the pitch of a spinct of the second
 size, which the one described is not. The third and fourth, reached by his divided sharp, are consequeutly the lower A and \mathbf{G}; or, to complete, as he says, the third octave, the lowest note might be F , but for that he would want the diatonic semitone B, which his spinet. according to his description, did not possess. ${ }^{1}$ Mersenne's statement sufficiently proves, first. the use in spinets as well as in organs of what we now call " short measure," and, secondly. the object of divided sharps at the lower end of the keyboard to gain lower notes. He speaks of one string only to each note; unlike the double and triple strung clavichord, those instruments, clavicimbalum, spinct, or virginal, derived from the psaltery, could only present one string to the mechanical plectrum which twanged it. As regards the kind of plectra
${ }^{2}$ A. J. Ellis (History of Musical Pitch, p. 318) sees the B in Merexane's oulline diagram.
earliest used we have no evidence. The little crow-quill points project from centred tongues in uprights of wood known as " jacks" (fig. 7), which also carry tbe dampers, and rising by the depression of the keys in front, the quills set the strings vibrating as they pluck them in passing, springs at first of steel, later of bristle, giving energy to the twang and governing their return J. C. Scaliger in Poctices libri seplem (1561, p. 51. c. 1.) states that the Clavicimbalum and Harpichordum of his hoyhood are row called Spinets on account of those quill points (ab illis mucronibus), and attributes the introduction of the name " spinetta "to them (from spina, a thorn). We will leave harpichordum for the present, but the early Identity of clavicimbalum and spinetta is certainly proved. Scaliger's etymology remained unquestioned until Signor Ponsicchi of Florence discovered another derivation He found in a rare book entitled Conclusione nel suono dell' organo, di D. Adriano Banchicri (Bologna, 1608), the following passage, whieh translated reads: "Spinetta was thus named from the inventor of that oblong form, who was one Maestro Giovanni Spinetti, a Venetian; and I bave seen one of those instruments, in the possession of Francesco Stivori, organist of the magnificent community of Montagnana. within which was this inscription-Joannes Spinetes Venctrs fecit, A.D. 1 s03." Scaliger's and Banchieri's statements may be combined, as there is no discrepancy of dates, or we may rely upon whichever seems to us to have the greater authority, always bearing in mind that neither invalidates the other. The introduction of crow-quill points, and adaptation to an oblong case of an instrument previously in a trapeze form, are synchronous; but we must accept isO3 as a latedate for one of Spineti's instruments, seeing that the altered form had already become common, as shown by Virdung, in another country as early as 1511. After this date there are frequent relerences to spinets in public records and ot her documents, and we have fortunately the instruments themselves to put in evidence, preserved in public museums and in private collections. A spinet dated 1490 was shown at Bologna in 1888; another old spinet in the Conscriatoire, Paris, is a pentagonal instrument made by Francesco di Portalupis at Verona, 1523. The Milanese Rossi were famous spinet-makers, and have been accredited (La Nobilild di lrilano, 1595) with an improvement in the form which we believe was the recessing of the keyhoard, a feature which had previously entirely projected; by the recessing a greater width was ohtained for the sound-board. The spinets by Annibale Rosso at South Kensington, dated respectively 1555 (fg. 8) and 1577, show this

Fic. 8.-Milanese Spinetta, by Annibale Rosso, 1555; South Kensington Museum.
alteration, and may be compared with the older and purer form of one, dated s 68 , by Marco Jadra (also known as Marco " dallic spinette," or "dai cembali"). Besides the pentagonal spinet, there was an heptagonal variety; they bad neither covers nor stands, and were often withdrawn from decorated cases when required for periormance. In other instances, as in the 1577 Rosso spinet, the case of the instrument itself was richly adurned. The apparent compass of the keyboard in Italy generally exceeded four octaves by a semitone, E to F; but we may regard the lowest natural key as usually C , and the lowest sharp key as usually D , in these instruments, according to" short measure."
The rectangular spinet, virdung's " virginal," early assumed in Italy the fashion of the large "cassoni" or wedding chests. The oldest we know of in this style, and dated, is the fine specimen belonging to M. Terme which Cawoth figures in L^{\prime} Axt decoralif (6g. 9). Virginal is not an Italien pame;
the rectangular inatrument in Italy is "spinetta tavola." In Enghad, from Henry VII. to Charles II., all quilled instruments (stromentidi penna), without distinction as to form, were known as virginals. It was a common name, equivalent to the contemparary Italian clavicordo and Flemish dasisinged. From the later, by apocope, we arrive at the French clavecio-the French clarier (clapis, a key), a keyboard, being in its turn adopted by the Germans to denote any keyboard stringed instrument.

Fic. 9.-Spinetta Tavola (Virginal), 1568 ; Vict. and Albert Museum.
Mersenne (op. cil., liv. iii., p. 158) gives three sizes for spinets -one $2!\mathrm{ft}$. wide, tuned to the octave of the "ton de chapelle" (in his day a half tone above the present English medium pitch), one of $3 \frac{1}{2} \mathrm{ft}$. tuned to the fourth below, and one of s f.tuned to the octave below the first, the last being therefore tuned in unison to the chapel pitch. He says his own spinet was one of the smallest it was customary to make, but from the lettering of the keys in his drawing it would have been of the second size, or the spinet tuned to the fourth. The octave spinct, of trapeze form, was known in Italy as "ottavina" or "spinetta di serenata." It had a less compass of keys than the larger instrument, being apparently three and two-third octaves, E to Cwhich by the "short measure" would be four octaves, C to C . We learn from Praetorius that these little spinets were placed upon the larger ones in performance; their use was to heighten the brilliant effect. In the double rectangular clavisingel of the Net herlands, in which there was a movable octave instrument, we recognize a similar intention. There is a fine spinet of this

Fic. 10.-English Spinet (Spinetta Traversa), by Carolus Haward. About 1668.
kind at Nuremberg. Praetorius illustrates the Italian spinet by a form known as the "spinetta traversa," an approach towards the long clavicembalo or harpsichord, the tuning pins being immediately over the keyboard. This transposed spinet, more powerful than the old trapeze one, became fashionable in England after the Restoration, Haward, Keene, Slade, Player, Baudin, the Hitchcocks, Mahoon, Haxby, the Harrir family, and others
having made such "spinets" during a period for which we have dates from 1664 to 1784 . Pepys bought his "Espinette" from Charles Haward for f5, July 13, $^{2} 664$.

The spinets of Keene and Player, made about 1700, have frequently two divided sharps at the bass end of the keyboard, as in the description by Mersenne, quoted above, of a spinet with short measure. Such divided sharps have been assumed to be quarter tones, but enharmonic intervals in the extreme bass can have no justification. From the tuning of Handel's Italian clavichord already mentioned, which has this peculiarity, and from Practorius we find the further halves of the two divided sharps were the chromatic semitones, and the nearer halves the major thirds below i.e. the dominant fourths to the next natural keys. Thomas Hitchcock (for whom there are dates 1664 and 1703 written on keys and jacks of spinets bearing Edward Blunt's name and having divided bass sharps) made a great advance in constructing spinets, giving them the wide compass of five octaves, from G to G, with very fine keyboards in which the sharps were inlaid with a slip of the ivory or ebony, as the case might be, of the naturals. Their instruments, always numbered, and not dated as has been sometimes supposed, became models for contemporary and subsequent English makers.

We have now to ask what was the dificrence beween Scaliger's harpichordum and his clavicymbal. Galilei, the father of the astronomer of that name (Dialogo della musica antica e moderna, Florence, 1581), says that the harpichord was so named from having resembled an " arpa giacente,". a prost rate or "couched" harp, proving that the clavicymbal was at first the trapeze-shaped spinet; and we should therefore Marpacianti differentiate herpichord and clavicymbal as, in form,
suggested by or derived from the harp and psaltery, or from a "testa di porco" and an ordinary trapeze psaltery. We are Inclined to prefer the latter. The Latin name "clavicymbalum," having early been replaced by spinet and virginal, was in Italy and Frence bestowed upon the long harpichord, and was continued as clavicembalo (gravecembalo, or familiarly cembalo only) and clavecin. Much later, after the restoration of the Stuarts, the first name was accepted and naturalized in England as harpsichord, which we will define as the long instrument with quills, shaped like a modern grand piano, and resembling a wing, from which it has gained the German appellation "Flugel." We can point out no long instrument of this kind so old as the Roman cembalo at South Kensington (fig. II). It was made by Geronimo of Bologns in 1521, two years before the Paris Porta. lupis spinet. The outer case is of finely tooled leather. It has a spinet keyboard with a compass of nearly four octaves, E to D. The natural keys are of boxwood, gracefully arcaded in front. The keyboard of the Italian cembalo was afterwards carried out to the normal four octaves. There is an existing example, dated 1626, with the bass keys carried out without sharps in long measure (unfortunately altered by a restorer). It is surprising to sce with what steady persistence the Italians adhered to their original model in making the instrument. As late as the epoch of Cristofori, ${ }^{1}$ and in his 1722 cembalo at Florence? we still find the independent outer case, the single keyboard, the two unisons, without power to reduce to one by using stops The Italians have been as conservative with their forms of spinet, and are to this day with their organs. The stanting "piano e forte" of 1598 , brought to light from the records of the house of D'Este hy Count Valdrighi of Modena, ${ }^{2}$ after much consideration and a desire to find in it an anticipation of Cristofori's subsequent invention of the pianoforte, we are disposed to regard as an ordinary cembalo with power to shift, by a stop,
${ }^{\text {i }}$ In the harpsichord Cristofori made for Prince Ferdinand dei Medici in 1702, recently acquired by Mr Stcarns, of Detroit, and presented by him to the University of Michigan, U.S.A., there are three keyboards, thus arranged: 1st, highest loeyboard, octave string only; 2nd; middle, octave and first unison; 3 rd, lowest, both unisons. A harpsichord similarly designed with three kexboards: inscribed "Vincentius Sodi Florentinus Fecit. Anno Domini 1779." was presented by Mrs J. Crosby Brown to the Melropolitan Museum, New York.
${ }^{2}$ In the Kraus Museum Catalogue (1901). No. 559.
${ }^{3}$ Sec Van der Straeten, vi. 122.
from two unisons (forte) to one string (piano), at that time a Flemish practice, and most likely brought to Italy by one of the Flemish musicians who founded the Italian school of composition. About the year 1600 , when accompaniment was invented for monody, large cembalos were made for the orchestras to bring out the bass part, the performer standing to play. Such an
"Two fair pair of new long Yirginalls made harp-fashion of Cipres, with keys of ivory, having the King's Amms erowned and supported by his Grace's beastes within a garter gilt, standing over the keys."

We are disposed to believe that we have here another double keyboard harpsichord. Rimbault saw in this an upright instrument, such as Virdung's clavicytherium (6g. 12). Having since seen the one in the Kraus Museum, Florence, it seems that Virdung's drawing should not have been reversed; but he has mistaken the wires acting upon the jacks for strings, and omitted the latter stretched horizontally across the soundboard (see Clavicytheriun). We read in an inventory of the furniture of Warwick Castle, 1584 , " a faire paire of double virginalls," and in the Hengrave inventory, 1603, "one great payre of double virginalls." Hans Ruckers, tbe great clavisingel maker of Antwerp, lived too late to have invented the double keyboard and stops, evident adaptions from the organ, and the octave string (the invention of which was so long attributed to him), which incorporated the octave spinct with the large instrument, to be henceforth playable without the co-operation of another performer, was already in use when he began his work. Until the last harpsichord was made by Joseph Kirkman, in $\mathbf{1 7 9 8}$, scarcely an instrument of the kind was constructed, except in Italy, without the
insfrument was called " archicembalo," a name also applied to a large cembalo, made by Vito Trasuntino, a Venetian, in 1606, intended by thirty-one keys in each of its four octaves-one hundred and twenty-five in all-to restore the three genera of the ancient Greeks. How many attempts have been made before and since Trasuntino to purify intonation in keyboard instruments by multiplying keys in the octave? Simulaneously with Father Smith's well-known experiment in the Temple organ, London, there were divided keys in an Italian harpsichord 10 gain a separate G sharp and A llat, and a separate D sharp and E flat.

Double keyboards and stops in the long cembalo or harpsichord came into use in the Nethetlands early in the 16th century. We find them imported into England. The following citations, quoted by Rimbault in his History of the Pianoforte, but imperfectly understood by him, are from the privy purse expenses of King Henry VIII., as extracted by Sir Harris Nicolas in 1827.

${ }^{1 \prime}{ }^{1530}$ (April) Item the vj daye paied to William Lewes for ii payer of virginalls in one coffer with iiii stoppes brought to Grenewiche iii ll. And hor ii payer of virginalls in one coffer. brought to the More other iii li."

Now the second instrument may be explained, virginals meaning any quilled instrument, as a doubie spinet, like that at Nuremberg by Martin van der Beest, the octave division being movable. But the first cannot be so expiained; the four stops can only belong to a harpsichord, and the two pair instrument to a doublekeyed one, one keybourd being over, and not by the side Fic. 12.-Virdung's Clavicy- of the other. Again from the therium (upright Harpsichord), inventory after the king's 1511 ; (reversed facsimie). inventory after the King's
death (sce Brit. Mus. HarL. MS. 1419) fol. 247-
${ }^{2}$ Invented by Nicola Vicentiso; see L'Antica musica ridofto alla moderne praltice (Rome, 1555).
octaves. The harpsichord as known throughout the 18th century, with piano upper and forte lower keyboard, was the invention of Hans Ruckers's grandson, Jean Ruckers's nepbew, Jan Couchet, about 1640. Before that time the double keyboirds in Flemish harpsichords were merely a transposing expedient, to change the pitch a fourth, from plagal to authentic and vice versa, while using the same groups of keys. Fortunately there is a harpsichord existing with double keyboards unaltered, date 1638, belonging to Sir Bernard Samuclson, formerly in the possession of Mr Spence, of Florence, made by Jean Ruckers, the keyboards being in their orizinal position. It was not so much invention as beauty of tone which made the Ruckers' harpsichords famous. The Ruckers harpsichords in the 18 ch century were fetching such prices as Bologna lutes did in the 17 th or Cremona violins do now. There are still many specimens existing in Bclgium, France and England. Handel had a Ruckers harpsichord, now in Buckingham Palace; it completes the number of sixty-ihree existing Ruckers instruments catalogued in Grove's Dictionary of Music and Musicians.

After the Antwerp make declined, London became preeminent for harpsichords-the representative makers being Jacob Kirckmann and Burckhard Tschudi, pupils of a Flemish master, one Tabel, who had settied in London, and whose business Kirckmann continued through marriage with Tabel's widow. Tschudi was of a noble Swiss family belonging to the canton of Glarus, According to the custom with foreign names obtaining at that time, by which Haendel became Handel. and Schmidt Smith, Kirckmann dropped his final n and Tsebudi became Shudi, but he resumed the full spelling in the facies of the splendid harpsichords be made in 1766 for Frederick the Great, which are suill preserved in the New Palace, Potsdam. By these great makers the harpsichord became a larger, beavierstrung and more powerful instrument, and fancy stops were added to vary the tone cffects. To the three shifting registers of jacks of the oclave and first and sccond unisans were added the " lute," the charm of which was due to the favouring of high harmonics by plucking the strings close to the bridge, and the "harp." a surding or muting effect produced by impeding the vibration of the strings by contact of small pieces of buff leather. Two pedals were also used, tbe left-hand one a combination of a unison and lute. This pedal, with the "machine" slop, reduced the upper keyboand to the lute register, the plectia of which acted upon the strings near tbe wrest-plank bridge
oaly; the lower beyboard to the socoud unison. Releasing the machine stop and quitting the pedal restores the first unison on both keyboards and the octave on the lower. The right-hand pedal was to raise a hinged portion of the top or cover and thus gain some power of "swell" or crescendo, an invention of Roger Plenius, ${ }^{1}$ to whom also the harp stop may be rightly attributed. This ingenious harpsichord maker had been stimulated to gain these effects by the nascent pianoforte which, as we shall find, he was the first to make in England. The first idea of pedals for the harpsichord to act as stops appears to have been John Hayward's (PHaward) as early as 1676 , as we learn from Mace's Musick's Honumcut, p. 235. The French makiers preferred a kind of knee-pedal arrangement, known as the "genouillère," and sometimes a more complete mnting by one long strip of bulf leather, the "sourdine." As an improvement upon Plenius's clumsy swell, Shudi in 1769 patented the Venctian swell, a framing of louvres, like a Venetian blind, which opened by the movement of the pedal, and becoming in England a favourite addition to harpsichords, was early transferred to the organ, in which it replaced the rude " nag's-head" swell. A French harpsichord maker, Marius, whose name is remembered from a futile attempt to design a pianoforte action, invented a folding harpsicbord, the "clavecin brise," hy which the instrument could be disposed of in a smaller space. One, which is preserved at Berlin, probably formed part of the camp baggage of Frederick the Great.
It was formerly a custom with kings, princes and nobles to keep large collections of musical instruments for actual playing purposes, in the domestic and restive music of their costoforps courts. There are records of their inventories, laventom and it was to keep such a collection in playing order of the Phareforte. pacolorto harpsichord maker, Bartolommeo Cristofori, the man of genius who invented and produced the pianoforte.' We fortunately possess the record of this invention in a literary form from a well-known writer, the Marchese Scipione Maffei; his description appeared in the Giornale dei leferati d'latia, a publication conducted by Apostolo Zeno. The date of Naffei's paper was 1721. Rimbault reproduced it, with a technicesly imperfect translation, in his History of the Pionoforte. We learn from it that in 1709 Cristofori had cormpleted four "gravecembali col piano e forte"-keyedpalteries with soft and loud-three of them being of the long or usual harpsichord lorm. A synonym in Italian for the original cembalo (or psaleery) is " zaterio," and if it were struck with hammers it became a "sallerio tedesco" (the German hackbrety, or chopping board), the latter being the common dulcimer. Now the first notion of a pianoforte is a dulcimer with keys, and we may perhapa not be wrong in supposing that there had been many attempts and failures to put a keyboard to a dulcimer or hammers to a harpsichord before Cristofori successfilly solved the problem. The sketch of his action in Maffei's essay shows an incomplete stage in the invention, although the kernel of it-the prinelple of escapement or the controlled rebound of the hammer-is already there. He obtains it by a centred lever (ling wello mobize) or hopper, working, when the ley is depressed by the touch, in 2 small projection from the centrod hammer-butt. The seturn, governed by a spring, must have been uncertalin and incapable of further regulatiog than could be abtained by modifying the strength of the apring.
${ }^{2}$ Mace deacribes a primitive smell contrivance for an organ 65 yeure trefore Plenius took out his pateut (1741).
*The invention of the piano by Cristofori, and him alone, is now pase discumeion. What in still required to satisfy curiosity would be the discovery of a Fort Bien or Frederici square piano, said to antedate by a year or two Zumpe's invention of the instrument in London. Tbe name Fort Bien was derived. consciously or unconsciously, from the Saxom Cerman peculiarity of interchanging B and P. Among Mozart's effects at the tirme of his death wha a Forle:Biano mif Padal (see Vietrehnter jahrlicker Bericht des Mozarteum.:"Solzburg;" Dec. 19, 179I). Abo wanted is the "old movement", for the bong or ecrend pranos, sometimes quoted in the Broadwood day-books of the last quarter of the IBth century with reference to the displacement by the Backers English action.

Morcover, the hammer had each time-to be raibed the entire distance of its fall. There are, however, two pianotortes by Cristofori, dated repectively 1720 and 1726 ; which show a much improved, we may even say a perfected, construction, for the whole of an essential piano movement is there. The earlier instrument (now in the Metropolitan Museum, New York) has undergone considerable restoration, the original hotiow hammer-head having been replaced by a modern one, and the hammer-butt, instead of being centred by meants of the holes provided by Cristofori blmself for the purpose, having been lengthened by a leather hinge screwed to the block; ${ }^{4}$ but the 1726 one, which is in the Kraus Museum st Florence, retains the original leather hammer-heads. Botb iostruments possess alike a contrivence for delermining the radius of the hopper, and both have been unexpectedly found to have the "check" (Ital. paramortello), which regulates the fall of the hammer according to the strength of the blow which has impelved it to the strings. After this discovery of the actual instruments of Cristofori there can be no longer doubt as to the attribution of the invention to him in its initiation and its practical completion with escapement and check. To Cristofori we are indebted, not only for the power of playing piano and forta, but for the infinite variations of tonc, or nuances, which render the instrument so delightful.
But his problem was not solved hy the devising of a working action; there was much more to be done to instal the pianoforte as a new musical instrument. The resonance, that most sublle

Fig. 13--Cristofori's Escapement Action, 1720. Rebored in 1875 by Cesare Ponsicchi.
and yet all-embracing factor, had been experimentally developed to a certain perfection by many gencrations of spinet and harpaichord makers, but the resistance structure had to be thought out again. Thicker stringing, rendered indispensable to withstand even Cristofori's light hammers, demanded in its turn a strooger traming than the harpsichord had necded. To make his structure firm he considerahly increased the strength of the block which bolds the tuningpins, and as he could not do so without materially adding to its thickness, be adopted the bold expedient of inverting it; driving his wrest-pins, harp-fashion, through it, so that tuning was effected at their upper, while the wires were altached to their lower, ends. Then, to guarantee the security of the case, he ran an independent string-block round it of stouter wood than had been used in

Fic. 14.-Criatofori's Piano o Forte, 1726; Kraus Museum, Florence.
harpsichords, in which biock the hitch-pins were driven to hold the farther ends of the strings, which were spaced at ${ }^{2}$ Cotamunicated by Baron Alexander Kraus (May 1908).
equal distances (unlike the harpsichord), the dampers lying betwoen the pairs of unisogs.

Cristofori died in 1731 . He had pupils, but did not found a school of Italian pianoforte-making, perhape from the peculiar Italian conservatism in musical instruments we have already remarked upon. The essay of Scipione Meffei was transhated into German, in 1725, by Konig, the court poet at Dresden, and friend of Gottfied Silbermann, the renowned organ builder and harpsichord and clavichord maker.? Incited by this publication, and perhaps by baving seen in Dreaden one of

Cristofori's pianofortcs, Silbermann appears to have taken up the new instrument, and in 1726 to have manufactured two, which J. S. Bach, according to his pupil Agricola, pronounced failures. The trebles were too weak; the touch was too heavy. There has long been another version to this story, viz. that Silbermann borrowed the idea of his action from a very simple model contrived by a young musician named Schroeter, who had left it at the electoral court in 1731 , and, quitting Saxony to travel, had not efterwards claimed it. It may be so; but Schroeter's letter, printed in Mitzler's Bibliofhek, dated 1738, is not supported by any other evidence then the recent discovery of an altered German harpsichord, the hammer action of which, in its simplicity, may bave been taken from Schroeter's diagram, and would sufficiently account for the condemation of Silbermann's earliest pianofortes if be had made use of it. In either case it is easy to distinguish between the lines of Scbroeter's interesting communications (to Mitzler, and later to Marpurg) the bitter disappointment he felt in being left out of the practical development of so important an Instrument.
But, whatever Silbermann's first experiments were based upon, it was ascertained, by the investigations of A. J. Hipkins, that he, when successiul, adopted Cristofori's pianoforte without further alteration than the compass and colour of the keys and the atyle of joinery of the casc. In the Silbermann grand pianofortes, in the three palaces at Potsdam, known to have been Frederict the Great's, and to have been acquired by that monarch prior to J. S. Bach's visit to him in 1747, we find the Cristofori framing, stringing, inverted wrest-plank and action complete. Fig. 15 represents the instrument on which J. S. Bach played in the Town Palace, Potsdam.

Fic. 15.-Silbermann Forte Piano; Stadtschloss, Potsdam, 1746.

Mahillon of Brussels, however, aequinad a Frederici "uprithe grand " piano, dated 1745 (fis, 16). In Erederici's upright grand action we have not to do with the ideas of either Cristofori or Schrocter; the movement is practically identical with the hnmmer action of a Cerman clock, and has its counterpart is a piano at Nuremberg; fact which needs further elucidation. We note here the carliest cxample of the leather hinge, afterwards so common in piano actions and only now going out of use. Where are we to look for Schrocter's copyist if not found in Silbermann, Frederici, or, as we shall presently see, perhaps J. G. Wagner? It might be in the barpsichord we have mentioned, which, made in 1712 hy one Brock for the elector of Hanover (afterwards George I. of England), was hy him presented to the Protestant pastor of Schulenberg, near Hanover, and has since been. rudely altered into a pianoforte (fig. 17). There is an altered harpaichord in the museum at Basel which appears to have been no more successful. But an attempted combination of harpsichord and pianoforte appears as a very carly intention. The English poet Mason, the friend
 of Gray, bought such an instrument at Hamburg in 1755, with " the clevereat mechanism imaginable."
It was only under date of 1763 that Schroeter ' published for the first time a diagram of his pro-

Fig. 16.-Frederici's Upright Crand Piano Action, 1745 . In the museum of the Bruselo Conservatoire.

Fic. 17.-Hammer and Lifter of altered Harpaichord by Brock. Instrument in tbe collection of Mr Kendrick Pyoe, Manchester. posed invention, designed more than torty years before. It appeared in Marpurg's Kritische Briefe (Berlin, 1764). Now, immediately after, Johana Zumpe, a German in London, who Sethoeter, had been one of Shudi's workmen, invented or introduced (for there is some tradition that Mason had to do with the invention of it) ${ }^{4}$ a square piano, which was to become the most popular domestic instrument. It would seem that Zumpe was in fact not the inventor of the square piano, which appears to have been well known in Germany before his date, a discovery made by Mr George Rose. In Paul de Wit's Musical Instrument Museum-formerly in Lelprig, now transferred to Cologne-there is a small square piano, 27 in. long, to in. wide and 4를 in. bigh, baving a contracted keyboard of

It has been repeatedly stated in Germany that Frederici, of Gerz in Saxony, an organ hulider and musical instrument
Pruberta maker, invented the square or table-shaped plano, the "fort bien," as he is said to have called it, about 1758-1760. No square piano by this maker is forthcoming, though an "upright grand" piano, made by Domenico del Mels in 1739, with an action adapted from Cristofori's has been discovered by Signor Ponsicchi of Florence. Victor
${ }^{15}$ See Cemare Ponsicchi, Il Pianoforte, sua origine e suiluppo (Florvince, 1876), p. 37.

[^49]3 octaves and 2 notes. The action of this small instrument is practically identical in every detail with that of the square pianofortes made much later by Zampe (Paul de Wit, Kalalag des musihhistorischen Musemms, Leipaig. 1903. No. 55, illustration, p. 38). Inside is inscribed: " Friedrich Hildebrandr, Instrumentenmacher in Leipalg, Quergasse;" with four figures
${ }^{2}$ For arguments in favour of Schroeter's claim to the invention of the pianoforte see Dr Oscar Paul, op. cil. Pp. 85-104, who was answered by A. J. Hipkins in Grove's Dich of $1 / \mathrm{msic}$ and Musicians.
"Mason reafly invented the "celestina" (known as Adam Walker's patent No. 1020), as we know from the correspondence of Mery Granville. Under date of the inth of January 1775 she des cribes this invention as a short hafpsichord 2 ft . long, but played with the right hand only. The left hand controlled a kind of violinbow, which produced a charming sostintente, in chartcter of tope between the violin tone and that of musical glasees.
almost illeapible. Peul de Wit refers the instrument to the middle of the r8th century. It has all the appearance of being a reduced copy of a well-established type, difiering very little from the later models, except that it has no dampers. It seems probable that this small instrument is a converted clavichord, and that the action may have been suggeated by Schroeter's model, left in 1721 at the Efectoral Court of Saxony. Bumey tells us all aboat Zumpe; and his instruments still existing would fix the date of the first at about 1765 . Fetis narrates, however, that he began the study of the piano on a square piano made by Zumpe in ryos. In his simple "old man's head" action we have the nearest approach to a realization of Schroeter's simple iden. It will be observed that Schroeter's damper would atop all vibration at once. This defect is overcome by Zumpe's "mopstick" damper.

Another piano action had, however, come into use about that time or even earlier in Germany. The discovery of it in the soner. stmplest form is to be attributed to V. C. Mahillon, who found it in a square piano belonging to Henri Cosselin, painter, of Brussels. The principle of this action is that which was later perfected by the addition of a good eseapement by Stein of Augsburg, and was again later experimentéd

Fig. 18.--Schrocter's Model Ior an Action, 1721.
upoin by Sebastian Erard. Its origin is perhaps due to the contrivance of a piano action that should suit the shallow clavichord and permit of its transformation into a square piano; transformation, Schroeter tells us, had been going on when he

Fic. 19.-Zumpe's Square Piano Action, 1766.
wrote his complaint. It will be observed that the hammet is, as compared with other actions, reversed, and the axis rises with the key, necessilating a fixed means for raising the hammer, in this action effected by a rell against which the hammer

Fic. 20.- Old Piano Action on the German principle of Escapement. Square Piano belonging to M. Gosetin, Brussels.

Is jerked up. It was Stein's merit to graft the hopper principie upon this simple action; and Motart's approbation of the invention, when he met with it at Aussburg in 1777, is expressed in a well-known letter addressed to his mot her. No more "blocking " of the hammer, destroying all vibration, was henceforth to vex his mind. He had found the instrument that for the rest of his short life replaced the harpsichord. V. C. Mahillon secured for his muscom the only Johann Aodreas Stein piand which
is known to remain. It is from Augsburg, dated 1780, and has Stein's excapement action, two unisons, and the knee pedal, then and later common in Germany.

Mozart's own grand piano, preserved at Saleburg, and the two grand planos (the latest dated 1790) by Huhn of Berlin. preserved at Berlin and Charlottenburg, because they had

F10. 21.-Stein's Action (the earlient so-called Viensest), 1780. belonged to Queen Luise of Prussia, follow Stein in all particulara. These instruments have three unisons upwards, and the muting movement known as caleste, which no doubt Stein had also. The wrest-plank is not inverted; nor is there any imitation of Cristoford. We may regard Stein, coming after the Seven Years' War which had devastated Saxony, as the German reinventor of the grand piano. Stein's instrument was accepted as a model, as we haveseen, in Berlin as well as Vienna, to which city his business was transferred in 1794 by his daughter Nanctte, known as an accomplished pianist and Iriend of Beethoven, who at that time used Stein's pianos. She had her hrother in the business with her, and had already, in 1793 , married J. A. Streicher, a pianist from Stuttgart, and distinguished as a personal friend of Schiller. In 1802, the brother and sister dissolving partnership, Streicher began himself to take his full share of the work, and on Stein's lines improved the Viennese instrument, so popular for many ycars and famous for its lightness of touch, which contributed to the special character of the Viennese school of pianoforte playing. Since 1862, when Steinway's example caused a complete revolution in German and Austrian pinno-making, the old wooden cheap grand piano has died out. We will quit the carly German piano with an illustration (fig. 22) of an early square piano

Fic. 22.-German Square Action, 1783. Piano by Wagner,
action in an instrument made by Johann Gottlob Wagner of Dresden in 1783. This interesting discovery of Mahillon's introduces us to a rude imitation (in the principle) of Cristofori, and it appears to have no relation whatever to the clock-hammer motion seen in Frederici's.

Burney, who lived through the period of the displacement of the harpsichord by the pianoforte, is the only authority to whom we can refer as to the introduction of the latter instrument into England. He tells us,' in his gossiping way, The prasothat the first hammer harpsichord that came to forto H_{m} England was made by an English monk at Rome, Eactua a Father Wood, for an English gentleman, Samuel Crisp of Chesington; the tone of this instrument was superior to that produced by quills, with the added power of the shades of piono and forke, so that, although the touch and mechanism were $s 0$ imperfect that nothing quick could be executed upon it, yet in a slow movement like the "Dead March" in Sayp it encited wonder and delight. Fulke Greville afterwards bought this instrument for 100 guineas, and it remained unique in England for several years, until Plentus, the inventor of the lyrichord, made a pianofortc in imitation of it. In this instrument the touch was better, but the tone was inferior. We have no date for Father Wood. Plenius produced his lyrichord, a sostementa

[^50]harpsichord, in 1745. When Mason imported a pianoforte in 1755, Fulke Greville's could bave been no longer unique. The Italian origin of Father Wood's piano points to a copy of Cristofori, but the description of its capabilities in no way confirms this supposition, unless we adopt the very possible theory that the instrument had arrived out of order and there was on one in London who could put it right, or would-perhaps divine that it was wrong. Burney further tells us that the arrival in London of J. C. Bach in 1759 was the motive for several of the secondrate harpsichord makers trying to make pianofortes, but with no particular success. Of these Americus Backers (d. 1776), socterth said to be a Dutchman, appears to have gained the first place. He was afterwards the inventor of the so-cabed English action, and as this action is based upon Cristofori's we may suppose he at first followed Silbermann in

Fro. 23.-Grand Piano Action. 1776. The "English" action of Americus Backers.
copyling the original inventor. There is an old play-bill of Covent Garden in Messrs Broadwood's possession dated the 16th of May 1767, which has the following announcement:-
"End of Act 1. Miss Brickler will sing a favourite song from Judih, accompanied by Mr Dibdin on a new instrument call'd Piano Forte."

The mind at once reverts to Backers as the probable maker of this navelty. Backers's "Original Forte Piano" was played at the Thatched House. in St James's Street London, in 1773. Ponsicchi has found a Backers grand piano at Pistoria, dated that year. It was Backers who produced the action continued in the direct principle hy the firm of Broadwood, or with the reversed lever and hammer-butt introduced by the firm of Collard in 1835 .

The escapement lever is suggested by Cristofori's first action, to which Backers has added a contrivance for regulating it by means of a button and screw. The check is from

Broetwroeds

 ctotarts Cristofori's second action. No more durable action has been constructed, and it has always been found equal, whether made in England or abroad, to the demands of the

Fic. 24--Broadwood's Grand Piano Action, 1884 . English direct mechanism.
most advanced virtuosi. John Broadwood and Robert Stodart were friends, Stodart having been Broadwood's pupil; and they
were the ascistants of Backers in the installation of his inveation On his deathbed be commended it to Broadwood's care, but Stodart appears to have been the first to advance it-Broadwood being prohably held back hy his partnership with his brother-in-law, the son of Shudi, ia the harpsichord business. (The elder Shudi had died in 1773.) Stodart soon made a considerable reputation with his "grand" pianofortes, a designation he was the first to give them. In Stodart's grand piano we first find an adaptation from the lyrichord of Plenius, of sted arches between the

Fig. 25.-Collard's Grand Piano Action. 1884. English action with reversed hopper and conirivance for repetition added.
wrest-plank and belly-rail, bridging the gap up which the hammers rise, in itsclf an important cause of weakness. These are not found in any contemporary German instruments, but may have been part of Backers's.

Imitation of the harpsichord by "octaving" was at this time an object with piano makers. Zumpe's small square piano bad met with great succcess; be was soon enahled to retire, and his imitators, who were legion, continued his model with its hand stops for the dampers and sourdine, with litule change but that which straightened the keys from the divergences inherited from the clavichord. John Broadwood took this domestic instrument first in hand to improve it, and in the year 1780 succeeded in entirely reconstructing it. He transierred the wrest-plank and pins from the right-hand side, as in the clavichord, to the back of the case, an improvement universally adopted after his patent, No. 1379 of 1783, expired. In this patent we first find the damper and piano pedals, since universally accepted, but at first in the grand pianofortes only. Zumpe's action remaining with an altered damper, another inventor, John Geib, patented (No. 157 I of 1786) the hopper with two scparate escapemeats, one of which soon became adopted in the grasshopper of the square piano, it is believed by Geib himself; and Petzold, a Paris maker, appears to have taken later to the escapement effected upon the key. We may mention here that the square piano was developed and continued in England until about the year 1860, when it went out of fashion.
To return to John Broadwood-having launched his reconstructed square piano, he next turned his attention to the grand piano to continue the improvement of it from the point where Backers had left it. The grand piano was in framing and resonance entirely on the harpsichord principle, the sound-board hridge being still continued in one undivided length. The strings, which were of brass wire in the bass, descended in notes of three unisons to the lowest note of the scale. Tension was left to chance, and a reasonable striking line or place for the hammers was not thought of. Theory requires that the notes of octaves should be multiples in the ratio of i to 2 , by which, taking the trehle clef C at one foot, the lowest F of the fiveoctave scale would require a vibrating length between the bridges of 12 ft . As only half this length could be conveniently afforded, we see at once a reason for the abiove-mentioned deficiencies. Only the three oetaves of the treble, which had lengths practically ideal, could be tolerably adjusted. Then the striking-line, which should be at an cightb or not less than a ninth or teath of the vibrating length, and had never been cared for in the harpsichord, was in the lowest two octaves out of all proportion, with corresponding disadvantage to the tone. John Broadwood did not venture alone upen the path
semarda rectifythy these faults. Fe called in the aid of professed men of science-Tiberius Cavallo, who in 1788 published his calculatioas of the tension, and Dr Gray, of the British Museum. The problem was solved by dividing the sound-board bridge, the lower half of which was advanced to carry the bass strings, which were still of brass. The first attempts to equalize the tension and improve the striking-place were here set forth, to the great advantage of the instrument, which in its wooden construction might now be considered complete. The greatest pianists of that epoch, except Mozart and Beethoven, were assembled in London-Clementi, who first gave the pianoforte its own character, raising it from being a mere variety of the harpsichord, his pupils Cramer and for a time Hummel, later on John Field, and also the brilliant virtuosi Dussek and Steibeit. To pleaso Dussek, Broadwood in 179 r carried his five-octave, F to F, keyboard, by adding keys upwards, to five and a half octaves, F to C. In 1794 the additional bass half octave to C, which Shudi had first introduced in his double harpsichords, was given to the piano. Steibelt, while in England, instituted the familiar signs for the employment of the pedals, which owos its charm to excitement of the imagination instigated by power over an acoustical phenomenon, the sympathetic vibration of the strings. In 1799 Clementi founded a pianoforte manufactory, to be subsequently developed and carried on by Messrs Collard.

The first square piano made in France is said to have been constructed in 2776 by Sebastian Erard, a young Alsatian. erand. In 1786 he came to England and founded the London menufactory of harpe and pianofortes bearing his name. That iniment mechanician and inventor fs said to have at first adopted for his pianos the English models.

Fic. 26.-Erard's Double Escapement Action, 1884 The double escapement or repetition is effected by a speing in the balance pressing the hinged lever upwards, to allow the hopper which delivens the blow to return to its position under the nose of the hammer, before the ley has risen again.
However, in 1794 and 1801 , as is shown by his patents, he was certainly engaged upon the elementary action described as appertaining to Cosselin's piano, of probably German origin. In his long-continued labour of inventing and constructing a double escapement action, Erard appears to have sought to combine the English power of gradation of tone with the German lightness of touch. He took out his first patent for a "repetition" action in 1808, claiming for it" the power of giving repeated strokes without missing or failure, by very small angular motions of the key itself." He did not, however, succeed in producing his famous repetition or double escapement sction until 1821 ; it was then patented by his nephew Pierre Erard, who, when the pateat expired in England in 1835, proved a loss from the difficulties of carrying out the invention, which induced the Howse of Lords to grant an extension of the patent.

Erard invented in 1808 an upward bearing to the wrest-plank bridge, by means of agraffes or studs of metal through holes in which the stringa are made to pass, bearing against the upper side. The wooden bridge with down-bearing strings is clearly not in relation with upward-striking hammers, the tendency of which must be to raise the strings from the bridge, to the detriment of the tone. A loag brass bridge on this principle
was introduced by William Stodart in 1822. A pressurebar bearing of later introduction is claimed for the French maker, Bord. The first to see the importance of iron sharing with wood (ultimately almost supplanting it) in pianoforte framing was a native of England and a civil engineer by profession, John Isaic Hawkins, known as the Howhiane inventor of the ever-pointed pencil. He was living at Philadelphia, U.S.A., when he invented and first produced the familiar

Fic. 27.-Steiaway's Grand Piano Action, 1884. The double escapement as in Erard's, but with shortened balance and usual check.
cottage pianoforte-"portable grand" as he then called it. He patented it in America, his father, Isasc Hawkins, taking out the patent for him in England in the same year, 1800. It will be observed that the illustration here given (fig- 28) represents a wreck; but a draughtsman's restoration might be open to question.

There had been upright grand pianos as well as upright harpsichords, the horizontal instrument being turned up upon its wider end and a keyboard and action adapted to it. William Southwell, an Irish piano-maker, had in 1798 tried a similar experiment with a square piano, to be repeated in later years by W. F. Collard of London; but Hawkins was the first to make a piano, or pianino, with the strings descending to the floor, the keyboard betng raised, and this, although at the moment the chief, was not his only merit. He anticipated nearly every

Fig. 28.-Hawkins's Portable Grand Piano, 1800. An uprighl instrument, the original of the modern cottage piano or pianino. In Messrs Broadiwood's museam and unrestared.
discovery that has since been introduced is novel. His instrument (fig. 28) is in a complete iron irame, independent of the case; and in this frame, strengthened by a system of inop resistance rods combined with an iron upper bridge, his soundboand is entircly suspended. An apparatus for tuning by mechanical screws regulates the tension of the strings, which are of equal length throughout. The action, in metal supports, anticipates Wornum's in the checking, and still later ideas in a contrivance for repetition. This remarkable bundle of inventioas was brought to London and exhibited by Hawkins himself:
but the instrument being poor in the tone failed to bring him pecuniary reward or the credit he deserved. Southwell appeary to have been one of the first to profit by Hawkins's ideas by bringing out the high cabinet pianoforte, with hinged sticker action, in 1807. All that he could, however, patent in it was the simple damper action, turning on a pivot to relieve the dampers from the strings, which is still frequently used with such actions. The next steps for producing the lower or cottaga upright piano were taken by Robert Wornum, who in 1811 produced a diagonally, and in 1813 a vertically, strung one. Wornum's perfected crank action (fig. 29) was not complete until 1826, when it was patented for a cahinet piano; but it was not really introduced until three years later, when Wornum applied it to his little "piccolo." The principle of this centred lever check action was introduced into Paris by Plcyel' and Pape, and thence into Germany and America.
It was not, however, from Hawkins's invention that iron became introduced as cessential to Alise the structure of a pianoforte. This was due to William Allen, a young Scotsman in the employ of the Stodarts. He devised a metal system of framing intended primarily for compensation, but soon to become, in other hands, framing for resistance. His idea was to meet the divergence in tuning caused in brass and iron strings by atmospheric changes by compensating tubes and plates of the same metals, guaranteeing their stability by a cross batoning of stout wooden bars and a metal bar across the wrest-plank. Allen, being simply a tuner, had not the full practical knowledge for carrying out the idea. He had to ally himself
with Stodart's foreman, Thom; and Allen and Thom patented the invention in January 8820 . The firm of Stodart at once acquired the patent.

Fig. 30.-Allen's Compensating Grand Piano, 1820. The first complete metal framing system applied over the strings.
 construction in favour of a combined construc. tion of lron and wood, the former mitcrial gradually as. serting pre-eminence. Allen's design is shown in fig. 30. The long bars shown in the diagram are really tubes fixed at one end only; those of iron lie ovet the iron or steel wire, whil: those of brass lie over the brass wire, the metal plates to which they are attached being in the same corie. spondence. At once a great advance was made in the possibility of using heavier string than could be stretched before, without danger to the dur. ability of the case and framt. The next step was in 182 F, th a fixed iron string-plate, the invention of one of Broad. wood's workmen, Samuel Herve, which was in the first instance applied to one of the square pianos of that firm. The great advantage in the fixed plate was a more even solid counterpoise to the drawing or tension of the strings and the abolition of their undue length
${ }^{1}$ Pleyel exhibited a small upright piano in Paris in 1827. Pierre: Erard did not turn his attention to upright pianos until 1831 .
behind the bridge, a reduction which Isace Carten had tried sorne years before, but unsuccessfully, to accomplish with a plate of wood. So generally was stication now given to improved methods of resistance that it has not been found poseible to determine who first practically introduced those long iron or steel resistance bars which are so familiar a feature in modern grand pianos. They were experimented on as substitutes for the wooden bracing by Joseph Smith in 1798; but to James Broadwood belongs the credit of trying them first above the sound-board in the treble part of the scale as long ago as 180 , and again in 1818; he did not succeed, however, in fixing them properly. The introduction of fixed resistance bars is really due to observation of Allen's compensating tubee, which were, at the same time, resisting. Sebnstian and Pierre Erard seepa to have been first in the field in 1823 with a complete system of nine resistance bars from treble to bass, with a simple mode of fastening them through the sound-board to the wooden beams beneath, but, although these bars appear in their petent of 1824, which chiefly concerned their repetition action, the Erards did not either in France or England claim them as of original invention, nor is there any string-plate combined with them in their patent. James Broadwood, by his patent of $\mathbf{1 8 2 7}$, claimed the combination of string-plate and resistance bars, which was clearly the completion of the wood and metal instrument, differing from Allen's in the nature of the resistance being Gixed. Broadwood, however, left the brats bars out, but added a fourth bar in the middle to the three in the treble he had previously used. It must be borne in mind that it was the trebles that gave way in the old wooden construction before the tenor and bass of the instrument. But the weight of the stringing was always increasing, and a heavy close overapinning of the bass strings had become general. The resistance bars were increased to five, six, seven, eight and, as we have seen, even nine, according to the ideas of the different English and French makers who used them in their pursuit of stability.

The next important addition to the grand piano in order of time was the harmonic bar of Pierre Erard, introduced in 1838. This was a gun-metal bar of alternate pressing and drawing power by means of screws which were tapped into the wrestplank lmmediately above the treble bearings, making that part of the instrument nearly immovable; this favoured the production of higher harmonics to the treble sotes, recognized in what we commonly call " ring." A similar bar, subsequently extended by Broadwood across the entire wrestplank, was to prevent any tendency in the wrest-plank to rise, from the combined upward drawing of the strings. A method of fastening the strings on the string-plate depending upon friction. and thus dispensing with "eyes," was a contribution of the Collards, who had retained James Stewart, a man of considerable inventive power, who had been in America with Chickering. This

Fig. 31.-Broadwood's Iron Grand Piano, 1884 . Completeiron frame with diagonal resistance bar. invention was introduced in 1827. Between 1847 and 1849
${ }^{2}$ Sometime foreman to the pianoforte maker Mott, who attrected much attention by a piano with sostenente effect, produced by a roller and silk attachments in 1817. But a sosknomte piano, however perfect, is no longer a true piano such as Beethoven and Chopio wrore for.

Mr Heary Fowler Broadwood, son of Jemes, and grandson of John Broadwood, and also great-grandson of Shudi (Tychodi), invented s grand pianoforte to depend practically upon iron, in which, to avoid the conspicuous inequalities caused by the breaking of the scale with resistance bars, there should be no bar parallel to the strings except a bass bar, while another fanged resiatance bar, as an entirely povel feature, crossed over tho atrings from the bass comer of the wrest-plank to a point upon the string-plate where the greatest accumulation of tension strain was found. Broadwood did not continue, without some compromise, this extreme renunciation of ordinary resistance means. After the Great Extibition of 18 gr he employed an ordinary straight bar in the middle of his concert grand scale, his emaller grands having frequently two such as well as the long bess ber. After 1862 he covered his wrest-plank with a thick plate of fron into which the tuning plns ecrew as well as into the wood beneath, thus avoiding the crushing of the wood by the constant pressure of the pin acrost the pull of the string, an ultimate source of danger to durability.

The introduction of iron into pianoforte structure was differently and independently effected in America, the fundamental ides there being to use a single casting for the metal plate and bans, instead of forging or casting them in separate pieces.

Fic. 32.-Meyer's Metal Frame for a Square Piano, 1833. In a single casting. Alptaeus Baboock was the pioneer to this kind of metal construction. He also was hitten with the compensation notion, and had cast an iron ring for a square piano in $\mathbf{1 8 2 5}$, which, although not a success, gave the cluc to a singie casting resistance framing, successfully accomplished by Conrad Meyer, in Philadelphia, in 1833, in a square piano which still exists, and was shown in the Paris Exhibition of 1878 . Meyer's idea was improved upon by Jonas Chickering (1797-1853) of Boston, who applied it to the grand piano as well as to the square, and brought the principle up to a high degree of perfection -establishing by it the independent construction of the American pianoforte.
We have now to do with over- or cross-stringing, by which the'bass division Over of the strings is made to cross overnting over the tenor part of the scale in a singic, double or trehle disposition at diverging anglesthe object being In the first instance to get longer bass strings than are attainable in a parallel scaic, and in the next to open out the scale and extend the area of hridge pressure on the soand-board. In the 18th century clavichords were sometimes overstrung in the lowest octave to get a clearer tone In that very indistinct part of the instrument (strings tuned an octave higher being employed). The first suggestion for the overstringing in the piano was made by the celebrated flute-player and inventor Theobald Boehm, who carried it heyond theory in London, in 183x, by employing a small firm located in Cheapside, Gerock \& Wolf, to make some overstrung pianos for him. Boehm expected to gain in tone; Pape, at iagenious mechanician in Paris, tried a like experiment to gain economy in dimensions, his notion being to supply the best piano possible with the least outlay of means. Tomkinson in London continued Pape's model, but neither Boehm's nor Pape's took permanent root. The Great Exhibition of 1851 contained a grand piano, made by Lichtenthal of St Petersburg, overstrung in order to gain symmetry by two angle sides to the case. It was regarded as a curiosity only. Later, in 1855 , Henry Engelhard Steinway (originally Steinweg; 1797-1871), who had emigrated from Brunswick to anameras.

New Yort in 1849, and had established the firm of Steinway \& Sons in 1853 in that city, effected the combination
of an overstrung scale with the American iron frame, which exhibited in grand and square instruments shown in London in the Intermational Exhibition of 1862 , excited the attention of Earopean pianoforte makers, leading ultimately to important results. The Chickering firm claim to have anticipited the Steinways in this invention. They asoert that Jonas Chickering had begun a square piano on this combined system in 1853, but, he died before it was completed, and it was brought out later. It is often difficult to adjudicate upon the claims of inventors, so rarely is an invention the product of one man's mind alone. Howevor, the principlo was taken up and generally adopted in America and Germany, and found followers elsewhere, not only in grand but in upright pianos, to the manufacture of which it gave, and particularly in Germany, a powerful impetus.

Fic. 33-Steinway's Grand Piano, 1884. Metal framing in a single casting and overstrung.

Since 885 the American system of a metal plate in one casting, and cross- or over-stringing by which the spun bass strings cross the longer steel diagonally, has become general Rcoert in Europe with the exception of France, where Sdmutime musical taste has remained constant to the older chamere wooden structure and parallel stringing throughout. The greater tenacity of the modern cast-steel wire favours a very much higher tension, and consequent easier production of the higher partials of the notes, permitting a sostenulo mknown to Beethoven, Schumann or Chopin. While in 1862 the highest tension of a concert grand piano worked out at sixteen tons, since 1885 thirty tons has been recorded. Generally speaking, the rise in tension may be expressed musically by the interval of a minor third, to the great advantage of the standing in tune. First shown by Henry Steinway in the London Exhibition of 1862, this alterod construction attracted extraordinary attention at Paris in 1867, and determined the German direction of manufacture and a few years later the English. What is now particularly noticeable wherever pianos are made is the higher average of excellence attamed in meking, as well as in pianoplaying. Naturally the artistic quality, the personal note, characterizes all first-class instruments, and permits that liberty of choice which appertains to a true conception of art.

Much attention has been given of late years to the touch of planos, to make it less tiring for the modern performer, especially since, in 1885-1886, Anton Rubinstein went through the berculean feat of seven consecutive historical recitals, repeated is the capital cities and principal musical centres of Europe. For evea this otupendous player a light touch wis indispencable. In
the competition for power piano makers had been gradually increasing the weight of touch to be overcome by the finger, until, to obtain the faintest pianissimo from middla C , at the front edge of thekey, from three to four ounces was a not uncommon weight. The Brosdwood grand piano which Chopin used for his recitals in London and Manchester in 1848, an fastrument that has never been repaired or altered, shows the resistance he required: the middle C sounds at two ounces and a half, and to that weight piano-makers have returned, regarding two ouncea and three-quarters as a possible maximum. Owing to the greater substance of the hammers in the bass, the touch will

Fig. 34.-Broadwood Barless Grand.
always be beavicr ln that department, and lighter in the treble from the lesser weight. In balancing the keys, allowance has to be made for the shorter leverage of the black keys. When the player touches the keys farther back the leverage is proportionately shortened and the weight increased, and there is also an ascending scale in the weight of the player's blow or pressure from pian issimo to fortiseimo. The sum of the aggregate force expended by a pianist in a recital of an hour and a half's duration, If calculated, would be astonishing.

The most important structural change in pianos in recent years has been the rejection of support given by metal bars or struts bet ween the metal plate to which the strings are hitched and the wrest-plank wherein the tuning-pins are inserted. Tbese hars formed part of William Allen's invention, brought forward by Stodart in 1820 , and were first employed for rigidity in place of compensation by the Paris Erards two years later, Bromdrood in London introducing about that time the fixed metal plate. The patent No. 1231, for the barless or open-scale piano, taken out in London in 1888 by H. J. Tschudi Bpoadwood, is remarkable for simplification of design as well as other qualities. Ten years elapsed after the taking out of the patent before the first borless grand was heard in public (January 1898 at St Jamet's Hinl). The metal frame, bolted in the usual manner ta the bottom framing is of fine cast steel entirely free from any transverse bars or atrute, being instead turned up round the edges
to form a continuous flange, which embles the frame to bear the increased modern tension while providing additional clarticity and equality of vibration power throughout the scaling. The absence of barring and bracing tends to subdue the metallic quality of tone so often observable in pianofortes constructed with heavy iron frames, and the barless steel frame being so much more elastic than the latter, no loss in resonance is perceptible. The tone of the barless grand is of singular beauty and sonority and is even throughout the compass.

The problem of resonance-with stringed keyboard instruments, the reinforcement or amplification of sound-has, from the days of the lute- and spinet-makers, been empirical. With lute, guitar, and viol or violin $\boldsymbol{r l a}_{\text {mer }}$ the sound-box comes in, combining in the instrument gromenome the distinct properties of string and enclosed air or wind. With the spinet, harpsichord and piano we have to do chicfly with the plate of elastic wood, to amplify the initial sound of the strings; and the old plan of a thin plate of spruce, put in slightly conver and with an under-barring of wood for tension, has aboorbed the attention of piano-makers. The violin belly, with its bass bar and sound post, has relation to it; but the recent invention of the Strok violin has shown that the initial string vibrations may be passed through a bridge, be concentrated, and adequately transferred to an aluminium disk not much larger than half a crown. The piano, with its numerous strings, cannot be so reduced, but the reinforcement problem is open to another solution, tentative it is true, but a possible rival. The "Cladiator " soundboard is the invention of Albert Schulz, late director of the piano manufactory of Ritmiller and Sohne of Cöttiogen. Dr Moser's name has been ascociated with the inventor's in the English patent. In the "Glediatar " two slabs of wood, with grain of opposed direction to give the necessary tension, are ghed together, and the whole system of belly bars is done away with. There is a thinning round the edge, to facilitate promptness of speech. As we are still feeling our way towards an accurate and comprchensive statement of resonance, this invention is one claiming scientific interest, as well as being of possible practical importance.

To return to the touch. The desirability of what is called repelition-that the jack or sticker, which

Repentions from the depression of the kcy delivers the blow that raises the hammer to the strings, should never be far away from the notch or nose which receives the impuls-is as much an object of consideration with pianomakers now as it has been since Sebastian Erard began those cxperiments in 2808 which ended

Fic. 35-Cary'a Repeating Action. 1 , the butt in which the hammer is glued $E_{1}=$ spring attached to the bott by a link of sidk cord paseod through a wire guide. The object is that lhough the key may be still pressed dowa, the hammer returns but z thort dintance to ensure 2 . quick response to the blow: repeated.
in his fanmotes "double excapemeat" metion. The principle of this grend action, like that of Wornum patented for upright pianos in 2826, has become geserral. Ber Joseph Henry Cary in. $885 s$ (petent No. 2283) inventod a simple contrivance for repertion in all pianos, seglected at the time, and mabeequently repatented and diaputed over by others, which has only been preserved in the records of the patent office, while the inventor bas left no other mark. But the utility of the invention has come to light. It is incrensingly used in the actions of apright pianos, and, in combination wilh the old English grand action, is muccemifuly competing with the Erard action proper and the simpllified Hers-Erand, of hete years so very generally employed.
There has been a great change in the freer technique of pianoplaying, partly favoured by the development of piano-making, Tocbukum but reacting and obliging the piano-makers to keep their attention incesmantly alive to the aimand re: quirements of the playom. It is true that the genius of Beetboven dominates a technique that has become obsolete, and so completely that the adequate performance of his piano warks still gives to the sense as well as the intellect the highest pleasure, but his annotations to Cramer's Studies, as preserved by Schindier, betriy the close touch of the clavichord-player and the atudent of C. P. E. Bech's Escoy on Clavichord-Playing, as well as the

Fic. 36.-Modern Pianola.
A. Blowing pedals operated by feet of player connected by metal crank to feeder B, which exheurte air from hellows C, whicb in turn exhausts air from all working valves and bellows in Pianola.
D, is perforated roll passing over tracker bar E winding on to spool F operated by a pneumatic motor and controlled hy lever G, which is connected to metrostyle pointer H . This is used in conjunction with a specially marked roll, giving correct interpretation of tempo.
I, is channel leading to primary ppeumatic J operating secondary pneumatic K, which exhausts etriking motor L, connected to ley lever M to deprese piano key.

The themodist device consists of two small holes, one at each end of tracker bar E, connecting with preumatic valve, which increases potwer of muction instmintaneously when melody notes are being played. hy means of an extra perforation at each outaide edge of music roll D : one hole for base melody at feft, and one at right edre for treble melody.

N, in metal arm or bracket connected to lever in front for purpose of depressing sustaining pedal of piamo.
\mathbf{O}, is the governing bellows of motor for operating music-roll and preventa pace of rofl being accelerated or retarded by hard or saft pedaling, thus allowing great change of expression to be made without interfering with speed of roll.
weakness as a musical instrument of the early piano. The in ventor of a technique so original, and at the time (c. 1830) so extraordinary, as Chopin's, sat at the piano with his elbows immovable, using, for fexibility, neither wrist nor arm. With Chopin, to play loudly was anathema. The modern free style of playing comes from Czerny-whom Beethoven despised as having no legato (Bindung)-through Liszt to the Rubinsteins and to the splendidly equipped performers of our time, to whom the pedal has become indispensable for cantabile and effect.

The most expert performers are now rivalled technically by the recent extraordinary invasion of the American automatic piano-players-the Angelus, Pianola, Apollo, Cecilian, and other varieties of the same idea. The use of the perforated roll acts by means of the ingenious

Mecthankat Plariag: and indeed faultiess application of ppeumatic leverage to the ordinary piano, doing duty for the pianist's fingers; and it is made possible to play londer or softer, faster or slower, by mechanical arrangement. Such an instrument lacks the player's touch, which is as personal and indispensable for sympathy as the singer's voice or violinist's bow. Still, to a violinist, it is a benefit to bave a correct coadjutor in a Beethoven or Brahms sonata with one of these handy companions, just as it is to a singer to have always at command the accompaniments to his or her repertory. The Apollo has the addition of a useful tramspoeing apparatus-an aid, bowever, that, though of en tried, has never yet been adopted; it is possibly too disturbing to the musicisn's ear. The mechanical tuning-pin is an analogous experiment which comes regulariy under notice as the years go by, to be as pernistently rejected. The most practical of these tuning inventions was the Alibert, shown in the Inventions Eshibition, 1885 . Here, pressure upon the strings above the wrest-plank bridge modified their tension after a first rough adjustment to pitch had been effected.
The perforated music-sheet, mechanism common to pianoplaying attachments as well an self-playing pianos, first appeari in a French patent, 1842. A United States patent for a keyboard piano-player was lssued to E. D. Bootman (Dec. 18, 1860), and the first pneumatic keyboard piano-player was patented in France in 1863 by M. Fourneaux. Between 1879 and 1902 a total of 55 patents had been issued in the States. The first complete automatic piano-player ready for periormance was the Angriua (No. 24799, 1897). The specification is from a communication to the British patent office by Edward Hollingworth White, of Meriden, New Haven county, Conn., U.S.A. There is a pneumatic chest, fukcrum bar, finger levers, bellows and pedals. The whole apparatua is contained in a portable cabinet mounted upon castors, so as to be conveniently moved about a room. The finger levers or key strikers correspond with a considerable portion of the manual keys or clavier of a plano. Thua the automatic piano-player comprises a portable cabinet provided with bellows and operating pedals, a pneumatic actuating mechanism, a tracker adjusted for the use of a perforated music-sheet. a pneumatic motor and winding-roll mechanism to propel the music-sheet, and a series of finger levers operated by the preumatic mechanism, so projecting as to overhang the piano keyboard and play upon it, with rockers or levers for depresaing the piano pedals. Subeequently the apparatus was made capable of accelerating or retarding the tempo at the will of the operator. A roll of music, 12 in . wide and varying in length according to the composition, can be placed ia poaition promptly, and when exhausted can be returned upon its onginal roll by a simple stop, altogether a triumph of mechanical adjustment. The Pianola followed in 1898, the Apollo 1900. The difference of all these clever contrivances is not conspicuous to the amateur.
While these allied inventions have had to do with a substitute for touch and the neceasity for the persevering acquirement of a diffieult technique, another, the Virgil Practice Clavier, 50 called after the inventor, Mr Almoa Kincaid Virgil, an American music teacher, is intended to ahorten the period of study by doing away with tone, so that the finger technique is acguired mechanically and unmusically, while value of tone, reading, expression, whatever we understand by musical production exciting our receptivity through the ear, is delayed until the players hand is formed and considerably developed. The opinion of some of the very greatest pianita is brought forward as approving of the system; in the work, for instance, of Vladimir de Pachmann, whose techaique was formed long before the Virgil Clavier came to Europe. Bearing in mind that the minlmum weight of the touch of a concert piano is not likely to exceed three and a half ounces it is bardly likely that these skilled performers use this dumb keyboard with the graduated weight advbed for advancing
pupils, namely, from five to eight ounces It is allowed that the lightest postible touch may be used at first. One high recommenTha Dumb dation certainly remains after alt that may be said regardKagtoard. ing Mr Virgil's invention: that it is practically solent, duration of finger attachment being alone audible, boon to the unwilling hearers of ordinary piano practice, scales and five-finger exercises. Mr Virgil's invention was produced in its elementary form in 3872, the more satifactory Practice Clavier dates from the completion of the invention, about 1890 . It was brought to England in 1895 by Mr Virgil.

Bibliograrhy.-A. Schlick. Spiegel der Orgelmacher (Mainz?,
 (Basel, 1511: reprinted in facsimile, Berlin, 1882); M. Agricola, Musica instrumentalis (Wittenberg. 1529); O. Luscinius, Mysurgia site praxis masicae (Strasaburg, 1536); M. Proetorius: Symagne musicum, voi. i. (Wittenberg, 1615); vols ii. and iii. in Cerman, Wolfenbuttel, 1619: M. Merwenne. Harmomicorwm (Paris, 1635), and Harmonie universelle (Paris, 1636); C. Huygens, Correspondance. (Jonkbloet et Land, Leiden, 1882); T. Mace, Musick's (fonument (London, 1676); J. S. Bach, Das ovhllomperivte Clapier (Coethen, 1722); C. P. E. Bach, Varsuch siber die vahp Arl das Clavier zu spirlew (Berlin, ${ }^{1753}$); J. Adlung, Musica mechanice organordi (13enlin, 1768); C. Burney, The Present Stale of Music in Prance and Hily (London. 1771), and The Present Stale of Music in Germany, the Netherlands, fic. (London, 1772): W. A. Mozart, Briefe (Leip/ig, 1878); D. Steibelt. Three Sonalas, Op. 35, proface (1 ondon 1790). and Ifehode de piono forte (Paris, (805); F. J. Ferts, "Esquise de 1 Histoire du Piano, in the Reowe ef gaselte masticale (Buis, 1830), partly translated in the Hafmonicon (London, 1830-1831); "Exposition universelle de Londres"
185i), Exposilion Garelte miverselle de Paris, rapport du jwry (Paris, 18SS), 1851), Exposilion wniverselle de Paris, rapport du jwry (Paris, 18ss), 1862), and Exposition wniterselle de Paris, rapport du jury (Paris, 1867); J. S. Broadwood. Some Notes made in 3838 , with observations and el ucidations by H. F. Broadwood (London, 1862); Kuetzing. Das Wissenschaflliche der Fortepiano Baukunst (Bern, 1844); S. and P. Erard, London Exhibition (London, 185r): W. Pole. 'Musical Instruments of the Great Exhibition," (rom Newton's Palent Journal (London, 1851), and in Jurors' Reports, International Exhibition (London, 1802): J. Fischhof, Versuch einer Geschichte des Clavierbeues (Vienna, 1853); Anonymous, Notes sur les travaux de MM. Epard (Paris, 1855); C. A. Andre. Der Clavierbas, Offenbach, 1855): H. Welcker von Contershausen, Der Flügel oder die Beschaffenhei des Pranos in allen Formen (Franklort, 1856), and Der Clavierba in seimer Theoric, Technik und Geschichte (Franklort, 1870); E. F. Rimbault, The Pianoforte (London, 1860); J. Broadwood $\frac{d}{\&}$ Sons Intermational Exhibition (London, 1862); L. de Burbure, Recherches sur les facteurs de clasec ins d'A neers (Brussels, 1863); A. W. Ambros, Geschichte der Mwsik, vol. ii. (Breslau, 1864); O. Paul, Geschichte des Claviers (Leipxig. 1868), and Amulicher Benicht wber die wiener Ausstellmes im Jahre 1873 (Brunswicic, 1834): G F. Sievers, II Pianoforte quida pralica (Naples, 1868); Patents: Abridgments of Specifications retating to Ausical Instruments (Londan, 1871); P. Rombouts and T. Van Lerius, De Liggeren der anmaerpsche Sint Lucascilde (vol. i., Antwerp, 1872 ; and vol. i. . The Hague); C. Engel, Musical Instruments in the South Kensington Musewm . Engen is.;in (isi Some Account of the Clavichord," in Mosical Times (L.gndin: July, August, September, 1879); E,
Van Der Stracten. © Musique aux Pays-bas, vol. iti., (Brusels, Van Der Stracten. is Musique aux Pays-bas, vol. iil., (Brussels,
1875); Chickering is Sous, The Pianoforte (Boaton, 1874); C. Chouquet, Le Muste dir con erpatoira nahonal de musigue (Paris, 1875). and Exposition wivers alle et invernationale de Paris, rappont du jury (Paris, 1880); Muliti, Della Origine di pianoforte (Florence, 1876) : C. Meycr is Son, On the Full from Plate Frame for Pianos
(Prifadelphia, 18 ? Philidelphia, 187 ; Ponsicchi, Il Pianoforte, sma origine 2 Musical Intervals (London, 1876); A. Kraus, Calalogue des insirumenas de musique du muste Kraus (Flarence, 1878); V. Mahillon, Annmaires du conservatoize royal de musique de Brucelles (Brusscls, 1877 to 1883), and Catalogue descriptif a analylique du musee instrumental du conservaloira royal de musique de Brusclles (Ghent, 1880-1881): L. F. Valdrighi, Muswrgiara (Modena, 1879); E. Brinsmead, History of the Pianoforte (London, 1879); S. Blondel, Histoire amecdolique du piano (Paris, 1880); A. Rcissmann, Illustrifle Geschichte dep dewtschen Musik (Leipzig, 1880-1881); A. J. Ellis, "History of Musical Pitch," with appendices, in Journal of the Society of Arts (London, $\mathbf{3 8 8 0}$) ; A. J. Hipkins, various articles in Grove's Diclionary of Music and Musicians, "History of the Pianotorte," with appendix, in Jowrnal of the Society of Arts (London, 2883). and "The Pianoforte and its Precursors, in the English Illustrated Magatine (London, 1884); O. Bie, History of the Piowoforte (London, 1899). J. Bluethner and H. Gretechel. Der Pianofortebau (3rd ed. Leipzig, 1909); S. Hansing, Das Pianoforte in stincn akustisclen Anlagen (Schwerin, 1910) i. F. A. Coehlinger. Geschichte des Klatichords (Basel, 1910).
(A. J. H. ; K. S.)

PIANOSA (anc. Planasia), an island of Italy, belonging to the province of Leghorn, and forming part of the commune
of Matciana (Etba), from which it is 7i m. S.W. Pop. (rêt), 774. As its name iadicates, it is quite flat, and the bighest point is only 95 ft . above sea-level. Its area is 6 sq . m . Augustus banished to it his grandson, Agrippa Postumms, and some ruins of baths near the harbour still bear his name. It changed hands more than once in the wars between Pisa and Genow in the 12 th and $13^{\text {th }}$ centuries; from 1390 it belonged to the prince of Piombino, hut was depopulated in 1553 by the Turtish feet. and only resettled at the beginning of the roth century. In 1857 a penal colony was established here.

PIABIIIS, the popelar name of e Catholic educationt order, the " clerici regulares scholarum ptarmin"." the Peuline Congregs. tion of the Mother of God, founded by Joseph Calasanse (Josephus a Matre Dei) at Rome in the beginning of the ryth century. Calasanza, a native of Calasanz in the province of Huesca in Aragon, was born on September 11, 1556, studied at Lerids and Alcalf, and after his ordination to the priesthood removed to Rome (1592). Here he organised, in 1607, a hrotherhood which ultimately, in 165\%, became an independent Congregation, numbering at that time fifteen priests, under Calasumsa as their head. To the three usual vowa they added a fourth, that of devotion to the gratuitous instruction of youth. In 1622 the Congregation received a new constitution from Gregory XV.. and had all the privileges of the mendicant orders conferred upon it, Calasanza being recognized as general. In 1643 the jcalousy of the Jesuits led to his removal from office; owing to the same cause the Congregation was deprived of its privileges by Innocent X. in 1646. Calasanza, who died on August 22, 1648, was beatified in 1748, and canonized in 1767. The privileges of the Congregation were successively restored in 1660, 1669 and 1698 . The Piarists, who are not numerous, are found chiefly in Italy, Spain, the West Indies, Cermany, and especially in Austria-Hungery. Before the course of study was regulated by the state, a Piarist establishment contained gine classes: reading, writing, elementary mathematics, shola parva or Rudimenlorum, schola Principiorum, Grammatica, Syntaxis, Humanitas or Pocsis, Rhetorica. The general provost of the order is chosen by the general chapter, and with a general procurator and four assistants resides al Rome. The members are divided into professors, novices, and lay brethren. Their dress is very similar to that of the Jesuits; their mot to "Ad majus pietatis incrementum!"

For Calasanza, see Timon-David, Vie de St Joseph Calasance (Marseilles, 1884); on the Piarists, P. Helyot, Hist. des ordres rediGieuses (1715), iv. 281 : J. A. Scyffert, Ordensregeln der Piariska (Halle, 1783); J. Schaller, Gedanken mber die Ordensfassung der Piaristes (Prague, 1805): A. Heimbucher, Orden und Kongregationer (1897) ii. 27! ; articles by O. Zockler in Herzog.Haucks Realencyblopddic für protestantische Theologie (rgou). Wol. xv. and by C. Kniel in Wetxer and Welte's Kirchen-lexikon (i895). vol. ix.

PlATRA (PEatRa), the capital of the department of Neamtzu. Runiania, situated on the left hank of the river Bistritza, where it cuts a way through the Carpathian foothills. Pop. (1900), 17.391. A branch railway passes through the town, and at Bacau meets the main line from Czernowitz in Bukowina to Galatz. The church of St John's (or the Prince's) monastery was founded in 1497 hy Stephen the Great, There are saw-mills and textile factories in Piatra, which has a considerabletrade in wine and timber. Neamtzu is one of the most densely forested regions in Moldavia. Lumber rafts are floated domin the Bistritza to the Sereth, and so on to Galatz. There are several monasteries in the neighbourhood.

PIATTI, CARD ALPREDO (1822-1901), Italian violoncellist, was born at Bergamo on the 8th of January 1822. He was the son of a violinist, and became a pupil at the conservatorio of Milan. From 1838 onwards he journeyed over Europe, playing with extraordinaty success in all the important cities of the continent. In 18.14 he appeared before the London public at a Philharmonic Concert; and in 1859, on the foundation of the Popular Concerts, he took up the work with which he was most intimately conmected for thirty-nlne seasons, retaining unti 1897 the post of first violoncelln at these famous chamber concerts, during the latter
half of each sefier. His purely clamical style, his wide musical sympathies, and his general culture and charm, would have ensured him a high position even without his marvellously finished technical skill. In 1894 the fiftieth annivermary of his first appeafance in London was celebrated by a reception given in honour of him and his lifelons friend Joachim. He retired from public life, owing to a severe illness, in 1897, and until his death at Bergamo on the 1gth of July 1901 divided his time between his sative towa and Cadenabbin. As a compocer he attained a wide popularity with some graceful and popular songs; he did excellent work as an editor; and be was an enthusiastic collector and musical antiquary.
PLAUEY, or Puobi, a north-eastern state of Brasil, bounded N. and W. by Maranháo, E. by Ceara, Pernambuco and Bahia, and S. by Bahis. It has a few miles of Atlantic const-line on the N., and the Rio Parnahyba forms the boundary line with Maranhbo throughout its entire length. Area, 116,523 eq. m. ; pop. ($\mathbf{1 9 0 0}$), 334,328. Part of the state on the Atlantic coast and along the lower Parnahyba is low, swampy and malarial. South of this the country rises gradually to a high plateau with open campos. This plateau region is watered by numerous tributaries of the Parnahyha, chief of which are the Urussuhy, the Caninde and its-tributary the Pituhy, the Gurgueia and its tributary the Parahim, which drains the large ioland lake of Parnagua, the Lonfe, and the Poty, which has its source in the state of Cearf. The Parnahybe is navigable for boats of 3 ft . draught up to Nova York, a few miles above the mouth of the Gurgucia, and could be made navigable up to the mouth of the Balsas. The climate is bot and humid in the lowlands and along the lower Parnahyba, but in the uplands it in dry with high sup temperatures and cool nights. The principal industry is stock-raising, which dates from the first settiement in 1674 by Domingos Affonso Mairense, wio established here a large number of cattie ranges. A secondary indust ry is the raising of goats, which are able to stend neglect and a scanty food supply. Sheep have likewise been raised in Piauhy, bat there is no market for mutton and their wool is not utilized. The agricultural products are cotton, eugar and tobacco. Of food-stufs the people do not produce enough for their own consumption. Forest products include rubber, carnaubs wax and dyewoods. The exports include hides, akins, rubber, wax, tobacco and cotton. The capital is Therezina, on the right bank of the Parnahyba, 250 m . above Parnabyba (town), with which it is connected by a line of light-draught river boats. The town dates from $\mathbf{1 8 5 2}$, is attractively situated, and is regularly laid out with broad, straight atreets crossing each other at right angles. The population of the municipio in 1890 was 31,523 , which includes a large rural district. Other towns, with their populations in 1890 , are Ociras (19,858), founded in 1718 under the name of Moxa; Amarante (15,525); Valenca (17,693); and Campo Maior (12,425), the figures given of population being those of the large districts (manicipios) in which the towns are situated.

PLAZZA, properly an open square or place in an Italian town (Ital. fiazse, from Lat. platec, broad space, Gr. π 六drvs, broad). These equares were usually surrounded with a colonnade or arcade, and thus the word has been loosely applied to a covered walk or arcade along the front of a building, and in America, to the veranda of a house.

PIAZEA ARMERINA, a city of Sicily, in the province of Caltanisetta, 39 m . by road E.S.E. from tbat town, and the same distance S . of the railway station of Assoro-Valguarnera, 43 m. W. of Catania, situated 2360 ft . above sen-level. Pop. (1901), 24,119. It has a isth-century cathedral, with a fine campanile, and some of the houses show Norman or Gothic architecture. The foundation of the town dates from the 1 ith century, and the dialect is Lombard.

See Mauceri in L'Arte (1906), 14
PLAKAI, GIDSEPPR ($1746-1826$), Italian astronomer, was born at Ponte, in the Valtellina, on the 16 th of July 1746 . He entered the Theatine Order in 1764, accepted the cbair of mathernatics in the academy of Palermo in 3780 , and persuaded the viceroy, Pripce Caramanico, to build an observatory there.

During a visit to Englasd in 1788 he procured from Jesse Ramsden a five-foot altazimuth, with which he collected at Palermo, 1792-1813, the materiais for two admirable starcataloguen, published in 1803 and 1814 respectively. While engaged on this work he discovered, on the ist of January 1801, the first asteroid or minor planet, to which he gave the name of Ceres, the tutelary deity of Sicily. He died at Naples on the 22nd of July 1826.
See B. E Maineri, L'Astromome Ginceppe Piasai (Milan, 18yt); R. Watf, Biographien, Bd. iv. P. 275; Monatliche Correspondens (1810; portrait), xxi. 46; Astr. Jahrbuch, Jiv. 218; Bulletix des sciences (1826), vi. 319; Bdin. Jowrnal of 'Science (1827). vi. 193; Memoirs Roy. Actr. Soc. iii. 119; R. Grant, Hise Phys. Astromomy. pp. 238, 5 10, 549.
PIBRAC, GUY DU FAOB, SEIGNEUR DE (1529-1584), French jurist and poet, was born at Toulouse, of an old family of the magistracy. He studied law there with Jacques Cujas, and alterwards at Padua. In 1548 he was admitted to the bar at Toulouse, at once took high rank, and rose to be juge-mage, an office in Languedocian cities about equal to that of proses. He was selected in 1562 as one of the three representatives of the king of France at the council of Trent. In 1565 he became general advocate to the parlement of Paris, and extended the renaissance in jurisprudence which was transforming French justice. In 1573 he was sent by Charles IX. to accompany as chancellor his brother Henty (afterwards Henry III.) to Poland, of which country Henry bad been elected king. Pibrac's fluent Latin won much applause from the Poles, but his second visit to Poland in 1575, when sent back by Henry III. to try to save the Crown he had deserted, was not so succesaful. Then he was cmployed in negotiations with the so-called politiques, and he managed to keep them quiet for a while. In 1578 he became the chancellor of Margucrite of France, queen of Navarre. Although he was fifty, her beauty and intellectual gifts led him to aspire to win her affection; but he was rejected with disdain. He died in 1 584. His oratorical style was too pedantic, but quatations from the classics had a fresher meaning in his day. He was the friend of Ronsard, de Thou and L'Hopital, and left, among other literary remains, elegant and sententious qualraincs.
PIBROCH, a form of music as played by the bagpipe. The word is derived from the Gaelic piobaireachd, the art of the bagpiper. This special form of bagpipe music, consisting of a scries of variations founded on a theme, was called the urlar. These variations are generally of a martial or warlike character and include dirges and marches (see Bagpipe).
PICA, the name of the European representative of a group of diminutive rodent mammals, also known as tailless hares, mouse-hares, or piping hares, constituting the family Ocholonidoc with the single genus Ocholoma. From the more typical hares and rabbits they differ by the short and rounded ears, the absence of a tail, and the relatively shorter hind-limbs, as well as by complete collar-bones. The soles of the feet are hairy, and the fur is usually soft and thick; while in some cases the last upper molar is absent. Picas are inhabitants of cold and desert regions. They dwell either in the chinks between rocks, or in burrows, although one Himalayan species frequents pine-forests. They are very active, and most of the species utter a piping or whistling cry. They store up a supply of grass for winter use; in Siberia it is stacked in small heaps. The Himalayan Ocholona roylei may be seen in the daytime, but most kinds are nocturnal. The Siberian species, O. alpina, ranges into eastern Europe, hut Central Asia is the beadquarters, although a few species range into Arctic America and the Rocky Mountains. In size picas may be compared to guinea-pigs. Till of late years the group has been generally known by the name of Lagomys. There are several cxtinct genera.
See Rodintia; also J. L. Bouhote." The Mouse-hares of the genus Ochotone," Proc, Zool. Soc. (London, 1905).
(R. L.*)

PICA, the Latin name of a genus of oscine passerine birds, the magpies. The Latin word, by interchange of initial and k, is possibly the Gr. aioca (see Magpis), and probably the same word as picus, the woodpecker (q.v.). Another derivation would connect both pica and picws with the root pic- of pingere, tu
paint, from the parti-coloured appearance of the bird. It is this "pied " or black and white look of the page that probably gave the name of pica, "pie" or "pye," to the ordinal printed in black-letter (see Pre), and thence to a size of type in printing coming next to "English" (see Typoorapiy). The Gr. niora and Lat. pica were used of a perverted craving for unnatural foods; and the word has been adopted in this sense in modern medical terminology.

PICABD, LODIS JOSEAPH GRNEST (1821-1877), French politician, was born in Paris on the 24th of December 1821. Afer taking his doctorate in law in $\mathbf{1 8 4 6}$ be joined the Parisian bar. Elected to the corps legislatif in 1858 , he joined the group of Emile Ollivier. But as Ollivier approximated to the government standpoint, Picard, one of the members of the group known as Les Cinq, veered more to the left. He founded in 1868 a weekly demorratic journal, L'Electeur libre, and in 1869 was elected both for Herault and Paris, clecting to sit for the former. From the 4th of September 1870 he held the portfolio of finance in the government of National Defence. In January 1875 he accompanied Jules Favre to Versailles to arrange the capitulation of Paris, and in the next month he became minister of the interior in Thiers's cabinet. Attacked both by the Monarchist and the Republican press, he resigned in May. Later in the year he was sent as ambassador to Brussels, where he remained for two years. On his return to Paris he resumed his seat in the Left centre, and in 1875 became life senator. He died in Paris on the $13^{\text {th }}$ of May 1877.
PICARDY (La Picardie), one of the old provinces of France, bounded on the N. by Hainaut and Artois, on the E. by Champagne, on the S. hy the the de France, and on the W. by Normandy and the English Channel. Its maritime frontier ran from the mouth of the Aa to the cliffs of Caux, and it included the whole of the basin of the Somme and part of that of the Oise. The chief towns of Picardy were Amiens, Boulogne, Abbeville, Laon, Soissons, Montreuil, Péronne, Beauvais, Montdidier, St Quentin and Noyon. Its principal rivers were the Somme and the Oise. Picardy formed part of the archdiocese of Reims, and its bishoprics were Amiens, Beauvais, Senlis, Soissons, Noyon and Laon. In 1789 the province of Picardy was covered by the three bishoprics of Amiens, Noyon and Boulogne. It was one of the provinces of the five great fermes, districts subject to the tariff of 1664, and in judicial matters was under the authority of the parlement of Paris. Its area now forms the department of the Somme and parts of the departments of Pas de Calais, Aisne and Oise.

The name of Picardy does not appear until the $13^{\text {th }}$ century, but was employed by Matthew Paris and was in general use in the 14th century. In the $\mathbf{1 3}$ th century the province was divided into the two bailliages of Amiens and Vermandois, but its regular organization as part of the kingdom of France only dates from the beginning of the 16 th century. At this time it was divided into north and south Picardy. North Picardy, or Picardy proper, formed one of the great military governorships of the kingdom, while south Picardy was included in the the de France. North Picardy was divided into upper and lower Picardy, the former being the interior part of the province and the latter the district along the coast. Upper Picardy comprised the districts of Amienois, Santerre, Vermandois and Thierache, and lower Picardy those of Ponthieu, Vimeu, Boulonnais and Calaisis, or the Pays reconquis; south Picardy included the districts of Beauvaisis, Laonnais and Soissonais.

Under the Romans Picardy was part of Belgica secunda; it was inhabited by the Morini, the Ambiani, the Veromandui, the Bellovaci and the Suessiones, whose names still appear in Amiens, Vermandois, Beauvais and Soissons. The Romans intersected the district with roads and huilt several castra to defend the valley of the Somme. In the 3rd century Christianity was preached here, and St Quentin and others were martyred. A little later abbeys were lounded, among them Corbie, St Valery and St Riquier. Early in the sth century Picardy became the centre of Merovingian France, for, as the historian Michelet says, "l'histoire de I'anlique France semble entassfe
en Picardie." Clovis had his first capital at Sotsoms, Ctindemagne had his at Noyon, and Laon was the capital and the refuge of the later and feebler Carolingian sovereighs.

During the later feudal period Picardy was the houm of the connts of Vermandois, of Clermont and of Ponthleu, the the of Coucy and others. The neighbouring dukes of Burgundy cast covetous eyes upon the province; in 1435, by the famous treaty of Arras, the royal towns and lands in the valley of the Somme were ceded by King Charries VII. to Buggundy. However, after the death of Charies the Bold in 1477 Picardy was finally united with the crown of France. The province was early an industrial district. Flemish immigrants brought with them the lacrative trade of weaving cloth, and the Somme towns were soon competing with those of Fhanders. The Picard towns were noted for their love of independence, which often brought them into collision with the tings of France duriag the 13th centery. At a later time the province received a number of Spanish immigrants. In the middle ages the Picards formed one of the four "nations" at the university of Paris. Picardy has a high place as a bome of Gothic art, this being testified to by the superb cathedrals at Amiens and Noyon, while within its bonders is the famous chateau of Concy.

Picardy has a literature of its own, which wes rich and popular in the 12th century. It suffered greatly from the revages of the Normans, and later during the Hundred Years' War and the wars between France and Spain. Within it are the lamous fields of Cregy, Agincourt and St Quentin, while it also inchudes places of conference like Gufnes, Amiens and Picquigny. The Picard had a high reputation as a soldier, being sometimes called the "Gascon of the North," and in 1558 Henry II. created the rtgiment de Picardie. Many anthropological remains have beea found in the Somme valley.
See Labourt. Essai sur Corigine des villes de Picardie (Amiens, 1840) ; Grenier, Introduction a l'histoire gentrale de la proeimee de Picandie (Amiens, 1856); and H. Carnoy, Litherature arale de la Picandie, (1883).

PICAREQUS NOVEN, THE. This special form of the roman d'uventures may be defined as the prose autobiography of a real or fictitious personage who describes his experiences as a soctal parasite, and who satirizes the society which he has exploited. The picaroon, or rogue type, is represented by Encolpos, Ascyltos and Giton in the Solyricon which tradition ascribes to Petronius; it persists in Lucian, in the Roman de Renart, in the fobleawx, and in other works popular during the middle ages; and it is incarnated in real life by such men of genius as the Archpriest of Fita and Francois Villon. But is its final form the picaresque novel may be regarded as a Spanish invention. The word pscaro is first used, apparently, in a letter written by Eugenio de Salazar at Toledo on the 15th of April 1560; the etymology which derives pricaro from picar (to pick up) is unsatisfactory to philologists, but it suggests the picaroon's chief business in life. In the Tesoro de la lengua castelame (Madrid, 16ir) Sebastian Covarrubias y Orozco, the best of Spanish lexicographers, describes a picaro as a man of loous character engaged in menial work and-by extensior-a raseal who attains his ends by skilful dissimulation; and the carliest epplication of the expression piearo to a cheracter in fiction occurs in Mateo Alemán's Guzman de Alfarache, the first part of which was published in 1599 . But a genuine nowela picaresca existed in Spain before the word pficaro became generally current.

The earliest specimen of the kind is La Vida de Lasarille de Tormes y de sus fortunas y adversidades, an anonymous tale long attributed, on insufficient grounds, to Diego Hurtado de Mendoza (g.v.). The authorship of this hrilliant book and the circumatances of its publication are obscure; bowever, it was certainly issued not later than 1554, and was thrice reprinted before 1559, when it was placed on the Indez. Imitations of so successiul a stery were inevitable, and so early as 1555 there appeared at Ant werp La Segwenda parte de Lavarillo de Tormes, an anonymous sequal which completely misinterpreted the irreverent wit of the original. The first part had been prohibited because of its attacks on the
chory; in the asoond part tha haro in presented as a devout youth tranforrwd into a tunny at the intercession of the Virgin Mary, who thus saved him from death; after many extravegant experiences in this form he is restored to human shape, aad proposen to teach the submarive lenguage at the university of Salamanca. This dull performance naturally failed to please and, meanwhile, unaty surceptitious copies of the first part were introducedinto Spain; the lequisition finally gave up the attempt sosuppress it, and in 1573 an expurgated edition was authorized. With this autilated version the Spaniab public was forced to he content deriag the remaining filteen years of Philip IL.'s reign. Upon the death of this combre monarch society retaved its hyprocritical pose of austecity, and in 1599 Mateo Aleman ($q . v$.) publiabed the Primerse parts de Guesudn de Alfarache. It is modelled upea Lstarillo de Tormes, being the autobiography of the son of a nuined Genoese money-leader; but the writer indulges in a tedious aeries of moralizings. This cobtrasts sharply with the laconic cynician of Lemerillo de Tormer; but Gurndm de Alfarache is richer in invention, in variet y of episode and in the presentation of character. Its extraordinary popularity tempted a Veleacian lawyer named Juan Jose Marti to publich a Segmade parte de la tida dol pleare Carman de Alforache ($\mathbf{1 6 0 2 \text {) under the peeudonym }}$ of Mateo Lujen de Sayavedra. Though partly plapiarized from the manuacript of the genaine second part to whinh Martl bad somehow obt ained access, the continuation was coldly received; in 1604 Alernin brought out the true continuation, and revenged bimall by introducing into the narrative a brolthar of Marti-a crasy picaroon of the lowest morality who ultimitely commite suicide in dingust at his own turpitode. In Laserillo de Tormes, and still more in Gusmdm de Alfarache, it is difficult to distinguish between the invented episodes and the pertonal reminiscences of the authors. The Viage artretenido ($\mathbf{2} 603$) of Agustio de Rojas is a mealinic eccount of the writer's experiences as a stofling actor and playwright, and, apart from its conslderable tikerary merits, it is an invaluable comitibution to the himory of the Spanish stage as well at a graphic record of contemporary low life; the chief character in the book is calied the cobollero del milngre, an expremsion which recurs in Spanish literature as the equivalent of a chevalier dindmstris.

The mext in chronological order of the Spanish picarenque tales is Le Picars Justina (1605); the history of a woman pictrobn, which it has long been customary to ascribe to Andrea Péret, a Dominican monk; there is, however, no good reason to exppote that the mame of Francisco Loper de Obeda on the title-page is a peeudonym. The Picara Justina has wrongly acquired a reputation for indecency; its real defects are an affected diction and a wast of originality. The writer frankly edmits that he has takea material from the Celestine, from Lavorillo de Tormes, from Guevara, Timoneda and Alemin, and he boastfully asserts that "there is nothing guod in ballad, play or Spanish poet, but that its quintessence is given bere." Unluckily he has not the talent to utilize these stoten goods. The Plcara Justina was thrice repornted during the seventeenth century; this is the onfy basis for the untemable theory that it in the source of the culleraaismo which reaches fits climai in Gracian's treatises. The Picara Justina is now read solely by philologists in quest of verbal eecentricities. Ginfa de Pasamonte, one of the secondary figures in Dom Quizole ($1605-16 \mathrm{r} 5$), is a aingularly vivid sketch of the Spanish rogue, and in the comedy entitled Pedro de Urdemalas Cervantes again presents a brilliant panorama of ploaresoue existence. He returns to the subject in Rivcomete y Cortadillo and in the Coloquio de los perros, two of the best stories in the Nuselos ciemplares (1613). The attraction of picaremque life was lelt by plous and learned critics, asd expounded in prine. In the Vicge dd mundo (1614) the zealous missionary Pedro de Cevalloe interpolates amusing tales of what befell him in the slums of Andaluaia before he fied from Justice to America, where he Hved as a sinful soldier till his splritual conversion was accomplished. Cristobal Suhrez de Figueroa, a caustic crintic of him contemporaries and an arbiter of taste, did nor think it bemeath his dignity to show a disconcerting acquaintatce with the ways of prolemional roguea, and in Ei Peacgero (t6ty) be

Gils in the sketch of the knavish inn-keeper ahready dutlined by Cervantes in Den Qwixate. Evidence of the widely diffused laste for picaresque literature is found in Envitucs de Castro (16r 7), an interminable story written in Spanish by a Frenchmas named Frangois Loubayssin de Lamarca, who brought out hia book at Paris; two years previously Loubayasin had introduced some clever but risky picaresque episodes in his Engatos deste sigho y histaria smcedide en mestros tiempos. But his attempt to fill e lerger canvas is a complete failure.

The roving instinct of Vicente Martinez Espinel (9.8.) had led him into strange and dangerous company before and after his ordination as a priest, and a great part of his Relociomes de ta vida ded escudero Marcus de Obrçom (16i8) is manifestly the confession of one who has regretfully outhived his pleasant vices. The baftion compound of fact with fiction and the lucid style of which Espinel was a master would suffice to win for Morcos de Obveson a permanent place in the history of Spanish titerature; the fact that it was largely utilieed by Le Sage in Gil Blas has won for it a place in the history of comparative literature. Within five months of its publication at Madrid a fragmemtary French version by the Sieur d'Audiguier was issued at Paris, and al Paris also there appeared a Spanish picaresque story entitled Le Desondenada codicia de las bicnes ajenas (1619), ascribed conjecturaily to a certain Dr Carlos Garcia, who reports his conversation with a garrulous gaol-bird, and appends a glowery of slang terms used by the confraternity of thieves; he was not, however, the first worker in this feld, for a key to their groms jargon had been given ten years previously by Juan Hidalgo in his Romances de germanio (a609), a series of gipay baliads. Every kind of picaroon is portrayed with intelligent sympathy by Alonso Jeronimo de Salas Barbadillo, who is always described as a picaresque noveiist; yet he so constantly neglects the recognized conventions of the Spanish school that his right to the tithe is disputable. Thus in La Hija de Celestina (1613) he abandons the autobiographical form, in El Subsil cordobes Pedro de Urdemolos (1620) he alternates between dialogue and verse, and in \boldsymbol{E} Necio biew afortwinado ($\mathbf{6} 621$) the chief character is rather a cunning dolt than a successful scoundrel. The pretence of waming newcomers against the innumerabie occasions of sin in the capital is solemnly kept up by Antonio Liftan y Verdugo in his Grio y avisar de forasteros que pienen dla corle ($\mathbf{8 6} \mathbf{6}$), but in most of his tales there is more entertainment than decorum.

The profession of a serious moral purpuse on the part of many plcaresque writers is often a transparent excuse for the introduction of unsevouty incident. There is, however, no ground for doubting the sincerity of the physician Jenonimo de Alcalfe Yakez y Ribera, who at one time thought of taking holy orders, and studied theology under St John of the Cross. An unusual gravity of intention is visibie in Alonso, shose de mwchos amos (1624-1626), in which the repentant pfearo Alonso, now a laybrother, tells the story of his past life to the superior of the monastery in which he has taken refuge. It abounds with pointed anecdotes and with curious information concerning the Spanish gipsies, and this last characteristic exphains George Bortow's hyperbolical praise of the work as competing with Don Quixote in grave humour, and as unequalled "for knowledge of the human mind and acute observation"

At about this time there lived in Spain an ex-nun named Catalina de Erauso, who fled from her convent, dressed herself in men's clothes, enlisted, was promoted ensign, and saw more of life than any other nun in history. Broadsides relating the story of this picaresque amazon were circulated during her lifetime, and the details of her adventures arrested the attention of De Quincey, who would seem to have read them in a Spanish original which has been admirably translated since then by the French poet Josk Maria de Heredia. The Spanish original, in its existing form, was issued no earlier than 1829 by Joaquin Marie de Ferrer, whose character is not a satisfactory guarantee of the work's authenticity; but its interest is unquestionable. No such suspicion altaches to the Vida of Alonso de Contreras, first published in 1899; this out-at-elbows soldier faithfully records how he became a laight of the Order of Santiago, how he
broke all the Commandmente, how he found himself stranded it Madrid, how his Gne air captivaled Lope de Vega, who boused him for eight mont hs and dedicated to him a play entitled Rey sien reino, and how the ex-captain ended by. "tesolving to retire to a bonely apot and there serve God as a hermit." Every convention of the piceresque novel is faithfully observed, and the incidents are no doubt substentially true, though Contrems, like most converts, judges his own past with unnecesary harshness. This subtle lorm of vanity also pervades the Comentarios de a desengalade de tin mismo of Diego duque de Estrada, a rakish soldier and inferior dramatist whose autobiography (begun in 1614 and continued at intervals during many years) was not printed till 1860. A far higher order of talent distingulshes the Capilulaciones de la vida da le corte y oficias entretenidas in ella, a bitterly unsparing review of picarescjue life written by the great atirist Francisco Gomez de Quevedo y Villeges (e.v.). These thumbnail sketches were the preparatoty studies worked upinto the more elaborate Vida del buscon Don Pablos (1626), the clevereat and most revolting book of its class. There is no attempt to scare the wicked by means of awiul examples; the moral leason is con. temptuously thrown aside; the veil of romance is rent in twain, and the plcaro-the nephew of the public executioner-is revenied as he is, slosting in crueity and revelling in the conscious enjoy. ment of crime. But though Quevedo detests mankind, his morose vision of existence rarely degenerates into caricature. In his repugnant, misanthropic masterpiece the sordid genius of the Spenish picaroon finds absolute expression. Nothing furtber remained to be done in thematier of realism; henceforth tbe taste for picaresque novels grew leas keea, and later writers uncomsciously began to bumanize their personages.

The Varic fortuna da soldodo Piondare (1626) added nothing to the established reputation of Gonstio Cispedes y Mencses. A clever anonymous story. Don Raimundo, el entretexido (1627), missed fire, even though it was attributed to Quevedo; yet the author, Dicgo Tovar y Vaiderrama, compiled a sprightly diary of the events which make up a picanoon's crowded day, and failed solely because the interest in sogues was wning. . Other writers of undoubted gifts were slow to see that the fashion had changed. Alonso de Castilio Solóranoo (q.v.) tempted the public with three picaresque stories published in quick succession: Lo Nifte de los embusles, Teresa de Mamsnares (1634), the Averdmar del Bachiller Trapaza (1637) and a sequel to the latter entitled La Gardurie de Setilla (1642). Clever as Castillo Soloranno's stories are, their tricky henoes and heroines were no longer welcomed with the old enthusiasm in Spain; the Bachiller Trapose was destined to be continued by Mateo da Silva Cebral in Portugal and to be exploited by Le Sage in France, and to these two accidents it anes its survival. Le Sage likewise utilieed in Gil Blas episodes taken from 1 L Siglo pitagorico (1644), the work of Antonio Enriquez G8mez (q.s.); but most of El Siglo prifagirico is in veree, and as it was published at. Paris by an exiled Portuguese Jew, its circulation in Spain must bave been limited. The normal primitive rogue returns to the scene in Le Vida y hechos te Estebanillo Gonadtes (1646), which is no doubt the genuine autobiography that it purports to be. If he is still occasionally read hy students he owes it to the fact that Le Sage drew upon him in the Histoirs dEstcvanalle Gonslles. By the general public he is completely forgotten, and the same may be said of many subsequent Spanish writers who adopted the picaresque formula. The Buscon is the last great book of its kind.

Meanwhile, the rogue had forced his way into other European fiteratures. The Antwerp continuation (1555) of Letarillo de Tarmes brought the original to the notice of morthern readers, and this first part was translated into French hy Jean Saugrain in i561. A Dutch version was isgued anonymously in 1579, and it seems extremely likely that the book had been.translated into English before this date. This follows from a manuscript note written by Gahriel Harvey in a copy of the Houlaplass given him by Edmund Spenser; Harvey bere mentions thet he had received the Hondeglass, Skozgin. Skelton and Lazarillo from Spenser on the soth of December 1578. The earliest known edition of David Rowland's version of Laparille de Tormes is dated s586,
but as a Hoence to print a translation of thts take was granted on the a2nd of July $1568 / \mathrm{g} 69$, it is probable that a 1576 etition which appears in the Harleian Catalogne really existed. Numerous seprints ($1509,1639,1069-1670,1672,1677$) go to prove that dracrillo de Tormes was vety popular, and that Shakespeare had teed it seems to follow from an allusion in Minch Ado obent Nowhing (Act. it., sc. i.): ${ }^{*+}$ Now you strike Hte the blind man; 't whe the boy that stole your treat, and you will beat the post.". To Thomas Nash belonfs the credit, such as it is, of being the first to write a picaresque novel in Enghish: 7he Unforturate Trasiller; or the Life of Jech Willow (1594). Nash carefully points ont thnt bis work is a new experiment. " being a cleane different veine from other my former coorses of witilng "; the only possible Spanish model that he can have had was Lasarillo de Tormes, but he has nothing of his predecessor's as rdonic hrevity, and he anticipates later Spanish writers by hie emphatic insistence on the pleasures of eating and driaking to repletion. Nash ted the way, and a reference to "Spanish pickaroes" in Middleton's Spanish Gipsic indicates that the picaroon type had speedily become familiar enough for London playgoers to understand the reference. Interest in picaresque literature was zept alive in England by a translation (16as) of a sequel to Laserillo de Tormes published at Paris i wo yearm earlier by Juan de Luna, who come to London to supervise the English rendering; by James Mabbe's admirable version (162a) of Guswein de Alfararhe; by The Son of the Rogne or lhe Palitic Thif (1638), en tnonymous transiation, done through the French, of La desordenado codicio; and by another anonymous trandation (1657), likewise done tbrough the French, of Quevedo's Bescodn. The result of this campaign was The English Rogne described it the Lifc of Meriton Latroon, swilty Extrengant (166s), by Richard Head and Freacis Kirkman. The authors of yhis farrago imist on the English nationality of their chief charncter, and repudiat e the ide that they are in aby why indebted to Alemin and Quevedo. It is no exagetration, however, to say that almost all the material in the text is taken from Spaniah sources, and even the thieves' vocabulary is atolen from John Awdeley's Fraternitye of Y'acebonder or Thomas Harman's Caseat, or Warning for Common Curselors. It is not till Defoe's time that the English picaresque noved acquires any real impertance, and the picaresque intention informs much of his wort that contravenes the accepled rules of composition. There is a female picaroon in Moll Flanders, and, as Defoe read Spanish, it. is conceivable that Moll Flandera was sugeesed by the Ptera Justima; but this resemblance does not make a picaresque novel of Mall Flanders. The satirical spirit which is lacking in Moll Flanders is abundantly present in Colonel Jach, which hravely aims at exhibiting " vice and all kinds of wickedness attended with misery." Henceforward the picaroon is naturalined is English literalute, and is gloriously reincarnated in Fielding'a Jomathon Wild and in Smolleti's Ferdinasd, Count Fableme The classification ot Sterne's Triteram Shandy and Moricr'a Haji Babe as picaresque novels is not strictly accurate; like Pickaich and Oliver Twist and Barry Lymdon, they are rather varieties of the peripatetic novel, but many incidents in all five recall the pleasing wiles of the Spanish picaroons.

The Dutch iranslation of Lesarillo de Tarmes (1579) did not enable the picaresque novel to strike root in Holland, yet from it is derived one of the best Dutch comedies, De Spacmacht Brabamder Joralime (565) of Gerbrand Bredero. A German translation of Guman de Alfarache was published by Aegidius Alberitnus in 1615 ; boih Lasarille and Rincemele y Corladithe were transhated by Niclas Ulenhart in 1716 , and in 1617 there appaared an anonympus verion of the Picara Justima. The Spanish tradition was followed by Martin Frewden in a coninuation (16136) of Gusmen de Alfaroche, but the only oricinal picaresque novel of real value in Cerman is Grismmelhasen's Simplicissimat. Theattempt 10 acclimatize the picaresqye novel in Italy failed completely. Barezso Barexti translated Geamen de Alfanache, Lenarillo de Tormes and the Picetel Justitie is 1606, $162 a$ and $\mathbf{z} 64$ repectively, and Giovapni Pietro Frasco did the Burche into Italian in 1634 ; but, there was no important mative
development. The same may be midd of Portugal; for though Sitvo Cabral's continuation of the Bachiller Trapara is called the most remarkable of Portuguese picaresque tomances, it is lignificatat that O pereloilho de Cordona remsins in mamuscript.

The case was very diferent in France, where pictures of low Hfe had always found admirers. The first translation of LascFillo de Tormes appeared, as already noted, at Paris in 1561; the Grat translation of the first part of Guesmatn de Alfareche wats maved there by Cabriel Chappuis in $\mathbf{1 6 0 0}$, and the dictator Chapelain deigned to translate both parts in 1619-1620; the first tramiation of the Nowlas ejemploras was publebhed at Paris in 16:8 by Roset and d'Audiguier; and Freach translations of Marcos de Obreson, of La Desordenada codicia, of the Buscom and of the Picarc Jusfine were printed in 1618, 16at, 1633 and 1635 respeetively. Before this series of translations was completed Charles Sorel recounted in Prancion (162a) "the comic mishaps which befall evil-doers," invoking the common excuee that it is "Lawful to find pleasure at thetr expense." - Many of the epinodes in Pransion are picareaque in tone, but unfortumately Sorel wanders from his subject, and devotes no small part of his book to satiriaing literary men who, though fribbles or paupera, art in no sente picarcons. The legitimate Spaninh tradition is followed more closely and with much more ability by Paul Scarton in the Romen comion (1651), in which horseplay is predominant. The framework may have been muggeated by Aguaffa de Rojas or Quevedo, both of whom introduce a strolling coopany. and such characters as Liandre, Angtique de l'Eioile and Ragotin might be found in any average movela picwesta. Scarron franily mentions Castillo Solorrano's Gepdmede de Swille in his text; and his Precamtion inantile and Les Hypocitis are conviacing proofs of close study of Spenish plcarenque stories: the Pricomion analite is taten from Gismidn de Alforecive, and Les Hypparites is merely a trunulation of Salas Barbedilio's Bigie do Caleatima. The Koman bourgeois (1666) of Antoine Puretike is generally deacribed as a picaresque novel, but this involves a new definition of the adjective; the Roman bourgais hacledes somse portraite and more satire which seem suggested by picaresque reading, but it is concrined with the foibles of the middle class rather than with the sly devioes of common vagubonda.
The Spanich picaroon lives agoin in Gil Blas, where, with a dexterity slacot raser ihan original genius, a master of itterary mandpalation frees materials umarthed from forgotion and eerningly worthlems Spentsh quarties. OA-Blas is a creation of the gentler, sumier Preach spitt; the Beaumarchais' Figaso he in a Spmiard bonn, reared and humanised in Paris, and these two are the only plearoons whore relative refinement han not been grined at the cost of vertimilitade But the old original ccourndrel wat not yet extinct: in the boterval between the appearance of the Borbict do Steille and the Merisge do Figare Rentir de Is Bretonme produced a sequel ($\mathbf{1 7 7 6}$) to the Busclin--I sequel no dull as to be wellinigh unreadabie. The untarned Spanish rogue had become imperable towards the end of the stah cent fury: In the roth he was deliberately sejected when Theophile Gautier wrote his Capitaine Pracasse. Yet Gautier corncientioucly provides a Spanish atmoephere; the potomages have Spanith names; tine knife hats a Spatish inscription; the sost speaks Prench with a Sparich accent; Vallombresse ports from the marquit with a Spansih formula: "bewo \& vuestra merced ba paavo, caballiero." Capiotive Frecasse in the hast important book which continues tho picaresque tradition. The pomibilities of picaresque fiction can never be exhousted while human meture fis unchanged. Pereds (q.v.) in Pedre Samelve (1884) touches the ald theme with the accent of modernity. It may be that instend of one contimouss tale, Interrupted by eploodical digremions, the piceresque fiction of the future wifi take the form of short stories independent of one apother! bat this would be mothing more than a conveniemt mechanical device, a readjustment of means to ends.
 De. i. (Yyw York, 1899); Fonger De Hana, Am Oudicu of Co Elictery

1889)(H. Butior Charke, "The Spanim Rozue-Story" in Stodies in Enrepeoy Lilerature (Oxford, 1900); A. Schullheish, Der Schedmenroman der Spanter und seine Nachbildungen (Hamburg, 1891): F. J. Garriga, Estudio de la novela picaresce (Madrid. 1891); F. M. Warren, History of the Nowd previonst to the Sewentoenth Cembury (New York, IEjs); H. Koerting. Geschichte des frazessischen Romains in 17. Jahrhuderl (Oppeln and Leiprig, 1891); Arvade Barine. "Les gueux d'Empagne in the Rome des dexx siondes. vol. Ixuxvi. (Paris, 1888): A. Morel Fatio, Eludes sur l'Espagne (3 vols, Paris, 1888-1904).
U. F.-K.)

YICAYUATS, the name in Florida and Loufsiana of the Spanish half real, $=\frac{1}{1}$ t of a dollar, $6 \frac{1}{2}$ cents. and hence used of the United States 5 cent piece. The French picaillon, from which the word was adapted in America, was an old copper coin of Piedmont. Its origin is doubtful, but is possibly related to the Italian piccolo, little, amall. In America the word is used of anything trifing, petty, man or contemptible.

PICCAMIMMY, or Pictaninny, a word applied originally by the negroes of the West Indies to thelr babies. It is adapted either from Span. pequello, small, or Port. pequenino, very small. The word spread with the slave trade to America, and has since been adopted in Australia and in South Africa.

PICCIIIMO, MICCOLO (1386-1444), Italian condoltiere, born at Perugia, was the son of a butcher. He began his military carcet in the service of Braccio da Montone, who at that time was waging war against Perugia on his own account; and at the death of his chief, shortly followed by that of the latter's son Oddo, Piccinino became leader of Braccio's condotto. After serving for a short period under the Florentine Republic, he went over to Filippo Maris Visconti, duke of Milan (1425), in whose service together with Niccold Fortebraccio be fought in the wars against the league of Pope Eugenius IV., Venice and Floreace. He defeated the papal forces at Castel Bolognese (1434), but another papal army under Francesco Sforza having defeated and killed Fortebraccio at Fiondimonte, Piccinino was left in sole command, and in a series of campaigns against Sforza he seized a number of cities in Romagns by treachery. In 1439 he again fought in Lombardy with varying success agedst Sforza, who had now entered the Venetian service. Piccinino then induced the duke of Milan to send him to Umbria, where he hoped, tike so many other condottieri, to carve out a dominion for himself. He was defeated by Sforza at Anghiari (1440), but although a number of his men were taken prisoners they were at once liberated, as Wes usually done in wars waged by soldjers of fortunc. Again the war ahifted to Lombardy, and Piscinino, having defeited and aurrounded Sforza at Martinengo, demanded of the viscontl the lordship of Piacenza as the price of Sforza's espture. The duke by way of reply concluded a truce with Siorza; but the latter, who, while professing to defend the Papal States, had establiahed his own power in the Marche, aroused the fears of the pope and the king of Naples, as well as of the visconti, who gave the command of their joint lorces to Piccinino. Sforza was driven Irom the Marche, but defeated Piccinino at Montelauro, and while the latter was preparing for a desperate effort against Sforza be was suddenly recalled to Milan, his army was beaten in his absence, and be died of grief and of his wounds in 1444. Short of stature, lame and in weak healch, he was brave to the point of foolhardiness, wonderfully resourceful, and never overwhelmed by defeat. He was cruel and treacherous, and had no aim beyond his own aggrandirement. Piccinino left two sons, Jacopo and Francesco, both distinguished condoulieri.

A good eccount of Piccinino is contained in vol. iii. of E. Ricotti's Scorfa della compopmic di renture (Turin, 1845); G. B. Poggio. Vite dif N. Picasime (Venice, 1573); we aloo the Eremeral hictories of the period.
 was born at Bari on the roth of January 1728 . He was educated under Leo and Durante, at the Conservatorio di Sant' Onofrio sin Naples. For this' Plecminf had to thank the intervention of the bshop of Bari, his father, allhough himself a musictan, being opposed to him con's following a musical carcer. Fis first opert, the Dowse dispellose, was produced in 1755, and in 1760 he composed, at Rome,

Figlivola, an opera buff which attained a Europenn sucoess. Six years alter this Piccinni was invited by Queen Marie Antoinette to Paris. He had married in 1756 his pupil Vincenza Sibilla, a singer, whom be never allowed after her marriage to appear an the gage. All his next works were successiul; but, unhappily, the directors of the Grand Opera conceived the mad idea of deliberately opposing him to Giuck, by persuading the two composers to treat the same subject-Iphistmie en Tauride-simuitaneously. The Parisian public now divided itself into two rival parties, which, under the names of Gluckists and Piccinnists, carried on an unworthy and disgraceful war. Gluck's masterly Ipkigtnic was first produced on the 18 th of May 1779 . Piccinni's Iphigtnic followed on the 23rd of January 1781, and, though periormed seventeen times, was afterwards consigned to ohlivion. The fury of the rival parties continued unabated, even after Cluck's departure from Paris in 1780 ; and an attempl was afterwards made to inaugurate a new rivalry with Sacchini. Still, Piccinni held a good position, and on the death of Gluck, in 1787 , proposed that a public monument should be erected to his memory-a suggestion whicb the Gluckists themselves decilined to support. In 1784 Piccinni was professor at the Royal School of Music, one of the institutions from which the Conservatoire was formed in 1794 . On the breaking out of the Revolution in 1789 Piccinni returnedto Napies, where he was at first well received by King Ferdinand IV.; but the marriage of his daughter to a Frencb democrat brought him into irretrievable disgrace. For nine years after this he maintained a precarious existence in Venice, Naples and Rome; but he returned in 1798 to Paris, where the fickle public received him with enthusiasm, but left him to starve. He died at Passy, near Paris, on the 7th of May 1800. After his death a memorial tablet was set up in the house in which he was born at Bari.
The most compiete list of his works is that given in the Rivista musicale idaliana, viii. 75. He produced over eighty operas, but although his later work shows the influence of the French and German stase, he belongs to the conventional Italian school of the 18th century.
See also P. L. Ginguent, Notice sur la oic et hes oxvrazee de Niccole Piccinni (Paris, 1801) E. Demoirsterres, La Musique frangase au 18" sizcic Gluck ef Piccimni $1774-1800$ (Paris, 1872).
PICCOLO (Fr. pecite fatte oclave; Ger. Pickelfole; Ital. fanto piccolo or ottavine), a small flute of less than half the dimensions of the large concert flute and pitched an octave higher. The principles of construction and the acoustic properties are the same for the piccolo as for the flute, with the exception that the piccolo does not contain the additional tail-piece with the extra Low keys, which give the fute its extended compass. As the pitch of the piccolo is so high, the highest of all orchestral instruments with the exception of a few harmonics on the violin, the music for it is written an octave lower than the real sounds in order to avoid the ledger lines. The piccolo has been used with good effect in imitating the whistling of the wind in storms, as in Beethoven's Pasloral Symphony, Wagner's Flying Dulchman, and in conjunction with the violins in tremolo to depict the rustling of the leaves in the breeze, as in the "Waldweben" in Siesfried. Verdi employed it to advantage in Falstaff as a comic agent in humorous situations. The piccolo is generally in D, sometimes in $E b$ or F.
(R.S.)

PICCOLOMINI, the name of an Italian noble family, which was prominent in Siena (q.0.) from the beginning of the $13^{\text {th }}$ century onwards. In 1220 Enghelberto d'Ugo Piccolomini rectived the fief of Montertari in Val d'Oircia from the emperor Frederick II. as a reward for services rendered. The family acquired houses and towers in Siena and castes in the republic's territory, including Montone and Castigione, the latter they sold to the commune in 1321. They obtained great weath through trade, and established counting-houses in Genoa, Venice, Aquileia, Trieste, and in various cities of France and Germany. Supporters of the Guelph cause in the civil broiss by which Siena was torn, they were driven from the city in the time of Manfred and their houses demolished; they returned in triumph after the Angevin victories, were expelled once mare during the brief
raign of Conradin, and again returned to Siena with the belp of Charies of Anjou. But tbrough their siotous political sctivity the Piccolomini lost their commercial inAnence, which pased into the baods of the Florentincs, although they retained their palaces, castles and about twenty fiets, some of which were in she territory of Amalfi and of greal extent. Many members of the house were distinguished ecclesisttict, gemerals and statesmen in Siens and ehewhere; two of them were popes vis Acmes Silvius Piccolomini (Pius IIL., q.0.) and Frasceaco Piccolomini (Plus III., g.E).

See Richter, Di Piccolomini (Bertin; 1874); A. Lisini and A. Liberati, Albero della Jamulicia Prccolomini (Sivana, 1899); aed articles by A. Lisini in the Miscellamea storica sconese, gnd weriea 12, and 4th series, 37 and 189.
piccolomink, octavio, Panace (is00-1656), duke of Amall, Auserian general, was born on the inth of November 1990 in Florence, and carried a-pike in the Spanish servico at the ase of sixteen. Two yean later, on the outbreak of the Thiry Years' War in Bobermin, be was appointed a captain in a cavalry regiment sent by the grand duke of Tuscany to the emperor's army, and he fought with some diatinction under Bucquoy at the Weiser Berg and in Hungary. In 1624 he served for a short time in the Spanish army and then as liewtenant-coloned of Pappenbein's cuirascier regiment in the war in the Milanese. In 5627 he re-entered the Imperial service as colonel and captaia of the lifeguard of Wallenstein, duke of Friedland. In this capacity be soom fell into disgrace for practising extortion at Stargard in Pomeranin, but bis adroitpess mecured bisn, alter no long interval, the rank of "colonel of horse and fool." About this time the appointment of his younger brother to the archbishopric of Siena secured him a posinion of influence in the diplomatic word. Diplomatic talent was indeed almoer the birthright of a member of an Italian family, that bad seen two of ite members occupying the papal chair, and Wollenstein Ireely mande use of his subordinate's capacity for negolistion and indrigue. In the evepts of the Mantuan War Piccolomini cook a prominent part ia the dual rote of the subtie diplomatist and the plundering soldier of fortupe. At this moment came the invasion of Germany by Gustavus Adalphus. Piccolomini was interned at Ferrare as a hostage for the ratification of a treaty, but be added his voice to the general call for Wallenatein's reappointment as coonmander-in-chief. He was not, however, included in the list of promotions that followed the duke's reappoarance, and he served under Ceneral Holk, an officer brought in from the Danish service, in the preliminary operations and in the battle of Luizen. His ambition was gratified when, on reading the official report of the batte, the emperor made bim a seneralfaldwachlmeister. Al the sume time. howevcr, Holik was created a field marnhal at Wallenstein's instance, much to his rival's chagrin. In the campatgn of 1633 Piccolomini held the command of an important detachment posted at Koniggratz to ber the enemy's edvance from Silesia into Bohemia. History repented itself on the same ground in 1756, 1778 and 1866; in the fira of these cases it was a Piccolomini, grand-nephew of Octevio, who commanded the Austrians; in the last the victorious Prussinns passed over the essate of Nachod, which after 1635 was a heredi. cary possession of the lamily. In May Wailenuleio entered Silesia with the main nerny with the unavowed object of competling or persuediag the elections of Brandenburg and Saxony to make common cause with the emperor against the Swedes Piccolomini was with hipm, and, disapproving of the duke's policy, joined in a. military conspiracy, out of which grew the drama that ended with the murder of Wallenstein on the asth of February 1634. Piccolomini's own part in the tragedy has been set forth for all time in the pages of Schiller's Waliensteim His reward was his marshal's blton, 100,000 gulden and the beautiful estate of Nachod in the Riesengebirge.
He was Wallenstein's pupil as well as his slayer, and had learned the art of war from that master. On the sth-6th of Septembier in the same year he distinguished himadif amongat the foremiost in the great victory of Nordlingen. He soon sum. the necessity for following out the lines of military policy hid
down by the dake, but deither be nor Gallas, the new lieutenantgeneral of the emperor, possessed the capacity for carrying it out, and the war dragged on year after year. Piccolomini was in $\mathbf{x} 55$ allied with a Spanish army, and bitterly complaned that their sloth and caution marred every scheme that he formed. In $\mathbf{x} 638$ he was made a coant of the empire, and in $\mathbf{8 6 3 9}$, having been fortunate enough to win a great victory over the French (reliff of Thionville, July 7, 1630), he was rewarded with the office of privy councillor from the emperor and with the dukedom of Amalfi from the king of Spain. But instead of being appointed, as he hoped, Gallas's successor, he was called in to act as ad latus to the Archduke Leopold Wilhelm, with whom he was defeated in the second battle of Breitenfeld in 1642. After this he spent some years in the Spanish service and received as his reward the title of grandee and the order of the Golden Fleece. Some years later, having re-entered the Imperial army, he was again disappointed of the chief command by the selection of the brave vetcran Peter Melander, Count Holzapfel. But when in 1648 Melander fell in battle at Zusmarshausen, Piccolomini was at last appointed lieutenant-general of the emperor, and thus conducted as gencralissimo the final campaign of the weary and desultory Thirty Years' War. Three days after the commission for executing the peace had finished its labours, the emperor eddressed a Ictter of thanks "to the Prince Piccolomini," and awarded him a gift of 114,566 gulden. Piccolomini died on the inth of August 1656. He left no children (his only son Josef Silvio, the "Max " of Schiller's Wallenstcin, was murdered by the Swedes after the battle of Jankau in 1645), and his titles and estates passed to his brother's son. With the death of the latter's mephew Octavio Aencas Josef in 1757, the line became extinct.

PIOENB, $\mathrm{Cin}_{12} \mathrm{H}_{14}$, a hydrocarbon found in the pitchy residue obtained in the distillation of peat-tar and of petroleum. This is distilled to dryness and the distillate repeatedly recrystallized from cymene. It may be synthetically prepared by the action of anhydrous aluminium chloride on a mixture of naphthalene and ethylene dibromide (R. Lespieau, Bull. soc. chim., 189:, (3), 6, p. 238), or by distilling a-dinaphthostilbene (T. Hirn, Ber, 1809, 32, p. 3341). It crystalizes in large colourless plates which possess a blue fluorescence It is solubie in concentrated sulphuric acid with a green colour. Chromic acid in glacial acetic acid solutlon oxidizes it to picene-quinone, picene-quinone carboxylic acid, and Gnally to phthalic acid. When heated with bydriodic acid and phosphorus it forms hydrides of composition $\mathrm{C}_{4} \mathrm{H}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{3}$ (see E. Bamberger and F. D. Chattaway, Ann., 1899, 284, p. 61).

PICBRUM, alstrict of ancient Italy, situated between the Apennines and the Adriatic, bounded N. by the Senones and \mathbf{S} by the Vestini. The inhabitants were, according to tradition. an offishoot of the Sabines. Strabo (v. 4, 1) gives the story of their migration, led by a woodpecker (priws), a bird sacred to Mars, from which they derived thetr name Picentini (cf Dion Hal. i. 14, 5), just as the Hirpini derived theirs from hirpus, a wolf. The district was conquered by the Romans early in the 3rd century B.c. and the whole territory was divided up among Latin-speaking settlets by the Lex Flaminia in 232 s.c. Hence we have very scanty records of any non-Latin Language that may have been spoken in the district before the 3rd century. Besides the problematic inscriptions from Belmonte, Nereto and Cupre Maritima (see Saaezuc), we have one or two Latin inscriptions (probably of the and or even the st century e.c.) which contain certain forms showing a distiact affinity with the dialect of Iguvium (cf. the name Pasdiz Latin Pacidic). Hence there seems some ground for believing that the population which the Romans dispossessed, or held in subjection, really spoke a dialect very much like that of their neighboars in Umbria.
For inscriptions. see R. S. Conway. The Italic Dialects, p. 449, where the place-names and personal names of the district wit also be found: see furthor, Livy, Epil. nv.; B. V. Head. Histeria mesmoram, p. 89.
(R.S.C)

It was in Picenum, at Asceluma, that the Social War broke ont in 90 B.c. At the end of tho war the district became connected with Pompeius Strabo, and his son Pompey the Great threw inso
the sate on the side of Sulla, in 83 b.C., all the influence he possessed there, and hoped to make it a base against Caesar's legions in 49 b.c. Under Augustus it formed the fifth region of Italy, and included twenty-three independent communities, of which five, Ancona, Firmum, Asculum, Hadria and Interamnia, were coloniac. It was reached from Rome by the Via Salaria, and its branch the Via Caecilia. It was also on a branch leading from the Via Flaminia at Nuceria Camellaria to Septempeda. There were also communications from north to south; a road led from Asculum to Urbs Salvia and Ancona, another from Asculum and Firmum and the coast, another from Urbs Salvia to Potentia, while finally along the whole line of the coast there ran a prolongation of the Via Flaminis, the name of which is not known to us.
At the end of the and century a.D. the north-eastern portion of Umbria was divided from the rest and acquired the name Flaminia, from the high road. For the time it remained united with Umbria for administrative purposes, but passed to Plcenum at latest in the time of Constantine, and acquired the name of Flaminia et Picenum Annonarium, the main portlon of Picenurn being distingulshed as Suburbicarium. In an inscription of a.d. 309 Ravenna is act ually spoken of as the chicf town of Picenum. When the exarchate of Ravenna was founded the part of Picenum Antonarium near the sea became the Pentapolis Maritima, which included the five cities of Ariminum, Pisaurum, Fanum Forturae, Sena Gallica and Ancona. The exarchate was seized by Luitprand in 727, and Ravenda itself was taken by Aistul! in 753. In the next year, however, the Emperor Pippin took it from him and handed it over to the pope, a grant confirmed by his son Charlemagne.
(T As.)
PICHBORU, CEARLES ($176 \mathrm{i}-1804$), French general, was born at Arbois, or, according to Charies Nodier, at Les Planches, near Lons-le-Saulnier, on the 16 th of February 176ı. His father was a labourer, but the friars of Arbois gave the boy a good education, and one of his masters, the Pere Partault, took him to the military school of Brienne. In 1783 he entered the first regiment of artillery, where he rapidly rose to the rank of adjutant-sublieutenant. When the Revolution began he became leader of the Jacobin party in Besancon, and when a regiment of volunteers of the department of the Card marehed tbrough the city he was elected licutenant-colonel. The fine condition of his regiment was soon remarked in the army of the Rhine, and his organixing ability was made use of by 'an appointment on the taff, and finally by his promotion to the rank of general of brigade. In 1793 Carnoe and Saint Just were sent to find roturser generals who could be successful, Carnot discovered Jourdan. and Saint Jusi discovered Hoche and Pichegra. In co-operation with Hoche and the army of the Moselle, Pichegra, now general of division and in command of the army of the Rhine, had to reconquer Aksee and to reorganize the disheartened troops of the republic. They succeeded, Pichegru made use of the $\begin{gathered}\text { tan } \\ \text { of } \\ \text { his soldiers to } \\ \text { win innumerable small engagements, }\end{gathered}$ and with Hoche forced the lines of Haguenau and relieved Landau. In December 1793 Hoche was arrested, it is said owing in part to his colleague's machinations, and Pichegru became commander-In-chief of the army of the Rhine-andMoselle, whence he was summoned to succeed Jourdan in the army of the North in February ry94. It was now that he fought his three great campaigns of one year. The English and Austrians held a strong position atong the Sambre to the sea. Alter vainly aitempting to break the Austrian centre, Pichegru suddenly turned their left, and defeated Clerfayt at Cassel, Menin and Courtral, white Morean, is second in command, defeated Coburg at Tourcoing in May 1794; then after a pause, during which Pichegru leigned to besiege Ypres, he again dashed at Clerfayt and defeated him at Rousselaer and Hooglede, white Jourdan came up with the new army of the Sambre-and-Meuse, and utterly routed the Austrians at Fleurus on the 27th of June 1794. Pichegra began his second campaign by crossing the Metise on the. 18th of October. and after taking Nijmwegen drove the Austrians beyond the Rhine. Then, instead of going into winter-quarters, be prepared his army for a winter
campaign. On the 28 th of December he crossed the Meuseon the ice, and atormed the island of Bommel, then crossed the Waal In the same manner, and, driving the English before him, entered Utrecht on the igth of January, and Amsterdam on the 2oth of January, and soon occupied the whole of Holland. This grand feat of arms was marked by many points of interest, euch as the capture of the Dutch ships, which were frosen in the Helder, by the French bussars, and the splendid discipline of the ragged battalions in Amsterdam, who, with the richest city of the continent to sack, yet behaved with a self-restraint which few revolutionary and Napoleonic armies attained. The former friend of Saint Just now offered his services to the Thermidorians, and after receiving from the Convention the title of "Sauveur de la Patrie," subdued the sans-culottes of Paris, when they rose in insurrection against the Convention on 12 Germinal (April 1). Pichegru then took command of the armies of the North, the Sambre-and-Meuse, and tbe Rhine, and crossing the Rhine in force took Mannheim in May 1795 . Wben his fame was at its height he allowed his colleague Jourdan to be beaten, betrayed ali his plans to the enemy, and took part in organizing a conspiracy lor the return of Louis XVIII., in which he was to play, for his own aggrandizement, the part that Monk played from higher motives in the English revolution. His intrigues were suspected, and when he offered his resignetion to the Dlrectory in October 1795 it was to his surprise promptly accepted. He retired in disgrace, but hoped to serve the royalist cause by securing his election to the Council of Five Hundred in May 1797. He was there the royalist leader, and planned a coup d'elat, but on the 18th Fructidor he was aftested, and with fourteen others deported to Cayerine in 1797 . Escaping, he reached London in 1798, and served on General Korsahov's ataff in the campaign of 1799 . He went to Paris in August 1803 with Georges Cadoudal to head a royalist rising against Napoleon; but, betrayed by a friend, he was arrested on the 28th of February 1804, and on the 15 th of April was found strangled in prison. It has often been asserted that he was murdered by the orders of Napoleon, but there is no foundation for the story.

Pichegru's campaigns of 1794 are marked by traits of an audacious genius which would not have disernced Napoleon. His tremendous physical strength, the personal ascendancy he ganned by this and by his powers of command made him a peculiarly formidable opponent, and thus enabted him to main. tain a discipline which guaranteed the punctual execution of his orders. He had also, straugely enough, the power of captivating honest men like Moreau. He flactered in turn Saint Just and the Terrorists, the Thermidorians and the Directors, and played always for his own hand-a strange egoist who rose to lame as she leader of an idealist and sentimental crusade.

There is no really good life of Pichegru, pertaps the best is J M. Gassier's Vie du geveral Puchegra (Paris, 18is). For his Ireason. I rial and death, consult Muntgaillard 's Mimorres concernant la trahison de Pkhegru (isof); Fauche-Borel's Memoures: Sevary, Memorres sur la mort de Pikhegru (Paris, 1825), and G. Pierret. Prkegru, son proces et sa mort (1826).

PICELER, KAROLNR ($1769-1843$), Austrian novelist, was born at Vienna on the 7 th of September 1769, the daughter of Hofral Franz von Greiner, and married, in 1796, A ndreas Pichler, a government official. For many years her salon was the centre of the literary life in the Austrian capital, where she died on the gth of July 1843 Her early works, Olivier, first published anonymously (1802), Idyllen (1803) and Ru/h (1805), though displaying considerable talent, were immature. She made ber mark in historical romance, and the first of her novels of this class, Agadkocles (1808), an answer to Gibbon's attack on that hero in the Decline and Fall of the Roman Empire, attained great popularity. Atnong ber other novels may be mentioned Die Belagerung Wicns (1824); Die Schwoden in Prag (1827); Die Wiaderevobervang Ofens (1829) and Henriette nan Eagland (1832). Her last work was Zeilbilder (1840).

The edition of Karoline Pichler's Samuliche Werke (t820-1845) comprises mo less than 60 volumes. Her Dewhtendigherten ans mainen Leben (4 vola.) wes publiahed porthumously in 1844. A
oelection of her nerratives, Ausgowill Ersaldmegen, appenred in 4 vols. in 1894.

PICKENS, ANDRET ($1739-1817$), American soldier in the War of Independence, was born in Pazton, Bucks county, Pennsylvania, on the 191 h of Septemter 1739. His family settled at the Waxhaws (in what is now Lancaster county), South Carolina, in 1752 He fought against the Cherokees in 1761 as a lieutenant. In the War of Independence be rose to brgedier-general (after Cowpens) in the South Carolina militia. He was a captain amons the American troops which surrendered at Ninety Six in November 1775. On the sith of February 1779. with 300-400 men, he surprised and defeated about 700 Loyalists under Colonel Boyd on Kettle Croek, Wilkes county, Georgin; on the aoth of June he fought at Stono Ferry, and later in the same year at Tomassce defeated the Cherokoes, who were allied with the British. Upon the surrender of Charieston (May 178o) he became a prisoner on parole, whith he observed rigidly unil, contrary to the promises made to him, Major James Dunlap plundered his plantation, he tben returned to active service. His command (about 150 men) joined Generel Daniel Morgan immediately before the battle of Cowpens, in which Pickens commanded an advance guard $1270-350$ men from Georgia and North Carolina) and twice rallied the broken American militia; for his services Congress gave him a sword. With Colonel Henry Lee he harassed Lieut. Colonel Baanatre Tarleton, who was attempting to gather a Loyalist force just before the battle of Guilford Court House; and with Lee and others. he captured Augusta (June 5, 1781) after a siege. At Eutaw Springs (Sept. 8, 1781) he commanded the left wing and was wounded. In 1782 he defeated the Cherokees again and forced them to surrender all lands south of the Savannah and east of the Chat tahoochee. After the war he was a member of the South Carolina House of Representatives for a number of years, of the state Constitutional Convention in 1790, and of the National House of Representatives in 1793-1795. He died in Pendleton district, South Carolima, on the $\mathbf{t 7 t h}$ of August 1817. He had married in 1765 Rebecca Calboun, an aunt of John C. Calhoun. Thear son, Andenw Piceins (2779-1838), served as a lieutenani-colonel in the War of 1812 , and was governor of South Carolina in 18:6-1818.
PICKEIRS, FRANGIS WILKINSOA ($1805-1860$). Americar politician, was bom in Togadoo, St Paul's parish, South Cerolins, on the 7th of April 1805 , son of Andrew Pickens (1779-1838) and grandson of General Andrew Pickens (1739-18:7). He was educated at Franktin College, Athens, Georgia, and at Soutl. Carolina Collcge, Columbia, and was admitted to the bar in 1829. In 1832 he was elected to the state House of Representatives, where, as chairman of a sub-ommittee, be submitted a report denying the right of Congress to exercise any control over the states. He was a Democratic member of the National Hotase of Representatives in i834-1843, served in the South Carolina Senate in $\mathbf{8} 844-1845$, wis a delegate to the Nashvile Southern Convenuon (see Nashville, Tennmessie) in a8jo, was United States minister to Russia in 1858-1860, and in 1860-1862 was governor of South Carolina. He strongly advocated the secession of the Southern states; signed the South Carolina ordinance of secession; protested against Major Robert Anderson's removal from Fort Moultric to Fort Sumter; sanctioned the firing upon the "Star of the West " (Jan. 9, 1861), which was bringing supplies to Aoderson, and the bombardmem of Fort Sumter; and was a zealous supporter of the Confedcrate cause. At the close of his term he retired to his home at Edgefield, Sonth Carolina, where he died on the asth of January 1860.

PICKERLNG, EDWARD CHARLES (1846), American physicist and estronomer, was born in Boston on the soth of July 1846. He graduated in 1865 at the Lawrence Scientific School of Harvard, where for the next two years he was a teacher of mathematics. Subsequently he became profesor of physics at the Mawsectusetts Institute of Technology, and in 1876 he was appointed professor of astronomy and director of the Harvard College observatory. In 1817 he decided to
devote once of the telescopes of the observatory to stellar photometry, and after an exhaustive trial of various forms of photometers, he devised the meridian photomerer (see Photomettre, Stellar), which seemed to be free from most of the sources of error. With the first instrument of this kind, having objectives of 1.5 inch aperture, he measured the brightness of 4260 mars, including all stars down to the 6th magnitude between the North Pole and -30° decination. With the object of reaching fainter otars, Professor Pickering constructed another instrument of larger dimensions, and with this more than a million observations have been made. The first important work undertaken whth it was a revision of the magnitudes given in the Boan Durchmusterung. On the completion of this, Profensor Pickering decided to undertake the survey of the soutbern hemisphere. An expedition, under the directioa of Prof. S. I. Bailer, was accordingly despatched (1889), and the meridian photometer erected successively in three different positions on the slopes of the Andes. The third of these was Arequipa, at which a permenent branch of the Harvard Observatory is now localed. The magnitudes of nearly 8000 southern stars were detecmined, including sa28 stars of the 6th magnitede and brighter. The instrument was then returned to Cambridge (U.S.A.), where the survey extended so as to include all sters of magnitude 7.5 down to -40° declination, after which it was once more sent back to Arequipe. In ${ }^{2856}$ the widow of Henry Draper, one of the pioneers of stellar apectroscopy, made a liberal provision for carrying on spectrosoopic investigations at Harvurd Colicge in memory of her husband. With Prolessor Pickering's usual comprehensiveness, the inquiry was so arranged as to cover the whole sky, and with four telescopes-two at Cambridge for the northern hemisphere, and two at Arequipa in Pers for the southern-to which a fine $24-\mathrm{in}$. photographic telescope was afterwards added, no fewer than $\mathbf{7 5 , 0 0 0}$ photographs had boen obralned up to the beginning of 1901. These investugations have yielded many important discoveries, not only of new stars, and of large numbers of variable stars, but also of a wholly new class of double starn whose binary character is only revealed by peculiarities in their spectra. The important oonclusion has been already derived that the majority of the stare in the Milky Way belong to one special type.

PICKERING, Tlitothy (1745-18ag). American politician, was born at Salem, Massachusetts, on the 17th of July 1745 He graduated from Harvand College in 1763 and was admitted to the bar in 1768 . In the pre-revolutionary controversies he identlfied himself with the American Whigs; in 1773 be prepared for Salem a paper entitlod Slate of the Rights of the Colomith; in 1775 he drafted a memorial proteating against the Boston Port Bill; and in 17^{6} he was a representative from Salem in the Ceneral Court of Massachusetts. In 1766 he had been commissioned lieutenant and in 3769 captain in the Esuex county mititia; early in 1773 he published An Easy Plan of Discipline for a Militic, adopted in May 1776 by the General Court for use by the militia of Massachusetts, and he was elected colonel of bis regiment. In the same year he became judge of the court of common pleas for Essex count y, and sole judge of the maritime court for the counties of Suffilk, Essex and Middlesex. Is the winter of 1776 -1777 he led an Essex regiment of voluntecrs to New York, and be subsequently served as adjutant-semeral (June 1777-Jan. 1778) and later as quartermaster-general ($1780-1785$); he was also a member of the bourd of war from the 7 th of November 1777 until ite abolition. With the aid of some officers he drew up, in April 1783, a plan for the settlement of the North-Weat territory, which provided for the exclusion of slavery. In 1785 be became a commiscion merchant in Philedelphia; but in October 1786, 200a after the legtalature of Penasylvania had passed a bill for erecting Wyomiag district into the county of Luzerne, he was appointed prothonotary and a judge of the court of common pleas and clerk of the court of seasions and orpham' court for the new county, and was commissioned to organize the county. He offered to purchase for himself the Connecticut the to a farm, and in the following year be wall appointed a member of a commisaion to settic chima
according to the terms of an act, of which he was the author, confirming the Connecticut tilles (see Wromenc Valley and Wilges-Barre). Pickering was a member of the Pennsylvania convention of 1787 which ratified the Federal cossstitution, and of the Pennsylvania constitutional convention of 1789-179a In November 1790 be negotiated a peace with the Seneca Indians, and be concluded treatics with the Six Nations in July 1791, in March 1792 and in November 1794. Under Washington he was postmaster-general (1791-1795), secretary of war (1795), and after December 1795 secretary of state, to which position he was reappointed (1797) by Adams. In 1783 , while he was quartermaster-genera, be had presented a plan for a military academy at West Point, and now, as secretary of war, he super. vised the West Point military post with a view to its conversion into a military acadenay. As hear of the state department he soon came into confict with Adams. His hatred of France made it impossible for fum to sympathize with the president's efforts to settle fre differences with that couniry on a peaceable basis. He used all his inftuence to hamper the president and to advance the political Intercals of Alexander Hamilton, until be.was dismissed, after refusing to resign, in May 1800 Returning to Massechusetts, be served as chief justice of the court of commen plens of Essex county in 1802-1803. He was a United States senator in 1803-18is and a member of the Federnl House of Representatives in 1813-1817. As an ultra Federalist-he was 2 prominent member of the group hnown as the Essex Junto-he strongly opposed the purchase of Loxiviana and the War of 1812 . He died at Salem, Massachusetts, on the 29th of January 1829.
The sandard biography is that by his son. Octavius Pickering (1791-1868), and C. W. Upham. The Life of Timolhy Pickering (4 vols., Boaton, 1867-1873). In the llbrary of the Massachusetts Historical Socicy at Eoston, there are sixty-1wo manuscript volomes of the Pickering paperi, an inctex to which was publisted in the Collachous of the sociely, 6 ch veries. vol. vili. (Boution, 1896).
His son, John Picisieino (1777-1846), graduated at Harvard in 1796, studied law and was private secretary to William Smith, United States minister to Portugal, in 1797-1799, and to Rufus King, minister to Great Britain, in 1799-1801. He practised law in Salem and (after 1827) in Boston, where he was city solicitor in 1827-1846, and wrote much on law and especially on the languages of the North-American Indians. He was a founder of the Ameriran Oriental Society and published an excellent Comprehensixe Dictionary of the Grech Lanenage (1826).

See Mary O. Pickering (his danghter), Life of Johm Puckering (Boston, 1887).

Timothy Pickering's grandson, Charles Pickernnc (r8051878), graduated at Harvard College in 1823 and at the Harvard Medical School in 1826, practised medicine in Philadelphia, was naturalist to the Wilkes exploring expedition of $1838-1842$, and in 1843-1845 travelied in East Africa and India. He wrote The Races of Man and their Geographical Distribution (1848), Geographical Distribulion of Animals and Man (1854), Gcographical Distribution of Plands (186r) and Chronological History of Plands (1879).
PICKERIIG, a market town in the Whitby parliamentary division of the North Riding of Yorkshire, England, 32 m . N.E. by N. Irom York by the North Eastern milway, the junction of several branch lines. Pop. of urban district (1goi), 3491. The church of St Peter is Norman and transitional Norman, with later additions including a Decorated spire. It containg a remarkable series of mural paintings of the isth century. The castie, on a hill to the north, is a picturesque ruin, the fragmentary keep and several towers remaining. The work is in part Norman, hut the principal portions are of the 14th century. One of the towers is connected in name and story with Fair Rosamond. The castle was held by Earl Morcar shortly before the Conquest ; it then came into the hands of the Crown, and subsequentiy passed to the duchy of Lancaster. It was the prison of Richard II. before his confinement at PonteIract. During the civil wars of the 17 th century the castle was held by the Royalists, and suffered greatly in siege. The districa
surrounding Pickering is agricultural, and the town is a centre of the trade. Agricultural implements are manufactured, and limestone and freestone are quarried in the vicinity.
PICKET, Prquet or Picquet (Fr. piquet, a pointed stake or peg, from piquer, to point or pierce), a military term, signifying an outpost or guard, supposed to have originated in the French army about 1690, from the circumstance that an infantry company on outpost duty dispersed its musketoers to watch, the small group of pikemen called priquel remaining in reserve. Thus at the present day the word "picquet " is, in Great Britain at any rate, restricted to an infantry post on the outpost line, from which the sentries or "groups" of watchers are sent out. In the United States a " picket " is synonymous with a sentry, and the "picket-line " is the extreme advanced line of observation of an army. In the French army pioquets are called "grand' gardes," and the phrase "grand guard" is often met with in English military works of the 17th and 28th centuries. A body of soldiers held in readiness for military or police duties within the limits of a camp or barracks is also called a picquet or "inlying picquet." These special uses of the word in English are apparently quite modern (after about 1750). "Picket" in its ordinary meaning of a peg or stake, has always been in common military use, being applied variously to the picketing pegs in horse-lines, to long pointed stakes employed in palisedes or stockades, to straight thin rods used for marking out the line of fire for guns, \&c. Of the various spellings "picquet" is officinlly adopted in Great Britain and "picket" in the United States, but the latter is now invariably used when a peg or stake is meant.
Two obsolete meanings of the word should also be mentioned. The "picket" was a form of military punishment in vogue in the r6th and 37 th centuries, which consisted in the offender being forced to stand on the narrow flat top of a peg for a period of time. The punishment died out in the 18th century and was so far unfamiliar by 1800 that Sir Thomas Picton, who ordered a mulatto woman to be so punished, was accused by public opinion in England of inflicting a corture akin to impalement. It was thought, in fact, that the prisoner was farced to atand on the head of a pointed stake, and this error is repeated in the New English Dictionary. In the middle of the roth century, when elongated rifie bullets were a novelty, they were often, and eapecially in America, called piekets. The ordinary military use of the word gives rise to compound forms such as "picket boat "or "picket launch." large steam launch or pinnace fitted with guns and torpedoes, and employed for watching the waters of harbours, \&ec. For picketing in strikes, \&c., see below.
PICKEIMNO, a term used to describe a practice resorted to by workmen engaged in trade disputes, of placing one or more men near the works of the employer with whom the disputc is pending, with the object of drawing of his hands or acquiring information useful for the purposes of the dispute. In England, under the Conspiracy and Protection of Property Act 2875, it is an offence wrongfully and without legal authority to watch or beset the trouse or place where another rasides or works, or carries on husiness or happens to be, or the approach to auch house or place, if the object of the watching, \&c., is to compel the person watched, acc., to abstain from doing or to do an act which he is legaliy entitled to do or to abstain from doing (87). The definition of the offence was qualified by a proviso excluding from pumishment those who attend at or near a house or place merely to obtain or communicate information, in other words what is termed peaceful picketing, without intimidation, moleatation or direct efforts to influence the course of a trade dispute. This enactment led to a greal deal of litigation between trade unions and employers; and trade unions were in some instances restrained by injunction from picketing the works of employers, The decisions of the courts upon this subject met with severe criticism from the leaders of trade unions, and by the Trades Disputes Aet 1006 the proviso above quoted was repealed, and it was declared lawful for one or more persons acting for themselves or for a trade union or for an individual employer to attend pl or near a house, sc., "if the attendance is merely for the
purpose of peacefully obtaining or communicatiag information or of peacefully persuading any person to work or abstain from working." The expet effect of this change in the law has not yet been determined by the courts, but during the Belfast carters' strike of 1907 serious riots ensued upon the effiorts of the authorities to counteract the interierence with lawful business caused by free use of picketing. The change in the law is supplemented by provisions forbidding actions against trade unions in respect of any tortious acts alleged to have been committed by or on behalf of the union.
PICKLE. In the wider sense the term "pickle" is applied to any saline or acid preservative solution; in the narrower to vegetables preserved in vinegar. The word appears to be an adaptation of Dutch pehel, brine, pickle; cf. Ger. Pokel. The ultimate origin is unknown; connexions with a supposed inventor's name, such as Beukeler or Bocked are mere inventions. A solution of copper or zinc sulphate is used as a "pickle "for railway-sleepers or other wood, a brine containing salt and saltpetre as a preservative for meat, lime-water as "pickle" for egge. Domestic pickles are made from small cucumbers, onions, cauliflowers, cabbages, mangoes and unripe walnuts, by cither steeping or boiling them in salt-brine and vinegar. On account of the large proportion of water natural to these vegetables, only the strongest vinegar, containing from 5 to 6% of acetic acid, can be used. For the better kinds vinegar made from malted or unmalted barley is as a rule employed, for cheaper varieties simply dilute acetic acid obtained from acetate of lime. Sauces such as Worcestershire sauce, or Yorkshire relish, consist of fluid pickles, that is of salted and variously spiced vinegar solutions or emulsions conlaining tissue of vegetables (tomatoes, mushrooms, iec.), or of fish (sardines or anchovies).

PICENELL THLLIAM LAMB ($1854-1897$), American land-scape-painter, was born at Hineshurs, Vermont, on the 23rd of October 1854. He was a pupil of George Inness in Rome for two years, and of J. L. Gérorne in the Ecole des Beaux Arth, Paris. With Robert Wylie he worked for several years in Brittany, at Pont Aven and Concarneau, where he painted his "Route de Concarneau " (Corcoran Art Gallery, Washington, D.C.). His "Morning on tbe Loing" received a gold medal at the Paris Salon of 1895 . In 1880 he became a member of the Society of American Artists, and in 2891 an associate of the National Academy of Design. Ho died at Marblchead, Massechusetts, on the 8th of August 1897.

PICNIC, a form of entertainment in which the guests are invited to join an excursion to some place where a meal can be taken in the open air. During the first half of the roth century the easential of a pienic was that the guests should each bring with them a contribution of provisions. At the beginning of the rgth century a society was formed ia London called the "Picric Society," the members of which supped at the Pantheon in Oxiord Street, and drew lots ats to what part of the meal each should supply (see I. Melville, The Beaus of the Regency, 1908, i. 222). The French form piqme-mique is said to be of recent introduction in xdoz (Menage, Dict. edyme.). It is doubtful whether picnic is meraly a rhyming word, or can be referred to prique, pick, and nigue, small coin.

PICO, an island in the Atlantic Ocean, oelonging to Portugal, and forming part of the Azores archipelaga. Pop. (1900). 24,088; area 175 sq . m . Pico is a comical mountain, rising to the height of 7612 ft . The soll consists entirely of pulverised lava. The so-called Fayal wine, though mamed after an adjacent island, was formerly produced here, and largely exported to Europe. But in 18_{52} the vines were attacked by the Oidimm fungus and completely desaroyed, while the orange-trees auffered almost as moch from the Coccus hesperidsm. The people were consequently forced to emigrate in great numbers, till the planting of figtrees and apricots alleviated the evil. Pico also produces a species of mood resembling mahogany, and equal in quality to it. Its chief town is Lagens do Pico. Pop. (2975).

PICD DELLA mIRANDOLA, G10VANHI, Comst (1463-1494), Italian phalosopher and witer, the yourgest son of Giovann

Francesco Pico, prince of Mirandola, a small territory about 30 Italian miles west of Ferrara, afterwards absorbed in the duchy of Modena, was born on the 24th of February 1463 . The family was illustrious and wealthy, and claimed descent from Constantine. In his fourteenth year Pico went to Bologns, where he studied for two years, and was much occupied with the Decretals. The traditional studies of the place, however, disgusted him; and he spent seven years wandering through all the schools of Italy and France and collecting a precious library. Besides Greek and Latin he knew Hebrew, Chaldee and Arabic; and his Hebrew teachers (Eliah del Medigo, Leo Abarbanel and Jochanan Aleman-see L. Geiger Johann Remehlin (5871), p. 167) introduced him to the Kabbalah, which had great fascinations for one who loved all mystic and theosophic speculation. His learned wanderings ended (1486) at Rome, where he set forth for public disputation a list of nine hundred questions and conclusions in all branches of philosophy and theology. He remained a year in Rome, but the disputation he proposed was never held. The pope prohibited the little book in which they were contained, and Pico had to defend the impugned theses (De omni re seibili) in an elaborate Apologic. His personal orthodoxy was, however, subsequently vindicated by a bricf of Alexander VI., dated i8th June 1493. The suspected theses included such points as the following: that Christ descended ad inferos not in His real presence hut quond effectum; that no image or cross should receive latreia even in the sense allowed by Thomas; that it is more reasonable to regard Origen as saved than as damned; that it is not in a man's free will to believe or disbelicve an article of faith as he pleases. But perhaps the most startling thesis was that no science gives surer conviction of the divinity of Christ than "magiz" (i.e. the knowledge of the secrets of the heavenly bodies) and Kabhalah. Pioo was the first to seek in the Kabbalah a proof of the Christian mysterics and it was by him that Reucblin was led into the same delusive path.

Pico had been up to this time a gay Italian nobleman; be was tall, handsome, fair-complexioned, with keen grey eyes and ycllow hair, and a great favourite with women. But his troubles led him to more serious thoughts; and he published; in his 28th year, the. Heploplus, a mystical exposition of the creation. Next he planned a great seven-fold work against the enemies of the Church, of which only the section directed against astrology was completed. After leaving Rome he again lived a wandering life, often visiting Florence, to which he was drawn by his friends Politian and Marsilius Ficinus, and where also he came under the influence of Savonarola. It was at Florence that he died on the 17th of November 1494. Three years before his death he parted with his share of the ancestral principality, and designed, when certain literary plans were completed, to give away all he had and wander barefoot through the world preaching Christ. But these plans were cut short by a lever which carried him of just at the time when Charles VIII. was at Florence.
; Pico's works cannot now be read with much interest, but the man himself is still interesting, partly from his influence on Reuchlin and partly from the spectacle of a truly devout mind in the brilliant circle of half-pagan scholars of the Florentine renaissance.
THis works were published at Bologna in 1496 by his nephew. Giov. Fran. Pico, with a biography, which was translated by Sir Thomas More as Life of John Picus, Barl of Miramdola, in 1510. See the etay in Walter Pater's Remaissonce (i878); and the "tudy by J. Riggt, prefixed to the reprint of Morc's Liff in the "Tudor Library" (London, 1890).
pICRIC ACID, or Trinitrophenol, $\mathrm{C}_{4} \mathrm{H}_{8}-\mathrm{OH} \cdot\left(\mathrm{NO}_{2}\right)_{3}[1 \cdot 2 \cdot 4 \cdot 6$], an exploaive and dyestuff formed by the action of concentrated nitric acid on indigo, aniline, resins, silk, wool, leather, \&sc. It is the final product of the direct nitration of phenol, and is usually prepared by the nitration of the mixture of phenol eulphonic acids obtained by heating phenol with concentrated aulphuric acid (E. Eisenmann and A. Arche, Eng. pat., 4539 (1889). It may aleo be obtained by oxidizing the symmetrical trinitrobensene with potassium
ferricyanide in alkaline solution (P. Hepp, Ank. 1882, 215 , p. 352). It crystallizes from water in yellow plates melting at $122.5^{\circ} \mathrm{C}$., which sublime on carciul heating, but explode when rapidly heated. It is poisonous and possesses a bitter taste, hence its name from the Greek rupbs, hitter. It has a strongly acid reaction, being almost comparable with the carboxylic acids. By the action of bleaching powder it is converted into chlorpicrin, $\mathrm{CCl}_{8} \mathrm{NO}_{3}$. Phosphorus pentachloride converts it into picryl chloride, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)_{1}$, which is a true acid chloride, being decomposed by water with the regeneration of picric acid and the formation of hydrochloric acid; with ammonis it yiclds picramide, $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{NH}_{3}\left(\mathrm{NO}_{2}\right)_{3}$. Silver picrate and methyl iodide yield the methyl ester, which gives with ammonia picramide. Picric acid forms many well-defined salts, of a yellow or red-hrown colour. It also yields crystalline compounds with many aromatic hydrocarbons and bases. It imparts a yellow colour to wool and silk. The chief application of picric acid and its salts is in the manufacture of explosives. When ignited, picric acid hurns quictly with a smoky flame, and it is very difficult to detonate by percussion; its salts, however, are more readily detonated. The more important pieric powders are melinite, believed to be a mixture of fused pieric acid and gun-cotton; lyddile, the British service explosive, and shimose, the Japanese powder, both supposed to be identical with the original melinite; Brugere's powder, a mixture of 54 parts of ammonium picrate and 45 parts of salt petre; Dcsignollc's pouder, composed of potassium picrate, saltpetre and charcoal; and emmensile, invented by Stephen Emmens, of the United States.

It may be detected by the addition of an aqueous solution of potassium cyanide, with which it gives a violet-red coloration, due to the formation of isopurpuric acid. R. Anschutz (Ber., 1884; 17, p. 439) estimates picric acid hy precipitation with acridine.

PICAITE (from Gr. xupbs, bitter, hecause these rocks are rich in magnesia, a base which forms bitter salts), a rock belonging to the ultrabasic group, and consisting mainly of olivine and augite often with hornblende and biotite and a greater or less amount of plagioclase felspar. The picrites are of "hypabyssal " origin and in their natural occurrence are connected with dolerites (diabases and teschenites). The distinction between them and the peridotites, which have an essentially similar composition, is not easy to define, but the peridotites accompany the true plutonic rocks, such as gabbro, norite and pyroxenite, are often very coarscly crystalline, and form large bosses and laccolites, while the picrites usually are found in sills or intrusive sheets.
In hand specimens the picrites are dark green to black; the absence or scarcity of lath-shaped plagioclase felspars distinguishes them from diabases and they rarely have the lustremottling which is a characteristic of the peridotites. Since they contain much olivine they readily decompose, passing into deep green and brown incoherent masses in which are embedded rounded lumps of harder consistency. They have a high specific gravity (about $3 \cdot 0$) and may be distinctly magnetic, because they are rich in iron ores. Porphyritic structure is rare though occurring sometimes in the rocks known as picrite-porphyrites; the phenocrysts are olivine and augite. There is seldom any fine-grained or glassy groundmass, and the typical microstructure is holocrystalline, moderately fine grained and somewhat poikilitic. Olivine is. abundant in rounded pale green crystals. It may form one half of the rock but rarely more than this. The augite is generally brown or reddish-hrown, sometimes violet, and tends to enclose the olivine, yielding poecilitic aggregates. Brown hornblende often occurs as marginal growths around the pyroxene, and may be so abundant as to replace augite to a large extent; rocks of this class are known as hornblende-picrites. Bright green or pale-green hornblende are less frequently present, and in many cases are really of secondary origin Deep brown biotite is a frequent accessory mineral and both biotite and hornblende sometimes enclose olivine. A small amount of basic plagioclase occurs in many picrites; apatite, iron oxides, chromite and spinels are minor ingredients seldom altogether absent.

The minerals of pierites are very frequentiy decomposed. Scrpentune partly or wholly seplaces olivine, forming radiate fibrous masses which are green, yellow or red in microscopic sections. Sometumes bornblende (pilite), tale, chlorite and mica appear as secondary products after olivine. The augite passea into chlorite or into green fibrous or platy amphibole. Hornblende and biotite are often fresh when the other components are much altered. The felspar is rarely in good preservation but yields epidote, prehnite, sericite, kaolin, calcite and analcite are ahundant in some weathered picrites.
Rocks of this type are well represented in Great Britain. In the central valley of Scotland several masses of prerite have been discovered, always In close association with olivine-diabase and teschenite. One of these forms the island of Incheolm in the Firth of Forth, another lies near Bathgate (in Linlithgowshure). and there are others at Aberdour (File), Ardrossan and Barnton (Midlothan); They belong to the great series of Carbonilerous eruptive rocks of the Scottush mudland valley. These picrites are not known to be represented in England, but, on the other hand, there are Devonian pientes in Devon and Cornwall as basic mennbers of the diabase and proterobase series of these countics. Some of them contain much augite like the picrite (often called palacopicrite as being of palaeozoic age) at Menheniot Station in Cornwall and the picrite of Hughweek near Newton Abbot in Devoushire. Othern are horn-blende-picrites like that of Cartuther near St Germans, Corawall. Hornblende-picrite occurs also in the istand of Sark and several beautiful examples have been described from Anghescy and from Penarfynnydd in North Wales and from Wicklow in Ircland. Picrites oceur in eeveral parts of Germany, notably in the Devonian rocks of the Fichtelgebirge and Nascau, where they accompany diabases and proterobases like those of Cornwalt and Devonshire. In Silesia and Moravia picrites are found with teschenites like those of Central Scotland. In some of the continental picrites enstatite is present but is rare. In North America picrites occur among the igncous rocks on the Hudson river and in Alabama and Montana.
(J. S. F.)

PICROTOXIS, a neutral principle obtained from the Cocculus indicus, which is the fruit of the Anamirta paniculate. It is used in medicine externally as. an antiparasitic. Internally it has been successfully used to check the night-sweats of phthisis. In large doses it is a powerful poison, causing unconsciousness, delirium, convulsions, gastro-enteritis and stimulation of the respiratory centre followed by paralysis, from which death sometimes results. Formerly low class publicans sometimes added Cocculus indicus berries to beer to increase the intoxicating effects. Its chemical formula is $\mathrm{C}_{15} \mathrm{H}_{4} \mathrm{O}_{3} \cdot \mathrm{H}_{8} \mathrm{O}$.
PICTET DE LA RIVE, FRANCOIS JULES (1809-1872), Swiss zoologist and palaeontologist, was born in Geneva on the 27th of September 1809. He graduated B. es Sc. at Geneva in 1829, and pursued his studies for a short time at Paris, where under the influence of Cuvier, de Blainville and others, he worked at natural history and comparative anatomy. On his return to Geneva in 1830 he assisted A. P. de Candolle by giving demonstrations in comparative anatomy. Five years later, when de Candolle retired, Pictet was appointed professor of zoology and comparative anatomy. In 1846 his duties were restricted to certain branches of zoology, including geology and palacontology, and these he continued to teach until 1859 , when he retired to devote his energies to the museum of natural history and to special palaeontological work. He was rector of the academy from 1847 to 1850 , and again from 1866 to 1868 . He was for many years a member of the Representative Council of Geneva, and in 1862 President of the Constituent Assembly. His earlicr published work related chiefly to entomology, and included Recherches pour seriz al l'histoire at a Panatomie des Phryganides (1834) and two parts of Hisloire naturelle, gentrale at particulitre des insectes Neuroplives ($\mathrm{I}_{42}-1845$). Feeling the want of a hand-book, he prepared his Traite elementaire de paltontologic (4 vols. $1844-1846$). In the first edition Pictet, while adopting the hypothesis of successive creations of species, admitted that some may have originated through the modification of preexisting forms. In his second edition (1853-1857) he enters further into the probable transformation of some species, and discusses the independence of certain faunas, which did not appear to have originated from the types which locally preceded them. He now directed his attention to the fossils of his native country, more especially to those of the Cretaceous and Jurassic
strata, and in 1854 he commenced the publication of his great work, Mabesnaur pour la paliontologre sussse, a series of quarto memoirs, of which sux were published ($1854-1873$). In this work Pictet was aded by E Renevier, G. Campiche, P. de Loriol and others Pictet also brought out Malanges paleontologiques (1863-1868). He died at Geneva on the $15^{\text {th }}$ of March 1872.

Obituary by W. S. Dallas, Quert Jowra. Ccel. Soc. (1873), voL mxix PICTON, SIR THOMAS (1758-1815), British general, was the younger son of Thomas Picton, of Poyston, Pembrokeshire, where he was born in August 1758. In 1771 he obtained an ensign's commission in the 12th regiment of foot, but be did not join until two years afterwards. The regiment was then stationed at Gibraltar, where he remained until he was made captain in the 75th in January 177^{8}, when he returned to England. The regiment was disbanded five years later. On the occasion of its disbandment Picton quelled a mutiny amongst the men by his prompt personal action and courage, and was promised a majority in reward for his conduct. This, however, he did not receive, and after living in retirement on his father's estate for nearly twelve years, be went out to the West Indies in 1794 on the strength of a slight acquaintance with Sir John Vaughan, the commander-in-chief, who made him his aide-decamp and gave him a captaincy in the 17 th foot. Shortly afterwards he was promoted major. Under Sir Ralph Abercromby, who succeeded Vaughan in 1795, he took part in the capture of St Lucia (for which he was promoted lieutenantcolonel) and in that of St Vincent. After the reduction of Trinidad Abercromby made him governor of the island. He administered the island with such success that the inhabitants petitioned against the retrocession of the island to Spain, and their protest, with Picton's and Abercromby's representations, ensured the retention of Trinidad as a British possession. In October 1801 he was gazetted brigadier-general. But by this time the rigour of his government, as reported by his enemies, had led to a demand by humanitarians at bome for his removal. Colonel William Fullarton ($1754-1808$) procured the appointment of a commission to govern the island, of which he himself was the senior member, Captain (afterwards Admiral Sir Samuel) Hood the second, and Picton himself the junior. Picton thereupon tendered his resignation, and Hood, as soon as the nature of Fullarton's proceedings became obvious, followed his example (1803). On his way home Picton took part with great credit in military operations in St Lucia and Tobago. Realizing, however, that the attacks upon him were increasing in virulence, he quickly returned to England, and in December 1803 he was arrested by order of the privy council. He was tried in the court of king's bench before Lord Ellenborough in 1806 on a charge of unlawfully applying torture to extort a confession from Luise Calderon, a mulatto woman of loose character who was charged, along with a man, with robbery. The torture consisted in compelling the woman to stand on one leg on a flatheaded peg for one hour. The punishment was ordered under Spanish law (which in default of a fresh code Picton had been appointed to administer in r8oi) by the local alcalde, and approved hy Picton. On these grounds the court returned a merely technical verdict of guilty, which was superseded in 1808 by a special verdict on retrial. It should be mentioned that the inhabitants of the island, who had already given him a sword of honour, and had petitioned the king not to accept his resignation, subscribed 44000 towards his legal expenses, which sum Picton contributed in return to the relief of the suffering caused by a widespread fire in Port of Spain. He had meanwhile been promoted major-general, and in 1809 he had been governor of Flushing during the Walcheren expedition. In 1810 , at Wellington's request, he was appointed to command a division in Spain. For the remaining years of the Peninsular War, Picton was one of Wellington's principal subordinates. The commander-in-chief, it is true, never reposed in him the confidence that he gave to Beresford Hill and Craufurd. But In the resolute, thorough and punctual execution of a welldefined task Picton had no superior in the army. Fis debut,
owirg partly to his naturally stern and now embittered temper, and partly to the difficult position in which he was placed, was unfortunate. On the Coa in July r8io Craufurd's division became involved in an action, and Picton, his nearest neighbour, refused to support him, as Wellington's direct orders were to avoid an engagement. Details of the incident will be found in Oman, Pewinsular War, vol. iti. Shortly after this, however, at Busaco, Picton found and used his first great opportunity for distinction. Here he had a plain duty, that of repulsing the Prench attack, and he performed that duty with a skill and resolution which indicated his great powers as a troop-leader. After the winter in the lines of Torrea Vedras, he added to his reputation and to that of his division, the 3rd, at Fuentes d'Onor. In September he was given the local rank of leatenant-geweral, and in the same month the division won great glory by its rapid and orderly retirement under severe pressure from the French cevalry at El Bodon. In October Picton was appolnted to the colonelcy of the 77th regiment. In the first operations of 1812 Picton and Craufurd, side by side for the last time, stormed the two breaches of Ciudad Roditgo, Craufurd and Picton's second in command, Major-General Mackinnon, being mortallywounded. At Badajoz, a month later, the successful storming of the fortress was due to his daring self-reliance and penetration in converting the secondary attack on the castie, delivered by the 3rd division, into a real one. He was himself wounded in this terrible eagagement, but would not leave the ramparts, and the day after, having recently inherited a fortune, he gave every survivor of his command a guinea. His wound, and an attack of fever, compelled him to return to England to recruit his healt bi, but - he reappeared at the front in April i8r3. While in England he was invested with the collar and badge of a K.B. by the prince regent, and in June he was made a lletenant-general in the army. The conduct of the 3rd division under his leaderstrip at the battle of Vittoria and in the engagements in the Pyrenees raised his reputation as a resolute and skilful fighting general to a still higher point. Early in 1814 he was offered, but after consulting Wellington dechined, the command of the British forces operating on the side of Catalonia. He thus bore his share in the Orthez campalgn and in the final victory before Toulouse.

On the break-ap of the division the officers presented Picton with a valuable service of plate, and on the 24 th of June 1814 he received for the seventh time the thanks of the House of Commons for his great services. Somewhat to his disappointment he was not included amongst the generals who were raised to the peerage, but early in 1815 he was made a G.C.B. When Napoleon returned from Elba, Picton, at Wellington's request, accepted a high command in the Anglo-Dutch army. He was severely wounded at Quatre Bras on the 16th of June, hat concealed his wound and retainer command of his troops, and at Watertoo on the 18th, while repulsing with impetuous valour *one of the most serious attacks made by the enemy on our position," he was shot through the bead by a musket ball. His body was brought home to London, and buried in the family vault at St George's, Hanover Square. A public monument was erected to his memory in St Paul's Cathedral, by order of parllament, and in 1823 another was erected at Camarthen by subscription, the king contribating a hundred guireas thereto.
See Robinson's Life of Sit Thomas Pictom (London, 1836), with which, however, compare Napier's and Oman's hitovies of the Penimsular War ate to controversial pointe

PCTOU, a seaport, port of entry, and capital of Pictou county, Nova Scotia, 90 m . N.E. by N. of Fialifax, on a branch of the Intetcolonial rallway. Pop. (roor), 3235. It has several valuable industries, and is the shipping port for the adjacent coal-mines. The Academy, founded in 1818, played an important part in the early educational history of the province, and still enjoys a high reputation.

PICUE, in Roman mythology, originally the woodpecker, the favourite bird and symbol of Mars as the god of both natere and war. He appears later ass a spirit nf the forests, endowed with the sift of prophecy, haunting springs and strearms, with
a special sanctuary in a grove on the Aventine. As a god of agriculture, especially connected with manuring the soil, he is called the son of Stercutus (from shercus, dung, name of Satum). Again, Picus is the first king of Latium, son of Saturn and father of Faunus. Virgil (Aen. vii. 170) describes the reception of the ambassadors of Aeneas by Latinus in an ancient temple or palace, containing figures of his divine ancestors, amonget them. Picus, famous as an augur and soothsayer. According to Ovid (Medam. xiv., 320), Circe, while gathering herbs in the forest, saw the youthful hero out hunting, and immediately fell in love with him. Picus rejected her advances, and the goddess in her anger changed him into a woodpecker, which pecks impotently at the branches of trees, but still retaios propbetic powers. The purple cloak which Picus wore fastened by a golden clasp is preserved in the plumage of the bird. In the simplest form of art, he was represented by a wooden pillar surmoanted by a woodpecker; later, as a youns man with the bisd upon his bead.
Picounvs is merely another form of Picua, and with him is aspociated his brother and double PrLCuMNUS. Picumnus, a rustic deity (like Picus) and husband of Pomona. is specially concerped with the manuring of the soil and hence called Sterquilinus. whiie Pilumnus is the inventor of the pounding of grain, so namcd from tbe pestle (pilam) used by bakers. Under a different aspect, the pair were regarded as the guardians of women in childbed and of new-born children. Before the child was taken up and formally recognised by the father, a couch was wet out for hhem in the atrium. where their presence guarded it from all evil. Augustine (De civitate dei, v. 9) mentions a curious custom: to protect a woman in childbed from possible violence on the part of Silvanus, the assistanct of three deities was invoked-Intercidona (the hewer). Pilumnus (the peunder) and Deverra (the aweeper). There deitica were tymbolically represented by three men who went round the house by night. One cmote the threshold with an axe, another with a pestle, the third swept it with a broom-three symbols of culture (for trees were bewn down with the axe, grain pounded with the pentle, and the fruits of the field swept up with the broom) which Silvanus could not endure.
pidery for Pigeon] Emalish, the lingua franca of the seaports of China, the Straits Settlements in the Far East, consisting in a jargon of corrupted English words with some intermixture of Portuguese and Malay, following Chinese idjomatic usage. It is employed as a means of communication between foreigaers and the mative Chinese. The word "pidgin "is the Chlnese corruption of " basiness."
PII. (y) The name of the bird more generally known as the magpie (q.0.). The word comes through the French from Lat. pire (g.g.). It is probably from the black and white or spoted appearance of the bird that the name "pie" or "pye" (Lat. pica) was given to the ordinal, a table or calendar which supplemented that which gave the services for the fired festivals, tic., and polnted out the effect on them of the feativals rendered movable by tha changing date of Easter. An English act of I 549 (3 \& 4 Edw. VI. c. 10) abolished "pies" with manuals, legends, primers and other service books. The parti-coloured appearance of the magpie also gives rise to the term "piebald," ipplied to an animal, moro particularly a horse, which is marbed with large irregular patches of white and black; where the colour is white and some colour other than black, the more approprinte word is "skew-bald," i.e. merked with "akew" or irregular patches. (2) A dish made of meat, fish or other ingredients, also of vegetables or fruit, baked in a covering of pastry; in English usaga, where "Iruit" is the ingredient, the dish is generally called a "tart," except in the case of "apple-pic." The word appears early in the $14^{\text {th }}$ century of meat or fiah pies.

The exprestion "to eat humble-pie," i.e to make an apology, to retract or recaat, is a facetious adaptation of "umbles" (O. Fr. nombles, connected with Lat. Iumbus, loin or smbiliows, navel), the inner parta of a deer, to " humble" (Lat. Anmilis, lowy). An "umble-ple," made of the inner parts of a deer or other animal, was once a favourite dish. "Printers' pie," i.e. a mass of confused type, is a transferred sente of " pie;" the dish, or of "pie," the ordinal, from thedificulty of decipherment.
PIEDHIONT (Ital. Piemonte; Low Lat. Pedomens and Pedomondivin), a territorial divisios (compartimonto) of - morthern

Italy, bounded N. by Switserland, W. by France, S. by Liguria and E. by Lombandy. Physically it may be briefly described as the npper gathering-ground and valley of the river Po, enclosed on all sides except towards the Lombard plain by the vast semicircle of the Pennine, Graian, Cottian, Maritime and ligurian Alps. In 1859 it was divided into the four provinces of Alemandria, Cuneo, Novara and Torino (Turin). It has an area of 11,340 sq. m . The people are chiefly engaged in agri-culture-growing wheat, maize and rice, cheatnuts, wine and hemp; in the reeling and throwing of silk and in the manufacture of cotton, wooliens and clothing; there are also considerable manufactures at Turin, Savigliano, \&c. The Piedmontese dialect has been rather strongly influenced by French. The chief towns in the several provinces are as follows, with their communal populations in roon: Alessandria (72,109), Asti $(39,251)$, Casale Monierrato (31,370), Novi Ligure $(17,868)$, Tortona (17,4 10), Acqui (13,940), Viclenza (10,956), Ovada (10,284), total of province 825,745 , number of comamunes 383 ; Cuneo (26,879), Mondovi (18,982), Fossano (18,175), Sangliano (17,340) Seluzso (16,028), Bra (15,821), Alba $(13,637$), Boves (10,137), total of province 670,504 , number of comomunes 263; Novara (44.249), Vercelli (30,470), Biella $(19,267)$ Trino (12,138). Borgomanero (10,131), total of province 763,830 ; number of communes, 437i Turin (320,691), Piderolo (18,039), Carmagnola (11,721), Ivrea (15,696), Moncalieri (11,467); total of province $1,147,414$, number of communes, 442. The total population of Piedmont was $2,738,814$ in 1859 , and in 1001 3,407.493 The large number of communes is noticeable, as in Lombardy, and points to a village life which, owing to greater insecurity and the character of the country, is not to be found in central and southern Italy as a whole There are numerous summer resorts in the Alpine valleys. The chief railway centres are Turin, communicatung with the Mont Cenis line, and with the Riviera by the railway over the Col di Tenda (in process of construction), Novara, Vercelli, Asti, Alessandria, Novi The communications with Liguria are difficult owing to the approach of the mountains to the coast, and the existing lines from Cenos to Turin and Milan are hardly sufficient to cope witb the traffic.

Piedmont in Roman times until 49 a.c. formed a part of Gallia 'Transpedana, and in Ausostus' division of Ihaly formed with what was later known as Lombardy the inth region. It formed part of the Lombard kingdom, and it wes not till about A.D. 1000 that the house of Savoy (q.0.) arose. The subsequent history of Piedmont is that of its dynasty.

PIENZA, a town of Tuscany, Italy, in the province of Siena, 9 m . west of the town of Montepulciano by road, 16 II ft . above sea-level. Pop. (rgo1), 2730 (town); 3836 (commune). The place was originally called Corsignano and owes its present name to Aeneas Silvius Piccotomini, Pope Pius II. (q.v.) who was born here in 1405 . The buildings which he caused to be erected by Bernardo Rossellino in 1460-1463 form a noble group of early Renaissance architecture round the Piaxza del Duomo. The latter retains Gothic details in the interior, but the facade is simple Resaissance work. The other three sides are occupied by the episcopal and municipal palaces, and the Palazzo Piccolomini; the last, resembling the Palazzo Rucellai at Florence, is the finest, and in front of it is a beautiful foumtain. The episcopal palace contains a museum with some fine eoclesiastical vestments, enamels and other works of art.

PIER (older forms per or pere, from Med. Lat. pera; the word ss of obscere origin, and the connexion with Fr. pierre, Let. petra, stone, is doubeful; equivalents are Fr. piodrois, pilier, arwimeam; Ital. pila; Ger. Pfeiler), the term given in architecture to a vertical support in masonry or brickwork, usually rectangular on plan, which carrics an arch or superstructure. The term is also sometimes given to the great circular columens which in some English asthodrals and churchea carry the nave arches. In early Christian churches, when antique columns, such as abounded in Rome, were not procurable, square piers took the place of columas and sometimes alternated with tbem. The introduction of vaulting, however, in the ith centary, necescitacod asopport of much greater dimentions than those which
had been deemed sufficient when the rool was of timber caly, and led to the development of the compound or clustered pier. To give extra support to the subordinate arches of the nave arcade, semicircular shafts or pilasters were added, carried up to the transverse and diagonal ribs of the main vauls. In Romanesque work the pier wan generally square on plan with semicircular shaits attached, the angles of the pier being woried with amaller shafls. As the rings or orders of the nave arches incresed in number, additional shafts were added to carry them, and the pilaster facing the nave had central and aide shafts rising to carry the transverse and diagonal ribs of the vault; this development of the corapound pier obtains throughout Europe in all vaulted structures. In the Early English period the piers become loftier and lighter, and in most important buildings a series of clustered columns, frequently of marble, are placed side by side, sometimes set at intervals round a circular centre, and sometimes almost touching each other. These shafts are often wholly detached from the central pier, though grouped nound it, in which case they are almost always of Purbeck or Bethersden marbles. In Decorated work the shafts on plan are very often placed round a square set angle-wise, or a lozengs, the long way down the nave; the centre or core itself is often worked into hollows or other mouldings, to show between the shafts, and to form part of the composition. In this and the Latter part of the previous style there is generally a fillet on the outer part of the shaft, forming what has been called a "keed moulding" (q.a.). They are also often tied together by bands, formed of rings of stone and sometimes of metal. About this perrod, $t 00$, these intermediate mouldings run up into and form part of the arch moulds, there heing no impost. This arrangement became much more frequent in the Perpendicular period; in fact it was almost universal, the commonest section being \& lozenge set with the long side from the nave to the aisle, and not towards the other arches, as in the Decorated period, with four shafts at the angles, between which were shallow mouldings, one of which was in generil a wide bollow, sometimes with wave moulds. The small columns at the jambs of doors and windows, and in arcades, and also those attached to piers or standing detached, are generally called "shafts" (g.v.).

The term pier is sometimes applied to the solid parts of a wall between windows or voids, and also to the isolated masses of brick work or masonry to which gates are hung.
(R. P.S.)

Piers of Bridges.- The piers of bridges and viaducts on land are constructed of masonry or brickwork and occasionally, in the case of bigh piers, of open braced ironwori, as exemplifed by the old Crumlim viaduct in Wales and the Pecos viaduct in Texas. These piers, besides being proportioned in cross-section to the weight they have to support, are widened out at their base, so as to dist ribute the load over a sufficient area for it to be borne by the stratum on which it rests without risk of settlement. Special provisions have to be made for the foundations of piess where the ground is soft for some depth, or loose water-bearing strata are encountered, and especially where the piers of large bridges crossing rivers have to be constructed under water. In soft ground, bearing piles driven down to a firm stratum, and surmounted by a planiked floor or a layer of concrete, provide a convenient fourdation for a pier; and in places wbere timber is abundant, wooden cribs filled with rubble stane or concrete have been used in the United States for raising the foundations for piers out of water. For river piers, where a firm, watertight stratum is found at a moderato depth bolow the river-bed, the site is often enclosed within a coffer-dam or a plate iron caisson carried down into the stratum and raised out of water; and then, after the water has been pumped out and the surface layers removed, the pier is readily built within the enclosure in the open air. When, however, a river-bed consists of silt, sand or other soft materials extending down to a considerable depth. brick work wells are gradually sunk to a firm stratum by removing the material within them with grabs, and on them the piers are built out of water; or bottomless caissons are carried down by excavating their interiors under compressed air, and the picrs ane built an top of them within a plate-iron enclosure, a system
adopted for the plers of the Brookiyn, St Louls, Forth and other large bridges, and essentual for forming foundations on sloping rock, such as was encountered in places mader the Firth of Forth.

The methods indicated above as employed for the foundations of the piers of bridges under favourable conditions belong equally to the foundations of other structures (see Foundamoms), bat there are some methods whlch, by combining bridge piert and their foundations in a cingle structure, appertain entirely to piers. Thus iron screw piles, sunk hy turning into

Fig. 1.-Pier with Disk Piles.
the soft bed of a river till they reach a from stratum or one aufficiently consolidated by the superincumbent layers to enabic it to support the wide bildes of the screws with the weight impoeed on them, were formeriy oiten arranged in converging clusters joined together at the top, so as to serve as the piers of bridges having several comparatively small spans, and intended for carrying lightly constructed rail ways across rivers in India and elsewhere. Hollow, cast-iron, cylindrical piles also, with a broad circular disk at the bottom 10 increase their bearing surface, have been used for piers founded in sandy or silt y strata
bolted together with a specially strong bottom ring, sometimes made of wrought iron and having a cutling edge, have been often employed for the construction of the river piers of bndges, being gradually carried down to a watertight stralum by excavating inside, and subsequently filled up solid with concrete and bnckwork, the piers of the Charing Cross and Cannon Street hridges across the Thames are notable instances of the adoption of this method, which is well illustrated by the piers of the bridges across the River Chittravati in India (fig. 2). Sometimes, instead of two or more independent cylinders being sunk, the whole site of a pier is enclosed within a wrought-iron caisson, usually divided into sections by vertical partitions, which is sunk and filled up solid in the same way as cylinders, a system adopted, for instance, for the piers of the bridge across the Hawkesbury River in New South Wales.

Promenade Piers.-The term pier is often applied to works sheltering harbours, such as the Tynemouth piers, which are strictly breakwaters. Landing stages also, whether solid or open, have for a long time been called piers, as the Admiralty Pier and the Prince of Wales's Pier at Dover; but the open promenade piers which form a common feature at seaside resorts are the type of pier best known to the general public. These piers are stupported upon open pliework of timber or

Fic. 2.-Cylindrical Plers for River Bridget. iron, and consequently expose little surface to waves in storms and do not interfere with the drift of shingle or sand along the coast (fig. 3). ${ }^{2}$ Timber piles are best suited for withstanding the shocks of vessels at tanding stages, at which places they are generally used; but since they are subject to the attacks of the tcredo, and expose a considerable surface to the waves, iron piles are generally adopted for the main portion of these piers.

The pioneer of these plers was the old chain pier at Brighton, which was erected in 1823-1823. It was founded upon oak piles, wae 1136 ft. loag, and had a timber landing-stage at the cond. It consisted of four spans muepended Irom chains on the model of the Menai Suspension Bridge, then in course of construction, and was destroyed by a gale in Decernber 1896. A wider and more modern type of pier was erected at the west end of Brighton in 1865-1866,

Fig. 3.-Promenade Pier.
of considerable thickness; they are sunk to the requisite depth by lowering a pipe down the inside of the pile to the bottom and emitting a powerful jet of water which, stirring up the soft material and scouring it away from under the disk, causes the pile to descend. This system was first adopted for the piers of a railway viaduct crossing the wide, sandy Kent and Leven estuaries opening into Morecambe Bay (fig. 1). Cast-iron cylinders, consisting of a series of ringe formed of megments all
and subsequently extended; whilst a new pier was completed in Igoo near the site of the ofd chait pier. 1700 fl . long. The Southport pher, erected in $1859-1860$ and afterwards prolonged, furnithes an example of an iron pier supported on disk piles cunk in sand as described above (fig. I); whilat the much more commonly used iron screw piles, adopted as earty as 144 for an open landing-pier on the Irish const at Courtown. which was expoed to a greet Itmoral drift of sand, are shown as the mode of eupport for the pier

The Enginetr (3888), i. 380, 381 and 384 -
at St Leonards (ify 3). The length given to these promenade plers depends mainly on the slope of the foreshore, wfich dotermines the distance from the shore at which a sufficient depth is reached for steamers of moderate draught to come alongsode the end of the pier. Thus, whereas a length of 900 ft . has sufficed for the St Leonards picr on a somewhat stoep, shingly boach, the pier at Ryde, constituting the principal lanoing-place for the Isle of Wight passengers, has had to be carried out about half a mile across a flat alluvial forcahore to reach water deep enough for the aceess of the stesmboats crossing the Solemt. Tho vast sands, moreover, at the outlet of the Ribble estuary, stretching two or three miles in front of South port at low water of spring tides, have necessitated the construction of a pier 4395 ft . long merely to get out to an old flood-tide channel, which is now completely severed by the sands at low water from all connexion with the river.
(l. F. V.-H.)

PIEACE, FRANKLIN ($2804-1869$), fourteenth president of the United States, was bom at Hillsborough, New Hampshire, on the 23 rd of November $\mathbf{1 8 0 4}$, His fatber, Benjamin Pierce (1757-1839), served in the American ammy throughout the War nf Independence, was a Democratic member of the New Hampshire House of Representatives from 1789 to 1803 , and was governor of the state in 1827-1829. The son graduated in 1824 at Bowdoin College, at Brunswick, Maine, where he formed a friendship with Nathaniel Hawthorne. Pierce then atudied law, and in 1827 was admitted to the bar and began to practise at Hillsborough. He at once took a lively interest in politics, and from 1829 to 2833 served in the state House of Representatives, for the last two years as Speaker. In 1833 he entered the national House of Representatives, and although he achieved no distinction in debate he was a hard worker, and a loyal supporter of the policies of President Jackson, After four years in the House he entered the Senate, being its youngest member. In 1842, before the expiration of his term, he resigned his seat, and at Concord, New Hampshire, began his career at the bar in earnest, though stiH retaining an interest in politics. In 1845 he declined the Democratic nomination for governor, and also an appointment to the seat in the United States Senate made vacant by the resignation of Judge Levi Woodbury. He accepted, however, an appointment as Federal District Attorney for New Hampshire, as the duties of this office, which he held in 4845-1847, were elosely related to those of his profession. In 1846 , he again declined public homoucs, when President Polk invited him to enter the cabinet as attorney-general. Soon after the outbrenk of the war with Mexico, in 1846. Pierce cnlisted as a private at Concord, but soon (in February 1847) became colonel of the Ninth Regiment (which foined General Winfield Scott at Pueblo on the 6th of August 1847), and later (March, 8^{877}) became a brigadier-general of volunteers. At the battle of Contreras, on the soth of August 1847, he was thrown from his horse and reccived scevere injurics. At the end of the war he resigned his commission and returned to Concord. In 1850 Pierce became president of a convention assembled at Concord to revise the constitution of his state, and used his influence to secure the removal of thase provisions of the constitution of 1792 which declared that oaly Protestants should be eligible for higher state offices. This amendment passed the convention in April 1852, hut was rejected by the electorate of the state; a similar amendment was adopted by popular vote in 187\%. In January 1852 the legislature of New Hampshire proposed him as a candidate for the presidency, and when the Democratlc national convention met at Baltimore in the following Iuse the Virginia delegation brought forward his name on the thirty-fifth ballot. Although both parties had declared the Compromise of 1850 a finabity, the Demoerats alone were thoroughly united in support of this declaration, and therefore seemed to offer the greater prospect of peace. This fact, compbined with the colourless record of their candidate, enahied them to sweep the country at the November election. Pierce received 254 electoral votes, and General Winfield Scott, his Whig opponent, only 42. The Democrats carried every state except Xhassachusetts, Vermonf, Kentucky and Tennessee. No president since James Monroe had received such a vote.

Pierve was the youngeat man who had as yet been elevated so the presdency. For his cabinet be chose Willian L. Diarcy
of Now York, secretary of stalo, Jefferson Davia of Midimippi, secretary of war, James Guthire (1792-1869) of Rentucky: sccretary of the treasury; James C. Dobbin ($1814-1857$) of North Carolnna, secretary of the navy; Robert McClelland (1807-1880) of Michigan, secretary of the interior; James Campbell ($1813-1893$) of Penssylyania, postmaster-general; and Caleb Cushung of Massechusetts, attorney-geperal. This was an able body of moen, and is the only cabipet in Ametican history that has contunued unbroken throughout an entire admanistration. Although Pierce during his term in the Senate had severely criticized the Whigs for their removals ol Democrats from office, be himself now adopted the policy of replacing Whigs by Democrats, and the country acquiesced. Pierce had no scruples against slavery, and opposed anti-slavery agitation as tending to disrupt the Union. The conduct of foreign rclations was on the whole the most creditable part of his administration. The Koszta Affair (${ }^{2853}$) gave the government an opportunity vigorously to assert the protection it would afford those in the process of becoming tis naturalized citizens. When the British government refused to prevent recruiling for the Crimean War by their representatives in America, their minister, John F. Crampton, recelved his passports, and the exequaturs of the British consuls at New York, Philadelphia and Cincinnuti were revoked. A commorcial trealy was negotiated with Japan in 1854 after Perry's expedition in the previous year. As an avowed expansionist, Plerce sympathized with the filibuster government set up in Nicaragua by William Walker, and finally accorded it recognition. It was during this term also that the Gadsden Purchasc was consummated, by which 45,535 \$q. m. of territory were acquired from Mexico, and that three routes were surveyed for railways from the Mississippi river to the Pacific coast.

When the Democratic national convention met at Cincinnati in June 1856, Pierce was an avowed candidate for renomination, but as his attitude on the slavery question, and especinlly his subserviency to the South in supporting the pro-slavery party in the Territory of Kansas, had lost him the support of the Northern wing of his party, the nomination tent to Jamea Buchanan. After retiring from the presidency Pierce returwed to Concord, and spon afterwards weat abroad lor a throe years' tour in Europe. Mlany Southern leaders deaired his renopaiaetion hy; the Democratic party in 1860, but he received such suggestions with disfavour. Aftor his returo to America be remained in retirement at Concord until the day of his death, the 8th of October 1869.

Pierce was not a great statesman, and his fame has beea overshadiowed hy that of Beaton, Calboun, Clay and Webster. But he was an able lawycr, an orator of no mcan reputation, and a brave soldier. He was a man of fine appearance and courtly manners, and he possessed personal magnetism and the ability to make frients, two qualitics that contributed in great measure to bis success.

A portion of Picrec's correspondence has been published in the A mericas Hislorical Reriaw, x, 110-127, $350-370$. D. W. Bartlett's Framkliz Pierce (Auburn, New York, 185), and Nathaniel Hawthorne's Framklis Pierce (Booton, 1853), are two "campaip"" biographics, and are very eulogistic. J. R. Ireian's Hislory of the
Lite. Admisistration amd Times of. Fravin Pierce (Chicago, 188$)$, Life. Admisistration and Tipes of Frambin Pierce (Chicago, i88\%), bei凶s voi. xiv. of his Republic, is a more critical work, but inacrn: rate as to detzils J. E Cooley's Remiew of the Adminietration of Gemeral Pierce (Nicw York, 1854)-and Anna E Carroll's Review Pierce's Adminisfration (Botton, 1856) are hootite antíedministra. tion tracts. The best accounts of Pierce's administration are to be found in James Schouler's Hislory of the Uniled Slates, vol. Y. (new ed. New York, 1894): J. F. Rtodes's History of the Umiled Stades. vois i, and ii. (New Yorte, i890-L894); and J. W. Burgem's Yiddr Pariod (New York, 1900).

PIERO DI COSMIO (1462-1521), the name by which the Florentine painter Pietro di Lorenzo is generally known. He was born in Florence about 1462, and worked in the bottegs of Cosimo Rosselli (from whom he derived his popular name). Other influences that can be traced in his work are those of Filippino Lippi, Luca Signorelli, and Lconardo da Vinci, and, as has been recently suggested by Professor R. Muther, that of Hugo van der Cocs, whose Portinari altar-piece (now at the

Epedale of S. Maria Novelle in Florence) helped to lead the whole of Flosentine painting into new channels. From him, most probably, be acquired the love of landscape and the intimate knowledge of the growt of flowers and of animal life. The zonfaence of Hugo van der Goes is especially apparent in the "Adoration of the Shepherds," at the Berlin Museum. He had the dift of a fertile fantastic imagination, which, as a result of a journey to Rome in 1482 with his master, Rosselli, became diretted towards the myths of classic antiquity. He proves himself a true child of the Renaisance in such pictures as the "Death of Procris," at the National Gallery, the "Mars and Venus," at the Berlin Gallery, the "Perseus and Andromeda" aeries, at the Ufixi in Florence, and the "Hylas and the Nymphs" belonging to Mr Benson. If, as we are told by Vasari, he spent the last years of his life in gloomy retirement, the change was probably due to Savonarola, under whose influence be.turned his attention once more to religious art. The "Immaculate Conception," at the Uffizi, and the "Holy Family," at Dresden, best illustrate the religious fervour to Which be was stimulatod by the stern preecher.
With the exception of the lendscape background in Rosecli's fresco of the "Sermon on the Mount." in the Sistine Chapel, we have no recond of any fresco work from his brush. On the othar hand, be enjoyed a great reputation as a portrait painter, though the only known examples that can be definitely ascribed to him are the portrait of a warrior, at the National Gallery, (No. 895), the so-called "Bella Simonetta," at Chantilly, the portraits of Giuliano di San Gallo and his father, at the Hague, and a heed of a youth, at Dulwich. Vasari relates that Plero accelled in designing pageants and triumphal processions for the pleasure-loving youths of Florence, and gives a vivid description of one such procession at the end of the carnival of 150%, -hich illustrated the triumph of death. Piero di Cosime courcised considerahle influence upon his fellow pupils Albertimelli and Bartolommeo della Porta and was the master of Andrea del Sarto. Eramples of his work are also to be found at the Louvse in Paris, the Harrach and Liechtenstein collections in Vienna, the Borgbese Gallery in Rome, the Spedale degli Innocenti in Florence, and in the collections of Mr John Burke and Colonel Cornwallis West in London. A "Magdalen "from his brush was added to the National Gallery of Rome in 1909.
See Piepo di Cosimo, by F. Knapp (Halle, 1899); Piero di Cosimo, by H. Haberfeld (Breslau, 1901).
PIERARE, the capital of South Dakota, U.S.A., and the county-aet of Hughes county, situated on the east bank of the Miscouri river, opposite the mouth of the Bad river, about 185 m. N.W. of Yankton. Pop. (1905) 2794; (2910) 3656. Pierre is eerved by the Chicago \& North-Western ruilway; the Miscouri is navigable here, but river traffic has been practically abandomed. Among the principal buildiags are the state capitol (rgog) and the post office huilding. Pierre has a public library, and is the seat of the Pierre Industrial School (co-educasional, opened in 1890), a government boarding school (noneservation) for Indian children. The city has a large trade in liventock, and is a centre for the mining districts of the Black HIllis and for a grain-growing country. Natural gas is used for lighling, healing and power. A fur-trading post, Fort La Framboise, was built in 1817 by a French fur-trader (from whom it took its name) at the mouth of the Teton or Little Missouri tiver (now called the Bad River), on or near the site of the present village of Fort Pierre (pop. in 1910, 792). In 1822 Fort Tecumach was built about 2 m . up-stream by the Columbia Fur Compana, which turned it over in 1827 to the American Fur Company. The washing away of the river bank caused the abandomment of this post and the erection about a mile farther up-atream, and a short distance west of the river, of Fort Pierre Choutenu (later called Fort Pierre), occupied in 1832, and named in honour of Pierre Chouteau, jun. ($\mathbf{1 7 8 9 - 1 8 6 5 \text {). }}$. For twenty
${ }^{1}$ Pierre Chouteen in 1804 succeeded his father, one of the founders of Si Lovis, in the Missouri Fur Company: and about 1834 Pratt, Chouteau \& Company, of which he was the leading member, bought the entire western department of the American Fur Company, and in ibys roparited under the name of Pierse Chonteau, jun, a
years thereafter Fort Plerte was the chiof fur-trading depot of the Upper Missouri country. In 1855 the United States government bought the post building and other property for $\$ 45,000$, and laid out around them a military reservation of about 270 s. m . The fort was the headquarters of General William S. Harney (1800-1889) in his expedition againet the Sioux in 1856, and in March of that year an important council between General Hanney and the chiefs of all the Sioux bands, except the Blackfeet, was held here. The fort was abandoned in 1857. Pierre was laid out in 1880, was incorporated as a village in 1883 , and was chartered as a city in 1900.
See Major Frederick T. Wilson, "Fort Pierre and Its Neighbors," in South Dakola Historical Collections, vol. i. (Aberdcen, S.D., 1902): and Hiram M. Chittenden. The American Fur Trade of the Far West (3 vols., New York, 1goz).

PIERRE DE CASTELHNAU (d. 1208), French ceclesiastic, was born in the diocese of Montpellier. In 1199 he was archdeacon of Maguclonne, and was appointed hy Pope Innocent III. as one of the legates for the suppression of heresy in Languedoc. In 1202, when a monk in the Cistercian abbey of Fontfroide, Narbonne, he was designated to similar work, first in Toulouse, and afterwards at Viviers and Montpellier. In 1207 he was in the Rhone valley and in Provence, where he became involved in the strife between the count of Baux and Raymond, count of Toulouse, by one of whose agents he was assussinated on the 15th of January 1208. He was beatified in the year of his death by Pope Innocent III.
See De la Bouillerie. Le Bienheureux Pierre de Castelnan at les Albigeois an XIII, siecle (Paris, 1866).

PIERREFONDS, a town of northern France, in the department oi Oise, 9 m . S.E. of Compiègne by road. Pup. (1906), 1482. It is celehrated for its feudal stronghold, a masterpiece of modern restoration. The building is rectangular in shape, with a tower at each corner and at the centre of each of the walls, which are strengthened by crenelation and machicolation. A lofty keep defends the principal entrances on the south-west. The interior buildings are chiefly modern, but the exterior reproduces faithfully that of the medieval fortress. Pierrefonds has a church dating from various periods from the inth to the 16th century, and its mimeral springs are in some repute. The chateau was begun in the last decade of the 14th century hy Louis d'Orleans, to whom the domain was given hy Charles VI., and finished early in the isth century. It was subsequently held hy the Burgundians, the English and the adherents of the League, from whom it passed to Henry IV. It was dismantled in 1622. The ruins, bought by Napoleon I., were restored, hy order of Napoleon III., from 1858 to 1895 , under the direction, first of Viollet-le-Duc and afterwards of E. Boeswillwald.

PIERREPONT, WILLIAM (c. 1607-1678), English politician, was the second son of Robert Pierrepont, ist earl of Kingston. Returned to the Long Parliament in 1640 as member for Great Wenlock, he threw his influence on the side of peace and took part for the parliament in the negotiations with Charles I. at Oxford in 1643. Pierrepont was a member of the committee of both kingdoms, and represented the parlinmentary party during the deliberations at Uxhridge in 1645; hut from that time, according to Clarendon, he forsook his moderate attitude, and "contracted more bitierness and sourness than formerly." This statement, however, is perhaps somewhat exaggerated, as Pierrepont favoured the resumption of negotiations with the king in 1647, and in the following year his efforts on behalf of peace at Newport, where again he represented the parliamentarians, hrought upon him some slight censure from Cromwell. For his services at Newport he was thanked hy parliament; but he retired from active political life soon afterwards, as he disliked the "purging" of the House of Commons by Colonel Pride and the proceedings against the king. In spite of his
Company. Chouteau buitt (in 1830-1831) the "Yellowstonse" which went up the river to the present site of Pierre in 1831 , and souri. Chouteau lived for some years in New York City, and while living in S Louis wha a member of rhe convention (1820) which drafted the firrt conotitution of Misoouri.
moderate view Pierrepont enjoyed the personal friendship of Cromwell; but, although elected, he would not sit in the parliament of $\mathbf{1 6 5 6}$, nor would he take the plate offered to him in the Protector's House of Lords. When Richard Cromwell succeeded his father, Pierrepont was an unobtrusive but powerful influence in directing the policy of the govemment, and after a short period of retirement on Richard's fall he was chosen, early in 1660, a member of the council of state. He represented Nottinghamshire in the Convention Parliament of r060, and probably was instrumental in saving the lives of some of the parliamentary leaders. At the general election of 1661 he was defeated, and, spending the remainder of his life in retirement, he died in 1678. Pierrepont married Elizabeth, daughter of Sir Thomas Harris, Bart., of Tong Castle, Shropshire, by whom he had five sons and five daughters. His eldest son, Robert (d. 1666), was the father of Robert, 3rd earl, William, 4 th carl, and Evelyn, ist duke of Kingston; and his third 20 , Gervase (1640-1715), was created in 1714 baron Pierrepont of Hanslope, a title which became extinct on his death.

PIRRROT (Ital. Pedrolino), the name given to the leading character in the French pantomime plays since the 18th century; transferred from the Italian stage, and revived especially in recent times. He is always in white, both face and costume, with a loose and daintily clownish garb, and is represented as oi a freakish disposition. Modern pierrot plays have converted the pierrot into a romantic and even pathetic figure.
pierson, henry hugo [properly Henry Hugh Pearson], ($1815-1873$), English composer, was the son of the Rev. Dr Pearson of St John's College, Oxford, where he was born in 1815; his father afterwards became dean of Salisbury. Pierson was educated at Harrow and Trinity College, Cambridge, and was at first intended for the career of medicine. His musical powers were too strong to be repressed, and after receiving instruction from Attwood and A. T. Corfe he went in 1839 to Germany to study under C. H. Rink, Tomaschek and Reissiger. He was clected Reid Professor of Music in Edinburgh in 1844, but, owing to a disagreement with the authorities, he resigned in the following year, and definitely adopted Gcrmany as his country about the same time, making the change in his names noted above. His two operas, Leila (Hamburg, 1848) and Contarini (Hamburg, 1872), have not retained their hold upon the German public as his music to Faust has done, a work which until quite recently was frequently associated with Goetbe's drama. He was never recognized in England as he was in Germany, for most of his career fell in the period of the Mendelssohn fashion. His most important work was the oratorio Jerusalem, produced at the Norwich Festival of 1852, and subsequently given in London (Sacred Harmonic Society, 18 s3) and Würzburg (1862). For the Norwicb Festival (at one of the meetings a selection from his Faust music was given with success) be began an oratorio, Hezekiah, in 1869, it was not finished, but was given in a fragmentary condition at the festival of that year. These two large works and a number of Pierson's songs, as well as the three overtures played at the Crystal Palace, reveal undeniable originality and a wealth of melodic ideas. He was weak in contrapuntal skill, and his music was wanting in outline and coberence; but in more fortunate conditions bis great gifts might have been turned to better account. He dicd at Leipzig on the 28th of January 1873, and was buried at Sonning, Berks, of which parish his brother, Canon Pearson, was rector.
PIETA8, in Roman mythology, the personification of the sense of duty towards God and man and the fatherland. According to a well-known story, a young woman in humble circumstances, whose father (or mother) was lying in prison under sentence of death, without food, managed to gain admittance, and fed her parent with milk from ber breast. To commemorate her filial affection a temple was dedicated (s81 B.c.) by Manius Acilius Glabrio to Pietas in the Forum Holitorium at Rome, on the spot where the young woman bad formerly lived. The tomple was probably originally vowed hy the elder Glabrio out of eratitede for the piedas shown during
the engagement by his son, who may have saved his life, as the elder Africanus that of his father at the battie of Ticinus (Livy xxi. 46); the legend of the young woman (borrowed from the Greek story of Mycon and Pero, Val. Max. v. 4, ext. 1) wis then connected with the temple by the identification of its site with that of the prison. There was another tempie of Pietas near the Circus Flaminius, which is connected by Amatacei (Rinita di storia antica, 1903) with the story of the pledas of C. Flaninias (Val. Max. v. 4, 5), and regarded by him as the real meat of the cult of the goddess, the Pietas of the stinctuary dedicated by Glabrio being a Greek goddess. Pietas is represented on coins as a matron throwing incense on an altar, her attribute being a stork. Typical examples of "piety" are Aeneas and Antoninus Pius, who founded games called Eusebeia at Puteoli in homour of Hadrian.
See Val. Max. v. 4, 7; Pliny, Nat. kist. vii. 121; Livy 2d. 34: Festus, s.n; G. Wissowa, Religion nind Kuliss der, Rhmer (zqos): F. Kuntat, "Die Legende von der gaten Tochter," in Jatrowicher fir das $\begin{aligned} & \text { Llassische Allertuew (1904), sili. a80 }\end{aligned}$

PIETERIARITRBURG, the capital of Natal, sitanted in $29^{\circ} 4^{\prime}$ S., $30^{\circ} 13^{\prime}$ E., 45 m . in a direct line (yr by rail) W.N.W. of Durban. It lies, $\mathbf{2 2 0 0} \mathrm{ft}$. above the ses, north of the river Umsundusi, and is surrounded by wooded hills. Of these the Town Hill, flat-iopped, rises 1600 ft . above the town. Pop. (1904), 31,119 , of whom 15,087 were whites, 10,752 Kafirs, and 5280 Indians. The town is laid out on the usual Dutch South African plan-in rectanguiar blocks with a central market square. The publie buildings include the legislative council chambers and the legislative assembly buildings, government house, the government offices, college, post office and market huildings The town-hall, a fine building in a modified Rennissance style (characteristic of the majority of the other public buildinges), has a lofty tower. It was completed in Igos, and replaces a bullding destroyed by fire in 1898. St Saviour's is the cathedrel church of the Anglican community. The beadquarters of the Dutch Reformed Church are also in the town. There are monuments of Queen Victoria and Sir Theophilus Shepstone, and various war memorials-one commemorating those who fell in Zululand in 1879, and another those who lost their lives in the Boer War 1899-1902. A large park and botanical gardens add to the attractions of the town. A favourite mode of conveyance is by rickshaw. The climate is healtby and agrecable, the mean annual temperature being $65^{\circ} \mathrm{F}$. (55° in June, 71° in Fehruary). The rainfall is about 38 in. a year, chiefly in the summer months (Oct.-Mar.), when the heat is tempered by violent tbunderstorms.

Pietermaritzburg was founded early in 1839 by the newlyarrived Dutcb settlers in Natal, and its name commemorates two of their leaders-Piet Retief and Gerrit Marits. From the time of its establishment it was the seat of the Volksrand of the Natal Boers, and on the submission of the Boers to the British In 1842 Maritaburg (as it is usually called) became the capital of the country. It was given a municipal board in 1848, and in r854 was imcorporated as a borough. Railway connezion with Durban was made In 1880, and in $\mathbf{1 8 9 5}$ the line was exteaded to Johannesburg. The borough covers $44 \mathrm{sq} . \mathrm{m}$. and includes numerons attractive suburbs. The rateable valoe is about C4,000,000. Various industries are carried on, including brickmaking, tanning, brewing, and cart and wagon building.
See J. F. Ingram, The Story of an Africam City (Maritzburs. 2898).

PIETBRSBURQ, n tom of the Transvaal, capital of the Zoutpansberg district, and 177 m. N.N.E. of Pretoria by rail Pop. (1904), 3276 , of whom 1620 were whites. The tomn is pleasantly situated, at an elevation of 4200 ft ., on a small tributary of the Zand river affuent of the Limpopo, and is the place of most importance in the province north of Pretoria. From it roads run to Klein Lelaba and other gold-mining centrea in the neighbourhood, and through it passes the old route to Masbonaland, which crosses the Limpopo at Rhodes Drift. The Zoutpansberg district contains a comparatively dense Kafir population, and a native newspaper is published nt Pietersbucs.

Berkshire Boar.

Middle White Boar.

Large Black Sow.
English Breeds of Pig, from photographs of F. Babbage.

Plate II.

PIG

Large White Sow.

Small White Boar.

Tamworth Boar.
English Breeds of Pig, from photographs of F. Babbage.

PIETIAE, a movernent in the Lutheran Church, which arose towards the end of the 17 th and continued during the first half of the following ceatury. The name of Pietists was given to the adherents of the movement by its enemica as a term of ridicule, like that of "Met hodists" somewhat later in England. The Lutheran Church had, in continuing Melanchthon's at tempt to construct the evangelical faith as a doctrinal system, hy the 17 th century become a creed-bound theological and sacramentarian institution, which ortbodox theologians like Johann Gerhard of Jena (d. 1637) ruled with almost the absolutism of the papacy. Christian laith had been dismissed from its seat in the heart, where Luther had placed it, to the cold regions of the intellect. The dogmatic formularies of the Lutheran Church had usurped the position which Luther himself had assigned to the Bible alone, and as a consequence only they were studied and preached, while the Bible was neglected in the family, the atudy, the pulpit and the university. Instead of advocating the priesthood of all believers, the Lutheran pastors had made themselves a despotic hierarehy, while they neglected their practical pastorsl work. In the Reformed Church, on the other hand, the influence of Calvin had made less for doctine than the practical formation of Christian life. The presbyterian constitution gave the people a share in church life which the Lutherans lacked, but it involved a dogmatic legalism which imperilled Christian freedom and fostered self-righteousness.

As forerunners of the Pietists in the strict sense, not a few earnest and powerful voices had been heard bewailing the shortcomings of the Church and advocating a revival of practical and devout Christianity. Amongst them were Jakob Boehme (Behmen), the theosophic mystic; Johann Arndt, whose work on True Christianity became widely known and appreciated; Heinrich Maller, who described the font, the pulpit, the confessional and the altar as the four dumb idols of the Lutheran Church; the theologian, Johann Valentin Andrea, the court chaplain of the landgrave of Hesse; Schuppius, who sought to restore to the Bible its place in the pulpit; and Theophilus Grossgebsuer (d. 1661) of Rostock, who from his pulpit and by his writings raised "the clarm cry of a watchman in Sion." The direct originator of the movement was Philip Jacob Spener, who combined the Lutheran emphasis on Biblical doctrine with the Reformed tendency to vigorous Christian life. Born at Rappoltsweiler, in Alsace on the r3th of, January 1635, trained by a devout godmother, who used books of devotion like Amde's True Christiantily, accustomed to bear the sermons of a pastor who preached the Bible more than the Lutheran creeds, Spener wha early convinced of the necessity of a moral and religious reformation of the German Church. He studied theology, with a view to the Christlan ministry, at Strassburg, where the professors at the time (and especially Sebastian Schmidt) were moro inclined to practical Christianity than to theological disputation. He afterwards spent a year in Geneve, and was powerfully influenced by the strict moral life and rigid ecclesias:tical discipline prevalent there, and also by the preaching and the piety of the Waldensian professor, Antoine Leger, and the converted Jesuit preacher, Jean de Labadie. ${ }^{1}$ During a stay in Tabingen he read Grossgebauer's Alarw Cry, and In 1666 he entered upon his first pastoral charge at Frankfort-on-the-Main, profoundly impreased with a sense of the danger of the Christian life being sacrificed to zeal for rigid orthodoxy. Pietism, as a distinct movement in the German Church, was then originated by Spener by religious meetings at his house (collegia priedetis), at which he repeated his sermons, expounded passages of the New Testament, and induced those present to join in conversation on religious questions that arose. They gave rise to the name "Pietists." In 1675 Spener published his Pia desideria, or Earnest Desires for a Reform of the True Evangelical Church. In this publication he made six proposals as the best means of restoring the life of the Church: (I) the earnest and thorough study of the Bible in private meetings, ecclesiolae in ecclesia;
"Labadie had formed the ascetic and mystic sect of "The Regenerati" in the Church of Holland (c. 1660), and then in other parts of the Reformed Church.
(2) the Christlan priesthood being universal, the laity should share in the spirit ual government of the Church; (3) a knowledge of Christianity must be attended by the practice of it as its indispensable sign and supplement; (4) instead of merely didactic, and often bitter, attacks on the heterodox and unbelievers, a sympathetic and kindly treatment of them; (5) a reorganization of the theological training of the universities, giving more prominence to the devotional life; and (6) a different style of preaching, namely, in the place of pleasing rhetoric, the implanting of Christianity in the inner or new man, the soul of which is faith, and its effects the fruits of life. This work produced a great impression throughout Germany, and although large numbers of the orthodox Lutheran theologians and pastors were deeply offended by Spener's book, its complaints and its demands were both too well justified to admit of their being point-biank denled. A large number of pastors at once practically adopted Spener's proposals. In Paul Gerhardt the movement found a singer whose hymns are genuine folk poetry. In 1686 Speber accepted an appointment to the court-chaplaincy at Dresden, which opened to him a wider though more difficult sphere of labour. In Leipzig a society of young theologians was formed under his influence for the learned study and devout application of the Bible. Three magistri belonging to that society, one of whom was August Hermann Francke, subsoquently the founder of the famous orphange at Halle (1695), commenced courses of expository lectures on the Scriptures of a practical and devotional character, and in the German language, which were zealously frequented by both students and townsmen. The lecturen aroused, however, the ill-will of the other theologians and pastors of Leipzig, and Francke and his friends left the city, and with the aid of Christian Thomasius and Spener founded the new university of Ifalle. The theological chairs in the new university were filled in complete conformity witb Spener's proposals. The main difference between the new Pietistic school and the orthodox Lutherans arose from the conception of Christianity as chiefly consisting in a change of heart and consequent holiness of life, while the orthodox Lutherans of the time made it to consist mainly in correctness of doctrine.

Spener died in 1705; but the movement, guided by Francke, fertilized from Halle the whole of Middle and North Germany. Among its greatest achievements, apart from the philanthropic institutions founded at Helle, were the organization of the Moravian Church in 1727 hy Count von Zinzendorf, Spener's godson and a pupil in the Halle Orphanage, and the establishment of the grent Protestant missions, Ziegenbalg and others being the pioneers of an enterpriso which until this time Protestantism had strangely neglected.

Pietism, of course, had its weaknesses. The very earnestness with which Spener had insisted on the necessity of a new birth, and on a separation of Christians from the world, led to exaggerstion and fanaticism among followers less distinguished than himsell for wisdom and moderation. Many Pietists soon maintained that the new birth must aiways be preceded by agonies of repentance, and that only a regenerated theologian could teach theology, while the whole school shunned all common worldly amusements, such is dancing, the theat re, and public games. There thus arose a new form of justification by works. Its ecclesiofae is ecclesia also weakened the power and meaning of church organization. Through these entravagances a reactionary movement arose at the beginning of the 18th century, one of the most distinguished leaders of which was Loescher, superintendent at Dresden.
As a distinct movement Pietism had run its course before the middle of the 18 th century; by its very individualism it had helped to prepare the way for another great movement, the Iilumination (Auflarung), which was now to lead the world into new paths. Yet Pietism could claim to have contributed largely to the revival of Biblical studies in Germany, and to have made religion once more an affair of the heart and the life, and not merely of the intellect. It likewise vindicated afresh the rights of the Christian laity in regard to their own belfefs and
the work of the Church, against the assumptions and despotism of an arrogant clergy. "It was," says Rudoli Sohm, "the last great surge of the waves of the ecclesiastical movement begun by the Reformation; it was the completion and the final form of the Protestantism created by the Reformation. Then came a time when another intellectual power took possession of the minds of men."
Some writers on the history of Pietism-e.g. Heppe and Ritschl-have included under it nearly all religious tendencies amongst Protestants of the last three centuries in tbe direction of a more serious cultivation of personal piety than that prevalent in the various established churches. Kitschl, too, treats Pietism as a retrograde movement of Christian life towards Catholicism. Some historians also speak of a later or modern Pietism, characterizing thereby a party in the German Church which was probably at first influenced by some remains of Spener's Pictism in Westphalia, on the Rhine, in Wurttemberg, and at Halle and Berlin. The party was chielly distinguished by its opposition to an independent scientific study of theology, its principal theological leader being Hengstenberg, and its cbief literary organ the Erangelische Kirchenzeitung. The party originated at the close of the wars with Napoleon I.

Amongst older works on Pietism are J. G. Waleh, Historische und theologishe Einleitumg in die Religionstreiligheiten der evangelischLuther shen Kircho (1730); A. Tholuck, Geschichte des Pietismus und des erseets Stadiums dep Aufklärung (1865); H. Schmid, Dis Geschichte des Pielismus (1863); M. Goebel, Geschichte des christlichen Lebens in der Rheinisch Wesffälischen Kirche (3 vols. 1849-1860) ; and the subject is dealt with at length in \int. A. Dorner's and \mathbf{W}. Gass's Histories of Protestant theology. More recent are Heppe"s Geschichte des Pielismus und der Mystik in der reformirkem Kirche (8879), which is sympathetic; A. Ritschl's Geschichle des Pielismus (3 vols., 1880-1886), which is hostile; and C. Sachsse, Urspruing und Wesen des Pielismus (1884). Sce also Fr. Nippold's article in Theol. Stud, und Kritiken (1882), pp. 347-392; H. von Schubert, Oudlines of Church History "ch. xv. (Eng. trans., 1907); and Carl Mirbs's article. "Pietismus," in Herzeg-Hauck's Realencyklopadie für grot. Theologie u. Kirche, end of vol. xv.
fietro della vigna, or Pier delle Vigns [Petrus de Vineas or dr Vineis] (c. 1190-1249), chancellor and secretary to the emperor Frederick II., was born at Capua in bumble circumstances. He studied law at Padua, and through his classical education, his ability to speak Latin and his poetic gifts, he gained the ta vour of Frederick II., who made bim his secretary, and afterwards j vedex magnae cwiac, councillor, governor of Apulia, prothonotary and chancellor. The emperor, "of whose heart he held the keys," as Dante says, sent him to Rome in 1232 and 1237 to negotiate with the pope, to Padue in 1239 to induce the citizens to accept imperial protection, to England in 1234-1235 to arrange a marriage between Frederick and Isabella, sister of King Henry LII. He proved a skilful and trustworthy diplomat, and he persistently defended the emperor against his traducers and against the pope's menaces. But at the Council of Lyons, which had been summoned by Pope Innocent IV., Pietro della Vigna entrusted the defence of his paster to the celebrated jurist Taddeo of Suessa, who failed to prevent his condemnation. Frederick, whose suspicions had been awakened by the slanders of the envious, had him imprisoned and blinded without giving him a chance to rebut bis accusers. Unable to bear his disgrace, he committed suicide in bis prison at Pisa in 1249. The ecact date, place and manner of his death are, however, subject to controversy, and Flaminio del Borgo states that it occurred in the church of S. Andrea, at Pisa, in 1256 . The tragic fate of this man gave rise to many legends. The Guelphic tradition accuses Pietro della Vigna, as well as the emperor and the court, of hercsy; it was even stated, probably without any foundation, that they were the authors of the famous work, De tribus imposforibus, whercin Moses, Christ and Mahomet are blasphemed.

Pietro della Vigna was a man of great culture; he encouraged science and the fine arts, and contributed much to the welfare of Italy by wise legislative reforms. He was the author of some delicate verse in the vernacular tongue, of which two canzoni and a sonnet are still extant. His letters, mostly written in the name of the emperor and published by Iselin (Epistolarum
libri pi., 2 vols., Basel, 1740%, contain much valuable halomation on the bistory and culture of the isth century. A collection of the laws of Sicity, a Tractalus de potestate impriali, and another treatise, "On Consofation," in the style of Borthlus, are also auributed to him.
See Huillard.Bréholles, Vie el correspandance de Pierre de la Vigwe (Paris, 1864): Presta, Pier delle Vigne (Milan, 1880): Capaseo and lanelli, Pier delle Vigne (Caserta, 1882); also Frederucx Il.

PIG (a word of obscure origin, connected with the Low Ger. and Dut. word of the same meaning, bigge), a common name given to the domesticated swine of agricultural use. (For the zoology, see SWane)

British breeds of pigs are classified as black, white and red: In some places, notably Wales and Gloucester, a rempant of a spotied breed lingers; and a large proportion of comrmon pigs. often parti-coloured, are mongrels. The white breeds are tiable to sun-scald, and black pigs (like black men) are much better adapted than white to exposure in strong sunlight, conforming to the rule that animals in the tropics have black skins.

The Lerge Whiles may have in the skift a few blue spots which grow white hair. The bead is long, light in the jowl, and wide between the eyes, with long thin ears inclined slightly forward and fringed with long fine halr. The neck is long, but nok coarse, the ribs are deep, the bin wide and level, the tall set high, and the legs straight and set well outside the carcase. The whole body, including the back of the neck, is covered with straight silky hair, which denotes quality and lean meat. Pigs of this breed are very prolific, and they may be grown to enormous weights-over it cwt. alive.

The Middle Whites are built on a smaller acale than the Large Whites. They are shorter in the heads and lefs, and fuller at the jowl, thicker and more compact in the body. The sows are quite as prolific as chose of the Large White breed, and, as their produce matures earlier, they are much in demand for breeding porkers.

The Small White pigs are beautifully proportioned. The bead and legs are very short, and the body short, thick and wide; the jowl is heavy, the ears pricked, and the thin skin taden with long silky, wavy, but not curly, hair, whilst the tail is very fire. A deficiency of lean meat is a common characteristic of the breed, which is almost extinct.

The above three breeds were designated Yorkshire Whites, and are still so named at times. The Middle White, formed by crossing the large and the small breeds, is not 50 symmetrical as the parent stucks, and the type is not uniform.

The Lincolnshire Curly Coated or Boston pig is a local breed of great size and capacity for producing pork. It is very hardy and prolific, but somewhat coarse in the bone. It has an abundance of long curly hair, a short face and a straight nose. and the cars, not too long and heavy, fall over the face. It crosses well with the Large White, the Large Black and the Berkshire.

The Large Black breed, which vies with the Large White breed for size, and is probably its superior as a bacon pig, has only since 1900 received national show-yard recognition; but there is ample evidence that, with its characteristic whole black colour with a mealy hue, length, fine hair and lop ear, the Large Black existed in the south of England for generations. It has been continuously and carefully hred in Cornwall, Devon, Essex and Suffolk, and from these centres it has rapidly spread all over the country. Large Blacks are exceedingly docile, and the ears, hanging well forward over the eyes, contribute materially to a quietness of habit which renders them peculiarly adapted to gield grazing. On account of their hardiness and disposition to early maturity they have proved valuable for crossing purposes. The Large Black Pig Society was incorporated in $\mathbf{8} 89$.

The Berkshire is a black pig with a pinkish skin, and a little white on the nose, fore head, pasterns, and tip to the tail. It has a moderately short head with heavy jowl, a deep, compact carcase, and wide, low and well-developed hind-quarters, with heavy hams. The skin carries an abundance of fine hair. The Berkshire is an early-maturity breed which has been somewhat
inbred, and is not 00 handy and prolific as most breeds. The boars cross well with common stoci. It merits the most credit in raising the quality of Irish pigs. In America it is in the front rank for numbers and quality as a lard-hog. There it often grows to be a larger and finer animat than it in in Eugland.

The Small Black or Black Suffolk wis prodnced from the old Essex pig by crossing with the Neapolitan. It resembles the Small White, except that the skin is coal-black in colour, and the cont of hair is not usually profuse. The Smald Black, moso over, is rather longer, and stands somewhat higher; whilst it yields more Jean meat than the Small White. It matures early and is quick to fatten.

The Tamutorth is one of the ofdest breeds of pigs. It is hardy, active and prolific, and neasly related ta the wild boar. The colour is red or chestnul; with at times darkish epots on the skin. The head, body and lezs are long, and the ribe deep and fiat. Originally a local breed in the districts aroutd the Stafiondshire town from which it takes its name, it is now extedsively bred, and highly valued as a bacon pig.
(W. Fr. ; R. W.)

In Asmerica nearly all the breeds may be classified as lard. hogs. Becon-pigs fed an Indian corn degenerate into land. hoge, run down in sice and become too small if the bone and lese prolific by inbreeding.

The Poland-China, the most popular breed in the United States, is thus degenerating. f is a black pig like. the Berkshire, but has short lopears, a mose pointed, straight nose; a more compact body, and more white makkings, It is a breed of mixed blood, and in believed to have ociginated fram the "Bis China " pig-a large white hog with sandy spots, taken to Ohio in 1816 , and blended with lrish graviers in 2839 , and wish a breed known as Bayfields, as well as with Berkahires. In'Iows the Berkshire is a combined lard and becon pig in high favowr:

The Duroc Jersey or Dwre, of a red or cherry-red colearnot sandy or dark-is the most popular pig in Nebraska and equal to any other in Iowa. It is a large prolific tardhog, easily making 300 th in eight months. It has gained rapidly in popularity since the beginning of this century, and is spreading to other ceatres.
The Chesker Whice, named from Chester counky, Peansylvanis, is one of the four leading breeds of lardhogs in America. It is of mixed origin and beas a strong family resemblance to the lincolsshire curly-coated pig. The barly English ancestors, the breed of which is not on record: in Amesica, were mose probahly of Limoola origin. The sow is a prolife broedor and good mother, weighing, when mature but not fat, 450 lb -the boar averaging 600 ib , and harrows at six to eight months 350 th. At Vermont Station, in a 127 days' test, Chester Whites mado an average gaia of 1.36 Ho and dresped 84.5% carcase, and they can gain fully 1 th of live weight for 3 b of grain consumed.
Momegment-The brood sow should be rengthy and of a prolific train, known to milk well. She is moderately led and put to bpar of her own age when large epough, i.e. seven to eight months odd. She remains in a otate of oestrum for about three days, and iI not pregnant comes in heat again in three weeks. Breeding awise, male and female. rum mont of their time at pasture and recalve a liberal allowance of green food or raw roots. The period of gentation is rixteen weeka Six to eight pigs are reared of the first litter, and ten to twelve afterwards. Many brood sows are lattened to greatest profit alter the aecond or third litter. Two litters are produced in oae year, as pigs are usually weaned at two monibs old, and the some will talee the bour at from thate days to a weet after the pigs are removed, according to condition. A convenient sxy to hold five or mix pigs has a southern aspect, and consists of a covered compartmeat and outer court. each io ft . equare. When the animals are led cutside the inser court is kept clean and dry, and there the pigs lie. The labouring man's pig is tis bank, and is fed oe scrape, small potatoen and waste products. In connexion with cheese dairies pigs are largely fed on sour whey thickered with mixed meal produced from any or all of the grains or pulyen, the choice depending upon the mariket price. Food may winh advantage be cooked for very young pigs: but. with the exception of pocatocs, which should never be given reww, roots and meals are best piven uncooked. Meal mived with pulped roots for a few hours improves in digertibility, and a sprinkling of aalt in an improvement. Meal derived from leruminions sards makes the fleab firm and improver the quality. Fetseaing piess are fed
three timea a day and supplied with coal-askee or a few handlubs of earth. Of the latted live weight of a pis 83% is, butcher's carcase, and 91% of the increase from 100 to 200 it is carcase. From 3 to 5 to of meal consumed results in an increase of 1 to of Iive weight in a pig, which is the most economical meat producer on a. farm. Concentruted and digentible loods give best results, a pig has a small stomach. Fjord's Danish experiments show that for fattening pigs ith of rye- or bariey-meal is equivalent to 6 th of skim-milk or 12 tb of whey, and 1 t of meal equivalent to 8 it

Literarure--J. Coleman, l'igs of Greal Britaim (1877): Sanders Spencer, Pigs: Breads and Munagememt (1go5); G. M. Rommel, The Hog Industry (1904 ; Bull. No. 47. U.S.A. Burcaul of Animal In lustry): J. Long, The Book of the Pig (1906): F. D. Coburn, Suine Husbandry (1904); R. Wallace, Farm Live Stock of Great Britain (4th ed., 1907); Douglas Encyclopoadia (1906): C. S. I Tumb Types and Breeds of Farm Animals (1906) the llerd Books of the Breed Societies, and Repoots of the Agricultural Departmonts of Great Britain, Canada and the United States, (R. W.)

PIGALLE JEAN BAFTISTE (1714-1785), French sculplor, was born in Paris on the 26th of January 1714. He was the seventh child of a carpenter. Although he failed to obtain the grand prix, alter a severe struggle he entered the Academy and hecame one of the most popular sculptors of his day. His earier work, such as "Child with Cage" (model at Sèvres) and " Bercury Fastening his Sandals" (Berlin, and lead cast in Louvre), is less commonplace than that of his maturer years, but his מude statue of Voltaire, dated 1776 (Institut), and his tombs of Comte d'Harcourt (c. 1764) (Notre Dame) and of Marshal Saxe, completed in 1777 (Lutheran church, Strassburg), are good specimens of French sculplure in the 18 th century. He died on the 28th of August 1785 .

See P. Tarbe. Vie ct caur. de Pigalle (1859); Suard, Eloge de Pigalle; Melanges de liturature.
pigavlf-LEbRUN (Pigault dE l'Epinoy), Charles ANTOINE GUILLAUME (1753-1835), French novelist, was born at Calais (he is said to have traced his pedigree on the mother's side to Eustache de St Pierre) on the 8th of April 1753. His youth was stormy. He twice carried off young ladies of some position, and was in consequence twice imprisoned by lettre de cachet. The first, a Miss Crawford, the daughter of an English merchant whose office Pigault had entered, died almost immediately after her elopement; the second, MLe de Salens, he married. He became a soldier in the Queen's Guards, then a very unsuccessful actor, and a teacher of French. At the breaking out of the great war he re-enlisted and fought at Valmy. He wrote mure than twenty plays, and a large number of novels, the first of which appeared in 1787. In his old age he took to graver work, and executed an abridgement of French history in eight volumes, besides some other work. His Eurres complates were published in twenty volumes between 1822 and 1824, but much of his work is suhsequent to this collection. He died on the 24th of July 1835 . The styic of Pigault's novels is insignificant, and their morality very far from severe. As almost the father of a kind of literature which later developed enormously, Pigault-Lebrun deserves a certain place in literary history. Among the most celebrated of his novels may be mentioned D'Enfant du Carnapal (t792) and A ngalique et Jeanne$t 512$ de la place Maubert (1799). His Citatcur (2 vols., 1803), a collection of quotations against Christianity, was forbidden and yet several times reprinted.
PIGEON (Fr. pigeon, Ital. piccione and pipione, Lat. pipio, literally a nestling-bird that pipes or cries out, a "piper"the very name now in use among some pigeon-fanciers, though "squeaker" in the more usual term). The name pigeon, doubtless of Norman introduction as a polite term, secms to bear much the same relation to dove, the word of Anglo-Saxon origin, that mution has to sheep, beef to ox, veal to calf, and pork to bacon; no abarp anological distinction can be drawn (see Dove) between dove and pigeon, and the collective members of the group Colxwbee are by ornithologists ordinarily called pigcons. Perhaps the best-known species to which the latter mame is exclutively given in common speech is the wild pigeon
It mary be oboerved that the "roct-pigeons" of Anglo-Indians are Satd-grouse (q.v.), and the "Cape pigeon" of asilors in a petred (9, a).
or passenger pigeon of North America, Eelopistes migrarius, Fhich is still found in many parts of Canada and the United States, though now almost extinct and never appearing in the curntess numbers that it did of old, when a flock seen by A. Wison was estimated to consist of more than 2230 millions. The often-quoted descriptions given by him and J. J. Audubon af pigeon-haunts in the then "backwoods" of Kentucky, Ohio and Indiana need not here be reproduced. That of the latter was declared hy C. Waterton to be a gross craggeration; but the critic would certainly have changed his tone had he known that, some hundred and fifty years earlier, passenger-pigeons so swarmed and ravaged the colonises' crops near Montreal that a bistop of his own church was constrained to exorcise them with holy water, as if they had been demons: The passengerpigeon is about the size of a common turtle-dove, but with a long, wedge-shaped tail. The male is of a dark slate-colour above, and purplish-bay beneath, the sides of the neck being enlivened by violet, green and gold. The female is drabcoloured above and dull white beneath, with only a slight trace of the brilliant neck-markings. ${ }^{2}$ (See plate illustration under Dove.)
Among the multitudinous forms of pigeons very few can here be noticed. A species which might possibly repay the trouhle of domestication is the wonga-wonga or white-fleshed pigeon of Australia, Leucosarcia picala, a bird larger than the ring-dove, of a slaty-blue colour above and white beneath, streaked on the flanks with black. It is known to breed, though not very freely, in captivity, and is said to be excellent for the table. As regards flavour, the fruit-pigeons of the genus Treron (or Vinago of some authors) and its allies surpass all birds. These inhabit tropical Africa, India, and especially the Malay Archipelago; but the probability of domesticating any of them is very remote. Hardly less esteemed are the pigeons of the genus Ptilopus and its kindred forms, which have their headquarters in the Pacific Islands, though some occur far to the westward and also in Australia. There may be mentioned the strange Nicobar pigeon, Caloenas (see plate illustration under Dove), an inhabitant of the Indian Archipelago, not less remarkable for the long lustrous hackles with which its neck is clothed than for the structure of its gizzard, which has been described by Sir W. H. Flower (Proc. Zool. Soc., 1860, p. 330), though this peculiarity is matched or even surpassed by that of the same organ in the Phacnorrhina galiath of New Caledonia (Rev. de zoologic, 1862, p. 138) and in the Carpophaga latrans of Fiji. In this last the surface of the epithelial lining is beset by horny conical processes, adapted, it is believed, for crushing the very hard fruits of Onocarpus viliensis on which the. bird feeds (Proc. Zool. Soc., 1878, p. 102). The modern giants of the group, consisting of about half a dozen species of the genus Goura and known at crowned pigeons (see plate illustration under Doye), belong to New Guinea and the neighbouring ishands, and are conspicuous by their large size, beautiful filmy fan-shaped crest, and the reticulated instead of scutellated covering of their "tarsi."

A very distinct type of pigeon is that represented by Didunculus strigirostris, the "Manu-mea " of Samoa, still believed by some to be the next of kin to the Dodo (q.i.), but really presenting only a superficial resemblance in the shape of its bill to that extinct form, from which it differs osteologically quite- as much as do other pigeons (Phil. Trans., 1869, p. 349). It remains to be seen whether the Papuan genus Otidiphaps, of which several species are now known, may not belong rather to the Didunculidae than to the true Columbidae.

Pigeons are now regarded as belonging to the Charadriiform or plover-like birds (see BirDs) and are placed in the sub-order
:Vayapes du Barom de la Homlan dans FAmbigus mplentrionale, i. 93, 94 (2nd ed.. Amsterdam. 1705). In the firat edition, published at the Haque in 1703, the passage, less explicit in details but to the same effect, is at p. 80 . The author's letter, describing the circumstance, is dated May 1687.
' There are peveral records of the occurrence in Britaln of this pigeon, but in most cases the birds noticed cannot be supposed to have found their own way hither. One, which was shot in Fife in 1825, may, however, have crowed the Atlantic unaesisted by man.

Columbee, near the sand-grouse (q.a.). They ane divided tato three families, Dididne, which includes the Dodo (q.e.) and Solitaina the Columabidae, which includes the doves and pigeons, and the Didunculldae, of which the curious tooth-billed pigeon, of Samon is the only example. The body is always compect, and the bill has a solt skin or cere covering the noctrils. The pigeons are chiefly vegetable foeders and have a hard gizrand, and all drink much witer; they perch, and have a note of the nature of a "coo." The nest is a cough platiorm or is in boles on the ground or in rocks. The eggs are two or three and white, and the young, which are belplese when hatched, are fed by a secretion from the crop of the pareats.
(A. N.)

PIOEON-FLTING, the sport of racing homing-pigeons bred and trained for the purpose. It is of very recent date, althougf the use of birds as a means of carrying messages (see Prozos POST) is of great antiquity. Belgium may be considered as par excallevice the home of the sport, the first birds fown there probably coming form Holland. Long-distance flying begars in 1818, with a match of 100 m ., while in 1820 there was a race from Paris to Litge, and three years later the first race from London to Belgium. The sport is now a favourite one in Great Britain, the United States, France, and, to a less degree, in some other countries, although nowhere attaining the general popularity which it enjoys in Belginm, where mearly every village has its Socitas colombophilc, millions of pigeons being sent over the French border to be raced back. The a anual Belgian concours sctional, a race of about 500 m. . from Toulowe to Brussels, was inaugurated in 188r, in which year the first regular races in Great Brtain, from Exoter, Plymonth and Penzance to London, took plice. The velocity attained at that time was about 1250 yds. per minuto, but this was 8000 surpassed in the races of the London Colvmbarian Society, one of the winners in which attained a speed of 5836 yds, per minute.

The sport was introduced fnto the United States aboat the year 1875, altboagh regular zacing did not begin until 1878. Since then it has galned widespread popularity, the American record for ald hirds at 300 m . being 1848 yds. per minute and for young birds (yearliags) $\mathbf{x} 65$ yds., while the distance record is 1004 m . The American "blue ribbon" chempionships are held at $100,200,300,400,500$ and 600 m . The speed of homing-pigeons depends vary greatly upon the state of the atmosphere. In the race from Montargis to Bruseels in 1876 in bright and clear weather, all the prise-minners made the disfance of 870 m . within three and ont-quarter hoars, while in the same race in 1877, on a thick and stermy day, thirty hours passed before the first bird artived.

Training.-The loft should be on a commending site. It ts best made in the shape of a larporoom, suitably mubdivided, profected from vermin, and provided with drinking troughs. rock salt and crushed mortar for the birds' use. It should be fitted with a sufficient number of newts ebout 2 ft . longı 20 in. in breadth and beight. Arrangememts should be made for allowing the pigeons to 1 y out daily for exercise; and they ahould be tringed so re-enter the loft through botting wires, which open inwards only, into a emall chamber, to which an electric arrangernent may be fitted so as to sound a bell and warn the owner of the arrival of a bird. The food of birds in training consists of vetch, beans, maize, peas, brolven rice and millet, in varions proporthone, according to the contatry, climate and season of the year, the diily allowance for each tird being about 40 grarmmet weight. Young birds may be fed on rice in the huak and bread. They are called "squealers "for a meek or two after birth, and thea "qquealere" umbil about-three months old. Each brood consints of two egge, en which both parents sit in turn, the cock ouly for a few hours in the middle of the day. When the young are being brought up, only one of the parent binds is taken out at a time. One meal per day, given belore the birds are let out in the morning, is sufficient. Training fhould commence in warm weakher, where the bird is abont four months old, and it consists is taling it out in a closed wicker basfret and liberating or "tossing" it at gradually increasing distances from its loft. with several daya interval of rest between the fights. The usual prehiminary dilatances are $1,2,5,10$ and 15 or 20 m . These towes ahould all be made on the came line between the boft and, syy. some neighbouring city, in onder that a bird may always have to Ay in the stame general direction during the eemon. About 100 in may be expected of birds the first season; they. rewoh their full distances oqly about the firth year. It is oofindered better to
train the young homers alone, wo that they may heoome andependent of the older birds. When thoroughly trained they may be nowa over long dintances about once a week. The Belsian fanciers generally divide their birds into two clasves, one for breeding and the other for racing, though the latter are allowed to breed withan certain limits. Some fanciers alyays choose birds wich chicks in the ncst for long journeys, claiming that they retura faster with this incentive. A seamless metal ring marked with the owner's name is slipped over the foot of the pigeon when only a lew days old, and during ite racing career the longer wing-featheru are stamped with the bird's records. At the start of a mace the competins bends are tossed together by a starter who takes the time. Upon being released the homer ascends rapidly in spirals until, apparently descrying some familiar landmark on the horizon, it will fyy straight and swifuly towards it. As the birds enter their homo-fofte the time is taken by the owner. A bird is mot considered to have got " home " until it has actually passed through the door of its loft.
PIGEDN POET. The use of homing pigeons to carry mestages is as old as Solomon, and the ancient Grecks, to whom the art of training tho birds came probably from the Persisas, conveyed the names of Olympic victors to their various cities by this mesns. Before the electric telegraph this-method of commanication had a considerible vogue amongat stockbrokers and financiers. The Duteh government established a civil and military pigeon syatem in Java and Samatra eardy in the rgth century, the birds being obtained from Bagded. Detaik of the employment of pigeons during the siege of Paris in 1870-7I will be found in the article Post and Postal Senivice: Pratce. This led to a revival in the training of pigeom for military parpoess. Namerous private societies were eatablished for keeping pigeons of this class in all important European countries; and, in time, various governments established systems of communication for military parposes by pigeon poet. When the possibflity of using the blods between military fortresess had been thoroughly tested attention was turned to their use for naval purposes, to send mestages between const atations and ships at sea. They are aloo found of great use by news agencien and private individuals. Governmento have in several countriea established lofts of their own. Laws have been passed making the destruction of such pigeons a serious offence; premiums to stimulate efficiency have been offered to private societies, and rewards given for destruction of birds of prey. Pigeons have been used by newspapers to report yacht races, and sorne yachts have actualiy been fitted with lofte. It has also beea found of great importance to establish registration of all birds. In order to hinder the efficiency of the syaterns of foreign countries, difficulties have been placed in the way of the importation of their birds for training, and in a few cases falcons have been specially trained to interrupt the service in war-time, the Germans having set the example by employing hawks against the Paris pigeons in 1870-75. No satisfactory method of protecting the weaker binds seems to have been evolved, though the Chinese formerly provided their pigeons with whistles and bells to scare away birds of prey.
In view of the deviopment of wireless telegraphy the modern tendency is to consider fortress warfare as the only sphere in which homing pigeons can be expected to render really valuable services. Consequently, the British Admiralty has discontinued its pigeon service, which had attained a high standard of efficiency, and other powers will no doubt follow the example. Nevertheless, large numbers of birds are, and will presumably continue to be, kept at the great inland fortreases of France, Germany and Rusiia.

See L. du Pay de Podio, Die Brieflaube in der Krigandwnsf Leiprig, 1872); Brincimeier, Annuch, Pflge, wind Dratnar \&er Brieflanbew (Ilmenau, 1891).
PIABOM-8HOOMMAG, a form of aport consisting of shooting at live pigeons released from traps. The number of traps, which are six-sided boxes, falling fiat open at the release of a epring, is usually five; these are arranged 5 yds, apart on the arc of a eircle of which the shooter forms the centre. Tho distance (maximum) is 31 yds., handicapping being determined by shortening the distance. The five traps are each connected by wires with a case (" the puller "); a siogle string prilled by a man stationel at the side of the shooter works ail
arrangement of aprias and cog-wheels in the "pulter," and lets fill one of the trape; it in impossible to know beforehand which trap will be released. At a fixed distance from the centre of the traps is a boundary within which the birds hit must fall if they are to coant to the shooter. This line varies in distance in the verious chubs; the National Gun Club boundary being 65 yds., that of the Monaco Club being only 20 yds. The charge of shot allowed must not exceed if oz. The beat type of pigeon is the blue rock. From the start of the Hurlingham Club at Fulham in 1867 pigeon-ebooting was a favourite sport thore; it was, however, stopped in 1906. The principal plgeonshooting centre in Engend is sow at the National Gun Club grounds at Hendon. The great international competitions and sweepatakes take place at Monaco. An artificial bird of clay, now more naully of a composition of pitch, is often subetituted for the live pigeon. These clay birds are also sprong from trapa. This sport originsted in the United States, where, under the name of "trap-sbooting," or inazimate bird shooting, it is eatremely popular. At first the trape invented threw the birds with too great regularity of curve; now the traps throw the birds at different and unknown angles, and the skill required is Ereat. In clay-bind shooting the sraps usually mumber fifteen, and are out of sight of the shooter. The Inanimate Bird Shooting Association in Eagland was started in 1893.
Piomiviss (Lat. pigmanhere, from pingere, to paint). It is convenient to distinguish between pigments and paints, the latter being prepared from the former by the addition of a vehicle or medium. Nor are pigments and dyes identical, although there are cases in which the same colouring matter which yields a dye or sthin may give rise to a pigment. A pigment is, in fact, a substance which is insoluble in the velicle with which it is mixed to make a paint, while a dye is soluble. Pigmears exhibit various degrees of transparency and opacity, and ought to possen such qualities as these: ease in working. chemieal indifference to each other and, generalily, to the vehides enployed, also atablity under exposure to light and air. As a rule, It is desirable that pigmente sbould not be seriously affected in hue by the vehicle; at all events, whatever change does occur ought to admit of calculation. In the case of oil colours it should be remembered that a thorough drying of the paint is preferable to the formation of a surface-skin, and that a few pigments, notably white lead, possess properties conducing to this desirable result. It is scarcely necessary to add to these general observations concerning pigments that their artistic value depends primarily upen the nature and amount of the optleal sensation which they are competent to produce.

Althongh the number of avaliable pigments is great, the number of chemical elements which enter into their composition. is not large. Very many richly-coloured compounds cannot he employed because they lack the properties
of insolubility, inertness and stability. Pigments are drawn from varions sourcea. Some are natural, some artificial; some are inorganic, some organic, some are elements, some mistures, some compounds. It is not nnusul to arrage them into two groups, substautive and adjective. Amongst the members of the former group such a pigmeat as vermillion, where each particie is bomogeneous, may be cited as an example. Amongst the adjective pigments rose-madder may be named, for each particle consists of a colowiess base on which a colouring matter (alizaria) has been thrown. Most of the inorganic pigments, whether natural or artificial, belong to the substantive group; while there are many organic pigments, notably those of artificial ordgin, which are of adjective character. The following table prewents a aummary clasofication of pigments according to their source or origin:-

$$
\begin{array}{ll}
\text { Mineral pigments } & \begin{array}{l}
\text { Natural; as terre verte. } \\
\text { Artificial; as aureolin. }
\end{array} \\
\text { Organic pigmenta } & \left\{\begin{array}{l}
\text { Animal; as carmine. } \\
\text { Veperable; as madder-lake. } \\
\text { Artifial; as alizanin-oranke. }
\end{array}\right.
\end{array}
$$

A variets of processes are in use in order to fit natural coloured substarces for employment as pigraents. The first step in
in many cases, to astect, or "pich over," the ratir matierind, rejecting whatever impurities may weaken or injure the charPropers acteristic hua of the product. It is cocasionally ton, necessary to treat the finely-ground substance with Water by the method of elutriation or washag-over; the wash-waters will then deposit, on standing, vacious grades of the coloured body required. With rare exceptions native pigments need careful griading, either by means of a muller on a slab or by edge collers, or horivontal mill-atones, or special machines. The substance is usully ground in spirits of turpentine, or alcohol, or water; ait-paints ace of course finally ground in a drying-oil, such as hinseed oil or poppy oil, vater-colours require gum-water, or gum-wter and ghycerin if chey are to be " moist" paints. In the case of all pigments, whether mineral or organic, whether natural or artificial, it is of the highest importance to make sure that they are free from saline matters soluble in water. Such galts are cemoved by thorough washing with distilled water. A treatment of this find is esential in the case of a large number of pigments formed by chemical reactions in the " wet way." Characteristic examples are furnished by Prussian blue, viridian and lates. Sometimes it is necessary to nemove dangerous impurities by olvents other than water, such as carbon bisulphide, which is used to extract free sulphur from cadminn yellow. Mention may here be made of another kind of preparative treatment which is adopted with some pigments: they are subjected to the action of heat-moderate in some cases, prong in others. Thus, a fer substances, such as ivery black and yellow ochre, which in ordibiny circumstances coptain much mon-esential moisture, before they are gound in oil may with advantage be gently dried at a temperature not above that of boiling water. Agnin, there are pigments, such as Prussian brown, light red and burnt sienna, which owe their hues to a process of actual culcination, the first of these being thus made from Prussinn blue, the second from yellow ochre, and the third from rew sienna. The pigments known as buxnt carmine and burnt madder are prepared at a much lower temperature, and ought to be described as roasted rather than as burnt.

The substitution of one pigment for another is rarely practised, but it is not so unusual to find that a costly arnbstance has
Adrillorte 4.per. rectived an admixture of conething cheaper, and 4 danerers bue exalted or enhanced by sone unilawith or chererous addition. In fact, these two kinds of sophistication are often associated. Thus vermilion is adulterated with ted lead, with red antimony sulphide, or with baryta white and lead sulphate, and then the hue of the mixture is restored to the proper pitch by the introduction of the powerful but fugitive colouring matter cosin. Amongat other adulterations which may be named here are the addition of chrome-yellow (lead chronate) to yellow ochre, of green ultramarine to terre verte, and of indigo to ivory black; this last mixture being a stabstitute for vine-black, the natural blue-black. The detection of the above-named sophintications is by no means difficult even in the hands of persons unacquainted with chemical manipulation, but it needs a trained analyat when quantitative resulta are required. If we are dealing with an oil-coloner, the firat step is to remove the oil by means of a solvert. such, for example, as ether. The residual pigment is then allowed to dry, and the dry powder submitted to the appropriste physical and chemical tests. Thus a suspected vermilion, having been freed from cil, is hemted in a small hard gless bulb-tuhe: it showld prove pratically volatile, leaving a mere truce of sesidec. In this particular case the presence of a red bue in the ether-eatenct affords evidence of adulteration with en organic colouring matter, such as eosin. Then, again, we may detect the presence in yellow ochre of lead chromate by pouring a little sulphuretted bydrogen water and dilute hydrochloric acid upon one portion of the dry pigment, and boiling another portion with dilute sulphuric acid and some aicohol: in the former experiment blackening will occur, in the latter the liquid part of the mixture will sequire a greenish tint So also grean ultramaring may bo
recugnized in edultetated tetre verte by the eddition of ditute hydrochloric acid, which deatroys the colour of the adulterant and causes an abundant evolution of the evil-amelling sulphuretted hydrogen. Moreover, nothing it easier than the recogeiton of indigo in vine or charcoal-binck, for the dry powier. heated in a glass tube, gives of purple vapours of indigo, which condense in the cooler part of the tube into a blackish sublimate

A word must be said here as to the adulteration of white iead, and the examination of this most important pignent The best variety of white lead or flake white contains two molecules of lead carbonate so one of lead bydrate, and is wholly sotuble in dilute nitric acid, while barium alphate, its most frequent adulterant, is wholly insoluble. Chimeclay and lead sulphate will sloo remain undiseolved; but whitening or chat cannot be detected in this way-indeed, the thotongh eramination of white laed, not only for eephistications but also for correspondence with the best iype in composition, cennot be carded out save by a ckilled chemiet.

Pigments may be clasuified on two sytenas: (i) based on the chemical compontion; (a) besed on the colour. One the first system pigsuente fall into zine groups, seven of which are fairdy well defred, bnt the eighth and ninth have s.sonsewht miscellanoers character The suoups of elements, oxides, mphtides, hydrates, certonates and silicate present this characteristic, namely, that each member of any one froup is withont ection mpon the other nembers of the group; any two or more may therefore be mized together without fear of mutual injury. The same statement mey be made with reference to the vacious inorganic salts of Group VHII. and to the arganic compoands of Gaomp IX., although in this lage final group shere ate two pigments comtaining copper (vosdigis and emacald green) which most be regarded with anpicion. The inortnes of the emembers of the ame gromp tomards each other may be explained in the majarity of cases by the following consideration An oride does not tact upon an oxide, nor does a culphide affect a sulphide. because all the pigonent asides havo taken up their full cornplement of oxygen, and can neither give nor lowe this element to similar oxides; so also with sulphur in the sulphides, 4 few details rogarias the acveral membens of the nine stowpe are now offiered:-

Group I. Elements.-All the black pigments in ordinary useivory black, lamp black, charcoal black, Indian ink, and traphite, leas cortecty termed blectr-lead and plumhago-conaint of er comtatin carbon, an element not liable to chasege. The roetallic pigraents, gold. silver, aluminium and platinum, belong here, of these, silver alone is easily susceptible of change, tarnshing by combimation with eniphur.

Group If Oxides.-The oxides have generally been formed at a high temperature and arp not asilly amemable to physical or chemical change; they are, moreover, not liable to affect other plgments, being practically, inert, red lead only being an exception. The oxides include aine white. green chromium oxide, burat tamber (a mixture of iron and manazaneve oxide), copalt green ($\mathrm{COO}=\mathrm{ZnO}$). cobalt blue $\left(\mathrm{COO}, \mathrm{B} A \mathrm{O}_{2}\right)$, cowruleum ($\left.\mathrm{COO}, \mathrm{NSOO}\right)_{2}$), Venctian red. light red, Indian red and burnt stenna (all chiefly composed of ferric oxide), ind red lead ($\mathrm{Pb}, \mathrm{O}_{4}$).

Gsour IIf. Smplities Some of the membere of chis group are linble to contain free nulphur, and satome may give up this element to the metallic bases of other pigments. Thus cadmium yellow blackens cmerald green. producing copper sulphide. Another pigment of this group, vermilion, is prone to a molecular change whereby the red form passes into the black varicty. This change. frequent in water-colour drawingen is ecarcely obotervable in works painted in oil The nulphides comprime cadmiun yeliow (CdS), Kigg' yeliow $(A+S j)$, realgar ($A-S A$), antinony red $(S b s)$) and vermifion (IgS). It is convenient to give places in lhe same group
to the various kinds of ultramarine, blue, green, red, vioiet and pative, for in afl of them a part of the sulphur precent oocupt in the form of a malphide. It may be stated that the sulphides of arsenic and entimony just named are dangerous and changeable pigments not suited for artistic painting.

Grows IV. IJdraies of IIfroniden.-Several native earths belorg here, notibly yeilow ochre, raw umber, rat siempa and Ceppegh brown. Theme substances owe their colours mainly to hydrates and oxides of iron and of manganese, but the presence of a colourtess body auch as white clay or barium sulphate is usaal with the paler pigments. A faise yellow ochre from Cypriss is seally a bacic faric antplate and does uot properiy belone to shio
goup, Becides the yellow and broma pigoents, there in a magnifcent deep green pigment in this group, known as emerald owide of churominm or virifian. The blue copper perparation which goes under the name of blew lwimierre and mountain blue, a very unstable proment, is aiso esaentially a hydrate, though by no means pure. It ahould be otated that all the earthy or native hydrates belonging co this group contain water is two atates, mamely, hygrowopic or looely-attached and constitutional. Before grinding them in oil, the reduction in the amount of the hygroscopic moisture by means of a current of dry air or a gentle warmth of ten imiproves the hue and working quality of these pigmentis.

Geour . Cardomates.-There is but one really important member of this troup namely, the oid and typical variety of white lead ($2 \mathrm{PbCO}_{2}, \mathrm{PbH}_{2} \mathrm{O}_{2}$). Like green verditer ($2 \mathrm{CuCO}_{2} \mathrm{CuH}_{2} \mathrm{O}_{2}$) and bhe verditer $\left(\mathrm{CuCO}_{2}, \mathrm{CuH}_{3} \mathrm{O}_{2}\right)$, it is a basic carbonate. Purified challe or whitening $\left(\mathrm{CaCO}_{3}\right)$ belongs here also.

Grour VI. Silicutes,-Terro verte, which is a natural green ochre containing a silicate of iron, potapaium and magnesium, and one other sificate, smalt, an artificial glass containing a silicate of cobalt and potassium, constitute this small group. However, some of the ochreous earths contain silicates of Iron, manganese and cluminitu, as well as bydrates of the two former metals, and no have some claim to be ranked with the silicates

Grour VII. Chromales.-These salts are rich in oxygen. When in contact with some of the more alterahle organic pigments belongiag to Groap IX. the chromates may lowe oxygen, acquiring a conmethat greenish or greyich hey, owing to the lormation of the lower or green oxide of chromium. The chromstes cannot be trusted as pigments, The yellow chromates, those of barium, strontium, zinc nod lead. are represented by the general formula $\mathrm{M}^{\prime \prime} \mathrm{CrO}$; chrome red is basic, and is $\mathrm{Pb}_{2} \mathrm{CrO}_{2}$.

Grour VIII, Various Imargaxic Salss.-This group is intended to receive a number of pigments which are solitary, or almost solitary, examples of various classes of salts. There is one cobalti. gitrite, aureolin ($\mathrm{K}_{3} \mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}$, associated with one or more molecules of water). called sometimee cobalt ycllow; one antimonate, that of lead, the true Naples yellow; one tungstate, that of chromium. known as tungsten green; a metaphosphate of manganese, which goes under the name of Nümberg or manganese violet; and several mixed cobalt compounds containing arsenates and phosphates of that metal, and represented by cobalt violet and Thenard's Gue. Two sulphatea also belong bere, mamely, baryta white (BaSO_{4}) and lead sulphate $\left(\mathrm{PbSO}_{4}\right)$: also Schweinfurt green, a basic copper arsenite. It if ohvious that of the members of 50 miscellaneoum a group of pigmenta no general characteristics can be predicated. But it may be etated that the two suiphates, the tungstate and the cobalt compounds are protically inert and unalterable, while the copper armenite and the lead antimonate are sensitive to the action of sulphur and of sulphides. The cobaltinitrite, aureolin, cannot be mafely mixed with some of the organic pigmenta belonging to the mext and latet gioup.

Gentr IX. Organic Compounds-Most of the members of this large and unwiedy group of pigments possess this character in common, proneness to oxidation and consequent deterioration in the presetice of light, moisture and air. Such oxidation is accelerated by the action of some highly oxidised pigments belonging to other eroups, such as the chromates of Group Vil. and aureolin of Group Vili, this action being particularly marked in the case of the yeflow lakes, the cochineal lakes and indigo. There are two pigments consisting of copper salts in this group. They are verdigris both the blue-green and the green varieties being basic copper acetater-and the pigment known in England as emerald-green, which is a basic cupric aceto-arsenite. these copper pigments present the usual sensitivencss to the attack of eulphur which distinguishes compounds of this metal, and cannot therefore be safely mixed with the members of Group III., and more particularly with the cadmium colours. About nine members of Group IX. may be megarded as substantive pigments. These include Indian yellow (mainly magnesium and calcium euxanthates). gamboge. sip green, indigo, Prussian blue, bitumen or asphalt, bissre, eepia, and the biterminots variety of Vandyck bnown. The adjective pigmenta include a great variety of lakes where different kinds of colouring matiers of more or less acid character have been thnown upon a base, generalfy of colourless aluminium hydrate, aluminium phosphate, stannous hydrate. stannic oxide, bartya or lime; sometimes colosned bases containing such metals as copper, chromium. sanaganese or iron are introduced in mall quantities The colourang matters used are both natural and artificial Amongst the former may be named fodian lake, from the resinous exudation produced in certain trees by the attacks of Coccus lacce, carmine. crimion and purple lake. from the colouring mafter obtained from the cochineal insect. Coccur cacti; rone-madder and the madderlakes, from the alizarin and allied bodies derived from the root of the ordinary madder plani Rubia tinctorum; and yellow lakes, from quercitron bork (Quercas binderia), and from Persian and Ayignon berive (species of Rhamasis or Buckthorn). The lakes derived from alkanet coot, archil, Braxil wood, and red manders wood are of very small interest and value. The sarme judgment may be pronounced upon the large number of artificial lakes which owe their colvers to comblar derivetives. with the single exception of
the important ciose of pioments, ohtoined from artifeis olleprim, and from ite congeners and derivatives. of there, alisarin (q.v.) itself, in its purest state and associated with alumina and a litile lime, yjelds those pigments which possess a pink or rosy hue. When perpurin and it isomers, anthrapurpurin and flavopurpurin, are present, the red hue is more pronounced, and may even ternd towards a golden colour, or, when some copper or iron or manganene is introduced, may become decidedly brown. Many of the alizarin crimsons sold es painta are not made from alizarin itself, hut from the sulphonic scids of alizarin. These lakes present a wide range of hues Another derivative of alizarin, known as β-nitro-eliantin, yields rich orange lake, to which such names as pure orange, orange madder and marigold have been applied.
Stabitity.-Some notion of the relative stability of pigments will have been derived from the remarks already made under "Classification." But as parmanence is of no less importance than chromatic quality in the case of pigments used in the fine art of painting, to which the present article is mainly devoted, further particulars concerning certain selected pigments may profitably be given here. Beginning with white pigments, these three may be named as useful: white lead, Freeman's white, xinc white. As an oil-colour, white lead of the old type is generally the best to use, but among water-colours its place- must be taken by ainc white in the condensed form known as Chinese white. Zinc white, in spite of the qualities which recommend its use in oil, namely, the fact of its being not only unaffected by sulphur, but odourless and non-poisonous, lacks toughness as an oil-paint, and has a tendency to scale. Freeman's white, which consists essentially of lead sulphite, is the best substitute for white lead yet devised. The small percentages of zinc white and baryta white which it contains are not to be regarded as adulterations, for they greatly increase its body, and though of less specific gravity than lead sulphate, actually raise the weight per cubic foot of the dry pigment. Out of a dozen or more familiar yellow paints, a selection may be made of these six: yellow ochre, raw sienna, mars orange, cadmium yellow, aureolin and baryta yellow. Concerning two of these, cadmium yellow and aureolin, the following observations may be set down. Cadmium sulphide, CdS, exists in two forms, which in some measure correspond to the two modifications of mercuric and antimonious sulphides. One of these forms is yellow and the other reddish porange. When mulphuretted hydrogen is sent into s weak, cold, and neutral solution of cadmium salt, the sulphide which separates is pale and yellow-the orange variety is obtained from a strong, hot, and acid solution. The pale variety is more prone to change than the darker one; but as oil colours both forms are sufficiently stable for use, provided they are pure. The value of aureolin as a pigment depends much upon its mode of preparation. A new variety of bright yellow hue was described by Adie and Wood in 2900, and is represented by the formula $\mathrm{K}_{2} \mathrm{NaCo}\left(\mathrm{NO}_{2}\right)_{6}, \mathrm{H}_{2} \mathrm{O}$. Of red pigments, six claim special mention. These are vermilion, light red, Venetian red, Indian red, red ochre, and the red lakes derived from madder or alizarin. Vermilion is stable in oils, but as water-colour paint is prone to change, under exposure to strong light, into the biack modification of mercuric sulphide. The iron-reds named above, whether natural or artificial, are quite permanent, but so much cannot be said of the various madder-paints. They are of far greater stability under exposure to light than any other red organic pigments, and are absolutely necessary to the artist. It must be noted that those madder and alizarin lakes which contain an element of yellow and brown are less stable than those of a crimson hue. Five green pigments may be recommended, namely, vinidian, or the emerald oxide of chromium, the ordinary green oxide, cobalt green, green ultramarine, and terre verte. Except for minor decorative work, where permanence is of secondary moment, one is obliged to exclude from the palette emerald green, green verditer, verdigris, sap-green, and the numerous preparations which owe their colour to mixtures of Prussian blue and chrome yellow, and are sold under the names of green vermilion, chrome green, Brunswick green, and so on. All these pigments usually contain much barium sulphate. Similarly, amongat blue pigments, ultramarine, cobalt blue and coeruleum msy be retalned, while smalt, fndiso and all
copper blues ahould be rejected. Prometan bloe, or the mixture of this pigment with a white base which is ustally called Antwerp hue, can scarcely be spared, hut care should be taken to choose a samplo containing no potassium compounds Cocruieum, which may be described as cobalk stannate presents the peculiarIty of appearing a greenish hlue in artificial light, not a purplish hlue like that of ordinary cobalt blue. Cobalt violet is a sound pigment, while mangunese metaphoaphate or Nurnberg violet is said not to be safe in oil. Mara violet, an artificially prepared ferric oxide, is dull in hue but permanent. Passing on to brown pigments, it is matter for regret that there are no permanent colours ponsessing the artistic capacites of asphalt, madder brown, and the old bituminous Vandyke hrown. Cappagh brown, burnt sienna, and raw and burmt umber may be employed anfely. Little need be said as to the selection of black pigments, for all are permanent. The soot from hurning ecetylene, which has recently been introduced, forms a black pigment of remarkable intensity.

Uses.-Hitherto pigments have been considered chiefly in relation to the requirements of the painter of pictures. In many merely decorative arts, such as the manufacture of wallpapers and the painting of woodwork and of Iron, the pigments svailable are in one direction, that of cost, more restricted, but, on the other hand, many alterable or weak pigments are commonly employed. In paints intended for the protection of iron-work, the nature of the pigment introduced is a matter of great moment, for red lead, zinc white and white lead are found to exert a strong protective influence, which is not observed in the case of the vast-majority of pigments. There are a number of other uses besides those just named for which special pigments, or, more precisely, specinl painta, are employed. Amongst such preparations may be named luminous paints, anti-fouling paluts, metallic paints, damp-proof paints, and asbestos and other fire-proof paints.

Adthonities.-J. Berach, Mannfacture of Pigments, translated From the and German edition by A. C. Wright (London, 1900): Cennino Ceanini, The Book of the Art, translated by Mri Herringhan (Loodon, 1899); Sir A. H. Church, Chemistry of Paints and Painting (London, 1901); G. H. Hurst, Puinter' Colowrs, oits and Varniskes (London, 1901); S. Miertinski, Hamdbuch der Farben-Fabrikation (Vienna, 1898); Riffault (avd others), Fabrcant de conlows (Paris, 1884).
(A. H. C.)
pigot, georaz, Baron (1719-r777), English govemor of Madras, was horn on the 4th of March 1719 and entered the service of the East India Company in 1736; atter nineteen years he became governor and commander-in-chief of Madras in 5755. Having defended this place agrinst the French in 1758-59 and occupied Pondicherry on behalf of the company, he resigned his office in November 1763 and returned to England, being made a baronet in 1764 . In the following year he obtained a seat in parliament, and this he retained until his death; in $x 766$ he was created an Irish peer as Baron Pigot. Returning to India in 1775 to occupy his former position at Madras, Pigot was at once involved in a fierce quarrel with the majority of his council, which arose out of the proposed restoration of the rajah of Tanjore. The governor was arrested hy order of his opponents, and was still a prisoner when he died on the zith of May 1777. Meanwhile the conduct of Pigot was censured by the court of directors in England and the order for his restoration was followed immediately hy another for his recall. This happened about a month after his death, hut before the news had reached England. In 1779 the matter wals discussed in parliament. and four of those who were responsihle for his arrest were tried and were fined $£_{1} 000$ each. 'Pigot, who left several illegitimate children, was never married, and his barony became extinct.
Two of the governor's brothers were men of repute. Sir Robert Prior ($1720-1796$), who sucteeded to the baronetcy, commanded his regiment (the 300 C) at the battes of Lexinkton and Bunker Hill during the War of Amercan Independence. He became a lieutenantgeneral in 1782 The other brother, HuGH Pigor (c. 1721-1792), was a siilor After some years of service he became an admif and commander-in-chiel in the Weat Indies in 1788 . One of his cons was General Sri Hzwiy Pigot (1750-1840), and another was Hucs Picot (1769-1797), a captein in the mavy, whe wan murdered
during a muting in September 1797 while in command of the " Hermione"
PIG-SIICKMO, or Hoo-Huninc, the chase of the wiid boar, as a sport, on horseback with the spear. The chase on foot was common among ancient peoples, and in central Europe has lastod to the present day, although, on accoount of the introduction of fire-arms, the spear has gradually beccome an auxiliary weapon, used to give the coup de grace to 2 wounded animal. The modern sport is the direct decoendant of bearspearing which was popular in Bengal untal the beginning of the 1gth century, when the bears had become so scarce that wild pigs were substituted as the quarry. The weapon used hy the Bengalese was a short, beavy, broad-bladed javelin. British officers introduced the spear or lance and this has become the recognized method of humting wild pigs in Indin. The season for hunting in northern India, the present headquarters of the aport, is from Fehruary to July. The best horess should be quick and not too big. Two kinds of weapon are used. The long, or underhand, spear, weighing from two to three pounds, has a light, tough bamboo shaft, from seven to eight feet long, armed with a smasll steel head of varying shape. This spear is held in the hand about two-thinds the distanoe from the point, with the knuckles turned down and the thumb along the shaft. The short, or johbing, spear is from six to six and a half feet long, and somewhat henvier than the longer weapon. It is grasped near the butt, with the thumh up. Ahhough easicr to handle in the jungle, it permits the nearer approach of the boar and is therefore more dangerous to man and mount.

Having arrived at the bush-grown or marshland haunt of the pigs, the quarry is "reared," i.e. chased out of its cover, by a long line of beaters, uscully under the command of a mounted shikari. Sometimes dogs and guns loaded with small shot are used to induce an animal to break cover. The mounted sportsmen, placed on the edge of the cover, attact the pig as soon as it appears, the bonour of "first spear," or "spear of honour," ie. the thrust that first draws blood, being much coveted. As a startled or angry wild boar is a fast ramner and 2 desperate fighter the pig-sticker must possess a good eye, a steady hand, a frm seat, a cool head and a courageous heart. For these reasons the military muthorities encourage the sport, which is for the most part carried on hy the tent clubs of the larger Indian stations.
The following technical terms are used. "Frank," a boar enclosure. "Jhow," the tamarisk, a common cover for boars "Jink" (or the boar), to turn, sharply to one side. "Nullat, a dry water-course. "To pig." zo hunt the boar, "Puz," the boar's footprint. "Pugging," tracking the boar. "R Ride to hog," to hant the boar. "Rootings," marke of the pig's snout in the ground. "Sanglier" (or ""snnuular"), a boar that has separated from the ""sounder." "Sounder." a family of wild swine. "Squeaker," a pig under three years." "Tusker," a full-grown boar.

See Pik.Suecking or Hoz-Hunding, by R. S. S. Baden-Powell (London. 8889)
PIKK, ZEBULON MONTGOMERY ($1779-1813$), American explorer and soldier, was born in Lamberton (now a part of Trenton), New Jersey, on the 5th of January 1779, son of Zebulon Pike ($1751-2834$), an officer in the American army. He entered his father's company as a cadel about 1794, and became an ensign (or second lieutenant) in 1799 and first lieutenant in the same year. On the gth of August 1805 he started with twenty men from St Louis to explore the head-waters of the Mississippi. At Prairie du Chien he met some Chippewn chicfs and induced them to expel the whisky-traders among them and to make peace with the Sioux; at the Falls of St Anthony (Sept. 23) he bought a tract 9 m . square at the mouth of the St Croix for a fort; and at Little Falls (in the middle of Oetober) he built a stockade, where he left seven men. He reached Leech Lake (" Lake La Sang Sue "), which he called "the main source of the Mississippi," on the 1st of February 1806; went-30 m. farther to Cass Lake ("Red Cedar "); and, after working against British Influences among the Indians, turned hack, and went down the Mississippi from Dean Creek to St Louis, arriving on the 30th of April. In 2806 he wes
ordered to restone to their hones 50 Onages, redeemed by the United States government from Potawatami, and to explore the country. He started on the 15 th of July; and ment north slong the Missouri and the Osage into the present state of Kensas and probubly to the Republican river in the south of the present Nebrtaks, where on the sgth of September he held a grand council of the Pawnees. Then (early in October), turning nearly south, be marched to the Arkamas river, which he reached on the 14th of October, and up which (after the asth with oody 16 men) he went to the Royal Gorge (Dec 7), having first seen the mountain called in his honour Pike's Peak on the asrd of November; and then went north-west, probably up Oil Creck Irom Cation City. In searching for the Red river he came to the South Platte, marched through South Park, left it by Trout Creek pess, struck over to the Arkansas, which be thought was the Red River for which he was searching, and, going south and south-west, came to the Rio Grande del Norte (about where Alatmone, Cencjos county, Colorado, is now) on the 3oth of January 2807 . There on the 26th of Febcuary he and a small number of his naen were taken prisoners by Spanish authorities, who sent him first to Santa Fe, then to Chihuahus to General Salcedo, and by a roundabout way to the American frontier, where he was released on the int of July i807. He was promoted captain (Aurgist 1806), major (May 1808), lieutenant-colonel (Dec. 1809) and colonel (July 1812). In $\mathbf{1 8 0 8}$ he tried in vain to get an appropriation from Congress for himself and his men. He was military agent in New Orleans in 1809-2810, was depenty quartermaster-feneral in April-July 1812, and was in active service in the War of $18: 2$ as adjutant and inepector-zeneral in the campaige agtinst York (now Toronto), Canada, and in the attack on York on the 27th of April 1813 was in immediate command of the troopa in action and was kilied by a piece of rock which fell on him when the British garrison in its retreat set fire to the magazine.

His Accomat of an Expedition to the Sownces of the Mississippi and through the Westerm Ports of Lowisians. and a Tow dhrongh the Interior Parts of New Spain was published at Philadelpha in 1810; was reprinted and rearranged in London in 1811; and was published in a French version in Paris in 1812. and a Dutch version at Amsterdam is 1812-1813. The standard odition with memoir and notes by Elliott Coues was published in three volumes in New York in 1805 . Some of Pike's papers taken from him in Mexico are now in the Mexican archives (Seccion de Asuntos Internacionales cara 1817^{-1824}), and the more important were published by H. E. Bolton in the Americam Historical Raview, (1907-1908), xiii. 790-827. See the sketch by Henry Whising in vol. V.. series 2, of Jared Spark's's Library of Americas Biography.

PIKR, fresh-water fishes generally distrihuted over the rivers and Lakes of Europe, northern Asia, and North America, and forming a small family (Esocides) of coft-rayed fishes. They are readily recognized by their elongate compreased body covered

with small scales, a long head, long and spatulate snout, and very large mouth armod with strong and long teeth in the jsws and broad bands of smaller teeth on the palate and tongue. The teeth point backwards or can be depressed so as to offer no obstruction to any object entering the gape, but prevent its withdrawal in the opposite direction. The dorsal and anal fins are placed far back on the tail, thus greatly increasing the propelling power of the fish, and, although pike are bad awimmers and lead rather a sedentary than a roving life, they are excelled by no other fresh-water fish in rapidity of motion when,
by a aingle stroke of the tail, they dask upon their prey or dart out of reach of danger. In the Old World one species oniy in known (Esox lacims), which prefers lakes and sluggish reaches of rivers to strong currents or agitated waters. Its eastwand range in northern Asia is not known; it extends into Lapland in the north and into central Italy and the vicinity of Constant;nople in the south, but is absent in the Iberian Peninsula. The European species occurs also in North America, and is common in the eastern United States southwards to northern Ohio. But North America is tenanted by other species of pike besides, of which the largest is the muskelunge or maskinonge of the Great Lakes (Esox mobilior); it commonly attains to the large sive which is exceptionally recorded of Esor lucius. The other Americat pike are of smaller size, and generally named "pickerel"; but opinions as the distinction of the species differ widely among American ichthyologists. The European pike, like its brethren, is the most voracious of fresh-water fisbes; it probably exceeds the shark, to which it has been compared by many writers, in the relative quantity of food it consumes. Large specimens will seize rats or water-voles, and are said to attack even foxes and small doga. Individuals of from 40 lb to 50 lb are not scarce, but captures of much larger ones are on record. Pike are wholesome food, and much esteemed in inland countrics the smaller (of 20 to 24 in . in length) being preferred to the lerger individuals. They are prolific, and not easily exterminated in a water in which they have been once allowed to pawn. According to season and climate they spawn in April or May, and sometimes as early as February.

PIKR, a word which, with its collateral forms "pick" and "peak," has as its basic mesning that of anything pointed ot tapering to a point. The ultimate etymology is much disputed, and the interrelation of the collaterals is very coafused. In Odd English there are two forms (pic), one with a long and the ouber with a ehort vowel, which give "pike" and "pick" respectively. The first form gave in the I 5th century the variant "peak," first with reference to the peaked shoes then fashionable, pekyd schowe. In Romanic lanyuages are found Fr. pic., Span pico, Ital. piccare, to pierce, \&c. There are also similar words in Welsh, Cornish and Breton. The Scandinavian formes, a.5. Swed. and Nor. pit, are probsbly taken from English. White some authoritias lake the Celtic as the original, others look to Latin for the source. Here the woodpecker, prows, is referred to, or more probably the root seen in spica, ear of corn, and spina, prickle (Êglish spike, spine). The current differentiation in meanings attached to pike, pick and peak are more or less clearly marked, though in dialects they may vary. (i) Pike: Apert from the use at the name of the fish (see above), probably a shortened form of pike-fish, from its sharp, pointed beak, the common uses of the word are for a long haited weapon with sharply pointed head of iron or steel, the common weapon of the foot-soldier till the introduction of the bayonet (see Spear and Bayonet), and for a hill with a pointed summit, appearing chiefly is the mames of auch hills in Cumberland, Westmorland and North West Lancushire. It may be noticed that the proverbial expression "plain as a pike-staff" appears originally is "plain is a pack-ataff," the flat plain sided staff on which a pedlar carried and rested his pack. The use of "pike" for a highnay, a toll-gate, \&c., is merely short for " turnpike." (2) Pick: As a substantive this form is chiefly used of the common tool of the navyy and the miner, consisting of a curved doubleended bead set at right angles to the handle, one end being squaged with $\%$ chisel edge, the other pointed, and used for loocening and breaking hard masses of earth, coal, ac. (see Tools). The other name for this tool, "pickare," is a corruption of the earlier pikoys, Fr. picois, M. Lat. picoriwn, formed from Fr. pic, the temaination being adapted to the familiar Engish " are." The sense-development of the verb "to pick" is not very clear, but the following meanings give the probable line: to dig into anything like a hird with its beak, in order to extract ot remove something. to gather, pluck, hence to select, choose. (3) Pegk: The chief uses are for the front of a cap or hat projecting sharply over the eyes, for the part of a ship's
hold where it narrows townrds the bows, the foro-peak, or towards the stern, the after-peak, for the top corner of anil extended by a geff, or for the projecting end of the gafl iteelf, and for a pointed or concal top of a hill or mountain. The name of the high table-land district in Derbyshire is not to be connected with this word, but probably retaina the name of an old English demon, Peac (ece Peak, Tree).

PIKR-PERCH (Lucioperca), freab-water fishes closaly allied to the perch, but with strong canine teeth standing between the smaller teeth of the jaws and palate. They resemble the pike in their cloagate body and head, and they are also mont dangerous enemies to other fresh-water fishes, though they compensate for their destructivencss by the excellent flavour of their flesh. In Europe two species occur, the more oclebrated being the "Zander" of North Cermany or "Schill" of the Danube (Luciaperce samira); strange to say, it is absent in the system of the Rhine. It prefers the quiet waters of large rivers snd clear deep lakes, in which it reaches a weight of 25 to or 30 th . The second (Lacioparea eolgevsis) is limited to rivers In southern Russia and Hungary. In North America several pike-perches have been described, but in the most recent works only two are distingushed, vir. Lucioperce americame, which grows to a weight of 20 Pb , and the much smailer Laveloperca canodensis; both are abundant in the Canadian lakes and upper Mississippi, and the latter also in the Ohio.

PIKES PRAK, a famous peak of the Rampart range of the Rocky Mountains in El Paso county, Colorado, U.S.A., about 6 m . W. of Colorado Springan. Though surpassed in altitude ($14,108 \mathrm{ft}$.) by many summits in the state, no other is to well known. The commanding appearance of the peak is very fine. To the south are Cameton Cone ($\mathrm{ro} 0,685 \mathrm{ft}$.), Mt Sachett, Mt Bald (13.074), Mt Ross (11 ,427), and Mt Cheyenne (9407). From the summit the magnificent Sangre de Cristo range is in the lorcground, while on a cicar day not only its wouthernmost summit, Blanca Peak ($14,390 \mathrm{ft}$.) is visible, but also the Spanish Iraks (12,708 and $13,623 \mathrm{ft}$.) 100 m . to the south, and Long's Peak 100 m . to the north, and between them Mt Lincoln. Gray's Feak rod other giants. At the base of the mountain are Manitou and Colorado Springs, whence tourists can make the ascent of the peaz (in summer safe and relatively simple) on horseback or by a cogreilway, 8.75 mm . long (opened in 189r), which makes a total ancent of 8 roc ft. (maximum gradient I in 4) to the summit. In $1 g 05$ a powerful searchlight was erected on the summit.

Pike's Pcak was discovered in November 1806 by Lieut. Zebaion M. Pike. He attempted to scale it, but took the wrong path end found himself at the summit of Cbeyeane Mountain. He prononnced the mountain unclimbable. In 1819 it was succeasfully climbed by the exploring party of Major S. EI. Long.

FILAgIER (Ft. pilustro, med. Lat. pilastrwin, from pila, a pillar), in architecture, an engaged pier projecting slightly from the wall, and employed to divide up and decorate a wall surface or to serve as respond to a column. One of the earliest examples (c. 100 b.c.) exists in the propylaca at Priene in Asim Minor, whero it tapers towards the top. Pilasters have bases and capitals and are frequently fluted like columns. The Romans would seem to have preferred semi-detached columns, but for their amphitheatres sometimes pilasters are employed, as in the upper story of the Colosseum. In the revival of Classic architecture, and especially in Italy, architects seem to have considered that no building was complete without a network of pilasters on every storey, and France and England followed their example; and not only externally but inside the great cathedrals and churches the pilaster is edopted as the simplest and best way of dividing the bays.

PILATE, PONTIUS, the Roman governor of Judaca under whom Jesus Christ suffered crucifixion. Of equestrian rank, Wis name Pontius suggests a Samnite origin, and his cognomen in the gospels, pileatus (if derived from the pilews or cap of tiberty), descent from a freedman. In any case be came in a.D. 26 trom the household of Tiberius, through the influence
of Sejanus, to be procurator over part of the haperial peovince of Syris, viz. Judaea, Samaris and Idumen. He ruled ten yeass, quarrellod almost continnously with the Jews-whom Sejanos, diverging from the Caesar tradition, is anid to have dislikedand in A.D. 36 was recalled. Before he arrived Thberives died, and Pilate disappears from history. Ensebius relates (Eisd. ecd. ii. 7)-but three centuries later and on the authority of earizer writers annamed-chat be was ediled to Ganl and committed suicide at Vienne.
Pilate kept the Roman peace in Paleatine but with little understanding of the people. Sometimes he had to yield; as whea he had sent the standards. by night, into the Holy City, and was besieged for five days by suppliants who bad roshed to Caesarea (Jos. Ant. 3I; B. J. ii. ix. 2, 3); and again when be hung up inscribed shields in Jerusalem, and was ordered by Tiberius to remove them to the other city (Philo ad Gaivm 38). Somotimes he struck more promply; as when the mob protested againat his uaing the temple treasuro to build an aqueduct for Jerusalem, and be disguised his soldiers to disperse them with clubs (Jom. Awt. xvin. 3, 2); or when he " mingled the blood" of some unknown Galiteans "with their sacrifices" (Lake xiti. 1); or slew the Samaritans who came to Mt Gerizim to dig up eacred vestels hidden by Moses there (Jos. Ant. xviii. 4, i) -an incident which bd to his recall. Philo, who tells how any suggestion of appeal hy the Jews to Tiberius enraged him, sums up their view of Pilate in Agrippa's words, is a man "inflexible, merciless, obstinate."
A more diacriminating light is thrown upon him by the New Testament narratives of the trial of Jesus. They thustrate the right of review or recogwinio which the Romans retained, at least in capital causes; the charge brought in this case of acting adversus majestacicim popwli romani; the chaim made by Jesus to be a king; and the result that his judge becume convinced that ine claimant was opposed seither to the pablic peace nor to the divil supremacy of Romo. The result is explained only by the dialogue, recorded exclusively in John, which shows the accused and the Roman meeting on the highest levels of the thought and conscience of the time. "I am come to bear witness unto the truth . . . Pilate answered, What is truthp" Estimates of Pilate's attitude at this poimt have varied infinitely, from Tertullian's, that he was "already in conviction a Christian "-jam pro sma comsciemtia Chrisiantrto Bacon's " jesting Pilate," who would not stay for a repiy. We know only that to his persistent attempts chereafter to get his proposed verdict accepted by the people, came their fatal answer, "Thoo art not Cecsar's friend," and that at last he unwillingly ascended the bema (in this case a portable juidgmentseat, brought for the day outside the Practorium), and in such words as Ibls ad erscem " delivered Him to be crucified."
Pilate's place in the Christian tragedy, and perhaps also in the Creed, stimulated legend about him in two directions, equally unhistorical, The Gospel of Nicodemess, written by a Christian (possibly as early, Tischendorf thought, as the middle of the and century), repeats the trial in a dull and diluted way; but adds not only alleged evidence of the Resurrection, hut the splendid vision of the descensus od inferas-the whole professing to be recorded in the Acta Pilati or official records of the governor. The Efistola Pilali gives Pilate's supposed account to Tiberius of. the Resurrection; and the Paradosis Pilati relates how Tiberius condemned him and his wife Procla or Procula, both Christian converts. All this culminates in Pilate being canonized in the Abyssinian Church (June 25), and his wife in the Greek (Oct. 27). On the other hand the Mors Pilati tells how when condemned by the emperor he committed suicide; and his body, thrown first inte the Tiber and then the Rbone, disturbed both waters, and was driven north into "Losania," where it was plunged in the gall ncar Lucerne and below Mt Pilatus (originally no doubt Piteatws or cloud-capped), ron whence it is raised every Good Friday to sit end wash univailing hands.
Bibliography.-For legends see Tischendorf's Ebangedia apecrypha (1863) and Aprogphal Gospels, Ante-Nicent Lib. (1860).

The earfier Pilate flterature, to the extent of 110 trantives, chlefty of the 1 th and 18 th centuries, is enumerated in G. A. Muller: Pontims Pilalus der fiufle Prohuralor boos Judăa (Stuttgart, 1888). See in loco in the following English or translated histories of the life or time of Jesus, Theodor Keim, E. Schürer, A. Edersheim, J. P. Lange, Bernhard Weiss and F. W. Farrar ; Expesitor (1884) p. 107 end (1900) p. 59 ; also H Peter." Pontius Pilatus, der römische Landpileger in Judifa," in Neme Jahpo. f. d. kI Aluertum (1907), Sir James Fitzjames Stephen, in his Liberty, Eqwality and Frakersily (1873), p. 87. starts the question, "Was Filate right in crucifying Christ: Phis somewhat paradoxical answer is criticised in The Trial of Jesus Christ, a legal monographi by A. Taylor Indes (i899),
(A.T. L.)

Pilatus, Leo, or Leonitus [Leonzo Priato] (d. 1366), one of the earliest promoters of Greek studies in western Earope, was a native of Thessalonica. According to Petrarch, he was a Calabrian, who posed as a Greek in Italy and asan Italian abroad. In 1360 he went to Florence at the invitation of Boceaccio, by whose influence he was appointed tos lectureship in Greek at the Studio, the first appointment of the kind in the west. Ater three years be accompanjed Boccaccio to Venice on a visit to Petrarch, whom be had already met at Padua. Petrarch, disgusted with his manners and habits, despatched him to Constantinople to purchase MSS. of classical authors. Pilatus scon tired of his mission and, alchough Petrarch refused to receive him again, set sail for Venice. Just outside the Adriatic Gulf he was struck dead by lightning. His chief importance lies in his connexion with Petrarch and Boccaccio. He made a bald and almost word for word translation of Homer into Latin prose for Boccaccio, subsequently sent to Petrarch, who owed his introduction to the poet to Pilatus and was anxious to obtain a complete translation. Platus also furnished Boccaccio with the material for his genealogy of the gods, in which he made an ostentatious display of Greek learning.

See Gibbon, Dedine and Fall, ch. 66; G. Voigt, Die Wiederbelcbung des classischem Allerthons (1893); H. Hody, De Graccis illustrions (1742): G. Tiraborchi, Sloria della kelleraturg idaliama, v. 691.

PILAV, a favourite Eastern dish, consisting essentinlly of rice, boiled with mutton or other meat, fowl or fish, and flavoured with spices, raisins, \&c. The word appears in Persian, Turkish and Urdu, and has been adopted in Europedn languages. The form pilaff, showing the Turkish pronunciation, is also common.

PILCHARD (in earlier 16th century forms pylcher, pilchar; of unknown origin; the Fr. pilseir is adapted from Eng.), Clupea pilchardus, a fish of the herring family (Clupeidac), abundant in the Mediterranean and on the Atlantic coasts of Europe, nortb to the English Channel. Sardine is another name for the same fish, which on the coast of Britanny and Normandy is also called celan or celtren. It is readily distinguished from the other. European species of Clupea. The operculum is sculptured with ridges radiating and descending towards the suboperculum; the scales are large, about thirty along the lateral line, deciduous; the ventral fins are inserted below, or nearly below, the middle of the base of the dorsal fin; the dorsal fin has seventeen or eighteen, the anal from nineteen to twenty-one rays. A small blackish spot in the scapulary region is very constant, and sometines succeeded by otber similar marks. There are no tecth on the palate; pyloric appendages exist in great numbers; the vertebrac number fifty-tbree. The pilchard is one of the most important fishes of the English Channel. It spawns at a distance from the shore, and its eggs are buoyant, like those of many other marine fishes and unlike those of the herring, which are adhesive and demersal, i.e. develop under water. The egg of the pilchard is very easily distinguished from other pelagic eggs by the unusually large space separating the vitelline membrane from the contained ovum. Spawning takes place in summer, the season extending from June to October. When commencing their migrations towards the land the shoals consist of councless numbers, but they break up into smaller companies near the shore. Pilchards feed on minute crustaceans and other palagic animals and require two or three years before they ettain their full size, which is about 10 in. in length. The sardines of the west coast of France, which are tinned in oil for export, are immature fish of the same stock as those taken
on the coasts of Cornvall; they are 5 to $7 \frac{1}{2} \mathrm{in}$. in length, and though zuch fish accur also on the Cornish coast it is only in tmall numbers and for brief periods. In the Mediterranean the sardine does not circeed $7 \frac{1}{3}$ in in length when mature. On' the Pacific coast of America, in New Zealand and in Japan a pilchard occurs (Clupea sogax) which in its characters and habits is so similar to the European pilchard that its general utilization is deserving of attention. Immense shoals are reported to visit the east coast of Ota8o every year in February and March. Clupea scombrina is the "cil sardine" of the east coast of India.
(J. T. C.)

PILR, an homonymous word, of which the main branches are (1) a heap, through Fr. from plla, pillar; (1) a heavy beam used in making foundations, literally a pointed stake, an adaptation of Lat. pilum, javelin; (3) the nap on cloth, Lat. pilus, hair. In the first branch the Lat. pilce (for pigla, from noot of pargere, to fasten) meant also a pier or mole of stone, hence any mass of masonry, as in Fr. pile. In Engtish unage the word chiefly means a" heap" or "mass " of objects laid one on the top of the other, such as the heap of faggots or other combustible material on wbich a dead body is cremated, "funeral pile"" or on which a living person is burnt as 2 punishment. It also is applied to a large and lolty building, and specifically, 10 a stand of arms, "piled "in military fashion, and to the series ol plates, "galvanic" or "voitaic piles," in an electric battery. The modern" head and tail" of a coin was formerly " cross and pile," Fr. croix et pile, in modern Fr. foce et pilc. In the older apparatus for minting the die for the reverse was placed on a small upright pillar, pile, the other on a puncheon known as a "crussell" (Fr. brousseau). The common name of the disease of haemorrhoids ($q . v$.) or "piles". is probably an extension of this word, in the sense of mass, swelling, but may be referred to the Lat. pild, ball. The name of the pilum, or beavy javelin (lit. pounder, pestle, from pixsere, pisere, to beat), the chiel weapon of the ancient Roman infantry, was adopted into many Teutonic languages in the sanse of dart or arrow, cf. Germ. Pfcil; in English it was chiefly used of a heavy stake with one end sharpened, and driven into swampy ground or in the bed of a river to form the first foundations for a building; the primitive lake-dwellings bufit on "piles" are also known as "pile-dwollings." For the use of piles in building see Foundarions and Bribars. In heraldry a charge represented by two lines meeting in the form of an arrow head is known as a "pile," a direct adaptation probebly of the Lat. pillomer The division of this intricate word, followed hera, is that adopted by the New English Dictionary; other etymologists (e.g. Skeat, Elym. Dict., 1808) arrange the words and their Letin originals somewhat differently.
pleaili, a wanderer, traveller, particulariy to a holy place (see Pazornace). The earliest English forms are pilcgrime or pdegrim, through Fr. Mcrin (the original O. Fr. pelegrin is not found), from Lat. peregriaus, a stranger, forcigner, particularly a resldent atien in Rome (see Praetor, and Roman Law). The Lat. pereger, from which peregrisus is formed, meant " from ahroad," "travelled through many lands" (per, through, and ager, count ry).

It was customary for pilgrims to bring back as proof of their pilgrimage to a particular ahrine or boly place a badge, usually made of lead or pewter, bearing some figure or device identifying it with the name or piace. These "pilgrim signs " are frequently alluded to in literature-Dotably in the Conterbwry Tales and in Pies Plonmas. The British Museum and the Musec Cluny in Paris have fine collections of them, mainly dredged from the Thames and the Seine. The badges were generally worn fastened to the pilgrim's hat or cape. Among the best known are those of the cockle or scallop sheil of St. James of Compostellh in Spain; the "verniele," a representation of the miraculous head of Christ; the eers icon, true image, on St Veronica's handkerchief, at Rome, or of the Abgar portrait at Genon، of "a vernicle hadde he sowed on his cappe" (Cam. Tales, "Prol." 685); the Amiens bedige of the head of John the Baptist on the charger, the cathedral claiming the custody of the relic from 1206 (fig. 1); and the palm branches or cross of palm leaf, the
badge of the "Palmers" pilgrimage to the Holy Land. The most common of the English pilgrims' signs are those of the shrine of Thomas Becket at Canterbury, the greatest centre of pilgrimage in England. These take a variety of forms,

(From Addrews Churd Tras sery)?
Fig. I -Pigrim's Sign, from the cathedral at Amiens.

(From Andrews' Chaych Treamory) Fig. 2.-Pigrim's Sign, from Canterbury.
sometimes a simple T, sometimes a bell marked campana Thome, the Canterbury bell, most often a figure of the saint, sometimes scated, sometimes riding on a horse, and carrying his episcopal cross, and with hand uplifted in benediction (fig. a). Sometimes the badges took the shape of small ampullac, or vases, as in the case of the badges of the shrine of Our Lady of Walsingham, which were marked with a W and crown.
See W. Andrews, Church Treosury (I898), article "Pilgrims' Signs," by Rev. G. S. Tyack; and Guide to Medienal Rooms. British Mилешт. p. 69.
The English "Pilgrims" Way."-From Winchester, in Hampshire, to Canterbury, in Kent, runs a roed or way which can still be traced, now on the present made roads, now as a lane, bridle path, or cart track, now only by a line of ancient yews, hollies or oaks which once bordered it. To this old track the name of "pilgrims' way" has bcen given, for along it passed the stream of pilgrims coming through Winchester from the south and west of England and from the continent of Europe by way of Southampton to Canterbury Cathedral to view the place of the martyrdom of Thomas Becket, in the north transept, to the relics in the crypt where he was first buried after his murder, in in70, and the shrine in the Trinity Chapel which rose above his tomb alter the translation of the body in 1220 . There were two festivals for the pilgrimage, on the 2gth of December, the day of the martyrdom, and on the 7th of July, the day of the transla. tion. The summer pilgrimsge naturally became the most popular. In 1538 the shrine was deatroyed and the relics of the saint scattered, but the great days of the pilgrimage had then passed. Erasmus gives a vivid picture of the glories of the shrine and of all that was shown to the pilgrims on his visit with Colet to Canterbury in 1514.

The principal villages, towns and places near or throngh which the way passed are as follow: Winchester, Alresvord, Ropley, Alton, Farnham (here the way follows the present main road), Seale, Puttenham, by the ruined chapel of Si Catherine, outside Guildford, near where the road crosses the Wey above Shallord, ${ }^{1}$ and by the chapel of St Martha, properly of "the martyr," now restored and used as a church, Albury, Shere, Gomshall, Dorking (near here the Mole is crossed), along the southern slope of Boxhill to Reigate, then through Gatton Park, Merstham, Otford, Wrotham, after which the Medway was crossed, Burham, past the megabithic monument Kit's Coty House, and the site of Boxley Abbey, the oldest after Waverley Abley of Cistercian houses in England, and famous for ins miraculous image of the infant saint Rumbold, and the still more famous winking rood or crucifix. The road passes next by Hollingbourne, Lenham and Charing. At Offord, Wrotham and Charing were manorhouses or rather palaces of the archbishops of Canterbury; at Hollingbourne was a manor of the priors of Christchurch. After

[^51]Hollingbourne come Westwell, Eastwell, Boughton Aluph, Godmersham, Chilham Castle, and then at Harbledown, where are the remains of the Hospice of St Nicholas, the road joins Watling Street, by which came the main stream of pilgrims from London, the North and the Midlands.

This road, although its name of the Pilgrims' Way has for long confined it to the road by which the pilgrims came to Canterbury from Winchester, follows a far older track. Rigbt back into British and even older times the main direction which commerce and travellers followed across southern and western England to the Straits of Dover and the Continent lay from Canterbury along the southern chalk slope of the North Dows to near Guildiord, then by the Hog's Back to Farnhm. At this point the oldest track went across Salisbury Plain towards Stonchenge and so on to Cornwall. From Farnham westward the only portion of this the oldest track that can now be traced is a small portion that still bears the name of the Harrow (ic. hoary, old) road. It was in early times abandoned for the road from Winchester to which the stream of travel and commerce from the Continent and the south and south-west of England was diverted.
The "pilgrims' way " has been traced fully in Mre Ady's book The Pilgrims' Way (1893), and the older track in the fulicst detail in Hilaire Belloc's The Old Road (1904).

The American "Pilgrim Fulhers."-In American history the name "Pilgrims" is applied to the earliest settlers of the colony of Plymouth, Massachusetts, and more specifically to the first company of emigrants, who sailed in the "Maydlower" in 1620. They were from the beginning Separatists from the Church of England; they had established Independent (Congregational) churches at Scrooby and Gainsborough early in the ifth century, and some of them had fied to Amsterdam in 1608 to avoid persecution, and had removed to Leiden in the following year. They sailed from Delftshaven late in July 1620, from Southampton on the stb of August, from Plymouth on the 6th of September, and late in December 1620 founded the colony of Plymouth, Massachuselts. See Massachusetts; Plymocti, and Mayflower.

PILORIMAGE (Fr. pelerinage, Lat. peregrixatio), a jourrey undertaken, from religious motives, to some place reputed as sacred. These journeys play an important role in most pre. Christian and extra-Christian religions: in the Catholic Church their acceptance dates from the 3 rd and 4 th centurics.
I. The Pilgrimage in pre-Christian and mon-Christian Religions. -To the Germanic religions the pilgrimage is unknown. On the other hand, it is an indigenous element, not only in the creeds of Asia, hut in those of the ancient seats of civilization on the Mediterrancan. The fundamental conception is always that the Deity resides-or exercises a peculiarly powerful influence-in some definite locality; and to this locality the devout repair, either in reverence of their god, or in quest of his assistance and bounty. Thus, as the cult of a particular divinity spreads farther and farther, so the circle expands from which are drawn those who visit his sanctuary.

One of the oldest homes of the pilgrimage is India. There the army of devotecs tends more especially to the Gangesthe hallowed river of Hindu belief. On the Ganges lies Benares, the holy city of Brahminism: and to look on Benares, to visit its temples, and to be washed clean in the purifying river, is the yearniog of every pious Indian. Even Buddhism-originally destitute of ceremonial-has adopted the pilgrimage; and the sccondary tradition makes Buddha himself determine its goals: the place where he was born, where he first preached, where the highest insight dawned on him, and where he sank into Nirvana. The four ancient sacred resorts are Kapilavastu, Gaya, Benares and Kusinagara.

In Syria, the temple of Atargatis in Hierapolis was an immemorial resort of pilgrims. In Phocnicia, a similar significance was enjoyed by the shrine of Astarte, on the richly-watered source of the river Adonis, till, as late as the 4 th century after Christ, it was destroyed by Constantine the Great. In Egypt, the great annual and monthly festivals of the indigenous gods
gave tive to all manmet of rellgions expeditions. Even among the larmelites, the visitation of certaia cult-centres prevalied from renote antiquily; but, when the restriction of Yahwehworship to Jerusalem had doomed the ald shrines, the Jewsh pilgrimages were directed solely to the sanctuary on Mi Moria
Among the Greeks the habit was no leas deeply rooted. Just as the iahabitapts of each cown honourol theur tutelir deity by solemn procemsons to his temple, sa, at the period of the Olympic games, the temple of Zeus at. Olympia formed the goal of multitudes from every Hellemic country. No less pomerful was the attraction exercived by the shrincs of the oracular divinities, though the influx of pitprises was not limited to certain dinys, but, year in and year out, a stream of private pernons, or embassies from the city-states, came flowing to the temple of Teus in Dodona or the shrine of Apollo at Delphi.

The unification of the peoples of entiquaty in the Romen Empire, and the remultant asoalgato of religions, gave a powerful impretus to the custom. For, as East and West still met at the old sanctuaries of Greece, so-and yet more-Greece and Rome repaired to the temples of the southern and eastern deititus. In the shrine of lisia at Phine, Europeans set up volive inscriptions on behalf of their hindred far away at home, and it may be gurmised that even among the festival crowds at Jerusalem a few Greeks found place (John xii. 20).

The pilgrimage, bowever, attained is: senitb under Ishm. For Mahomet proclained it the duty of every Musaulman, once at least in his life, to visit Mecca; tbe result being that the birthplace of the Prophet is now the religious centre of the whole Mabommedan world (see Mahonaripan Relscion; Calavan; Mecca).
II. The Pilcrimage mader Christionily.-The pilgrimages of Christianity prosuppose the existence of those of pagnaism; oreste but it would be an error to maintain that the former were a direct development of the latter. For primitive Chriadianity wer devoid of any point by which there joumeys of devotion might naturally have been suegested. It was a religion rithout temples, without sanctuarics, and without ceremonial. The saying of the Johanmine Gotpel-that God is to he adored neither in Jerusalem nor on Gerixim, but that His true worshipper must morship Him in spirit and in truth-is in complete harmony with the old Christinn piety. And, accordingly, in the ancient Christian literature, we find no trace of a conception that the believer should visit a definite place in order to ply homage to his Mester. The evolution of the Christian pilgrimage moved on other lincs.

Cicero fincly observes that, in Athens, the giorions architecture cansed him less pleasure than did the thought of the great men whose work was done in its midst-" how here one had lived, and there failen asleep; how here another had disputed, and there lay buried " (De Lers. ii. 2). This feeling was not weakened by the ndvent of Christianity, in fact, we may say that it was apprecially strengthened. Cicero had already compared the sites consecrated by the memory of some illusttious name with those hallowed by recollections of a loved one. But with the Christian, when bis Redeemer was in question, both motives coincided: for there the greatest was also the deareat.

In this devotion to the memory of Jesus, we find the key to the origin of the Christian pilgrimage: the faithful repaired to those places which were invented witb memories of thefr Lord's earthly life. And these journeys must certainly date from the and ceatury. For Origen (d. 254) mentions that in Bethletem the cave was shown where Christ was born, and in it the manger in which Mary made the bed of her child. The site must have been mach visited long beiore this, since Origen remarts that it was common knowledge, even among the infideks, that there was the birt hplace of that Jesus whorn the Christians worshipped (Contr. Cds. i. 51). But thove who visited Bethlehem must certainly bave visited Jerusalem and the places there, so rich in memorials of their Master. And the sympatiby of Christendorn soon led them beyond this immediate circle. The anonymous author of the Cohprlalio ad Graecas, a work of the and century. visited the remmants of those cells, in which-so legend related-
the seventy interpreters laboured on their version of the Old Testament: oor, whea be came to Cumae in Campania, did be fail to have shown bum the old shrine of the Sibyl (Cot. ad Gr. 13 and 37). Soon we begin to hear the names of the pilgrims. In the course of the 3rd century, as Jerome relatea, Firmilian, bishop of Cacsarea in Cappadocia, travelled to Palestine to view the sacred places (De Vir. ill. 54); white, sccording to Luscbius, a sccond bishop from Cappadocia, Alexinder by name, visited Jerusalem in order to pray and acquaint himself with the boly sites, and was there invited by the community to remanin with them and ascume the episcopate of the aged Narcisass (Hist. cecl. vi. 11). With regard to his own timesthe early years of the 4th century-the same authority recounts that belicvers kept strcaming to Palestine from all regiona, there to offer thelr prayers at a cavern shown on the Mount of Olives (Dewemstr. cuong. vi. 18).

This statement, that the Christians of the 3rd and ath centuries were in the habit of visiting Jerusalem for prayer, proves that the aon-Christian conception of the religious pilgrimage had alresdy entered the sphere of Christian thought. That men travelled for parpoees of prayer inmplies acceptance of the heathen theory of senctuarics which it is an act of piet y to visit. We may regret the fact, for it sullied the purity of primitive Christinn thought. Nevertheless, it is clear that the development was inevilable. As soon as the non-Christian Ideas of priests, sacrifices, houses of the god, and so forth, were naturalized in the Christianity of the 3nd century, it was bat a short step to the belief in boly places.
III. The Pidgrimage in the Anciend Church.-In the passages citod above, Bethlehem and the Mount of Olives figure as the main goal of the pilgrim: and on the Mount of Olives the mind must naturally turn to the Garden
of Gethsemane and the scenc of the Ascension. It may seem sumprising that there is no mention of Golgotha and the Sepulchre. But the visitation of these sites was rendered impossible to the Christians by the destruction of Jerusalem and the erection of the town of Aclis Capitolina. They had not forgotten them; but the grave was concealed under a mound of earth and stones -a profanation probably dating from the siege of the city and Titus's attack on the second wall. On the summit of this mound there stood, in the days of Eusebius, a sanctuary of Venus (Eus. Vit. Const. iii. 26, 30). The Sepulehre and the Hill of the Crucifixion were lost to the Christian pilgrim; and, consequenaly, belore the era of Constantine, the one boly site in the town of Jerusalem was the so-called Coenactilum, which received its name in later years. It lay south of the city, near the outer wall, and, if Epiphanius is to be believed, was already in existence when Hadrian ($130-131$) visited Jerusalem (De mexas. 14). It was regarded as the house, in which \rightarrow according to the Acts of the Apostes (xii. 12 sqq.)-Mary, the mother of John Miark, lived; and the belief was that there the Lord held the Last Supper, and that there the eleven assembled after the Ascension. It was there, also, that the scene of the Pentecostal effusion of the Spirit was hid (cf. Cyrill. Hierus. Cat. xvi. 4).
The pilgrimage to Palestine received a powerful impetus from the erection of the memorial churches on the holy sites, under Constantine the Great, as described by Eusebius in his biography of the emperor (iii. 25 sq9.). At the order of Constantine, the shrine of Venus above mentioned was destroyed, and the accumulated nubbish removed, till the ancient rockfoundation was reachod. There the cave was discovered in which Joseph of Arimathea had laid the body of Jesus; and above this cave and the Hill of the Crucifixion the imposing church of the Holy Sepulchre was built (A.D. 326-336). The churches in Bethiehem and on the Mount of Olives were erected by Heiena, the mother of Constantine, who herself undertook the pilgrimage to the Holy Land. These churches were then endowed with new sanctuaries of miraculous powers; and relics of Christ were found in the shape of the Cross and the nails. Eusebius, the contemporary of Constantine, is silent on this point. To his continuators, on the other hand, it is an established fact that Helens brought all three crosses to light, and ascertained
the genuine Croes by the instrumentality of a miracte, in addition to discovering the nails of the Crucifion (Rufin. i. 7; Socr. i.17; Sozomen. fi. 1; Theod. i. 17). It is imposible to fix the date at which the supposititious relics were introduced into the church of the Sepulchre: it is certain, however, that in the sth century the Cross was there preserved with scrupulow reverence, and accounted the highest treasure of the sanctuary.

After the $4^{\text {th }}$ century, monks and nuns begin to form no inconsiderable part of the pilgrimages-a fact which is especially manifest from the numerous notices to be found in Jerome, and the narratives of Theodoret in the Historia religiesa. In fact, many were inclined to regand a journey to Jerusalem as the bounden duty of every monk-an exaggerated view which led to energetic proteats, especially from Gregory of Nysen, who composed a monograph on the pilgrimages ($D 0$ iir qui adewne Hierosol.). Jerome, like Gregory, insists on the point that reaidence in Jerusalem has in itself no religious value: It is not locality, but character, that avails, and the gates of Heaven are as open in Britain as in Jerusalem (Ep. 58, 3). These utterances, however, must not be misinterpreted. They are not directed against the pilgrimage in itself, nor even against the belief that prayer possesses special efficacy on sacred ground, but solely against the exaggerated developments of the aystem.

The theologians of the 4 th and sth centuries were at one with the masaes in recognizing the religious uses of the pitgrimages. Jerome in particular considered it an act of faith for n man to offer his prayers where the feet of the Lord had stood, and the traces of the Birth, of the Cross, and of the Passion were still to be secn (Ef. 47, 2).

We may gain some impression of the mood in which the pilgrims completed their journey, when we read how Paula, the friend of Jerome, expresses herself on her visit to the church of the Sepulchre: "As oft as we enter its precincts we sec the Saviour laid in the shroud, and the angel seated at the feet of the dead!" (Hieron. Ep. 46, 2). She assured Jerome that, in the church of the Nativity at Bethlehem, she beheld, with the eye of faith, the Christ-child wrapped in swaddling clothes (Ep. 108, 10). But with these thoughts, others of an entirely different stamp were frequently blended. Pilgrimages were conceived as means to ensure an answer to particular prayers. So. for example, Eudocia, the wife of Theodosius II., vowed to undertake a pilgrimage to Jerusalem, if sbe shonid seo her daughter married. (Socr. Hist. accl. vii. 47). And, closely as this approaches to pagan ideas, the distinction between paganism and Christianity is completely obliterated when we find the hermit Julian and his companions travelling to Sinai in order to worship the Deity there resident (Theod. Hist. rel. 2).

With the number of the pilgrims the mumber of pilgrim-resorts also increased. Of Jerusalem alone Jerome relates that the places of prayer were so numerous that it was impossible to visit them all in one day (Ep. 46, 9). In the Holy Land the list was atill longer: the natives were ready to show everything for which the foreigners inquired, and the pilgrim was cager to credit everything. In her expedition to the East, the Paula mentioned above visited, among other places, Sarepta and Cacserea. In the first-named place she was shown the tower of Elijah; in the second, the house of Cormelius, that of Philip, and finally the grave of the four virgins. At Bethlehem she 34 w , in addition to the church of the Nativity, the grave of Rachel; at Hehron the hut of Sarah, in which the swaddling clothes of Isaac and the remains of Ahraham's oak were on view (Hieron. Ep. 108). A similar picture is given in the Trovels of the so-called Silvia Aquitana, who seems, in reality, to have been a Spanish nun, named Etheria or Eucheria. Sbe went as a pilgrim to Jerusalem (c. 380), and from there traversed the whole of Palestine, in order to visit every site which was consecrated by memories of the Lord's earthly life. Nor did she neglect the scenes of patriarchal history. Of greater antiquity is the concise account of his travels by an anonymons
pilgrim, who, in Ans. 333, widertiok the founcer from Bondemar to Palestine. The Ifinerary of the African Theodocins who visited the East between A.D. 520 and and 530 is of later date (P. Geyer, lisin. hierasel. sasc. Iv-viii).

While pilfrim-resorts were thas filling the East, their comenterparts begnen to emerge in the Weat. And were the startiogpoint is to be found in the veneration of martym. Care for the tombe of martyre was sanctioned by immemorial custom of the Church; but, in this case also, a later age failed to preserve che primitive conception in its purity; and Augustime himoel was obliged to defend the usage of the Church irom the imputation that it implied a transference of heathen oeramonial to the sphere of Christianity (Coxtr. Faust. 2x. 21). The martyms were the local heroes of paricular communities; but there were men whowe life and death were of significance for the whole of Christendom-the apostles. Of these Peter and Paul had suffered martyrdom in Rome, and it was inevitable, from the nature of the case, that their graves should soon become a resort, not only of Romens born, but of strangers also. True, the presbyter Cains (c. 200) who first mentions the situation of the apostolic tombs on the Vatican and the road to Ostia, and refers to the memorials there erected, has nothing to say of foreign Christians joumeying to Rome in order to visit them. And though Origen travelled to Rome, it was not to view the graves of dead men, but to establish relations with the living flock (Euseb. Hins. ecol. iil 25, 7; vi. 14, 10): still, it is certaia that the Roman cemeteries were visited by numerous pilgrims even in the and century: for the earliest graffiti in the papal crypt of the Coemeteriom Collisti must date from this period (De Rossi, Roma solter. i. 253 sqq ; Kraus, Rom. Sole. 148 sqq.). And if the tombe of the popes wero thus visited, mo much more must this hold of the tombs of the apostles. After these, the most frequented resort at Rome in the 4th century was the grave of Hippohytes. The poct Prudentins describes how, on the day of the martyr's death, an innumerable maltitede of pilgrims flocked round the site. Even on ordinary days arrivals and departures were almost incessant-foreigners being everywhere scen mingled with the native Latins. They poused balzas on the expulchre of the saint, washed it with their tears, and covered it with ther kises, in the belief that they were thus assuring themaelves of his intercession or testifying their gratitude for his amiatnoce. Prudentius saye of himself, that whenever he was sick in tooll or body, and prayed there, he found belp and returned in cheerfulacss: for God had vouchsaied His saint the power to answer all entreaties (Peris. xi 175 sq9.). Paulinus of Nola (d. 431) concurs-bis custom being to visit Ontin each gear, and Rome on the apostolic amiversaries (Ep. 20, $2 ; 45,1$). Next to Rome the most popular religious resort was the tomb of Felix of Nola (August. Ep. 78, 3); while in Caul the grave of St Martin at Tours drew pilgrims from all quarters (Paul Nol. Ef. 17, 4). Africa possessed no sanctuary to compete with these; but we leam from Sulpicius Severus (c. 400) that the tomh of Cyprian seems to heve been visited oven by a Geul (Dial. i. 3).
The motive that drew the pilgrimss to the graves of the saints is to he found in the conviction, expressed hy Prudentius, that there divine succour was certain; and hence came the belief in a never-ending series of miracles there performed (di., e.s. Ennod. Ticin. Lib. pa sym. p. 315). Doubt was unknown. St Augustine observes that, though Arrica was full of martyrs' tomba, no miratle had been wroaght at them so far as his knowiedse extended. This, however, did not lead him to doubt the truth of those reported by others- fact that is somembat surprising when we reflect that the phenomenon coused him much disquict and perplerity. Wha, he asks, can fathom the design of God in ordaining that this should happen at one pilace and not at another? And eventally be acquieaces in the conclusion that God, who gives every man his individual gift at pleasure, has not willed that the same powers should have efficacy at every sopulchre of the sainta ($\mathbf{5}, \mathbf{7 8}, 3$).
IV. The Pidgrimege in the Middle Ager.-The medieval Churct
edepted the custom of the pitgrimage from the ancient Church. The young Germanic and Ronance rations did precisely as the

Mro

Motives. Greck and Romans had done before them, and the motives of these devotionat jourmejs-now much more difficult of esecution in the genctal decay of the great woild-system of conmerce-wemained much the same. They were undertiken to the honour. of God (Pipp. Caf. 754-755, c. 4), for purposes of prayor (Ann. Fild. 992), or in quest of ascistance, especially health (Viba Gelli, ii. 37; Vila Linde. iii. 20). But the old causes were reinforced by others of at least equal potency. The medieval Church was even more profeandly convinced than its prodecessor that the miraculous power of Deity attached to the bodies of saints and their retics. Bat the younger mations-French, English and Germanwere seantily endowed with sainta; whild, on the other hand, the beikel obtained that the homecomontries of Christianity, expecially Rome and Jerusalem, poseessed an inexheustible supply of these sanctified bodies. Pifgrimages were consequently undertaken with the intention of securing relics. At first it was enough to acquire some object which had enjoyed at least a mediate connexion with the hatlowed corpse. Gregory of Tours (d. 594) mentions one of his deacons who made a pilgtimage into the Exst, In order to collect relics of the Oriental saints; and, on his return, visited the grave of the bishop Nicetius (St Nizier, d. 573) in Lyons, where he still further increased his store. His testimony showed how relics came to be distributed mong the populace: one enthusiast tock a little wax dropped from the taper; another, a portion of the dust which lay on the grave; third, a thread from the choth covering the sarcophagus; and he hinutelf plucked the flowers which visitors had planted above the tomb. Such were the memorials with which be returned; but the universal belief was that something of the miraculous virtue of the saint had pased into these objects (Vit. patr. 8, 6). Before long, however, these humble trophies failed to content the pligrims, and they began to devote their efforts to acquiring the actual bodies, or portions of them -irequently by honest means, still oftener by trickery. One of the most attractive works of early medievalism - Einhard's little book, Translatio Marcellini ef Potri-gives a vivid description of the methods by which the bodies of the two saints wrere acquired and transported from Rome to Seligenstadt on the Min.

Far more important consequences, however, resulted from the fact that the medieval mind assotiated the pilgrimage with the forgiveness of sins. This conception of the pilgrimage, as a means of explation or a source of pardon for wrong, was foreigh to the ancient Church. It is quite in accordance with the keener consciousness of sin, which prevalled in the middle ages, that the expiatory pilgrimage took its place side by side with the pilgrimage to the glory of God. The pilgrimage became an act of abedience; and, in the books of penance (Poenilentialia) which date from the carly middle ages, li is enjoined-whether lor 2 definite period (e.g. Pocm. Valicell. i. c. 19; Theod. Cant. i. 2, 16) or for life (Pocn. Cummeani, vif. 12, Castm. 24) - as an expistion for many of the more serious sins, especially murder or the less venial forms of unchastity. The place to be visited was not specifed; but the pilgrim, who was bound by an open letter of his bishop to disclose himself as a pentitent, lay under the obligation, wherever he went, to repair to the churches and-more especially-the tombs of the saints, and there offer his prayers. On occasion, a chain or ring was fastened about his body, that his condition might be obvious to all; and soon all manner of fables gained currency: how, here or there, the iron bad sprung apart by a miracle, In token that the sinner was thereby absolved by God. For instance, the Viec Eindgeri recoums the history of a fratricide who was condenned to this form of pilgrimage by Jonas, bishop of Orieans (d. 843); Ite wore three iron rings round his body and arme, and travelled barefooted, fasting, and devoid of linen, from church to church till he found pardon, the first ring breaking by the tomb of St Certrude at Nivelles. the second in the crypt of St Peter, and the third by the grave of Liudger. The pilgrim-
age with a predetermined goal was not recognized by the books of penance; but, in ross, Peter Damiani imposed a pilgrimage to Rome or Tours on the clerics of Milan, whom he had absolved (Acta medial. patrol. lat. 145, p. 98).

As the system of indulgences developed, a new motive came to the fore which rapidty overshadowed all others: pilgrimages were now undertaken to some sacred spot, simply in order to obtain the indulgener which was vested in the respective church or chapel. In the rith century the indulgence consisted in a remission of part of the penance imposed in the confessional, in return for the discharge of some obligation voluntarily assumed by the penitent. Among these ohligations, a visit to a particular church, and the hestowal of pious gifts upon it held a prominent place. The earliest instance of the indulgential privilcge conferred on a. church is that granted in ici 6 by Pontius, archbishop of Arles, to the Benedictine abbey of Montmajour (Mons Major) in Province (d'Achery, Spicil. ili. $\mathbf{3}^{83}$ seq.) But these dispensations, which at first lay chiefly in the gift of the bishops, then almost exclusively in that of the popes, soon increased in an incessant strcam, till at the close of the middle ages there were thousands of churches in every western country, by visiting which it was possible to ohtain an almost indefinite number of indulgences. But, at the same time, the character of the indulgence was modified. From a remission of penance It was extended, in the 13 th century, to a release from the temporal punishment exacted by God, whether in this life or in purgatory, from the repentant sinner. And, from an absolution from the consequences of guilt, it became, in the 14 th and isth cent uries, a negation or the guilt itself; while simullancously the opportunity was offered of acquiring an indulgence for the souls of those already in purgatory. Consequently, during the whoie period of medievalism, the number of pilgrims was perpet ually on the increase.

So long as the number of pilgrims remained comparatively small, and the difficultles in their path proportionately great, they obtained open letters of recommendation from their bishops to the clergy and laity, which ensured faepmint them lorging in conveuts and charitable foundations,
in addition to the protection of public officiais. An instance is preserved ln Markulf's formulary (ii. 49). To recelve the pilgrim and supply him with alms was always considered the duty of every Christian: Charicmagne, indeed, made it a legal ohligation to withhold neither roof, hearth, nor fire from them (Admon. gent. 789, c. 75; Cap. Miss. 802, c. 27).

The most important places of resort both for voluntary and involuntary pilgrimages, were still Palcstine and Rome. On the analogy of the old Itinerario, the abbot Adamnan of Iona (d. 704) now composcd his monograph Dc locis sanctis, which served as the basis of a similar book by the Venerable Bede (d. 735)-both works being edited in the Itin. hierosol. His authority was a Frankish bishop named Arculf, who resided for nine months as a pilgrim in Jerusalem, and visited the remaining holy sites of Palestine in addition to Alexandria and Constantinople. Of the Iater itineraries the Descriplio terrae sanctae, by the Dominican Burchardus de Monte Sion, enjoyed the widest vogue. This was written between the years 1285 and 1295 ; but books of travel in the modern tongues had already begun to make their appearance. The ínitiative was taken by the French in the rath and 13 th centuries, and the Germans followed in the 14th and 1 sth ; while the Book of Wayes to Jerusalem of John de Maundevilie ($c, 133^{6}$) attained extfeme popularity, and was translated into almost all the vernacular languages. Mosi pitgrims, probably, contented themsel,es with the brief guide: books which seem to have originated in the catalogues of indulgences. In later periods, that of Romberch a Kyrspe, printed at Venice (1519), stood high in favour.

A long list might be compiled of men of distinction whe performed the pilgrimage to Paiestine. In the 8th century one of the most famous is the Anglo-Saxon Willibald, who died in 781 as bishop of the Frankish diocese of Eichstilt. He left his home ti the spring of $\mathbf{7 2 0}$, accompanied by his father and brother. The pilgrims traversed France and Italy, visiting
every religious resort; in Lucea the father died, and the brother rumained behind in Rome. Early in 722 Willibald began his expedition to the Holy Land alone, except for the presence of two companions. He travelled past Naples to Syracuse, then on shipboard by Cos and Samos to Ephesus, and thence through Asia Minor to Damascus and Jerusalem. On St Martin's day, in 724, he arrived in the Holy City. After a prolonged stay in the town and its environs, Willibald proceeded (727) to Constantinople, and in 729 returned to Italy. Such is the account given by the nun of Heidenheim in her biography of Willibald; and her version is probably based on notes hy the pilgrim himself (Mon. Germ. hist. scr. xv. 80 sqq). In the gth century the French monk Bernard visited Palestine with two companions, and afterwards wrote a simple and trustworthy account of his journey (Patrol. lat. 121, 569 sqq.). In the roth century Conrad, bishop of Constance ($934-976$), performed the pilgrimage to Jerusalem three times (Viaa Chuonr. 7); and to the same period belong the first women-pilgrims to Jerusalem of whom we have any cognisance-Hidda, mother of Gero, archbishop of Cologne (Thictm. Chron. ii. 16), and the countess Hademod of Ebersberg (Chron. ebersb.). The leaders, moreover, of the monkish reform movement in the roth and inth centuries, Richard of St Vanne in Verdun and Poppo, abbot of Stavelot ($978-1048$), had secn the Holy Land with their own eycs (Vita Rich. 17; Vila Popp. 3). In the year 1028 Archbishop Poppo of Trier (d. 1047) undertook a pilgrimage which led him past Jcrusalem to the banks of the Euphrates, his return taking place in 1030 (Gesia Tresir. Cont. i. 4 seq.). But the most celcbrated devolional expedition before the Crusades was that of the four bishops-Sigfrid of Mainz, Gunther of Bamberg, William of Uirecht, and Otto of Regensburg. They set out in 1064, with a company whose numbers exceeder seven thousand. The major portion, however, fell in battle against the Mahommedans, or succumbed to the privations of the journey, and only some two thousand saw their homes again(Annal. Allah., Lamb., Disib., Marian. Scol. \&c.). Among the followers of the bishops were two clerics of Bamberg, Ezzo and Wille, who composed on the way the beautiful song on the miracles of Christ-one of the oldest hymns in the German language. The text was due to Ezzo, the tune to Wille (Müllenhof and Schercr, Denkmaler, i. p. 78, No. 31). A few years later Count Dietrich of Trier began a pilgrimage to Jerusalem with 113 companions, in atonement for the murder of Archbishop Kuno. The ship, however, which conveyed them went down with all hands in a storm (Berth. Ann. 1073).

As a result of this stcady increase in the number of pilgrims, the old arrangements for their accommodation were found deficient. Consequently hospices arose which were designed exclusively for the pilgrim. Those on the Alpine passes are common knowledge. The oldest, that on the Septimer pass, dates from the Carolingian period, though it was restored in 1120 by the bishop Wido of Chur: that on the Great St Bernard wis founded in the roth century, and reorganized in the 13 th. To this century may also be assigned the hospice on the Simplon; to the 14th those on the St Gothard and the Lukmanier. Similarly, the Mediterranean towns, and Jerusalem in particular, had their pilgrim-refuges. Scrvice in the hospices was regularly performed by the hospital-fraternities-that is to say, by hy associations working under the authorization of the Church. The most important of these was the fraternity of the Hospilale hicrosolymilarum, founded between robs and 1075; for hence arose the order of St John, the earliest of the orders of knighthood. In addition to the hospital of Jerusalem, numerous others were under its charge in Acre, Cyprus, Rhodes, Malta, \&c. Associations were formed to assist pilgroms bound for the East; one being the Confrefie des pederins de Terre-Sainte in Paris, founded in 1325 by Louis de Bourbon, count of Clermont (afterwards first duke of Bourbon). Its church was in the rue des Cordeliers. Similar institutions existed also in Amsterdam, Utrecht, Antwerp and elsewhere in the Netheriands.

But since, in the middle ages, the Holy Land was no longer held by a Christian Power, the protection of the pilgrims was
no less necusary than their suatenance. This fact, ather the close of the Iith oentury, led to the Crusades (q.v.), which in many respects are to be regarded as armed pilgrimagos. For the old dream of the pilgrim, to vicw the country where God bad walked as man, lived on in the Crusades-a fuct which is demonstrated by the letters of Berpard of Cleirvaux, with the somgs of Walther von der Vogelweide and other Crusaders. And, since the strongest motive in the pilgrimage res the acquisition of indulgences, unnumbered thousands were moved to assume the Cross, when, in 1095, Urban IL. promised them plemary indulgence (Conc. Claram. c. 2). The conquest of Jerusalem, and the erection of a Christian empire in Palestine, natarally welled the influx of pilgrims. And though in 158% the Holy City again fell into the hands of the infodel, while in 1291 the loss of Acre eliminated the last Christien poesecsion in Palestine, the pilgrimages still proceeded. True, after the fall of the city and the loss of Acre, they were forbiriden by the Church; but the veto was impracticable. In the xath century these religions expeditions were still so common that, every Sunday, prayers were offered in church for the pilgrims (Honor. Aug. Spec, ecd. p. 828). In the izth century the annual nutaber of those who visited Palestine amounted to many thoumands: in the rath and I5th it had hardly shrunk. In fact, between the years 1300 and 1600,10 fewer than 1400 men of distinction can be ensmerated from Germany alone who travelled to the Holy Land (Roblricht and Meissner, Detasche Pigerreisens, pp. 465-546). It was not till the Reformation, the wars of the roth century, and the loss of Rhodes, Candia and Cyprua to the Turks, that any appreciable alteration was effected. Whem Ignatius de Loyola (q.v.) sct sail in 1523 from Venise to Palestine, ondy some thiricen souls could be mustered on the pilgrim-ehip, while cight or nine others sailed with the Venetian state-vessol as far as Cyprus. A considerable number had abandoned their piltrimage and returned home 0 , the news of the fall of Rhodes (Dec. 25, 1522: sce Acta sanct. Jul. vii. 642 seq.).

For pilgrimage overseas, is it was styied, the permission of the Church was still requisite. The pilgrims mada their fourney in grey cowls fastened by a broed belt. On the colvi they wore a red cross; and a broad-brimmed hat, a staff, sack and gourd completed their equipment. During their travels the beard was allowed to grow, and they prepared for departure by coniession and communion. Of their hymns many are yet extant ("Jerusalem mirabilis," "In gottes namen faren wir," ace). The embarcation took place either in France or Italy. In France, Marseilles was the main harbour for the pilgrims. From there ships belonging to the knights of St John amd the kinights templars conducted the commerce with Palestine, and carried annually some 6000 passengers. In the Italian ports the namber of shipments was still greater-especially in Yenice, whence the regular passagium started twice a year. The Venctian pilgrim ships, moreover, carried as many as 1500 souls. The pilgrims formed themsclves into unions, elected a "master " and concluded their agreements, as to the outward voyage and return, in common. After Venice, Genom and Pisa occupidd the most prominent position. The voyage lasted from six to eight weeks, the stay in Jerusalem averaging ten days. The visitation of the holy places was conducted in processions headed by the Franciscans of the Convent of Zion.
The expenses of the journey to Palestine were no light matter. In the rath century thoy may be estimated at roo marts of silver (6200) for the ordinary pilgrim. This was the amount raised in 1147 by one Goswin von Randerath to defray the expenses of his pilgrimage (Niederrheir, Urk. Bmeht. i. No. 361). Later the cost was put at $280-300$ ducals (fi40-\{1 50). In the rith century a knight with two squires, one groom, and the requisite horses, had to disburse 81 marks of silver for his pessage, while for a single pilgrim the rate was rather less than \mathbf{r} mark. In the 16th century Ignatius de Loyola calculated the cost of the voyage from Venice to Jaffa at some 6 or 7 gold dlotins (3). The expenses of the princes and lords were, of course, mweh heavier. Duke William of Sarony, who was in Jerusalem in 1461 , spent no less than $\{10,000$ on his journey (see Pruts.

Kullaugeschichte der Kriexulage, pp. 100 4q4; Rohricht, Dendsche Pilgaraicem, p. 42).
Great as was the number of pilgrims oversea, it was yet far exceoded by that of the visitants to the "threshold of the apostes," is. Rome. As was the case with Jerusalem, guide-books to the city of the apostles were now composed. The oldeat is the Notitia occlesiarum wris Remae, which was probably compiled under Honorius I. ($625-638$). The monograph De locis s. martyrum is of somewhat later date. Both are to be found in De Rossi, Roma solterranea, i. 138 s99.). The Ilinerarium cinsidlense (ed. G. Hixnel, Archiv. f. Philologic, V. 119) belongs to the second half of the sth century. Its composer would scem to bive been 2 disciple of Walahfrid; for his interests are not confined to the churches, their reliquaries, and the ecclesiastical ceremonial of saint-days, but he takes a pleasure in transcribing ancient inscriptions. Wrilliam of Malmesbury, again, when relaing the crusade of Count Robert of Normandy (roo6), transfers into his Gesta regum anglorum (iv. $\{35 \mathrm{~s}$) an old description of Rome, originally intended for the use of pilgrims. This may have dated from the 7 th oentury.
The pilgrimages to Rome received their greatest impetus through the inauguration of the so-called Year of Jubilee (g.o.). On the 22nd of February 1300 the bull of Boniface VIII., Antiquorum habet jidem, promised plenary indulgence to every Roman who shoold visit the churches of the apostles Peter and Paul on thirty days during the year, and to every foreigner who should perform the same act on fifteen days. At the close of the Jubilee this dispensation was extended to all who had expired on the way to Rome. This placed the pilgrimage to Rome on a level with the crusades-the only mode of obtaining a plenary indulgence. The success of the papal bull was indescribable. It is computed that, in the Year of Jabilec, on an average, 200,000 strangers were present in the city during the day. The greatest number of the pilgrims came from southern France, England sending comparatively few on that occasion (see Gregorovius, Gesch. d. Stadt Rom. v. 546 sqq.). The Jubilce dispensation according to the edict of Boniface VIII. was to be repeated each century; but this period was greatly abridged by succeeding popes (see Jubilge, Year or), so that in the years 1350, 1300, 1423, 1450, 1475, 1500, the troops of pilgrims again came streaming into Rome to obtain the cherished dispensation.
Of the ot her pilgrim-resorts, we shall oniy emphasize the most important. Priority of mention is due to St James of Compostella (Santiago, in the Spanish province of Galicia). Here the attraction for the pigrim was the supposed possession of the body of James the son of Zebedee. The apostle was executed (A.D. 44) by command of Herod Agrippa (Acts xii. 1); and at the beginning of the medieval period it was believed that bis corpse was laid in Palestine (Venanl. Fortun. carm. v. I44, viii. 3). The first connexion of the apostle with Spain is to be traced in the Poema de aris b. Mar. et xii. aposf. dedic., which is ascribed to Aldhelm (d. 709) and contains a story of his preaching in that country. The earliest account of the transference of his relics to the Peninsula is found in Notker Balbulus (d. gt2, Murtyrol. in Jul. $x x 0$. .). But in Spain belief in this cherished possession was universal; and, step by step, the theory won credence throughout the West. In 1059, Archbishop Wido of Milan joumeyed to St James (Damiani, Acta mediol. p. 98); and a litle later we hear of bands of pilgrims from Germany and France. In England, Indeed, the shrine of St James of Compostella became practically the most favoured devotional resort; and in the 12 th century its visitation had attained such popularity that a pilgrimage thither was ranked on a level with one to Rome or Jerusalem (Honor. August. Spec. ecth. p. 828). In Paris, after 1419, there existed a special hoopice for the "fraternity of St James," in which from 60 to 80 pilgrims were received each day, fed, and presented with a quarter of a denarius (Dulaure, Hist. de Paris (x842), 1. 531). Even in the period of the Reformation the "Song of St James" was sung in Germany (Wackernagel, Kirchenticed, ii. No. 1246); and in. 1478 pilgrimages to that shrine were placed by Sixtus IV. on official equality with those to Rome and Jerusalem (Extrav. comm. c. 5; De pocnil. v. g).

In France St Martin remained the chief goal of the pilgrim; while Notre Dame de Sous-Terre in Chartres (with a portrait of the "hlack Virgin "), Le Puy-en-Velay (dep. Haute Loire), and others, also enjoyed considerable celebrity. In England pilgrimages were made to the tomh of the murdered archbishop, Thomas Becket, in Canterbury Cathedral. The setting of Chaucer's Canterbury Tales gives a vivid idea of the moticy company of pilgrims; but it seems probable that Germany also sent a contingent (Getvas. Caniuar. chr. ann. 188_{4}; Ralph de Diceto, Ymag. kist. ann. 1184). In addition, Walsingham, Peterborough, St Davids, Holywell, and St Andrews in Scotland were much frequented. In lower Germany, Cologne and Aix-laChapette, in Switzerland Einsiedeln, were the principal resorts.
In Italy the church of the Archangel on Mi Gargano was one of the most ancient centres of the pigrimage, being visited even by the monk Bernard (vide supra). Later the Portiuncula church at Assisi displaced all other religious resorts, with the exception of Rome; but in the ryth century it was overshadowed in turn by the "Holy House" at Loretio on the Adriatic. According to an extravagant legend, the house of Joseph and Mary in Nazareth was transported by angels, on the night of the gth-ioth of May r29x to Daimatia, then brought to the Italian coast opposite (Dec. 10, 1294), till, on the 7th of September 1295 it found rest on its present site. The pilgrimage thither must have attained great importance as early as the isth century; for the popes of the Renaissance found themselves constrained to erect an imposing pilgrim church above the "Holy House."
The significance of the pilgrimage for the religious life of later medievalism cannot be adequately estimated. The possession of an extraordinary relic, a bloody Host, or the like, was everywhere considered a sufficient claim lor the privileges of indulgences: and wherever this privilege existed, there the pilgrims were gathered together. All these pilgrimages, great and small, were approved and encouraged by the Church. And yet during the whole of the middle ages, the voice of suspicion in their regard was never entirely stilled. Earnest men could not disguise from themselves the moral dangers alnost inevitably consequent upon them; they recognized, moreover, that many pilgrims were actuated by extremely dubious motives; and they distrusted the exaggerated value set on outward worka. The Roman papacy had no more zealous adherent than Boniface; yet be abeolutely rejected the iden that Englishwomen should make the joumey to Rome, and would willingly have seen the princes and bishops veto these pilgrimages aitogether (Ep. 78). The theologians who surrounded Charlemagne held similar views. When the abbess Ethelburga of Fladbury (Worcestershire) (ound her projected pilgrimage impracticable, Alcuin wrote to her, saying that it was no great loss, and that God had better designs for her: "Expend the sum thou hast gathered for the journey on the support of the poor; and if thou givest as thou canst, thou shait reap as thou wilt "($E p .300$). Bishop Theodulf of Orieans (d. 82I) made an energecic protest against the delusion that to go to Rome availed more than to live an upright life (Carm. 67). To the same effect, the synod of Chalon-sur-Sadne (813) reprobated the superstition which was wedded to the pilgrimage (c. 13); and it would be easy to collect similar judg. ments, delivered in every centre of medievalism. But, fundamentally, pilgrimages in themselves were rejected by a mere handful: the protest was not against the thing, but against its excrescences. Thus Fridank, for instance, in spite of his emphatic declaration that most pilgrims returned worse than they went, himself participated in the crusade of Frederick II.
V. The Modern Pilgrimage.-The Reformation eradicated the belief in the religious value of visits to a particular locality. It is only pious memory that draws the Protestant to the sites consecrated hy ecclesiastical history. On the other hand, while in the Eastern Church things have undergone litule change, -the pilgrims, in addition to the Holy Land, visiting Mi Athos and Kiev-the developments in the Roman Church ahow important divergences. The Year of Jubilee, in 2525 , was unprecedented in its scant attendance, hut the jubilees of 1575 and 1600 again sap great armies of pilgrims marching to Rome.

Fresh pilgrim resorts now began to spring up, and medieval shrines, which had fallen on evil days, to emerge from their obscurity. In the 6 th century we must mention the pilgrimages to the "Holy Mount " at Görz on the Austrian coast, and to Montserrat in the Spanish province of Barcelona: in the 17 th century, those to Luxemburg, Kevclaer (Gelderiand), Notre Dame de Fourvière in Lyons, Heiligenberg in Hobemia, Rocrmond in the Netherlands, \&c. . The r8th century, which witnessed the religious Aufkldrung, was not favourable to the pilgrimage Enlightened hishops and princes prohihited it altogether: so, for instance, Joseph II. of Austria. Archbishop Clement Wenceslaus of Trier forbade, in 1777, the much-frequented, medieval " leaping-procession " of Echternach (duchy of Luxemhurg). The progressive theologians and clergy, moreover, assumed a hostile attitude, and, in 1800 , even the Curia omitted the Year of Jubilee. The igth century, on the other hand, led to an extraordinary revival of the pilgrimage. Not only did new resorts spring into existence-e.g. La Salette in Dauphiné (iB46), and more particularly Lourdes (1858) in the department of Hautes Pyrénées-hut the numbers once more attained a height which enables them to compete with the medieval figures. It is computed that 60,000 pilgrims were present in La Salette on the 29th of September 1847, the first anniversary of the appearance of Mary which gave rise to the shrine. The dedication of the thurch of Lourdes, in 1876, took place in the presence of 30 hishops, 3000 priests and 100,000 pilgrims. In 1877 the number rose to 250,000 ; and similar statistics are given of the German and Austrian devotional resorts. The sanctuaries of Aix-la-Chapelle are sald to have been visited hy 65,000 pilgrims on the 15 th of July 1860; and on the following Sunday hy 52,000 . From 25,000 to 30,000 persons take part each year in the resuscitated "leaping-procession" at Echternach; and the annual visitants to the " Holy Mount " at Görz are estimated at 50.000 . No new motives for the pilgrimage emerged in the roth century, unless the ever-increasing cultus of the Virgin Mary may be classed as such, all of the new devotional sites being dedicated to the Virgin. For the rest; the desire of acquiring indulgences maintains its influence: but doubting voices are no more heard within the pale of the Roman Catholic Church.

Bibliograpey.-Ilinera hicrosolymilama sacc. IV.-VIII., rec. P. Geyer (Vienna, 1808); 1iin. hierosol. at descr. terrae sanctae, cd. T. Toller and A. Molinier (Geneva, 1879-1885); H. Michelant and G. Raynaud, Itintraives d Jorusalem ridigts en francais au XI', XII', XIII' sidcles (Geneva, 1882); R. Rohricht and H. Meisner, Dexische Pijgerveisen nach dem heiligen Land (Berlin. 1882, new ed., Innebruck, 1900); L. Conradi, Vier pheinische Palastina-Pilgerscheriftes des XIV., XV., XVI. Jahthumderts (Wiesbaden, 1882); G. B. de Rogi, Roma sotterranea, i. 128 sqg . (Rome, 18G4); J. Marx. Dai Wallfakten is der kaiholischen Kirche (Trier, 1842): W. E. Scudamore, Dich of Chrish Antiquities, vol. ii. (London, i880).

PILIBHIT, a town and district of British India, in the Bareilly division of the United Provinces. The town-pop. (rgoi), 33.490 -contains the mosque of Hafiz Rahmat Khan, the Rohilla chieftain, huilt in the second half of the a8th century. Trade is mainly in agricultural produce, and in the products of the neighbouring Himalayan territory and Nepal.

The Disterct or Prifirit has an area of 1350 sq. m.; pop. (1901), 470,339, showing a decrease of 3% in the decade. Thougi so near the Himalayas it is entirely a plain. In its midst is the Mala swamp. The east is forest-clad, poor and unhealthy; on the other side of the Mala the land becomes more fertile. The chief river is the Sarda, and the Gumti rises in the east. The principal crops are rice, pulses, wheat and sugar-cane. Sugar-refining is carried on, and sugar, wheat, rice and hemp are exported. The Lucknow-Bareilly section of the Oudh \& Rohilkiand railway runs through the district, a portion of which is watered by the Rohilkhand canals.

Pillar (O. Fr. pitar, Mod, pilier, Late Lat. pilare, from pila, column), an isolated upright stricture, of narrow width in relation to its height, which is either employed as a support for a superincumbent load of some sort or is set up for commemorative or ornamental purposes. In the first sense the word has many common applications, as to columns supporting the girders of a
warehouse floor or the deckbeams of a ship, to the aingle central support or pedestal of a tahle, machine-tool, \&c., and to the masses of coal which the miner leaves in certain methods of morking as supports to the roof (see Coul); it is also used figuratively of persons in such phrases as a "pillar of the state." In architecture it has strictly the second sense. The columa erected in honour of Diocletian at Alemandria is known as Pompey's pillar, and the so-callod columns of Traian and Antoninus are in reality pillars, performing no structural function beyond that of carrying a stetue. In India the only example is the iron pillar at Delhi, which is an extraordinary specimen of the ironworker's art considering the remote date at which it was made. Up to the middle of the igth century the term "pilar" was employed to designate the masses of masonry in a church, which carry the arcades, but now the term "pier" is invariably adopted in preference.
PlLLAU, a seaport and watering-place of Germany, in the Prussian province of East Prussia, on the spit of sand (Nehrang) which separates the Frische Haff from the Baltic, on the sorth of the entrance channel, and 29 m . hy rail from Konigsberg. Pop. (1905), 7374. It is fortified and has a harbour, which serves as the outer port of Königsberg, and to some extent also of Elbing and Braunsberg. A new navigable channel was in 1000-1901 constructed across the Frische Hafi from Pillau to Könizsberg. Pillau has a school of navigation, and is a well-known pilot station. Ship-building, sail-making, Gshing and the working of amber are carried on.

Pillau is memorabie as the place where Gustavus Adolphus of Sweden inded in 1626. It did not obtain civic privileges until 1725, but was fortified shortly after that date. In 8807 it offered a stout resistance to the French. By a treaty of the 24 th of Fchruary 1812 it was ceded to Napoleon, but on the 6th d Pebruary in the following year it was restored to Prussia.

PILLIOM, a light saddle without pommel or bow; especially a pad fastened to the back of an ordinary saddle, as a seat for another person, generally a woman. Pillions were also used to support baggage. They were in common use from the 16 th to the 182h centurics. The word appears to have been adapted into English from the Irish pillin, cushion, formed from Lst. pellis, skin. In the sense of a hat worn by a priest or doctor of divinity, "pillon" or "pylioh" occurs in the 15 th and 16 h centuries. This is probably from Lat. pilews, a conical felt hat or cap, Gr. zithor.

PILLMITZ, a village in the kingdom of Sarony, situated on the right bank of the Elbe, 5 m . above Dresden. Pop. (1905), 770. The new palace of the king of Saxony was built in 1818 on the site of a building which was destroyed by fire. The place became a residence of the electors of Saxony about 5700 , and the different parts of the palace were erected at various times during the 18 th century. By the convention of Pillnitz in August 1791 the emperor Leopold II. and Frederick William II., king of Prussia, agreed to take common action against any attack on the part of France; this compact may be regarded as the basis of the first coalition against that country.

See A. von Minchwitz, Gesckichle vom Pillwids (Dreaden, 1893).
PILLORY (O. Fr. pilori, Prov. espillori, from Lat. speculatorium, a place of observation or "peep-hole '", an instrument of punishment which consisted of a wooden post and frame fixed on a platform raised several feet from the ground, behind which the culprit stood, his head and his hands being thrust through holes in the frame (as are the feet in the stocks) so as to be held fast, exposed in front of it. This frame in the more complicated forms of the instrument consisted of a perforated iron circle, which secured the beads and hands of several persons at the same time, but it was commonly capable of holding only one.

In the statutes of Edward I. it is enacted that every pillory or "stretch-neck" should be made of convenient strength 80 that execution might be done on offenders without peril of their bodies. It was customary to shave the heads wholly or partially, and the beards of men, and to cut off the hair and even in extreme cases to shave the heads of female culprits. Some of the offences punished in England by the pillory will be found enumerated in
a statute of Fienry III. (1260). By this "Statute of the Pillory" it was ordered as the penality for "forestallers and regrators, users of deceitful weights, perjurers and forgers." Stow, describing Comhill piliary, says: "On the top of the cage (a strong prison of timber) was placed a pillory for the punishment of bakers offending in the assize of bread, for millers stealing corn at the mill, for bauds, scokds and other offonders" Until 1637 the pillory was reserved for stach offenders. In that year an attack was made on the Press, and the pillory became the recognized punishment of those who published books wihhout a licence or libelied the government. Alexander Leighton, John Lilburn, Prynne and Danill Defoe were among those who suffered. These were popular favourtes, and their exposures in the pillory were converted into publle triumphs. Titus Ostes, howover, was put in the pillory in 1685 and nearly killed. In 1816 the pillory was abolished except for perjury and subornation, and the perjurer Peter James Bossy was the last to stand in the pillory at the Oid Bailey for one hour on the and of Jwe 1830. It was finally abolished in 1837 at the end of Wiliam IV.'s reign. In France the pillory, callod corcan, was employed till i83a. In Germany it wris kiown as pranger. The pillory was used in the American colonies, and provisions as to its infiction existed in the Unded States statute books until 1839; it survived in the stase of Delaware until sgo5.

Finger-pillorics were at one time in common use as instraments of domestic punishment. Two stont pieces of oak, the top being hinged to the bottom or fixed piece, formed when closed a number of holes sufficiently deep to admit the fiaget to the second joint, holding the hand imprisoned. A fingerpillory is preserved in the parish church of Ashby-de-la-Zouch, Leicestershire, and thare is one, still in its originial gituation against the wall, at Littlecote Hall, Wilts.

PILLOD (O. Eng. polw; Lat. pubinas, a cushion), a support for the head during sleep or rest. The pillow of Western nations is a cushion of linen or other material, stuffied with fonthers, down, hair or wool. In the East it is a framework made of bamboo of ratan with a depression in the top to recelve the neck; simifiarly blocks of wood with a concave-shaped top are used by the natives of other countrics. The word is iound in various tectnical ases for a block or support, as for a hrass bearing for the journal of a shaft, and the like. In architecture the term "pillowed," or "privinated," is given to the frieze of an order which bulges out in the centre and is convex in section. It is found in frieres of some of the later warks of the Roman school and is common in Italian practice.

PILOCARPINI, $\mathrm{C}_{41} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{2}$, an alkaloid found, together with isopilocarpine and other related compounds, in the leaves of juborandi (Rilocarpus pennatifolius). It was firs isolated by E. Hardy in 8875 (Ber., 8, p. 1594), and is a crystalline, very bygroscopic solid. It is a strong poison. It has the properties of a monacid base and contains the methylamino group, $\mathbf{N C H}_{5}$ When heated with hydrochloric acid is gives isopilocarpine. Isopilocarpine was isolated in 1900 by .H. A. D. Jowett (Jowrw. Chem. Sec. 77, P. 473), and is a colourless oil which boils at 261° C. (10 mm .). It is a monacid base which is readily solubie in solutions of the caustic alkalis. Jowett is of the opinion that pilocarpine and isopilocarpine are stereo-isomers of the structure:-

PLLONA, a town of northern Spain, in the province of Oviedo; bet ween the sight bank of the river Pilofn, a teft-hand tribelary of the Sella, and the Sierra de Abes (3268 ft .). Pop. (1900), 28,228. Though officially classed as a town, Pilobe is rather a densely poppulated mining and agricultural district. It is served by the railway from Infiesto, on the river Pilotia, to Oviedo and Gijón.

PILOT, the name applied either to a particular officer serving on board a ship during the course of a voyage and having the charge of the helm and the ship's route, or to a person taken on bcard at a particular place for the purpose of conducting a ship through a river, mond or channel, or from or into a port. The
latter find is the only one to which the term is now apphed either in British or foreign countries. The word "pilot" is not the carly name for the man who guides or steers a ship. In Old English the name is Iddman, i.e. the man who leads the way. "Pilot" does not appear in English till the 18th cent ury. The origin of the word has been much debated. Many etymologists find it in the Dutch pijloot (Hexham's Dictionary, 1658). This has been identified with peillood, peil-loff, sounding lead, ef. German peilen, to sound; the last part of these words is the same as Engish " lead," the metal; the first part, peiten, is for pegelen, to mart with pegs or points for measuring, cf. pegel, gauge. The New Enghish Dictionary, on the other hand, finds that the Detch pioot, the carlier form, is taken from the French. The source is, therefore, to be looked for in Romance languages. Du Cange (Closs. Med. at Inf. Lat.) gives Pedottoc, defined as quorwm est scive intrare et exire portils, a gloss on pedotte e timonieri in F. Ubaldini's edition, 1640, of I documenti d'amore by Francesco da Barberino ($1264-1348$). It is therefore conjectured that the Italian pilota is a popular conception of pedofle, and a possihle source may be found in the Greek xifion, oar.

In England, formerly, pilots were subject to the jurisdiction of the lond high admiral; and in the $\mathbf{6 t h}$ century there are many instances of the admitalty court dealing with pilots disciplinarily as well as civilly, holding them liable in damages to owners of ships lost or damaged by their negligence. For some considerable time throughoat the United Kingdom the appointment and controt of pilots have been in the hands of numerous societfes or corportions established at the various perts hy charter or act of Parliament, such as the Trinity flouses of Deptiond Strond (London), Kingeton-upon-Fiull, Newciastle-on-Tyne, and Ieifth, and the Socioty of Cinque Ports Pilots and Court of Lodemanage (now extinct). These societies had jurisdiction over the pilots ekercising their employment within
the limits of such ports, and in many cases made it Ambortiles. compulsory for ships resorting thither to employ them. By degrees the Loxdon Trinity House aequired 2 leading position, which was confirmed and exteaded hy the general Pilotage Acts peased in the r8th and reth centuries, wih the ohject of introduaing a uniform system throughout the realm. At the present day tho United Kingdom is divided into districts for the purpose of pilotage jurisdiction. The (London) Trinity House has jurisdiction over the London district, which extends from Orfordiness to Dungeness, and comprises the Thames and Modway up to London and Rochester bridges; the English Channel district, comprising the sea between Dungeness and the Iste of Wight; and the Trinity outport districts, which inclade any pilotage districts for the appointment of pilots within which no particular provision is made by act of Parlimment or charter, and the number of which is 40, all English and Welsh. There are 66 other disericts, within which other pilotage authonities have jurisdiction.
The present general pllotage law is contained in the Merchant Shipping Acts 1894 to $\mathbf{3 g 0 6}$. Pilotage authorities are defined as bodies or persons authorized to appoint or license pilota, or to fix and alter vates of pilotage or to exercise any jurisdiction in respect of pilotage. They are subject to the control of the Board of Trade as the supreme mercantile marine authority. Those bodies, however, which existed at the time of the passing of the act retain their powers and jurisdiction, so far as is consistent with it. The board has power to appoint a new pilotage authority in any area where there is noos, and to include a new area where there is none within an already existing one fbet in either case pilotage cannot bo made compalsory), or to transfer pisiotage jurisdiction over a port other than that where the pilotage authority.for that port resides, from that pilatage authority to the harbour or other local authority for that port, or ta the Trinity House, or to a new authority; and the board has all powers necessary to effectuate sach transfer and constitute the new authority. The board may also, by provisional ardat (which requires parliamentary confirmation), provide for the sepruscutation of pilots ar shipowners on the pilotage authority
of any district, and The exemption of ships from compulsory pilotage in any district. Where pilotage is not compulsory, and the power of obtaining pilotage licences unrestricted, the board can in the same way give the pilotage authority powers with reapect to licences, amount of pilotage rates, and the like. Pilotage authorities may, by hy-laws under the act (which require confirmation by order in council), exelapt wholly or partly any ships or classes of ships from compuisory pilotage, and regulate the means of obtaining licences, and the amount of pilotage rates, subject to a maximum timit. They must make yearly returns to the Board of Trade of their by-laws, the names, ages and services of their licensed pilots, the rates of pilotage, the amounts received for pilotage and their receipts and expenditure; and if they fail to do 20 , the board may suspend their authority, which is then exercised by the Trinity House.
The statutes also provide generally for thequalifications of pilots. A" qualified " pilot is one duly licensed by a pilotage authority to conduct ships to which he does not belong. gramitos. ctome On his appointment he receives a licence, which is registered with the chief officer of customs at the nearest place to the pilot's residence, and must be delivered up by the pilot whenever required by the licensing pilotage authority. On his death this licence must be returned to that authority. By an act of 1906 no pilotage certificate shall be granted to the master or mate of a British ship unless he is a British subject; this does not, however, refer to the renewal of a certificate granted before 1906 to one not a British subject. Pilotage dues are recoverable summarily from the owner, master, or consignees of the ship, after a written demand for them has been made. A pilot may not be taken beyond the limits of his district without his consent, and if so taken he is entitied to a fixed daily sum in addition to the dues; if he cannot board the ship, and leads her from his boat, he is cntitled to the same dues as if he were on board; and he must be truly informed of the ship's draught of water. An unqualifed pilot may in any pilotage district take charge of a ship without subjecting himself or his employer to any penalty, where no qualified pilot has offered himself, or where a ship is in distress, or in circumstances where the master must take the best assistance he can, or for the purpose of changing the moorings of any ship in port on docking or undocking her; but after a qualified pilot has offered himself any unquabified pilot continuing in charge, or any master continuing him in charge of the ship, is liable to a penalty. A qualified pilot may not be directly or indirectly interested in licensed premises or in the selling of dutiable goods, or in the unnecessary supply of gear or stores to a ship for his personal gain or for the gain of any other person. He can be punished for quitting a ship before the completion of his duty without the consent of the master, refusing or delaying to perform his duty without reasonable cause when required by lawful authority, lending his licence, acting as pitot when suspended or when intoxicated, and any pilot who through wilful breach of or neglect of duty, or by reason of his drunkenness, endangers ship, life or limb, is guilty of a misdemeanour and liable to suspension or dismissal; but the pilot has an appeal in cases of fines over $\{2$, of suspension or dismissal, suspension or revocation of his licence, or the application of a pilotage fund to which he has contributed. This appeal lies in England to a county court judge having jurisdiction over the port where he is licensed, or a metropolitan police magistrate or stipendiary magistrate with the like power; in Scotland, to a sheriff; in Ireland, to a county court judge, chairman of quarter sessions, recorder, or magistrate. Pilotage certificates may also be granted by pilotage authoritics, availahle within their districts, to masters and mates of ships; and the holder of such a certificate may pilot any ship in respect of which it is available without incurring any penalty for not employing a qualified pilot.
${ }^{2}$ The statute further makes special regulation for Trinit y House pllots. Every such pilot, on his appointment, must execute a bond for froo conditioned for due observance of the Trinity House regulations and by-laws, and thercupon be is not liable bor neglect or ment of skill to anybody beyond the penaliy of the
bond and the amonnt payable so him for pilotage on the voyge on which he was engaged at the time of his so becoming liable. The licence may be revoked or suspended by the Trinity House when it thinks fit; it only continues in force for a year, and the Trinity House has absolute discretion whether it shall be renewed or not.
A pilot boat is approved and licensed by the district pilotage authority who appoints or removes the master thereof. In order to be casily recognized, she has printed on herstern in legible white letters the name of her owner and proe Bnows her port, and on her bows the number of her ticence; adStemes the remainder of the boat is usually black. The pilot flag is a red and white horivontal flag of a comparatively large sire, and is flown from 2 conspicuous position. When the flag is flown from a merchant vessel, it indicates that a licensed pilot is on board or that the master or mate holds a certificate entitling him to pilot the ship. By order in council of rgeo, on and after the ist day of January zgor the signals for a pilot displayed together or separately are: In daytime, there is (n) hoisted at the fore the pilot jack (Union Jack having round it a white border, one-filth of the breadth of the flag); (2) the international code pilotage signal indicated by P.T.; (3) theintermational code flag S. (white with small blue square centre), with or without the code pennant; (4) the distant signal consisting of a cone point upwards, having above it two balls or shapes resembling balle By night, (1) the pyrotechnic light commonly known as a blue light, every fifteen seconds; (2) a bright white light, flashed or shown at short or frequent intervals just above the bulwarks, for about a minute at a time.
Pilotage in British waters may be either compulsory or freefor all or certain classes of ships. From pariamentary pilotage returns, it appears that it is compulsory in about
64 districts of the United Kingdom (of which two-Cenjemery thirds are the Trinity House districts), free in 32, free and compulsory in 8, while in 3 cases (Berwick, Dingwall and Coleraine) no particulars are given. British warships in British waters are not compelled to employ a pilot, the navigating officer becoming the pilot under the direction of the captain. If a pilot be employed, the captain and navigating officer are not relieved from responsibility. They supervise the pillot, and should, if necessary, remove him from the ship. In the majority of forcign ports British war-ships are exempted from employing pilots, hut the Suex Canal and the ports of France are erceptions. The Merchant Shipping Act $\mathbf{8} 894$ continves the compulsory employment of pilots in all districts where it was already compulsory, and also the aiready existing exemptions; and there is no power in any pilotage avthority or the Board of Trade to increase the area of compulsory pilotage, though there is to diminish it. Compulsion is enforced by a provision in the act, that within a district where compulsory pilotage exists, the master of an unexempted ship who pilots her himsclif without holding the neceseary certificatc, after a qualified pilot has offered or signalied to take charge of the ship, shall be liable for each offence to a fine of double the amount of the pilotage dues demandable for the conduct of the ship. The exemptions from compulsory pilotage still existing in British territorial waters are as follows: Ships or veasels with British megisters trading to Norway or the Cattegat or the Baltic (except vescels on voyages between any port in Sweden or Norway and the port of London), or round the North Cape, or into the White Sea on their inward or out rard voyages, whether coming up by North or South Channek; any constant British traders inwards fnom ports between Boulogne inclusive and the Baltic coming up by North Channel, and any British ships or vessels trading to ports between the sume limits on their outward passages and when coming tup by the South Channek; Irish traders using the mavigation of the Thames and Medway; ships engaged in the regular coasting trade of the kingdom; ships or vessels wholly laden with stone prodtuced in the Channel Islands and Isle of Man and brought thence; ships or vessels not cxceeding 60 tons, whether Britich or belonging to a foreign country specified by order in council: ships within tho limits of the port or plece so which they belong; if
this is not a place particularly provided for by act of Parliament or charter as regards the appointment of pilots; ships peasing through the limits of any pilotage district in their voyages from one port to another port, and not being bound to any port or place within such limits or anchoring therein, but not including ships loading or discharging at any place situate within the district, or at any place situate above the district on the same river or its tributaries. Ships whose masters or mates are owners or purt-owners of them, and liviag at Dover, Deal, or the Iste of Thanet, may be piloted by then from any of these places up and down the Thames or Medway, or into or out of any place or port within the jurisdiction of the Cinque Ports. The following ships in the London district and Trinity outport districts are also exempt when not carrying passengers, namely: Ships employed in the coasting trade of the United Kingdom; ships of not more than 60 tons burden; ships trading to or from any port in Great Britain within the above diatricts to or from the port of Brest in Fracee, and any port in Europe (which does not include tbe United Kingdom) north and east of Brest, or to the Channel Lslands or Isle of Man; and ships navigating within the limits of the port to which they belong The port to or from which the ship must be "trading" in this provision has been interpreted by the decisions to mean the port where the cargo is subatantially discharged or loaded respectively; and the word "coaster" similarly has been held to apply only to a vessel carrying to one port of the United Kingdom a cargo which han been taken in at another. Every ship carrying passantern between any place in the British Lelands and any ocher place so situnce must carry a compulsory pilot, unlens her master or mate have a pilotago certificate. The effect in law of the ship (British or (oreign) being in charge of a compulsory piliot onder the act is that-her owner and master are not answerable to any porson whatever for any loss or damage occasioned by the fault or incapacity of any qualified pilot acting in charge of such ship within any district where the employment of such pilot is colinpulsory by law. In order to take advantage of this privilege, the shipowner must show (1) that a properly qualified pilat wan acting in charge of tbe ship; thore are, however, various kinds of gualifed pilots-the qualified pilot whois atwayscapable of acting, and the qualified pilot who is liable to be superseded if a better cas be obtained; (2) that that charge was conpulsory; the.pilot, however, need not be compulsorily employed at the place where the accident happened, so long as be is compulsonily employed witbin the diserict where it happens; (3) that it was solely the pilot's fuult or incapacity wbich caused the damage. Similarly, under the Harhours, Piers and Docks Clauscs Act, the owner of a vesel is not liable for damage done thereby to docks or piers when she is in charge of a duly licensed pilot.
This statutory exemption of a ship in charge of a compulsory pilot from any liability for her negligent navigation by that pilot, is only declaratory of the common law of England, and' is besed on the principle that the pllot is a state official put in charge of a ship, and is not the servant of the shipowner so as to make him liable for his negligence; and a British court gives the same effect to any forcign or colonial law which makes it compulsory on shipowners to put a pilot in charge of their ship when within their jurisdiction. Most foreign codes, however, while agreeing with English law in making the presence of a pilot on board compulsory, differ from it in not putting him in charge of the ship; and ln this case the defenco of compulsory pillotage cannot be pleaded succussfully in British courts. Judicial decisions have established that French, Suex Canal, Danube and Dutch pilots are not compulsory pilote in the British sense of the word, being only advisers of the master, or " living charts." But if the pilot is put in charge by the loreign or colonial law, although that linw expressly provides that in spite of the ownor surrendering the charge of the ship to him the owner shall atill remain liable, E British court will hold the owner free from ilablity; on the ground that to make any person liable for a tort commitited abroad, the act complained of must be wrongful not only according to the forelgn law, but also by Engirah law. This consequence which English law attaches to the employment
of a compabory pilot has been mach eriticisod in recuht times, and it would seem that the foreign view is much more satisfactory in regarding the pilot merely as the adviser and not the superior of the master. Moreover, the adoption of the forcign law on this point would restore the oid general marilime law. The policy of the law was at oue time inclined to extend this principle of compulsory pilotage, on the ground that it was for the benefit of commerce and the safety of seamen's lives, but it now restricts it within as nacrow limits as posaible, eg. the presence of a compulsory pilot on board a tow who is difecting the navigation of a tug does not protect the tug-owner from liability for negligent navigation. As already polnted out, pilotage authorities have $n 0$ power to extend its scope.
A pilot who is compulsorily in charge of a ship under English law has supreme control over her navigation, superseding the master for the time being; and if she is a tow he has also control of the nuvigation of her tug. The judicial decisions establish that it is within tis province to decide whether the ship shall get under way, the proper timeand place for her to anchor, the way of carrying her anchor, the proper orders for the belm, her rate of speed, and Whether the atatutory rules of navigation shall be complied with; and the master and crew must not interfere with his control, and only remain bable for the proper execution of the pilot's orders and the trim and general efficiency as to look-out, ze., of the ship. The master, however, is bound to supersede the pilot in cesse of his intoxication or manifest incapacity, and to interfere if there is a clear and plain prospect of danger to the ship in following the pilot's directions, e.g. getting under way in a thick fog. The pilot is entilled to receive from the master assistance in baving his attention called to anything which a competent mariner would sce that heought to know. A pilot taken voluntarily, and not by compulsion of law, is considered as the servant of the shipowner, and as sucb renders him liable for his acts of negligence towards third parties. He does not, it seems, supersode the master is the control of the ship, but only advises him. The Adminalty and the Board of Trade and the Trinity Hosse all take the view that the captain or miaster is bound to keep a vigilant eye on the navigation of the vessel by the pilot, and insist on all pioper precautions being taken. For the purposes of a policy of marine insurance a ship is not seaworthy witheut a piot in compulsory pilotage waters; and where there is no legal compulsion to have one, but the locality requires navigation by a person having locas knowledge, it has been said that a ship must take a pilot, certainly when leaving a port, and probably on entering a port if a pilot in available.
A pilot can sue for his pilotage fee at common law or in Admiralty (q.e.), in the latter case provided that the contract was made and the work done not within the body of a county; but he has a summary remedy by statve which is of easier application. He cannot be sued in Admiralty for damage done by a collision caused by his negligence (e.g. on the Admiralty side of a county court having Admizalty jurisdiction); but he caa be made Hable at common law or in the Admiralty Division of the High Court, although in the case of a Trinity House pllot his liability is limited to the amount of his hond and pliotage fee then being earned (soe above); but the court has rofused to join him as a defendant to an action in rew brought against the ship of which he had the charge. A pilotage authority ceannot ho made liable for the negfigent navigation of a ship by a pilot which in has bicensed, for he is not its servant, though it has been held Hiable for tbe negligence of a person not licensed by it as a pilot, bat employed by it for wages to pilot ships into a harbour under its jurisdiction, fowelf taking the plotage duesabd applying them for harbour purposes. A pilot is not in common employment whth tbe master and crew of a ship, and can recover for any injury done him by their negligence. He may be entitied to claim salvage from a ship of which he has charge, if the scrvioct he renders are beyond the scope of his pilotage contract, eithet from the outset or owing to supervening circumstances, but not otherwise, whether he is on board her or leading her from bit boat. (See Salvage.)
In the Unived Srates pilotage laws are regolated by tbe reepetcive
states If the waters are the boundary between two statco a duly, licensed pilot of either state may be employed, but no dis. crimination can be made in the rates of pilotage between vesscls of difierent states. In the Germon Empine the pilotage laws ate very complicated. In the majority of the maritime states each ons has its own reculations and lawn In Pressia there are opvernment pilots who enter the service at apprentices, and are placed under a department of state. In Framce the general organitation of pilots is regulated by the Statute on Pilots of the 12 th of December 1806, and the pilotage regulations for each port are made by the minister of marine it the request of his local repreentative and the Chamber of Commerce. French pilota are exempt from military service.

See Abbott, Shipping (London, 190i); Maude and Pollock, Shipping (London, 8881); Marsden, Colfitions at Sea (London, 1910); Select Pleas of the Adwirally (Selden Society, London. 1892 and 1897): Temperley, Merchoni Shipping Acts (tgo7): Twies, Blach Bopl of Admirally (London, 1871).
(G.G. P.© J. W. D.)

PIWOT-FISE (Namarates ductor), a pelagic fish of the family of horsemackerels or Carangidee, well known to sailors from its peculiar habit of keeping company with ships and laree fases, especially sharks. It occurs in all tropical and sub-tropical seas, and is common in the Mediterraneen, but becomes scarcer in higher latitudes In summer pilots will accompany shipe as far north as the south coast of England into port. This habit was known to the ancients, who describe the Pompilus as

Pilot-fish.
a fich mick peints out the way to dubious or embarraed sanoses, and by its sudden disappermance indicates to them the viefnity of land; the ancient seamea of the Mediterranean regurded it, thertore, as a sacred fish. That the pilot accompanics sharise is an observation fhich first appears in works of trivel of the 27 th enatury, the writerat asserting that it is of great ure to itt if comparion in conducting it and showing it the wry to its food. It is, however, extremely doubtful whether the pilot's bonnerion with a shark serves a more special purpose than its temporary attechment to a ship. It accompanies both on account of the mapily of food which it derives from them. The pilot, therefore, stands to both in the relation of a so-called "commenaly" Life the Echenis or aucking-fish. All obeervers, hovever, agree that neither the pilot nor the gucker is ever attacked by the shark. The pilot attains to a length of about 12 in. In the shape of its body it resembies a mackerel, but is rather shorter, especially in the head, and covered with stonall scales. A sharp keel runs along the middle of each side of the tail. The first domsal fin consists of a few short spines not connected by a membrane; the second dorsal and the anal are compoed of numerous rays. The teeth, which occupy the jews, vomer and palntine bones, are all small, in villiform bands. The coloration of the pilot renders it conspicuous at a distance; on a bluish ground-colour from five to seven dark-blue or vioket crom-bands traverse the body from the back to the belly. The pilot-fuch spewns in the open sea, and its fry is constantly canght in the sow-net. But yougg pilot-fish differ considerably from the adult, baving the spines of the first dorsal connected by a membrame, and mome bones of the head armed with projecting apides. Theae litcle fishes were therefore long considered to be : dintioct genus, Nawcres.

PIEOTY, EARL VON (I8a6-1886), German painter, we bora at Munich, on the rst of October 1826. His father, Ferdinand Piloty (d. 8844), emoyed a great reputation as a lithographer. In I_{40} he wat admitted as student of the Manich Acadomy, under the artists Schorm and Schnorr. After fourncy to Belgiun, France and England, he commenced work as a painter of gemre pictures, and in 1853 produced a work, Die Amme (" The Wet Nusee "), which op account of its ocigimitity of style,
catused a considerable sensation in Oemmany at the time. Bet be soon forsool this branch of painting in favour of histerical subjects, and produced in 1854 for King Maximilinn II. "Tre Adheston of Masimilian I. to the Cathotic League in 16eg." It was succeeded by "Seni at the Dead Body of Wallenstein" (8855), which gained for the young painter the membership of the Munich Academy, where be succecded Schom (his brother-inisw) es professor. Among other well-known works by Pioty are the "Battle of the White Mountain near Prague,", " Nero Dancing uponthe Ruins of Rome " (x86r), "Godirey of Bonitlon on a Pigrimage to the Koly Land " (1861), "Galileo in Prison" (1864); and "The Death of Alezamier the Great " (unfiniched). his inst great work. He also executed a number of mumal paintings for the royal palace in Munich. For Baron von Schach be painted the justly celebrated "Diccovery of Americt." In r874 he was appointed keeper of the Munich Acadeny, being afterwards ennobled by the king of Bevaría. Piloty was the foreunost representative of the realistic ochool in Cermany. He was a mot successful teacher, and mong his more fanows paphts may be mentioned Makert, Lenbach, Defreger, Mar and Grieanet. He died at Munich on the asst of July 1886.

Pressin (Crech, Plean), a town of Bohemia, Austrit, 68 n W.S.W. of Prague by rail. Pop. (900), 68,292, of which 94% are Czech. It is the second town of Bohemis, and lies at the confurence of the Radbust and the Mies. It consists of the town proper, which is regulariy beilt and surrounded wish promenindes on the site of the old ramparte, and of throesporibs. The most prominent buildings are the Gothic church of St Bartholomew, said to date from 1292, whose tower (325 ft.) is the highent in Bobemia, and the fine Rennissance comis M是 dating from the 70th century. The staple articie of manuincture and comumee is beer, which is exported to all parts of the wridh. Other Industrial products are machintry, enamelled timpres lenther, alum, paper, earthenware, stove and spirits, wirie a tolerably brisk irade is cartiod on in wool, feathert, cottle and hotses. In the neighboarhood ste weveral coal-pits, iren-morls and glase-wocks, as well as hage deposits of kactin.

Pilean fint appears in history in 976, as the ecene of a betile in the war between Prince Boleelnot and the emperor Otto II. and it became s town in rays. During the Fisaite vras it wn the centre of Catholic resistince to the IImeites; it wes throe times unauccemofully besieged by Prokop the Great, and it tont part in the ieague of the Romanist lards afoinat King Geore ol Podebrad. During the Thirty Years' War the tomra vers taken by Mrnsfield in r6a8 and not recoptured by the lmperiatiste ti? 162y. Walienstein mede it hia winter-quartess in 1683, and it wat in the great hall of the Refhams thet his geacrals teok de oath of fidelity to him (January 1634). The town Fas mbsecterefully besieged by the Swedes in 1637 and 1648. Thee frit Bohemien printing pres was established here in 1468.

FIIA, a tribe and stock of North American Indiant Theit range was soathem Arisona and northern Mexico. The Imined Piona village, known to the Spaniah as Casa Grande on the sonth bink of the Gila, is an example of their early civilisation apd strin in building: Driven out of their homes by neighbourins enibes, thoy lived a mote or less nomadic life. They were almys good firmers, thowing much akill in-irigation. At first gabonitine to the Spaniards, they revolted in 2751 , destroying all the misions. The wac lasted two yeas, but since then the Piren Indians have been friendly with the settlers. As a moce they are brave, honeat and hard working They namber some sooo ea two reservations to Arisoma, The Piman stock incleades soch tribes as the Papago, Huichol, Opatn, Tarurasi, and maribes upwards of a hundred thousand.

PIA EATX, also called Allspice (from se supposed combination of various fiavours) and Jamarca Prapras, the dried ingmature Irrit of Emgnia pimenter or Pimania ajicimalis, an evergreen tree about 30 ft . high, belongins to the natural order Myeleceace. It is indigenous in the Weat India Islands, growing on lionestose bills near the sen, and is eppecially gromn in Jamaica. The epice derivel its name from the Portuguese pincola, Spaninh fincrerte. pepper, which was diven to it from its reaemblange to
pepper-corns. The berries are gathered in July and August, when of full size, but still unripe-the small branches bearing fruit being broken off and dried in the sun and air for some days, when the stalks are removed and the berries are ready for packing. These owe their aromatic properties to an essential oil present to the extent of 3 to $4 \frac{1}{\%} \%$ and consisting largely of eugenol or allyd gaaiacol, $\mathrm{HO}\left(\mathrm{CH}_{3} \mathrm{O}\right) \mathrm{C}_{4} \mathrm{H}_{3} \cdot \mathrm{C}_{3} \mathrm{H}_{4}$. The chief use of pimento is as a spice. The oil, the action of which resembles that of cloves, is occasionally used in medicine, and is also employed in perfuming soaps. The " bay rum " used as a toilet article is a tincture acented with the oil of the leaves of an allied species, Pimenta acris, commonly known as the bayberry tree.
PIN (a doublet with " pen" from Lat. pimno, feather, pinnacle, which is said to contain the same root as sirus, pine tree, and properly to mean a sharp point or end), 2 small peg or bolt of metal or wood, not necessarily pointed, employed as a fastening to connect toget her different parts of an article, as a stop to limit the motion of some moving piece in a machine, as a support on which a small wheel may turn, \&c., but most commonly a small metal spike, used for fastening portions of fabrics together, having ooe end pointed and at the other a bulbed head, or some other arrangement for preventing the spike from passing entirely through the cloth or other material with which it is employed. In opie form or another pins of this last kind are of the bigheat antiquity, the earliest form doubtless being a natural thorn. Pins of bronze, and bronze brooches in which the pin is the essential feature, are of common occurrence among the remains of the bronze age. The ordinary domeatic pin had become in the isth century an article of sufficient importance in England to warrant legislative notice, as in 1483 the importation of pins was prohibited by statute. In 1540 Queen Catherine received pins from France, and again in 1543 an act was passed providing that "no person shall put to sale any pinnes but only such as sball be double beaded, and have the heads soldered fast to the shank of the pinnes, well smoothed, the shank well shapen, the points well and round filed, canted and shepened" At that time pins of good quality were made of brass; but a large proportion of those against which the legislative enactment was directed were made of iron wire blanched and passed as brass pins. To a large extent the supply of pins in England was received from Erance till about $\mathbf{1 6 2 6}$, in which year the manufacture was introduced into Gloucestershire by John Tilsby. His business flourished so well that he soon gave employment to 1500 persons, and Stroud pins attained a high reputation. In 1636 the pinmakers of London formed a corporation, and the manufacture yas subsequently established at Bristol and Birmingham, the latter town ultimately hecoming the principal centre of the industry. So carly as 1775 the attention of the enterprising colonists in Carolina was drawn to the manufacture by the cifer of prizes for the first native-made pins and needles. At a later date several pin-making machines were invented in the United States. During the war of 1812, when the price of pins rose enormously, the manufacture was actually started, but the industry was not fairly successful till about the year 1836 when the Howe Manufacturing Company was formed at Birmingham, Connecticut. Previous to this an American, Lemuel W. Wright, had in 1824 secured in England a patent for a machine to make solid-headed pins, which established the industry on its present basis.

The old form of pin consisted of a shank with a separate head of fine wire twisted round and secured to it. Fine wire for heads was frst wound on a lathe round a spit the exact circumlerence of the pin shanks to be headed. In this way a long clastic spiral was produced which had next to be cut into heads, each consisting of two complete turns of the spiral. These heads were softened by anncaling and made into a heap for the heading boy, whose duty was to thrust a number of shanks into the heap and let as many as might be fit themselves with heads. Such shanks as came out thus headed were passed to the header, who with a falling block and die arrangement compressed together shank and head of such a number as his dic-block was fitted for. All the other operations of straightening the wire, cutting, pointing, \&c., were separately performed, and these numerous details consiected with the production of a common pin were seized on by Adam Smith as one of the most remarkable illustrations of the advantages of the division of labour.

The beautiful automatic machinery by which pins are poor made of single piecen of wire is an invention of the 19 th century in 1817 a comimunication was made at the Patent Office by Seth Hunt. describing a machine for making pins witb "head, shaft and point in one entire piece." By this machine a suitable length of wire wan cut of and held in a die till a globular head was formed on one end by comprewion, and the ocher end was pointed by the revolution aroupd it of a roughered steel wheel. This machioe does not appear to have come into use; but in 1834 Wright patented the pin-making apparatus above referred to as the parent form of the machinery now employed. A factory equipped witb his machinet was entablished in London, but the compeny which owned it was not succenerul. The plant pessed into the hands of Daniel FooteTayler of Birmingham, who obtained an extensioo of Wright's patent for five years from 1838, and his firm was the first to carry on the production of machine-made solid-headed pins on a commercial bacie. lo a modern pin-making machine wire of suitable gauge running of a reel is drawn in and straightened by paseing between atraightening pins or studs set in a table. When a pin length has entered it is caught by lateral jaws, beyond which enough of the end projects to form a pin-head. Against this end a steel punch advances and compresees the metai, by a die arrangenent into the form of a head. The pin iength is immediately cut off and the headed picee drops into a slit sufficiently wide to pass the wire through but retain the head. The pins are consequently aspended by the head while their projecting extremitien are held against a revolving cutter, by which they are pointed. They are next cleaned by being boiled in weak beer, and then arranged in a copper pan in layers alternating with layers of grained tin. The contents of the pan are covered with water over which a quantity of argot (bitartrate of potash) is sprinkled, and after boiling for everal hours the brass pins are coated with a thin deposit of tin. which gives them their silvery appearance. They are then washed in clean water, and dried and polished by being revolved in a barrel, mixed with dry hran or fine sawdust, from which they are winnowed finiabed pisu. A large proportion of the pins sold are stuck into paper by an automatic machine not leas ingenious than the pinmaking machine itself. Mourning pins are made of iron wire, Gnished by immersing in black japan and drying in a stove. A considerable variety of pins, including the ingeniously coiled, bent and twisted nursery wafety pin. ladies hairpins, \&c, are also made by automatic machinery. The sirzs of ordinary pins range from the 3 -in. stout blanket pin down to the finest slender gilt pin used by entomologists, 4500 of which weigh about an ounce.
PINA, RUY DZ (1440-152I), Portuguese chronicler, was a native of Guarda. He acted as secretary of the embassy sent by King John II. to Castile in the spring of 1482, and in the following September returned there as sole envoy. He was present at the execution of the duke of Braganza at Evore in 1483, and in 1484 went to Rome as secretary of an embassy to Pope Innocent VII. On his return, the king charged him to write a history of his reign and gave him a pension for his suppart. Following the arrival of Columbus from his first voyage in 1493, Pina was one of the commissaries despatcbed to Barcelona by John II. to negotiate with the Catholic sovereigns respecting the limits of their respective jurisdictions. In September 1495 he attested the will of John II. in his capacity as a notary public, and on the $\mathbf{2 5}$ th of October of the same year he was present at his master's death at Alvor and opened and read his testament. King Manoel confirmed his pension and appointed him in 1497 chronicler of the kingdom, keeper of the archives and royal librarian, with a suitable salary. By 1504 Pina had completed his chronicies of Alphonso V. and John II. King John III. charged him with a history of his father, Manoel, and at his death Pina had carried it down to the capture of Azamor, as we know from Damizio de Goes, who used it ia preparing his own chronicle of that monarch.

It is probable that the chronicles of the early kings of Portugal from Sancho I. to Alphonso IV. which were published under Pina's name in the 18 th century were writen by Eernão Lopes and edited hy Pina, while that of King Duarte seems to have been the joint production of Lopes and Azurara, with Pina again as the editor oniy. Pina was a favourite of fortune during his life, for, apart from royal benefactions, he received presents from public men who wished to figure well in his books, and after his death be obtained the credit for work that was not his. His authority as an historian is considerable, and his frankness is said to have provoked remark from contemporaries.

Pina's chronicle of King Alphonso IV. was first published in Lislon in 1853: those of King Duarte and King Alphonso V. in vol. i. of the collecdo de liters ineditos da historia portugueza
(Liftoon, 1790), and his chromicle of John II. in vol. it. of the same collection (Lisbon, 1792). The introduction to the chronicle of King Duarte conting the fullest account of Pina's life. (E. Pr.)
PIMA COTHECA, a picture-gallery (Gr. тvaxolism, from π ivak, a tablet or picture). The name is eapecially given to the building containing pictures which formed the left wing of the Propylaca on the Acropolis at Athens. Though Pausanias (Bk. II., xxii. 6) speaks of the pictures "which time had not effaced," which seems to point to-fresco painting, the fact that there is no trace of any preparation for stucco on the walls rather shows that the paintings were casel pictures (J. G. Fraver, Pancanias's Description of Grecce, 1898 , ii. 252). The Romans adopted the term for the room in a pivate homse containing pictures, statues, and other works of art. It is used for a public gallery on the continent of Europe, as at Bologna and Turin. At Munich there are two galleries known as the Old and New Pinakothek.
pilala del Ryo, capital of Pinar del Rio Province, Cuba, about 107 m. S.W. by railway from Havane. Pop. (1907), 10,634. The cit y is in the fertile valley of the Guama. It is the centre of the tobacco industry of the Vuelta Abajo region. Its port is La Coloma, on the southern coast. The pueblo was created after 1773; but the history of the settlement goes beck to 1571 , and the parochial church dates from 1710 .

PIICISIEY, CHARLES (1757-1824), American statesmian, was born on the 26 h of October 1757 at Charleston, South Carolina; he was the son of Charles Pinckney ($\mathbf{2 7 3 1 - 1 7 8 4 \text {), first }}$ president of the first South Carolina Provincial Congress (Jan. to June 1775), and a cousin of Charles Cotesworth Pinckney and Thomas Pinckney. He was studying law at the outbreak of the War of Independence, served in the early campaigns in the South, and in 1779 was elected to the South Carolina House of Representalives. He was captured by the British at the fall of Charleston (1780), and remained a prisoner until the close of hostilities. He was elected a delegate to the Congress of tbe Confederation in 1784, $\mathbf{r 7 8 5}$ and 1786 , and in 1786 he moved the appointment of a committee " to take into consideration the affairs of the nation," advocating in this connexion an enlargement of the powers ol Congress. The committee having been appointed, Pinckney was made chairman of a sub-committee which prepared a plan for amending the articles of confederation. In ${ }^{1787}$ he was a delegate to the Federal constitutional convention, and on the same day (May 29) on which Edmund Randolph ($q . r$.) presented what is known as the Virginia plan, Pinckney presented a draft of a constitution which is known as the Pinckney plan. Although the Randolph resolutions were made the basis on which the new constitution was framed, Pinckney's plan seems to have been much drawn upon. Furthermore, Pinckney appears to have made valuable suggestions regarding phrasing and matters of detail. On the 18 th of August he introduced a series of resolutions, and to him should probably be accredited the authorship of the substance of some thirty-one or thirty-two provisions of the constitution. ${ }^{1}$ Pinck-
"The "Pinckney Plan" has been the subject of considerable discussion. When. in 1818, John Quincy Adams was preparing the journal of the convenion for publication and discovered that the Pinckney pian was missing, he wrote to Pinckncy for a copy, and Pinckncy sent him what be asserted was cither a copy of his original draft or a copy of a draft which differed from the original in no essentials. But as this was found to bear a close resemblance to the draft reported by the committee of detail, Madison and others, who had been members of the convention, ts well as historians, treated it as epurious, and for years Pinckney reccived little credit for his work is the conveation. Later historians, however, notably I. Franklin Jameson and Andrew C. McLaughlin. have accredited to him the suggestion of a number of provisioms of the constitution as a renalt of their efforts to reconstruct his original plan chiefy from his epeches, or alieged gpeeches, and from certain papert of James Wilson, a member of the committce of detail, one of which papers is believed to be an outline of the Pinckney plan. Which papers is believed to be an outine of the Pinckney, pan. vertion of 1787 ," in the Amwal Repert of the American Historical Aesciteion for igoz, vol. i.; A. C. McLaughlin, "Outime of Pinckney's Plan for a Constitution," in The Nation. April 28. 1904; an article entitled "Sketch of Pinckney's Plan for a Constitution:" in the American Mistorical Review for July r904; and C. C. Nott. The Mystery of the Pinchney Draxght (New York, 1908), an attempt by a former chief-justice of the U.S. Court of Claims to prove thit
ney was president of the State Convention of 5790 that framed a new constitution for South Carolina, was governor of the state from 178 g to 1792 , a member of the state House of Representatives in 1798-1796, and again governor from 1796 to 1798. From 1799 to 180r he was a member of the United States Senate. He entered public life as a Federnlist, but later became the leader in organizing the Democratic-Repubican party in his state, and contributed largely to the success of Thomas Jefferson in the presidential election of 1800 . By Jefienson's appointment he was American minister to Spain from r8or to 1805. In general his mizsion was a diatinct failure, his arrogance and indiscretions finally causing the Spanish government to request his recall. He was elected to the state Hoonse of Representatives in 1805, was agnin governor of South Carolina from r806 to 1808, in 18ro-1814 was once more a member of the state House of Representatives, in which he defended President Madison's war policy, and from 1819 to 1821 was a nisember of the National House of Representatives, in which he opposed the Missouri Compromise in a hrilliant speech. He died at Charleston, South Carolina, on the ggth of October 1824.

His son, Henky Lauriens Pinciney (1794-1863), was a member of the state House of Representatives in 1816-1832, founded in $\mathbf{1 8 1 9}$ and edited for fifteen years the Charleston Mercury, the grett exponent of et ate's rights principles, and was a member of the National Howse of Representatives in 1833-1837.

PINCKNIT, CHARLS COTESWORTH (1746-1825), American statesman, was born in Charleston, South Carolina, on the 25th of February 1746, the son of Charies Pinckney (d. r758): by his second wife, the celobrated girl planter, Eliza Lucas. When a child he was sent to England, like his brother Thomas after him, to be educated. Both of them were at Westminster and Oxford and were called to the bar, and for a time they studied in France at the Royal Military College at Caen. .Returning to America in 1769, C. C. Pinckney began the practice of Jaw at Charleston, and soon became deputy attorney-general of the province. He was a member of the first South Carolina provincial congress in 1775, served as coloacl in the Sonth Carolina militia in 1776-1777; was chosen president of the South Carolina Senate in 1779, took part in the Georgia expedition and the attack on Sevannah in the same year, was captured at the fall of Charleston in 1780 and was kept in close confinement until 1782, when he was exchanged. In 1783 be was commissioned a hrevet brigadier-general in the continental army. He was an influential member of the constitutional convention of 1787 , advocating the counting of all slaves is a basis of representation and opposing the abolition of the slavetrade. He opposed as "impracticable" the election of representatives by popular vote, and also opposed the payment of senators, who, he thoughe, should be men of wealth. Subsequently Pinckney bore a prominent part insecuring the ratification of the Federal constitution in the South Carolina convention called for that purpose in 1788 and in framing the South Carolina State Constitution in the convention of 1790 . After the organization of the Federal government, President Washingtoa offered him at different times appointments as associate justice of the Supreme Court (1791), secretary of war (1795) apd secretary the docyment sent by Pinckney to Adams in 1818 is a genuine copy of his original plan.
Charles Pinckncy, the father, was long prominent in colonial affairs; he was ettorney-general of the province in 1733. speaker of the astembly in 1736-1738 and in 3740 , chief justice of the province In 1752-1753, and agent for South Carolina in England in $1753-$
$1755^{\text {. He was the uncle of Charies Pinckney (1731-1784), and ithe }}$ great-uncle of Charles Pinckney (1757-1824). Ehiza Lucas Pinckney (c. 1772-1793) was the daughter of Lieut.-Colanel George Lucas of the British army, Who about 173^{8} removed from Antigua to South Carolina, where he acquired several plantations. He wat almost immediately recalled to Antigua, and his daughter under. took the management of the plantations with conspicuous maceess She is said to have been the first to introduce into South Carolina (and into continental North America) the cultivation and manufacture of indigo, and she also imported silkwormp-in 1753 she presented to the princess of Wales a drese made of wilk from her plantations. She was married to Charles Pinckney in 1744 See Harriot H. Ravenel. Eliza Piocknay (New York, Ieg6), in the " Women of Colonial and Revolutionary Times" series.
of state (1795), each of which he declined; but in 1796 he succeeded James Monroe as minister to France. The Directory refused to receive him, and he retired to Holland, but in the next year, Elbridge Gerry and John Marshall having been appointed to act with him, he again repaired to Paris, where he is ssid to have made the famous reply to a veiled demand for a "loan" (in reality for a gift), "Milions for defence, but not one cent for tribute," -another version is, "No, not a sixpence." The mission accomplished nothing, and Yinckney and Marshall left France in disgust, Gerry (g.v.) remaining. When the correspondence of the commissioners was sent to the United States Congress the letters " X," " Y " and " Z," were inserted in place of the names of the Freach agents with whom the commisaion treated-hence the " X Y Z Correspondence," famous in Ametican history. In 1800 he was the Federalist candidate for vice-president, and in 1804 and again in 1808 for president, receiving 14 electoral votes in the former and 47 in the latter year. From 1805 until his death, on the 16th of August 1825, be was president-general of the Society of tbe Cincinnati.
PINCKNEY, THOMAS ($1750-1828$), American statesman äd diplomat, was born in Charleaton, South Carolina, on the arrd of October 1750, a younger brother of Charles Cotesworth Pinckney (q.v.). Educated in England, he returned to Charleston in 1773, and was admitted to the bar in 1774. During the War of Independence his early training at the French military college at Caen enabled him to render effective service to General Benjamin Lincoln in 1778-1779, to Count d'Estaing (1779), to General Lincoln in the defence of Charleston and afterwards to General Horatio Gates In the hattle of Camden he was badly wounded and captured, remaining a prisoner for more than a year. Subsequently he was governor of South Carolina in 1787-1789; presided over the state convention which ratified the Fcderal constitution in 1788; was a member of the atate legislature in 1791; and was United States minister to Great Britain in 1792-1796. During part of this time (1794-1795) be was also envoy extraordinary to Spain, and in this capacity negotiated (1795) the important Treaty of San Lorenzo el Real; by that treaty the boundary between the United States and East and West Florida and between the United States and "Louisiana" was settled (Spain relinquishing all claims east of the Mississippi above $31^{\circ} \mathrm{N}$. lat.), and the United States secured the freedom of navigation of the Mississippi to its mouth with the right of deposit at New Orleans for three years, after which the United States was to have the same right either at New Orleans or at some other place on the Mississippi to be designated by Spain. In 1796 Pinckney was the Federalist candidate for vice-president; and in 1797-18or he was a Federalist representatlve in Congress. During the War of 1812 he was a major-general. In 1825 he succeeded his brother as president-general of the Society of the Cincinnati. He died in Charlestion on the 2nd of November 1828. Pinckney, like many other South Carolina revolutionary leaders, was of aristocratic birth and politics, closely connected with England by ties of hlood, education and business relations. This renders the more remarkable their attitude in the War of Independence, for which they made great sacrifices. Men of Pinckney's type were not in sympathy with the progressive democratic spirit of America, and they began to withdfaw from politics after about 1800 .

Sce C. C. Pinckney, Life of General Thomas Pinckney (Boston, 1895).

PINDAR (Gr. Mindapor, C. 522-443 BC), the great lyric poet of ancient Greece, was born at Cynoscephalac, in Boeotia, at the time of the Pythian games (fr. 175. Bergk ${ }^{4}$, 193), ${ }^{1}$ which is taken by Böck to be 522 s.c. He would thus be some thirty-four years younger than Simonides of Cees. He was the son of Daiphantus and Cleodice (or Cleidice). The traditions of his family have left their lmpress on his poctry, and are not without importance for a correct estimate of his relation to his contemporaries. The clan of the Acgidae-tracing their line from the hero Aegeus-belonged to the "Cadmean" eiement

[^52] (1893-1899). and the lourth edition of Bergk's Poelae lyricy graeci.
of Thebes, is. so the elder nohility whose aupponed date went back to the days of the fouader Cedmus. A hranch of the Theban Aegider had been seluled in Achaean times at Amyclae in the valley of the Eurotas (Pind. Isthm. vi. 14), and after the Dorian conquest of the Peloponnesus had appasently been adopted by the Spartans inte one of the three Dorian tribes. The Spartan Acgidae helped to colonize the island of Thera (Pyth. v. 68-70). Another branch of the race was settled at Cyrene in Arica; and Pindar tells how his Aegid clansmen al Theben "showed honour" to Cyrene as often as they kept the festival of the Carnca (Pyth. v. 75). Rindar is to be conceived, then, as standing within the circle of those families for whom the heroic mythe were domestic records. He had a personal link with the memories which everywhere were most cherished by Dorians, no less than with those which appealed to men of "Cadmean " or of Achaean stock. And the wide remifications of the Aegidae throughout Hollas rendered it peculiarly fitting that a member of that illustrious clan should celebrate the glories of many cities in verse which was truly Panhellenic.

Pindar is said to have neccived lessons in Gute-playing from one Scopelinus at Thebes, and afterwards to have studied at Athens under the musicians Apollodorus (or Agathocles) and Lasus of Hermione. In his youlh, as the story weat, he wat defeated in a poctical contest by the Thehan Corinna-who, in reference to his profuse employment of Theban mythology, is said to have advised him " to sow with the hand, not welh the ssek." There is an extant fragment in which Corinna reproves another Theban poctess, Myrtis, "for that she, a woman,
 -a sentiment which hardly fits the story of Corinam's own victory. The facts that stand out from these meagre traditions are that Pindar was precocious and Laborious. Preparatory labour of a somewhat severe and complex. Kind was, indeed, indispensable for the Greck lyric poet of that age. Lytic composition demanded studies not only in metre but in music, and in the adaptation of both to the intricate movements of the
 odes glance at the long technical development of Greck lyric poctry before his time, and at the various elements of art which the lyrist was required to temper into a harmonious whole (see, c.g. Of. iii. 8، vi. 95, xiii. 18, xiv. 15 ; Pyth. xii 23, \&ec.). The earliest ode which can be dated ($P y / h, x$) belongs to the twentieth year of Pindar's age (502 b.c); the latest (Olymsi v.) to the seventieth (45^{2} 8.c.) ${ }^{2}$ He visited the court of Hiemo at Syracuse; Theron, the despot of Acragas, aleo entertained him; and his travels perhaps included Cyrene. Tradition notiges the special closeness of his relations with Delphi: "He was greatly honoured by all the Greeks, because he was so beloved of Apollo that he cven received a share of the offerings; and at the sacrifices the-pricst would cry aloud tbat Pindar come in to the feast of the god." ${ }^{2}$ His wife's name was Megacleia (another account says Timoxcna, hut this may have been a second wife), and he had a son named Daiphantes and two daughters, Eumetis and Protomache. He is said to have died at Argos, at the age of seventy-nine, in 443 B.C.

Among the Greeks of his own and later times Pindar was pre-eminently distinguished for his piety towards the gods. He tells us that, "near to the vestibule" of his house (P yth. iii. 78), choruses of maidens used to dance and sing by night in praise of the Mother of the Cods (Cybele) and Pan-deities peculiarly associated with the Phrygian music of the flute, in which other members of Pindar's family besides the poet himsell are said to have excelled. A statue and shrine of Cybele, which he dedicated at Thebes, were the work of the Theban arists, Aristomedes and Socrates. He also dedicated at Thebes a statue to Hermes Agoraios, and another, by Calamis, to Zeus Ammon. The latter god claimed his especial veneration because Cyrene, one of the homes of his Aegid ancestry, stood "where Zeus Ammon hath his seat," i.e. near the oasis and temple
Baccording to others, his latest poem is the eighth Pythina ode. 450 or $4 \not 46$.

Hubdoov rups, in ed. Ald.
（Pych．iv．16）．The author of one of the Greek lives of Pindar says that，＂when Pausanias the king of the Lacedacmonians was ourning Thebes，some one wrote on Pindar＇s house，＇Burn not the house of Pindar the poct＇；and thus it alone escaped destruction．＂This incident，of which the occasion is not further defined，has been regarded as a later invention．${ }^{1}$ Better attested，at least，is the similar clemeacy of Alerander the Great， when he sacked Thebes one hundred and eight years after the traditional date of Pindar＇s death（ 335 e．c．）．He spared only （1）the Cadmeia，or citadei，of Thebes（thenceforth to be occupied by a Macedonian garrison）；（2）the temples and holy places；and （3）Pindar＇s house．While the inhabitants were sold into slavery，exception was made only of（1）priests and priestesses； （2）persons who had been connected by private geria with Philip or Alexander，or hy public Egia with the Macedonians； （3）Pindar＇s descendants．It is probable enough，as Dio Chry－ sostom suggests（ii．33），that Alexander was partly moved by personal gratitude to a poet who had celebrated his ancestor Alexander 1．of Macedon．But he must have been also，or chiefly，influenced by the sacredness which in the eyes of ail Hellenes surrounded Piadar＇s memory，not only as that of a great national poet，but also as that of a man who had stood in a specially close relation to the gods，and，above all，to the Deiphian Apollo．：Upwards of six hundred years after Pindar＇s death the traveller Pausaniss saw an iron chair which was preserved among the most precious treasures of the temple in the anctuary at Delphi．It was the chair，be was told，＂in which Pindar used to sit，whenever he came to Delphi，and to cbant those of his songs which pertain to Apollo＂（x．24，5）．

During the second half of Pindar＇s life，Athens was rising to that supremacy in literature and art which was to prove more lasting than her political primacy．Pindar did not live to see the Parthenon，or to witness the mature triumphs of Sophocles； but he knew the sculpture of Calamis，and he may have known the mascerpieces of Aeschylus．It is interesting to note the feeling of this great Theban poet，who stands midway between Homeric epos and Athenian drama，towards the Athens of which Thebes was so often the hitterest foe，but with which he himself had so large a measure of spiritual kinship．A few words remain from a dithyramb in which he paid a glowing tribute to those ＂sons of Athens＂who＂laid the shining foundations of frec－
 fr 55，Bergk＇，77），while Athens itself is thus invoked：
 ＇A日àv，baupberor mтоNiefpor（fr．54，Bergk＇，76）．Isocrates，
 ＂stay of Hellas，＂so greatly gratified the Athenians that they conferred on Pindar the high distinction of roogevia（i．e． appointed him honorary consui，as it were－for Athens at Thebes）， besides presenting him with a large sum of money（Antidosis， 166）．One of the letters of the pseudo－Aeschines（Ep．iv．）gives an improbahie turn to the story by saying that the Thebans had fined Pindar for his praise of Athens，and that the Athenians repaid him twice the sum．The notice preserved by Isocrates －less than one hundred years after Pindar＇s death－ls good warrant for the belief that Pindar had received some exceptional honours from Athens．Pausanias saw a statue of Pindar at Athens，near the temple of Ares（i．8，4）．Besides the fragment just mentioned，several passages in Pindar＇s extant odes bespeak his love for Athens．Its name is almost always joined by him with some epithet of praise or reverence．In alluding to the great battles of the Persian wars，while he gives the glory of Plataca to the Spartans，he assigns that of Salamis to the Athenians（ Pyth．i．76）．In celebrating（Pyth．vii．）the Pythian
${ }^{1}$ A．Schafer，Demosthenes wad seinc Zeit．ini． 119.
＇II will be remarked that history requires us to modify the state－ ment in Milton＇s famous lines：－
＂The great Emathian conqueror bade spare The house of Pindarus，when lemple and tower Went to the ground．＇
Indeed，the point of the incident depends much on the fact that the temples and Pindar＇s house were classed together for exemption．
－Compare Jebb．Alic Orators，ii． 143.
victory of the Athenian Megacles，he begins thus：＂Fairest of preludes is the renown of Athens for the mighty race of the Alcmaconidae．What home，or what house，could I call mine hy a name that should sound more glorious for Hellas to hear？＂ Referring to the fact that an Aeginetan victor in the ga mes had been trained by an Athenian，he says（Nem．v．49）＂meet it is that a shaper of athletes should come from Athens＂－and recollecting how often Pindar compares the poet＇s efiorts to the athlete＇s，we may well believe that he was thinking of his owu early training at Athens．

Pindar＇s versatility as a lyric poet is one of the characteristios remarked by Horace（Odes，iv．2），and is proved by the fragments， though the poems which have come down entire represent only one class of compositions－the Epinicia，or odes of victory，commemorating successes in the great games．The lyric types to which the iragments belong， though it cannot be assumed that the list is complete，are at least numerous and varied．
（1）Turox，Hywns to deities－as to Zella Ammon，to Persephone． to Fortunc．The fragmentary bynos entitled onpabors seems to have colebrated the deitics of Thebes，（a）Mau 2 wr，
porans，expressing prayer or praise for the helo of pocons，exprcsing prayer or praise for the help of Zass．（3） avolpap弓or．Dilhyramby，odes of a lofty and impassioned strain． sung by choruses in honour of Dionysus（cf．Pind．α ．xiii．18，
 Pindar aliudes to the choral form given to the dithyramb．
 ＂winning an ox 25 prize ${ }^{\prime}$ ）．（4）Пpos 8 ie，Processional Sonts， choral chants for worshippers approaching a shrine．One was written by Pindar for the Delians，another ior the Aeginetans （5）पapobia，Charal Somes for Haxdens．The reference in Pyid． ifi． 78 to maidens workhipping Cybele and Pan near the poet＇s house is illustrated by the lact that one of these mapolsece invoked \because Pen，lord of Arcadia，attendant of the Great Mother，watcher of her awful shrine＂（fr．72，Bergt＇95）．（6）Tropxtfeara，Choral Daxce－Songs，adapted to a lively movement，used from an earty date in the cult of Apollo，and afterwards in that of other gods especially Dionysus．To this class belongs one of the finest lrap． menss（ 84 ，Bergk＇，107），written for the Thebans in connexion with propitiatory rite alter an eclipse of the sun，probably that of the 30 th of April 463 日．c．（7）Eycioula，Somgs of Praise（for men． while spow were for gods），to be sung by a vimor or festal company． In strictness drudjop was the genus of which exulecoes was a spocies；but the latter is more conveniently treated as a distinct kind．Pindar wrote encomia for Theron．despot of Acragas，and for Alecander 1．（son of Anyntas），king of Macedon．（8）Eabiue． Festal Soncs．The ueval sense of oxbhion is a drinkingrong，taken up by one fuest afte another at a banluct．But Pindars＇andice were chora sand ant elfophic．One was to be sung at Corinth by a chorus of the lasioula attached to the tempte of Aphrodite Ourania，when a certain Xenophon offered sacrifice before going to compete at Olympis．Another brilliant firgment．for Theoxemus of Tenedos，has an crintic character．（9）O，Wox，Dirgss，to be sung with choral dance atid the music of the flite，cither at the burial of the dead ar in commemorative rituals．Some of the mos beautiful fragmente in：long to this elass（tof－ito，Bergk ${ }^{4}$ ，129－133）． One of the smaller frigments（ 114 ，Bergk ${ }^{\prime}{ }^{137 \text { ）－in memory of an }}$ Athenian who had been initiated into the Elcusinian mysteries （Lbse kitue）－has been ennjecturally referred to the Opipon which Pindar is said to have written（sehol．Pyth．vii．18）（or Hippocrates， the grandfather of Puricjes．A numbir of mail frapments，which
 ＂of uncertain class．＂On comparing the above list with Horace． Odes，iv． 2 ，it will be seen that he alludes to No． 3 （dithyrambos）； to Nos 1，2，and 7 （sem deas regessoc camil）；and to No． 2 （febiti sponsce juvenewde raptum Ploral）－as well se to the extant Epinicios （sive quas Elea domam reduci Palma caekettes）．

The Epinicia．－The krwical（sc．milin），or trubiace（se． 0^{\prime} ura），＂Odes of Victory，＂form a collection of forty－foer odes， traditionally divided into four books，answering to the four
 winaers of the wild olive－wreath in the Olympian games，held at Olympia in honour of Zeus once in four years；（a）Huenorion： twelve odes for winners of the laurel－wreath in the Pythian games held at Delphi in honour of Apollo，once in four years， the third of each Olympiad；（3）Nepeorikan：eleven odes for winners of the pine－wreath in the Nernean games，beld at Nemes， in honour of Zeus，once in two years，the second and fourth of cach Olympiad；and（4）Tofpovixau：seven odes for winners of the parsley wreath in the Isthmian games，beld at the Isthmas
of Cortath，in honour of Poweidon，once in two yoars，the first and third of exch Oiympiad．The Greek way of citiog an ode is by the nomin．pow．followed by the numeral，e．g．＂the ninth Olympian＂is＇OAupmenvixah O＇．The chronoiogical range of the colloction（so far as ascertainable）is from 502 E C（Pylh．a．） to 452 B．C．（ O, ．v．）．With respect to the native places of the victors，the geographical distibution is at follows：for the mainland of Greece proper， 13 odes；for Aegina，11；for Sicily， 15；for the Epizephytian Locrism（southern Italy），2；for Cyrene（Africa）， 3 ．
The general charecteristics of the odes may be briefly con－ sidered under the following heads：（1）language；（2）trealment of theme；（3）sentiment－religious，moral and political；（4） relation to contemporary art．
1．The diction of Pindar is distibet in character from that of every other Greek poet，being almost everywhare marked by the greatest imaginative boldness．Thus（a）mataphor is used even for the expresaion of common ideas，or the translation ni familiar phrases，as when a cloak il called（ $O 1.15 .97$ ）＂a warm remedy for winds．＂（b）Images for the highest excellence are drawn from the farthest limits of travel or navigetion，or from the fairest of natural objects；as when the superlative hospitality of a man who kept open house all the year round is described by saying，＂far as to Phasis was his voyage in summer days， and in winter to the shores of Nile＂（Isthm．ii．41）；or when Olympia，the＂crown＂or＂\＆ower＂of festivals，is sand to be excellent as water，bright as gold，brilliant as the noonday sun （Ol．i．ad inil．）．This trait might be called the Pindaric imagery of the swpertative．（c）Poctical inversion of ordinary phrase is frequent；as，instead of，＂he struck fear into the beasts，＂＂he gave the beasts to fear＂（Pylk．v 56）（d）The efforts of tbe poet＇s genius are represented under an extraordinary number of similitudes，borrowed from javelin－throwing，chariot－driving， leaping，rowing，sailing，ploughing，huilding，shooting with the bow，sharpening a knife on a whetstone，mixing wine in a bowl， and many more．（a）Homely images，from common life，are not rare；as from account－keeplng，usury，sending menchandise over sea，the $\sigma k u r d \lambda y$ or secret dispatch，\＆rc．And we have such homely proverbs as，＂he hath his toot in this shoe，＂i．c． stands in this case（OU．vi．8）．（J）The natural order of wonds in a sentence is often boldly deranged，while，on the other hand， the syntax is seldom difficult．（ g ）Wonds not found except in Pindar are numerous，many of these being compounds which （like buplmpporos，xarapu入入oposîp，\＆c．）suited the dactylic metres in their Pindaric combinations．Horace was right in speaking of Pindar＇s＂nova verba，＂though they were not confined to the＂audaces dithyrambi．＂

2．The actual victory which gave occasion for the ode is seldom treated at length or in detait－which，indeed，oniy exceptional incidents could justity．Pindar＇s method is to take some heroic myth，or group of myths，connected with the victor＇s city or family，and，after a hrief prelude，to enter on this，returning at the close，as a rule，to the subject of the victor＇s merit or good forture，and interspersing the whole with moral comment．Thus the fourth Pythian is for Arcesilaus，king of Cyrene，which was said to have been founded hy men of Thera， descendants of one of Jason＇s comrades．Using this link， Pindar introduces his splendid narrative of the Argonauts Many odes，again，contain shorter mythical cpisodes－as the birth of Iamus（ Ol vi．），or the vision of Bellerophon（ Ol xiii） －which form small pictures of masteriy finish and beauty Particular notice is due to the skill with which Pindar often manages the return from a mytbical digression to his immediate theme．It is bold and swift，yel is not felt as harshly abrupt－ justilying his own phrase at one such turn－kal teva olpoy loapu Bpaxim（Pyth．iv 247）．It bas been thought that．in the parenthesis about the Amazons＇shields（gutbus Mos urde deducius．quaercre distuli，Odsr，iv．4，18），Horace was imitating a Pindaric transition；if so，he has illustrated his own observation as to the peril of imitating the Theban poet

3．a．The religious feeling of Pindar is strongly marked in the odes．＂From the gods are all means of human excellance．＂

He will man believe that the gads，whea they dined wha Tantalus， ate his zon Pelopsi rather Poseidon carried of the youth to Olympus．That is，bis reason for rejecting a scandalous story about the gods is purely religious，as distinet from moral；it shocks his conception of the divise dipnity．With regand to oracles，he inculcates precisely suck a view as would have been most woceptable to the Delphic priesthood，vis，that the gods do illumine their propheta，but that hustan wit can foresee nothing which the gods do not choose to reveal．A mystical doctrine of the soul＇s destiny eiter death appears in sompe pasages（as OX ii． 66 zq．）．Pindar was familiar with the idea of metempeychssis（ci．ibid．68），but the altempl to trace Pythe－ soreanism in some phrases（Pydk．3．34，iii．74）appears unsafe． The beliff in a fully conscious evistence for the soul in a future state，determined by the character of the earthly life，eatered into the teacbing of the Eleusinian and other mysteries Con． paring the fragment of the Opinvos（ $^{2} 14$, Berght ${ }^{4}$ 137），we may probably regend the myatic or esoteric element in Pindar＇s theology as due to such a source．
b．The moral gentiment pervading Pindar＇s odes reste on a constant recogrition of the limits iraposed by the divine will on human effort，combined with strenuous exhortation that each man should strive to reach the limit allowed in his own case． Native temperament（фví）is the grand source of all human excellence（4perh），while such excellepces as can be acquired by study（ \dagger бarral derel，Oh，ix．200）are of relatively amall scope－the sentiment，ve may remark，of one whose thoughts were babitually conversant with the native qualities of a poet on the one hand and of an athlete on the other．The elements of íries 6גpor－＂sane happinoss，＂such as has least reason to dread the jealousy of the gods－are substance sufficing for daily wants and good sepute（didoria）．He who has these should not＂seek to be a god．＂＂Wealth set wilh virtues＂（mhoúros dperais dedaiba入meven），as gold with precious gems，is the moss fortunate lot，because it affords the ampleal opport unities for honourable activity．Pindar does not rise above the ethical staadard of an age which said，＂love thy frend and hate thy foe＂（cl．Pyth．ii．83；／slhm．iti．65）．Bul in one sense he has a moral elevation which is distinctively his own；he is the glowing prophet of generous emulation and of revereat self－ control．
c．The poitical sentiments of the Theban poet are suggested by Pyth．xi．53；＂In polities I find the middle state crowned with more enduring good；therelore praise I not the despot＇s portion；those virtues move my eeal which serve the falk＂ If in Pyth．1i．87，a demacracy is described as $\delta \lambda$ dipos orparts，＂the raging crowd ${ }_{1}$＂it is to be noted that the ode is for Hiero of Syracuse，and that the phrase clearly refers to the violence of those democratie revointions which，in the early part of the $5^{\text {th }}$ century b．c．，more than once convulsed Sicilian cities．At Thebes，after the Persian wars，a＂constitutional oligarchy＂（diryapxia lobrouos，Thuc．iii．62）had replaced the narrower and less temperate oligarchy of former days （ouraortia ov MeTd $\delta_{\mu \omega \nu}$ ）；and in this we may probably recognize the phase of Greek political life most congenial to Pindar He speaks of a king＇s lot as unique in its opportunities （OI ；113），he sketches the character of an ideal king（ $P y$ yh iil．71）；but nothing in bis poetry implies liking for the rupavpls as a form of government．Towards the Greek princes of Sicily and Cyrene his tone is ever one of manly independence；he speaks as a Greek citizen whose lineage places him on a level with the proudest of the Dorian race，and whose office invests him with an almost sacred dignity．In regard to the politics of Heilas at large，Pindar makes us feel the ncw sense of leisure for quiet pursuits and civiluing arts which came after the Persian wars．He honours＂Tranquillity，the friend of cities＂ （＇Avuxia фi入brodes，Ol．iv 16）．The epic poet sang of wars； Pindar celebrates the＂rivalries of peace．＂
4．Pindar＇s genius was boldly original；at the same time he was an exquisite artiss．＂Mine be it to invent new strains， mine the skill to hold my course in the chariot of the Muses， and may courage go with me，and power of ample grasp＂（O）．
(ix. 80). Here we see the enulting sense of inbora strength, in many other places we percerve the feeling of conscious art -as in the phrase fouddnker, so apt for his method of anlaying an ode with mythteal suhjects, or when he compares the opening of a song to the front of a stately building ($O 1$. v. 3). Piadar's sympathy with eaternal nature was deeper and heener than is often discernible in the poetry of his age. It appears, for example, in his walcome of the season when "the chamber of the hours is opened, and delicate plants perceive the fragrant spring' (r 53, Bergk ', 75), in the passage where Jason invokes "the rushing strength of waves and mads, and the nights, and the paths of the deep " (Pyth. iv. 195), in the lines on the eclipse of the sun (fr. 84, Bergk, ${ }^{4}$ 1o7); and In the picture of the eraption, when Etna, "pillar of the sky, nurse of keen snow all tbe year," sends forth "p pure spnngs of fire unapproachable " (Pyth. i. 20). The poet's fecling for colour is often notuceable -as in the beautiful story of the burth of Iamus-when Evadne lays aside her silver pitcher and her girdle of scarlet web, the babe is found, "its delicate body steeped in the golden and deep purple rays of pansies " (O i. vi. 55)

The spurit of art, in every form, is represented for Pindar by x dpos-" the source of all delights to mortals "(Ot i. 30)or by the persomfied Charites (Graces) The Charites were often represented as young madens, decking themselves with eariy flowers-the rose, in particular, being sacred to them as well as to Aphrodite. In Pindar's mind, as in the old Greek conception from which the worship of the Charites sprang, the instinct of beautiful art was inseparable from the sense of natural scupperart. beauty. The period from 500 to 460 BC ., to which most of Pindar's extant odes belong, marked a stage in the development of Greck sculpture. The schools of Argos, Sicyon and Aegina were effecting a transition from archaic types to the art which was afterwards matured in the age of Pheidias. Olympia forms the central link between Pindar's poetry and Greek sculpture. From about 560 b.c. onwards sculpture had been applied to the commemoration of athletes, chiefly at Olympia. In a striking passage (Nem. v ad. $\boldsymbol{n t \prime}$) Pindar recognizes sculpture and poetry as sister arts employed in the commemoration of the athlete, and contrasts the mertly local effect of the statue with the wide diffusion of the poem. "No sculptor I, to fashion images that shall stand idly on one pedestal for aye; no, go thou forth from Aegina, sweet song of mine, on every frelghted ship, on each light bark" Many partlcular subjects were common to Pindar and contemporary sculpture. Thus (i) the sculptures on the easl pediment of the temple at Aegina represented Heracies coming to seek the aid of Telamon against Troy-a theme hrilliantly treated by Pindar in the fifth Isthmian ${ }_{i}$ (2) Hiero's victory in the chariot-race was commemorated at Olympia by the joint work of the sculptors Onatas and Calamis, (3) the Gigantomachin, (4) the wedding of Heracles and Hebe, (5) the war of the Centauts with the Lapithae, and (6) a contest between Heracies and Apollo, are instances of mythical material treated alike by the poet and by sculptors of his day. The contemporary umprovements in town hrchitecture, introducing spacious and wellpaved streets, such as the ounpurit isfs at Cyrene (P yoh v 87), suggests his frequent comparison of the paths of song to
 xdheufor, Nem. vi. 47; Isthm. vi. 22). A song is likened to cunning work which blends gold, ivery and coral (Nem. vii. 78) Pindar's lecling that poelry, though essentially a divine gift. has a technical side (ooфía), and that on this side it has had an historical development like that of other arts, is forcibly illustrated by hus reference to the inventions (ropionara) for which Connth had early been famous. He instances (i) the development of the dithyramb, (2) certain improvements in the harnessing and driving of horses, and (3) the addition of the pediment to temples (O (zini 21).

In the development of Greek lyric poetry two periods are brondly distinguished. Daring the first, from about 600 to 500 b C., lyne poetry is local or tribal-as Alcaeus and Sappho write for Lesbians, Alcman and Stesichorus for Dorians. During
the second peried, which takes its rise is the semse of Hellenic unity created by the Penian wars, the tyric poet addresses all Greece. Pindar and Simonides are the greal representatives of this second pervod, to which Bucehytides, the nephew of Simonides, also belongs. These, with a few minor poets, are classed by German writers as die unmersalen Maliter. The Greeks usually spoke, not of " lynic," bat of "melic " poctry (i.e. meant to be sung, and not, like the epic, recited); and " universal melic" as lyric poetry addressed to all Greece. But Pindar is more than the chief extant lyrist Epic, lysic and dramatic poetry succeeded each other in Greek literature by a matural development. Each of theat was the. epontancous utterance of the age which browght it forth. In Pindar we can see that phase of the Greek mind which produced Homeric epos parsing over into the phase which produced Atherian drama. His spint is often thoroughly dramatic--vitness such scenes as the intervicw between Jason and Pelias (Pyth. iv.), the meetms of Apollo and Chiron (Pydh. ix.), the episode of Castor and Polydeuces (Nem. x.), the enterthimment of Herackes hy Telamon (Isthm. v.). Epic marrative alone was no longer enough for the men who had known that great trilogy of national Ife, the Persian invasions, they longed to see the heroes moving and to hear them speaking. The poet of Olympia, accustomed to see beapuful forms in vivid action or vivid art, was well fitted to be the lync interpreter of the new dramatic itmpulse. Pindar has more of the Homeric spirit than any Greek lyric poet known to us On the other side, he has a genuine, if less evident, kunship with Aeschylus and Sophocies. Pindar's work, like Olympia itser, illustrates the spiritual unity of Greek art.

The fact that certain giosses and lacunae are common to all ovr MSS of Pandar make it probable that these MSS. ate derived from a common archetype Now the older acholit on Pindar, which appear to have been compiled mainly from the commentaries of Didymus (c. 15 B C), sometimes presuppose purer text than ours. But the compiler of these older echolia lived after Herodian (A D 160). The archetype of our MSS., then, cannot have bete older than the ead of the and century. Our MSS. fall into two general clagses. (1) the older, representing a text which, though often corrupe, is comparatively free from interpolations; (2) the later, which exhibit the traces of a Byrantine recension. in other words, of bwhess conjecture, down to the 1gth or I5th centary. To the first class betong Parisinus $7_{\text {, breaking off in Pyik v.: }}^{\text {in }}$ Ambrostanus 1. which has only of. i-xii.; Mediceus 2; and Vaticanus 2-the two last-named being of the highest value The editio pnnceps is the Aldine (Venice, 1513). A modern study of Pindar may be almost said to have besun with C. G. Heype's edstion (1773) Hermana did much to advance Pindaric criticissa Bu: August Boclith (1811-1821), who was assisted in his compmentary by $L_{\text {. Dissen, }}$ is justly regardod as the founder of a scientific treatment of the poet. The edition of Theodor Bergk (Poolace frai graecs. new ed by 0 Schibder. 1900) is marked by considerable boldness of conjecture, as that of Tycho Mommsen (1864) by, a sometumas excestive adherence to MSS. A recension by W. Chriat has beeo published in Teubner's series (and ch., 18g6), also with Prolegomena and commentary (1896), and by O. Schroder (1908). The complete edition of I W Donaldson (1841) has many merits: but that of C A. M Fennct (1879-1883; new ed., $1893-1$-g99) is better adapted to the needs of English students. The digrapra and Pyita have been edited by B, L. Gildersleeve (1885), the Nemea and Isthmia by B Bury (1890-1892); the Scholia by E Abel (1890, unfimshed) and A. B. Brachmann (1903). There is a special kexicon by J Rumpel 1883). The tratusiation into English prose by Ernest Myers (2nd ed., 1883) is excellent; verse translation by 7 C Banns (1875), and of the Olympian alles by Cyril Mayne (igo6) Pindar's metres have been analysed by J H H Schmidt. in Die Kunstformen der crechaschen Poesse (Lcipzig. 1868-1872). On Pindar garserally, see monographs by A F Villemasn (1859), L Schmud (1862), G. Labbert (1882). A. Croiset (1880), W Chnst, Gerchuchle der Eriechasches Laileratn (1898) ; and the little volume by F. D. Morice in Blackwood's A neient Classtes for Erglesh Readers. Exhaustive bibliographical information on the earlicr literature will be found is Engelmann, Scriphores graer (1881); we also L. Bommmann, in Bursian's Jahresbericht (cxvi. 1go4), with sparial reference to chronological guestions and Pythza, i, in., iii Some considerable Iragments of the paeans were discovered in 1906 by B P. Grenfell and A. S. Hunt (see Oryhyuchas pappri, pt. v. pp. 24-81): some critical notes witi be tound in Classued Revicu, Feb. 1908 (A. E. Housman).
(R.C. J.; X.)

PINDARICS, the name by which was known a class of loose and irregular odes greally in fashion in England during the clome
of the 17 th and the beginning of the $\mathbf{1 8 t h}$ century. The invention is due to 'Abraham Cowley, who, probably in Paris-" a place where he had no other books to direct hum "-and perhaps in 1650, found a text of Pindar and determined to imitate the Greek poetry in English, without having comprehended the system upon which Pindar's prosody was boilt up. Cowley prablished, however, in 1656, fifteen Pisdarique Odes, which became the model on which countless imitators founded their pindarica. The erroneous form of these poems, which were absolutely without discipline of structure, was first exposed by Congreve, exactly half a century later, he very justly describing them as "bundles of rambling incoherent thoughts, expressed in a like parcel of irregular stanzas, which also consist of such another complication of disproportioned, uncertain and perplexed verses and rhymes." This is harsh, but it describes a pindaric with aboolute justice. Cowley had not been aware that " there is nothing more regular than the Odes of Pindar," and that his poems were constructed in harmony whit rigid prosodical laws in strophe, antistrophe and epode; "the liberty which Pindar toot in his numbers, which has been so much misunderstood and misapplied by his pretended imitators. was only in varying the stanzas in different odes, but in each particular ode they are ever correspondent one to another m ther turns, and according to the order of the ode." These excellent critical remarks were made by Congreve in his Discourse on the Pindarique Ode of 1706, and from that date forward the use of pindarics ceased to be so lax and frantic as it had been during the previous fifty years. The time had now passed in which such a critic as Sprat could praise "this loose and omeonfined measure" as having " all the grace and harmony of the most confined." It began to be felt that the English pindaric was a blunder founded upon a misconception. If we examine Cowley's "Resurrection," which was considered in the 17 th century to be a model of the style, and "truly pindarical," we find it to be a shapeless poem of 64 lines, arbitrarily divided, not into strophes, but into four stanzas of unequal volume and structure, the lines which form these stanzas are of lengths varying from three feet to seven feet, with rhymes repeated in wilful disorder, the whole forming a mere vague caricature of Pindar's brilliant odes. The very laxity of these pindarics attracted the poets of the unlyrical close of the 17th century, and they scrved the purpose not only of Dryden and Pope, but of a score of lesser poets, among whom Oldham, Mrs Behn, Otway, Sprat, Fiatman and many others were prominent. The pindaric became the almost necessary form in which to indite a poem of compliment on a birth, a wedding or a funeral. Although the yogue of these forms hardly survived the age of Anne, something of the vicious tradition of them still remained, and even in the odes of Wordsworth, Shelley and Coleridge the broken versification of Cowley's pindarics occasionally survives. Tennyson's Ode on the Death of the Duke of Wellington (1852) is the latest important apecimen of a pindaric in English literature.
(E G.)
PADARIS, a word of uncertain origin, applied to the irregular horsemen who accompanied the Mahratta armics in India during the 18th century when the Mughal Empire was breaking up; loosely organized under seff-chosen lcaders, each band was usually attached to one or other of the great Mahratta chicftains. Their special characteristic was that they received no pay, but rather purchased the privilege of plundering on their own account. The majority of them seem to have been Mahommedans: when the regular forces of the Mahrattas had been broken up in the campaigns conducted by Sir Arthur Wellesley and Lord Lake in 1802-o4, the Pindaris made their headquarters in Malwa, under the tacit protertion of Sindhia and Holkar. They were accustomed to assemble every year at the beginning of November, and sally forth into British territory in search of plunder. In one such raid upon the Mesulipatam coast they plundered 339 villages, killing or wounding 682 persons, ,orturing 3600 and carrying off property worth a quarter of a million In 1808-09 they plundered Gujarat, and in 18:2 Mirzapur In $18: 4$ they were reckoned at 25,000 to 30,000 horsemen. half of them well armed. At last the evil became intolerable, and in

1817 the marquess of Fistings obtalned the consent of the Enst India Company to the organazed campaign, known as the Pindari War. The Pindaris were surrounded on all sudes by a great army, consisting of 120,000 men and 300 anuas, which eonverged upon them from Bengal, the Deccin and Gujarat under the supreme command of Lord Hastings in person. Sindhia was overawed and forced to sign the treaty of Gwalior, consenting to aid in the extirpation of the Pindaris, whom he had hitherto protected. The Peshma at Poona, the Bhonsla raja at Nagpur and the army of the infant Holkar each took up arms, but were separalely defeated. The Pindaris themselves offered little opposition. Amir Kban, by far their most powerful leader, accepted the conditions offered to him, and his descendant is now Nawab of the state of Tonk in Rajputana. The rest surrendered or were hunted down, the fate of Chit u, one of the most notorious, being to perish in a tiger's den. These military operations were followed by the pacification of Central India under the administration of Sir John Maicolm.
See J Grant Duff, History of the Mahrallas (1826): and Major Ross of Bladensburg, Marquess of Haslings (Rulers of India Series) (1893).
PIRD DADAN KHAR, a town of British India, in the Jhelum district of the Punjab, situated near the right bank of the river Jhelum, on the Sind-Sagar branch of the North-Western railway. Pop. (1901), 13,770. It is an important centre of trade, and its manufactures include boats, brass-ware, pottery, embroidered scarves and riding-whips.

PINDUS, the ancient name of the rugged group of mountains which separates Thessaly from Epirus, and branches south in various directions. The geographical name is sometimes extended over all these branches, and so reaches from Aetolia to the Gulf of Lamia. The northern part of the ridge was known as Lacmon. There is no modern name covering the whole ranse, but its difierent parts have separate names. Several of them attain a height of 7000 ft . or more.
PINE (Lat. Pinss, Gr. xitus), a name given by the ancients to some of the resinous cone-bearing trees to which it is now applied, and, as limited by modern botanists, the designation of a large genus of true conifers, differing from the firs in their hard woody cons-scales being thickened at the apex, and in their slender needle-shaped leaves growing from a membrapous sheath, cither in pairs or from three to five together-each ruft representing an abortive branch, springing from the axil of a partially deciduous scale-leaf, the base of which remains closely adherent to the stem. The numerous male cattins are generally arranged in dense whorls around the bases of the young shoots; the anther-scales, surmounted by a crest-like appendage, shed their abundant polien by longitudinal slits; the two ovules at the base of the inner side of each fertile cone-scale develop into a pair of winged seeds, which drop from the opening scales when mature-as in the allied gencra.

The pines are widely distributed over the north temperate zone, in the southern portions chiefly confined to the mountains, along which, in Central America, a few are found within the troplc; in more northern regions they frequently form extensive forests, sometimes hardly mingled with other trees. Their soft, straight-grained, resinous and often durahie wood gives to many kinds a high economic value, and some are among the most esteemed of timber trees.

Of the two-leaved species, P. sylvestris, the pine of northem Europe, may be taken as a type. When growing in perfection it is one of the finest of the group, and perhaps the most picturesque of forcst trees; attaining a height of from 70 to 120 ft ., it is of conical growth when young, but in maturity acquires a spreading cedar or mushroom-like top, with a straight trunk of from 2 to 4 ft . in diameter at the base, and gnarled twisted boughs, densely clothed at the extremities with glaucous green foliage, which contrasts strongly with the fiery red-brown bark. The leaves are rather short, curved, and olten twisted; the male catkins, in dense cylindrical whorls, fil the air of the forest with their sulphur-like pollen in May or June, and fecandate the purple female flowers, which, at first sessile and erect, then
beoome recurved on a lengthening stalk; the ovate cones, about the length of the leaves, do not reach maturity until the autumn of the following year, and the seeds are seldom scattered until the third spring; the cone-scales terminate in a pyramidal

Fic. I.-Scotch Fir (Pinus stivestris).
a, Male flower and young cones; b, male catkin; c, d, outer and imper side of anther.scale.
recurved point, well marked in the green state and in some varieties in the mature cone, but in others scarcely projecting. P. sylpestris is found, in greater or less abundance, from the hills of Finmark and the plains of Bothnia to the mountains of Spain and even the higher forest-alopes of Etna, while in longitude its tange extends from the shores of the North Sea to Kamchatka. Nowhere more abundant than in the Scandinavian peninsula, this tree is the true fir ($f u r, f u r a$) of the old Norsemen, and still retains the name among their descendants in Britain, though botanically now classed as a pine. It grows vigorously in Lapland on the lower ground, and is found even at an elevation of 700 ft ., while in south Norway it occurs up to 3000 ft., though the great forests from which "Norway pine" timber is chiefy derived are on the comparatively lower slopes of the southeastern dales: in the highest situations it dwindles to a mere bush. It furnishes the yellow deal of the Baltic and Norway. In Germany, both on the mountains and the sandy plains, woods of "kiefer" are frequent and widely spread, while vast forests in Russia and Poland are chiefy composed of this species; in many northern habitats it is associated with the spruce and birch. In Asia it abounds in Siberia and on the mountains of the Amur region; on the European Alps it occurs at a height of 5600 ft ., and on the Pyrenees it is found at still higher elevations; on the northern side of Etra it is said to grow at above 7000 ft . In Britain natural forests of Scotch fir of any extent are only now found in the Highlands, chiefly on the decivities of the Grampians. In former ages the tree covered a large portion of the more northern part of the island, as well as of Ireland; the numerous trunks found everywhere in the mosses and peat-bogs
of the northern counties of England atteat its aboundance there in prehistoric times; and is the remoter poet-Giacial epoch its range was probably vastly more exteaded. The tree is not at present indigenous in southern Britain, but whem planted in saitable ground multiplies rapidly by the wind-sown seeds; on many of the sandy moors and commons natural pine woods of large extent have been thus formed during the last fifty years. The Scotch fir is a very variable tree, and certain varieties bave acquired a higher reputation for the qualities of their timber than others, among those most prised by foresters is the one called the Braemar pine, the remaining fragments of the great wood in the Braemar district being chiefly composed of this kind; it is mainly distinguished by its shorter apd more glaucous leaves and ovoid cones with blunt recurved spipes, and expecially by the early horizontal growth of its ultimately drooping boughs, of all varieties this is the most picturesque. On the European continent the Hagenau pine of Westyhalia is esteerned for the straightness and good quatity of its timber. The heartwood of the finer kinds of Scotch fir is of a deep brownish-red colour, abounding in the resin to which its durability is probably due. For all indoor and most outdoor purposes it is as lasting as oak, and for ship planking is perhaps little inferior; from its lightness and clasticity it is well adapted for the construction of yachts and other small fast-eailing craft, and is said to be the best of all wood for masts and large spars; its weight varics from 30 to 40 It the cubic foot. The sap-wood is more perishable, but it is useful for fences, casks and a variety of other purposes; soaking in lime-water renders it more lasting; great numbers of young pines are anaually cut for railway sleepers, mining timber and numerous agricultural applications; large quantities are consumed for wood-pavement. The quality of the timber

Fic. 2.-Scotch Fir (Pinus syivestris).
a, Fertile flower of mature cone; b_{c}, winged seed; c. fertile cathin (or cone); d, scale and bract; e, inner side of scale.
depends greatly on the soil and position in which the trees are grown: the dry slopes of granitic or greissic mountains, or the deep well-drained sandy gravels of the lower country seem to answer equally well; but on clay or wet peat the tree rarely

Glounishes, and the timber is always indifferent; it is usually said that the wood is best in the cold climate of its more northern habitats, but a trunk (4 ft . in diameter) grown on the sands of Surrey had heart-wood quite equal to any produced in Clenmore or Rothiemurchus. The rapidity of growth is still more variable: in Britain full maturity is attained in from seventy to one bundred and twenty years, but in Norway the trunk increases much more slowly; Schubeler states that a tree felled in the Alten district (about 70° lat.), measuring 2 ft . 10 in. in diameter without the bark, showed four hundred circles of annual growth. In Norway the tree, growing in dense forests, is generally of but moderate girth, and probably this pine nowhere reaches a greater size than in the Scottish woods; a plank from Glenmore forest
 unusual diameter for a British pine tree.
Vast numbers of Scotch firs are raised in nurseries for artificial planting; the seed is sown in the spring, being just covered with earth, and the seedlings transplanted in the second year into rows for further culture, or taken direct from the seed-bed for final planting; sometimes the seed is sown where the trees are intended to grow. A plantation of Scotch fir requires frequent and carcful thinning as the young trees increase in size; but pruning should be avoided as much as possible, excepting for the removal of dead wood. Plantations in England are generally ready for final cutting in from sixty to seventy years, and many are cleared at a much earlier stage of growth. P. syldestris in Britain is liable to many insect depredations: the pine-chafer, Hylurgus piniparda, is destructive in some places, the larva of this beetle feeding on the young succulent shoots, especially in young plantations; Hylobius abietis, the fir-weevil, eats away the bark, and numerons lepidopterous larvae devour the leaves; the pino-sawfly is also injurious in some seasons; the removal of all dead branches from the trees and from the ground beneath them is recommended, as most of these insects lay their eggs among the decaying bark and dead leaves In common with other pines, P. syorestris is subject to the attacks of various fungi. Trometes radiciperda attacks the roots and penetrates to the stem, causing rotting of the wood; the distase is difficult to eradicate, as the mycelium of the fungus travels from root to root in the soil. Rotting of the wood at the base of the trumk is also caused by Agaricus mellews, which spreads from root to root in the soil by means of its long purple-black, cord-iike mycelial strands known as Rhitomorpha. Much damage is often caused by epecies of Peridermium, which often invade the cortex and cambium to such an extent as to " ring " the stem or branch or to cause an abnormal formation of turpentine which soaks into the wood and stopa the upward pasage of water; this causes the parts above the diseased ares to perish. In England the pine is largely employed as a "nurse" for oak trees, fts conical growth when young admirably adapting it for this purpose; its dense foliage renders it valuable. as a shelter tree for protecting land from the wind; it stands the sea gales better than most conifers, but will not flourish on the shore like some other species.

The pine is an important tree in the economy of the northern nations of Europe. In Scandinavia and Russia houses are chiefly constructed of jts timber; and log-huts are made of the smaller trunks and lined and roofed with the bark. The inner bark is twisted into ropes, and, like that of the spruce, is kiln dried, ground up, and mixed with meal in times of scarcity; in Kamchatka it is macerated in water, then pounded, and made into a kind of substitute for hread without any admixture of flour. In recent days the fibre of the leaves has been extracted in some quantity and applied to textile purposes under the name of waldvolle, both in Germany and Sweden. It is prepared by boiling the needles in a solution of soda 10 remove the resin, which process loosens the fibre and renders its separation easy; it has some resemblance to coarse wool, and is spun and woven into blankels and garments that are said to be warm and durable; it is also used for stuffing cushions; an essential oil, ohtained by a previous distillation of the leaves, has medicinal virtues ettributed to it by some German practitioners.

Large quantities of turpentine are extracted from this pine in Sweden and Russia by removing a strip of bark, terminating below in a deep notch cut in the wood, into which the turpentine rans, and from which it is scooped as it accumulates; but the product is not equal to that of the silver fir and other species. Tar is prepared largely from P. sylvastris; it is chiefly obtained from the roots, which, mingled with a few logs, are arranged in a conical or funnel-shaped hollow made on the steep side of a hill or bank; after filling up, the whole is covered with turf and fired at the top, when the tar exudes slowly and runs into an iron vessel placed below, from the spout of which it is conveyed into barrels. Most of the so-called Stockholm tar is thus prepared, chiefly in the province of Bothnia.

Clowely allied to the Scotch pine, and perhape to be regarded as P mere alpine form of that speciea, is the dwarf P. momand (or P. Pwitilio), the "krummholz" or "knieholz" of the Germans-2 recumbent bush, generally only a few foet high, but with long zigzug sterns, that root occasionally at the knee-like bends where they rest upon the ground. The foliage much resembles that of the Scotch fir, but is shorter, denser and more rigid; the cones are smaller but similar in form. Abounding on the figher slopes of the Bavarian and Tirolese Alps, it is a favourite shelter for the chamols; the hunters call it the "hatschen," from its recumbent etraggling habit. Krummholz oil, valued in Germany as an outward application in sheumatism and for bruises and sprains, is distilled from the yougg branches, and a fragrant white resin that exudes in come quantity from the buds is used for similar purposes and as a perfume, under the name of Hungarian balsam it is sold in the bowns of Germany, being probably obtained from the Carpathians.
The red pine of Canada and New England (so called from ube colour of its bark), P. resimase, is a true of considerable aize, sometimes attrining the dimensions of P. sylpestris. The comewhat glaucous lonves form dense tufts at the ends of the branches, and are 4 or 5 in . long; the ovate blunt conce are about hall that length The cree is of quick growth and the wood btrong and resinous, but it is less durable than Scotch fir, though much employed in ship-building; accordiag to Emerson, trunks exist in Maine 4 ft . in diameter. A mandy soil seems to suit it best, and the quality of the wood probably much depends on its place of growth. Red pines abound in Nova Scotin and Newfoundland, and the tree is rather widely distributed over the northern parts of the continent; it rarely forms extensive woods, but grows chiefly in clumps among other trees, at least in its more sourthern habitats. Nearly allied is P. Basksticwa, the grey or Labrador pine, sometimes called the scrub pine from ite dwarfish habit; it is the most mortherly representative of the genus in America, and is chiefly remarkable for its much recurved and twisted conea, about 2 in. long. The trunkz are too small to be of great economic value, but the light wood is used by the natives for their canoes.
P. Laricio, the Corsican pine, is one of the nobleat trees of this groap, growing to a height of 100 or even 150 ft ., with a straight erank and branches in regular whorls, forming in large trees a pyramidal head; the slender leaves, of a dark green tint, are from 4 to 7 in . long; the cones, either in pairs or several together, project horizontally, and are of a light brown colour. This pine abounds in Corsicy, and is found in more or less abundance in Spain, southern France, Greece, and many Mediterranean countries; it eccurs on the higher mountains of Cyprus. The tree is of very rapid growth, but produces good timber. much used in southern dockyards, and very durable, though less strong than that of P. sydredtris; the heart-wood is of a brownish-tint. In southern France it has been planted with success on the drift-cands of the Bay of Biscay, though it does not bear the foll force of the nesblant gs well as the pinaster. In Englend it grows well in sheltered rituations and well-drained soils

The black pine, P. asstrica, generally now regarded as a wo iety of P. Laricio, derives ite name from the extreme depth of ith fotiage tint-the aharp, rigid, rather long leaves of a dark green hue piving a sombre aspect to the tree. The light-coloured, glows. horivontal conce are generally in pairm, but sometimes three or four together. The tree is conical when young, but when ofd forms a spreading head; it often attains a large size. Southern Austria and the adjacent countriea are the natural habitats of this pine; it seems to flourith best on rocky mountain siden, but in Eceqland grows well on zandy woils. The timber is valued in its native country, and is said to be durable and to mand exposure to the weather well; various resinous products are extracted from it. P. pyemeics is a handsome species of pyramidal form, attaining a large arse on the mountains of northern $S^{\text {Sain, whence it extends }}$ through the Mediterrarean region to Asia Minor, northern Persia and Aighanistan. The leaves are long and of a light bright green: the conea are molitary, oblong, conical and of a yellow tint. The timber is uned in Spanich dockyards, bat opinions vary as to its quality. In plantations its bright foliage, with the orange cones and yount ahoota, render it an ornamental tree, hardy in southern
specien. P. halepensis, another Meditermanean form, is valued for its timber, which is white with a fine grain, and resinous products.
P. pimaster, the cluster pine or pinsiser, it an imporiant apecies from ite viporous growth in the sand-dritte of the coact, for the purpose of binding which it has been grown more exterisively and ouccessaully than any other tree, expecially on the dunces of the Bay of Biscay. Growing to a height of from 40 to 80 ft., the deeplylorrowed trunk occasionally reaches a diameter of 3 ft. or more at the bese, whane, libe mose sand treen, it usually curves epwand Fradually, a form that enables the long tap.roose to withostand better the strain of the sea gale; When once established, the tree in rarely overthrown even on the loosest mend. The branches curve upwarde like the stem, with their thick covering of long dark eroen leaven giving a masoive rounded outline to the tree: the ovate conces are from 4 to 6 in . loag, of a light shining brown hue, with thick meales terminating in a pyramidal apex; they are arranged eround the branches in the radiating clusters that give name to the tree. The pinamter grown naturally on emandy soiks around the Mediterranean from Spain to the Levant. On the drift-mande of France. especially in the Gironde, forests have been formed mainly of this pine; the meeds, cown at frum under proper wheter and protected by a thick growth of broom sown simultancoundy. vezetate ropidy in the sea-tand, and the trees thus rained have. by their wind-drifted eed, covered much of the former. devert of the Landes with an evergreca wood. These forestan of pinostecr, apart from the production α timber in a once treclewe dirutict. have a great economic value as a source of turpentine, which is largely obtoined from the trees by a process analogoun to that employed in ite collection from P. syibestris; the reasin th yielded from May to the end of September, the cuts being renewed as the mupply fails, until the tree is exhausted; the trunke are then fellod and umod in the manufacture of charooal and lamp black; mach iar and pitch is aloo obeained from these pinnater forrats In England the cluster-pine has been largely planted on sandy districts moor the aca, and has become naturalized in Purbect and ocher wild treas in the pouthern counties, but the pommer beat is too small to permit of its rexinous products acquiring any valut; the coft coanse wood, though perishable in the natural wate, hat been med for railway niecpers atter saturation with creosote or preecrative solutions.
P. Pinea is the tone pine of italy: its spreading rounded canopy of light green foliage, supported on a tall and often branchlese trunk, forms a striking feature of the landocape in that country. as well an in some other Mediterrancen lande. The bechutitul rocddish-brown abining conea, soundly ovate in shape, with pyramidal acale apioces bave been prized from the ancient dayy of Rome for their edible nut-like seeds, which are utill ured as an article of food or doweert. They do not ripen until the fourth year, and are leppt in the cone until required, as their abundant oil soon turna rancid. The tree has been naturalized in many warm countrich even in China; in England it scldom attains any large site, as the deficient exmamer heat prevents the wood from maturiak: but trees occur occasionally in plantationse 20 or 30 ft . in beight: the wood, thourg soft and deficient in the resin that gives durability to the timber of some speciek, is valued by the southem carpenter and cabinetmaker for its lightnen, its ineness of grain, and the case with which it is worked.
P. wilij. the yellow pine of the northern and middle states of America, is rather alijed to the throe-leaved eection, but the leaves are mostly in pairs. it in a tree of harge size, often attaining a height of 70 ft . and upward, though rarely more than 2 ft . in diameter at the rool; the bower branches spread horizontally, the upper, converging towards the trunk, give the troe somewhat the sepect of a apruse. benoe it is called in mome districts the "sprucepine." The leaves are long, slender, and of a bluish-green hue: the pendant cones are about if in. long, with a slicnder point to each weale. The yellow pine is one of the most important timber trees of the genus; the heart-wood being very dyrable is largely employed in ship-building and for boute timber, being nearly equal to that of P. syboestris: lange quantities are exported to Britain under the name of "New York yellow pine "; the zupwood is perishable.

The throe-leaved group includes several of the moas valuable trees of America; emong them is P. rigida, the pitch pine of the northern cates, a tree of from 40 to 30 it . in height with rugged trank. cocmionally 3 ft. in diameter; the short dark-green leaves are in thick tuftrs, contrasting with the pale yclowish, usually clossered cones, the ecales of which are furnished with small curved spines The mood is very hard and abounds with resin, but on swampy land in of inferior quality and of litule value except for fuel, for which the pitch-pine is highly priwed; on drier ground the grain is fime from the numeroun Enots. Large quantities of tar and pitch are obrained from this species. The tree is one of the few that will Gourish in salt-marshec.
P. palustrisis (or P. ausctralis) is the "Georgia pitch pine," or yeliow pine of the eouthern statea; it abounds on ibe sandy soils thet cover so much of Georgia, the Carolinas, and Florida, and on chooe dry lands attains its highest perfection, though occasionally ebumdent on moist eround, whence its name. The moest marked fentare of the troes is its long cufted foliage-the leaver, of a bright
preen tint, apringine from loarg thite shenths, being often a foot in Ength. The tali columnar trunk furnishes the moet valued pine timber of the crates; cloee-priaed and reainous, it is very durable and polinhes well; it is largely employed in American shipyarda and immene gmantities are exported, especially to Britain and the Weat Indies. This tree yields an abundant supply of tar and turpentine of good quality, which products are colfected and manufactured in the "pine-barrens" on a large scake.
P. Tceds, the "Lebloily pine" of the baekwoodmana, a tall tree with elraight truak and preading top, covers creat tracte of the "pine-barrens " of the southern states, but also frequently spread over deserted arable tands that hive been impoverished by long and bad farming: hence the woodsmen call it the "old-fied "pine, while, from the fragrance of its stoundant rodia, it is also known as the frankiocence pioe. it is a fine apeciea 80 or 90 ft . high, having sometimes a girth of 6 or 8 ft.0 with a broad spreading head; the leaves are rather long and of a light green tint, the cones generally in pairs, the scales terminatiog in a sharp incurved pricke. The timber of thim pine in indifierent, bett the foreste of it are of immportance from the quantity of turpentiace they yield; the trees aiso furnich much firewood of good quality
P. ponderose, the yellow pine of the Pacific coast of America, belonge to this eertion; it is a fine timber tree deserving of notice Irom the extreme dentity of its wood, which barely fioats in water; if abounds in mone parts of the western mange of the Rocky Mountains, and is the most widely distributed pine tree of the mountain forests of western North America. The leaves are very long and twisted, the small oval cones armed with recurved prickles; the tree fastid to be of rapid growth. In Oreson and California everal lange pines of this proup ave found. P. Cowleri of macro carpa, is remarkable for its enormous concs (sometimes a foot long; 6 in . in diameter, and weighing more than 4 B$)$; the scales end in long hooked pointe corving upwards; the leaves are long, rigid, and ginmoons in hue. Nearly relased to this is P. Sobsuidne, the nut-pine of California, the cones of which are 7 to 9 in . long and 5 to 6 in . in diameter, also with hooked scales; the large nut-live seeds are eaten by the Indians; the tree is one of the largest of the section, sometimes attaining a height of 120 ft . and upwards, while trunks have been found, it is said, 10 or 12 ft . is diameter. P. Lestifodin, a Himalayan species, is remartable for the ereat length of its lax slender leaves, of 1 grastgreen tint: the cones have the points of the ecales recurved. It is known in Indin as the "cheer pine ": the wood is good, resinous, and moderately durable: the tree is common on the foot-hills of the Himalayas P. Cerurdiewe, a morth-west Himplayan species, is a medium-sised tree with a conical head. growing on the more elevated parts of the mountain range: it furnishes edible aceds. The leaves, short and glaucous, like those of the Scotch fir, have deciduous sheaths; the cones have recurved seale-points like those of the cheer pine P. comariensis, which forms forests on the mountains of Grend Canary and Tenerife. growing at an elevation of 6000 it., aleo belongs to this group. The leaves are long, lax, and of a bright green tint; the cone-acales are without spines: the trunk attains a large fize, and yields good and durable timber. The beautiful Monterey pine, F. insigmis, dis tinguished by the brilliant colour of its foliage, has the leaves in tufts of three or four; the lower cone-scales have recurved points This fine pine has been planted in the couth-west of England, but is scarcely hardy.

The pines with five leaves in each tuft have generally decidnona sheaths. The most important economic apecies is the wril-knows white pine, P. Strobnc, from its large growth and abundance, bs well as the soft even grain of its white wood, one of the most valuable of North American Eimber trees. The tree abounds from Canada to Georgia, but in the eastern states has been oo long sought for by the lumberer that moet of the old trees have long disappeared, and laste white pine timber is now only found in quantity in the Canadian Dominion. Formerly Maine and Vermont were celebrated for the sixe of their pines, but few of these great irees now exist in New England. On a deep rich woil P. Strobers attains a height of 150 ft . and trunks mithopt a branch are sometimes fownd 80 or 90 ft long; in the earlier staget of growth it has a pyramidal form, in open glades the lower boughs often touching the fround, but in old age it acquires a wide almose cedar-like top. The light bluish-green foliage is somewhat lax, very dense in young trees: the cones are long and rather curved, with thin smonth scales a little thicicesed at the apex, and senerally mare or lese covered with cxuding white resin; they are about 5 or 6 in. in length and If to 2 in. broad; the male caikins are of a bluish tint; the cones ripen in the autumn of the second year. The wood of the white pine is darable for indoor use, especially when protected by paint, but when expoeed to moist air it rapidly decayn, and it is very liahte to dry rot; it is said to be best when gro mn on sandy soils. Immense quantities are still exported, especially from Canada. ita emoorh easily-worked grain rendering it a favourite wood for the housecarpenter and joiner; it weighs about 28 \$p percubic foot. In England where it is generally known as the "Weymouth pine," in aucoeed well on deep light coils when well-drained; trees have attained occasionally a height of 100 ft . and upwards in Britich plantations: but it is apt to be infested with American hlight (Eriosomes). If northern Cermany it aloo prome veil. Tive cimate of Scosinnd

Scotch Fir (Pinus sylvestris). A, Cone, seed and needles.

Cluster Pine (Pinus Pinaster).
C, Cone, needle and sced.

Stone Pine (Pinus Pinea). D, Cone and seed.

appease leve suitable for it, probably from tha watr: of aumser heat. and it can hardly be recommended for British planting otherwise than for ornainental purposes.

Nearly appruaching this is P. excelso, the Bhotan pine, which differs chiefly in its tonger cones and drooping glaucons foliage. It is found in Kumana and Bhotan and on some of the Nepral rangen, but does not grow in the moist climate of the Sikkim Hiraalayas; it Is found at a height of 7000 to $12,000 \mathrm{ft}$., and attains large dimensions; the wood is highly resinous. and is said to be durable; great quantities of a white clear turpentine exude from the branches when imjured. The Bhotian pine is quite hardy in southern England. and has been largely planted of hate as an ornamental tree
P. Lambertiana, the giant pine or sugar pine of Californis, is the maryest of the genus. rising to the height of 200 ft . with a trunk 20 to 30 ft in girth. and, it is said, occacionally attaining much larger dimenaions. The head is of a pyramider form, the lower branches drooping like those of a Norway spruce, its loliage is of a light bright green colour. The pendent cones are very large, sometimes 18 in . long and 4 in in diameter, with large nut-like maeds, which, pounded and baked, are eaten by the Indians. The tree abounds in some sandy districts. but more generally oceura singly or in small groups dispersed through the woods. attaining its greatest dimensions in light soils. The wood is soft and nearly white, but contains much resin, which when fire has run through the forest exudes, and. having in this half-burmt condition a sweetish taste, has given the common name to the tree; the wood weems to be formed slowly; from its amooth grein it is valued for indoor carpentry; the saccharine burnt resia is used as a laxative in California:
P Cembra is the otone pine of Siberia and central Europe. It abounds on the Alpe, the Carpathings and the Siberian ranges, in Switzerland being found at an altitude of 4000406000 ft It is a straight-growing tree, with grey bark and whorls of horizontal branches giving a cylindro-conical oueline; the leaves are short, sigid and glaucous; the cones, oblong and rather pointing upwards, grow only neas the top of the tree, and ripen in the second autumn; the oeeds are oily like those of P Pinec, and are caten both on the Alps and by the inhabitants of Siberia; a fine oil is expressed from them which is used both for food and in lamps, but. like that of the Italian pine, it soon turns rancid. The growth of P. Cembra is slow, but the wood is of remartenbly evera grain, and is employed by the Swiss wood-carvers in preference to any ocher. The Combre is the "sirbel" or " zirbel-kicier" of the Germans, and is known locally In Switzerland as the "aroile," "sloies," and "arve."
P occidenta/is, a five-lcaved pine with pale-green foliage and ampil ovare cones, is found on the high mountains of Sento Domingo and Cuba. Many members of the group occur on the Mexican isthmus, one of which, P cembroides, produces edible seeds; another, P Montesumace, is a valuable timber tree. P. Ayacakuitc, the common. White pine of Mexico. spreade couthivards on to the mountains of Cuatemala, it is a large tree with glaucous foliage like $P_{\text {r }}$ Sirabys, and yielde a valuable nein. P chlifolia and P. macrophylla, likewise natives of Central America, are remarikable for the extreme length of their leaves; the former is said to attain a large size.
(C. P. J.)

PINB-APPLE. The pine-apple so called consists in reality of the inflorescence of the plant, the originally separate flowers of which, together with the bracts supporting them, become fleshy and consolidated into one mass. The swelling and fusion of the tissues take place after the process of fertilization, and it may be that the richly perfumed succulent mass is an aid in the distribution of seed by affording food to certain animals. In the highly developed cultivated pines, however, it frequently happens that the seeds do not ripen properly. The pine, Ananas satious, is a member of the natural order Bromeliaceac, of tropical American origin, where it is widely spread; and it is now naturalized in the tropical regions of the OId World.
Evelyn in his Diary mentions tasting a pine-apple from Barbados at the table of Charles II., and this is we believe the first mention of the fruit in English literature. A picture, of which a copy may be seen at the rooms of the Royal HorticulLural Society of London, represents the royal gardener, Mr Robe, presenting on bended knee the first pine-apple grown in Britain, and it is surmised that this may have been grown from the "suckers" of the fruit above alluded to by Evelyn, though it is generally considered that the pine was not cultivated in England till 1712. For many years pine-apples were cultlvated in large private gardens, but owing to the great developments in culture In the West Indies, the Azores, Canary Islands, \&c., they are no Longer cultivated in Britain or Europe.

PLNE BLUPF, a city and the count y-seat of Jefferson county, Arkansas, US.A., situated at an altitude of about 200 ft in the alluvial bottoms of the Arkansas river, about 107 m . from its EXI
month, and abotit 42 m. S. by E. of Little thock Pop (ripro); 25,102. It has an active river trade with St Louis, Memphis and New Orlenas, and five railway outlets-the Missouri Pacifie and its branch, the Pine Bluff \& Western, and the St Lours South-Weatern and its two branches, the Pine Bluff \& Artanase River and the Althelmor. The city has many schools, and a bustnes collego, the state normal school for negroes, and Merrill instituta, endowed by Joeeph Mertill of Pine Blusf with $\$ 100,000$. Large quantilies of cotton and lumber are shippied from the city. Among the manulactures are cotton-eed oil, humber and staves, and furniture. Pine Bluff has shops of the St Louis South-Western railway. The city's factory products were valued at $\$ 2,989,242$ in 1905 , an increase of 94% over thetr value in 1900 Pine Bluff was laid out in 1832 and chartered ata city in 2885.

Pine-apple (A nanas sativus) much reduced.
PIMEI, PHILIPPE ($1745-1826$), French physician, was born at the chateau of Rascas, Saint-Andre, in the department of Tarn, France, on the ath of April 1745. He studied at Lavaur and afterwards at the university of Toulouse, where he took his doctor's degree in 1773 . From Montpellier he removed in 1778 to Paris, engaging there chiefly in literary work connected with his profession. His first publication was a French translation of William Cullen's Nosology (1785): it was followed by an edition of the works of G. Baglivi (1788), and in 179 r he published a Traise medico-philosophique de l'alienation mentate. In 1792 be became head physician of the Bicêtre, and two years afterwards be received the corresponding apppintment at the Salpttrière, where be began to deliver a course of clinical lectures; these formed the basis of his Nosographie philosophique (1798; 6th ed., 1818), which was further developed in La Medecine clinique (1802). Pinel was made a member of the Institute in 1803, and soon afterwards was appointed professor of pathology in the Ecole de Medecine His fame rests entirely upon the fact that he was among the first to introduce the bumane treat: ment of the insane. He died at Paris on the 26th of October i 826 .

PINERO, SIR ARTHOR WING (1855-), English dramatist, was born in London on the 24 th of May 1855, the son of John Danicl Pinero, a Jewisb solicitor, whose family was of Portuguese origin, long established in London. A. W. Pinero was engaged in 1874 as an actor at the Theatre Royal, Edinburgh, and came to London in 1876, to play at the Globe Theatre. Later in the year he joined the Lyceum company, of which he remained a member for five years. The first piece of bis to see the footlights
was foto e yoar, pliyyed in October 8877 at the cilatwe Thentso for the benefit of Mr F. H. Machlin. The first play to make a hit was The Moncy Spinner (Theatre Royal, Manchester, Nov 1880), but in The Square (St Jamen's Theatre, Dece 188n) he attempted serious drams, and gave promise of the qualitios of his later work. In 1883 and 1884 Pinero produced seven pieces, but the most important of his works at this period were Une auccessful fances produced at the Court Theatre: The MagisHrale (Merch 1885), which ran for more then a year; The Schrob mistress (March 1886), Domdy Drch (Jan. 188y), revivedin February 1900; The Cabnet Minster (April 1890), and The Ameanas (March 1893). Two comedies of sentiment, Sueos Lamender (Terry's, March 1888) and The Weaker Sex (Theatse Royal, Manchastar, Sept. 1888), met with success, and Sweed Lavender has enjoyed numerous revivals. With The Profigafe (Garrick, April 1889) he returned to the serious drama which he had already touched on in The Squire. Out of deference to the wishes of John Hare the play was fitted with the conventional "happy ending." but the original dénouement was restored, with great advantage to the unity of the play, in the printed version. The Second Mrs Tanqueray (St James's, May 27, 2893) dealt with the converse of the question propounded in The Profigate, but with more art and more courage. 'The piece aroused great discussion, and placed Pinero in the fromt rank of living dramatists (gce Drama: Recent English). It was translated into French, German and Italian, and the part of Paula Tanqueray, created in the first place by Mrs Phtrick Campbell, attracted many actresses, aroong other Eleonora Duse. His later plays were The Nolerious Mrs Ebbsmilh (Garrick, March 13, 1895), The Beneft of the Dowb (Comedy, Oct. 1895), The Princess and the Bullerfiy (St James's, April 7, 2897), Trelcumey of the Wells (Court, Jan. 30, 1898), The Gay Lord Qmex (Globe, April 8, 1899), Iris (Gasrick, Sept. 21, 1901), Letty (Dake of York's, Oct. 8, 1903), A Wife Withows a Smile (Wyndham's, Oct. 9, 1904), His Howse in Onder (St James's, Feb. 1, 1g06), The Thumderbolt (St Jamea's, May 9, rgo8) and Mid-Chanmel (St James's, Sept. 2, Igog). Pinero was knighted in 1909.
His Plays (II vols. 189!-1895) have prefacea by M. C. Salaman. See also H. Hamilton Fyfe, A. W. Pinere ($\mathbf{1 9 0 2 \text {). }}$
Phieniolo [Picnemol], a city and episcopal see of Piedmont, Italy, in the province of Turin Pop. (1901), 12,608 (town), 18,039 (commune). It is built on a hill-side just above the valleys of the Chisone and the Iemina, at a height of 1234 ft . above the sea, 24 m . by rail S.W. of Turin. The railway goes on to Torre Pellice; and steam tramways run from Pinerolo to Perosa, and to Cavour and Saluzzo. Till rbg6 it was strongly fortified with a citadel on Santa Brigida, a castle on S. Maurizio, and city walls constructed by Thomas I. of Savoy. It has a cathedral (St Donatus), the palace of the princes of Acria and other buildings of some interest. Cotton, silk, wool and hemp are among the local manufactures.
Pinerolo was bestowed on the bishops of Turin by Otto III in 996; but in 1078 the countess Adelaide made it over to the Benedictine abbey of Santa Maria, in whose possession it remained till 1159 . Thomas I. of Savoy captured the castle in 1188, and in 1246 the commune formally recognized the supremacy of Savoy. Passing in 1295 into the hands of Philip, son of Thomas III., Pincrolo became his residence and capital, a distinction which it retained under Amadeus VIII. of Savoy. Francis I. of France obtained possession of the town in his descent into Italy, but Emmanuel Philibert received it back from Fienry III. in 1574 . A second occupation by the French occarred under Cardinal Richelieu; the French language was imposed on the people, great fortifications were constructed, and the fortress (Pignerol) was used as a state prison for such men as Fouquet, De Caumont and the Man with the Iron Mask (see Iron Masx). Victor Amadeus bombarded the place in 1693, and uttimately compelled Louis XIV. to relinquish his hold on it; but before the withdrawal of the French troops the defences were demolished. In 1748 the town was made a bishop's see.
 forms, one of which shows the stigms at the mouth of the carolla as in the primose, the term is contrasted with thrum-eyed.

PING-PONG, or Tabli-Teanis, a mininture variety of lawn. tenvia played on a table, which may be of any size not less than st ft . long by 3 ft . broad. Various attempts were made to adapt lawn-tennis to the house, but the real popularity of the same began when, mear the close of the soth century, celluloid balls were introduced, and the game wat called ping-pong from the sound of the balls as they were struck by the racket of rebounded from the table. In 1900 the ball was improved and made beavier, and for the pert two years ping-pong enjoyed a popularity never before attained by a game in so short a time, not only m Great Britain but in France, tbe British Colonies and America. Two leagues were formed, the "Table-Tennis Association" and the "Ping-Pong Association," whose lavs were practically identical. The regular tournament table is 9 ft . loag by 5 ft . broad, and the net is a little less than 7 in . high. The balla, which are of hollow celluloid, are about $\frac{1}{2}$ in. in diameter. The racket bas a blade, thaped like a lawn-tennis racket, about 6 in long and a handle long enough to grasp comfortably, all is one plece. Rackets are made either wholly of wood covered with vellum, cork, sand-paper or rubber, or of light frames covered with vellum or some other material. The table was at first marked out in courts, but is now plain. It should be unpolished and stained. In serving, a player must stand directly behind his end of the table and use an underhand motion only. The ball must clear the net and strike the table anywhere on the other side. The game is then continued until the ball misses the table or fails to pacs over the net. Only one service is allowed, except in case of a let. The scoring is the same as in lawn-tennis.
See Ping-Pong, by Armold Partcer (London, 1goe); Table Tanais, by A. Sioclair (London, 1908).
Fink, in botany, the common name corresponding to a genus of Caryophylacoe, the Diandkus of botanists. It is characierized by the presence of simple leaves borne in paiss at the thickenod nodes, flowers terminating the axis and having a tubaine calyz surrounded by a number of overlapping bracts, a showy corolla of five free long-stalked petals, ten stamens proceeding, together with the petals, from a chort stalk supporting the ovary, which letter has two styles and ripens into a cylindric or oblong podlike onechambered manyseeded capsule which opens at the apex by four cults or valves. The species are herbaceous perennials of low stature, often with very showy flowers. They are natives chiefly of southern Europe and the Mediterrapean region, a few being found in temperate Asia and South Africa. Four species are wild in Britain. Of these, D. armeria, Deptford pink and D. delloides, maiden pink, are generally distributed, D. caesius, Cbeddar pink, occurs only on the limestone rocks at Cheddar. Two others, D. plumarius and D. carrophylus, are more or less naturalized, and are interesting as being the originals of the pinks and of the carnations and picotees of English gardens. Garden pinks are derivatives from Dionthes plumoriws, a native of central Europe, with leaves rough at the edges, and with rose-coloured or purplish flowers. The use of "pink" for a colour is taken from the name of the plant."
The pink is a favourite garden flower of hardy constitution It has been in cultivation in England since 1629, and is a great favourite with florists, those varieties being preferred which

[^53]the the margin of the petals entire, and which are well marked in the centre with bright crimson or dark purple. Its grassy bet glaucous foliage is much like that of the carnation, but the whole plent is smaller and moire tufted. Pinks require a free loumy soil deeply trenched, and well enriched with cow-dung. They are readily increased by cuttings (pipings), by layers and by seed. Cuttings and layers should be taken as early in July as practicable. The former should be rooted in a cold frame or in a shady spot out of doors. When rooted, which will be about August, they should be planted 4 in. apart in a nursery bed, where they may remain till the latter part of September or the early part of October. The chief attention required during winter is to press them down firmly should they become lifted by frosts, and in spring the ground should be frequently stirred and tept free from weeds. The pink is raised from seeds, not only to obtain new varieties, bat to keep up a race of vigorousgrowing sorts. The seeds may be sown in March or April in pots in a warm frame, and the young plants may be pricked off finto bares and sheltered in a cold frame. They should be planted out in the early part of the summer in nursery beds, in which, If they have space, they may remain to flower, or the alternate ones may be transplanted to a blooming bed in September or the early part of October; in either case they will bloom the following summer These will grow in any good garden soil, but the richer it is the better

The border varieties are useful for forcing during the early spring months. These are propagated from early pipings and grown in nursery beds, being taken up in October, potted in a rich loamy compost, and wintered in a cold pit till required for the forcing bouse.

The following varietien are among the best. for bordert and forcing: Aucot, Carnet, Delicata, Derby Day, Her Majesty, Hercilen, Anve Boleyn, Lady Blancte, Mrs Sinkina, Mrs James Welah, Piris Park. Rubens Snowdon, Tom Welsh, Florists' show and haced varieties: Attraction, Beauty of Bath. Clarn, Criterion, Encign, Galopin, Harry Hooper, John Ball, Malcolm Dunn, Mrs D. Gray. Refiance, William Paul.

The Carmation (g.e.) and Ploptee are modification of Dianchur Corgophyllas, the Clove Pink. This is a native of Europe, Erowing on rocks in the south, but in the north usually found on ola walle Ite occurrence in England on some of the old Norman castlen, at at Rochester, in supposed by Canon Elacombe to indicate ite introduction by the Normans; fa any case the plant grow in timilar aituations in Normandy. The carnation inchuden those 2owers which are streaked or striped lengthwie-the picotees are chove in which the petals have a narrow band of colour along the edge, the remainder of the petzl being free from stripes or blotches. Thepe by the old witters were called "gillyflowera" The Sweet Withian of gerdeas is a product from Diauthex harbatiof.
The Sea-Pink, or Thrift, Slatice Armeria (Armeric palgaris), is a member of the natural order Plumbagimece; it is a widely distributed plant found on rociry and stony sem-ahores and on lofty mounEains. There are many improved varieties of it now in cultivation, one with alnont pure white flowers.
PIMETRRTOH, ALLAI (1819-1884), American detective, was born in Glaggow, Scoiland, on the 25 th of August r8rg. His father, a sergeant of the Glasgow municipal police, died in 1898 of injuries received from a prisoner in his custody. In 1842 Allan emigrated to Chicago, Illincis. In I843 he removed to Dundee, Zase county, Illinois, where be established a cooperage businese Here he ran down a gang of counterfeiters, and he was appointed a deputy-sheriff of Kane county in 1846 and immediately afterwands of Cook county, with hemdquarters In Chicago. There he organised a force of detectives to capture thieves who were stealing railway property, and this organization developed in 1852 into Pinkerton's National Detective Agency, of which be took sole charge in 8_{53}. He was especinlly succesp ful in capteting thieves who stole large amounts from express companies. In 1866 his agency captured the principals in the theft of $\$ 700,000$ from Adams Express Company safes on a train of the New York, New Hiven $\&$ Hartiond railwhy, and recovered all but aboat \$ra,000 of the stolen money In February $186 t$ Finkerton found evidence of a plot to assassinate President-elect Iincola upon his arrival in Baltimore on his way to Washington; an a reselt, Lincoln pacsed through Balcipiore at an early hour

the suggestion of General George B. McClellan, organized a system of obtaining military informstion in the Southern states. From this system he developed the Pederal secret service, of which he was in charge throughout the war, under the assumed name of Major E. J. Allen. One of his detectives, James MeParlan, in 1873 - 1876 lived among the Molly Masuires (q...) in Pennsylvania and secured evidence which led to the breaking up of the organization. In 1869 Pinkerton suffered a partial stroke of paralysis, and thereafter the management of the detective agency devolved chiefly upon his sons, William Allan (b. 1846) and Robert (1848-1907). He died in Chicago on the rst of July 1884. He published The Mody Maguines and ble Detectivas (:877), The Spy of the Rebollion (1883), in wich he gave his version of President-elect Lincoln's journcy to Washington; and Thirty Years a Delective (1884).

FIIKERTMOI, JOH2 (1758 -1826), Scottish archseologist, numismatist and author, was born at Edinburgh on the rith of February 1758. He was articled as a law clerk in Edigburgh, and his Elegy on Craismillar Castlc (1776) was printed during his clerishifp. In $\mathbf{y 7} 8 \mathrm{r}$ he removed to London to devote himself to literary work, publishing in the same year a volume of Rimes of no great merit, and Scotlisk Tragic Ballads. These were followed in x y8a by Two Dilkynambic Odes en Endhesiarm and Laugker, and by a series of Tales in Verse. Under the title of Soloct Scotish Bolleds he reprinted in 1783 his tragic ballads, with a supplement comprising Bollads of the Comic Ktiond. Ritson pointed oat in 1784 that the so-called ancient ballads were some of them of modern date, and Pinkerton confessed that he was the author of the second part of Hardy Kamede and partauthor of some others. He prablished an Exscy on Medals in 1784, and in 1785 , under the pseadonym of " Robert Feron," his bold but eccentric Levlers of Literolure depreciating the chassical authors of Greece and Rome. In 1786 he edited Ancient Scomish Poams from the MS. collections of Sir Richand Martland of Leth-ington-a genuine reproduction. It was suceceded in 1787 by a compilation, under the new pecadonym of "H. Bennet," entinled The Treasury of Wie, and hy his first important historical work, the Dissertation on the Origin and Progress of the Scythions or Gooks, to which Gibbon ecknowlodged himself indebted. Pinkerton next collected and printed in 1789 certain Vilae sanctornsw scolice, and, a little later, published his Enqwiry futo ahe Bistory of Scollond preceding the Reign of Malcolim III. His assertion that the Celtic race was incapable of assimilating the higheit forms of civilization excited "violemt diagust." but the Eupquiry was twice reprinted, in 1794 and $\mathbf{8 1 4}$, and is still of value for the documents embodied in it. Fis edition of Barbour's Brwese and a Mralollic Bivory of England to the Rewimation appetred in 1790 ; a collection of Sculish Poems reprinted from scarce Edifions in 1799; and a series of biographical siletcies, the Iconogrefilia scotice, in the years 1795-1797. In 1797 be pablished a Eistory of Scolland frove the Accestion of the Fronse of Stmat to ther of Mary, containing much valuable material. A new biographical collection, the Gallery of Envinew Persons of Scolland (1799), was-rucceeded after a short intervid by a Modern Geogropity difestal on a New Plas (ison; eniarged, 2807). About this tlone he left London for Paris, where be made bis headquarters until his death on the roth of March 1826. Hia remaining pubicications were the Recollections of Paris in the years r802-5-4-5 (1806); a very useful Gemepal Collection of Voyages and Tromis (i8o8-1814); a New Modent Allas (1800r8rg); and his Pedreloy (I8ri).
Phindey, whilal ($1764-1822$), American lawyer and statesman, was born in Annapolis, Marrland, on the 17th of March 1764. He was admitted to the bar in 1786 , and in $1788-$ 1792 practised in Harford county. In 17 th he wes a member of the state convention which ratified the Federal constitution for Marytand, in $1788-1792$ and in 2795 of the Fiouse of Delegates (where in 1788 and 1789 be defended the right of slaveowners to manumit their siaves), and in 1795-1795 of the state executive council. In 3796 -180; be was a commissioner under articte 7 of Jay's Treaty of 1794 to determine the clalms of American merchats for damage through "Irregular or illegal capture
or condemnations," and during this time adjusted on behalf of Maryland a claim of the state to stock in the Bank of England. In May 1806, with James Monroe, then minister at London, he was commissioned to treat witb the British goverdment concerning the capture of neutral ships in time of war; in 1807^{-1818}, after Monroe's return to America, he was resident minister in London. He was elected to the Maryland senate in September x8ix, and from December 18 ar to January 1814 mas attomeygeneral of the United States. In August 1814 he was wounded at Bladensburg. He served in the National House of Representatives in January-April 1816, and in 1816-1818 was minister plenipotentiary to Russia and special minister to Naples, where be attempted to secure indemnity for the losses to American merchants by seizure and confiscation during the rule of Murat in 1800 . From 1820 until his death, at Washington, on the 25 th of February 1822, be was a member of the United States Senate. He was a member of the conference committee on the bill for the admission of Maine and Missouri, which in its final form embodied what is known as the Missouri Compromise. Pinkney was a remarkably able lawyer and an orator of the old school.
See The Life of William Pinkncy (New York, 1853) by bis nephew. William Pinkney ($1810-1883$), who was Protestant Episcopal bishop of Virginia in 1879-1883; and Henry Wheaton, Some Accourt of the Life, Writings, avd Speectues of Williom Pinkitey (New York, 8828).

PINNACE, the name of two types of vessel or boat, one a light suiling vessel with two schooner-rigged masts, the other a heavy eight-oared man-of-war's boat. The word is usually referred to Let. pinms, pine, but this derivation is at variance with the earlier form "spinace,"
PINHACLB (from Lat. pinnoculum, a little feather, pinma; the Gr. trepirwon, diminutive of sripuk, wing, is also used in this sense), an architectural omament originally forming the cap or crown of a buttress or small turret, but afterwards used on parapets at the corners of towers and in many other situations. Some writers have stated that there were no-pinnacles in the Romanesque styles, but conical caps to circular buttresses, with finial terminations, are not uncommon in France at very carty periods. Viollet-le-Duc gives examples from St Germer and St Remi, and there is one of similar form at the west front of Rochester Cathedral. In the 12 Lb -century Romanesque two examples have been cited, one from Bredon in Worcestershire, and the other from Cleeve in Gloucestershire. In these the buttresses run up, forming a sort of square turret, and crowned with a pyramidal cap, very much like those of the next period, the Early English. In this and the following styles the pinnacle seems gencrally to have had its appropriate uses. It was a weight to counteract the thrust of the vaults, particulanly where there were flying buttresses; it stopped the tendency to slip of the stone copings of the gables, and counterpoised the thrust of spires; it formed a pier to steady tbe elegant perforated parapets of later periods; and in France especially gerved to counterbalance the weight of overhanging corbel tables, buge gargoyles, \&cc. In the Early Eoglish period the amall buttresses frequently finished with gablets, and the more important with pinnacles supported with clustered shafts. At this period the pinnacles were often supported on these shafts alone, and were open below; and in larger work in this and the subsequent periods they frequently form niches and contain statucs. About the Transition and during the Decorated period, the different faces above the angle shafts often finish witb gablets. Those of the last-named period are much richer, and are generally decorated with crockets and finials, and sometimes witb ballflowers. Very fine groups are found at Beverley Minster and at the rise of the spire of St Mary's, Oxford. Perpendicular pinnacles differ but litule from Decorated, except that the crockets and finials are of later character. They are also often set angle-ways, particulariy on parapets, and the shaits are panelled. In France pinnacles, like spires, seem to have been in use earlier than in England. There are small pinmacles at the angles of the tower in the abbey of Sainles. At Roullet there are pinnacles in a similar position, eacb composed of four small shaits, with caps and bases surmounted with
small pyramidal spires. In all these examples the towers have semicircular-headed windows.

PINNOCK, WILLIAM ($1782-1843$), English publisher and educational writer, was born at Alton, Hampshire, on the zod of February 1782, and was at first a schoolmaster, then a bookseller. In 1817 he went to London and, in pertnership with Samuel Mander, begin to publish cheap educational works The firm's first productions were a series of Catechisms, planned by Pinnock, consisting of short popular manuals, arranged in the form of question and answer, of the different deparments of knowledge. They were followed by abridged edicions of Goldsmith's histories of England, Greece and Rame, and a series of county histories which were no less profitable. Pinnock lost nearly all his money in outside speculation, and died in London on the arst of October 1843. His son, Wiliam. Henry Pinnock (1813-1885), a clergyman, was the editor and author of several clementary textbooks and scriptural manuals, and of vacious works on ecciesiastical law and usage.

Phomils, or Penuctile (Ger. Pinochel or Binockel, of uncertain etymology), a game of cards probably invented by Germans in the United States about the middle of the 19th century. It bears 2 general resemblance to Berique (q.v.), and has almost entirely usurped the place of the older game in America. Pinochle may be played by two, three or four persons. Two packs, from which all cards below the nines have been deleted, are shuffled together, forming one pack of 48 cards. The object of the game is to make 1000 points. The cards rank as follows: ace 11, ten 10, king 4, queen 3, knave 2. The nine counts nothing unless it be turned for trumps, when it scores 10. The last trick scores 10 . The term "to meld" (Cer. meldex, to announce), as used in pinochle, means "to declare." "Melds" are combinations which are declared during the play of the heads. They are of three classes: (1) "marriages" and "sequences," (9) "pinochles," and (3) "fours." The "melds" of the first class score as follows: "marriage" (king and queen of any plain suit). 20; "royal matriage" (hing and queen of trumps), 40; "sequence" (the Give highest trumpe), i50. In the second class the "melds" are "pinochie" (queen of spades and krave of diamonds), 40; "double pinochle" (both queens of spades and knaves of diamonds), 300; "grand pinochle" (king and queen of apades and kanve of diamonds), 80; this "meld" is not often played in America. Of the third class the "melds" are: four aces of different suits, roo; four kings of different suits, 80; four queens of difierent suits, 60 ; four knaves of different suits, 40; eighs aces, 1000; eight kings, 800; eight queen, 600; eight linaven, 400.

In single pinochle (wo playors) each player receives twelvt cards, four at a time, the twenty-fifth being turned up beside the stock for trumps. The non-dealer leads a card, to which the dealer plays. There is no obligation either to take, follow suit or trump. The winner of the trick leads again, before which, however, he rayy "meld" any pae combination he bolds. After he has "melded", or refused to do so, he draws a card from the top of the stock and adds it to his hand without showing it, his adversary doing the same, so that each player continues to hoid twetve cards. Playive, announcing, and drawing then go on until the stock is exhausted All combinations " melded " must be laid face upward on the table but still belong to the player's hand. though they may not be takea up until the stock has given out. When this happens all announcements cease, and all cards exposed are replaced in the hands. The last twelve tricke are then played, but now borh players mose follow suit and must win the trick if poonible, either, with a superiof card or a trump A failure to do this is a " revoke" and is penalized by the loss of all points made by cards.: ce. for the heve highest cards in each wuit, which after all the tricks have betw played, are, counted for the player holding them. Ace counts 11 points, ten 10. king 4 , queen 3. and knave z_{2} whatever the sni4, 50 that 240 points for "cards " are divided bet ween the two players. Though points are not counted during the play. a mental count is kept, and whenever a player sees that. by adding the value of his "melds:" to what he thinks his cards will count, he has enougt to win the game, damely 1000 points, be "calla out "ar knocks on the table, and proceeds to expose his cards. If he fails to show enough to win, he loses the game. If neither player knocks, the Pame continues until one of them scores 1250: if still \% tie. 1500 If a player fails to make good a " meld " be is ret back that number pi poinces The gappe is cored by.countera or os a cribbage-bpend

In three-handed pinochle the " melda" axe exposed before a card is played, and no player may "meld " alter he has played so the first trick. A rule is sometimes made that an overlooked cotrbination may be scored by the other players. Four-handed pinochle is played either wish partners or each player for kimeelf.

Prific, a town of Rusion, in the government of Minak, at the confurence of the Strumen and Pina rivers, 196 m. S.W. by rail of Minsk. Pop, 27.938, two-thirds being Jews. The town carries on considerable trade, due to the navigable river Pina, which connects it with the fertile regions in the basin of the Dnieper, and, by means of the Dnieper-and-Bus canal, with Poland and Prusais, while the Ogineky canal connects it with the basin of the Niemen. Pottery, leather, oil, soap and beer are the chief products of the local indestries. The drainiag of the marshes around Pinsk wis began by the government in 187a, and by 1897 8,000,000 acres had been drained at an average cost of 3s. per acre. Pinsk (Pinesk) is first mentioned in 1097 as a town belonging to Sviatopolk, prince of Kiev. In ir32 it formed part of the Minsk principality. After the Mongol Invasion of $1239+42$ it became the chief town of a separate principality, and continued to be so until the end of the x3th century. In 1320 it was annexed to Lithotania; and in 1569, after the urion of Lithuania with Poland, it was chief town of the province of Brest. ' During the rebellion of the Cossack chief, Bogdan Chmielnicki (1640), the Polea took it by amault, killing 14,000 persons and burning go00 houses. Eight years hater the town was burned by the Rusalans. Chariea XII. Look It in 8706 , and burned the town with its suburbs. Pingt was annexed to Russia in 1795.

PIISUTI, CIRO (i829-1888), Angio-ltalian composer, was born at Siena, and was educted In music, for a career at a pianist, partly in London and partly at Bologna, where he whe a pupil of Rosini. From 1848 he made his home in England, where he became a teacher of singing, and in $\mathbf{3 8 5 6}$ he whis made a professor at the Academy of Music in London. He became well known as a composer of numerous favourite songs and part-songs, as well as of three operas brought out in Italy, and it is by the former that he is still remembered.

PINT (derfved probably through Spanish, from Lat. Macta, picta, a painted or marked vessel), a liquid measure of capacity, equivalent to $\frac{1}{}$ of a gallon. The imperial British pfint -557 of a litre, $34^{\circ} 66$ cub. in. The United States standard pint $=44$ of a litre, 288 cub. in. The word appears in French as pinte for a liquid measure as early as the ijth century.
PMMLO, AMBAL (1825-1884), Chilean president, was born at Santiago, Chile. After a diplomatic training in the fegation at Rome he learned the practice of administration as indemdente of Concepcion, and from 1875 to 1876 was minister of war and marine under Errdzuriz. During his term of office as president (1876 to 1881) Pinto had to deal first with a severe financial crisis, and then to conduct the struggle with Peru and Botivia, in which be displayed great coolness of judgment and devotion to duty.
Plifio, Fisinio MENDEs ($1509-1583$), Portuguese edvensiturer, was born at Montembro-Vetho, of paor and humble parents, and entered the service of a noble lidy in Lisbon, being afterwands for two years page to the dake of Aveiro in Setubal. Desiring to try his fortune in the East, he embarked for India in 1537 in a fleet commanded by the son of Vasco da Gama, and for twenty-one years travclied, fought and Iraded in China, Tartary, Pegu and the neighbouring countries, sailing, in every sen, while in 154-1543 he was one of the first Europeans to visit Japan, where he Introduced the musket. Though we was thirteen times a captive and seventeen times sold Into slivery, his gay and dauntless spirit brougbt him through every misfortunc. He was soldier and sailor, merchant and doctor, missionary and ambassador; moreover, as the Iriend and travelling companion of St Francis Xavier, he lent the apostie of the Indies the money with which to build the first Jestit establishment in Japan. In January 1554 Mendes Pinto was in Gon, waiting for a ship to take him to Portugal, when he took a sudden resolution to enter the company of Jesus and devote a large part of the eaphal he had accumblated to the evengelfation of Japan.

The viceroy appointed him ambassador to the king of Bungo in order to give the miscion an official standing, and on the 88th of April he set sail with the provincial, Father Belchior Nunes. Owing to bad weather and contrary winds, however, the missioners did not reach Japan until July 1556, but the suocess of the mission represented a notable service to the cause of Christianity and civilination. On the rath of November 1556 Falber Belchior and Mendes Pinto began their return voyage and reached Gom on the 17th of February 1557. During his ttay of a twelvemonth there, the latter left the company, being dispensed from his vown for want of vocation at his own request, though a modern authority states that be was expelled because be was found to be a marrasso, ie, to postess Jewish blood. He finally returned to Portugal on the a2nd of September 1558 , and pettled at Pragal near Almada, where he married and wrote his fappous book, the Paregrimation; the MS., in fulciment of his wishes, wal presented by his daughter to the Cass Pis for penitent women in Lisbos, and it was published by tho administratoms In 1614. When Philip II. of Spain came to Portugal as its king, bo listened with pleasure to the account of Mendes Pinto's travels, and hy leiter of the rgth of Japuary 1583 gave him a pencion for his services in the Indies But the reward came too late, for the great traveller died on the 8th of July.
In the light of our present-day knowledge of the East, Pinto is reganded as having been on the whole a careful observer and truthful narrator, but this was not always the case. Some witty countryman of his own parodied his name into Ferndo, menles f Minel ("Ferdinand, do you Jie? 1 dol"); and the English dramatist Congreve only expressed the general opinion of the walearned when be wrote in Lowe for Lowe "Mendes Pinto was but a type of thee, thou liar of the first magnitude." It must be remembered that Pinto wrote the Peregrination loag subsequent to the evente be records, and this fact and a certaia fertility of imagination sufficiently account for inexactituden Furthermore, athe book was only published pocthumously, be never had the opportunity of correcting the proof. Some of his mont marvelloum atorias are erprewly given on the authority of writers belonging to the countries be dencribes; athers be tells from heamay, and Oriental informants are prome to etr acgerntion. But if be somewhat adorned the truth, he did not wilfully misrepresent it. The book itself gives the imprepsion of sincerity, and the editors of the first edition bear witness to the probily, good frith and truthfulmeas of Mendes Rinto as a man. Herresa Mnidonado prefaced his Spanish translation of the Peregrimation ($\mathbf{2 6 0 0}$) by a lengthy and erudite apology to demonatrate its authenlicity, and Castilhe has reinforced hia mgoments by modem tentimonien In the narrative portiona of his work Pinto's style is simpie, clear and natural, his dictiep rich, perticularly in sea terms, and appropriate to his varyias tubjects. There is an entire abeence of artifice about the book, Which must alwaye rank as a clacaic, and it might fairly be argued that Mendes Pinto did for the proee of Portugal what Camoena did for its peetry; this is the more remarkeble, because it dopp mot appear that be ever received may education in the ordinary sense. He wrote the book for bie children to learn to read by, and modestly excused its litesary defects by alleging his rudeness and lack of talent. Tradition has it that the MS. Was entrusted to the chronicler Frapchaco de Aadrade for the purpose of being polishedi in style asd made reedy for prese, but that all be-did was to divide it into chapters.

The Parcgrination has rooe throush many editions subsequent to that of 1614, and in 1865, Castifho pubtished excerpts in his Litrarta classica portugueza with in intereating notice of Mendes Pitto's Iile and writinga. Versione extok to Geimen. (3 editiona). Frenci (3 etitions) Spenish (4 editione), atd in Englim by Henry Copan, Loodoa (1663, 1692 and-abridged and illuserated, will introduction by Arminius Vambery-1891). Copan omits the chapters relating to Mendes Pinto's intercourve with. and the lase daye of, St Francis Xaviet. presumably ta a concemion to untiCatholic prajudice.
See Chrimovilo Ayrea, Farmalo Mondes Pinto (Lisboan 1gou). Fervio Kendes Pinit es Japlo (Lisbon. 1906); aloo Smbridios ... para a biographia de Fermàa Mcrdes Pisto by Jordảo de Freitwa (Coimber, 1903).
(FI. PR)

Firio. The remartable brown, black and blue spots of discoloration of the whole body met with enderaically in Mexico, Panama, Colombia and Venezuela, and known under the name of "plato" or "mal de los pintos," were first clained by Gastambide (Presse med. Belge, 1881 , Nos. 33-41) as due to the presence of a vegetable parasite, whose spores and even mycelial filaments may be detected among the deeper now of cells of the rete mucosum. The disease appears to be one of the many forms of morbws miserice; but it is contagious, and is sometimes seen in the well-to-do. In some villages of the western districts of Tabasco (Mexico) it has been estimated that 9% of the inhableants auffer from the pinto; M'Clellan says that in $\mathbf{1 8 2 6}$ in the City of Merion he saw a whole regiment of " pintadios."

FinruRicerio ($1454-1513$), Italian painter, whose fuli name Was Bernardino dr Betti, the son of a citizen of Perugia, Benedetto or Betto di Biagio, was one of a very important group who inherited the artistic traditions and developed the atyle of the older Perugian painters, such as Bonfigt and Fiorenzo di Lorenzo. According to Vasari be was a pupil of Perugino; and so in one sense no doube he was, but rather as a paid assistant than as an apprentice. The strong similarity both in destgn and methods of execution which runs through the works of this later Perugian school is very striking; paintings by Perugino, Pinturicchio, Lo Spagna and Rapheel (in his first manarr) may often be mistaken one for the other. In most cases, especially in the execution of large frescoes, pupils and assistants had a large share in the work, either In enlarging the master's sketch to the full-sized cartoon, in transfering the cartoon to the wall, or in painting backgrounds, drapery and other accessories. After assisting Perugino in the execution of his frescoes in the Siatine Chapel, Pinturicehio was employed by various members of the Della Rovere family and others to decorate a whole series of chapels in the church of S. Maria del Popolo in Rome, where be appears to have worked from 1484, or carlier, to 1492 with ittle interroption. The earliest of these is an altarpiece of the "Adoration of the Shepherds," in the first chapel (from the west) on the south, built by Cardinal Domenico della Rovere; a portrail of the cardinal is introduced as the foremost of the kneeling shepherds. In the lunctes under the vault Pinturicehio painted small scenea from the hife of St Jerome. The frescoes which he painted in the next chapel, that huilt by Cardinal Innocenso Cibo, were destroyed in 1700 , when the chapel was rebuilt by Cardinal Aderano Cibo. The third chapes on the south is that of Giov. della Rovere, duke of Sora, nephew of Sistus IV., and brother of Cindiano, who was afterwards Pope Julius II. Thls contains a fine aitarpiece of the "Madonna enthroned between Four Saints," and on the east side a very nobly composed fresco of the "Assumption of the Virgin." The vault and its lunettes are richly decornted with small pictures of the life of the Virgin, surrounded by graceful arabesques; and the dado is covered with monochrome paintings of scenes from the lives of sainte, medaltions with prophets, and very graceful and powerfully drawn female figures in full length in which the influence of Signorelil may te traced. In the fourth chapel Pinturicchio painted the Four Latin Doctors in the hunettes of the vauk. Most of these frescoes are considerably injured by damp, but happily have suffered litile from restoration; the heads are puinted with much minuteness of finish, and the whole of the pictares depend very largely for their effect on the final touchings a secco. The last paintings completed by Pinturicehio in this church were the frescoes on the vault over the retro-choir, a very rich and well-designed piece of decorative work, with tasin lines arranged to suit their eurroundings in a very skilful way. In the centre is an octagonal pand of the coronation of the Vlrgin, and round it medallions of the Four Evangelists- ihe spacrs between them being filled up by reclining figures of the Four Sibyia. On each pendentive is a figure of one of the Four Doctors enthroned under a niched canopy. The bands which seperate these pictures have elabotate arabesques on a goid ground, and the whole is painted with broad and effective touches, very telling when seen (as is necessarily the case) from
a considerable distance below. No finer specimen of the decomtion of a simple quadripartite vault can anywhere be seea.

In 149 a Pinturicchio was summoned to Orvieto, where be painted two Prophets and two of the Doctors in the duome. In the following year he returned to Rome, and was employtad by Pope Alepander VI. (Borgia) to decorate a suite of six robas in the Vatican, which Alerander had just builh. These rooms, called after their founder the Appariamenti Borgia, now form part of the Vatican bibrary, and Give of them still retaia the fine series of frescoes with which they were so skilfully decorated by Pinturicchio. The upper part of the walls and vaulta, not only covered with painting, but further enxiched with delicate stuceo work in relief, are a masterpiece of decorative design applied acconding to the truest principles of mural ornament - much better model for imitation in that respect than the more celebrated Stense of Raphacl immediately over the Borgia rooms. The main mubjects are: (1) the Annunciation, the Nalivity, the Magi, and the Resurnection; (a) Scenes from the lives of St Catheriae, St Antony and other aaints; (3) alkgorical fgures of music, arilhmetic and the like; (4) four figures in hall length, with rich arabesques; (5) figures of the planets, the occupations of the various months, and other subjecta. The Exth room was repainted by Perino del Vaga. ${ }^{1}$

Though not without interruption, Pinturicchio, assisted by his pupils, worked in these rooms from 1492 till 1498 , when they were cormpleted. His other chicl fresooes in Rome, still exising in a very genuinestate, are those in the Cappelta Bufalini at the south-west of S Maria in Ara Cocli, probnbly executed from 8497 to 1500. These are well-designod compositions, noble in conception, and finished with much care and refinement. On the altar wall is a grand painting of St Bernardino of Siens between two other gaints, crowned by angels; in the upper part is a figure of Christ in a vesica-glory. surrounded by angd musicians; on the left wall is a lacge fresco of the miracles done by the corpec of St Bernardino, very rich in colour, and full of very carefully painted heads, some heing partraits of membes of the Bufalini family, for whom these frescoes were executed One group of three females, the central figure with a child at ber breast, is of especial beauty, recalling the grace of Raphad's second manner. The composition of the main group round the seint's corpse appears to have been suggested by Giotto's painting of St Francis on his bier in S. Croce at Florence. On the vault are four noble figures of the Evangelists, usually attributed to Luca Signorelli, but certainly, like the rest of the frescos in this chapel, by the haad of Pinturicchio. On the vaull of the secristy of S. Cocilia in Trastevere, Pinturiochio painted the Almighty surrounded by the Evangelists. During a visit to Orvieto in 1496 Pinturicchio painted two more figures of the Latin Doctors in the choir of the duomo-now, like the rest of his work at Orvieto, almost destroyed. For these he received fifty mold ducate.

Among his panel pictures the following are the most important. An altarpiece for S Maria de' Focic at Perugia, painted in 1496-1498, now moved to the picture gallery, is a Madonna enthroned among Seints, graceful and sweet in expression, and very minutely painted; the wings of the retable have standias figures of St Augustine and St Jerome; and the predelle bss paintings in miniature of the Anpunciaticn and the Evangelists. Another fine altarpiece, similar in delicacy of detail, and probably painted about the same time, is that in the cathedral of San Severino-the Madonna enthroned looks down towards the knecling donor. The angels at the sides in beauty of face and expression recall the manacr of Lorenzo di Credi or Da Vind The Vatican picture gallery has the largest of Pinturicchio's pancls-the Coronation of the Virgin, with the apostles and other saints below. Several well-executed portraits occur among the kneeling saints. The Virgin, who kneels at Christ's feet to receive ber crown, is a figure of great tenderness and beauty, and the lower group is composed with greal skill and grace in arrangement. Other important panel paintings hy Pinturicchio erist
${ }^{1}$ See Guattani, Quadri malt apport Borgis (Ropoe, 2asa).
in the cethedred of Spello, in the Steon gallary, at FHorence, at Perugia, and in other collections.
In igoz Pinturicchto painted several fine freseoes in S. Maris Magiore at Spello-all very decorative and full of eleborate architectural accessories. One of them, the Anmuschation, is signed "Bernerdiavs Piatvrichivs Pervalnve." Tho mont striking of all Pintericchio's frescoes, both for brilliance of colorr and their wondefful state of proservation, ase those in the cathedral library at Stena, a large room buile in ti495 by Cardinal Prancesco Piecalomind, aftervards Plus III. In 150 the cardinal contracted with Pinturicehio to decornte the whole room with arabesques on the vault, and on' the waly ten scenes from the life of Aeneas Syivius Piccolomini, Pium II., the uncle of Cardinal Francesco.

The contract epecially provided that the cartoons, thek translerence on to the walls, and all the heads, were to be by Pinturicchio's own hand, thu contradicting Vamar's assertion that the cartcons were the work of Raphael. The document provides for the price of theme frescoes, namely one thousand gold ducats, to be paid in verious instalnenth. The work was begun early in igo3. but was interrupted for a while by the death of Pius Iii. His will, however prowided for the completion of the work by his executors, and the whole series were finished in 1507 . The aubjects are (1) the journey of the young Sylvius Piccolomini to the Council of Baser. in the suite of Cardinal Capranica; (2) his reception by James I. of Scot land as envory from the Council of Basel; (3) his being crowned with the poet's laure by Frederick 111 ; ; (4) his reception by Pope Euseniue (V. as armbaswador from Frederick $111 ;(5)$ outnide the wall of Siena he presents to Frederick III, his bride Leonore. infante of Portugal; (6) he receives the cardinalis hat from Pope Caliztus III. ; (7) he is borne In procention after his election as Pope Pius II.; (8) be pretides at a council at Mantua; (9) be canonipes St Catherine ol Siena: (10) he arrives ia Ancons to promote the crusade against the Jurks. In addition to theme there is, outside cruse library, over the door, the coronation of Pius lil. Ia the lower part of the scene of St Catherina's canonization he has latro-
 tome rememblance to Raphael.
In 1508 Pinturicchio painted another pand of the Madonna enthroned among saints for the church of the Minori Conventuali at Spello. It is now over the altar in the ancristy. On his return to Siena he painted a whole series of frescoes on the valla of the Palasso Potrucei, now ali deatroyed except one scene of the return ol Ulystes to Penelope (or pomibly Colialinue and Lucretin), which is now in the National Gallery of London, transferred to canvas. One of his last worke, painted in 8523 , the year of his death, is a very beautiful and highly finighed panel with Christ bearing His Cross, now in the Palazzo Borboneo in Milan. Pinturicchio married Granis di Niccold, and had by her two sons and four daughters; there is probabily no truth in the story of his being starved by his wife duting bis last illness.

Pinturicchio's worth as a painter has been for the most part undervalued. partly owing to the very otrong prejudice and dislike which tinges Vasari's blography of him. Even Crowe and Cavalcaselle hardly did him justice. A fairer estimate of his ponition
 chio (Perugia, 1837) Vand in the valuable notes and appendix of Milanesi's edition of Vasari. iii. 493-531 (Florence. 1878). Sec also Schmarsow, Raphoed wnd Pinturicchio in Sitina (Stutigat. 1880), and Pinturfochio in Rom (Stuttgart, I882), both well illustrated by photo-lithography.
(J.H. M)

FINWETh, GEORES JORN (1842-1875), British water-colour painter, was born at Wycombe, and educated at Fientheriey's Academy. He is one of the most intereating persomalities in the little group of water-colour painters which included Friederick Walker end A. B. Houghton, a group whose style was drectly derived from. the practice of drawing upon wood for book illustration. He was one of the most delight(u) book illuetrators of his day, poetic in imagination, with considerable inventive power and an admirable sense of colour. As he died young his works are few, but their promise was so great that had he lived he would probably have allained a very high podition. His carly life whas one of considerable privation. In 1262 be entered at Heatherley's studio and there obtained his art education. His earilest drawings appeared in Lilliput Levte. He did a Hitle work for Fwn and executed several design: for the eilventmithe, Elleingtons. In $\mathrm{I}_{2} 8 \mathrm{~h}$ his first drawing eppeared in Once id Woft,
and from that time tils wat whs in constine demand. Thert are many of his compontions in Geod Words, The Suadet Magasine, The Quiver and Lomdon Society, but his mont impertant productions made for the Daldet brothers were illuatitions of Goldsmith, of Jean Ingelow's poems, Robert Bucharian's Dallads of the Affections, and the Arabian Nights.

Of Pinwell's pictures in colour, which are distinguished by a remarkable, jewel-like quality and marked by his strong love of pure, bright colour and opalescent effect, the chief are the two scenes from the Pied Piper of Hamelin, Gilhert \& Beckel's Troth, Oull of Tame or The Odd Cross, A Seat in St Jamer's Perk, and The Eixir of Life.

In 1874 Pinwell fell seriously ill and went to Arrica for the winter. He painted several remarkable pictures at Tangier, but his strength gradually broke down and he returned to die in his wife's arms on the 8th of September 1875. Pinwell was an exhibitor at the Dudiey gallery, and in 1869 was elected associate of the Royal Water-Colour Society and full member in 1870; to this gallery he contributed fifty-nine works. A posthumcus exhibition of his works was held in, 886 in Bond Street.
See Life of George J, Pinwell, by Ceorge C. Williamson, quarto
goo. 1900.
(G.C.W.)

PIIVZON, a family of wealthy Spanish navigators, of Palos in Andalusia, three members of which-Martin Alonzo, Francisco and Vicente Yanez, brothers-were aspociated with Columbus in the discovery of America.

Maride Alonzo Pinzon, born about the middle of the igth century, gave material afcistance to Columbus in carrying out his project. "If Colon was the head, Pinzon was the right arma" (Ascuaio). Ir the expedition of 1493 he companded the "Pinti," om which his brother Frascisco was pilot; another brother, Vicente Yafiers, commanded the "Nina." On the 6th of October Martin Nonso sugsested to Columbus (when already In the longitude of the Bermudas) to change the course of the expedition from due west to south-west; on the 7th of October this suggeation-strengthened by the observation of a.filght of birds to the south-west-manas adopted, bringins the fleet, bous days later, to the landfall at Guanahani (San Salvador, Wavidg Island) in the Bahamas (Oct. 12, 1492). On the aist of November 1492, near the east end of the north coest of Cuba, Martin Alonio left Columbus, making enstwned in eeatch of the goid-land of which they had beard the natives spenk. On thi oth of January 2493 he rejoined the admiral, who socepted bis excowes. But on the return journey he aguin left his leader, asd when Columbus arrived at Palos on the igth of March 1498 he learoed that Alonvo had already landed at Bayona in Culicha. If his object was to fosentilh Columbus and pore is discoverer of the New World, he was fotled; audience was refused him by Fexdimand and Lsabella; and soon ahter he died, perhaps 'of chegrin.

Vicentiz Yafix Pinzon, who commanded the "Nina" in 1492-1493, also gave Columbus material help, and remained loyal to his leader throughout. In after yours bo made important discoveries on his owis account. Late in December 1499 be salled with four caravels acrosa the Atlantic to the south-west, and on the 7 th of February 1500 be stifuck the South Ameriona continent at Cepe S. Agostinho, near its most easterly projection (called by him Cape Senta Maria de la Consolacion) almost throe monthe before the Portuguese navigator Cabral reached Brazil, the discovery of which is generally attributed to him. Proceed-' ing southwards a short distance, he then tursed north, followed the coast to the norib-west, discovered the Amason eatuary, and went at least as lar as what is now Coata Rica. Aiter touching at Haiti, and losing two of his vessels among the Bahamas, Vicente returned to Palos in the end of September 1 goa Although concessions were made to him, and be was created governor of the newly discovered lands by Ferdinand and lsabella, be does not seem to hive ever taken posession. In ≤ 507 we find Vicente sailing with Juan Diaz do Solis along the east const of Central America. In 1 509, again with De Solis, he consted the Atlantic side ol South America as far as the In Plata estuary, hoping to find an opening westwards leading ti the Spice Islands. According to Hetren, he even reached 40. Si
pasaing the Le Plata without recognicing it, and tarning back about the mouth of the Rio Negro, but this is probably an exaggeration. After 1523 all traces of Vicente are lost.
See Navarrete, Coleccion de viajes; Washington Irving's Columbus, Bk. XIV., ch. ii.; bibliography in poaquim Caetano da Silva's I'Oyapoc at Imazone (Paris, 1861); Herrera, Indias Occid, Dec. I., lib. vi. cap. 17; lib. vï. cape 1 and 9 (Madrid, 1730): Oviedo, Hise general de las Imdias, lib. xxiii. cap. 1 (Madrid, i852); 0 . Peschel, Geschichite der Erdkunde, pp 230, 233, 249 (Munich, 1865); Zeiloller der Enideckungen. pp. 305. 2ce, 426 , Jose Maria Asensio, Cristoval Colon, su vida, sws viajes, sus descobrimientos (Barcelona, 1891); Cesareo Fernandez Duro, Colon e Pinson.

MO DI SAVOIA, an ancient noble Italian family, first mentioned by good authorities in the 14th century. From the house of Este (q.v.) they received the lordship of Carpi, and later they acquired the fiefs of Meldola, Sassuolo, \&c. Many members of the family were distinguished as condottieri, diplomats and ecclesiastlcs. Alberto Pio obtained from the house of Savoy in 1450 the privilege of adding "di Savoia" to his name as a reward for his military scrvices. Another Alberto Pio (r4751531), who was French ambassador in Rome, won fame as a man of learning, and Cardinal Rodolfo Pio (1516-1564) was a trusted adviser to Pius III. and helped to establish the Inquisition at Milan. Ascanio Pio (d. 1649), was 4 dramatic poet of some merit. Spain conferred the title of prince on the family, and one branch of it is to this day established in Spain.
See P. Lleta. Le Famiglie celebri italiane (Mitan); G. Campori Memorie storiche di Marco Pio di Sapoia (Modene, 1876): A. Ceriani and G. Porro, "il Rotolo epistografo dei principi Pio di Savoia," in the Archivio sterico lombardo ser. II. an. XI. lasc. I, ver. III. an. VILI. 96, and ser. IIL. an. XIX. 453.

FIOMEIMO, a seaport of Tuscany, Italy, in the province of Pisa, 8 m . by rail W.S.W. of Campiglia Marittims (which is 53 m . S.S.E. of Pisa), 62 ft . above sea-level, at the southern extremity of the penimsula of the Monte Massoncello. Pop. (1901), 5979 (tovan); 7703 (commune). It is surrounded by old walls, and conatains some interesting Renaissance works by a master of about 1458 under the influence bi Aiberti. It is the port of embarcation for Elba, the nearest point of which is about 6 m . to the south-west, and originally belonged to Pisa. It gives the tide of prince to the Buoncompegni Ludovisi family, who, however, no longer own it.

PIONEER, properly a foot-soldier (Med. Lat. pedo, pedomis, through O. Fr. peomerier, piennier, cf. " pawn ") "who with spede, axe and other implements, precedes an army or smaller military body, and clears or makes a road, digs intrenchments, prepares a camping ground, \&icc. The word is thus applied to all who, actually or figuratively, are first in exploring or working an andiscovered or undeveloped country or fictd of inquiry.

PIOTRHKOV (Ger. Pelrikas), a government of Russian Poland, bounded by the government of Warsaw on the N., Radom and Kieice on the E., Kalisz on the W. and Prussian Silesia on the S. Area, 4729 sq. m.; pop. (1906, estimate), 1,675,200. Geologically it represents a continuation of Upper Silesia, and is built up of Upper Carboniferous deposits, containing near Bendzin a bed of coal 965 sq. m. in extent. Permian and Jurassic deposits, containing riac ores, as also lignite and limonite iron ores, overlie the Carboniferous. The surface consists of a series of heights, 1000 to 1600 ft . mbove set-level, intersected by ravines, and stretching from south-west to north-east. The government is drained by the Warta and the Pilica, andwas formerly covered with thick forests. It was colonized hy Maztre and Poles (Veliko-Polyans and Malo-Polyans). The government, which is the most densely peopled in. the Russian Empire, is divided into eight districts, of which the chief towns ane Piotriow, Bendzin, Brzeziny, Czenstochowa, Lask, Lodz, Nowo-Radom and Reves Agriculture and cattle breeding are extensively carried on; and coal and iron are mined: Textile industries developed with extraordinary rapidity during the closing years of the roth and thie opening years of the 2oth centuries, the towns of Lodz, Pablanice, Zaerz and Bendzin all being important centres. Othar branches of productive indust ry are distiliteries, breweries, flour-millis, brickyands, sugar, cement, glass and candle factories. Cranica and Somowice, in this goverament, are two of the most
important custom-houses in Russia, and the annual trade is estimated at $\{12,000,000$.

PIGTRKOW, a town of Russian Poland, capital of the govemmeat of the same name, and formerly the seat of the high court of Poland, on the railway from Warsaw. to Viensa, 90 m . couth west of the former and 5 m . west of the river Pilica. Pop. (1900), 32,173. It is a well-kept town, with numerous gardens, and has flour-milks, saw-mills, tanneries, agricultural machinery works, and breweries. One of the oldest towns in Poland, Piotrion was in the 15 th and r6th centuries the place of meeting of the diets, and here the kings were elected. In the 14 th century Casimir the Great built here a castie (now a military church) and surrounded the town with walls. Here in 1769 the Russians defeated the (Polish) forces of the Bar Coniederation.

PIOZZA, HESTER LYNCH (1741-1821), English writer, wed known as the friend (Mrs Thraje) of Samuel Johnson (g.s.), was born on the 16th of January 1741, her father being John Salusbury of Bobbel, Carnarvonshire. Her maternal uncle, Sir Robert Salusbury Cotton, contemplated providing for his niece, but he died without having carried out his intention. She and her mother lived in London, and amongst her childish recollections were meetings with James Quin and David Garrick. She received a solid education, for she was acquainted with Latin as well as with French, Italian and Spanish. In 1763 she was married to Henry Thrale, a rich Southwark brewer, whose house was at Streatham on the south-east comer of Tooting Bee Common. There was very little sympathy between the lively girl and Thrale, who was thirteen years her aenior, but gradually she drew round ber a distinguished circle of friends. She was introduced to Samuel Johnson in 1765 by Arthur Murphy, who was an oid friend of her husband's. In 1766 Johnson paid a long visit to Streatham, and from that time was more or less domesticated with the Thrales. In time it became his custom to spend the middle of the week at Streatham, devoting the remaining days to his own heterogeneous "family." He was genuindy attached to his hostess, and thoroughly appreciated the luxury in which the Thrales lived. They were able to soften some of his eccentricities, and they certainly made him happy. He travelled with them in Wales in 1774, and in France in 1775. Dr Burney gave lessons to one of the Miss Thrales, and in 177^{8} be brought his daughter Fanny to Streatham. She became a warm friend of Mrs Thrale, and has left an account of the Streatham housohold in her diary. This friendship was by po means always unclouded. Fanny Burney was very sensitive, and sometimes thought that Mrs Thrale gave herself airs of patronage. Meanwhile, in 1772, Thrale's business was seriously injured, and he was threatened with bankruptcy. The situation was saved by his wife's efforts, and in the next year Thrale travelled, leaving her in charge of his affairs. He was twice returned for the borough of Southwark, chiefly through bet efforts. In ${ }_{1781}$ Mr Thrale died, and Dr Johnson helped the widow with her husiness arrangements, advising her to keep at the brewery, zntil she "cured his honest heart of its incipient passion for trade, by letting him into some, and only some, of its mysteries." The hrewery was finally sold for fi35,000 Mrs Thrale had met Gabriele Piozzi, an Italian musician, in 1780 Johnson was now In failing heaith, and cnon begen to feel himell sighted. His suspicions were definitely aroused when she tad aside her mourning for Thrale in $\mathbf{1 7 8 2}$, and the Streatham house was sold. In 1783 her engagement to Pioexi was manounced. The objections of her daughters and her friends induced ber to break it off for a time, but it was soon resumed, and in 1784 they were married. Johnson told Miss Burney that be drove the memory of Mrs Thrale from his mind, burning every lettes of hers on which be could lay his hand. The Pioszis presently left England to travel in Italy. At Florence they fell in with Robert Merry and the other "Della Cruscan" writers ridiculed by William Gifotd in his Maetiad and Basiad, and she contributed some verses to their Florence Miscellany in 1785 . In 1786 she published Arociater of the late Samud Johnson, dwring the last twewly yeors of his life, which was severely criticized by Boswell. She was ridiculed by "Pater Pindar" in Bemy and

Pieasi; or the Britich Diegraphers, A Town Eclogme (1786). But though Miss Burney and some others held aloof, the Piomis found plenty of friends when they returned to London in 1787. Piover died at Brynbella, a villa he had built on his wife's Carnarronshire estate in 28og, and Mri Fiozri geve up her Welsh property to her husband's son, and speat most of the rest of her life at Bath and Clifton. When long past seventy she took a fancy to William Augustus Conway, the actor. Sho retaised her vivacity to the last, celebrating her 8oth birthday by a bal to six or seven hundred people at Bath. She died at Ciifton on the 2nd of May 1821 .
From ${ }^{1776}$ to 1809 she kept a note-book which she callest "THraliana." Her well-known poem of the "Three Warnings" is to be found in many popular collections. Letters to and from the late Samued Johnson appeared in 1788; Observations and Reflections made in the course of a Jowrney, through Framee, Ilaly and Germany, in 1989; and in 1801 she published Retraspections or a revica of ate most striking and importand anents, characters, and siluations ... which the late cighten hundred years have presented to the piews of mankind (r801).
See Letters and Literary Remains of Lrs Piond (Theale), adibed wilh notes and an Imbroductory Account of her Life and Writings by A. Haymard (1861); Piossiana; or Recolloctions of the late Mra Pioszi by a Friend (1833), the anonymous friend being Edward Mangin (1772-1852); L. B. Seeley. Mrs Thrale, affermards Mrs Pierse . . (i891), and G. Birkbeck Hill, Johnsomion Mistellanios (1897). Also works noted in bibliognephy to Jониson, Sajuti.

PIPE, a term used of a musical wind-ingtrument of tubular form, and hence of any cylindrical hollow tube. The original application of the term is to the musical instrument (see Pupz and Taboz below), and the source is to be found in Lat. pipare, to chirp, of a bird. The general meaning of "pipe," in the sense of a tube for such purposes as carrying water, gas, sewage, fec, is trested under Turis. Among specific uses of the word are those for the hollow stem of clay; wood or other material with a bowl it one end in which tobacco is smoked (see below); for the metal er wooden sound tubes in alt organ (q-.s.); and for variols forms of cylindrical veins, hollows, channels, de., in mining and geokog. The Creat Roll of the Exchequer was known as the "Fipe Roll", this contained the various "pipes" or entolled accounts of the sheriffs, \&c., which were sacalled either from being sent in a cylindrical case of as resembling a pipe in shaper when molled (ees Recomes).

Tabacco Pipe.-The smdking of tobacco in pipes is a custom thich prevailed in Americi for a period of unknown daration previous to the discovery of that cominent by Columbus. The most anciont plipes of which remains exist have been found in mounds or tumuli called pipe mounds, principally in Ohits, Indiana, Hlinois and Iowa. These morund pipes, which are carved in porphyry and other hard stones, are very undform ith type. Thee pipe, cut out of a single piece of etone, constats of a slightly conver platiorm or base, generally from 3 to 4 in . in length, and about an minch broad, with the bowl on the ceatre. A

Fig. 1.-" Monitor " Pipe. fine hole is pienced froms ont end-of the phatform to the bottom of the bowi, the opposite end being obviously for holding in the hand while the pipe is being moked. In the commonest forms the howl is a simple cyliader or urn (fig. 2), but in many cares remarkable artistic akill has been dipplayed in carving the bowls into miniature figures of birds,mammals,reptiles and human heads, often gror tesque and fantastic, but alwaytvigorously expreped (ig. 2). These mound or platform pipes with carved bumanand animal forrosere abjects of the higheat ethoographic interest and importance, boing among the

Fig. 2.- Heron Pipe. most characteristic remains of the ancinat inhabitante of the Missiosipgi valley. The wide area over which they, as well at
remains of baked clay pipes, are found throughout the American continent testifies to the universal prevalence of smoking in the pre-Colombian era. Many of the ancient clay pipes found in Merico, fec., are clabonately moulded and orpmeneated, while others show considerable similarity to the carly clay pipes of Earope. Among the North-American Indian tribss the tobeccio pipe occupies a position of peculiar symbolic aignificanoe in connexion with the superstitious riles and usages of the race. The calumet, peace pipe or medicine pipe, is an object of the most profound veneration, contrusted to the care of a highly bonoured official, and produced and smokod with much ceremony only on occasions of great importance and solemnity. It ia remarkable that, whilst the most ancient American plpes had mo separate stem, it is the stem only of the medicine pipe which is the object of veneration among the Indians, the howl used being a matter of indifference. The fayourite material for Indian pipe bowls is the famous red pipe stone (catlinite), a fine-grained easily-worked stone of a nich red colour of the Coteau des Prairies, west of the Big Stonc Lake in S. Dalota The quarries were formerly neutral ground among the wamin Indian tribes, many sacred traditions being associated with the locality and its product.
It is disputed whether pipes for smoking were at all knowin in Europe previous to the discovery of America. That tobacco: smaking was unknown is certain; but pipes of iron, bronze and clay have been so frequently found associated with Roman remains and other antiquities as to lead many authorities to maintain that such pipes must have been anciently used for burning incense or for smoking aromatic herbs or hemp. Throughout Great Britain and Ireland small clay pipes are frequently dug up, in some instances associated with Roman relics. These are known amongst the people as elfin, fairy or Celtic pipes, and in some districts supernatural agencies have been called in to account for their cristence. The elfin pipes have commonly fiat broad heels in place of the sharp spur now found on clay pipes, and on that flat space tbe mark or initials of the maker is occasionally found. There is no reason to believe that these pipes are older than the 17 th century. The introduction of the tobacco pipe into Europe is generally ascribed to Ralph Lane, first governor of Virginia, who in 5586 brought an Indian pipe to Sir Walter Raleigh, and taught that courtier how to use the implement. The pipe-makers of London became an incorporated body in. 16i9, and from. England the other nations of Europe learned the art of making clay pipes,
The habit of smoking with pipes spread with incredible rapidity; and among the various peoples the pipe assumed special characteristics, and its modifications became the medium of conveying social, political and personal allusions, in many cases with no littele artistis skill and humour. The pipe also became the object of much inventive ingenuity, and it varied as greatly in material as in form-wood, born, bone, ivory, mone, preciole and other metals, amber; glass, porcelain and, above all, ciny being the materials employed in various forms. By defreep pipes of special form and material came to be associatod with particular people, ef. the elongated painted porociain bowls and pendulous stem of the German peasantry, the red clay bowl and long cherry wood stem of the Turk, and the very small metalific bowl and cane stem of the Japanese, \&c. Among other kinds of pipe which have been popular at various times are the "corn-cob," where the bowl is made of the cob of maize or Indibu eoin, and the "calabash " with the bowl of a small gourd. The "churchwarden" is a clay pipe with a slender stem, some 16 or 20 in . long. The most luxurious and claborate form of pipe is the Persian hemjetis bookeh or water tohacco pipe. This consiasts of throe pieces, the head or bowl, the water bottle or base, and the snake or long flexible tuhe ending in the mouthpiece. The tobafco. which must be previously prepared by steeping in water, is placed in the head and lighted with live charcoal, a wooden stem passes from its bottom down into the water which fills the base, and the tube is fitted to a stem which ends in the botelo above the water.' Thus the smoke is cooled and wahbod before it reaches the smeker by pasing through the water in
the bottie, and by being drawn through the coll of tabe fine quently some yards in length. The boteles are in many cases made of carved and otherwise ormamented coco-nut' shells, whence tho apparatus is called mergita, from margit, a cecomut. Silver, gold, damascened steel and precious stones are freely used in the maling and decoration of these pipes for wealthy smokers.
Pipe Masufacture.-The regular pipe-making industries divide into many branches, of which the more important are the clay pipe, meerschautn (real and aitificial), and wooden bowi tradet Clay pipes ere made in prodigious numbers by hand labour with an iron mould and a ateel wire for forming the tube of the weem. Pipemondiding is a very mimplo operation in pottery, and tbe work is performed with astonishing celerity. A number of machines have been devired for automatic pipe-moulding; hut the manual operationa are so rapid end inexpenaive that there is little margin for meving by the subaticution of machinery. The pipen are very dighty fired so as to keep them eoft and porous: and so cheaply made are they that the commoner kinds can be retailed at a profit for a farthing each. The principal early centres of the clay-pipe endustry were at Bromeley in Scaffordshire, where the trade has been eatabliabed since the enrly part of the i7th ofntury, and at Amesbury ia Wiltshire. The manuffacture is mill carried on at BropeleyMeerschaup pipes (ree Meerscha uk) are the lurury of the European simoker. The favourite wooden pipe generally known as a briarwood or briar-root pipe is really made from the roots of the tree heath, Ericu arberce (Fr. bruyers), principally obtained on the hille of the Maremma and talen thenoe to Leghorn. There the roots are shaped into hlocks each suitable for a pipe, the curting of the wood so as to avoid waste requiring considerahle skill. There blocks are simmered in a vat for twelve hours, which gives them the much-appreciaced yellowith-brown hue of a sood "briar-root." So prepared the blockes are exported for boring and finishing. Many devices have been invented for the purpome of preventing the nicotine liquor from reaching the smoker's mouth or collecting in and louting the pipe.

PIPR And TABOR (Fr. galoubet; Geir. Schaeged or Slamenrienffitit, a popular medieval comhination of a small pipe or flageolet, and a small drum. The pipe consists of a cylindrical tube of narrow bore, pierced with three holes, two in front and one at the back, all very near the end of the pipe; and of a mouthpiece of the kind known as whistle, fipple or beak common to the gates a lec or recorder family. The compass of this instrument, with no more than three boles, exceeds two octaves in the hands of a good playet, and is chromptic throughout. The fundamental notes of the open pipe and of the three holes cannot be produced; the scale consists, therefore, entirely of harmonics, the 2nd, 3 td and $4^{\text {th }}$ of the series being easily obtained, and, hy half stopping the holes, also the semitones which are required to complete the chromatic scalc. The tabor being fastened to the performer's left ellow, the hands remained free, the right bealing the little drum with a stick to mark the rhythm, while the left held and fingered the pipe with thumh and first two fingers.

Mersetine mentions a wonderful virtuoso, John Price, who could y) to the twanty-stcond on the galoubet. Praetorius meations and figurea threes aises of the Seamentienpfeif, the treble 20 in. long, the tenor 25 in . and the base 30, the last being played by means of a crook about 23 im . Jong. A specimen of the bass in the muscum of the Brussels Conservatoire has for its fowest mote middle C. The pipe and tator are eaid to he of Provengal arigid; it is certain that they were most popalar in France, England and the Netherlands, and they figure lavely among the musical and pocial scenes in the illuminated MSS. of those countries (K.S.)
PIPE-FISHES (Sysgnathina), small fishes, which with the Seahorses form a distinct family, Syngnothidae, of Lophobranchiate

Fice 8.--Symgnafitijes acws, Male, with sub-caudal pouch. Thoracostei. The name is derived from tho peculiar form of their snout, which is produced intara more or less long tube, ending in a
narroim and smill mouth which opera upwaris and fy toothlen The body and tail tre long and thin, snake-like, encased in hard int esuments which are divided into regularly arragged segments. This dermal sheleton shows several longitudinal ridgee, so that a vertical section through the body represents an angular figure, not round or oval as in the majority of other fishers. A doest fin is always preeent, and is the principal (in some species, the only) argan of bocomotion. The ventral fins are as constantly' abocnt, and the other fins may or may not be developed. The gill-openings are catrenthy small and placed near the upper posterior angle of the gill-cover. Most of the pipefishes are marine, only a few being flaviatile. Pipe-fiches are abundant on such coasts of the tropical and temperate zones as offier hy their vegetation sheller to these defenceless crentures They are vary bad swimmers, slowly moving through the water by menns of the rapid undulatory movement of the dorial fin. Their tail, evan when provided with a caudal fin, is of no use in swimming, and not prehensile as in sea-horses. Specimens, therefore, are not rarily found at a great distance from land, having been realstlesdy carried by currents into the open ocean; ane species, Syaguolhas pelagicur; has an extraordinarily vide range over the tropical scas, and is ono of the common fishes inhabiting the vegetation of the Sargasso Sea. The colour of these fisbes often changes with the sca-weeds among which they may be fourd, passing from brown to green or even brick-red. In pipe-fishes the male is providod with a pouch-in some species on the abdomen, in ethers on the lower side of the tail-in which the ova are lodged during their development. This marstupis pouch is formed by a fold of the skin. developed from each side of the trunk or tail, the free margins of the fold being furnoly united in the medina line thrbughout the period during which the eggs are being hatched. When the young are hatched the folds separate, leaving a wide slit, by which the young gradually escape when quite able to take care of themacives. Nearly a kundred differemst species of pipe-fishos are known, of trhich Sipdamostamen ty idit, Syiguothers oces (the Great Pipe-fish up to r8 in. in length, Neroptis ecquernws (Ocean Pipe-fish), Neroptir ophidion (Sturightnoed Pipo-finth), and Nenophis Lembriciformis (Little Pipe-fish) are British eppering. The last three are destitute of a caudal fin.
A revict of the extemave titerature on the breeding habites of the Symgothidae is given hy E. W. Gudger, "The Breeding hatice and the Segmentation of the Eqg' of the Eipefish; ${ }^{1}$ Proc. U.S. Not. Mus. (1905), wuix. 447.

PIPR, CARL COONT ($\mathbf{6} 647-1716$), Swedish stateamen, mas born at Stockholm on the agth of July 1647. He entered the foreiga office after completing his academical course at Upsala, accompanted Benedict Orensijerna on his embassage to Russia In 1673, and attracted the attention of Charles XI. during the Scanian War hy his extraordinary enerty and ability. In r679 be was appojated secretary to the board of tride and ennobled. In 1689 he tras made one of the secretarits of state, tund Chartes XI. recomshanded him on his doathbed to his roch and succeesor, Charles XIL Pher. became ithe most confidential of the new sovereign's ministers. In 1697 he wh made a senater and set over domestic affilas white still retaining his stete-secretaryship. In 1698 he was cretted a count, in 1702 appointed chancelior of Upsala University, and during the first half of the Greal Northern War, as the chief of Charles's perambaleting chancat lery, he was practically prime ministet. It waithis mistortume, bowever, to be obliged to support-aisystiem which was nol his
pwh. Ffe bllonged to the school of Penedict. Orenstiorsa and was therefore an avowed advocate of a pacific palicy. He protested in vain against nearly all the military ventures of Chartes XII., e.s. the War of Deposition against Auguatus of Samony and Poland, the invasion of Samony, the raid into the Ultaine. -Again and again he insiated that the pacific overturgs of Peter the Great should at least be fuisty comsiniered, but hia sunster was always immovable. Piper's carcer cam to an end at Polcave ($\mathrm{x} \neq 0 \mathrm{o}$), whore he was among the prisoness. The last years of his Mife were spent in exile in Rusein. He died at Schlitisselbarton the 2gth of May 1716.

Soe W. L. Svedelina, Cown Car Pism (Stocitholm, 1869).
(R.N.B.)

PIPRRAKIIf, a substance formed by the action of sodium sidycol on ethylene-diamine hydrochloride, consisting of small altaline deliquescent crystals with a saline taste and soluble in water. It was originally introduced into medicine as a solvent for uric acid. When taken into the body the drug is partly oxidized and partly climinated unchanged. Outside the body piperazin has a remarkable power of dissolving uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Lycetol, lysidine and sidonal are bodies having similar action.

PIPERIIIE, $\mathrm{C}_{17} \mathrm{H}_{5} \mathrm{NO}_{3}$, an alkaloid found in the fruits of Piper nigrum and P. longum. It forms white prisms, which melt at $128^{\circ}-219^{\circ}$. It is almost insoluble in water, but readily saluble in alcohol and ether. It is a very weak base, salts being only formed with mineral acids, and these are dissociated by water. Alcoholic potash decomposes it into piperidine, $\mathrm{C}_{4} \mathrm{H}_{\mathbf{u}} \mathrm{N}$, and piperic acid, $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{O}_{2}$. The constitution of piperic acid was elucidated by R. Fittig and his pupils (Ann., vols. 152, 159 , 168, 216, 227) and shown to be (x). Piperine consequently is (2).

Onidation with potassium permanganate converte piperic acid into piperonal, $\mathrm{C}_{4} \mathrm{H}_{1} \mathrm{O}_{2}$, and piperonyfic acid, $\mathrm{C}_{4} \mathrm{H}_{1} \mathrm{O}_{4}$ The latter when heated with hydrochloric acid to 17°, or water to 200°, separates carbon with the formation of protocatechuic acid, 1-2-diony-3-benzoic acid. $\mathrm{C}_{\mathrm{C}} \mathrm{H}_{2}(\mathrm{OH})_{3} \mathrm{COOH}$. Conversely, by heating protocatochuic acid with potask and mechylene iodide, pipcronylic acid was regained. These results show that piperonylic acid is the methylene ether of protocatechuic acid. Piperonal ($(9.0$) is the corresponding aldehyde. Piperic scid differs from piperonylic acid by the group $\mathrm{C}_{\mathrm{d}} \mathrm{H}_{4}$ and it was eppirete that there carton atoms ment bo attached to the carbon atom which appears in the carboryl group of piperonylic acid, for if they were directly attached to the benzene ring polycarboxylic acids would result in oxidation. The above formula for piperic acid was conEnmed by ita pyntheain by A. Ladenbrugg and M. Schohti (Ber., 1894 , 27 . p. 2958) fronn piperonyl acrolein (the condensation product of piperonal and acetaldehyde) and acetic acid. The synthesis of piperine follows from the interaction of piperyt chloride (formed from piperic acid and phosphorus pentachlonde) and piperidine (L. Rogbeimer, Berc, 1882, 15, p. 1390.)

PLPERNO (anc. Privernmen), a town of the province of Rome, Italy, 62 m. S.E. of Rome by rail Pop. (1901), 6736. The medieval town wat founded in the roth century (?) on a hilt 490 ft . above sen-level, by refugees from the Roman town of Privernum, lower down (118 ft . above sen-tevel) on the highroad, it me to the north, at the mouth of a low pass leading through the Volecian mountains to the valley of the Sacco. Here are remains of an areh croesing the road and other ruins (moody buried) of the Roman period; bat the remains above ground are langely medieval. It is improbable, however, that the anciena Volscian town should have occupied so easily accessible a site; it is not unlikely that it stood on the site occupied by the medieval and modern town, bur there is no proof of this. Privernum was a Volscian town, and took up arms against Rome after the:fotindation of a Latin colony at Setia in 3^{88} a.c. It was.finally coptoried in 329 s.c., and eleven years later the
tribus Oufention mas founded, taking its name from the river Oufens (mod. Ufiente) in the territory of Privernum. Little is known of it subsequently. The medieval town has a picturesque piaza, with a Cothic cathedral (2283), which preserves a fine porch, though the interior was modernined in 1782; a Cothic palezso pubblico; and other Gothic churches exist in the town. Polyganal terrace walls of the Romais of pre-Roman period exist at various places in the vicinity (G. B. Giovenale and IL Mariani in Joflisis degll Scewi, 1899,88).
(T. As.)

PIPIRONAL (heliotropine, protocatechyic aldehyde mothylene ether), $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}$, an anomatic aldehyde. It is prepared by oxidizing piperic acid with potassium permanganate (R. Fittig, Ann., 1860, 152, p. 35); by condensing methylene iodide with protocatechuic aldehyde (R. Wegscheider, Monats.4 1893, 14, p. 388); or by oridiriog igosafrol with chromic acid. It forms long colouriess crgatals which melt at $37^{\circ} \mathrm{C}$. and boil at $263^{\circ} \mathrm{C}$. It has an agreeable smell, resembling that of heliotrope, and is mach used in perfumery. It is only slightly solubie in cold water, but is readily soluble in alcohol and in ether. When beated with dilute hydrochloric acid to $200^{\circ} \mathrm{C}$. it yiedds protocatechuic aldehyde, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{3}$, and carbon. It readily combine with sodium bisulphite and with various bases (ammonia, aniline, methylamine, de.).

PIFTT (cognate with the Lat. Pipio; siee Proson), the name applied hy ornithologists to a group of birds having a great resemblance both in hatits and appearance to the larts (q.a.). They differ however from larks in several important characters, and, having been frost separated to form the gensus Axthur, which has since been much broken up, are now generalty amociated with the wagtails ((.n.) in the Passerine family Motacillidee. Pipits, of which over fifty species heve been described, occur in almost all parts of the world, but in North Americe are represented by only two species-Neocorys stregwiz, the prairie-lart of the north-western plaizs, and Andims Imloniciantes, the American titlark, which last is very nearly allied to the so-called water-pipit of Europe, A. spippletta. To mont English readers the best known species of pipit is the titlark or meadow-pipit, A. pratensis, a bird too comnon to need description, and abundant on pettures, moon, and uncultivated districts generally; but. in some locallities the tree-pipit, A. rrioiadis, or A. arborews of some authors, takes Its place, and where it does 20 It veually attracts attention by its boud song, which is not unitike that of a canary, but delivered (as appenss to be the habit of all the pipits) on the wing and during a short circuitous fight. Abother species, the rock-lark, A. obscorus, ecarcely ever leaves the seacoast and is found almost all round the British Islands. The South-African gemss Macrowyx, remarkable for the extreme length of its hind claw, is generally placed among the pipits, but differs from all the rest in its brighter coloration, which has a curious resemblance to the American genus Sturnolla (sec lefigivs), thougle the bird is certainly not alifed theroto.
(A. N.)

PIPPII, or PEPIN, the name of three members of the Carolinglan family.

Pippr I. (d. 640), incorrectly called Pippin of Landen, was mayor of the palace to the youthful Dagobert i., whom Clotaine II. had placed over the kingdotn of Austrasia. He wat dingraced when Dagobert became sele king in 6ay, and had to seck refuge in Aquitaine. Returning at Dagobert's death (639), he governed Austrazia in Sigebert's mame, bat died in the following year.

Piples II. (d. 714), incorrectly called Pippin of Herstal, was son of Adalgiselus (son of Arnulf, bishop of Mets) by a daughter-of Pippin I., called in later documents Begen. Towarde 678 he placed himself at the head of the great nobles in Austrash to combat Ebroin, the manyor of the palace, and Neustrin. After some reverses he gained a greal victory after Ebroln's deatb at the battle of Tertry, not far from Se Quentin. This victory made Pippin tmost entive master of Gavh. He appointed one of his sons mayor of the palace of Neustria, reterving for another of his sons the mayorally of Austrasia. He made war
on the Prisiats and defeated their duke Radbod; and part of this people became converts to Christianity. He also defeated Wilari, the duke of the Alamanni, and subdaed his country. The Bavarians, too, recognized the Frankish suzerainty. The plans he had formed for reforming the church and convoking councils were interrupted by his death, which took place on the 16th of December 74.
Pippin III. (d. 768), the Short, ${ }^{2}$ was son of Charles Martel. Before his death in 74 I Chaties Martel had divided the Frankish kingdom between his two sons, Carloman and Pippin, giving Carloman the eastern part and Pippin the western. Since 737 there had been no king in the Frankish realm; in the diplomas the two brothers bear the title of majores polatii), while the chroxiclers call them simply priscipos. In 743, however, the mayors decided to appoint a king in the person of Childeric III., who was apparently connected with the Merovingian family. But Childeric was a mere figure-hend, and had ne power. The two brothers presided over the tribunals, convoied the councils at which the Frankish Church was reforned, assembled the host and made war, jointly defeating and subduIng Duke Hunald of Aquitaine. In 747 Carloman unexpettedly ebdicated, became 2 monk, and retired to a monnstery near Bome, subsequeatly founding on Mi Soracte the monastery of St Silvester. From the time of the abdication Pippln was sole master; and in 751, after consulting Pope Zacharins, he took the titie of king and removed the feeble Childeric to a monastery. He then got himself crowned by St Boniface, a ceremony which was new to France and which gave the sovercign immense prestige; benceforth the king of the Franks celled himself Gratia Dei rex Frencerum. Pippin's reign is marked by many important events. He received in France a personni visit from Pope Stephen II., who conferred on him the titie of Patrician of the Romans and recrowned him. In return for these honours Pipptn, at the appeal of the pope, made two expeditions into Italy, in 754 and 756; and he became tbe veritable creator of the papal state by conferring on the pope the exrechate of Ravenna, which he had wrested from Aistulf, the king of the Lombards. Pippin took Septimania from the Arabs, and after a st ubborn war of nearly eight years' duration (760-68) succeeded in taking Aquitaine from its duke, Waifer. He also intetvened in Gerraminy, where be forced the duke of Bavaria, Tassilo, to bocome his vassal. In 763, however, Taspilo abandoned Pippin during an expedition against Aquitaine. Pippin made several expeditions against the Saxons, bat failed to subdue them. He entered into relations with the Fastern Empire, exchanging ambassadors with the emperor Constantine Copronymus. During Pippin's reign Frankish institutions underwent some modification. The Frankish assemblies, previously held in the month of March (champs de mars), but under Pippin deferred to May (champs de mai), came to be more numerous, and served the king of the Franks as a means of receiving the gifts of his subjects and of promulgating his capitularies. At the head of the administration was placed the archchaplain, and an ecclessastical chancellor was substituted for the ancient referendarixs. Ecclesiastical reform was contimued under Pippin, Bishop Chrodegans of Matz uniting the clergy of Metz in a common life and creationg canons (see Canor). Pippin died on the 24th of September 768 at St Denis, leaving two sons, Charles (Charlemagne) end Carloman.
Sre H. Bonnell, Dis Aufange des kandingischen Hawses (Berlin, 1866); H. Hahn. Jahrotricher des frankischen Reiches 741-752 (Berlin, ${ }^{1863}$): L. Oeisser, Jahrinteher des frankischon Reiches wnier Komig
 des Raiserreicks umber den Kardinyern (2nd ed. 1899): and E. Mahblbacher, Denuscir Geschichte witier dem Karolivgery (Stuttgart, 1896).
(C.PF.)

PIPRIWA, a village on the Birdpur estate in the Rasti district, United Provinites, India. It lies on the Uska-Nepal road at mile 39.75; and about half a mile south of the boundary pillar numbered is on the frontier line between British and Nepalese
${ }^{5}$ A surname given to Pippin III. on the strength of a legendary mocedote relatid by the monk of Se Gall.
territory. The inilage is celebrated as the she cif the followizns discovery:-
In $\mathbf{3} 896$ interest having been aroused by the discovery, only twelve miles away, of the Buddha's birthplace (see Lomimin), Willimm Peppe, then resident manager of the Birdpur estate, opened z ruined tope or burial mound situate at Piprlma, buif nothing of importante was found. In January 1897 he carried the work of excavation farther. A well, ro ft. sq , was dog down the centre of the mound. After digging through 18 ft. of solid brick work sel in day a massive ntome coffer was found lying due magnetic north and south. Its dimenmians wert $4 \mathrm{ft} .4 \mathrm{in}$. . by 2 ft .8 if in. and 2 ff .2 f in. high. The stone lid of the coffer was split into four pieces; but the coffer remained perfectly closed, so accurately was the lid fitted into flangs on the sides of the box. The pieces were thus firmly held in their place, and the contents of the coffer were found intact. These consisted of five vessels, two vases, a bowl and a casket being made of steatite, and the fifth, also a bowl, of crystal. All these veasels are beautifully worked, the crystal bowl especially, with its fish-shaped cover handle, being as a work of art of ligh merit. ${ }^{2}$ The coffer is of fine hard sandstone of superior quality, and has been hollowed out, at the cost of vast labour and expense, from a solid block of rock. Pcppe calculates its weight, lid included, at $\times 537 \mathrm{tb}$. It is only the great solidity of this coffer which has preserved the contents. A cover of one of the vases was found dislodged and lying on the bottom of the stone coffer. As this cover fits very well it must have required a quite violent shock to remove it. This was almost certainly the shock of an earthquake, and the same shock probably caused the split in the stone lid of the coffer itsell.

The vessels contained a dark dust, apparently disintegrated ashes, small pieces of bone, and a number of small pieces of jewelry in gold, silver, white and red cornelian, a methyst, topar, gamet, coral and crystal. Most of these are perforated for mounting on threads or wires, and had been, no doubt, originally connected together to form one or more of the elaborate girdles, necklaces and breast ornaments then worn by the women. On the bottom of the stone boak there was similar dust, pieces of bone and jeweiry, and also remains of what had been vesscts of wood. The lnoh forming the handle of one of these wooden receptacles was still distinguishable. The total quantity of scraps of bone may have amounted to a wineglassful.
An inscription rap round one of the steatite vases just below the lid." The words mean: Tkis shrine for ashas of the Buddhe, the Exalled One, is the piows work of the Sakiyas, kis bratiren, associatod with their sisters. and their children, and their wives. The thirteen words, in a local dindect of Pali, are written in very ancient characters, and are the oldest inseription as yet discovered in India. Twelve out of the thirteen are well-knowa words, the Interpretation of which is not open to doubt. One word, rendered above by "pious work," has not been found elsewhere, and its derivation is open to discusecion. The explanation here adopted as most probeble was put forward hy Professor Pischel of Berlin." The phrase "pious work" probably had a precise technical connotation like the English " benefaction."
The monument must have been of impoaing appearance. The dismeter (on the ground level) of the dome is 116 ft . For 8 fl : from the summit of the ruin it was not possible to trace the outline. At that point the outer wnll, if one may so call it, of the solid dome could be traced, and had a diameter of 68 ft . The dome, therefore, sloped in wards 1 ft . for every 3 ft . in height $\mathrm{f}_{\text {, }}$ in other words, it was, like all the mont ancient of these artifcial burial domes in India, a shallow dome, and cannot have beem more than about 35 ft . high exclasive of the ormamentor "tec" on the summit. We have in bas-reliffa of the srd century representations of whet these ornaments were tilk-small
${ }^{2}$ An illustration from a photograph is given in RhyE Davids' Bxddhist 1ndia, p. 13 t.
${ }^{-1}$ For figures of the jevelry lound ece the plate in Mr Peppos: article, reproduced in Rhys Davido' Buddhiss India, p. Bg. For the jewelry of the time, ibid., pp. 90, 9x.

4 See illustration ibid., p. 129.

squase arestions, tike a strine of small semple, surmounted by a canopy called from its shape a T. They were then more than a third of the height of the dome itself. The total height of this Sakiya tope will therefore have been approsimately a litue under 50 ft . It was probably surrounded by a carved wooden rxiling, but this has long since disappeared.

All such monuments hitherto discovered in India were put up in honour of some religious teacher, not in memory of royat persons, generous benefactors, politicam, or moldiers or privato persons, however distinguished. And we need have no hesitation in accepting this as a mondment put up over a portion of the ashes from the fumeral pyre of Cotama the Buddhe. The account of the death and cremation of the Buddha, preserved in the Buddhist canom, states that one-ighth portion of the ashes was presented to the Sākiya clan, and that they built a unpa, or memorial mound, over it. ${ }^{1}$

Mr Peppe presented the coffer and vases with specimens of the jewelry to the museum at Calcutta where they still are. He also gave specimens of the trinkets to the Asiatic Society in London.

Peppe's original article is in the Journal of the Royal Asiatic Sociely for 1808 , pp. 573 4qq. - Compentis ugoa $i t$, ope or t wo of them sceptical, are in the same journal 1890; pp. 579, 588، 387, 868: 1899, p. 425; 1901, p. 398; 1905; P. 679; 1906; pp. 149 =99Sce abso A. Barth, Comples rendmes de Tacesemien des inscriptions (1898). xxvi., 147; 233; Sylvain Levy, Jownad des smantes (1905) pp. 540 sqq.; and R. Pischel and Rhys Davids an quoted above
(T. W. R. D.)

PIQUA, a city of Miami county, Ohio, U.S.A, on the Miami River and the Miami \& Erie Canal, 73 m . W, by N. of Columbus Pop. (1890), 9090 ; (1900), 12,172, of whom gor were foreign-born and 487 were negroes; (1910 census), 13,388. It is served by the Pittsburg, Cincinnati, Chicago \& St Louis, and the Cincinnati, Hamilton \& Dayton railways, and by inter-urban electric lines to Lima, Dayton and Covington. It has a park, a public library and a public hospital. There are quarries of blue limestone in the vicinity. The city has various manufactures, the factory products being valued in 1905 at $\$ 4,035,706$. The municipality owns and operates its waterworke. On or near the site of Piquif was one of the principal villages of the Chillicothe division of the Shawnee tribe; the village also was called Chillicothe. It was destroyed by George Rogers Clark in 1782. A town was laid out here in 1809 under the name of Washingtom, and the present name, that of another division of the Shawneo tribe, was substituted in 1823. Piqua was chartered as a city in 1846 . During the French and Indian War, in 1763, a batile was fought in this vicinity chiefiy between the Miamis, Wyandots, Otlawas and other Indian allies of the French, and the Delawares, Shawnees, Cherokees, Catawbas and other Indian allies of the English, the English allies making an ansuccessful attempt to drive the French allies from their fortified podtion, Fort Piqua.

See Henry Howe, Histerical Collections of Okio (Columbus, 8891).
PIQUEST. a game at cards, probably a development of ronfa, a game mentioned by Berni in 8526 ; la ronfo (included in Rabelair's list, c. 1530) may be regarded as the same game. The point at piquet was anciently called ronfle. The Spanish name of the game was cientos (contum, a hundred). Piquet was played in Engiand under the name of cent, or sam, probably as early as 1550 (contemporaneously with the marriage of Mary to Philip of Spain). About the middle of the 17 th century (shortly after the marriage of Charles I. to Henrietta Maria of France) the name cent was dropped in England, and the French equivalent, piquet, adopted. It in played by two persona, with a pack of thirty-two cards-the sixes, fives, fours, threes and twos being thrown out from a complete pack. At one time the partic was the best of five games of a hundred up (a player not obtaining fifty losing a double game). But now tho partis is generally determined in six hands, the player making the largest augregate score being the winner. The number of points won is the difference between the two seores, with a hundred
${ }^{1}$ Tramatated in Rhys Davida' Buddkist Suldas (Orford, 188i).
added for the seme. If, bowever, the loser fails to make a hundred in six hands, the number of points won is the sum of the two scores, with a hundred for the gume. Piquet played in this way is called Rubicom Piquet.

The dealer deals twrelve cards to hit adveroary and twelve to himentf, two at a time, or three at a time. He then places the eight undealt enrda called the "stock," face downwards on the table, the top five being for the elder hand (non-dener) to take from first in exchange for his own. The players now look at their hands, and corte blesche (ree later) haviag been declared, in there is one, put out (without showing them) wuch cards as they deen advinable in order to improve their hande, and talie in an equivalent manber from the stocic. Ench player monst diwond at leant one card. If the elder hand discards less than the five he is entitled to, be must state how many he leaves. He it enticled to look at the cards he leaves, replacing thern face downwards on the top of the tock. The younger hand then malpes the eschange from the remainder of the stacle. If the elder hand leaves any of the top five, the younger may exchange as many as remila fo the etocle. discardips an equal number. If the younger hand leaves any cards, be anmounce the number left. He may look itt the cardf be leaves. II be lools at them he must show them to the elder hand, after the elder has manied the mit ha will iend first, or tar led card.

If the younger hand elects not to look at the cards laft the eider cannot see them. The younger hand masat make his election before he plays to the card first lad, or, if $\mathbf{0}$ requirod; after the dealer hue naped the suit be will firt lead. Each player anmy exanine his own discard at any time during the hand; but be must lioep is separate from his other cards.
The elder hand next makes a declaration of what he hase in his hand.

The "point" must be called firnt or the right to call it is lome It in tconsd by the playor who announcee the suit of meatest trength, valued thus; ace II ; court tards, to each; other cards, the nuwbor of pips on each. Thes if the elder hand's bert suit is ace, king knave, nine, eight, he calle "five, cands" If the younger band has no suit of five cads, he saye "good.". The elder mand then ays " in eqedes" or whatever the sult may be, or chows his point face mpwards. If the youmer hand has a auit of more than five corde, he myy "not pood." If the yoanger hand hats alwo five Cardo, be wys ""equal" or " what do they male? " when the elder call " forty-eight" (or " maicing eight" boort for forty-eight). The younger must not inquire what the point malces unlest he has an equal number of cards. If the younger hand'e five cande matre lew that forty-eight be gys "good"s if exactly forty-aisht, he tere "equal"; if more than forty-eight he gays " oot good." The player whos point is good reeloons one for each eard of it; if the points are equal meither player scores for point.
"Sequences" are usually called next, the elder hand statin" what has beet sequence in and the younger anying, " good," "4 equal," or " not pood," as in the case of the point. Any three ar move consecutive cards of the serme enit held in hand constitutea sequence. The order of the cards is as fodows: ace (highest), king, queen knave, ten. nipe, eifht, seven (lowest). A sequence of three cands is called a "tierce"; cf lour, a "quart "; of five, " quint "; of tix, a " aixiture"; of enven, a "eeptitme "; of eight, a " huitianne." A tierce of ace, king, queen is called a "tierce major "; a tierce of king. quecr. knave is called a "tierce to a king" (and so on for other intermediate sequences according to the cind whicil heads theml; a tierce of nine, eight, seven is called a " tierce minor." Sequences of four or more cards follow the same nomencliterares cof. ace, king, queen, knavo is a quart major: knave, ten, nink. eight, is a quart so a lenave: and 20 on A acquence of a greater number of cards is good against a sequence of a maller number: chus, a quart minor is good against a tierce major. As between sequences containing the same mumber of cards, the one laaded by the higheat card is good; thus, a quart to a queen is good agninte a quart to a knave. Only identical eequences can be equal. The phyor rhowe requence in sood reckons one for each card of it, and ten in addition for quints or higher eequences. Thut a tierce counts throe; a quart. four; quint. fiftern; s sixitane, isteen; and to on. If the efder hard'a sequence is good, he marnas the witt, or alonwe it Ince upwards. If the highest sequence for the sequence firt colled) is good, all lower eequencen can be reckoned, mot withitanding that the dvenuary hat a aequence of intermediate value. For example, A has a quart to a queen (good,) and a tierce mince. He calhy and reckons eeven, notwithtandins that B has a quart to E knave. B's quart coants mothing. If the highent mequence is equal nekher player scores anything for eequencers even though ane player may hold a eecond eequence of eqtal er inferion value.

Quatorzes" and "trios" aro the next calls "Quatornet' art composed of four aces, four kinge, four qutens. four lonatee, of four tems, in onder of vilue: "trios "of three of any of theme A quatorrat if good, reckons fourteen; a trio, if good, recloons three; one that is good extabliches aly smaller quatorsea or trioe in his hend
When the edder haed has done calling be lada a casd. Before
playing to this card, the youmger hand reckoni all that he han pood, ctating of what carde his clains are composed, or showing the carda claimed for. The elder hand heade any card be pleasen; the yourger playe to it. The younger hand must follow sait it able; otherwite he may play any cind be thinks fot. It is mot compulsory to win the trick. The beader counts one for each card led, whecther it wiss the trick or moc. If the sacond player wins the trick be aloo counts one. The winner of the late trick counts an adidional one for the last curd. The triclas are left face upwaris in front of the player who wins them. They may be extmined by either player.
If each player wina eix tricks the cards are "divided" and there in po further woove. If one player wins more than wix crictey he wind "the canda," and adde ten to his wore. If one player wins every trick, he wins a coppot, and scores forty for the cards, instead of man

During the play of the hand, a player is entitled to he informed as to any cards his advestary holde which he has rectroned as good, or hae doclared to be equal. A player may require his adverraary to exhibat any such courds. But if a player, having played three cards of a siximae, decirered as a quint, its astrod how many be has left, he moed only reply "Two."
During the progree of the hand each player repenta aloud the emount of his worre for the time being. At the end of the hand the poinise coored are reconded by ench phayer. If chere in any difference in the written acores, a player's acore of his own hand is deemed to be the correct one

Excemple-A (elder hand) has dealt him ace, Ling knave of spades; ince, queen, trnave, eight of hearts; knave, eight, seven of cubb; and ninc, eight of diamonde. He discards king of spedes; cight, aeven of clubs; and nine, eight of diamonds. He takes in mine, eight of apedes; king of hearts; nine of clubs; and king of diamonda

B (younger hand) has ten, even of spades; ten, nine, seven of bearta; King, queen, ten of clubs; and ace, queen, treive, ten of diamonds. He discarda zeven of ap andes; and nine, suven of hearts. He tales ia queen of apades; ace of clubs; and neven of diamonds. The hamd then proceeds thus A (calling bin point) "five cards." B cays "equal," or "what do they make?
A" forty-rine," or "making nine." B " qood."
A (countiog his point)" Eive "and, counting his sequence, which ie good) "a quart major, nine. Three troves?" B "pot good."
A (lemds ape of hearts and sayy) "ten." B "four tens, fourteen, and three queens, seventeen " (plays the ten of hearts).
A (leade the remainixg hearts and says) "eteven, twelve, thirteen, fourteen." B (playe seven, ten, knave, queen of diamoode, and sepeating his score cayl) "peventeea."

A has now five tricici, and in order to win the cards should bead any card but a hish spade. He loeds tine of diamoods and eysu "fifteen." B (wins with sece and dys) "cighteen" (and then leads the winning clubs, eaying) "minctecn, twenty twenty-ane, twenty. two.
A (meeps mace, knave of clube, and repeating his soore eays) "fifteen." B (leade queen of spades and waya) "twenty-three."
 "cignteen" (and adding ten for the cards) "twenty eighti".
A then writes on his scoring card 28; 33. B writei on his 23: 28. The pack is collected, and the next hand comamences. Three gonres (omittead in order to simplify the description of the game) have yet to he mentioned.
Carre Bfereche.-If either player has no ting. queen or knave in the hand dellt him, he holds carle blanche, for which be scores ten. As moon as a playe discovers he has a carte blemche, he must tell hie sodversary; this he usually does by aaying "discard for carde blanche:" The adverse discand is then made (as explained under cincanding), after which the carts blancise is shown by dealing the cards, face upwards on the table; they are then talien back into the hand.
Pique.-If the elder hand scores, in hand and play, thirty or more, before the younger hand counts anything in that deal, he gaias a poique, for which be scores thirty.
Repique.-If a player scores in hand alone thirty or more before his adversary reckons anything, he grins a repique, for which be adds nixty to bis moore. Equalites do not prevent piquee or repiquee. A player who tas an equal point or sequence scores sothing for it. Therefore if, not withstanding the equality, a player makee thirty, hand and play; or in hand, by scores which reckon in order before anything his adversary can count, he gaias a pique or a pepique.
The order in which the scores mocrue is of importance. For the anke of conveniepce, the elder hand finithes his reckoning before the younger beging. The scorcs, however, whether made by the elder or younger hand are recordable in the following onder: (i) curte wavche; (2) point; (3) sequencen; (4) quatorses and trios; (§) pointe mide in phay; (6) the carda; This will of fen affect; a pque or repique. Thus, a pique can only be made by the elder hand, as the ore he reckons in play when he keads his first card coumes before poines subsequenply mado in play by the younger band. The younger, therefore, cannot make thirty in hand and ploy before the cldar ncores one. But the one rectroned by the
elder band what be bads his furte cead does wor paoven his buint repiqued, becaute scores made in hand have precodence of pointil made in play. The elder leads his first card and counte for ut before the younger reckons, simply as a convenient may of statiag that be han nothing in hand wisch is good. Again, may A has i quint (good), a tierce, and a quatarse (grod). He coores thirty-two in hand alone; but, if hie point is mot good, he does nor gain a repique, because the younger hand's point is recordable in erder before the sequences and quatorze. Carts blamche, taking procedtence of ath ether scores saves piques and repiquen. It aloo counts towards piques and repiquer A capos does mot count towards 2 pique so the capol is not mende in play. It is added after the pray of the hand is over. A player, who reckoas nothing that hand as a penalty is not piqued or repiqued if he holde any cards which, but for the penilty, would have reckoned before his edvernary reached thirty.
See "Cavenidish," The Lasus of Pignet and of Resbicoes Piquet, adopled by phe Portand Club, with a Treatise on the Game (1882); "Cavendish," Gride to Plqued (1898).

PIRA1, or Pereir, an island in the Gulf of Cambay, forming part of Ahmadabad district, Bombay. Formerly notorions as the stronghold of a pirate chieftain, it has attained fame among palaeontologists for the large quantity of fosail remains discovered hese in 1836, similar to the better-known Siwalik fauna.
PIRAMASI, GKOVAMI BAMIITRA, Italian engraver of apcient architectural subjects. was born in the earlicer half of the $\mathbf{8}$ sth century, and studied his art at Rome. The great remains of that city kindled his enthusiasm and demanded portrayal His hand faithfully imitated the actual remains of a fabric; his invention, catching the design of the original architect, supplied the parts that were wanting; his skill introduced groupa of rases, altars, tombs; and his broad and scientific distribution of light and shade completed the picture, and threw a striking effect over the whole. Orie engraving after another was executed with much brilliancy; and, as the work went on, the zeal of the artist only waxed stronger. In course of time it was found necessary to call in the aid of all his childran and of several pupils. He did not, in fact, slacken in his exertions till his death in 1778.
The plates of Piranesi, in which the severity of burin wort in largely supplemented by the freer linet of the etching-needic, were collected and preserved by his mon and condjutior Franctera. They were published, to the number of about 2000, in 29 vole fol. (Parith 1835-1837).
PIRANO, a seaport of Austria, in Istria, 22 m . S.W. of Trieste by rail. Pop. ($\mathbf{x 9 0 0}$), $13 \times 3,39$ mostly Italians. In addition to viticulture and the cultivation of the olive, its principal resonrce are ship-building and fishing. In the neighbourhood are the most extensive works in Istria for the extraction of alt from the sen-water, which produce about 50,000 tons of salt ennnally. Pirano is celebrated for the victory of the Venetians over the fieet of the emperor Frederick Barbarousa in 1177. It passed under the domination of Venice in 1283 and becmmedefinitely incorporated with Austria, together with the other possessions of Venice in the Istrian Peninsula, in 18r3.
PIRATR and PIRACY. Sir Edward Coke (Instif. iii. 1r3) describes a pirate (Lat. pircua, from Gr. Teeparts, rapâr, to attempt or attack), as hoslis humami generis, and as a robber upon the sea. Sir J. Fitzjames Stephen in his Digest of Crimisal Law defined piracy as follows: "Taking a ship on the High Seas or within the jurisdiction of the Lord High Admiral from the possession or control of those who are lawfully entitled to it and carrying eway the ship itself or any of its goods, tackle, apparel or funiture under circumstances which would have amounted to robbery if the act had been done vithin the body of an English county " (cf. A. G. for Hong-Kong v. K seok-a-Sing, 1873, LR. 5 P.C. 179). Piracy, being a crime not against any particular state but against all mankfid, may be punished in tbe competent court of any country where the offender may be found or into which he may be carried. But, Whist the practice of nations gives to every one the right to parsue and exterminate pirates without any previous declaration of wat (pirates holding no commission or delegated authority from any sovereign or state), it is not allowed to kill them without trin except in bettie. Those who surrender or are takep prisoners
toust be brought befote ther propier tribunal and dealt with according tolaw.

* Pirscy bas been dealt with in a large number of English statuten, from 1536 down to the Tenitorial Waters Jurisdiction Aet 1878 (4x \& 42 Vict. c. 73), which provided for the maintenance of the axisting jurisdiction for the trial of "any act of piracy as defined by the law of nations."
During the Spanish-American War the Spaniah government issued (s 898) a decree declaring that "captrins, mistetstand officers of verels, which, as well as two-chinds of their crevt, are not American, captured while committing scts of war against Spasib, eveas if they are provided with letters of mardue insued by the United States" woald be reganded and judged as pirates. This wat not in accondance with the international practice on the subject. A pablic ship or one which is enttied to fly the fiag of a belligerent and navigates under the cover of state papers, by the very sense of the term, is not a pirste. Again, during tho Rusoo-Japanese War, the word "pirucy" was freely applied in British newspapers to the seisure of the "Malacca" and other vessels held up by the "Peterburg "and" Smolensk," two cruisers belonging to the Russian Black Sea volunterr fleet, which in July 1904 passed as merchantmen through the Bosporus and Dardanelles and were translormed to their real character on the open sea. The application of the term in this case was equally ineccurate.
The conversion of metchant into war ships was one of the subjects dealt with by the stcond Hague Conference (1907), bet it was agreed that "the question of the place where such conversion is effected remains outside the acope "of the agreement."

Pirscy is essentially a crime under international law, and although any state may apply its penalties to its own subjects by analogy, as was done by Great Britain and the United States in connexion with the repression of the slave trade, they cannot be lawifly applied to subjects of other states. (I. Ba.)

Historical Sketch.-It has at all times been more difficult to enforet good order on the sea than on the hand; or perhaps we ought to say that the establishment of law and order on the sea has in all ages of the wordd's history followed, but has not accompanied, and has still less preceded, the creation of a good police on the land. The sea robber, or pirate, cannot make a profit from any part of his booty except the food which he consumes, or the vessels which he may use, unless he can find a market. But so long as he is sure that he will somewhere meat a purchaser for the goods he has taken by violence, he has every encouragement to pursue his trade. Therefore from the times described in the Odyssey, down to the days when Sir Hemry Keppel sailed in H.M.S. "Dido" to suppress the pirates of Borneo, and when Rajah Brooke of Sarawal co-operated with him on lard, we find that the prevalence of piracy and the muppression of it have been closely dependent on the efforts made to rout it out from its lurking-places on the coast, and the degree of success achieved.
Very different types of men have been named pirates. They have in fact been so unlife that to class them all together would be in the last degrce anjust. The Greek in the youth of the mortd, and the Maldy of Bornto in tbe roth century, knew of no rule of moisls which should restrain them from treating all who lay outside tbe limits of their city or their tribe as enemics, to he traded with when strong and plundered when weak. They thight be patriotic, and law-abiding men towards the only authority thiey recognized. Their piracy was a form of war not withont close moral analogies to the seizare of Silesia by Frederick the Great, the attempted seizure of Spain by Napoifon. Indeed the story of this latter venture, with its deceitful preliminary success and its final disaster, may fairly be compared with the fall of Ulysses and his companions on the Clcones, as told in the ninth book of the Odyssey. Yet it would be highly uncritical to ciass Ulysses or Napoleon with Captain Avery, or Captain Kidd, or Bartholomew Roberts. We are not here concerned with the legal aspects of piracy, but with the true character of the persons to whom the name pirate has been epplied at various times. The term wes epplied by the Romens
to the edventurers against whom Pompey what commisioned to act by the Gabinian Law, by the Eaglish of the gth and roth centuries to the Vikings, and by the Spaniards to the English; French and Duteh who were found sailing beyond the line. Sufferers by naval commerce-destroyers call it "a piratical form of warfare." But the pirates of the Roman Republic were no mere "gang of robbers." They were the victims of a time of conquest and "general overture "_" the rained men of all nations, the hunted refugees of all vanquistred parties, everyone that was wretched and daring-and where was there not misery and violence in this unhappy age? It was no longer a gang of robbeis who had flocked together, but a compact woldier state, in which the freemasonry of exite and of crime took the place of nationality, and within which crime redeented itself, as it so often does in its own eyes, by displaying the most gencrous public spirit." Such men are akin to the fmoruscilsi of Itallan history or the Dutch Beggars of the Sea, the victima of party strife in the cities, who took to the sword because they had no other resonrce. Mitotis mulandis we may say as much for the intruden beyond the line, whom history calls the "Buecancers:" (q.v.). The "Vikings" (q.v.) were a portion of the Barbarian invasions. The "Barbary Firstes" (q.0.) stand epart. As for the piratical character of the commerce-destroyer, or privateer-why are we to brand Captain Fortunatus Wright, the Englishman who captures a French mexchant ship, or Captain Reviert Surcouf, the Frenchman who captares a British East Indiaman, as piratical, and not make the same reproach against Admiral Lord Howe, or Admiral Don Luls de Cơrdoba, who with a flett captures whole convoys?
The pirate pure and simple is that member of an orderly community who elects to live on the sea. by violence and robbery, making no distinction between his own city or tribe and any other. The old adage that "war makes thieves and pence hangs them " has ever been peculiarly true of the sea. What has always been conducted there by the capture of an enemy's property, and by division of the spoil. A portion of the naval forces of all mations has been composed of privateers, letters of marque or corsairs, who plundered with a licence. They have ever fourd a difficulty in drawing the line hetween exemy and neutral; when peace returned some of them found it hard to be content with honest wages earned by dull industry. Nelson declared that all privateers were no better than pirates. He was borne out by the experience of Great Britain, which at the beginning of the Seven Years' War hud to take strong meaburet to repress the excessen of its privateers, and to hang a good few of them as mere pirates. The pirates suppressed by Pömpey did not all submit to remain in the settlements he miade. Some comtinued to rob at sea. If we can trust the Pasford of Longus, and the other Greek romances, the pirate was a known typt even under the Roman peace, but it is highly probeble that be was more of a stock literary fgure than a reality. Before the Roman peace, and during long centuries after it had been shattered, piracy was common. It grew out of a state of war In modern times-even down to 181 5-a recrudescence of pirecy has followed regular hostilities. But there are other conditiuna which have a material influence, tech as the need for a lurkins place and for a receiver of the plundered goods. An arcbipelago provides the best lurkins-places, and next to it coast of many inlets. Therefore the Greek Islands, the British Isles, the Antilles, the Indian Ocean, the coast of Cilicla in Asia Minor, of Dalmatia, of Malabar and of Norway, have all at one time or other, and some of them for centuries, been haunts of pirates. The convenience of the place had to be completed by the comvepiente of the market. In the ancient world, and the mifdtle nges, the market never fafled. One cfy or tribe had little care for the sufferings of another. The men of the Cinque Porta who plundered the men of Yarmouth knew that their own townsmen would never call them to accoumt, and therefore they had a safe refuge. Even when the medieval anarchy had come to an end on lind, the sea was la wless. When peace was made with Spain after the death of Queen Elizabeth there were many who could not tet tie down to a life of industry. Some took the
plain courre of betaking themselves to Algers or Salee. But these were many who prowled nearer homo. Sir William Manson, in his Navol Tracls, tells bow he was sent in 2605 to hunt pirates out of the Shetlands and the Hebrides. He found none at sea near Scotland, but some unemployed, whom he shipped and used as guides and informers, on the coast of Ireland. At Broad Haven he discovered an Irish gentleman of the name of Cormat (presumably Cormac) living in some dignity. Hia bouse was "the well-head of all pirates," and thair captains were the lovers of his daughters Monson found agents of merchants of London and of Galway, who came to buy tho goods which the piratcs bad to sell at a bargain. He put that interesting family under the gallows, and frightened them into turning king's evidence. It was his boast that he had cleared the Irish const of pirates, but we know that they were common jate in the seign of Charles I., and that under the name of "sea Tories" they abounded during the Civil War both in Ireland and in the Scilly Isles. Their existence was prolonged by the weakness of the government, which when piracy bocame very rampant took the dianstrous course of offering pardon to all who would come in by a certain date. As a matter of course many did, and when their booty was spent returned to their piratical trade. Monson says that the pirates he caused to be executed had already tasted of the king's mercy. While there were friendly harbous to anchor in, purchasers to be met and a ,very tair prospect of a free pardon, piracy was not likely to cease.

As the xyth century drew on the law and the police became too strong for such pensons as Mr Cormat at Broad Haven, and his pirate, friends. But the pirate clus did not cease. It was only driven to a wider field of operations-to a field which in fact atretched from the Red Ses to New England. On this wide portion of the earth's surface everything combinod to fnvour the pirate. In the West Indies there was a "wellhead " of izamense capacity. Spain was forced late and reluccantly to recognize the legitimacy of any foreiga settlement. She would rather put up with the lawless adventurers known as the "Brothers of the Cosst" and the "Buccaneers" than co-operate wilh foreign governments to suppress them. Even when she renounced her full pretensions, several of the issands semained unoccupied exoept by the lingering remnants of the native races. Swine and cattle had been let loose on many of them, and had multiplied. The turtle was abundant and succulent. There was no want of food. A population with predetory instipcts bad been formed in the carly days of hostile settlement and buccanecring. Jamaica was full of the so-called "private men-ol-war" whose doings are prominent in the correspoadence of the early governors, who were not uncommonly their associatem Add to this that the commercial policy of Spain denied to her colonists the right of trading with foreigners, and yet that she could not supply their needs herrell. Hence arose a smuggling trade which had affinities with piracy. The lawiess trader was not liahle to be asked awkward questions, as to the origin of his cargo, by the Spanish American who purchased it on the sly for money or by barter. Nor were any questions asked him when be brought his cargo to Jamaica, Sen Domingo, the Carolinas, New Eagland or even Europe. In the decay of Spain her navy was not to be feared., But it was not the commercial policy of Spain alone which heiped the pirate. Great Britain, and France aloo, insisted that their colonists should trade exclusively with or through them. The calonists were always ready to buy "good cheap" from the smuggler, and never ask him whether the East Indian produce - teen silk, spices and so forth-he offered for sale were purchased or plundered in the Red Sea or on the coast of Malabar or of Coromandel. Add to all this that the police and patrol work of regular navies was but superficially done even in peace, and hardly at all in war, and that in the British colonies there was no judicial machinery for trying pirates till the 1 rth and 12th years of William IIL. (1700,1701), and it will be seen that all the conditions favoured the pirate. In the East the decadance of the Mogul Erapire was plunging India into anarchy,
and it had no aary. Yet a hage native sade exdited, cooducted "y "Moors," as they were called, and Madagacarr, 2 grua "no-man't-hnd," aflozded ample anchorage and food. To get pomession of a ship, to sail to the East, to plunder the "Mooss," to aell the booty in New England or the Carolinas, to spend the produce in riotous living, and so to rea on tbe sume errand again, was the round of life of the large class of known piraten who formed a recognized ciement of the population d Mamachuselts and New York at the end of the 17 lh beanury. These araxhe men we know beat, for they were enooutaged by the tolerances shown them to come into the light. Others us buriod in, or only dimly visible in, obscurity. Some truce of these latter many be found in the Lelut Boaks of the Old Providence Company, a puritan society formed in the reier of Charles I., of which Pym and the earl of Warwick, aftervand the Parliamentary admiral of the Civil War, were governoss It was founded tocolonise Old Providence on the coast of Hondurs, a place not to be confused with another pirinte haunt, Ner Providence in the Bahamas. It took to plein piracy and wx suppreseed by the Spaniarde in 5638 . Warwick made a regult business and large profits by fittiag out "privaleers", wich were in fact piraces on the "Spanish main," not the seur od America, as some have thought, but tbe coast of the maialaod

The lives of the later and better known pirates may be illo tratod by the careers of Captain Avery, or Every (alias Bridf man), whone renown was great at the end of the $1 y$ th century, and who has the credit of having inspired Defoc's Lije, Adver. bures and Piracias of Captain Singletom. A vety vis mele of a Bristol ship hired by the Spaniards in 1694 to urve as a constguard vessel in South America. She was called the "Charles II.," commanded by one Captain Gibson, and mounded 40 guns. While the "Charies II." was lying at Corunna, in company with another vessel also bired by the Spaniuds, waiting for the payment of wages which was delayed, Avery persuaded part of the two crews to seize her and sail with ba on a piratical voyage to the East. The eaterprise was canied out without bloodshed or, apparenuly, coercion of thone who wer unwilling to go. Avery and his crew zuiled to Madsgusti, a regular haunt of the pirater. Many of them ended by remait ing for life among the natives. The adventuress in the "Chatla II.," who had already made some smanll prizen, Eogliah ad Danish, were joined at the inland by others of the same charctes who had come from the West Indien Fromm Madagascar they weat to the Straite of Bab-al-Mandeb, to lie in wait tor the trade from India. Several prixes were taken, and finally a lure and valuable ship, belonging "to the Great Mogal and bis subjects," was captured about ten miles from Surat Avet and his crew now hastened to New England to mell their booty. The "Charles Il." was disposed of as a privateer at Providenct and the pirates bought a sloop in which they sailed along be coast of the English colonies, selling their spoil, with the cosseal of the colonists and the connivance of the officials, who ver bribed. In an evil hour for themselves they decided to come to England. The Indian governments, exasperated by ive piracy practised at the expense of their subjects, were threacning reprisals on the East India Company. The Company made complaints to the government at home, and energetic measura of repression were taken. Avery bimself escaped capture but several of his men were brought to trial, condemned ard executed. It is to he noted that when first cried, on the solh of October 1696, they were acquitted. They were, bonever retried on other counts, on the 3 zst of October. The charge of Lord Chief Justice Holt to the jury, and the address of Sir Charics Hedges, the admiralty judge, shows that athey id both the importanoe and the uncertainty of sccuring a verdict.
The cruise of Avery is not only a typical cxample of a piratical venture, but it is an important date in the history of the policing of the sea. The English government was roused to a sense d the necessity for stroag peeasures to repress piracy. Au the steps taken were not according to knowledge. The extro ordinary private venture of Lord Bellamont and his associates who scat out Captain Kidd (g.s.), a man of piratical antectedests,
to supprews pirates in the Eastern seas, brought deserved discredit upon them. The decision taken on the advice of Burchett, the secretary of the admiralty, to offer a pardon to all who would surrender by a given date-for all piracies committed before the goth of April to the east of the Cape of Good Hope, and tbe joth of June 8699 to the west-was an error. It induced ranny to come in, but it also gave all pirates the bope that they would in the future be provided with similar means of escape. The establishment of admiralty courts in the East Indjes and Anterica and the despetch of warships were more effectual methods Yet it was long before piracy was tboroughly checked; indeed the rigning of the Peace of Utrecht was followed by a recrudescence of this form of crime. The privatecrs who swarmed is the Weat Indies and, as long as the war lasted, used, in the plarage of the time, to join the squadrons of war-shipe "on the plundertig sccount," could not set tle down to dull industry. They lengued themelver iato a species of pirate republic, with its capital at Providepce in the Babramas. In 1718 a apecial force had to be cant against them under Wooden Rogers, who is best remembered now for having taken Alerander Selkirk from the istand of Juan Fernandez, in tbe course of a privateering voyage into the Pacific with the "duke "and " duchens" of Bristol. Rogers lpoke up the Providence mettlement, and did a similar piece of servica on the coast of Madagascar. Piraey did not, however, die, The Asiento (g.v.) Treaty having given Great Britain a monopoly of the slave trade with Spanish Amarica, the monopolints, isen the South Sea Company and Royal Aírican Company, were of course subject to the competition of interlopers. The interlopers wert the natural friends of the plrates, who divided their ectivity between the Antilles and the weat coast of Africa, plundering in the eecond, selling and re-fitting, not without further phunder, in the first. The mont notorious of these freebooters was Bartholomew Roberts, who was introduced to piracy by Howel Davis. Roberts was the nearest known approach to the pirate of romance, ostentatious, brave, not pithout touches of generonity, He was killed in action with Captain Chaloner Ogle, of H.M.S. "Svallow," on the coast of Arice, in 1721.
As the American colonies grew more settled piracy became intolerable to them. Yet it lingered on the coast of North Carolna, where the pirates could sicher terrorize the satterod inhabitants, or were encouraged by dishonest afficials. Here Gourished the crotesqne brute known as Blackbesrd, Edmard Tach, till he was run dowa and alain by Lieut. Milvain in 1718 . It was noted that several of those who helped to suppress him afterwards "went.- -pirating" themseives. So strong was the piratical tradition of the New World that even men of some standing fell into it. "Major" or Captain Stede Bonnet, who was condemned and executed at Charleston, South Carolina, as a pirate, in 1718, was a gentleman of some property in Barbadoes, who first ventured to sea in a ship of his own. Stede Bonnet had taken advantage of an act of grace, had come in on a proclamation, and had retumed to a pirate's life. The last great explosion of piracy in the West Indies followed the peace of 18:5. Here again we find the old conditions-privateers and other unsettled men, the aafe hurking-place and the receiver. The refuge and the market were arpplied by the Spenish colonies, which were plunged into anarchy by their revolt against Spain. The pirates were able to masquerade as "patriot" navies. The photh and corruption of Spanish captains-general of Cuba were no less favoarable to the pirates. The south cosst of the island became a haunt of these villains till the British and American governments were driven to combine for their suppression. When they had been followed into their hiding-places and their vessels sunk, they took to brigandage on land, and were garrotted by the Spanish authorities in self-defeace. The plracy of the Greek islands went on to later years, and the Malays were not tamed till nearly 1850 . On the colst and the Mivers of China piracy was and is endemk, but the sailing Junk has no chance with the modern stezmer When caves of yiracy bave occurred in the Straits of Malacca or in the China ceas,
by चMch Europeans have beer the sufferers, the crime has geperally been perpetrated by men who shipped as passengers of as crew, and who murprised the vessel. The pirate has been as useful to the author of modern tales and poems as to the writers of the Greek romances. When he is seen in atathentic evidence he is found to have been for the most part a pitiful rogue. His gains were but small. A share of f reo was wealth to a mire sailor, and one of £1000 wealth beyond the dreams of avarice. He rarely' fought a warship if he could belp it, and indeed nothing is more surprising than his readiaess to surrender when the fate bofore him was the galloms.

Aotroxiriss.-The pirates of the ancient world are admirably dealk with in Mommen's History of Rame. For the modorn pirate, see Mormon's " Naval Tracts" in Churchul's Vayaces, v. 5 (Lomilaa, $1744-1746$), and in the edition of the Navy Recoard Society (1907). But the best accounts are to be found in the Slate Trials, vols. xitit. xiv., xv (London, 181z). Captain Charles Johnson's General History of the Pyrates (London, 1724) must be used with caution He no doubt learnt much from pirates who. having come in on ${ }^{\text {a }}$ proclamation, were free to talk, bot he cannot always be recenciled with aushentic records. The DocumenLs redation to the Colonial Histery of the Slate of New York (Albany, 1856-1858) contain many curiour detail. For the eastern seas, the Compendions Histary of the Indian Wart; with an ecogund of the Rase: Progreas, Strengim and Forces of Angria, the Pyrak, ac., by Clement Downing (London 1737) is urelul,
(D. H.)

PIRES ABOTR. The perultimate tract of the fouth part of the Mishnah is the boollet of proverbs in Give chapters called Massecheth Aboth (braclatus patrum), belter known with a sixth chapter as Pirke Aboth (capitula patrum). For Pirks Aboth In English see The Auchorized Daily Prayer Book of the uniled Hebrew congregations of the Brilish Empire, with a nev translation by the Rev S. Singer. The six chapters are there appointed to be read one on each Sabbath afternoon between Passover and New Year. Formerly they were read, in places at least, on the six Sabbaths between Passover and Pentecost only. The subsections of the chapters are hereinafter numbered as ln the Authorized Praycr Book.
Chapterss i., ii. - The Mogaic succegsion has first to be entablished, Moses (i. i-3) haviag received the Torah from Sinai, it was handed down to Joshua, the Elders (Josh. xxiv. 31). the Prophets and the men of the Great Synagogue. from one of the last of whom, Simon Justua, it mas ruceived by Antigonus of Socho. Next are yamed (i. $4-15$), without any tiule, as links in the chain of tradition, five pairs of teachers, the last Hilvel and Shammai, elsewhere in the Mishnath called mundi patres (Surenh, iv. 324): Rabban, Jochanan ben Zaschai (ii. 9) "received lrom Hillei and Shammai." Sayinga of Joehanas and his Eve dieciples follow, and chaph ii, ende vith wonds of their somewhat youiger contemporary, Rabbi Tarphoa (Tpipwn), to the effect Ars longa vila bravis. These wation (i. 1-15, i. 9 -21) contain the "Kern der Sammilung " (Strack). After the nayinge of Shammai ($\mathbf{i} .15$) come interpolated tayinge (i. 16-ii. 8) of Rabban Gamaliel i., Rabban Simeon. " Rabbi،" i,e. R. Jehudab ha-Nasi (cent. A.D. ${ }^{1 \rightarrow 2}$), the traditional radactor of the Mishanh, Robban Camaliel II. and Hillel, which break the sequence.

Chapters ini., iv.-Maxims of numerous authorities, mostly Mishnah teachers and called Rabbis (Matt. xcii. 7 teq.; J. F. p. 27). not in exact chronological order.
Chaplers o., th -Chap. v. Which is swi generis, is presumably of Later date than what precedes. Naming no teacher until the end, it combines historical, legendary and didactic elements. It touches upon the miraculous and lis place in niture (v. 9). In form it is a series of numbered groups of things, from the ten creative Sayings to the triads of qualities which differentiate the disciples of Balaam and Abraham. R. Jacob ben Shimshon's commentary makes Aboth end with the saying of Jehudah ben Tema (v. 23). "Be bold as a leopard, and swift as an eagle, and fleet as a hart, and strong as a lion, to do the will of thy Father who is in heaven." Chapter vi., on acquisitio lepis, is thought to have been added for use on the last of the six sabbaths above-mentimed (Strack, J. F. Ap. p. 61). In some manuscripts there are seven chapters.

Plake Aboth serves as a primer to the student of rabbinic Judaism. For the most part is simple Hebrew, it has a few sayings in Aramaic (L. :3-ii., 7, v. 25, 26) and some adopted Greek words, as paraclete (iv 13; Philo). He who would be pious should fulfil the dicta of Aboth (Baba Kam. 30a). It gives favourite aphorisms of leading Jewish teachers who flourished in or before the earliest Christian centuries, and supplies material for some interesting illustrations of the New Testament. Too heterogeneous to be represented by a fcw extracts, the collection
must be read through to be appreciated. Among the saysines of Hillel we miss the best known one, What is halkw 10 uthe do mos, \&c. (J. F. p. 842), with which we may now compare Ecclua xxxi is Heb., "Know (?) thy peighbour is as thyself, and consider what thou hatest." Of the poecept. "Make a lence to the Torah " (0.1 ; of. iii. 17) it may be said that "everyabing is thercin." As a doctrine of development and as an echical princaple it is reflected in Clement of Alexandria's view
 Polycarp's saying, "He that has love is far from all sin," The use of Aboth in the synagogue stamps it an authoritative, and, with its intrinsic excellence, has led to its being "the most popular of all rabbinical writings." For midrashic comments upon it see the Aboth of Rabbi Nathan (ed. S. Sebechter, Yienna, 1887), or the rendering of it (new ed., New York, 2900) In M. L. Rodkinson's translation of the Babylonian Talmud into English. (Sec also Apockypras Literature, if Old Testament, II. d.)
EreliocisA pur.-Aboth is included in editioms of the Mishnaah and the Talmud Babti, and in many prayer-books. For separate editifons from abour $1+8+-3+85$, mee Morizz Steinochneider's Bodkian Catatomys, col. 228-239. 2785, and ocher worla cited In Herm. L. Strack's very usefll ran pe, Dre Sprowhe of Vaker (ed. 3. agoi). See also C. Tajlor's Sayrues of the Jewnit Fathers (ed. ${ }^{2}$, 1897, ifferrod to above as J. P.) sueparate 1 ppend x (1900) deccribee

PIRIASEISS, a town of Germany, in the Bavarian Palatinatc, 40 m . W, by S. of Spires, on the railway from Biebermulthe. Pop. (1005), 34,002. The only notewarthy buildings are the town-hall and the principal Evangelical church, which contains a fine monument to Louis IX. (d. 1790), landgrave of HesseDarmstadt, who made the town his residence. The staple industry is the production of boots and aboes; but musical instruments, leather and machines are also manufactured. Pirmasens owes is pame to a St Pirmin, who is said to have preached Christianity herc in the Sth century. It originally belonged to the count of Hanau-Lichtenberg, but passed to Hesse-Darmstadt in ${ }^{1736}$. In September 1793 the Prussians gained a victory here over a body of French troops.
See T. Weise, Primaverss in der Erawronenseil (Pirmpeena, 1905).
PIBMEL, OCTAVE ($\mathrm{r8}_{3} 2-1883$), Belgian author, was born at Cbatelineau in 1832. He belonged to a Well-known Beigian tamily, and his cousin, Edouard Prrmez, was distinguishod for his works on literary and political subjectes. He lived an uneventful tifo at his chatesu of Acoes, in Hainata, where he died in May 2883. Pirmex was an ardent adminer of the French romanticists. His worts include Les Fexilles: peates af maximes (8862); Victor Hugo (1863); Jowrs de solitwde (1869); Rtmo; Sowevirs d'wn fricre ($\mathbf{8 8 8 0}$); Hewres de philanophic (1881); and the posthumous Leutres 4 Jost ($\mathbf{t 8 8 4}$). These books form a history of bis emotional life, and reveal an extreme melancholy.
See Vie ef correspondance COclaw Pirmea (1888), by Adolphe Sreet and Jose de Coppin

PRRIA, a town in the kingdom of Saxony, on the left bank of the Elbe, II m. above Drexden, and on the rallway to Bodenbach and Prague. Pop. (1905), 19,220. The town is regularly built, with promenades covering the site of the old fortifications; the most notable edifices are the fine Cothic parish church, built in the 16 th century and restored in 1890 , and the ofd town-hall. Excellent sandstone is found on both banks of the Elbe. There are manufactures of glass, machinery, cigars, pottery and enamelled goods; and there is a trade in gruin, fruit and timber, mainly carried on by river, and a bittle shipbuilding. Pirna, originally a Slavonic settlement, was for many years in the atternate ponecsion of Bobemia and Meisean, but it became permadentiy uniced with the latter, and thus with Saxony, in 1405. The Sonnenstein, a fortress on a commanding eminence ahove the town, was crocted in the 16sh century on the site of an older caste by the elector of Saxony, Augustus 1. It was once considered the most important fortress on the Elbe, and successfully withatood the Swedea in 3639 , but it was captured and dismantled by the Prumcians in 1758, and in 1883 was occupied by the Freach.
 E. KOngel, Füher dxych Pirna (Pirna, 1889); the UFkumenend der Stadle Dresden wad Pirna, edited by C. F, von Powern-KCett (Leipzies. ${ }^{1875}$); end the publications of the Vetern ftr Geschichtion der Shaí Purae (Pirux, 2897 meq.).

Pinon US, or Pirncon (the French and Spanish forms respectively of a Caribbean word for this type of vessel, it has at various times taken many corrupt forms, e.s. perragne, pettiowgme, pettyougur), originally the native name of a vessel made hy hollowing out the trunk of a tree, a "dug-out "; hence applied to many differest developments of this type of vessel used in the Wet Indies and along the American oosst. An early improvement was to aplit tbe "dus-out" inco two sections and-insert a fiat botrom of planking to widen it; another form had a leeboard, was decked in at either end, and had two masts.

PIRON, ALEXIS ($1689-1773$). French epigrammatist and dramatist, was born at Dijon on the oth of July 1689. His father, Alme Piron, was an apothecary, who wrote verse in the Burgundian petois. Alexis began life as clerk and secretary to a banker, and then studied law. In 1719, when nearly thirly years old, he went to seek his fortune at Paris. An accident brought him money and notoriety. The jealousy of the regular actors produced an ediet restricting the Thatare de is Foire, or licensed boothe at fair times, to a single character on the stage. None of the ordinary writers for this theatre would attempt a monologne-drama for the purpose, and Piron made a great succeas with a piece called Arlequin Demeolian, representing Deucalion immediately after the Deluge, amusing blmself with recreating in euccesmion the different types of man. In ${ }^{7} 78$ he produoed Les Pils ingrats (known later al L'Ecate des peres) at the Comedie Prampalse. He attempted tragedy in Cellisthene (1730), Gtateve Vase (1733) and Fernant Corlis (1 744), but nowe of these succeeded, and Piron recurned to comedy with Le Mimomanie (1738), in which the hero, Damis, suffers from the verse mania. His most Intimate associates at this time were Mhe Quinault, the actresc, and her friend Marie Therise Queraudon, known as Mle de Bar. This lady was slightly older than Pirom and not beartiful, but after twenty years' mequaintanco he married her in 1741. He died on the 21st of January 1773, in his cighty foorth year. He was eleeted in 2753 to the Academy, but his enemies raked. up a certain Ode d Priepe, dating from tin early days, and induced Louis XV. to interpoee his velo. Piren however was pensioned, and during the last hall-eentury of hin ife wae ndver in any want. His best tille to remembrance lies in his epigtans. The burlesque epitaph on himself, ia whick be ridicules the Academy-
"Ci-gta Piron, qui ne fut rien.
is well-known, white many otbers are as brilliant Grimm called him a " machine \& gaillies."

Piron publishod his own theatrical works in 175^{8}, and aiter his death his friend and literary executor, Rigoley de Juvisny, published his Cadores complites. M. Bonhomme produced a crrical adition in 1859 , completed by Potsies dinsies al paces indedes is 2879
PIROT (Turkhah Shekr-Kocy), a Servian town, 12 3m. from the Bulgarian frontier at Tsaribrod, on the sailvay line between Nish and Sofia. Pop. (rgoo), 10,418 . Pinot is the seat of the prefecturo for the department of the same name, with a tribumil several schools and a custom-house. It is the only proper industrial lown in Servia, having aumerows small factories for the manufacture of thin cloth (chayak), woollen braid (gastan). and especially carpets. Its carpets have a great repuration is the Balkan Peniosula for their quaint designs, durablity und freshness of colour. Pirot has a medieval fortresp, believed to have been built on the site of the Roman fortrese Quimedote, of the military roed leading from Old Naissus. to Philippopolia The town is of great strategical importance, for which reagon the Ruscian plenipotentiaries at the Berlin comgres (1878) stabbornly tried to include it within the Buigarian froatist, while Auscria and some other Powers insisted that it should be given to Servia. In the war hetween Servia and Bulgatia ie 1885 the Bulgarians accupied and held it until the conclunion of peace.

P10, a town, trehiepiscopal see and capital of a province of the tanc name, Tuscany, Itaty, on the Amo, 7 m . from the sea ${ }^{1}$ and 49 m , west of Forence by rail. Pop. (1881), 42.779; (1900), 6r,a79. It atil retains its ancient wells, 64 m . in circuit, and is defomed by a citadel on the south-west. The principal streets run alongside the river, and are lined with fine buildings. Besides the cathodral, the hiaptistery and the famous leaning tower, the city possesmes several notable churches, is the Renaissance charuh of the Tuscan order of St Stephen, butit in 1562 from plans by Vasari; San Niccolo, with a four-storeyed tower (i230), bulle by Niccola Pisano, and the tomb of John of Srabia, the parsicida; Santa Caterina (1268); Santa Maria della Spina, in the Itab-Cothic style, buift in 1230 and restored in 1872; San Sepoichro, ersected in 1150 by Diotisalvi; San Francesco, with frescoes by Taddeo Ceddi; and the basilice of Sen Michele (ro18). Amongat the eccular-buildings may be mentioned the royal palsoe; the archiopiscopal patace; the palace of the order of St Stephea, built by Niccola Pistno and reconstructed by Vasari; the Uperainghi (fonmerly Lemfreducci) palace, built of Carrara marble in 1590; the Lanfranchi, Agostini and other palaces; the vaiversity (144^{2}); a lange houpital (1258); and fine market halls. There are statues to Cosimo I. (by Francavilla), Arehduko Leopold, and Ferdinand I. The city possessels atso an acaderny of the fime arts, with a gallery of paintings; and the utiversity a library of 120,000 volumes, a natural history museum, botanical ganden and egricultural whooks. The university, founded in 1338, has faculties of law, medicine, mal hematics and philosopily and literature, and is 20 this day one of the most famous in Italy.
The architects of the cathedral were Boachetto and Rinaldo, both ltalians, probably Pisans. It is in plan a Latin cross, with an intermal length of $311 / \frac{\mathrm{ft}}{}$. and a breadth of 252 ft . The mave, nop fi. high. has double vaulted avoles and the transeptes suple ainles; and at the intersection of azve and traneepte there is a cupols. The basilica is still the predominent type, but the influence of the domed charches of Constantinople and the mosques of Patermo is also appareat. The pillans which support the nave are of marble from Eibe and Giplio, thope of the side aisles are the spoils of ancient Creek and Roman buildings brought by the Piran galigya. Externally the finest part of the building is the west front. in which the note servek by the range of arches running round the base is repeated by four open arcaden. Ol the four foovs three are by John of Bologma, who was ereaty helped by Fragcavilia. Tacen and ofberr: that-of the south mode, of much older date, is generally mpposed to be the work of Bonanno. Of the interior decorations it is enough to memtion the altant of the nave, said ro be after designa by Michel. anefo, and the moasios in the donne and the apee. which wete among the latene deatroe of Cimabue. The beptinery was completed only in 1278 . and marred in the 1 ght century hy the introdwction of Gothic derails. The building is a circle 100 ft . in diameter, and is covered with e cone-surmounted dome 190 ft. hich on which samds a stasmo of $S \mathbb{R}$ Rabjero. The lowetr range of semicircular praten ronsiats of twenty columas and the second of riaty; and obove this is a row of eighteen windows in the same style eeparmed by as many pilasters. In the interior, which is supported by four piasters and eight columna, the mont atriking leatures are the ectaponal font and the heragonil prific, erected in 2260 by Nitcola Piano. The gampanile or "leaning tower of Pima" is a round tower, the nobleat, according to Freeman, of the southern Romaneqque. Though the walls af the base are t / ft. thick, and at the top about hall as much, they are constructed throushout of marble The banasert is currounded by a range of sernicirculap arches supported by filteen colurnae, and above the rive six arcades with thirty columns each. The eighth storey, which contains fte belle, is of much rmalier diameter than the reat of the tower, and has only twelve columpa. The height of the tower is 179 ft ., but the ascent is cosy by a criir in the wall, and the vintor hardly perceives the imatination till be graches the top and from che lower cdere of the gallery looks "down along rbe shalt receding so its base. The tower leans or deviates from the perpendicular, to a striking extent, which hus gradully increased; it was 351 ft . out of the perpendicular when meacored in 1829, and E61 ft. in 19to. There is no reason to suppoee that the arehitecte. Bonanag and William of Innesbruck. intended that the campanile chould pe buint in an oblique ponition; If would appear to have asoumed fit while the work was stifil in propreas. The foundations are not more than 10 ft . deep, and their circumenernce only that of the tower. The Campo Santo, lying to the sorth of the cathedral, owes its origin to Archtinhop Ubaldo

[^54](1880-1800), whe mede the epot peculianly macred by bridging Gfty-three shiploads of earth Irom Mount Calvary. Tho building, erected in the Italian Gothic style between 1278 and 1083 , by Giovanni Pisano, is of special interest chiefly for its famous frescoes.

There are numerous industries, the most important being the manufacture of cottons. In the vicinity are the royal atud-farm (horses and dromedaries) of Cascine di San Rostore, and the mineral baths of San Giuliano, alkaline-ferruginous, with temperature 91.4° to 105.8° Fahr. At the mouth of the Arno, joinet to the city by a meam tramway, is the seadide resort of Matine di Pise, also known as Bocca d'Arno. a well-known centre for landscape painters.
The old town occupied the site of the ancient Pisee on the right bank of the Armo. The foundation of Pisace is by tradition ascribed to a very remote period, and it was often (pousibly only owing to the similarity of name) believed to have been founded from Pisac in Elis. It is frrst mentioned in history ast the place at which a Roman army from Sardinia landed in 225 - B.c., its harbour belige at the moutb of the south branch of the Arno, north of Livorno. Being situaled on the coast road (Via Aetailia) it was isaportant as a frontier fortress against Liguria, to which, and not to Etruria, it roally belonged, perhaps, up to the time of Sulla, the actual boundary lying between it and Vada Volaterrana (mod. Veda). It became a colony in 180 9.c., and was important for the fertility of its territory, for its quarries, and for the timber it yielded for ship-building. Augustus gave it the name of Colonia Julia Pisana, his grandsons Caius and Lucius were patrons of the colony, and after theit death monatmeats wese erected in their honour, as is recorded In two long inscriptions still extant. Greek veres have been found within the city itself. seeming to point to the presence of Etruscan tombe (G. Ghirardini in Notisie degll Scavi, 189s, 147); but no remains now exist excepl of the Roman period-some scanty ruies of bathe and of a temple, while the Piarra dei Cavelieti follots the outline of the ascient thestre.

Ses E. Bormana, Corp tuscr lot xi. 372 (i888).

Lhtie is knowt of the history of Pisa during the barbarian Invasions; bua it is an ascertained fact that it was one of the first towns to regain its independence. Under the Byzantine dominion Pist, like many other of the maritime cities of Italy, profited by the weakness of the government at Constantinople to resesert its strength. And even during the first yetrs of thb harsh Lomblard rule the need recogrized by these oppressors of defending the Italian eoast from the attacks of the Bytantines was favourable to the development of the Pistan navy. Few particulans are extant concerning the real condition of the towni; bet we'occusionally find Pise mentioned, almost as though th were an independent city, at moments when Italy was overwhelmed by the greatest calamities. According to Amari's happy expression, " it was already Independent by sea, while still enslavod on land." Its prosperity notably declined after the establistument of the Lombard rule and under the Franke. It again began to flourish under the marquises of Tuscany, who governed it in the natne of the emperor.
In 1003 we find records of a war between Pisa and Lucca, which, according to Muratorf, was the first waged between lalian cities in the middie ages. Bet the military developmemt and real importance of Pisa in the itth century must be attributed to the continuous and desperate struggie it maintained against the tide of Saracenic invasion from Skily: And, although the numerous legends and fables of the oid chroniclers disguise the true history of this straggle, they serve to attest the importance of Pisa in those days. In 1004 the Saracens lorced the gates and sacked a quarter of the town; and In 1oin they renewed the attack. But the Pisans repulsed them and assumed the offeasive in Calabria, Sicily, and even in Africa. 'Still more memorable was the expedition efterwards undertaken by the united forces of Pisa and Genos against Mogahid, better known in the Italian chronicles as Mugeto. This Moslem chief had made himself master of Sardinia, and was driven thence by the allied feets in 1015. Again invading the island, be was again attacked and defeated by the same edversaries, leaving a
brother and son, or, as some autharitios aver, a wife and son, prisoners in their hands. Sardinia continued to be governed by native " judges" who were like petty sovereigns, but were now subject to the sway of Pisa. This was the primary cause of the jcalousy of the Genocse, and of the wars afterwards made by them upon Pisa and carried on uncil its power was crushed Moanwhile the Pisans flourished more and more, and continued hortilities against the Saracens. In robz their shipa retursed Lrom Palermo laden with spoil. Thus it is not surprising that Pisa should already have bad its own code of liwid (Consuetudimi di mare), which in 1075 were approved by Gregory VII., and in to8r confirmed by a patent Irom the emperor Heary IV., a document which mentions for the first time the existence of a magistrate analogous to the consuls of the republic, although the latter, according to some writers, already exisced in Pisa as early as the year 1080, the point, however, is doubeful, and other writers place the first authentic mention of the consuls in the year roa4. ${ }^{1}$ The oldest of Pisan statutes still ertant is the Breve dei consoli di mare of 1862.

In 1099 the Pisans joined in the second crusade, proved their valour at the capture of Jerumalem, and derived many commencial advantages from it; for within a short time they had banks, consuls, warehouses and privileges of all kinds in every Eastern port. Thus, while the commune of Pisa was still under the rule of the marquises of Tuscany, all negotiations with it were carried on as with an independent state officially represented by the archbishop and consuls. The aristocrats were the dominant party, and filled the higheat ofices of tbe republic, which, in the a ath cencury, rowe to great power, both on sea and land, by its wars with the Lucchese, Genoese and Moslems. In 3110 Pisa made peace with Lucca after six years of continuous bostilities. And in the years nir3 and 1115 it achieved a still ereater enteeprise. The Pisan fleet of three hundred sail, commanded by the archbishop Pietro Moriconi, atlacked the Balcaric Isles, where as many as 20,000 Christians were said to be held captive by the Moslems, and returned loaded with spoil and with a multitude of Christian and Moalem prisoners. The former were, pet at liberty or ransomed, and among the latter was the last descendant of the reigning dynasty. The chief .eunuch who had governed Majorca perished in the siego. Immediately afterwards the fourteen years' war with Genoa broke put. The two republics contested the dominion of the sea, and both claimed supreme power over the islands of Corsica and Sardinis. A papal edict awarding the supremecy of Consica to the Pisan church proved sufficient cause for the war, which went on from itis to in3z. Then Innocent II. translerred the supremacy over part of Corsica to the Genoese church, and pompensated Pisa by grants in Sardinia and elsewhere. Accordingly, to gratify the pope and the emperor Lothair LI., the Pisans entered the Neapolitan territory to combart the Normans. They aided in the vigorous defence of the city of Naples, and twice atracked and pillaged Amalfi, in 1335 and 1137, witb such effect that the town never regained its prosperity. It has been said that the copy of the Pandects then taken by the Pisans from Amalif was the first known to them, but in fact they were already acquainted with those laws. The war with Genoa never came to a real end. Even after the retaking of Jerusalem by the Moalems (tr87) the Pisans and Genoese again met in confict in the East, and performed many deeds of valour. They were always ready to come to blows, and gave still more signal proofs of their enmity during the Sicilian War in behalf of the emperor Henry VI. From that moment it was plain that there could be no lasting peace between these rival powers until the one or the other should be crushed. The grealness and wealth of the Pisans at this period of their history is proved by the erection of the poble buildings by which their city is adorted. The founda-
${ }^{1}$ It muse be remembered that the Picana and Florentines dated the beginning of the year ab incornatione, i.e. fromet the 25 th of March. But the Forentines dated it from the 25 sth forlowing and the Pisans frem the 2sth of March preceding the commencementit of the common prar. The new or common style was adopted throughiout Tuscany an she year 5750

Lians of the cathedral were laidin 1003 , and ts comenaradoa took place in 1158, the baptistery was begun in 4258 , and the campanile (the famous beaning tower) in I574. And all three magnificent structures were mainly the work of Pisan artists, who gave new life to lealian architecture, as they aterwards renewed the ast of sculpture.
It is asserted by some writers, eapecially by Tronci, that in the 12th century Pisa adopled an more democratic form of government. But in fact the chief authority was still wested in the nobles, who, both in Pisa and in Sardinia, exercised almot sovereign power. They formed the real strength of the republic, and kept it faithful to the empire and the Ghibodine penty. The Guelph and popular element which constituted the lorce and prosperity of Florence was bostite to Pise, and lod to its downsall. The independenpe of the former city was of much later origin, only dating from the death of Countess Mavida (1115), but it rapidly rose to an over-increaging power, and to inevitable rivalry with Pisa. Owing to the political and come mercial interests binding Florenca to the Roman courr, the Guctph element naturally prevailed there, while the growth of its trate and commerce necessarily compelled that atate to encroach on waters subject to Pisan rule. And, althourgh Pisa had hitherto been able to oppose a glorious resistavce to Genoa and Lacch, it was not so easy to continue the struggle when its esemies were backed by the arms and political wisdorm of the Floreatines, who were skilled in obtaining powerful allies The chronick ascribe the first war with Florence, which brobe out in 1232, to a most ridiculous motive. The ambasendors of the rivil satces in Rome are said to have quarrelled about a lapdog. Thin merely shows that there were already so many general and permanent reasons for war that no special cause was needed to provoke it. In 1228 the Pisans met and defeated the united forces of Florence and Lucom neer Burga in the Gariagnama, and at the same time they despatched fifty-two galleys to assist Frederick IL. in his expedition to the East. Shartly after this they renewed hostilitics wilh the Genoese on account of Serdinia. The judges who governed the island were always at strife, and, as some of them applied to Piss and some to Genoa for assistance against one another, the Italian seas were once more stained with blood, and the war burat out again and again, down to 1259, when it terminated in the docisive vistory of the Pisants and the consolidation of their supremacy in Sardinia. But meanibile Florence had made alliahce with Genoa, Lucce and all the Guelph citics of Tuscany against its Ghibelline rival. The popt had excommanicated Frederick II. and all his odherents. And, as a crowning disaster, the death of Frederict in 1250 proved a mortal blow to the Italian Glibelline cause. Nevertheless, the Pisans were undaunted. Summoning Sieas, Pisacoia and the Florentine exiks to their aid, they boldly faced their foe, bot were defeated In 1254. Soon after this date we find the old aristocratic government of Pisa replaced by a more popular form. Instead of the consuls there were now twelve eidern (anciani); besides the podesti, there was a captain of the people; and there was a general council as well as a senate of forty members. The rout of the Tuscan Guelphs on the field of Montaperto (1260) restored the fortunes of Pise. But the bette of Benevento (r266), where Manired fell, and the rout of Tagiir cozzo (1265), sealing the ruin of the house of Hobenstaufen in Italy and the triumph of that of Anjou, were fatal to Pisa. For the repuhlic had always sided with the empire and favoured Conradin, whose cruel end strock terror into the Chibelline faction. The pope hurled an edict against the Pisans and tried to deprive them of Sardinia, while their merchants wert driven from Sicily by the Angevins. The internal condition of the city was affected by these events. Owing to the increasing influence of the Guelph and popular side, to which the more ambitious nobles began to adhere for the furtherance of perroned aims, the aristocratic Ghibelline party was rapidly losing ground The first man to step to the front at this moment was Count Ugolino della Gherardesca of the powerful house of that amme. Hie had become the virtual head of the republic, and, in order to preserve its independence and his own sway, inclined to the

Guelphas and the popular party, in splte of the Ghibelline traditions of his race. He was supported by his kinsman Giovanni Visconti, judge of Gallura; but almost all the other great families Yowed eternal hatred against him, and proclaimed him a traitor to his party, his country and his kin. So in 1274 he and Visconti were driven into exile. Both then joined the Florentines, took part in the war against their native city, and laid waste its surrounding territories. In 1276 the Pisans were compelled to agree to very grievous terms-to exempt Florentine merchandise from all harbour dues, to yield certain strongholds to Lucca, and to permit the return of Count Ugolino, whose houses they had burnt, and whose lands they had confiscated. Thus the count again became a powerful leader in Pise. Visconti, however, was dead.
This was the moment chosen by Genoa for a desperate and decisive struggle with her perpetual rival. For some years the hostile fleets continued to harass each other and engage in pelty akirmishes, as if to measure their strength and prepare for a final effort. On the 6 th of August 1284 the great battle of Meloria iook place. Here seventy-two Pisan galleys engaged eightyeight Genoese, and half the Pisan feet was destroyed. The chroniclers speak of 5000 killed and 31,000 prisoners; and, although these figures must be exaggerated, so great was the number of captives taken by the Genoese as to give rise to the eaying-"To sec Pisa, you must now 80 to Genon." This defeat crushed the power of Pisa. She had lost her dominion over the sea, and the Tuscan Guelphs again joined in attacking her by land. Count Ugolino had taken part in the battle of Mcloria and was accused of treachery. At the height of bis country's disasters he sought to confirm his own power hy making terms with the Florentines, by yielding certain castes to Lucca, and by neglecting to conclude negotiations with the Genocse for the release of the prisoners, lest these should all prove more or less hostile to himself. This excited a storm of opposition against him. The archbishop Ruggieri, having put himsell at the head of the nobles, was elected podestiz by the Lanfranchi, Sismondi and Gualandi, and a section of the popular party. The city was plunged into civil war. The great bell of the commune called together the adherents of the archbishop; the bell of tho people summoned the partisans of the count. After a day's gighting Ouly \quad, 288) the count, his two sons and his two grandsons were captured in the palazzo del popolo (or town hall), and cast into a tower belonging to the Gualandi and known as the "Tower of the Seven Strects." Here they were all left to die of hunger. Their tragic end was afterwarda immortalized in the Divina commedia. The sympathies of Dante Alighieri, the Florentine patriot and foe of Rome, were naturally in favour of the victims of an aristocratic prelate, opposed to all reconciliation with Florence.

The Florentines were now allied with Lucca and Genoa, and xfew of their vessels succeeded in forcing an antry into the Pisam port, blocked it with sunken boats, and seized its towers. Their own internal dissensions of 1293 put a stop to the campaign, but not before they had concluded an advantageous peace. They and all the members of the Guelph league were freed from all imposts in Pisa and its port. In addition to these privileges the Genoese also held Corsice and part of Sardinia; and throughout the ialand of Elba they wore excmpted from every tax. They likewise received a ransom of 160,000 lire for their Pisan prisoners. These were no longer numerous, many having succumbed to the hardships and sufferings of all kinds to which they had been exposed.

In 1312 the arrival of the emperor Henry VII. gladdened the hearts of the Pisans, but his sudden deash in 1313 again overthrow their hopes. He was interred at Pise, and Uevecione della Faggiuola remained as imperial lieutenant, was elected podesti and captain of the people, and thus became virtual lord of the city. As a Ghihelline chief of valour and renown be was able to restore the military prestige of the Pisens, who under his command captured Lucca and defeated the Florentines at Montecatini on the 2gth of August is1g. So tyrannical, however, weis his sule that io sur6 he was expelled by the popilar fury. Dit

Pisa's freedom was for over lont. He was saeceeded by other lords or tyrants, of whom the most renowned was Castruccio Castracane, a political and military adventurer of much the same stamp as Uguccione himself. With the help of Louis the Bayarian, Castruccio became lord of Luucca and Pisa, and was victocious over the Florentines, but his premature death in $\mathbf{x} 38$ again lofit the city a prey to the conflicts of opposing factions. New londs, or petty tyrants, rose to power in turn during this period of civil discord, but the military valour of the Pisans was not yet extinguished. By sea they were almost impotent-Corsica and Sardinia were lost to them for ever; but they were still formidable by land. In 1341 they besigeged Lucca in order to prevent the entry of the Fiorentines, to whom the city had been sold for 250,000 florims by the powerful Mactino della Scala Aided by their Milanese, Mantuan and Paduan allies, they gave beltle to cheir rivals, put them to roat at Altopascio (Oct. 2), and then again excluded them from their port. Thereupon the Florentinesobtained Porto Talamone from Siem and established a navy of theirown. By this means they were enabled to cupture the island of Giglio, and, attacking the Pisan harbour, carriod of its chains, bore them in triumph to Florence, and suspended them in front of the baptistery, where they remained until s848. Then, in pledge of the brothechood of all Italian cities, they were given back to Pisa, and placed in the Campo Sanso.

The war was now carried on hy the free companies with varying fortune, but always more or less to tho hart of the:Pisans. In 1369 Lucer vas taken from them hy the emperoc Charles IV.; and afterwards Giovan Galeazto Visconti, kwomn as the count of Virtu, dotermined to ferward his ambitions detigns upon the whole of Italy by wreatiag Pise from the Gambacorti. For at this time the cooaficts of the Raspanti faction; headed by the Gherandescz, with the Bergolimi Ied by the Gambecurti, bod left the hattor family masters of the city. At Viscoantis inatigation Pieno Gambecorti, the ruler of the moment, was treacherously assasalnated by Jacopa d'Appiano, who sucoteded him as typant of Piss, and bequeathed the state to his son Gharardo. The latter, a man of inferior ability and daring, sold Pisa to the conath of Yirti, recaiving in exchange a00,000 florins, Piombino, and the ialends of Elba, Pinnosa and Monte Cristo. Thus in 1399 Visconti took posecssion of Pisa, and left it to his natural som Gabriele Maria Visconti, who was afterwards expelled from its gates. But even during this cencury of disaster the Pleans continued to cherish not only commeroe, but aloo the fine arte. In the year 1278 they had entrusted the erection of their fine Campo Santo to Niccola and Giovanni Pisano, by whom the architectural part of it was completed towards the end of the century. In the following year the first artists of Italy were engaged in lts decoration, and the celebrated frescoes attributed to Orcagna (q.v.) were painted on its walls. Others were afterwards supplied by Benozzo Gozzoli and men of lesser noto, and the labour of ornamentation was only discontinued in 1464.

Meanwhile, $\ln 1406$, the Florentines made another attack upon Pisa, besieging it simultaneously by sea and land. Owing to the starving condition of its defenders, and aided by the treachery of Giovanni Gambacorti, they entered the city in triumph on the gth of October, and sought to "crush every germ of rebellion and drive out its citizens by mensures of the utmost harahness and cruelty." Such were the ordens sent hy the Ten of War to the representatives of the Florentine government in Pisa, and such was then the estahlished policy of every Italian state. Consequently for a long time there was a continual stream of emigration from Pisa. The Medici pursued a hamaner course. In 3472 Lorenzo the Magnificent tried to restore the ancient renown of the Pisan universicy. To that end he filled it with celebrated scholars, and, leaving only a fow chairs of letters and philosophy in Floretice, compelled the, Florentines to resott to Pisa for the prosecution of their atudies. But nothing coold now allay the inextinguishable hatred of the conquered people. When Charles VIII. made his descent into Italy in 1494, and came to Sarzana on his way to Tuscany, he was.welcomed by the Pisans with the greatest decuonstrations of joy. And, althongh that monarch wras ostensibly the friend of Florence, they did mot
beritate, even in his presence, to assert their owin independence, and, casting the Florentine ensign, the Marzocco, into the Armo, made instant preparations for war. Between 1499 and 1505 they heroically withstood three sieges and repulsed three attacking armies. But their adversaries always returned to the ascault, and, what was worse, yearly laid waste their teritories and destroyed all their crops. Soderini, who was perpetual gonfalonier of Florence, and Machiavelli, the secretary of the Ten, urged on the war. In 1 gog Florence encamped her forces on three sides of the distressed city, which at last, reduced to extremity by famine, was compelled to surrender on the 8th of June 1509 . Thenoforth the Florentines remained lords of Piss. But now, mainly owing to the efforts of Soderini and Machiavelli, the conquerors showed great magranimity. They brought with them large stores of provisions, which were freely distributed to all; they tried to seccour the suffering populace in every way, and gave other assiatance to the wealhier classes. Nevertheless, emigration continued even on a larger scale than in 1406, and the real history of Pisa may be said to have ended. In Naples, in Palermo, in all parts of Italy, Switzerland and the zouth of France, we still find the names of Pistin families who quited their beloved home at that time. The Florentines immediately built a new citadel, and this was a great bitterness to the Pisams. The Medici, however, remained well disposed towards the city. Leo X. was an active patron of the university, but it ggain declined after his death. The grand duke Cosmo I., a gemaine statesman, not only restored the university, but instituted the "t uffirio dei fossi," or drainage office for the reclamation of marsh lands, and founded the knighthood of St Stephen. This order played a noble part in the protection of Tuscan commerce, by fighting the Barbery pirates and eatablish. ing the prestige of the grand-ducal navy (see Medici). Under the succeeding Medici, Pisa's fortunes steadily declined. Ferdinand I. initiated a few public works there, and above all reatored the cathedral, which had been partly destroyed by fire in 1595. These dreary times, however, are brightened by one slorious name-that of Galileo Galilei.
The population of Pisa within the wrils had been reduced in 8551 to 8574 souls, and by 1.745 it had only risen to the number of 12,406 . Under the house of Lorraine, or more correctly during the reign of that enlightened reformer the grand duke Peter Leopold ($1765-1790$), Pisa shared in the general prosperity of Tuscany, and its population constantly increased. By 1840 it contained 21,670 souls, exclusive of tho auburtse and outlying districts.
Autimoarmas-Peolo Trogel, Asnali di P sa, edited by E. V. Montaxio (2 vols, Lucce, 184r-1843), which comes dowa to $1840 ;$ Ranieri Grassi, Pisa \& Le sue adiacense (Pisa, 185s). which is a useful historical guide; Roncioni. "Istorie Pisane, in the Archivio storico ilafiano, vol. vi., pt. I; "Crontache Pisanc," in the tame Archimio, vol. vi. pl. 2; for the early constitution of the city, see G. Volpe's Studii sulle istismaioni, comumali d's Pise (Pisa, 1902), and for the laws, F. Bonaini's Syatuti inediti della cilld di Pisa (3 vols. Florence, 1851, 8xe). The maritime and commercial history of the republic is dealt with in A. Schaube's Das Konsulat des Mecrus in Pisa (Leiprig, 1888) and in Pawinski's Zur Embstehangreseckichle des Konsulats in des Communen Nord- und Milleb-Ilaticess (Berlin, 1867); for the monuments and inscriptions gee A. Dz Morrona, Plsa illustrata (Leghorn, 1812) and G. R. de Fleury's Ley Monsments de Pise as mojem dge (Paris, 1866); also Reperti's Disionario eqografico delle Tascema, sy. "Pian. For Dante's connexion with Pisa, cet Dasule e i Pisani, by Giovanni Slork (Pisa, 1873). Among the more recent historical guides to Pise of a popular character is The Story of Pisa and Lucce, by Janet Ross and Nellie Erichsen, in Dent: "Medieval Towns" (London, 1907), and T. B. Supino's Pisen, in the "Italia artistica Seriea."

PIRA, COUMCIL OF (1409). *The great schism of the weat had already lasted thirty years, and the efforts which had been made to restore unity within the Church by the simultaneous reaignation of the two rival pontiffs had been in vain, when in the spring of 1408 , the state of affairs being desperate, the idea arose of assembling a council to effect a union without the co-operation of the popes. The initiative came from those cardinals who had ode after the other seceded either from Gregory XII. or Benodict XIII. They wero forctalled by the popes, who each
summoned a council, the former to Cividale (in Friuli), the latter to Perpignan, so the dissident cardinals sent out antedated letters inviting Christendom to assemble at Pisa on the 25 th of March 1409. Their appeal met with a response in a great part of Italy, France, Navarre, Portugal and England, and in Germany in the states subject to Wenceslas king of the Romans, the edectors of Cologne and Mainz, the margrave of Branderburg, te. For a time the number of the fathers exceeded five hundred.
The day after the opening of the council, proceedings were started against the two popes, who, it was agreed, were to be eliminated. An act of accusation, containing in 37 articles the chicf complaints against them, was read out to the people; not only their policy, but their orthodoxy was attacked, and there was even an insinuation of soreery. The reason is, that in order to depose them with some show of legality, it was necessary, as a preliminary, to convict them of heresy, and ft began to be seen that their tenack y of power, and the ruses by which they evaded the necessity of abdicating, however harmful might be their consequences, did not in themselves constifute a clearly-defined heresy. On the 5th of June 1409 was read the definitive sentence: that as hereties, and therefore separated from the Church, Pedro de Luma (Benedict XIII.) and Angelo Corrario (Gregory XIL) were ipso facto deposed from any office; they must not be obeyed, nor assisted, nor harboured. In the course of the rejoicings which followed this sentence among the populsce of Pisa, occurred the somewhat scandalous event of the burning of two images crowned with parchment mitres, representing Gregory XII, and Benedict XIII. It was in vain that the ambessadors of Benedict XIII. presented themselves at Piss. The crowd greeted thelr arrival with mockery and derision, and being treated as the envoys of beretics they escaped without having obtaincd a hearing.
In order to complete their task the cardinals present at Piss, authorived by delegation of the counci, shut themselves up in conclave, and elected one of their number, Peter Philarges, cardinal of Milan, as the new pope, who assumed the name of Alenander V. They had hoped to save the Church, but unfortunately the result of their efforts, generous as they were, was thas the schism increased in bitternest, and that instead of the unity for which the Church craved, three popes continued to flourisk. Both the deposed pontifts protested agrainst the legality of the council of Pisa; each had numerous partisans, and the thesis, constructed rather to meet the exigencies of the case, which eltributed to a synod assembled by the cardinals the right of constituting itself judge of a sovereign pontif, was far from being established.
Originally the council of Pisa was to have occupied itself not onily with effecting the union, but also with the reform of the Church. As a matter of fact, it confined itself to expressing eertain desiderala in a "libelhus supplicatorius" which it submitted to the new pope. Alexander V. only partially acceded to these demands, many of which constituted serious encroachmenth on the prerogative of the Holy See; he then declared the work of reform suspended, and dissolved the council (August 7, 1409).

See Jacques Lenfant, Fistoine de amoile de Pise (Utrecht, 2731); Mansi, Concil., xavii.; F. Stuhr, Dic Orgemisation sund Geachifir
 Valols, La France at le erand sckisme fooccident, iv. 3-107, 175 seq (Pari, 1902).
(N. V.)
 family of languages spoken immediately to the south of the Hindu Kush, and north of the frontier of British India. The family includes the group of Kifir languages spoken in Kafiristin, Khowar, spoken in the Chitral country, and the group of Shind languages, which includes the Shin! of Giigit, Kohistind, spoken in the Kohistans of the Indus and Swat rivers, and Kashmiti Of all these Rashmiri is the only one which hat received any Hiterary culdivation, and of which the number of speakers is known. The Pisfica languages are Aryan by origin, bet are neither Iranian nor Indo-Aryan. (See Indo-Aryan Languages and Kacmani.)
(3.A.Ge)

Mincirg canio, duke of San Giovanni ($1818-1857$), Italien revolutionary, was born at Naples, and entered the Neapolitan army in 1839; hut having become imbued with Masriains ideas he emigrated in 1847, and after a short stay in England and France served in the French army in Algeria. The revolution of 1848 recalled him to Italy; he played a part in the brief but giocious history of the Romen Republic, and was the life and soud of the war commission in the defence of the city. After its capture by the French he again went into exile, first to Loadon and then to Genot, maintaining himself by teaching. Fie regurded the rule of the house of Savoy as no better than that of Austria. When Mazzini, undeterred by the failure of the abortive Milan rising on the 6th of February 1853 , determined to ocguniee an expedition to provoke a rising in the Neapolitan kingdom, Pisacane offered himself for the task, and sailed from Gence with a few followers (including Giovanni Nicotera) on board the "Cagliati" on the 25th of June 1857. They landed on the island of Ponza, where the guards were overpowered and come hundreds of prisoncrs liberated, and on the 28th arrived at Sapri in Calabria and attempted to reach the Cilento. But hardly any assistance irom the inhabitants was fortbcoming, and the invaders were quickly overpowered, Pisacane himseli being killed.
See P. M. Biloti, La Spedisione di Sapri (Salerno, 1907).
PISAH, CERISTIEE DE (1364 -c. 1430), French poet, of Italian birth, was born at Venice in 1364. When she was four years old she was brought to her father, a councillor of the Venetian Republic, in Paris, where he held office as astrologer to Charles V. At fifteen Christine married Elienne du Castel, who bocame Charles's notary and secretary. After the king's death in $\mathbf{r} 380$ her father lost his appointment, and ched soon after; and wben Christine's husband died in 1389 she found herself rithout a protector, and with three children depending on her. This determined ber to have recourse to letters as a means of livelihood. Her first ballads were written to the memory of her husband, and as love poems were the fashion sbe continued to write others-lais, virelais, rondecux and jeux d sendre-though she toot the precaution to assure hex readers (Cent balades, No. so) that they were merely exercises. In 1399 she began to study the Latin poets, and between that time and 1405, as she berself declares, she composed some fifteen important works, chiefly in prose, besides minor pieces. The earl of Salisbury, who was in Paris on the occasion of the marriage of Richard II. with Isabella of France (1396), took her elder son, Jean du Castel (b. 1384), and reared him as his own; the boy, alter Salisbury's death (400), being received by Philip of Burgundy, at whose desire Christine wrote Le Liore des failt at bonses maurs du saype roy Charles' (1405), valuable as a first-hand picture of Charics V. and his court. Her Mutation do fortune, in which she finds room for a great deal of history and philosophy, was presented to the same patron on New Year's Day, 1494. It possesses an introduction of great autobiographical interest. In La Vision ($\mathbf{4} 405$) she telle ber own hictory, by way of defence against those who objected to her pretensions as a moralist. Henry IV. of England desired her to make his court her home, and she received a Bite invitation from Galcazzo Visconti, tyrant of Milan. Sbe preferred, howevcr, $t 0$ remain in France, where she enjoyed the favour of Charles VI., the dukes of Berry and Burgundy, the duchess of Bourbon and others.

Christine was a champion of her own sex. In her Dit de la rose (1402) she describes an order of the rose, the members of which bind themselves by vow to defend the honours of women. Her Eptere as diex d"amowr ($\mathbf{1 3 9 9}$) is a defence of women against the satire of Jean de Meun, and initiated a prolonged dispute with two great acholars of her time, Jean de Montreuil (d. 1415) and Gonthier Col, who undertook the defence of the Roman de la gose. Christine wrote about 1407 two books for women, La Cile des dames and Le Live des trois pertius, or Le Tresor de la cill des dames. She was devoted to ber adopted country. During the civil wars ahe wrote a Lamentation ($\mathbf{1} 410$) and a Lisre
:See C. B. Petitot, Collection comprese des mimoires rolatifs a

de la paix (1412-1413), but after the disasters of the campaiga of Agincourt abe relired to a convent. We have no more of her work until i429, when she broke her silence to write a song in honour of Joan of Arc. Of the circumstances of her death nothing is known but it probably took place about this time. Her Cite des dames contains many interesting contemporary portraits, and her Livre des frois oerlus contains detaila of domestic life in the France of the early 1 sth century not supplied by more formal historians.
Her poems were edited by Maurice Roy for the Socifte des anciema Textes (rançais (1886, \&c.), and her Live du chemin du Long dslude by Puschel (Berlin. 1887). There are monographs by Raimond Thomassy (Paris, 1838) ; E. M. D. Robineau (Saint-Omer, 1882); and Friedrich Koch (Gostar, 1885). It is possible that Jean Castel, who was chronicler of France undgr Louis XI., was Christine's grandson. Hoccleve imitated her Eptre aw diew deanour. in his "Letter of Cupid " (Chamcerion and other Pieces, ed. W. W. Skeat, 18.7). A translation of her Epllire doihea was made (c. 1440) by Stephen Scrope for his steplather, Slr John Fastoff, and is preserved in a MS, at Longleat. This was edited (ropy) for the Roxburghe Club by W. G.F. Warner at The Episke of Oikea to Hector: or the Boke of Knyglithode. The Moral Prooerbs of Christyne de Pise, translated by Earl Rivers, wal printed in 147^{8} by Caxton. who himself translated, by order ol Hemry VII., her Litre das faits dormes, ef de chenolerie, a treatise on the art of war, based chiedy on vegetius. Her Cilfé des domes was trandated by Brian Anslay (London, 1521).
PISANI, VETTOR (d. 1380), Venetian admiral, was in command of the Venetian fleet in 1378 during the war against the Genoese, whom be defeated off Capo d'Ankio; subsequently he recaptured Cattaro, Sebenico and Arbe, which had been eeized by the Fungarians, the allies of the Genoese. But the Genoest fitet completely defeated Pisani at Pola in May 1379, and on his return to Venice be was thrown into prison. The enemy now pressed home their victory, and besiegod and captured Chioggia, whereby Venice itself was in danger. The people thereapon demanded the liberation of Pisani, in whose skill they had the fullest confidence. The government gave way and appointed the aged commander admiral of the feet once more. Through his able atrategy and daring he recaptured Chioggis, defeated the Genoese and threatened Genoa itself until that republic agreed to peace terms. Pisani died in 1380 while on his way to Manfredonia with a squadron to ship provisions.
See Vittorio Lazzarini, "La morte o il monuroento di Vettor Pisani," in the Nwove archivio pencto, vol. xi., pt. ii. ($\mathbf{1 8 9 6 \text {). }}$
pisano, Andrea, also known as Andrea da Pontadera (c. 1270-1348), Italian sculptor, was born about 1270, and first learned the trade of a goldsmith. He became a pupil of Giovanni

Part of the first Bronse Door of the Baptistery at Floreace, by Audree Pinano.
Pisano about 3 300, and worked with him on the sculpture for S. Maria dolla Sping at Pise and alsewhere. But it is at Florepce
that his chief works were executed, and the formation of his roat ure style was due rather to Giotto than to his earlier master. Of the three world-famed bronze doors of the Florentine baptistery, the eartiest one-that on the south side-was the work of Andrea; he spent many years on it; and it was finally set up in $1336 .{ }^{1}$ It consists of a number of smalt quatrefoil panch-the lower eight containing single figures of the Virtoes, and the rest scenes from the life of the Baptist. Andrea Pisano, while living in Florence, also produced many important works of marble sculpture, all of which show strongly Giotto's infuence. In some cases probably they were actually desigoed by that artist, as, for instance, the double band of beautiful panei-reliefs wbich Andrea executed for the great campanile. The subjects of these are the Four Great Prophets, the Seven Virtues, the Seven Sacraments, the Seven Works of Mercy and the Seven Planets. The duomo contains tbe chief of Andrea's other Florentine works in marble. In 1347 he was appointed architect to the duomo of Orvieto, Thich bad already been designed and begun by Lorenzo Maitani. The exact date of his death is not known, but it must have been shortly before the year 1349 .
Andrea Pisano had two sons, Nino and Tommaso-both, especially the former, culptors of considerable ability. Nino was very successiul in his statues of the Madomma and Child, which are fult of human feeling and soft lovelincss-a periect embodiment of the Catholic ideal of the Divine Mother. Andrea's chief pupil was Andrea di Cione, better known as Oreagna (q.s.). Balduccio di Piss, another, and in one branch (that of sculpture) equally, gifted pupil, executed the wonderful shrine of S. Eustongio at Milana mone magnificent mass of sculptured figures and reliefs.

PISAND, GIOVANBI (c. ra50-1330), Italian architect and sculptor, was the son of Niccola Pisano. Together with Arnolfo del Cambio and other pupils, he developed and extended into other parts of Italy the renaissance of sculpture which in the main was due to his father's talent. After he had spent the first part of his life at home as a pupil and fellow worker of

Part of the Tomb of Benedict XI., by Giovanni Pisano.
Niccola, the younger Pisano was summoned between 1270 and 1274 to Naples, where he worked for Charles of Anjou on the Castel Nuovo. One of his earliest independent performances was the Campo Santo at Piss, finisbed about 1283 ; along with this he executed varfous pieces of sculpture over the main door and inside the cloister. The richest in design of all his works (finished about 1286) is in the cathedral of Arezzo-a magaificent marble high altar and reredos, adorned both in front and at the back with countless figures and reliefs-mostly illustrative of the lives of St Gregory and St Donato, whose bones are ensbrined there. The actual execution of tbis was probably wholly the work of his pupils. In 1290 Giovanni was appointed architect or "capo maestro" of the new cathedral at Siena, in which office he succeeded Lorenso Maitani, who went to Orvieto to build the less ambitious but equally magnificent duomo which had just been founded there. The design of the gorgeous facade of that duomo has been attributed to bim, but it is more probable that he only earried oat Maitani's design. At Perugia, Giovanni built the

[^55]chutch of S. Domenico in 1304, but Uttie of the origian etnieture remains. The north transept, however, still contuins hts beatiful tomb of Benedict XI., with a sleeping figure of the pope, guarded by angels who draw aside the curtain. One of Giovanai'! most beautiful architectural morks was the littic chaped of S. Maria della Spins (now rebuilt, "restored "), on the beaks of the Arno in Pisa; the actual erecution of this chapei, and the sculptare with which it is adorned, was mostly the work of his papils.' The influence of his father Niccola is soen strougly in all Giovanni's works, but especially in the pulpit of S. Andres at Pistoia, executed about 1300 . Another pulpit, designod on the same lines, was made by him for the nave of Fisa Cathedral between 1310 and 131x. The last part of Giovanal's life was spent at Prato, near Florence, where with many pupils he worked at the cathedral till his death about 133 a
See M. Saueriandt, Ober die Bilduverke des Giovanni Pisano, \&e. (1904); A. Brach, Nicola und Giosamni Pisine wod die Plestik des XIV. Jahrhumderts in Sicma (1904).

PISAND, NICCOLA (c. 1206-1278), Italian sculptor and architect. Though he called himself Pisanas, from Pisa, where most of his life was spent, he was not a Pisan by birtb. There are two distinct accounts of his parentage, both derived mainly from existing documents. According to one of tbese he is said to bave been the son of "Petrus, a notary of Siena;" but this statement is very doubtful, especially as the word " Siena " or "de Senis" appears to be a conjectural addition. Another document among the archives of the Siencse Cathedral calls him son of "Petrus de Apulia." Most modern writers accept the latter statement, and believe that he not only was a native of the province of Apulia in southern Italy, but also that he gained there his eariy instruction in the arts of sculpture and architecture. Those, on tbe other hand, who, with most of the older writers, prefer to accept the theory of Niccola's origin being Tuscan, suppose that he was a native of a small town called Apulis near Lucca.
Except through his works, but littie is known of the history of Niccola's life. As early as 122 he is said to have been summoned to Napies by Frederick II., to do work in the new Castel del l'Uovo. This fact supports the theory of bis southern origin, though not perhaps very strongly, as, some years belore, tbe Pisan Bonannus had been chosen by tbe Norman king as the sculptor to cast one of the bronze doors for Monreale Cathedral. where it still exists. The carliest existing piece of sculpture which can be attributed 20 Niccola is a beautiful relief of the Deposition from the Cross in the tympanum of the arch of a side door at San Martino at Lucca; it is remarkable for its graceful composition and delicate finish of execution. Tbe date is about 1237. In 1260, as an incised inscription records, he finished the marble pulpit for the Pisan baptistery; this is on the whole the finest of his works.
It is a high octagon, on semicircular arches, with trifoil cusps, supported by nine marble columns, three of which rest on white marble lions. In design it presents that cutious combination of Gothic forms with classical details which is one of the character istics of the medieval architecture of northern Italy: though much eariched with sculpture both in relief and io the round. the general lines of the design are not sacrificed to this, but the sculpture is kept subordinate to the whole. In this reppect it is superior to the more magnificent puipit at Siena, one of Niccola's later works which suffers greatly from want of repome and purity of outline, owing to its being overloaded with reliefs and statuettes. Five of the sides of the main octagon have panels with subjects-the Nativity, the Adoration of the Magi, the Presentation in the Temple, the Crucifixion and the Doom. These are all, especially the first three, works of the highest beauty. and a wonderful advance on anything of the sort that had been produced by Niccola's predecessors. The drapery is gracefully arranged in broad simple folds: the heads are full of the mois noble dignity; and the sweet yet stately beauty of the Madonns could hardly be surpassed. The panel with the Adoration of the Magi is perhape the one in which Niccola's study of the antique is most apparent (see figure). The veiled and diademed figure of the Virgin Mother, seated on a throne, recalls the Roman Jumo: the bead of Jooeph behind her might be that of Vulcan: while the youthful beauty of an Apollo and the mature dignity of a Jupiter are suggested by the standing

and kneeling figures of the Magi. Certain figures in others of the pancls are no less deeply imbued with classical feeling.
The next important work of Niccola in date is the Arca di San Domenico, in the church at Bologna consecrated to that saint, who died in 1221 . Only the main part, the actual sarcophagus covered with sculptured reliefs of St Dominic's life, is the work of Niccola and his pupils. The sculptured base and curved roof with its fanciful ornaments are later additions. This "Arce"

The Adoration of the Magi, one of the panels in the pulpit of the Pizan Baptistery, by Niccola Pisano.
was made when St Dominic was canonized, and his bones translated; It was finished in 1267, not by Niccola himself, but by his pupils. The most magnificent, though not the most beautiful, of Niccola's works is the great pulpit in Siena cathedral (1268). It is much larger than that at Pisa, though somewhat similar in general design, being an octagon on cusped arches and. columns. Its stairs, and a large landing at the top, with carved balusters and panels, rich with semi-classical foliage, are an addition of about 1500 . The pulpit itself is much overioaded with sculpture, and each relief is far too crowded with figures. An attempt to gin magnificence of effect has destroyed the dignified simplicity for which the earlier pulpit is so remarkable.
Niccola's last great work of sculpture was the fountain in the piazza opposite the west end of the cathedral at Perugia. This is a series of basins rising one above another, each with sculptured bas-reliefs; it was begun in 1274, and completed, except the topmost basin, which is of bronze, by Niccola's son and pupil Giovanni.
Niccola Pisano was dot only pre-eminent as a sculptor, but was also the greatest Italian architect of his century; he designed a number of very important buildings, though not all which are attributed to him by Vasari. Among those now existing the chief are the main part of the cathedral at Pistoia, the church and convent of Sta Margherita at Cortona, and Sta Trinita at Florence. The church of Sant' Antonio at Padua has also been attributed to him, but without reason. Unfortunately his architectural works have in most cases been much altered and modernired. Niccola was also a skilled engineer, and was compelled by the Florentines to destroy the great tower, called the Guardomorto, which overshadowed the baptistery at Florence, and had for long been the scene of violent conflicts between the Guelphs and Ghibellines. He managed skilfuily so that it should fall without injuring the baptistery. Niceola Pisano died at Pisa in the year 1278 , leaving his son Giovanni a worthy successor to his great talents both as an architect and sculptor.
Though hin importance as a reviver of the old traditions of beauty in art has been to some extent ekagserated by Vasan, yet it is probable that Niccola, more than aryy other one man, was the meane of starting that "new birth" of the plastic arts whinh. in the years followiog his death, was so fertile in countlems works of the moot unrivalled beauty. Both Niccola and his son had many pupils of great artistic power, and these carried the influence of the Piani throaghout Tuscany and northern Italy, so that the whole ent of the succeeding penerations may be suid to have owed the ereater part of its rapid development to this one lamily.

See Sculptule, and general histories of Italian art; Symonds,

Remaisance in ILaly; A Brach, Nicala axd Giowamai Pisame and die Plastik des XIV. Jahrhunderis in Siena (Strassburg, 1904).
PISANO, VITTORE (c. 1380-1456), commonly called Pisn-: melio, Itatian medallist, was a native of San Vigilio sul Lago in the terzitory of Verona. Specimens of his work as a painter are still extant in Rome, Venice, Verona and Pistoia, and entitle him to a place of some distinction in the history of that art. The Nalional Gallery in London possesses a very fine specimen of Pisanello's work-a panel painted with miniature-like delicacy. During the latter portion of his life be lived in Rome, where be enjoyed great repute.
PISAURUM (mod. Pesaro, q.a.), an ancient town of Unabria on the Vis Flaminia, 26 m . From Ariminum and 8 from Fanum Fortunac. A Roman colony was founded here in the territory of the Galli Senones in I84 B.C., at the mouth of the river Pisourvs (mod. Foglia; the sea has since then receded about half a mile). Whether it took the place of an carlice towe or not, is not known: an important Gaulish cemetery hes been discoverod mear the village of Novilara between Pisaurum and Fanum, but to which of these centres (if either) it belonged is uncentain (E . Brizio in Monumenti dei Lincei [1895], v. 85 sqq.). In 174 B.c. we hear that the censors buili a temple of Jupiter here and paved a road T. Accius, the counsel who opposed Cicero in the case when he defended Cluentius in a still extant apeech, was a native of Pisaur rum. Catullus refers to the town as decadent or unheallhy, bat this may be merely malicious, and does not seem to be borne out by lacts: for it is not infrequently mentioned by ciassical authors. It was occupied by Caessr in 49 s.c., and was made a colony under the second triumvirate. Hence it bears the name Colonia Juliz Felix. We hear litule of it under the empire. It was destroyed by the Goths in 539, and restored by Belisarius in 545. From the inscriptions, nearly 200 in number, an idea of the importance of the town may be gained. Among them are a group of cippi found on the site of a sacred grove of the matrons of Pisaurum, bearing dedications to various deities, and belomging probably to the date of the foundation of the colony. There are some remains of the town walls, and an ancient bridge over the Foglia. It was, like Ariminum, a considerable place for the manufacture of bricks and pottery, though the factories cannot always be precisely localized.

PISCEs (the fishes), in astronomy, the twelfth sign of the zodiac (q.r.), represented by two fishes tied together by their tails and denoted by the symbol \mathcal{X}. It is also a constellation, mentioned by Eudoxus (4th century bec.) and Aratus (3rd century B.c.); and catalogued by Ptolemy (38 stars), Tycho Brahe (36) and Hevelius (39). In Greek legend Aphrodite and Eros, While on the banks of the Euphrates, were surprised by Typbon, and tought safety by jumping into the water, where they were changed into two fishes. This fable, however, as in many other similar cases, is probably nothing more than an adaptation of an older Egyptian tale. a Piscium, is a fine double star of magnitude 3 and 4; 35 Piscium, is another double star, the components being a white star of the 6th magnitude and a purplish star of the 8th magnitude.
Pleis anstralis, the morthem fich, is a coastellation of the souchern hemisphere, mentioned by Eudaxus and Aratus, and catalogued by Ptolemy, who described 18 stan. The most importans tar is a Piscis australis or Fomalhaut, a star of the first magnitude. Piscis polans, the Gying fish; is a new constellation ineroduced by John Bayer in 1603 .
PISCICULTURE (from Lat. piscis, fish). The species of fish which can be kept successfully in captivity throughout their lives from egg to adult is exceedingly limited in number. The various breeds of goldfish are familiar examples, but the carp is almost the only food-Gish capable of similar domestication. Various other food-fisbes, both marine and fresh-water, can be kept in ponds for longer or shorter periods, bet refuse to breed, while in other cases the fry obtained from captive breeders will not develop. Consequently there are two main types of pisciculture to be distinguished: (x) the rearing in confinement of young fishes to an edible stage, and (2) the stocking of natural Faters with egga or fry from captured breeders,

Finh-rtaring. -Of the first type of pisciculture there are few examples of commercial importance. The pond-culture of carp is an important industry in China and Germany, and has been introduced with some success in the United States, but加 Engtand it has long fallen out of use, and is not likely to be revived so long as fresh fish can be obtained and distributed so readily as is now the case. Orber examples are to be found in the cultivation of the lagoons of the Adriatic, and of the saltmarnhes of various parts of France. Here, as in ancient Greece and Rome, it is the practice to admit young fish from the sea by aluices, into artificial enclosures or "viviers," and to keep them there untll they are large enough to be thed. An intereating modification of this method of cultivation has been introduced into Denmark. The entrances to the inner lagoons of the Limfjord are nalurally blocked agalnst the immigration of flatish by dense growth of sea-grase (Zorlera), ahhough the outer lagoons art annually thvaded by large numbers of small plaice from the North Sed. The fithermen of the district consequently combined to defray the expenses of transplenting large numbers of small plaice from the outer waters to the inner lagoons, where they were found to thrive far better than in their natural habilal. The explanation has been shown by Dr Petersen to be due to the abundance of food, courpled Wth the lack of overcrowding of the small fich. This transplantation of plaice in Denmart has been annullly repeated for several years with the most successiul results, and a suitable subvention to the cost is now an annual charge upon the government funds.

As a result of the international North Sea fishery investigations, It has been proponed to extend the same principle for the developmeat of the doep mea fishery in the neighbourfood of the Dogger Bank. Experiments with labelled plaice, carried ous in 1904 by the Marine Biological Avociation, showed that small plaice trantplanted to the Dogger Bank in spring grew three times as rapidly B thowe on the inthore grounds, and the mane result, with inoignifanat variationa, has been obratned by similar experimenta in each succeeding year. In thio case the deep water round the Dogger Bank acts as a barrier to the emigration of the small plaice Prom the shores. It has consequently been proposed that the small plaice should be transplanted in millions to the Bank by well vessels every spring. It in claimed, as a further reault of the experiments, that from May to October the young fish would be practically free pa the sballow part of the Rank from the risk of premature capture by trawlers, and that the increased value of the fish, consequent upon their phenomenal growth-rate, would greatly exceed the cost of trensplantation.

The methode of oybters and musel-culture are similar in principla to those jurt described. A breeding stock is maintained to supply the ground, or the "collestors," with spat, and the latter, when cafficiently grown, is tben transplanted to the most favourable beding grounds, care being taken to avoid the focal over-crowding otich is so comuronly obmerved among abell-Guh under nutural conditions.

Pish-kotching-The second, and more familiar, type of piscicuture is that known as fisb-hatching, with which must be associated the various methods of artificial propagation.

The fertifization of the spawn is very easily effected. The egess are collected either by "stripping" tbem from the mature adult immediately after capture, or by kepping the adults alive until they are ready to spawn, and then stripping them or by keeping them in reservoirs of sea-water and allowing them to spama of their own accord. In the two former cases a little milt is allowed to fall from a male fisb into a vessel containing a small quantity of water-fresh or salt as requiredand tbe eggs, are pressed from tho female fish into the same vessel. In fresh-water culture tbe eggs thus fertilized may be at once distributed to the waters to be stocked, or they may be kept in special receptacles provided with a suitable stream of water until the fry are hatched, and then distributed, or again they may be reared in the hatchery for several months until the fry are active and hardy.

The hatching of eggs, whether of fresh-water or salt-water frshes, presents no serious difficulties, if suitable apparatus is employed; but the reating of fry to an advanced stage, without serious losses, is less easy, and in the case of sea-fishes with pelagic exgs, the larvac of which are exceedingly small and
tender, is atili an unsolved problem, alithough recent went, carried out at the Plymouth laboratory of the Manine Biological Association, is at least promising. It has been found possible to grow pure cultures of various diatoms, and by leeding these to delicate larvae kept in sterilized sea-water, great soccesses have been attained. In fresh-water culture littie advantage, if any, has been found to result from artificial hatching unless this is followed by a successful period of rearing. Thus the Howletown Fishery Company recommend their customen to stock their stresms ailher with unhatehed ova of with three-month-old fry. Their experience is "that there is po hallaway bouse between ova sown in redds and three-montb-old fry. Younger fry may do, but only where ove would do as well, and at half the coat." In marine hatcheries, on the other hand, it is the invariable practice to batch the egets sllthough the fry have to be put into the sea at the most critical period of their lives. If it is a risky matter to plant out the robust young fry of trout under an age of three months, it would seem to be an infinitely more speculative proceeding to plast out the delicate week-old larvie of sea-fishes is an environment which teans with predaceous enemies.

Objects and Ulifily of Pish-halcheries.-The earlier sdvocates of artificial propagation and fisb-hatching seem to bave been under the impression that the thousands of fry resulting from a single act of artifcial propagation meant a correaponding increase in the numbers of edible fish when once they had been deposited in suitahle waters; and also that artificial fertilization ensured a groater proportion of fertilized eggs than the natural process. For the second of these propositions there is 00 evidence, while the first proposition is now everywbere discredited It is recognized that the great fertility of fishes is nature's provision to meet a high mortality-greater in sea-fishes with minute pelagic eggs than in fresb-water fishes with larger-yolted eggs, partly because of the greater risks of marine pelagic life, and partly because of the greater dellicacy of marine lavive at the time of hatching. Artificially propagated eges and fry after planting must submit to the same mortality as the other eggs and fry around them. Consequently it is useiess to plant out eggs or fry unless in numbers sufficiently great to appreciably increase the stoct of eggs and fry already existing.

It is this, combined always with the suitability of the ersernal conditions, which accounts for the success of the best known experiments of American pisciculturists. The axtifcially propagated eggs of the shad from the eastern rivers of the United States were planted in those of Californin and the Mississippi, where the species did not naturally accur. The conditions were suitable, and the species became at once accimatized. Similarly reservoirs and streams can be stocked with various kinds of fish not previously present. But in the case of indigenous species the breeding stock must be very seriously reduced before the addition of the eggs or fry of a few score or bundreds of fish can apprecinbly increase the local stock.

In the case of sea-fishes it is becoming increasingly recotnized that the millions of cod try which are annually turned out of the American, Newfoundland and Norwegian hatcheries are but an insignificant fraction of the hillions of fry which are naturally produced. A single temale cod liberates, according to its size, from one to five million eggs in a single season. Yet the annual output of fry from each of these hatcheries rarely exceeds 200 millions, i.e. the natural product of a few hundred cod at most. In Britain marine hatcheries have been established by the Fishery Board for Scotland in the bay of Kigs, near Aberdeen, by the Lancashire Sea Fisheries Committee at Peel, and by the government of the Isle of Man at Port Erin These establishments have been principally devoted to the hatching of the eggs of plaice. But again the maximum output of fry from any one of these establishments has not exceeded 40 millions in any single year. As a single female plaice produces aboat 200,000 eggs per annum, this outpat does yot exceed the natural produce of a few hundred fish. Under tbese circumstances the probable utility of the operations could be
admissed ouly if the fry were sedentary and cosid be pianted in suitable localities where young fish were naturlly scarce. But the fry drift with the currents as belpiesaly as the ear, and the a prioni objections to the utility of the operations have in mo caso been met by evidence of tangible smalts. The pialce fry hatched in the Scotimh establishment have been distributed for meny yeass in the waters of Loch Fype. Yet in this enea, according to the investigations of Mr Wiliamson (Roport of the Scottish Fiabery Board for $\mathbf{1 8 g 8}$), nearly sod millions of plaice egas are naturally produced to one spawning geason. Evidence is still lecking as to whether the 90 to 30 million fry anmally added form the hatchery have appreciably incroased the quantities of yount plaice on the sursomeding ahores. Supposing this could be satablished, the question would still remain whether the same remult could not be obteained at far kees expense by dispensing with the hatchins opertions and distributing the egas directly after fertilization.

In the United States the utility of the cod-hatching operations has been comantly amerted by representatives of the Baceare of Fiaherits, but practicully the coly evidences adduced b the occarional appearnice of unusual numbers of cod in the meighbourhood. It has not bean established that the fimetusthons in the bocal cod faheriea bear any fixed relation to the extent of the hatching operations, while the eariler reports of the Commimionsess of Fisheries contain evidence that dimilar fluctuations oecurred before the hatching of "fish commincion cod" had begun.

The sitmation,my be mumed up in the mode of Mr Fryer, H.M. Superintending Inspector of Finheriet, who criticelly eramined the evidence bearing upon the operation of the Newfoundland Hatchery at Dildo (Reports x-xdi. of the Inspectors of Ses Fisheries, E. \& W.): "Where the eatabfinhment of a hatchery, oven on the amalleat acale, is followed by an increated take of fisb, there is a teadency to connect the two as camse and effect on inrufficient evidence, and without any sagard to the many conditions which have ahways led to flluctuations in the case of any particular kind of fish."

The most exact investigntiona bearing upon this problem ane those which have been recently underteken in Notway in conmation with the codohatching opersitions at Arendil under Captain Dannevig. Four fjords were gelected in the soath conte of Norvay in proximity to the hatchery, and the uaual number of fry ($10-30$ amilions) were planted in the apring in sitaenate fjords, lesviog the intermediale fiond unsupplied. The relative number of young cod in the various fionds was then carefully inveatigated throughout the succeeding summer and autumn monchs. It was found that there was no rolation between the abundance of young fish and the presence or absence of "artificial" try, In 1go4, 33 million fry were pianted in Sondelefjord and young fish were exceptionally abundant in the following autumn (three times as abuadant as in 1903 when no Iry were planted). But their abundance was equally ariking in othet fjords in which no fry had been planted, While in 1905 all the fjords were deficient in young cod whether they had been planted with fry from the hatchery or not.
For a summary of these investigations eee papers on "Artificial Finh-hatchiag' in Norway." by Captain Dannevig and Mr Dahi, in the Repori of the Lancanhire Sea Fisheries Laboratory for 1906 (Liverpool, 1907).

It would thus seem clear that the attempts hitherto made to increase the supply of sea-fish by artificial hatching have been unsuccessfal. The experience gained has doubtless not boen wasted, but the direction to be taken by future work is plain. The energy and money devoted to hatching operations should be diverted to the serious attempt to discover a means of rearing on a lange scale the just-hatched fry of the more sedentary specios to a sturdy adolesconco. When that has been done (it has been achieved.by the present writer in the cease of the sea fiah Cothus with demersal eggs,) it would be possible to deposit the young fish in suitable localities on a hege scale, with a reasonable prospect of iofluencing the local abundance of the species of firh in question.
 tie (armetably Yarine Fithes of the British lulaeds (London, 1 Bro); A Vasmal of Fisll-Culture (Washington, I897); Rochd, La Cmfure Ces mers (Paria, 1898); W. Gantang. Experiments on the Trass-
 Invertigation Comnittec, 1905).
(W. GA.)

Premill, a latin mord first applied to a fish-pond, and later med for any poot of water for hathing, the, ellher naturel or artificial, and albo for a tank or rewervoir. In ecclenimatical asage the term wis given to a shallow stome batin (the French cuade) placed noar the altar in a church, with drains to take amay the water used in the aldations at the mans. "Pivcines" soem at fint to have been mere cups or small bacins, supported on perforated stems, placed close to the will, and afterwands to have been recased therein and covared with nicho heade, which often contained abolves to serve as aumbries. They ere rare in England till the x3th century, after which there in scarcely an altar witbout one. They Irequently take the form of a double niche, with a shait between the arched beads, which are ofter filied with elabocate fracing.

PISEXK, a town of Bohemia, 55 m . S. of Pragee by rall. Popp (1900), 13,608, moetly Czech. It hes on the right bant of the Wottawn, which in here crosed by an interantias stone bridge of great antiquity. The most prominent bnilding ane the church of the Netivity, the tom-hall, and a cancle dating from the 15 th century. The industries are tron and brams founding, brewing, and the mapafacture of shoes, paper, cement and Turkich feses. Peidapar, quarts and granite are quaried is the environs. The aeme of Piste, which is the Csech for sand, is said to be derived from the gold-mashing formerly curded of in the bed of the Wettama (157101691).
In 5619 it was captured by the imperinlist gemeral, Zard Bonaventure de Longueval, Graf von Bagnoy, and suffered so esvercly that the citionns opesed their gates to his opponent, Ernat von Mansfeld. This was pupiched in October of the following year, when Duke Maxtmilian of Bevaria sacked the cown and put pearly all the inhabitants to the aword. Pisak Wes one of the chief centres of the Humites. It wras occupied by the French in 5741 .
PIMIDIA, in ancient geography, the mame given to a comotry in the south of Asia Minor, imonedintely north of Pamphylia by which it was separated from the Mediterranean, while it Wis bounded on the N. by Pbrygis, on the E. by Lycaonia, Isauria and Citicin, and on the W. and S.W. by Lycia and a part of Phrygh. It wat a ruged and mountalnove dis trict, comprising rome of the loftieat portions of the great range of Mt Taurus, together with the offahoots of the same chain towards the central table-land of Phrygia. Such a region was naturally occupied frem a very early period by wild and lawless races of mountaineers, who were very imperfectly reduced to subjoction by the powers that successively eatablished their dominion in Asia Minor. The Pisidians are not mentioned by Herodotus, either among the nations that were subdued by Crocsas, or among those that furnished contingents to the army of Xerxes, and the first mention of them in bistory occurs in the Amabasif of Xenophon, when they furnished a pretext to the younger Cyrus for levying the army with which he designed to sobvert his brother's throne, while he pretended caly to put down the Pisidians who were continually harassing the neighbouring nations by their lawless forays (Anab. i. 1, II; ii. 1, 4, ace). They are afterwards mentioned frequently by later writers among the inland nations of Asia Minor, and ascume a more prominent part in the history of Alexander the Great, to whose march through their country they opposed a determined resistance. In Strabo's time they had passed under the Roman dominion, though still governed by their own petty chiefs and retaining to a considerable extent their predatory habils (gtving rise to such wars as that carried on by Quirinius, about 8-6 日.c.).
The boandaries of Pisidia, like those of most of the inland provinces or regions of Asia Minor, were not clearly defined, and appear to have fluctuated at different times. This was eapecially the case on the side of Lycia, where the upland

Aistrict of Milyas wis tometimes included in Pisidia, at other times assigned to Lycia. Some writers, indeed, considered the Pisidians as the same people with the Milyans, while others regurded them as descendants of the Solymi, but Strabo speaka of the language of the Pisidians as distinct from that of the Solymi, as well as from that of the Lydians. The whale of Pisidia is an clevated region of table-lands or upland valieys in the midat of the ranges of Mt Taurus which descends sbruptly on the side of Pamphylia. It contains several small lakes, and two of large size, Bey-Sheher Lake, the ancient Karalis, and the double lake now called the Egerdir Oeul, of which the ancient name was Limani. The latter is a fresh-water lake of about 30 mm . in leagth, situated in the morth of Pisidia on the frontier of Phrytia, at an elevation of 3007 ft . Karatis is a larger body, also of fresh water, and at a diatinctly higher level above the sea. The only rivers of importance are the Cestrus and the Eurymedon, both of which take their rise in the higheat ranges of Mt Taurus, and fiow down through deep and narrow valleys to the plain of Pamphylia, which they traverse on their way to the sea.
Notwithatanding its rueged and mountainous character, Pisidia contained in ancient times several considerahle towns, the ruins of which have been brought to light by the reseanches of recent travellers (Aruadell, Hamilon, Daniell, G. Hirschfeld, Redet, Sterrett, Lanctoronski, Ramay, \&cc), and show them to have attained under the Roman Eimpire to a degree of opulence and prosperity far beyond what we should bave looked for in a country of predatory mountaineers. The most important of them are Termesaus, near the frontier of Lycia, a strong fortress in a position of great natural strength and commanding one of the principal passes into Pamphylia; Cremna, another mountain fortress, north of the preceding, impending over the valley of the Cestrus; Sagalassus, a little farther morth, a large town in a strong position, the ruins of which are among the moet remarkahle in Asia Minor; Selge, on the right bank of the Enrymedon, surrounded by rugged mountains, notwithstanding which it was in Strabo's time a large and opulent city; and Antioch, known lor distinction's sake as Antioch of Pisidin, and celehrated for the visit of St Panl. This was situated in the extreme north-east of the district immediately on the frontier of Phrygia, between Lake Egerdir and the range of the Sultan Dagh and was reckoned in the Greek and earlier Roman period, e.g. by Strabo, as a city of Phrygia.
;'Bexides these there were situated in the rugged mountain tract west of the Cestrus Cretopolis, Olbasa, Pogla, Isinda, Etenna and Comama. Pednelisses was in the upper valley of the Eurymedon above Selge. The only place in the district at the present day deserving to be called a town is Isbarta, the residence of a pasha; it stands at the northern foot of the main mas of Mt Taurns, lnoking over a wide and fertile plain which extends up to the northern chain of Taurus. North of this and immediately on the borders of Pbrygia stood Apollonia, called also Mordiaenm. Large estates in Pixidia and the adjoining parts of Phrygin belonged to the Roman emperors; and their administration has been investigated by Ramsay and ©thers.
We have no clue to the ethnic charncter and relations of the Pisidians, except that we learn from Strabo that they were distinct from the neighbouring Solymi, who were probably a Semitic race, but we find mention at an early period in these mountain districts of various other tribes, as the Cabali, Milyans, icc., of all which, as well as the neighbouring Isaurians and Lycaonians, the origin is wholly unknown, and the absence of monuments of their languages must remain so. A few short Pisidian inscriptions have been published by Ramsay in Revme des thudes ancienner. (1895, pp. 353-362). No inscriptions in these other languages are known.
(W. M. RA)

PISO, the name of a distinguished Roman plebeian family of the Calpurnian gens which continued in existence till the end of the and century a.D. Nearly fifty of its members were prominent in Roman history, but the following deserve particular mantion.
 was the father-in-law of Julias Cueser. In 58 B.c., whenconanl, be and his collicagte Aulus Gabinius entered into a compact with P. Clodiss, with the object of getting Cicero out of the wayPsio's rowasd was the province of Macedonis, which be adminivtered from 57 to the beginsing of 55, when he was recallod, perhaps in consequence of the violent attack made upon him by Cicero in the senate in his speech De provinatis complorims. On his neturn Piso mddressed the senate in his defence, and Cicero replied with the coarse and exaggerated invective koown as Is Pisomems. Piso issued a pamphlet by way of rejoinder, and there the matter dropped, Cicero being afraid to bring the father-in-law of Cwesar to trial. At the outbreak of the civil war Piso offered his services as mediator, but when Cassur marched upon Rome he left the city by way of pratest. He did not, however, definitely declare for Pompey, bat remained neutral, without forfeiting the respect of Cacsar. After the murder of the dictator he insisted an the provirions of his \quad ill being strictly carried out, and for at time opposed Antony. Subsequently, however, he became one of hissupporters; and is mentioned as taking part in an embassy to Antony's cump at Mutinn with the object of briuging atout a reconciliation.
2. Lucius Calpurarus Piso, sumamed Prige (the werthy), Roman statesman and bistorian, was tribunc in 149 IC He is known chiefly for his lex Calpursie repelmadarnim, which brought about the syttem of quaationes perpelsoce and a new phase of criminal procedure. As praetor (136) and consent (133) Piso fought against the slaves in Sicily. He energetically apposed Gains Gracchus, especiably in connerion with hia corn law. See Annalists; C. Cichorius in Pauly-Wimow's. Roof amode pबdie (1897), vol. iii., pt. 1; H. Peter, Historiconcm romamorwis reliquice (1870), val. i.: Teuffel-Schwabe, Histh of Roman Lil. (Enq. trans.) 5132,4 . On the lex Calpurnia, Corpas inscr. Lutinarwan, L., No 198, with Momansen's commentary; A. H. J. Gremidge, Hist of Rome, 133-104 B.C. (1904).
3. Gnasos Calpurnius Piso, Roman stateman, was consil in 7 B.C., and subsequently governor of Spain and proconsul of Africa. In A.D. 17 Tiberives appointed him goversor of Syris, with secret instructions to thwart Germanictus, to whon the eastern provinces had been assigned. The indignation of the people at the death of Cermanicus, and the suspicion that Pise had poisoned him, forced Tiberius to order an investigation. Piso committed suicide, though it was rumoured that Tiberixs; fearing incriminating.disclosures, had put him to death.

See H. Sctailler, Oeselkichec der romitelien Kaismait (1883), wol. 1 4. Garus Calpurnios Prso, Roman statesman, orator and patron of literature in the ist century A.D., is known chiefly for bis share in the conspiracy of a.d. 65 against Nero (g.v.). He was one of the most popular men in Rome, pertly for his skill in poetry and music, partly for his love of luxury and generosity.

It is probahly the last-named who is referred to by Calpurnias Siculus under the name of Meliboevis, and he is the aubject of the panezyric De laude Pisonis.

PISGARRD, CAIILLLE (183r-1903), French painter, wes born at St Thomas in the Danish Antilles, of Jewish parents of Spanish extraction. He went to Paris at the age of twenty, and, as a pupil of Corot, came into close touch with the Barbizon masters. Though at first he devoted himself to subjects of the kind which will ever be associated with the name of Millet, his interest was entirely absorbed hy the landscape, and not by the figures. He subsequently yell under the spell of the rising impressionist movement and threw in his lot with Monet and his friends, who were at that time the hutt of public ridicule Like Monet, he made aulight, and the effect of sunlight on the objects of nature, the chief subjects of his paintings, whether ia the country or on the Paris boulevards, About 1885 he took up the laborionsly scientific method of the poimilitists, but after a few years of these experiments he returned to a brosder and more attractive manner. Indeed, in the closing years of his life ho produced some of his finest paintings, in which be set down with admirable truth the pecaliar atmosphere and colour and teeming life of the boulevards, streets and bridges of Paris and Rouen. He died in Paris in 1903.

Plumpe is repromented in the Calileborte room the the Luxem. bourg, and in almosest every collection of isapreasionisg, painting. A number of bis finest works aro in the colloction of M. DurandRuel in Paris.

Pletactie WIT, the frute of Pistecia wera (natural otder Anacardiaceac), a small tree which is a native of Syria and generalty cultivated in the Mediterrancan region. Although a deticious nat and much prized by the Greeks and other Eastern nations, it is not well known in Britain in is not so large as a hacel aut, but is rather longer and much thinner, and the shelt b covered with a somewhat wrinkled skin. The pistachio mus is the apecies named in Gen. viifil 11 (Heb. P92, Ar. bofm) as forming pert of the present which Joseph's brethren took with them from Canaan, and in Egypt it is still often placed siong with sweetmeats and the like in preseats of courtesy The sunall nut of Pastoria Lentascus, not larger than a cherry stone, also comes from Smyras, Constantinople and Greece. P. Eentiocus is the mastic trec, a aative of the Mediterranean region, forming a shrub or small iree with evergretn pinnatelycompound leaves with a winged ralk. "Mastic" (from masicara, to chew) is an aromatic resmons exudation obtained by making incisions in the bark. It is chiefly produced in Asia Minor and is used by the Turks as a chewing gum. It is also used as a vamish for pictures. P Teredinikns, the Cyprus turpentine tree, a native of southern Europe, Asia Minor and North Africa, yields turpentine from incisions in the trunk. A $g^{\text {an }}$ l is prodaced on this tree, which is used in dyeing and tanning.
pIGith a term in botany lor the female or seed-bearing organ of a flower (q.v.). The Lat. pistillum (diminutive from pinsere. fistxm, to pound), a pestle, a clab-headed instrument used for crushing or braying substances in a mortar (9.8), was taken es the name for this organ from its similarity in shape, and thence adapted in Fr_{r} pistif about the middle of the r8th century In its complete form a piatil consiats of three partsovary, at the base, containing the bodies which become seeds, style (Gr oroldos, pillar), and stigma (Gr ortyma, mark, ortfely, to brand), the part whioh in impregnation reccives the pollen
pricoja, or Pistoja (anc Piltorias), a town and eplscopal see of Tuscany, Lealy, in the province of Florence, from which it is $21 \cdot \mathrm{~m}$. NW by rail. Pop. (1006), 27,127 (town), 68,13 ; (commune). It is situated on a slight eminence (210 ft .) neay the Ombrose, one of the tributaries of the Arno. It is on the site of the Roman Pistoriae, which is hardly mentioned in ancient times, except for the destruction of Catiline's forces and the - alaughter of their leader near it in 62 sc ., and as a station on the road between Florentia and Luca, and earier still by Plautus, but only with jeating allusion to the similarity of the name to the word pistor (baker). Hardly any inscriptions of the anciem town have been found, bat excavations in 1902 (see G. Peltegrini in Notizie deg/i Scavi. 1904, p 241) in the Piazzo del Duomo led to the discovery of a large private house, which belonged to the end of the rst century b.c. Some mosaic pavements were found, belonging perhaps to the zrd century A.D., while the house eppears to bave falien into rutn at the beginning of the 5 th. Remalns of four subsequent periods were discovered above it. It was found that the tradition that the cathedrat occupied the site of a temple of Mars was groundless; for the bouse appears to have extended under it. Ammianus Marcellinus (sth century) mentions Pistoriae as a city of Tuscia Annonaria. During the middle ages Pistoia was at times a dangerous enemy to Florence. and the acene of constant conflicts between the Gueiphs and Ghibellines, it was there that the great party struggle took place which resulted in the creation of the Bianchi and Neri lactions (see Dante, Inferno. xxiv. ${ }^{218}$ to end). In 1302-06 it was besieged and eventually taken by the armies of Florence and Lucca, and in 1325 it became subject to Castruecio of Lucca. In 1351 it was obliged to surrender to Florence, and thenceforth shared its late.

The elty is still surrounded by walls, dating from shortly after the siege of 1302-06; while two inner lines of streets represent two earlier and inner lines of wall In the carly development of architecture and coulpture Pistoja played a very important
part; these arts, as they existed in Tuscany before the time of Niccola Pisano, can perhaps be better studied in Pistois than anywhere else, nor is the city less rich in the later works produced by the school of sculptors founded by Niccola. In the 14tb century Pistoia possessed a number of the most skifful artists in silver-work, a wonderiul specimen of whose powers exists now in the cathedral-the great silver altar and frontal of St James, originally made for the high aitar, but now placed in a chapel on the south side. The cathedral is partly of the 12 th century, with a porch and facade with small arcades-in black and white marble, ss is the case wibh several other churches of Pistoiabut was remodelled in the 13 th century, and modernized inside in the worst taste. Besides the silver altar it contalns many fine works of sculpture; the chief are the monument of Cino da Pistoia, lawyer and poet, Dante's contemporary (2337), by Cellino di Nese, surrounded by bis acholars, and Verrocchio's finest wort in marble, the monument to Cardinal Forteguerra (1474), with a large figure of Christ, surrounded by angela, in high relief. The clay model for it is in the South Kensington Museum. The monument has uniortunately been altered. The octagonal baptistery is by Cellino di Nese (1339). Aments the earlier churches the principal is Sant' Andrea, enriched with sculpture, and probably designed by Gruamons and bis brother Adeodatus in 1136; in the nave is Giovarni Pisano's magnificent pulpit, imitased from bis father's pulpit at Pish. Otber churchea of almost equal interest are S. Giovanni Fuorcivitus ($n 0$ cellled because it was outside the line of the earliet, peniagonal, enceinte of the middie ages), with one of the long sides elaborately adorned witb small arcades in the Pisan style, in black and white marbic, also with sculpture hy Gruamons (156a) on the facade. Within is a beauliful group of the Visitation by Luca della Robbia. There is aleo a fine pulpit by Fra Guglielmo deil' Agnello of Pisa (1270). S. Bartolomeo in Pantano is ad interesting basilica of 1267 . San Francesco al Prato is a fine church of the end of the $13^{\text {th }}$ century with interesting faescoses of the school of Giotto. San Domenico, a noble church, begua in r294, contains the beautiful womb of Filippo Lazari by Bernardo and Antonio Rosselline (1462-1468). In addition to ita fine churches, Pistoia contains many noble palaces and puhlic buildings. The Pelazzo del-Commune and the Palazzo Pretorio once the residence of the podesta, are both fine specimens of 14th-century domestic architecture, in good preservation, Tho quadrangle of the latter contains sany well.painted armorial bearings of the podestas. The Ospedale del Ceppo, built originally in the 13th century, but remodeiled in the $15^{t h}$, is remarkable lot the reliefs in enamelled and coloured terra-colta with which its exterior is richly decorated. Besides various medatlions, there is a rrieze of figures in higb rellef extending along the whoie ftont, over its open arcade. The reliefs consist of a series of groups representing the Seven Works of Mercy and other fgures, these were executed by Giovanni Della Robbia between 1514 and $\mathbf{1 5 2 5}$. and, though not equal to the best work of Luca and Andrea, are yet very fine in conception and modelling, and extremely rich in their general decorative effect. The last on the right was added in 1585 by Paladini.
The industries of Pistoia include iron and steel works, especially madulactures of glass, silk, macaroni, woollens, olive oit, ropes, paper, vehicles and fire-arms. The word "pistol" is derived (apparently through pistolese, a dagger-dagger and pistol being both small arms) from Pistoia, where that weapon was largeiy manufactured in the midde ages.
PISTOIA, SYZOD OF, a diocesan synod held in 1786 under the presidency of 'Scipione de' Ricci ($17 \mathrm{~F}_{1-1810 \text {), bishop of }}$ Pistoia, and the patronage of Leopold, grand-duke of Tuscany, with a view to preparing the ground for a national council and a reform of the Tuscan Church. On the 26th of January the grand duke issued a circular letter to the Tuscan bishops suggesting certain reforms, especiaily in the matter of the restoration of the authority of diocesan synods, the purging of the missals and breviaries of legends, the assertion of episcopal as against papal authority. the curtaiting of the privileges of the monastic orders, and the better education of the elergy.

In spite of the hostile itcitude of the great majority of the bishops, Bishop de' Ricci issued on the 3 ist of July a summons to a diocessn synod, winch was solemnly opened on the 18th of September. It was attended by 233 beneficed secular and 13 regular priests, and decided with practical unanimity on a series of decrees which, had it been possible to carry them into effect, would bave involved a drastic reform of the Church on the lines advocated by "Febronius" (see Febroncanisu).
The firk decree (Decrelum de fide acclena) doclared that the Catholic Church has no right to introduce new dogmas, but only to preserve in its original purity the faith once delivered by Christ to His aportles, and is infallible only so far as it conforms to Holy Scripkure and true tradition; the Church, moneover is a purely epiritual body and has no authority in things mecular. Other decrees denounced the abuse of indulgences, of fextivals of saints, and of processions and sugpested reforms; othery again enjoined the cloaing of dhops on Sunday during divine service, the issue of tervice-boobs with paralled translations in the vernacular, and recommended the abolition of all monatic orders eucept that of St Benedict, the rules of which were to be brought into harmony with modern ideas; nuns were to be lorbidden to take the vows before the age of 40. The last decree proposed the convocation of a mational council.
These decrets were issued together with a pastoral letter of Bishop de' Ricci, and were warmly approved by the grand-duke; at whose instance a national synod of the Tuscan histops met at Florence on the 23rd of April 1787. The temper of this assembly was, however, wholly different. The bishops refused to allow a voice to any not of their own order, and in the end the decrees of Pistoin were supported by a minority of only three. They were finally condemned at Rome by the bull Auctorem fidei of the 28th of August 1794. De' Ricci, deprived of the personal support of the grand-duke (now the emperor Leopold I.), exposed to pressure from Rome, and threatened with moh violence as a suspected destroyer of boly relics, resigned his see in 199x, and fived in Florence as a private gendeman until his teath in 18ro. In May r8o5, on the return of Pope Plus VII. from Paris, be had signed an act of suhmission to the pabal Cecision of 1794.

De' Ricci's own memoirs, Memorie di Scipione de Ricci, pescoso Ai Prato o Fistoid. edited by Antonio Galli, were published at Florence in 2 vols. in 2865 . Bemides this his lecters to Antonio Mariai were publinhed by Cesare Guant at Prato in 1857: theme were peomptly put on the Index. See also De Potter. Vic fe Scipios de' Ricai (3 vols, Brussels, 1825), based on a MS. life and a MS. account of the synod placed on the Index in 1823 . There are mamy documerts in Zobi, Scoria cisile dalla Tascama, vols. iit. and ili. (Florence, 1896). Tha acts of the synod of Pistocia were published in Imsian and Latin at Pavia in 1788.
PISTOL, a small fire-arm designed for quick work and personal protection at close quarters, and for use in one hand. It was originally made as a single and also double-barrelled smooth bore muzzle-loader, involving no departure in principle from the

Etictory.-Pistole ave atinimatood ta How beon made for the firx time at Pistola in Italy, whence they receive their name Caminelleo Vitelif, who flourished in 1549 , is the accredited inventor. The first pistok, in the 16th century, had short single bartels and beavy butta, nearly at right.aryta ta the baral. Shortly afterwands the pattern changed, the butts being lenghened out almost in a line with the barrels. These early pistols ${ }^{1}$ were usually fitted with the wheol-lock (gee GEN). Short, beavy pistola, called "dages," were in comman me sbout the middle of the 17th ceatury, with butts of ivory, bone, hard wood or metal. A chiselled Italian dage of 1650, for example, had a slightly bell-noped barrel of about 8 in. in leagth and 14 bore. The German phoel-lock military piatola wed by the Reiters, and those made for sobies and geotlomen, were profusely and beautifully acmamented. Pistals with metal hafts were common in the 16th and 174 centurien, many beautiful specimens of which, siiver-mponnted, were made in Edinburgh and used by Highlanders, Duelling, when in voguas caused the production of specially eccurate and well-mado single-barrelled pistoks, reliable at twenty paces. The patiers of this pistol seldom varied, its accuracy at ahort range equalling that of more modern ones, the principle of a beavy bullet and light charge of powder being enployed. The first double barrelled pistols were very bulky meapons made with the barrels laid alongside one another, necessitating two locks and two hammers. There was aloo the "over and under" pistol, one barrel being laid over the other. This was a more portable weapon, only requiring one lock and hammer, the macond harrel being turned round by hand, after the first had been fired, or, as an alternative, the flash-hole being adjusted to the second barrel by a key. These pistols were fisst made with fint and steel locks and subsequently for percussion capa Doubla "over and under" pistols were also made with a triger mechanism that sorved to discharge both barrels in turn.

Revoloers.-A revolver is a single-bartelled pistol with a revolving breech containing everal chambers for the cartridgen, thus enabling succesaive shots to be rapidly fired froten the sume weapon without reloading. The ordinary pistol is now, and ins been for mazy yean past, cuperseded by the revolven. The first revolver, fired with the percussion cap, was made with the whole of the barrels, six, seven or eight, revolving in cae piece, and whas knowe as the "pepper-boc." It was "single action," ias. the hamener was reised and the barrela revolved by the pull of the trigger.' This weapon was curnbrous and no sccurate aim could be talken with it owing chiefly to the strength and. resistance of the maip-spring and the consequent strung poll required on the trisger. The principle of a revolving breech to one barrel, which superseded the "pepper-bor," is in old ose in the history of fire-arms, dating from the 16 th century. At

Fic. :-Dags (Royal United Service Instltution).
ordinary fire-arms of the day. With the introduction of revolvers and hreech-loading pistols and the application of "riting " to musket barrels, came also, in the early half of the solit century, the rifing of pistol-barrels.

Grst the breech cylinder was revolved by hand, as in the repolvins arquebus or matchlock, a specimen of which is mow in the
${ }^{1}$ For the use of long heavy pistols by cavalry in the toch sad 17th ceaturies. cee AMy : History; and Cavalay.

Tower of London, but this was subsequently Improved by introducing geared mechanism, by which the pull of the trigger or the cocking of the hammer, or both, do the work. There exists a pistol of the time of Charles I . which is rotated automatically as the hammer is raised.
rapidly fired, if necesaty, by the teigere sction alome. Many revolvers on the Colt principle vere in use during the Crimean War and the Indian Mutioy, and proved of valuable service to British officers.
As rim-fire, pin-fire and central-fire cartridges were succeq

In 1814 a self-acting revolver mechanister of a crude pattern was produced in England. Four years later Collier used a separate spring to rotate the chamber. In 1835, an Amerioan, Samuel Colt, produced and patented the first practical revolving pistol. the idea of which was obtained by him. it is stated, from an ancient " revolving " weapon in the Tower of London. The chambers of the first Colt revolver were loaded with powder and bullets from the muzzle end, and each chamber had a nipple that required to be capped It was the invention of the copper cap that made the Coll revolver possible Under the old
sively introdeced, breech-boading revalvers were constructed to use them. Mesgrs Smith \& Wesson, of Springficld, U.S.A., produced the first metal cartridges for revolvers. Pin-fire cartridges, paper and metallic, were used on the continent of Europe for Lefaucheux and other revolvers, and these and rimfire cartridges art still used for revolvers of amall calibre. But since the central-fire cartridge has proved its superiority for guns, its principle has been generally applied to pistol cartridges, at first to the larger bores.

The alteration of the muzsle-loading to the breech-loading

Fig 3.-Whed-lock pistol (Royal United Service Institution).
priming system with exposed powder in a pan the difficulty of separate and effective igninion with the revolving cylinder was alpoot insuperable

Tha first American revolver makers caused the cocking of the hanmer to revolve the cylinder, while the English makers effected this by the pull of the trigger. In i8ys. Adams of London, and also Tranter of Birmingham, brought out the double-action revolver, in which the revolution of the cylinder could be effected by both these methods When the revolver is cocked and fired by pressing the trigger, greater rapidity of
chamber in the revolver involved no decided charge of type. The original Colt, as a breech-loader, remained practically the same weapon as before, with a changed chamber. A hinged flap uneovered the breech-chamber on the right, and as each chamber reached that point the empty cartridge case was ejected hy means of an ejecting-rod carried in a tube attached to the under side of the barrel and kept in place by a spiral spring, and the chamber releaded. The nent improvement was greater ease and rapidity of extraction, obtained first by Thomasis invention of making the barrel and chamber slide

Fig. 4.-Flint-lock pistol (Royal United Scrvice Iastitution).
fire is obtained than when the hammer is cocked with the thumb, but acturacy is impaired, as the trigger requires a lons pill and considerable forte in ordor to compress the mainspriag and revolve the cyllinder. Tha double action revolver was, therefore, a great advance on the single action, oniabling the firt and also following shots. if desited, to be accurately fred by a moderate presture of the trigger after the hammer had' been cocised by the thumb; of. altematively, the nevolver could be
forward on the frame of the piscol. The extractor, being fast to the pival, retained the cartridges uptil the chamber was pushed clear of them. Then the chamber was made to swing on one side, as in the Colt pistol illustrated, enabling all the cartridges to be simuttameously extracted. Finally, self-extracting revolvers with jointed frames were introduced, in which the dropping of the barrel farces out the extractor as in an ordinary double gun, the extractor acting simultancously in all the chambers of
the pistol. A spring recurns the extractor to its place when the empty cartrides cases have been ejected, and bringe the barrel to an angle of about 45°, for convenience in loading. The soundness and rigidity of the weapon depend upon the efficiency of the connexion batween the barreis and tho standing breech. and a top smap bolt has proved the strongest and handiest with the pistol, as with the shot-gun.

This type of revolver origipated with Messrs Smith \& Wesson, but they and other gunmakers have greatly improved upon the original model. Between the American pattern and the English, as made by Messrs F. Webley \& Son, the chief difference is that in the Smith \& Wesson the boiding-down bolt or catch is upon the barrel, and it engages with the top of
hammer and triger when the latch is pushed to the raver for oppes ing the cylinder, and does not unlock them until the cylinder is positively clowed and is locked by the latch. The cylinder revolves and is supported on a central arbour of the crave (E). The crise fits in a recest in the frame below the barrel and turne on its pivet arm (A). The ejector rod with its spring pasmes through the centre of the cylinder arbour and is terminated in rear by the ejector with a ratchet (y). Pushing against the front end of the ejector rod will empty the chamber, the cytinder being swung out for loading. The thumb-piece of the latch (j) alides to the rear in the left side of the frame, unlocking the cylinder for opening, but upoa closing the cylinder. the body of the latech finmly enters a recesis in the ejector, bocking the cylinder in position for firing.

One great disadvantage of revolvers is the escaperof gas at the opening between the breech of the barrel and the cylinder.

Fic.6.-Pepper-bon revolver.
This escape corrodes the surrounding parts and also materially diminishes the pressure in the barrel and the consequent velocity of the bullet. In the Nagant revolver, idopted by Russia, this disadvantage has been overcome by em-
the standing breech; whereas in the Webley the boit is upon the standing breech and grips the extremity of the hinged barrel. Neither mechanism is as strong as could be wished if heavy charges of smokeless nitro-compounds are to be used. This hinged type of revolver is most convenient for use on horseback, as the pistoi can be opened, the cartridges extracted and the weapon reloaded with one hand.
The Cold's Double-action Revolver, calibre ;38, model 1896, used in the United Staces army, consists (figa. 7 and 8) of the barrel (B), the cylinder (C) with six chambers, the (rame (F), and the firing mechanism, all of steel. The muzzle velocity, with a charge of 16 grains of black powder and a bullet of 150 graina of lead, ia about 708 ft . per second. giving at 25 yards a penetration of about 5 in. in pine.
The lock mechanism consists of the hammer (k), with its stirrup ($)$, stimup pin (p), strut (5), strut pin (i), strut epring (φ): zhe rigger (l); the rebound lever (l); the hand (a), with che spring (z); the cylinder bole (b), with its spring (x); the locking lever (b); the main spring (m), and rebound lever spring (n). The hammer (h), trigger (1), and rebound lever (l) are pivoted on their respective pins, which are lastened in the left side of the frame. The lower end of the rebound lever spring (x) is secured to the frame and the free end bears under the rear end of the rebound lever so that the latter, when the trigser is released, cams the hammer back to its safety, position, and forces the trigger forwand. Pressure upon the trigger causes its upper edge 1. engage the strut, and thereby raises the hammer until nearly in the full-cock position, when the strut will escape from the trigger, and the hammer, under the action of the main-spring, will fall and strike the cartridge. A projection on the upper part of the trigger, working in a slot in the frame; prevents the cylinder from making more than one-sixth of a revolution at a time by entering one of the grooves nearest the rear end of the surface of the-cylander. When the cylinder is swung out of the frame, the parts are arranged to prevent the cocking of the hammer. The cylinder bolt is pivoted on the trigger pin, and its epring, bearing on the rebound lever arm, causes the nose of the bolt to project through a wot in the frame ready to enter one of the rectangular cuts in the cylinder surface. During the first movement of the triger in cocking the revolver, the nose of the bolt is withdrawn, allowing free rotation of the eylinder. The object of the bolt is to prevent rotation of the cylinder in transportation. The hand is attached by its pivot to the trigger, and. as the latter swings on its pin when the hammer is being cocked, the hand is raised and nevolves the cylinder, and also serves to lock the cylinder in position at the time of Giring. Aa abutment on the side plate supports the hand apring in rear. The spring ensures the engagement of the hand with the ratchef (y). The revolver is cocked by hand by withdrawing the hammer by the pressure of the thumb nutil its foll-cock notch engages in the rear sharp corner of the triseer. Pulling the trigger then releaws the hammer. athowing its 6iring pin (f) to move forward and strike the cartridge
The locking lever is pivoted by its screw in a reress in the left side of the frame. and so connected with she latch that a locks the
ploying a long cartridge case which extends beyond the nose of the bullet and bridges the gap between barrel and cylinder as the cylinder is moved forward. A" mitrailleuse "pistol has also been constructed by the Braendlin Armoury Co., Ltd., on the "pepper-box". principle, with fixed barrels, either four or six, arranged in pairs, ond a special striking mechaniem, in which there is no revolving chamber and no escape of gas at the breech. It gives stronger shooting than a revolver, but is more cumbrous, and has the serious defect that the shock of the discharge of one barrel sometimes prematurely fires a second barrel.
In 1865, Sharp, an American, patented an invention to remedy the escape of gas, in which the four barrels of the piatod

Fics. 7 and 8.-Cole double-action revolver.
were drilled the full length out of one block of metish The barrels were slid forward by an ander lever to load, and the firing was effected by a revolving head to the hampet, wet by the action of cocking the pistol.

About 1878 Messrs Lancaster introduced both two- and fourbarrelled hammerkess pistols, in which na internal hammer was worked by the pull of the trigger. In all the three weapops
above mentioned, extraction and relouding were show procesces, which made them unsuited for use on horscback.

Hammerless Revolver.-The Smith \& Wesson pocket pistol is one of the safest weapons of the size made. There is no
and fires a charge of 23 drams of powder without unplensant recoil. The duelling pistol, as made by Gartinne Renette of Paris, is capable of wonderifully accurate shooting, firing a 9 millimetre spherical bullet and about 12 grs. of powder. This

Maker's Name.	Deacription of Revolver.	No. of Shots.	Calibre.	$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { Barrel. } \end{aligned}$	Length over all.	Weight.		Cartridge.	
								Powder Weight.	Bultet Weight.
Colt								gr.	gr.
	New Service. New Army	6		$\begin{aligned} & 51 \\ & 41 \end{aligned}$	$\begin{array}{r} 109 \\ 9 ? \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	8 0 0	40 31	250 158
	New Pulice : $\quad . \quad$:	6	-38	44	$\frac{98}{8}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	2	21 13	158 98
	New Pocket or Pocket Positive	6	-32	21	6	1	0	12	82
	Police Positive.	6	$\cdot 38$	4	81	1	5	14	150
Smith \& Wemon	Double Action Sajcty Hammerless	5	.32 .32	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	7	0	${ }_{12}{ }^{1}$	10 10	
	Salcty Hammefless : :	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	-38/.42	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	${ }^{7} 1$	0	14	10	88 146
	Sid . sle Action Bisley modei	6		8	131	2	38 9		146
	Mitary, and Police . .	6	. 38	61	12	t	TSt	213	158
Weblay	Hand Ejector ${ }^{\circ}{ }^{\text {a }}$	7	-22	3	61	0	9	5	4
		6		4		2	3		
	"W.G.". Army model. "W.G." Target	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\cdot 455$	6	11.	2 2	8 80	18	265 265
	MarkiII	6	$\begin{array}{r} \mathbf{4 S 5} \\ .380 \end{array}$	${ }_{3}^{73}$	136	2	10	$3{ }^{18}$	265 145
	"W.P." Pocket model. . .	6		3.	7	1	4	${ }^{3}$ Cor	145 80
	R.I.C. No. 1 . .		-450/.455	42	91	1	14	18	265

hammer or equivalent procuberanoe to catch as the pistol is drawn from the pocket; or to entangle if the weapon falls. An sutomatic safety bolt, whose length lies half across the palm of the hand, and ensures certainty of freedom at the time of abooting, blocke the action until the pistol is firmly gripped for use.

Breech-looding Pistols.-Although the revolver has for many years practically superseded the pistol, some breech-loading

varicties of pistols are still made-the small pocket pistol, for example, and occasionally the heavy double-barrelled borse pistol. At ane time these latter were much used, of 977 bone, as well as the well-known ghort, large-bore pistol known as the Derringer, usaally of 41 calibre. The double borse pistol is Dow usually made for a a0-bore cartridge and spherical bullet, and weighs about 3ith. It is a clumsy, but. effective weapon, XXI \ddagger *
weapon is far superior in accuracy to a revolver. Single-barrelled pistols, chambered for the -12 or 297/230 calibre cartridges, with a barrel of from 6 to 10 in . in length, are also made, and when filted with a detachable metal stock form excellent little weapons for target practice.

Automatic Retelser.-The Webley-Fosbery automatic revolver is a weapon of a distinctly new design, in which for the first time the principle of utilizing the recoil of each shot to operate the mechanism is applied to the revolver. In appearance the weapon is very similar to the Webley service model. The simple pressure of the forefinger on the trigger, the pressure being released bet ween each shot, is all that is required to fire the six succeasive shots of the revolver. It is surpplied with a safety bolt worked by a thumb-piece, and Messrs Webley have introduced a clip loader which enables the six chambers to be reloaded at the same time. This weapon has met with considerable success, and is made in two calibres, the -455, 6 abot, 2 it $5 \frac{1}{2}$ of. in weight; and the - 38 model, 8 shot, 2 tb 3 02. in weight.

Axtomatic Pistols.-These weapons are the latest and most advanced type of pistiol, and it is anticipated by experts that they will uitimately supersede the revolver. They are made with one barrel and a magazine, on the principle of the repeating rife, thus doing away with the escape of gas that lakes place in revolvers between the chamber and the barrel.

Automatic pistols are so constructed that the force of the recoll is utilized to open the breech, extract the empty case, cock the pistol, reload the chamber with the top cartridge from the magazine, and close the breech, ieaving the pistol ready to fire on again pressing the trigger.
The Mauser " self-loading " pistol (fig. 9) is one of the earliest of the succesful automatic weapona. It is usually -300 calibre. 10 shot, with a metal clip loader from which the cartridges are "stripped" into the magazine, weight $2 I \mathrm{H}$, length of barrel 51 in.; bulket 85 grains, initial velocity about 1394 f.s.
The barrel (1) and body (2) are in onc piece: the latter contains the bole (3). The frmel and body slide on the frame (4): the 10 -shot magazine (5) and the tock are in one piece with the lrame. and the took frame (6) and lock-work are contained in the rear part of it. The bolt ((3), which is square, slides in the body, and is kept pressed up to she chamber by the bolt spring (8); the rear end of this bolt epring beari against the block (9). The striker and extractor are contained in the bolt. The bolt is locked by the bolt-lock (io). This is slouted through the cenire and fite on to the projection (II) under the body: it is supported at the monent of firing by e projection on the hack frame (12): the top of the bolt lock has two Iecth (1,3). Winith in the boaded and cocked position fit into two recesses in the bols, and the bottam of its front end fin froot of the toody attachment (11) $]$ has another tooth (14) which bears on the rocker (15). This rocker is pivated at its bottom corner. The main-spring (16) bears in front against the rocker, and in rear agrinst the hammer mechanism. The action of the mechanism is
as follows. on pressing the trigser, the trigger nowe lifis the lever (18) which is atiached to the wear (19), the liftung of the sear allows the main-spong to act backwards on the hammer. which impinges on the striker and fires the cartridge. At this moment the bolt is locked by the two upper teeth (13) of the buts-lock, which is itself heid up by the lock frame projection 113) But, the barrel body and bole recoiling together A of an in., the rear end of the bolt-lock (10) is no longer supported. the rocker (15) acting on the lorward tooth (14) puls down the bolt-lock and its upper teeth. the noge of the bolt-lock falling into the recess just behind the projection (12). Thus the barret and body come to a standstill and the remaining recoil esergy is used in dxiving back the bolt (now free) and extracting the cartridge case. When this energy is used up the bolt spring (8) reasserts itself, drives the bolt forward and pushes another cartridge into the chamber as in the magazine rife, and the main-spring, acting on the rocker, pulls up the boitlock again and engages the teeth (13) in the bolt, locking it for

the next shot. The releasing of the trigger brings the sear (19) to its farmer position, cocking the pistol.

This pistol is usually supplied with a wooden holster which can also be atcached to the prip of the pistof and so form a shoulder-tock for long-range shooting. It is sighted from 30 to $t 000$ yarda.

The Call Automatic Pistal, calibre $\cdot 38$ (6g. to) conkists of four main parts, namely the frame (F), the barref (B), the slide (S), and the magazine (M). The frame forms, at lts rear and lower part, the handle (A), which is bollow, and contains the eeal for the maga. tine. After being charged with seven cartridges, the magazine is mated from below and held in place by the magazine catch (n) which sightly projects from the bottom of the handle. This projection serves to release the magazine from the catch, when it can be readily drawn from the handle for re-charging. In frost of the handle is the triget guard (1), in which the trigger (0) is lound, and in the rear and above the grip the firing mechanism is placed in the part of the frame called the receiver (R). The firing mocharism conststs of the hammer (4), the sear (w), the trigger (1). a safety device (a), the main-apring (a) and bear spring (c); the lower Fort of the latter serving to operate the magasine catch. The top of the receiver extends forward from the handla, and to it the barrel is attached by two short links, one (0) near the front end of the barrel, and the other (o) at its rear end; these links are pivoted to the receiver and also to the barrel, and allow the barret to swing reartrasts thercon. As both linleg are of the came length, the rearward moverment of the barrel in swinging on these links carries the barrel slightly downwands, but keeps its longitudinal axis in parallel positions during all its movements. Below the barrel the receiver forms a tubular sat for the retrector spring (6), which in front is closed by a plug (a) lastened in the receiver by the lower pivot-pin (i) of the Iront barrel-link. The upper surface of the receiver and two longitudinal grooves on its sides form the seat for the slide, which is geided thereon In its rearward and forward movements. The rear part of the stide forms the boit or breech block (K), and the front part forms a partly tubular cover (s) which encloses the barrel. In the lormard part of the receiver is a transverse mortice extending through the retractor spring seat, and transverse recesses in the forward part of the slide serve to admit a key (\quad) which, passing through the sides of the slide and through the mortice, merves to lock the slide to the frame. The relractor spring (r). In its seat in the frame, consists of a spiral spring, the rear end of which rests againtt the receiver, and the front end of which carries a piston (p). The rear lace of the loey (m) has a slight recess, and when the key is in its place the front end of the retractor spring reste in this recess, thereby confining the key laterally. The tension of the retractor spring is exerted to force the key and the slide to their forward position. Upon the barret are provided three transverse ribs (b), and in the interior of the slide are three corresponding recesses. These aerve to lock the barrel and the side firmly together when in their forward position. Between the locking recense and the bolt, the slide has an opening on its right gide for the ejection of the eartridge cases (J), and the boit is prorided with an extractor, a firing pin () , aring pin retraction
pring (9), and a Gring pin lock (v) This latert is pivoted at the rear end in the top of the slide, and when depressed, locks the firing pin in its recracied position, thus preventing its point Irom coming in contact with the cartridge primer. When raised. the firing pia leck releases the firing pan. and in this position also serves as the rear sught, being provided on the top with a sighting notch
The operation of the pistol is as follows: When a charged magatcine (M) is inserted. the slide (S) is drawn once to the rear by hand, therelyy coclang the hamsner (h). In this postivios of the slide, the carrier (c) and carrier spring in the magazine raise the topmost cartridge wo as to bring it into the path of the bolt (K). On releasing the slide, it. with the bolt, is carried lorward by the retractor spring (r). and during this movement the bolt forces the topmost cartridge into the barrel (B). As the slide approaches its forward position the froni of the bolt encounters the rear end of the barrel and forces the latter to its forward position. During this forward movement the barrel swings forward and upward on the links (1 , o), and thus the locking ribs (b) on the barrel are carried into the corresponding locking recesses in the slide. The bamel and slide are thereby interlocked, and the pistol ready for finng.

A slight pull on the trigger (1) now serves 10 move the sear (m) so as to release the hammer (h) and fire a shot. The forte of the powder gases driving the bullet from the barrel is exerted rearwardly against the bolt, and. overcoming the inertia of the slide and the tension of the retractor spring, causes the slide and the barrel to recoil together. After moving rearwards together, for a distance, enough to ensure the bullet hating passed from the barrel. the downward swinging movernent of the barrel releases the latter from the slide and stops the barrel ip its rearmost position. The momentum of the slide causes the latter to continue ita roarward movement, thereby again cocking the hammer and compressing the retractor spring. until, as the slide arrives at its rearmont poom tion, the empty shell is cjected from the side of the pistol and another cartidge raised in front of the bolt. During the return or forward movement of the slide, caused by the retractor spring. the cartridge is driven into the herrel, and the slide and barrel are Interiocked. thus malcing the pistol ready for apother thot. These operations may he continued so long as there are cartridges in the magazine, each dicharge reguiring only the elight pull on the trigger. The pistol is provided with a salety device (a) which makes it impossible to release the hammer unleses the afde and barrel are in their first forward position and interlocked.

In the Borchardt-Leuger pistol (figs. It) the bolt is solidly supported

at the moment of Gring by a toggle joint. The barrel (I A) and body (1 B) slide in the frame (C), the bolt (2) alades in the body and is held up to the breech by the toggle joint 3 and 4 and the pint 5 and 7. which secure the links of the toggiteto the body. The centre of pin (6) is below those of the other pins so that the joint cannot bend at the moment of Irting. On the rear link (4) there is a awivel (9) which is connected to the recoil spring (10) in the grip. This pistol is fired by a spring striker, like a rifle, instead of by a hammer. The striker is within the bolt: it ws cocked in the recoil perition by a claw on the end of the front link ($3 A$) and held thus when ready to fire by the nose of the trager mear. these engaging with a projection (8 A) on the side of the strifer. The magasine (8 thot) is in the grip. The action is as follows: the fort cartidere is loaded from the magarine by pulling back ine toggle jount. As woon as the toggle joint is released the recoil spring acts and forces tbe bolt home, with the cartridge in front of it. On pressing the trigger the barred and body recoil a Itthe Then the togyle joint comes
quanas curved sampe ow the sides of the non-recoiling frame and It lonced vp, so that thereafter the bolt alone recolls (the ejector is similar in principle to that of a rife). The recoil spring theri acts as before on reloading.
Other variecies of the automatic pistol are the " Maonlicher,' the "Mars" the "Bergruann" and the "Webley." The last being simple in construction, small and light, weight 18 oz. and length over all only 61 in., may be clasmed as a pocket pistol.

Qualities of Amtomatic Pistols.-In reference to the general qualiuies of automatic pistols, while these weapons have the advantage over revolvens of longer mange and greater rapidity of fire and recharging, on the other hand they are necessarily more complicated in their mechanism, which has to do the work of extraction, reloading and cocking that in the revolver is done by hapd. A stoppege may occur through a cartridge missing fire, or continuous uncontrolled fire may take place through the trigger apring breaking until the magazine is exhausted. Their action is also to some extent uncertain, as it depends on the recoil of the discharge, which may be affected by variables in the cartridge; also the effective automatic working of the moving parts depends upon their cleanliness and lubrication. As automatic pistols, like revolvers, are intended for personal defence at short range and for sudden use in emergencies, simplicity of mechanism and certainty of ection are in their case of paramount importance. There is usually no time to rectify a etoppage or jam, however slight. From a military point of view, therefore, before the revolver is altogether superseded by the autornatic pistol, it is most desirable that the latter should be as certain in its action under service conditions as the former Some ausomatic pistols, as already stated, are sighted up- to 2000 yards, and provided. with attachable butte. The practical value of these improvements is open to quetion, as the sighting of a pistol differs materially when used with and without a butt, and under no circumstances can the accuracy of shooting of a pistol, even with a butt, equal that of a carbine.

The tendency in automatic pistols has been to reduce the bore to -3 in. and incremae the muzale velocity, on the lines of modern small-bore rifes. These, again, would appear to be advaotages of minor importance in a weapon intended for use at short range In the field, where a heavy bullet of fairly large diameter, with a aroderate muzze velocity has a more lmmediate and paralysing effect, end in therefore, from this point of view, and particularly in savage warfare, preferable to a small projectile of hiph muzzle velocity.
(H. S.-K.)

PINTOLB the French name given to a Spanish gold coin in use from 1537; it was a double ascude, the gold unit, und was worth ibs. IIId. sterling. The name was slso given to the louis d'or of Louis XIII. of France, and to other European gold colas of about the value of the Spanish coin.

PISTOM (through Fr from Ital. pislone or pestome, a great pestie, from Late Lat. pistare, to pound, a frequentative form of classical Let. pinsere), in the steam engine, a disk or partition placed inside the cylinder, from end to end of which it moves alternately under the pressure of the steam. By means of the "piaton-rod" attached to it this forward and backward motion in communicated to the marhinery which the engine is employed to drive, and is in most cases converted into rotary onotian by a "connecting-rod," one and of which is jointed to the "crow-head "carried at the end of the piston-rod, while the other turas the crank on the crank-shaft The piston in gas, oil and air engiges has a similar function, but in a pump, instead of impartine motion, it has motion imparted to it by some prime-ppover In every case the piston must fit the cylinder so accurately that as little as possible of the working fuid, whether it be steam, gas or water, can escape past it, pacting of various forms being commonly placed round its periphery in order to secure this fis. In music, the valves which in certaip wind instrumenis, such as the cornet, enable the .player to increase the length of the aircolumn and thus lower the pote produced, are known as pistons. (See Valves.)

PIT (O. E. pyt, cogate wihh Du. pud, Ger Pfutec, \& \& c., all ultimately adaptations of Leat, pulcus, well, formed from reot pth-, to cleanse, whence purus, clean. pure). a term of wide applicution for a hole, cavity or excavation in the earth or ot hor
surface; thus it is applied to the excavations made in the ground for the purpose of extracting minarals, e.g. chalk, gravel or sand, or for carrying on some industry, e.g, tan-pit, sam-pit, or to tha group of shafts which form a coal-mine. Roots and othen vegetables can be stored in the winter in a pit, and the term is thus transformed to a beap of such vegetables, covered with earth or straw. The word is also used of any hollow or depression in a surface, as in the body, the arm-pit, the pit of the stomach, or on the skin, as the scars left hy small-pon or chicken-poxp As applied to a portion of a buidding or construction, the yord first appears for zn eaclosure, often sund in the ground, in which cock-fighting was carried op, "cock-pit." It would seem a transference of this usage that gave the commpn name to that part of the auditorium of a theatre which is on the floor, the French parlarre. In the United States a special usage is that of its applicalion to that part of the floor space in an exchange where a particular branch of husiness is transacted; thus in the Chicago Board of Trade, trangactions in the grain trade are carried on in what is known as the "Wheat Pit."
In Scottish legal history there wat a baronial privilege which in Latin is termed furca et fossa, "fork (i.e. gallows) and pit": here the term has usually been taken to refer to the drowining-pit, in which women criminals were put to death; others take it to refer to an ordeal pit. There is a paralle! phraee in M. Dutch, putbe ands galghew; here pulte is the pit in which women were buried alive as a penalty.

Pricalrm, an island in the mid-eastern Pacific Ocean, in $25^{\circ} 3^{\prime} \mathrm{S} ., 130^{\circ} 6^{\prime}$ W., belonging to Great Britain. It lies south of the Paumotu archipelago, 100 m . from the nearest member of this group. Unlike the majority of the islands in this region, it is without coral reefs, but risea abruptly with steep and rugged cliffs of dark basaltic lava. The extreme elevation is ovet 2000 ft, and the area 2 sq . m . The soil in the valleys is volcanic and fertile, but the gradual utilization of natural timber increaset the liability to drought, as there ane no mreans. The climete is variable and rainy. Stome axes, remains of carved stone plitars similar to those of Easter Island, and skeletons with a peard-mussel bencath the head have been found in the istand, though it was uainhabited when discovered by Pbilip Carterat in 1767. Pitcairn was the name of the midshipman who firs abserved it.
The island was destined to become the scene of a curions social experiment. On the $28 t h$ of April 1789 a mutiny breke out on boand the "Bounty," then employed by the Britioh government in conveying young bread-fruit trees from Tahiti to the West Indies. The commander, Lieutenant Willian Bligh, was set adrift in the launch with part of the crew, but managed to make his way to Tinsor in the Malay Archipelago, The twenty-five mutipers at firtt all returned to Tahiti. Some remained, and six of these were uhimately court-martialled in England, three being executed in 1792 . Meanwhile in 1790 a party consisting of Fletcher Christian, the leader of the mutiny, eight Englishmen, six Polynesian men and twelve Polynesian women had taken possession of Pitcairn Island and burned the "Bounty." Treachery and debauchery filled the first years of the annals of the beautiful island. By 1800 all the men were dead exccpt Alezander Smith, afterwards known as John Adams, who rose to a sense of his responsilility and successfully trained up the youthful generation left in his charge. An American vassel, the "Topaze," discovered the atrange colony in 1808; again, by accident, it was visited by the "Briton," Captain Sir F. Staines, and the "Tagus," Caplain Pipon, in 1817; and by the exploring ship "Blossom" in 1825 . On the death of John Adams on the 2gth of March 1829 George Humn Nobbs, who had sectled at Pitcairn in 1898, was appointed pastor and chief magistrate. Through fear of drought the islanders removed to Tabiti in 1830 , hut disapproved of both the climate and the morals of this island, and returned to Pitcairn in 1831. Shorily after this an adventurer named Joshua Hill appeared, and, claiming government authority, tyrannized over the islanders till his removal by a British man-of-war in 1838. In 1856 the whole of the islanders- 60 married persons and 134 young men, women and childrem-were landed on

Noriolit Island, but in 2858 two families chose to retutn, and their example was afterwards followed by a few others. Visited in 1873 and 1878 the colony was found in excellent order, but by the ead of the century it was stated that intermarriage was bringing a deterioration of intellect, morals and energy, and that the islanders would probably drift into imbecility. Later accounts made it appear that this was an exaggeration, although the standard of morallty wes unquestionably low on the whole.
In religion the islanders are Seventh Day Adventists. "They have adopted an extraordinary patois, derived from the language of the Tahitian women who accompanied the mutineers of the "Bounty" to Pitcairn Island, although most of the adults can speat the English language fairly well " (R. T. Simons, Report, 1905). The island is a British colony hy settlement, and is within the jurisdiction of the High Commissioner for the Western Pacific (since 1898). There is a governing body chosen from among the islanders, the constitution of which has been altered more than once owing to internal jealousies, \&c. The island produces sweet potatoes, yams, melons, bananas and other fruits, arrowroot and cofiee. Goats and chickens run wild. Some trade is carried on with Mangazeva in a vessel owned by the islanders. The population is about 170.
BigliogRapmr.-]. Shiltibeer, The "Briton's" Vayage to Pitcairn's Island (London, 1818): F. W. Beechey, Voyage to phe Pacific (London, 1831) ; Sir I. Barrow, Hislory of the Miltiny of the " Bownty" (London, 1831): W. Brodie, Pilcairn's Island ... in 1850 (London. 1851): C. E. Mcinicke, Die Insel Pitcatrm (Prenzlau, 1859): T. B. Murray, Pitcairn (Lomdon, 1860), revised to date by C. C. Elcum (1885); Lady Belcher, The Mulincers of lhe "Bownty", (Landon, ${ }^{88} 7^{0}$); \}. A. Brown "Sxone Implements. Irom Pitcairn island," in Jowrn. Anthropol. Yustil. (igoo) xcx. ; R. A. Hermann. "Die Bevdikerung der Insel Pitcaim," In Pelermanns jfitteilungen. (1901), xlvii.: Parfiamentary Papers C. 9148 , and Cd. 754 (London, 1899, 1901); Cd. 2397 (ibid., 1905: Mr R. T. Simon's report).

EITCAIRNE, ABGEIBALD ($1652-1713$), Scotish physician, was born at Edinburgh on the asth of December 1652. Alter bbtaining some classical education at the school of Dalkeith, Pitcairne entered Edinburgh University in 1668, and took his degree of M.A. in 167s. Having been sent to France for the bentefit of his health, he was induced at Paris to begin the study of medicine, and after courses at Edinburgh and Paris he obrained in 1680 the degree of M.D. at Rheims. He began practice at Edinburgh, and in a short time acquired so great a reputation that in 1692 he was appoint ed professor of medicine et Leiden. Among his papils were Richard Mead and H. Boerhaave, and both of them attrihuted much of their skill to what they had learned from Pitcairne. In 1693 Pitcairne returned to Scotland to marry a daughter ol Sir Archibald Stevenson, an eminent physician in Edinburgh. The family objected to her going abroad, so he did not return to Leiden, but settled once more in Edinburgh. He rose to be the first physician in Scotland, and was frequently called into consultation both in England and Holland. Soon after his retorn to Edinburgh, feeling the great want of the means of anatomical study, he importuned the town council to permit himself and certain of his medical friends to treat without fee the sick paupers in "Paul's Work," on condition of being allowed to dissect such of the borlies as were unclaimed by their relatives, and therefore had to be buried at the town's experse. Strangely enough this proposal was strongly opposed by the chief surgeons of the place. but uhimately the town council had the good sense to comply with Pitcairne's request, and in this way he may be said to have the credit of laying the foundation of the great Edinburgh school of medicine.
Piteairne's medical opinions are chiefly contained in a volume of Dissertationes medicas which he puhlished in 1701 (2nd ed. 1713). In these he discusses the application of geometry to physic, the circulation of the blood in the smaller vessets, the difference in the quantity of the blood contained in the lungs of animals in the womb and of the same animals after birth, the motions by whicls food becomes fit to supply the blood, the question as to inventors in medicine (in which he repels the idea of certain medical discoveries of modern times having been

Enown to the ancients, especially vindicating for Harvey the discovery of the circulation of the blood, and refuting the vie: that it was known to Hippocrates), the cure of fevers by evacin. ling medicines, and the effects of acids and alkalis in medicine. Pitcairne was a good classical scholar, and wrote Latin verses, occasionally with something more than mere imitative clevernes and skill. He was supposed to be the author of a comedy, The Assembly, or Scotch Reformation, and of a sintirical poem Babd, containing witty sketches of prominent Presbyterina divines of the time, whom, as a loudly avowed Jacobite, be strongly disliked. He was prone to irteverent and ribald jests, and thus gained the reputation of being an unbeliever and an at heist, though he was a professed deist. The stories about hls over-indulgence in drink are probably exaggerated. He was repeatedly Involved in violent quarrels with his medical brethren and others, and once or twice got into scrapes with the government on account of his indiscreet political utterances. Among his friends, however, he was evidently well liked, and he is known to have acted with great kindness and generoaity to deserving men who needed his help. Thomas Ruddiman, the Seotish scholar, for example, was rescued from a life of obscurity by his encouragement and assistance, and by no one was his memory more gratefully cherished. Mead, too, appears never to have forgotien what he owed to his old teacher at leides. A son of Pitcairne's had gone out in the rebellion of 8715 , and, having been condernned to death, was saved by the earmest interposition of Mead with Sir Robert Walpole. He pleaded, very artfully, that if Walpole's health had been bettered by his skill, or if members of the royal family were preserved by his care, it was owing to the Instruction he had received from Dr Pitcairne. Pitcainne died in Edinburgh on the 2oth of October 1713. He had been a great collector of books, and his library, which is said to have been of considerable value, wes, throngh the influence of Ruddiman, disposed of to Peter the Great of Russia.

PITCR. (1) (O. Eng. pic, an adaplalion of Lat. pix, picis, Gr. xiova, xirru, allied with Gr. xitos, pine-tree, Iat. pinms), the name of various substances of dark colour and of extremely viscid and tenacious consistency when subjected to heal Strictly the term is applied to the resinous substance obtained as a solid residuum by the distillation of wood-tar (see Taz), or the non-resinous substance similarly produced from Coal-tar (q.v.). The name is also applied to the natural mineral substances, i.e. asphalt or bitumen (gy.e.). (a) A noun of various meanings which are somewhat difficult to connect with the verb from which they apparently must be derived. "To pitch " means primarily to thrust in or fix a stake or other pointed object into the ground, hence to place in a fixed position, set in ordet, cast or throw, hence to Incline or slope The elymology is obscure, but it appenrs in Northerh dialets as "pick," of which it may be a variant; there is some dificuily in connecting this form with "pick," variant of "pike " ($\mathbf{q}, \mathrm{o})$. PITCH, MUSICAL. The pitch of a musical sound is aorally defined by its absolute position in the scale and by its relative position with regard to other musical sounds. It is preciedy defined by a vibration number recording the frequency of the pulsations of a tenae string, a column of air, or other vibrator, in a second of time. In Great Britain and America the complete vibration to and fro (swing both ways of a pentulum) is taken is the unit; elsewhere the vibration in one direction only (swing one way of the pendulum). The only official standard is the French, dating from 1859, preserved by a tuning-fork vibrating 870.9 (double vib. 435.45) at a temperature of 15° Centigrade (50° Fabr.) in a second. The vibration number stated in the edict establishing the Diapason Normal is 870 (435), which for comparison will be here adhered to. The natural besis for a standard musical pitch is the voice, particulariy the mak voice, which has been of greater importance historically. There is no reason to suppose the human voice has varied, during the period of which we have evidence, more than other physical atitibutes. The only difference to be reckoned with may be in recent tendencies of solo vocalisis to sing for effect, and so to
catend the compass of the voice upwarda. Ochorvite we may atsume ne diblimbing aleration has taken pisce for more than 3000 yeers in its porition and extenk. Vibrations inctense in rupidity as a note rives mad decrease mo it falle. Any note may be a pitch docte; tor orchestras custom has setuled upon at \boldsymbol{i} the trotble def, for organsend pianos in Grem Britain ci, and for modern brusi imetruments 6 fant:
We are not without a clue to the pitch usul the the chaic Greek and Alerandition ages: the vocal octave to which the lyeo was adapted was noted as frome exo d . As in chorusea baritone and low tenor singers always prevail, d-d, at French or at medium pitch, would really be the Greek anging actava; we may therefore regard it as a tone lower than that to which wa wre socurutomed. But to sing the lower Greek modes in or near the vocal octave it was necesseary to tramppose (werafolf) a lourth upwards, which in effiected on modern notation by a fint placed upon the b line of the staff; thus modulating from our major key of C to that of F. This transporition has had, as wo chall soos, much to do with the himtory of our subject, ultimately influencing the ecclesiastical chant and leating until the 1yth century of our era. It does not appear from any evidence that the keybourd-when there wexe more than one-of the eaxly organs were arranged for transposition, but it is certuin that the Fieminh harpsichoids to 1650 wese made with doolble heybourda to accommodate it (see Hipkins' History of the Pianefonle, 1897). But a positive identity of pitch cannot be claimed for any period of time, and certaimly not for the early organs; the loot-rule of the organ-bulder, Which had to do with the lengths of the pipes, and which varied in every cocuntry and province, could easily cause a difference of a semitone. Scale and wind-prowuro are also important factorn. But with all theso offen opposed conditiona, we find lest variation than might he expected, tho maio and reelly important divergence being due to the necessity of treaspocition, which added a very high pitch to the primarily convenient low one

The first to attempt to define pitch would seem to have been Arnold \$chlick (Musica auspelexuscht mod awsgerogex, Heidelberg 1511), who gives a measure, a line of al Rbenish inches, which, be says, multiplied sixteen cimet, should be the lowest F of a semall organ. He gives no diameter or wind-prespure. Dr A. J. Enis used this mdication to have an organ pipe made which with one-sixteenth diameter and \& wind-presulure of $3 t$ in., at one-fourth Schlick's lengtb, gave f^{1} zort 6 , from which be derived a jugt ramor third of a ${ }^{1} 37$, which would compare very well with an old Greek ad. Schlick goes on to say the organ in to be suited to the choir and properly tuned for singinge, that the singer may not he forced. to aing too high or too low and the organist bave to play chromatics, which is not handy for every one. Further, he says pitch cannot be exactly defined, because voices vary; he nevertheless gives the measure above mentioned for the low F, but if a larger organ is built to include the still lower C , then this C must be of ine same measkrement, the renson being that a greater part of church muske ends in "grambus," a word understood by Scilick's editor to mean the transposition of a fourth. The larger high-pitch organ will therefore be at a^{1} so2.6. The Halberstadt organ, about which so mach has been written, was, according to Practorius (Symazma masicam, Walfeabuttel, 1618), built in 1361 , and repaired or rebuilt 1495 He gives the longest pipe of this organ, B natural, as 33 Brunarick feot, and the circumierence it ft . He further tells us this pitch was a tone, nearly a tone and a half, higher than a suitable church pitch (Chorton), for which be gives a diagram. Dr Ellis had pipes (now preserved in the loyal Institution, Losdon) made to reproduce both these pitches at 3 in. wind-pressure. The Halberstadt phch was found to be ${ }^{\prime}{ }^{\prime}$ sos-8; the Chorton, 424.2. Ellis used mean-tone temperament in calculating this lower pitch; but as he used just intonacion for the Halbentadt, it seems prefermble to substitute it for the Chaton, thas reducing it to as a^{122-8}. Praetoriun's Cammercon, or chamber pitch, formulated in his diagrams for voleces and instruments, $i s$, he mass, a whole tone higher; equivalent, therefore, to al $475 \cdot 65$. Neirly all the German orpast in his
theoe wre tuned to this higher pltch. Ellis ofiered the augeration of a much bigher pitch for this Cammertow in hin lecture " ${ }^{4} \mathrm{Or}$ the History of Musical Pitch," read before the Society of Arts, Loadon (Jomen. Soc. Arts, March 5, r880), but the present wher is unabla to accept it. The lower vibuntion number is justified by due conaideration of the three divisions of the male voich, bass, cenot and alto, as given by Practorius, whose Commertow very cloeely corresponde with Bernhardt Schmidt's Durhanin organ, 1603-1668, the original pitch of which his been proved by Professor Armes to have been $\sigma^{1} 474 \cdot \mathrm{x}$. The Halberstadt phch is nearly a semitom higher, which agin agrees with the atatoment of Practortes, and also Schlick's high C argan. Yet it would seem there had been a still higher pitch used in the ofd eccleshastical muaic. Upon this interesting question Practorina \& confused and dificult to understand, but be never wavers about the transposition of a fourth. In wac passage be distinctly says the old organ high pitch hed been a whole tone above his Camanertom, whth which we shall find his tertic mivere comblocs to make the requared interval. The term tertice minove, or inferiove, is used by Pretortus to describe a low pitch, often preforred in Baghand and the Netherlands, th Italy and in eome parts of Cermany. An organist, instead of transposing a wholo tone down from the Commerton, would for the tertia minara have to tranepose a minor third. A corroboration of this pitch is found in A. Silbermann's great organ in Strasbure minstet (1713-1716), the pitch of which, taken in 1880 and reduced to 59° Fahr. (as aro all. pitches in this article), is od $393 \cdot 2$. An old organ at Vermilles (1789) was very near thin ernmple, $a^{4} 395-8$. Str Frederick Core Oascloy (wide Ellis's lecture) regarded tho French tow de chafale as being about a minor thind below the Diapason Nortion, ${ }^{1} 435$, and said that moot of the uritowahed argime in the French cathedrals were at this low pitch. Stras. burg was French territory in 1713, but Silbermann's argan is mot quite 2 whole tome below. Ellie quotes an organ at Luile, $a^{1} 374 \cdot 2$, but no other instance of the very low Schlick pitch is reocided, although trial of the French cathedral organs might perhape retult in the find ins of examples. Ellis gives Dom Bedos (L'Ant dx facture d'orgwes, Paris, 1766) as authodty for a mean tome at $376-6$. To return to the tertis minove. Dr R. Smith, of Cambridge, in 1759, had the orgin of Trinity College, buite by Bernhardt Schmide, lowered a whole toose, to redoce it to certim Roman pitch pipea made about 1280 . Hil determipntions of pitch by a weighted wire are not trust worthy; Elta thinks thoy are mot affe within forr or five vibrations per eecond, but gives a mean pitch for this organ, when altered, of si 395-2. St Michaci's church at Hamburs, buik as late an 1762 and unaltered in 1889, had a 17 th-century pitch, ai $^{1} 407 \cdot 9:$ This is about a samitone below the Diapason Normal, and a fust minor thind lower than the St Jeoobi orgain in the axma city (1688), measured by Herr Schmahl, a $409 \cdot 2$. Whet wat remarkable in this organ was that it had one stop which was an equal minor thind bower, $a^{4} 411 \cdot 4^{1}$. The difference of a minor thited, or, as we thall see later, a whole tone, had ruplaced the earliser fourth. Sir Froderick Gore Ouseley's comperison of tho church and chamber pitches of Orlando Gibbons (vide Enlis'a lecture) clearly abows the minos thind in Greal Brituin in the first hali of the a pth century. Bat the narrowing oometineed. Bersirhandt Scimidt, better known in Eindand as Falher Smilh, was invited aboat 1660 to buifd the organ for the Chapel Reyal Whitchall; two years leter he built the organ in Durhava Cathodral a $474 \cdot 7$, differency of whole tone, and patacticnlly agreeint whth the Cemmertow of Practorives. The Hamplen Cotart ofyen of rigo thows that Schrnidt had further loweeed hie pitich a cemitone, to od $441 \cdot 7$. What happened a Durham vait that at some mubeequent dita the pipes vere chifted up a samitone to bring the organ finto confornity with this lover pitch, with which if is probehle Schmich's organs in St Paulis and the Trample, and amo Trimity Colleso, Cambridee, agreed. Thin lowering teadency toward the bow church pitch, and the fimat adoption of the latter as a gencral menn picch throughoat tho reth century, whe no doubte iafluenced by the introduction of the violln, mitich would not bear the figh tension to which the
lutes and viols had been strafined. Happsichonds had boes been preferred at the terlic minore. The Chorton of Praetosias, $\alpha^{1} 422-8$, is practically the same pitch that of the fort the possession of which has heen attributed to Mandel, al 422.5 . It is a very fair mean between G. Silbcrmann's 18 th-century Dresden pitch, $a^{1} 415$, and the organs of Renatus Harris, a^{1} 428-7. Stein tuned Mozart's piano to a fork $a^{1} 431-6$, and the Broadwood pianos used at the London Philhamonic Society in its first concerts (1813) were tuned to a fork $\alpha^{2} 506-8$, which gives a mean tose $d^{2} 423.7$.

According to Schindler (Nudertheinische Musik-Zeilyng, 1855 , Nos. 8 and 9) and the report of the French Commission, 1850, the rise in pitch began at the Congress of Vienna in 1816, the military bands being the cause. With the improvements in wiad instruments this continued, as a more brilliant effect was gained. In 1823 Weber's Ewryenike is recorded as having been played in Vienna at a $a^{1} 437 \cdot 5$, and in 1834 Kreutzer's Nachilager at $a^{1} 440$. The measurements are doubtful, but the epward tendency is ciear. Scheibler, by his simple and accurate tonometer, has recorded pitches in Vienna about 1834 from a ${ }^{4}$ 433.9 to 44^{-2}. About that time, or it may be a few years eartier, Sir George Smart established a fork for the Philharmonic Society, al $433 \cdot 2$. Forks intended for this vibration namber, stamped "Philharmonic," were sold as late as 1846 . But about that year the performing pitch of the Society had reached 452-5. Sir Michaed Costa was the conductor 1846-1854, and from his acceptance of that bigh pitch the fork became known as Costa's, and its inception was attributed to him, though on insufficient grounds. In $\mathbf{8 8 7 4} \mathrm{a}$ further rise in the lork to $a^{\mathbf{4}} \mathbf{4 5 4}$ was instigated hy Sir Charies Halle. The British atmy is bound by His Majesty's Rules and Regulations to play at the Philharmonic pitch, and a fork tuned to $a^{1} \mathbf{4 5 2 . 5}$ in $\mathbf{t} 890$ is preserved as the standard for the Military Training School at Kneller Hall. But the Phitharmonic Society adopted the Diapason Normal in 1896, and the military bands have not gone with it. In point of fact, they are gradually going higher, and the brass bands, which are so important in the North of England and in Wales. are not behind them.
It was the irrepressible upward tendency that caused the Frencb government in 1859 , acting with the advice of Helery, Meyerbeer, Auber, Ambroise Thomas and Rossini, to establish by law the Diapason Normal. Other countrics have gradually \{ollowed, and, with few exceptions, the low pitch derived from the Diapason Normal may be said to prevail throughout the musical wordd. Great Britain has been the last to fall in, but the predominance of the low pitch, introduced at Covent Ganden Opera since 1880, is assured. The proprietors of Queen's Hall, London, tid much for it when they undertook the alteration, at great expense, of their large concert organ, which had only just been erected. In 1896 the Philharmonic Societ y decided upon a performing pitch, ostensibly at 68° Fahr., of a 439 ; and in 1899 Messrs Broadwood made a successful effort to get this vibration number accepted by their competitors in Great Britain. The bigh pitch remains only where there are large concent organs not yet lowered, and with the military and brass bands

The consideration of temperature as affecting the use of a standard pitch was not attended to when the French government asured its ordonnance. The 15° Centigrade attached to tho description of the standard fork in Paris was intended for the definition and verification of the fort only. The alteration of the fort due to heat is scarcely perceptible, but wind instruments, and particularly the organ, rise almost proportionately to the increase in temperature of the surrounding air, because sound travels at an enhanced rate as the temperature rises. The coefficient of this rise is equivalent to half 2 vibration (0.5) per degree Fahr. per second. D. J. Blaikley (Ersay on Musical Pich, Catalogue of the Royal Military Exhibition, Chelsea, 1890), and Victor Mahilion (Catalogue descriptif et amalytique dx Muste, Bruxelles, troisieme vohume, appendice, to00) have reconded their experience of wind instruments uader changes of temperature. The French Commission, in establishing the Diapason Normal, shoukd have chosen a temperature of $30^{\circ} \mathrm{C}$.

There would then have bees lesa diaturbance owing to the breath of the playent and heat of the thentres or concert-rooms. It would be a great advantage to get this higher grade generally adopted. It was proposod in the Stimm-Conferens at Vienoa in 1885 , but not carried. Table III., showin archestral pitches obtained in 1809, for the mesaurements of which the writer is responsible, prove how chimerical it is to hope for greater accuracy than is found bet ween 435 and 440 vibrations a second for a^{1}, inascouch as temperature muat alweys be rackooed wibh

Table I.

1495 to 1690. Pitch descending.	Authority.	ats9.F.
Hand 1495	Ellis	6
Arnold Schlict, Heidelberg 1511	Ellis	508.6
St Jacobi, Hamburg ${ }^{\text {a }}$ (1688-1693 St Catharieen, Hamburg	Scha	489.2 480.8
		480.8 475.65
Durham organ ${ }^{\text {a }}$ - 1683	Armes and Ellis	14
Vienma if c. 1640	Hetan	457.6
Hampton Court organ . . 169 d		441

Table II.

15 I to 1900 Pitch ascending.	Authority.	V.at $599^{\circ} \mathrm{F}$.
Arnold Schlick, Heidelberg - 1511	Ellis	$a^{1} 377.0$
Strasbarg Minster. A. Sil- bermann . . . 1713-1756	Steckhausen	3932
Trinity College, Cambridge. 1759	Smith and Ellis	395.2
Versailles organ : . . -	M'Leod and Elisp	
Practorius" Tertia minore" 1648	Hiplins	396-4
St Michaclis, Hamborg. 1762	Schmat	4079
Paris : ${ }_{\text {c }}$.	Liscajous	409-0
St Jacobi, Hamburg, " Tertia minore " stop . . 1688-1693	Schmahl	4
Hofcapelle, Dreaden . . . 1754		4150
St Sophie, Dreaden, G. 1722		
Freiberg. C. Silbermann . . 171	NEt	
Scville Cathedral. . 1785-1790	Ellis .	419.6
Old English tuning fork c. 1725	Etlis	4199
Imperial Russian Court Church Band 1860	Nike and Ellis.	421.2
Stein'stuning-fork, Vienna 1780	Nake and Ell	421.6
Handel's tuning-fork . . . 1751	Eliis	422.5
Praetorius, Chovion. . 2618	Elis andHipkins	432.8
Peppercorn's tuning-fork (Broadwood) 18:3	Ellis	423.5
Renatus Harris, St Andrew's, Undershalt . . . $\mathbf{1 6 9 6}$	Ellis	427.7
Renatus Harris, Newcastle-on- Tyne.	Ions and Ellis	428.7
C Meerens, proposed standard lerivel from $c^{2} 51 \%$, and davouid by Busto and		
other Italian musicians. 1876	ecrens.	4320
Sir George Smart, Phitharmonic . . . 1826-1834	Elie	433.2
Scheibler Na i., Vienna orchestra : $\cdot \ldots{ }^{1834}$	Scheibler	433
Montali tuning-fork. Paris opera. . No 'il. . 1829	Cagnarddela'	4340
Scheibler No II., Paris apere, 1834	Scheibler .	4340
Reissiger stuning'fork, Dres-	r	4340
¢ . . . 1826	ake	435.0
Ordonnance . . . 185	Fr. Comm.	435-0
Scheibler No. ILI., Paris		
Conservatoire ${ }^{\text {a }}$ Nomal. 18	beibler	435.2
Paris Diapason Nommal. Standard fork 185	K	35.45
Paris opera : 1836	Cagnard de la Tour	$437=0$
Scheibler, Sturtgart, propoeed standard (440 at $69^{\circ} \mathrm{F}$) $\quad 1834$	Scheibler	440.2
Scheibler No. IV., Vienax opera. 1834	Scheibler	440.3
Hullah's tuning-fork .. . 1842	Ellis .	441.3
Naples opert. San Cerlo . 1857 Society of Arts intended for	Lismious .	4449
444. (Since 1886 the Society of Arts has advocated the Diapeson Normal) 1860	Etis.	48*7

1511 to 1900. Pitch ascending.	Authoriny.	V. at $59{ }^{\circ} \mathrm{F}$
Broedwood's medium . . 1850	Ellis	445.9
	Ellit and Hipkins	4448
Gewandhaus, Leipxiy : 1869	Elis.	$448 \cdot 2$
Berrin opera is Scala - ${ }^{1857}$	Lissajous	448.4
	Elis and Hipkine	450.3 453.5
Kreller Hall,	Hipkias	452.5
Philharmonic, London ${ }^{\text {chen }}{ }^{187}$	Hipkins	454.0.
	Elit .	456.1
Straumi' Band, Imperial Imatitute, Loadon, open air	Hipkins	457.5

Table III.

Orcheatral Pitch. 1899.	Authority.	V.at $68^{\circ} \mathrm{F}$.
Leipzig	Blathner	${ }^{1}{ }^{1} 435.0$
Berlin ${ }^{\text {New }}$ York	Bechatein	$438 \cdot 0$ 438.6
Rowton	Chickering	438.8
London	Broadwood	$439 \cdot 0$
St Petersburg	Becker	$439 \cdot 4$
Meiningen (ard Bayreuth)	Muhifeld'sclarinet	$439 \cdot 5$
Sturtyart	A. Schiedmayer	4400
London. Covent Garden opera ${ }^{\text {a }}$	Elipkine .	440.0 440.0
Paris.	Erand	$442 \cdot 4$

Vgrified by A. J. Hipkins But for Leipzig a comparion with the Gewandhaus Band may be sought.
(A. J. H.)

PITCHBLETDE; or Ueaninite, a mineral species consisting easentially of uranium oxide, of importance as a source of uranium and radium. It is a very heavy (specific gravity 9.0 9.7), compact mineral with a conchoidal to uneven fracture, and a brownith to velvet-bjack colour and pitchy lustre. Crystals are rare; they bave the form of reguiar cetahedra of less oftes of cubex. The hardness in st, and the streak in brown with a greenish tinge. The mineral has been known to occur at Joachimsthal in Bohemia since 1727, and it was carly called pitchblende, because of its appearance; but tis true nature wis not recognized until 1789 , when M. H. Klaproth's analysis of it resulted in the discovery of the element uranium. Aralyses of material from differcnt locatities exhibit wide variations in shenical composition. In addition to uranium oxides, there are thocium, cerium (and lanthamm), yttrium and lead oxideh, each varying in amount from a trace up to 10%, Calcium, irom, magnesium, manganese, silica, water, \&cc, are also present in small amounts. The amounts of uranous and uranic oxides $\left(\mathrm{UO}_{2}, 21-72 ; \mathrm{UO}_{2}, 13-59 \%\right)$ also vary considerably. The mineral is often described as a uranate of uranyl, lead, thorium and cerium; but in the least altered material from Branchville in Connecticut the uranous oxide predominates, whilst in altered specimens uranic oxide is in excess. In the closely allied mincral, thorianite, thortum predorninates ($\mathrm{ThO}_{3} \mathrm{7b}_{\mathbf{7}} \mathrm{UO}_{2}$, 12%). Since the dioxides of uranium, thorium and cerium may be obtained artificially as cubic crystals, it'seems probable that pitchblende consists of isomorphious mixtures of these dioxides, the uranic oxide being due to oxidation.

The radio-nctive propertics of pitchblende-are of special interest. The fact that this mineral is more strongly radio-active than metallic uranium led to the discovery in it of the elements radium, polonium and actinium. When pitchblende is ignited or dissolved in dilute sulphuric acid, a gas is evolved which consists largely of helium and argon; terrestrial helium was first recognized in this mineral.

The mineral occurs either as a primary constituent of granitic rocks or as one of sccondary origin in metallferous veins. Ottahedral crystais ("cheveite "and " broggerite ") octur in the pegmatite reinas of southern Norway, being occasionally found in the felsprar ctarries at Moss, Arendal and other places Crystals are found under similar conditions at Middletown and Branchville in Connecticjt, Llanocounty in Texas (" nivenite '"), Mitchell county in North Carolina, Villenverve in Qrebec, and other American localivica.

Balangoda in Sobaragarnuwa province, Ceylon, has also no dotbe been derived from cryatalline rocks. On the otber hand, the mineral found in metalifierous veins, and to which the name pitchblende is more properly restricted, never occurs as crystals, but as compact masken rendered more or hess impure by admixture of other mincrals, the apecific gravity being sometimes as low as $6 \cdot 5$; thorium, ceriums ac., are absent, and radium and belium are present in maller amounts. This variety occurs with ores of ailver, lead, copper, nickel, cobalt, bismuth, \&c., at Johanngcorgenstadt, Marienberg and Schneeberg in Saxony, Joachimsthal and Przibram in Bohemia, Rezbánya in Bihar Mopntains in Hungary, Gilpin counky ia Colorada, St Just, in Penwith, Redruth, Grampoumd Road and elscwhere in Cornwall.
Often associated with pitchblende, and resulting from its alteration, is an orange-yellow, amorphous, gum-like minerai called gummite, which is a bydrous uranie oxide with emrall amounts of Lead, calcium, iron, \&c.
(I. J. S.)

PITCHER. (i) A large vessel for holding liquids, derived through Fr. Irom Med. Lat picarinm; the Lat. variant bicarinm, Gr. Pímos, has given the Ger Becher, Eng. beaker (q.v.). (2) One who "pitches," i.e. throws, casts, fixes; the name of the player in the game of base-ball who pitches or delivers the ball to the striker.
PITCHER PLANTS, in botany, the name given to plants in which the leaves bear pitcher-like structures or are pitcher-like in form. The plant generally understood by this name is Nepcrithes, a genus containing nearly eixty species, natives of tropical Asia, north Australia and (one only) of Madagascar. North Borneo is especially rich in species. They ate shrubby plants climbing over surrounding vegetation by means of tendrillike prolongations of the midrib of the leaf beyond the leaf-lip.

Fig. 1.-Pitcher of Nepentics distillatoria.
A. Honey-gland from attractive C. Transverse section of the surface of lid.
B, Difrestive gland from interior of plicher, in pockot-like depasation of epidermis, opening downwards.
The pitcher is a doyelopment at the end of the lendril. It ia gemarally, tubular in form, but in come species two forms are produced on the same plant, lower or terrestriat goblec-shaped pitchers and upper suspended pitchers retaining the more primitive mere or less tubular form; in a few apecies a third form-iannel- or cornucopia-shaped pichers-occurs in the upper part. In the terrestrial type a pair of well-developed wings traverse the length of the pitcher; in the tubular or funnelshaped form the wings are narrow or ridge-like. The mouth of the pitcher has a corrugated rim (peristome) formed by incurving of the margin, the convex surface of which is firm and shining. It-is traversed by more or less prominent paralled
ridges, which are urually prolonged as teeth beyond the infolded margin. Above the mouth is the lid (operculum), which varies in size from a small narrow process to a large heartshaped expansion. A study of the development of the piteher, eapecially in the young pitchers of seedling plants, shows that the inflated portion is a development of the midrib of the leaf, while the wings, which are especially well represented in the terrestrial type of pitcher, represent the upper portion of the leaf-blade which has become separated from the lower portion by the tendril; the lid is regarded as representing two leafiets which have become fused. The short straight or curved process from the hack of the pitcher behind the lid represents the organic apex of the leaf (A in fig. 1).

The size of the pitcher varies widely in the different species, from an inch to a foot or more in depth: The colour also varies considerahly, ever in different pitchers of the same individual,

Fig. 2.- Leaves of Sarrecenia purpurce.
A, Attractive surface of tid; B, conduching: C , glandular; and D . detentive surface; magnified. A and D are taken from S. fasc.
according to age, light exposure or soil conditions. It is uniformly green or more or less spotted, blotched or suffused with red or crimson, or sometimes, as in N. sanguinca or N. Edmardsiand, largely or wholly of a rich scarlet or crinuson colour. Insects are attracted to the mouth of the pitcher hy a series of glands, yielding a sweet excretion, which occurs on the stem and also on the leaf from the base of the leaf-stalk to the lid and peristome. Embedded in the incurved margin of the rim which affords a very insecure foothold to insects, are a number of large glands excreting a sweet juice. The cavity of the pitcher is in some species lined throughout with a smooth. glistening surface over which glands are uniformly distributed; these glands secrete a liquid which is found in the pitcher even in the young state while it is still hermetically closed by the lid. In other species the glands are confined to the lower portion of the cavity surface, while the upper part bear a smooth wayy secretion on which it is impossibie, or at any rate extremely difficult, for insects to secure a foothold. This area is termed the "conducting" area, as distinguished from the lower or "detentive" gland-bearing area. It has been proved that the secretion contains a digestive ferment capahle of rendering proteid matter soluble. Insects, especially running insects, which have followed the track of honey glands upwards from the stem along the leaf, reach the mouth of the pitcher, and in theif effort to eip the attractive merginal glands fall over into
the liquid. The smooth walls above the Iiquid afford no foots hold, and they are drowned; their bodies are digested and the products of digestion are ultimately absorbed hy the glands in the pitcher-wall. Thus Nepenthes secures a supply of nitrogenous food from the animal world in a manner somewhat similar to that adopted by the British sundew, butterwort, and other insectivorous plants.

The side-saddlo plant, Sarrocenia, native of the eastern United States, is also known as a pitcher-plant. There are about seven species, herbs with clusters of radical lea ves some or all of which are more or less trumpet- or pitcher-shaped. The leaf has 8 broadly sheathing base succeeded by a short stalk bearing the pitcber, which represents a much enlarged midrib with a wingike lamina. Above the rim of the pitcher is a broad flattened lid, which is also a laminar development. The surface of the leaf, especially the laminar wing, bears glands which in spring exude large glistening drops of nectar. The lid and mouth of the pitcher are brighter coloured than the rest of the leal, which

Fig. 3.-Cephetotus folliculavis, showing ordinery leaven and pitchers, the right hand one cut open to shom internal structure varies from yellow-green to deep crimson in difereat speciss and in individuals according to exposure to suntight and other conditions. This forms the attractive area, and the inner surface of the lid also bears numerous glands, as well as dowawardpointing hairs, each with a delicately striated surface (fig. 2, A). Below it is the conducting surface (B) of glassy epidermal cells, with short downward-directed points, which facilitate the descent, but impede the ascent of an insect. Then come the glandular sturface (C), which is formed of erooch polished epidermis with nurnerous glands that secrete the fluid contents of the pitcher, and finally the detentive surface (D), of which the cells are produced into long and etrong bristies which point

Fig. 4.-Morphology of Pitchers:
A. Ordinary leal of Cephalotus.

B, Monstrous leal with spoon-shaped deprovion.
C' and D. Other abnormal forms rsore deeply pouched, showing formation of pitcher.

E, Ordinary pitcher of Cephalorus.

a, Apex of leaf.
downwards and meet in the centre of the diminishing cavity 90 as to render escape impossible. The secretion wets an insect very rapidly, but, so far as is known, seems to be complecty destitule of digestive power-indeed, rather to accelente decomposition. The pitchers accumulate vast quantities of insects in the course of a season, and must thus abundandy masure the sucrounding soil whea they dic. Moreover, the
seast is largely shared by unbldden guests. Not to apeak of fusects which feed upon the pitcher itself, some drop their eges into the putrescent mass, where their larvae find abundant nourishment, while birds often slit open the pitchers with their beaks and devour the maggots in their turn.
Cephalotes follicularis, a native of south-west Australis, a mall herbaceous plant, bears ordinary leaves close to the ground as well as pitchers. The latter somewhat resemWe is general form thoee of Nepentices. The lid is especially attractive to insects from its bright colour and honey secretion; three wings lead up to the mouth of the pitcber, on the inside of which a row of shayp spines polnts downvaards, and below this a circular ridge (r, fig. 3) armed with papillac serves as a conducting area. A number of glands on the interior of the pitcher secrete a plentiful fluid which has digestive propertices. Comparisos with moastrous forms shows that the pitcher of Cephalotws arises by a calceolate pouching from the upper surface of the ordinary spathulate leaves, the hid here arising foom the proximal side of the pitcher-orifice.
PITCHETONB (German Packstein, from its resemblance to pltch), in pecrology, a glassy igneous rock having a residous hutre and breaking with a bollow or conchoida) fricture. It differs from obsidian principally in its rether dull hustre, for obaidian is hright and vitreous in appearance; all pitchstones also contain a considerable quantity of water in combination amountlag to from 5 to 10% of their weight or 10 to 20% of their volume. The majority of the rocks of this clas occur as inerasive dikes or veins; they are gitascy forms of quarts porphysy and other dike nocks. Their dull luatre may bo commected with the great abundance of minute crystallites and microlites they nearly always contain. These are visihls only in mieroscopic sections, and their varied shapes make pltchstones very interesting to the microscopist. Although prechstones are known which are of Devonian age (e.g. the glassy'dacite of the Tay Bridge in Fife, Scotiand, and the andeste-pitchutones of the Cheviot Hillis), most of them are Tertiary or recent, as like all natural glasses they tend to erystallize or become devitrified in coursa of time. In some of the ofder phichstones the greater parn of the mass is changed to a dull felsitic tubstance, while only riodules or kernels of unaitered glewe remuin.
Sorne pltchetones are very acid rocks, contalning 70 to 75% of silice, and have dome chemical almities to granites and rhyolises. Ohhers contain more alkalis and less silica, being apparenely vitreous rypes of trachyte or keratophyre: others have the composition of dacite and andessite, but the black basaltic glasses are not usually classified among the pltchotones. Very well known rocks of this group occur at Chemaitz and Mcissen in Saxony. Thcy are brown or dare green, very often perlitic (sec Petrology, Plate l., feg 5), and show progressive devitrfication starting from cracks and joints and spreading inwards through the mass. For a long time the pitchstone dikes of Arran in Scotland have been famous among geologists for the sreat beauty and variety of skeleton crystals they contain. These pitchatones are dull green in hand specimens. Some of them contain phenocrysts of felspar, augite, \&c.: others do not, but in all there is great abundance of branching feathery crystalline growths in the grourid mass: they resemble the branches of fir trees or the fronds or fermen mimute crystalline rods being buite together in akgregates which often recall the frost patterns on a window-panc. If is eupposed that the mincral they consist of is hornblende. In addition to these larger growths there are many small microlites scattered through the glass, aloo hair-like erichites, and fine rounded globulites, When phenocrytuare present the small' erystals are planted on their surfaces like grase growing from a surf-cqvered wall. These pirchstones are belleved to proceed from the great eruptive centres which were active in weestern Scotland in early Tertiary times. Another pitchstone of the same period forms a great cragzy ridge or scuir in the island of Eigg (Scolland). At one time regarded as a lava low occupying an odd atream channel it has recently been described as an intrusive sheet. It is from 200 to 300 ft. thick. The rock is a dark, nearly black, pitchstone-porphyry, with glancing idiomorphie crystals of felspar in a vitreous base. It contains no quartz; the felspars are anorthoclase, and with them there are numerous crystals of green augite. The ground mass containe small crystallites of felspar, and is of a rich brown colour in thin section with well developed perlitic structure (eee Petrology, Plate II., fig. 1). In
chemical oomproltion this rock resembles the trachytes rather thaia the rhyoliter In Eiigs and Skye there are many dibes of pirchntone, magtly of intarmoditise maxher then of acid chartecter, all conmected with the great eruptive activity wheh characterized that rexion in early Tertiary timen.

The following analymes give the chemical composition of a few mell-knotwa pitchatomes.--

SH_{1}	$\mathrm{Al}_{3} \mathrm{O}_{3}$	FrO_{2}	MgO	CaO	NarO	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$
79.42	11.26	0.75	028	: 35	3.86	3080	7.64
72.07 65.81	11.26 14.01	3.24 4.43	- 0.80		-664	5.68	5.45 2.70

The first two of these contain much water for rocks the ingredients of which are but little decomposed. They are of acid or rhyolitic character, while the third is richer in alkalls and contains lees tilica; it belongs more naturally to the intermediate rocke (or trachytes) (J.S.F.)

PITresct (Pilesti'), also written Pitesti and Pitest, the capital of the department of Argesh, Rumania; situated among the outlying hills of the Carpathians, on the river Argesh, which is here joined by several smaller streams. Pop (1900), 15,570 , The surrounding uplands produce good wine, fruit and grain, besides being rich in petroleum and salt; sod, as the main Walachian railway is met as Pitesci by lines from Campulung and Hermannstadt in Transylvania, the town has a considerable trade. It has manufactures of lacquer and varnish.

PITH (O.E. pitha, cognate with Du. pit, kernel of a nut), properly the medulla, the ceptral column of spongy cellular tissue, in the stems ol dicotyledonous plants (see Plants: Analomy). The word is thence applied to the spinal cord of marrow in animals, to the medullary end of a hair, and to that which forms the central part or core of any object of substance; hence, figuratively, vigour, energy, concentrated force. Very light hats or helmets are made of the dried pith of the Indian spongewood or hat plant (Asschynemene aspera, the native name being Solah). Those pith hats are worn by Europeans in India and the East. The Chinese Ricepaper-tree (Aralia or Fatsia papyrifera), from the pith of which the delicate white film known as "rice-paper" is made, is also known as the pith-plant.

PITHECANTHROPUS ERECTUS (Erect Apa-Man), the name given by Dr Eugene Dubois, of the Dutch army medical scrvice, to the imaginary creature which he constructed from fossilized remains found hy him in Java. These fragments conslated of a thigh-bone, two teeth, and the upper part of a skull, and were unearthed in 1891-1892 on the left bank of the Bengawan River near Trinfl. The skul! appears to have been low and depressed with strong supraciliary ridges; the tecth are very large, and the femur is quite human. The teeth and skull were found together, the femur a few yards away a year afterwards. The discoverer, however, stated it as his belief that the fragments were portions of the same skcicton and belonged to a creature hall-way between man and the higher apes and of the Pleistocene age. Much discussion followed the "find," and many authorities have given an opinion adverse to Dr Dubois's theory. The prevailing opinion is that the bones are human. They are not held to represent what has been called " the missing link," bridging over the gulf between man and the apes, but almost all authorities are agreed that they constitute further link in the chain, bringing man nearer his Simian prototype. L. Manouvrier concludes that Homo javanensis walked erect, was of about medium height, and was a true precursor, possibly a direct ancestor, of man He calls attention to the fact that the cranial capacity decreases in proportion to the antiquity of the human skulls found, and that the pithecanthropus skull has a capacity of from 900 to 1000 cc .-that is, " stands at the level of the smallest which have been occasionally found amongst the reputedly lowest savage peoples."

See Dubois, Pithecanthropus creclus (Batavia, 1894); a later paper read by Dr Dubois belore the Berlin Anthropological Society was rranslated in the Smithsonian Report for 1898. Also a paper read by Dr D. J. Cunningham before the Royal Dublin Soriety, January 23. 1895 (reported in Nature, Fehruary 28, 1895): O. C. Marsh.
 Torigine de l'bomise," in Bull. da de mec. dramelrep. de Paris (rig6), pp. 460-67; L. Manouvrier, "Discueaion du pithecanthropus exectas coname procurseur de l'homme," is Bulk sec. ©cuthrop. de Parts (1895). pp. 13-47 and 216-220: L. Manouvrier, Bul. soc. d'enthrop.
 of various tavage and civilized races," in Journal of Asal ema Physioh. (1896), xcxi. I meq.; Virchow, "Uber den Pithecanthropus erectus Dubois " in Zettackrfft f. Ethmologry (1895). pp. 336, 435, 648.
PITHIVIERs, a town of north central France, capital of an arrondissement in the department of Loiret, 28 m . N.N.E. of Orleans, on the railway to Malesherbes. Pop. (1006), 5676. The church of St Solomon, chiefly in the Renaissance slyle, and remains of the ancient ramparts are of interest. Statues have been erected of the mathematician Denis Poiston (d. 1840), and of the physician and agriculturist Dubamel de Moncean (d. 1782), natives of Pithlviers. The town is an agnicultural market, and an important centre for the safiron of the region of Gatinaris the cultivation of which, originally introduced by the Jews of Avignon in the 12 th century was lostered by Lowis XIV. The shrine of St Solomon in the oth century and that of St Gregory, an Armenian bishop, in the 10 th. formed the nuclei ol the town; and the donjon built at the end of the roth century for Hellise, lady of Pithiviers, was one of the finest of the period.
Pryioli, one of the "treasure cities" stated to have been built for Phareoh hy the Hebrews in Goshen during the Oppression (Exod. 1. 11). We have here the Hebraized form of the Egyptian Petom "House of (the sun-god) Etom," in Greek, Patomos, capital of the 8th nome of Lower Egypt and situated in the Wadi Tumilat on the canal from the Nile to the Red Sea. Succoch (Egypian Thuket) was identical with it or was in its immediate neighbourhood. The site, now Tell el Masthuta, has yiehded several important monuments, including the best preserved of the trilingual stelae of Darius which commemorated his work on the canal. The earlicst name yet found is that of Rameses 11. of the XIXth Dynasty, but in one case he has usurped earlier work,' apparently of the XIIth Dynasty (a sphinx), and the city was evidenthy very ancient. Several of the monuments from Pithom have been removed to Ismailia on the Suez Canal.

See Ed. Navilie. The Slore City of Piltom and the route of the Esoday (London, 1885); W. M. F. Petric, Tames, pt. i. (Lomion,
 relahts a la phildogre ei l'archcodogie égpluennes al assyrucnect, xiii 99, and the article Rameses.
(F. LL. G.)

PTTHOU, PIERRE ($1539-1596$). Frepch lawyer and acholar, was born at Troyes on the 1st of November 1539. His taste for literature was early seen, and bis father Pierre ($1406-1556$) cuitivated it to the utmost. He was called to the Parts bar in 1560 . On the outbreak of the second war of religion in 1567, Pithou, who was a Calvinist, withdrew to Sedan and afterwards to Basel, whence he returned to France on the publication of the edict of pacification. Soon afterwards he accompanitd the duc de Montmorency on his embassy to Engiand, returning shortly before the massacre of St Bartholomew, in which he narrowly escaped with his life. Next year he followed the exampic of Heary of Navarre by abjuring the Protestant faith. Henry, shortly after his own accession to the throne of France, recognized Pithou's calents and services by bestowing upon him various legal appointments. The most important work of his life was his co-operation in the production of the Satire Meripptc (: 593), which did so much to damage the cause of the League; the harangue of the Sieur d'Aubray is usually attributed to his pen. He died at Nogent-sur-Seine on the rst of November 1596 . His valuable library, specially rich in MSS., was for the most part transierted to what is now the Bibliotheque Nationale in Paris.

Pi hou wrote a great number of iegal and historical books, besides preparing cditions of several ancient authors. His carliest publication was Adversarior um subsecivorum lib. II. (1565). Perhaps his edition of the Leges Virgothornm (1579) was his most valuabie contribution to histafical science: in the same line he edited the Capitula of Chariemagne, Louis the Plous, and Charles the Bald in 1588 , and the aloo ammiled his brother Frangois in propariag an edition of the
 (1594) is repriated in his Opera sacra juridica his erica miscellamea coliecla (160 g). In classical literature he was the first who made the Forld acquainted with the Fables of Phaedrus (I596): he also edited the Peranfusim Venerss (igay), and Juvenal and Fersius (igej).
Three of Pithou's brothert moquired distinction es jerimet: fenk (1524-1602), author of Traut de police at du emarermamend des repub: bequts, and, in collaboration with his twin brother Nicolas ($1514-$ 1598), of Instututron dx marnage chriform; and Fanvcois (1543-1691), author of Clossarimm ad hibros capdeniartum (sg88), Traill de lex-

PITIGLIANO, town in Italy, province of Grosseto. Pop. (1991), 4416. It is the cathedral city of the bishopric mamed after the neighbouring town of Sovana, and possesses a 16 h century cathedral and a church of the mith-rith centuries, Pitigtiano wase originally a fiof of the comentship of Sovina, which in 1293 came by marriage into the posension of the Orsini. In 1410 Sovana was taken by the Sienncese, but by the terms of a peace conduded in 1417 the Orsini nctained Pitigiano, Gentile Orsini (assascintted r434) assuming the tille of ooumt of Pitigiano. The mose famous of the line of connts was Niccole III. (1442-r5to), a celebrated condotliere. Under his succemons Pitigliano becaure the acene of ceaselese family feuklo culminating in assassinations. In 1562 the Medici of Florence seived part of their territorles, and acquired the rest by exchange in 1580. The Orsini strogghold still stands in the bown.

PITLOCHEY, a village of Perthshire, Scotland, 281 m . N.W. of Perth by the Hightand railway. Pop. (1goi), 1541 . It lies on the left bank of the Tummel, a little below the confluence of that river and the Garry, 350 ft. above the sea It is a favourite health resort and tourist centre Among the iromediate altractions are the pass of Killiecrankic, the falls of Tummel, the exquisite prospect called "Queer's View" (ammed after Queen Victoria) and Loch Tumanel, 8 ma . to the west. One m. S.E. of the village is the Black Spout; a wacerfall of 80 ft . formed by the Edradour.

PITIANL SIR ISAAC (1813-1897). Englich phonegrapher, was born at Trowbridge, Wiltshire, on the 4 th of January i8i3, and was educated at the local grammar school. He started is life as a clerk in a cloth factory, but in 1831 he was sent to the Normal College of the British and Foreign School Society in London. Between 1832 and 1830 be held masterships at Barton-on-Humber and Wotton-under-Edge, but be was dismissed by the authoritice when he became a Swedenborgian, and from 8830 to $\mathbf{x} 84$; he coaducted a private school of his own at Bath. In 1820 he took up Samuel Taylor's syatem of shorthand, and from that time he became an enthusiest in developing the art of phonography. In 1837 be drew up a manual of Taylor's system and offered it to Samud Bagater (2771-1852). The publisher did not accept the work, hut suggested that Pitman should invent a new system (see Shortimaki) of his own. The result was his Slenographic Somenhand (1837). Bagster's friendship and active help had been secured by Pitman's undertaking to verify the half-million references in the Comprehcistre Bible, and he published the inventor's books at a choap rate, thus heiping to bring the system within the reach of all. Pitman devoted himself to perfecting phonography and propagating its use, and cstablished at Bath a Phonetic Institute and a Phonctic Journal for this purpose; be printed in shorthand a number of standard wocks, and bis book with the title Phomography (5840) wient through many editions. He was an enthusiastic spelling rciormer, and adopted a phonetic system which he tried to bring into general use. Pitman was twice married, his first wile dying in 1857 , and his sccond, whom he married in 1861, surviving him. In 1894 be was knighted, and on the 2 2nd of January 1897 he died at Bath. Sir Isaac Pitman popularized shorthand at a time when the advance of the newspaper press and modern tusiness methods were making it a matter of great commerciad importance. His system adapted itself readily to the needs of journalism, and its use revolutionized the work of reporting. He was a nonsmoker, a vegetarian, and advocated temperance principles.

His Life was writtes by Alfred Baker (1908) and (1902) by his brother. Bena Pitman (L812-ignt).

FHONA, GIUSEPTE OTTAVIO (1657-1743), Italian musical composer, was born at Rieti on the 18th of March $\mathbf{1 6 5 7}$. He came to Rome as a boy and sang in the choir of SS Apostoli. Foggia gave him instructions in counterpoint, and he became maestro di Cappella, first at Terra di Rotondo and later (1673) at Assisi. In 1676 he went to Rieti, and in 1677 to Rome, where he held various appointments, dying on the ist of February 1743 as maestro di Cappella at St Marco, where he was buried. Pitoni appears to have devoted himself exdusively to church music, and although he did not disdain the modern atyle with instrumental accompaniment, he is best known by his Masses and other works in the manner of Palestrina.
Several volumes of his autograph composition are in the Santinl Library at Münster.

PITT, THOMAS (1653-1726), British East India merchant and politician, usually called "Diamond Pitt," was born at Blandford, Dorset, on the 5th of July 1653 . In early life he went to Indin, and from his headquarters at Balasore he made trading journeys into Persia and soon became prominent among those who were carrying on business in opposition to the East India Company. Twice he was arrested by order of the company, the second time being when he reached London in 1683 , but after hitigation had detained him for some years in Engfand he returned to India and to his tormer career. Unahle to check him the East India Company took him into its service in 1695, and in 1697 he became president of Fort St George, or Madras Pitt was now very zealous in defending the interests of his employers against the rew East India Company, and in protecting their settiements from the attacks of the natives; in directing the commercial undertakings of the company he also appears to have been very successful. Soon, however, he had a serious quarrel with William Fraser, a member of his council, and consequently he was relieved of his office in 1709, although he was alterwards consulted by the compiny on matters of importance. During his residence in India Pitt bought for about [20,000 the fine diamond which was named after him; in 1717 he sold this to the regent of France, Philip duke of Orteans, for 880,000 or, according to another account, for $\{135,000$. It is now the property of the French government. During his lormer stay in England Pitt had bought a good deal of property, including the manor of Old Sarum, and for a short time be had represented this borough in parliament. After his tinal return from India in 1710 he added to his properties and again became member of parliament for Old Sarum. He died at Swallowfield near Reading on the 28th of April 1726 . His eldest son, Robert, was the father of. William Pitt, earl of Chatham (q.a.); and of Thomas Pitt (d.r761), whose son became the first Lord Camelford; his second son, Thomas Pitt (c. 16881729), having married Frances (d. 1772), daughter of Robert Ridgeway, th eart of Londonderry (d. 7714), was himsell created eart of Jondonderry in 1736.
PITT, WILMAL ($1759-1806$), English statesman, the gecond son of William Pitt, earl of Chatham, and of Lady Hester Grenvilic, daughter of Hester, Countess Temple, was born at Hayes, near Bromley, Kent, on the 28th of May 1759. The child Inherited a name which, at the time of his birth, was the most illustrious in the civilized world, and was pronounced by every Englishman with pride, and by evary enemy of England with mingled admiration and terror. During the first year of his life every month had its iltuminations and bonfires, and every wind brought some messenger charged with joyful tidings and hostile standards. In Westphulia the English infantry won a great battle which airested the armies of louis XV. In the midst of a career of conquest; Boscawen defeated one French fleet on the coast of Portugal; Hawke put to flight another in the Bay of Biscay. Johmson took Niagara; Amherst rook Ticonderoga; Wolfe died by the most enviable of deaths under the walls of Quebec, Clive destroyed a Dutch armament in the Hugli, and established the Enflish supremacy in Bengal; Coote routed Lally at Wandewash, and established the English supremacy in the Carnatic. The nation, whle loudly applauding the successful warriors,
considered them all, on sea and on land, in Europe, In America, and in Asfa, merely as instruments which received their direction from one superior mind. It was the great William Pitt who had vanquished the French marshals in Germany and French admirals on the Atlanic-who had conquered for his country one great emplre on the frozen shores of Ontario and another under the tropical sun near the mouths of the Ganges. It was not in the nature of things that popularity such as he at this time enjoyed should be permanent. That popularity had lost its gloss before his children were old enough to understand that the earl of Chatham was a great man. The energy and decision which had eminently frted him for the direction of war were not needed in time of peace. The lofty ahd spirit-stirring eloquence which had made him supreme in the House of Commons often fell dead on the House of Lords. Chatham was only the ruin of Pitt, but an awful and majestic ruin, not to be contemplated by any man of sense and feeling without emotions resembling those which are exctied by the remains of the Parthenon and of the Colosseum. In one respect the old statesman was erninently happy. Whatever might be the vicissitudes of his public life, he never favied to find peace and love by his own hearth. He loved all his children, and was loved by them; and of all his children the one of whom he was fondest and proudest was his second son.

The child's genius and ambition displayed tbemselves with a rare and almost unnatural precocity. At seven the interest which he took in grave subjects, the ardour with
which he pursued his studies, and the sense and anoly L an vivacity of his remarks on books and on events amazed his parents and instructors. One of his sayings of this date was reported to his mother by his tutor. In August 1766, when the world was agitated by the news that Mr Pitt had become earl of Chatham, little William ex: claimed, "I am glad that I am not the eldest son. I want to speak in the House of Commons like papa." At fourteen the lad was in intellect a man. Hayley, who met him at Lyme in the summer of 1773, was astonished, delighted, and somewhat overawed, by hearing wit and wisdom from so young a mouth. The boy himsclf had already written a tragedy, bad, of course, hut not worse than the tragedies of his friend. This piece (still preserved) is in some respects highly curious. There is no love. The whole plot is political; and it is remart: able that the interest, such as it is, turns on a contest about regency. On one side is a faithful servant of the Crown, on the other an ambltious and unprincipled conspirator. At length the king, who had been missing, reappears, resumes his power, and rewards the fathful defender of his rights. A reader who should judge only by internal evidence would have no hesitation in pronouncing that the play was write by some Pittite poetaster at the time of the rejoicings for the recovery of George III. in 1789.

The pleasure with which William's parents observed the rapid development of his intetlectual powers was alloyed by apprehensions about his health. He shot up alarmingly fast; he was often ill, and always weak; and it was feared that it would be impossible to rear a stripling so tall, so slender, and so feeble. Port wine was prescribed by his medical advisers; and it is said that he was, at fourteen, accustomed to take this agrecable physie in quantities which would, in our more abstemious age, be thought much more than sufficiem for any full-grown man. It was probably on account of the delicacy of his frame that he was not educated like of her boys of the same rank. Almost all the eminent English statesmen and orators to whom the was afterwards opposed or alliedNorth. Fox, Shelburne, Windham, Grey. Wellesley, Grenville, Sheridan, Canning-went through the training of great public schools. Lord Chatham had himself been a distinguished Etonian; and it is scldom that a distinguished Etonian forgets has obligations to Eton. But William's infirmities required a vigilance and tenderness such as could be found only at homa He was therelone bred under the petemal roof. His utudits were superintended by a clergyman named Wilson; and those
sludies, though often interrupted hy illness, were prosecuted with extraordinary success. He was sent; towards the close of the year 1773 . to Pembroke Hall, in the university of Cambridge. The governor to whom the direction of William's scademical life was confided was a bachelor of arts named Pretyman, who had been senior wrangler in the preceding year, and, who though not a man of prepossessing appearance or hrilliant parts, was eminently acute and laborious, a sound acholar, and an excellent geometrician. A close and lasting friendship sprang up between the pair. The disciple was able, before he completed his twenty-eighth year, to make his preceptor hishop of Lincoln and dcan of St Paul's, and the preceptor showed his gratitude hy writing a life of the disciple, which enjoys the distinction of being the worst hiographical work of its size in the world. Plit, till he graduated, had scarcely one acquaintance, attended chapel regularly morning and evening, dined every day in hall, and never went to a single evening party. At seventeen he was admilted, after the fastion of those times, hy right of hirth, without any examination, to the degree of master of arts. But he continued during some years to reside at college, and to apply himself vigorously, under Pretyman's direction, to the studies of the place, while mixing freely in the best academic socisty.
The stock of learning which Pitt laid in during this part of bis life was certainly very extraordinary. The work in which be took the greateat delight was Newton's Principia. His liking for mathematics, indeed, amounted to a passion, which, in the optnion of his instructors, themselves distinguished mathematicians, required to be checked rather than encouraged. Nor was the youth's proficiency in classical learning less remarkable. In one respect, indeed, he appeared to disadvantage when compared with even second-rate and third-rate men from puhlic schoots. He had never, while under Wilson's care, been in the habit of composing in the ancient languages; and he therefore pever acquired the knack of versification. It would have been uteerly out of his power to produce such charming elegiace lines as those in which Wellesley hade farcwell to Eton. or such Virgilian hexumeters as those in which Canning described the pilgrimage to Mecca. But it may be doubted whether any scholar has ever, at twenty, had a more solid and profound knowiedge of the two great tongues of the old civilized world. He had set his heart on being intimately acquainted with all the extant poetry of Greece, and was not satisfied till he had mastered Lycophron's Cassandra.
To modern literature Pitt paid comparatively little attention. He knew no living language except French; and French he knew very imperfectly. With a few of the best English writers be was intimate, particularly with Shakespeare and Milton. The debate in Pandemonium was, as it well deserved to be, one of his favourite passages; and his early friends used to talk, long after his death, of the just emphasis and the melodious cadence with which they had heard him recite the incomparable speech of Belial. He had indeed been carefully trained Irom infancy in the art of managing his voice, a voice naturally clear and deeptoned. At a later period the wits of Brookes's, irritated hy observing, night after night, bow powerfully Pitt's sonorous elocution fascinated the rows of country gentlemen, reproached him with having been "taught hy his dad on a stool"
His education, indeed, was well adapted to form a great parliamentary speaker. The classical studies of Pitt had the effert of enriching his English vocabulary, and of making him wonderiully expert in the art of constructing correct English sentences. His practice was to look over a page or two of a Greck or Latin author, to make himself master of the meaning, and then to read the passage straight lorward into his own language. This practice, begun under his first teacher Wilson,
[i George Pretyman ($1730-1827$) was senior wrangler in 1772 . In 8803 on falling heir to a large eslate, be assumed the name of TomEne From Lincoln, to which see be had been elevated in 1787 . he was translated to Winchesser in 1820 . Tomline. to whom Pitt when dyine had bequeathed his paperse, pubbished his Mowoiss of Lif) of William Piil (down to the clowe of 1792) in r821 (3 vols. Exol.]
whe continued under Pretyman, Of all the remmine of amiapuity, the orations were those on which he bestowed the post minute examination. His favourite employment was to compare harangues on opposite sides of the same question, to analyse them, and to observe which of the arguments of the first speaker were refuted by the scoond, which were evaded, and which were left untouched. Nor was' it only in books that he at this time studied the art of parliamentary lencing. When he was at home he had frequent opportunitics of hearing important debates at Westminster; and he heard them, not only with interest and enjoyment, but with close scientifc attention. On one of these occasions Pitt, a youth whose abilities were as yet known only to his own family and to a small knot of college friends, was introduced on the steps of the throne in the House of Lords to Fox, his senior hy deven yeart, who was already the greatest debuter, and one of the greatest orators, that had appeared in England. Fox used afterwards to relate that, as the discussion procceded, Pitt repeatedly turned to him, and anid. "But surely, Mr Fox, that might be met thus," or "Yes; hut he lays himself open to this retort." What the particular criticisms were Fox had forgotten; but he said that he was much struck at the time by the precocity of a lad who, through the whole sitting, seemed to be ibinking only how all the speeches on both sides could be answered.

He had not quite completed his nineteenth year when, on the 7 th of April 1778 , he attended bis Iather to Westminster. A great debate was expected. It was known that France had recognized the independence of the United States. The duke of Richmond was about to doclare his opinion that all thought of suhjugating those states ought to be relinquished. Cha:ham had always maintained that the resistance of the colories to the mother country was justifiahle. But he conceived, very erroneously, that on the day on which their independence should be acknowledged the greatness of England would be at an end. Though sinking under the weight of years and infirmities, he determined, in spite of the entreaties of his family, to be in his place. His son supported him to a seat. The excitement and exertion were 100 much for the old man. In the very act of addressing the peers, he felt back in convulsions. A few weeks later his corpse was borne, with gloomy pomp, from the Painted Chamber to the Abbey. The favourite child and namesake of the deceased statesman followed the coffin as chief mourner, and saw it deposited in the transept where his own was destined to lie. His elder brother, now earl of Chatham, had means sufficient, and barely sufficient, to support the digxity of the peerage. The other members of the family were poorly provided for, William had litte more than $\{300$ a year. It was necessary for him to follow a profession. He bad already begun to "eat his terms." In the spring of 1780 he came of age. He then quitted Cambridge, was called to the bar, took chambers in Lincoln's Inn, and joined the western circuit. In the autumn of that year a general clection wook place; and he offered himself as a candidate for the university; but he was at the bottom of the poll. He was, however, at the request of an hereditary friend, the duke of Rutland, brought inso parliament hy Sir James Lowther for the horough of Appleby.
The dangers of the country were at that time such as might well have disturbed even a constant mind. Army after army had been sent in vain agninst the rebellious colonists of North America. Meanwhile the house of Bourbon, bumbled to the dust a few years before by the genius
and vigour of Chatham, had scized the opportunity of revenge. France and Spain had united against Eagland, and had recently been joined hy Holland. The command of the Mediterrancan had been for a time lost. The British flag had boen scarcely ahle to maintain iself in the Brisish Channel. The northern powers professed neutrality; hut their peutrality had a menacing aspect. In the East, Hyder Ali had descended on the Carnatic, had destroyed the little army of Baillie, and had sprend terror even to the ramparts of Fort St George. The discontents of Ireland threatened nothing less than civil war. In England the authority of Lord North's government had sunk to the
lowest point. The king and the House of Commons were elike unpopular. The cry for parliamentary yeform was scarcely less loud and vehement than afterwards in 2830 .
The Opposicion consisted of two parties which had ance been hostile to each other, but at this conjuneture seemed to act together with cordiality. The lurger of these parties consisced of the great body of the Whig aristocracy, headed by Charles, marquess of Rockingham. In the House of Commons the adherents of Rockingham were led by Fox, whose dissupated habits and rained fortunes were the talk of tbe whole town, hut whose commanding genius, and whose sweet, generous and affectionate disposition, extorted the admiration and love of those who most lamented the errors of his private life. Burke, superior to Fox in largeness of comprehension, in extent of knowledge, and in splendour of imagination, but less skilled in that kind of logic and in that kind of rhetoric which convince and persuade great assemblies, was willing to be the lieutenant of a young chief who might have been his son. A smaller section of the Opposition wals composed of the old followers of Chat ham. At there head was Williana, earl of Shelburne, distinguished both as a statesman and as a lover of science and letters. With hum were leagued Lord Camenen, who had formorly held the Great Seal, and whose integrity, ability and constitutional knowledge commanded the public respect; Barrt, an cloquent and acrimonious declaimer; and Dunning, who had tong held the first place at the Eagliah bas. It was to this party that Pitl was naturally atracted.
On the 26th of February 1781 be made his first speech in fevour of Burke's plan of economical reform. Fox stood up at the same moment, but instantly gave way. The lofty yet animated deportment of the young member, his perfect selfpossession, the readiness with which he replied to the orators who had preceded him, the silver tones of his vaice, the perfect structure of his unpremeditated sentences, astonished end dalighted his hearers. Burke, moved even to tears, exchaimed, "It is not a chip of the old hlock; it is the old block itself." " Pitt will be ane of the first men in parliament," said a member of the Opponition to Fox. "He is so already," answered Fax, in whose nature envy had no place. Soon after this debaie Pitt's narge was put up by Fox at Brookes's Clab. On two subsequent occacions during that sescion Pitt addressed the bouse, and on both fully sustained the reputation which be had scquited on his first appearance. In the sumamer, after the prorogation, be again wedt the western circuit, held several briefs, and acquitted himeclf in asch a manner that he was highly complimented by Buller from the bench, and by Dunning at the bar.

On the afth of November the parliament reassembied. Only forty-eight hours before had arrived tidings of the surrender of Cornwallis and his army. In the debato on the report of the address Pitt spoke with even more energy and brillinncy thas on any former occusion. He was vearmly applauded by his allies; but if was remarked that no person on his own side of the house was so loud in eulogy as Henry Dundas, the lord advocate of Scotland, who spoke from the ministerial ranks. From that night dates his connexion with Pitt, a connexion which soon became a close intimacy, and which hasted till it was dimolved by death. About a fortnight later Pitt spoke in the committee of aupply on the army estimates. Symptoms of dissension had begun to appear on the treasury bench. Lord George Germaina, the accretary of state who was especially charged with the direction of the wer in America, had beld language not easily to be receaciled with declarations made by the first lord of the treasury. Pitt uoticed the discrepancy with much force and keenneas. Lord George and Lord North began to whisper together; and Welboce Eidia, an ancient pheceman who had been drawing salary almost every quarter since the deys of Henty Pelham, bent down between them to pat in a word. Such interruptions sometimes dipcompose vetcran spenkers. Pitt stopped, and, booking at the group, said with admirable readinesk, "I shall waic till Nestor has composed the dispute between Agamernnon end Achilles." After several defeats, or victories hardly to be
diatinguished from defeate, the ministry raigued. The king reluctantly and ungraciously, consented to accept Rockingham an first minister. Fox and Shelburne became secretarics of state. Lord John Cavendish, one of the most upright and honourable of men, was made chancellor of the exchequer. Thurlow, whose abilities and force of character had made him the dictator of the House of Lards, continued to hold the Great Seal. To Pitt was offerod, through Shelburne, the vicc-treasurership of Ircland, one of the casiest and most highly paid places in the gift of the Crown, hut the offer was without hesitation declined. The young statcsman had resolved to accept no post which did not entitle him to a seat in the cabinct, and a few days later (March 1782) he angounced that resolution in the House of Commons.

Pitt gave a general support to the administration of Rockingham, but omitled, in the meantime, no opportunity of courting that ultra-Whig party which the persecution of Wilkes and the Middlesex elcelion had called into existence, and which the disastrous events of the war, and the triumph of republican principles in America, had made lormidable both in numbers and in temper. He supported a motion for shortening the duration of parliaments. He made a motion for a commitlee to examine into the state of the representation, and, in the speech (May 7, 1782) by which that motion was introduced, avowed himsclf the enemy of tho close boroughs, the strongholds of that corruption 20 which be attributed all the calamities of the nation, and which, as be phrased it in one of those exact and sononous sentences of which he had a boundless command, had grown with the growth of England and strengthened with ber strength, but had not diminished with ber diminution or decayed with her decay. On this occasion be was supported by Fox. The motion was lost by only twenty voles in a house of more than three hundred members. The Reformers never again had so good a divison till the year 183n.

The new administration was stroag in abilities, and was more popular than any administration which had held office since the first year of George III., but was hated by tho king, hesitatiogly supported by the parliament, ontres. and torn hy internal dissensions. It was all that Rockiogham could do to keep the peace in his cabinet; and before the cahinet had existed three months Rockingham died. In an instant all was confusion. The adherents of the deceased statesman looked on the duke of Portland as their chiof. The king placed Shelburne at the head of the treamury. Fox, Lord John Cavendish, and Burke immediately resigned their officen; and tho new prime minister was left to constitute a gavamment out of very defective materials. It Whas necessary to find some member of the House of Commons who could confront the great orators of the Opposition; and Pitt alone had the eloquence and the courage which were required. He was offered the great place of chancellor of the exchequer and he accepted it (July 1782). He had scarcely completed his twenty-chird year.
The parliament was speedily prorogued. During the recess a negotiation for peace which had been commenced undor Rockingham was brought to a successful termination. England acknowledged the independence of her revolled colonies; and she ceded to her European enemies some places in the Mediterranean and in the Gulf of Mexico. But the terms which she obtained were quite as advantageous and honourable as the events of the war entiled her to expect, or as she was likely to obtain by persevering in a contest against immense odds. There is not the alightest reason to believe that Fox, if be had romained in office; would have hesitated one moment about conclnding a treaty on such conditions. Unbappily Foz was, at this crisis, harried by his passions into an error which made his genius and his virtues, during a long course of years, almost useless to his country. He saw that the great body of the House of Commons was divided into three parties-his own, that of North, and that of Sbelburne; that none of those three parties whs large encugb to stend alone; that, therefore, unless two of them united there must be a miserably feeble administration,
or, more probably, a rapid succession of misertably fechle administrations, and this at a time when a strong governmeat was essential to the prosperity and respectiobility of the nation. It was then necessary and right thet there should be a coalition. To every possible coalition there were objections. But of ill possible coalitions that to which there wre the fewest objections was undouhtedty a coalition between Shethurne and Fox. It would have been generally applauded hy the followers of both. It might have been made without any sacrifice of public principle on the part of either. Unhappily, recent hickerings had left in the mind of Fox a profound dislike and distrust of Shelburne. Pilt attempted $t o$ mediate, and was aththorized to invite Fox to return to the service of the Crown. "Is Lord Shelburne," said Fox, "to remain prime minister?" Pitt answered in the affirmative. "It is impossible that I can act under him," suid Fox. "Then negotiation is at an end," said Pitt; "for I cannot betray him." Thus the two statesmen parted. They were never again in a private room together. As Fox and his friends would not treat with Shelburne, nothing remained to them but to treat with North. Thet fatal coaftion which is emphatically called "The Coalition" was formed. Not threequarters of a year had elapsed since Fox and Burke had threat ${ }^{2}$ ened North writh impeachment, and had described him night after night as the most arbitrary, the most corrupt, and the mosi年capable of ministers. They now allied themselves with him for the purpose of driving.from office a statesman with whom they cannot be suid to have differed as to anyimportant question. Nor had they even the prudence and the patience to wait for fome occasion on whicb they might, without inconsistency, have combined with their old enemies in opposition to the government. That nothing might be wanting to the scandal, the great orators who had, during seven years, thundered against the war determined to join with the authors of that war in passing a vote of censure on the peate.

The parifiment met before Christmas 1782. But it was not till January $\mathbf{2 7 8 3}$ that the preliminary treaties were aigned. On the rith of February they were taken into consideration by the. House of Commons. There had been, during some days, foating remours that For and North had coalesced; and the debate indicated but too clearly that those rumours were not unfornded. Fitt was suffering from indisposition the did not rise till his own strength and that of his hearers were exhausted; End he was consequently less successful than on any former occasion. His admirers owned that his speech was feetbe and petutatht. He so far forgot himself as to advise Sheridan to confite himseff to amusing theatrical audiences. This ignoble sarcasm gave Sheridan an opportundey of retorting with great teficity." "After what I have seen and heard to-night," he taid, "I really feel strongly tempted to venture on a competition with so great an artist as Ben Jonson, and to bring on the stage e second Angry Boy. "On a division, the address proposed by the supporters of the government was rejected by a majority of sixteen. But Pitt was not a man to be disheartened by a fingle failure, or to be put down by the most lively repartee. When, a few days later, the Opposition proposed a resolution directly censuring the treaties, he spoke with an eloquence, energy and dignity which raised his fame and popolarity higher than ever. To the coalition of Fox and North he alluded in language which drew forth tumultuots applause from his followers. "If," he said, "this ill-omened and unnatural marriage be not yet consummated, I know of a just and lawful impediment; and, in the name of the puhlic weal, I forbid the banns." The ministers were again left in a minority, and Shelhurne consequently tendered his resigigation (March 31, 1783). It was accepted; hut the king struggled long and hand before he suhmitted to the terms dictated by Fox, whose faults 'he detested, and whose high spirit and powerful intellect be detested still more. The first place tht the board of treasury was repeatedly offered to Pite; but the offer, though tempting, was steadiastly declined. The king, bitterly complaining of Prtt's faintheartedness, tried to break the conifion. Every art of teduction was practived on hiorth, but in vein. During
several weeks the corintry remained without a government. It was not till all devices had failed, and till the aspect of the House of Commons became threatening, that the ling gave way. The duke of Portland was' deciared first lord of the treabury. Thuriow was dismissed. Fox and North became secretaries of state, writh power ostensibly equal. But Fot was the real prime minister. The year was far advanced before the new arrangements were completed; and nothing very important was done during the remainder of the session. Pitt, now seated on the Opposition Bench, hrought the question of parfamentary reform a second time (May 7, 1783) under the consideration of the Commons. He proposed to add to the house at once a hundred county members and several members for metropobitan districts, and to ensct that every borough of which an clection committee should report that the majority of voters appeared to be corrupt should lose the franchise. The motion wras rejected by 293 votes to 249.

After the prorogation Hitt visited the Continent for the first and last time. His trovelling companion was one of his most intimate, friends, William Whilberforce. That was the time of Anglomania in France; and at Paris the son of the great Chethan was thsolutely hunted by men of letters and women of fashione and forced, much against his will, into political disputation. Onc remarkahle saying which dropped from him during thit tour has been preserved. A French gentleman expressed some surprise at the immense infurence which Fox, a man of pleasure, ruined by the dice-box and the turf, exercised over the English nation. "You have not," said Pitt, "been under the wand of the magician."

In November 1783 the parliament met again. The government had irresistitule strength in the Fouse of Commons, and seemed to be scarcely iess strong in the House of Lerds, but was, in truth, surrounded on every side by dangers. The king was impatiently waiting for the moment at which he could emancipete himself from a yoke which galled him so severely that be had more than once seriously thought of retiring to Hanover; and the king was scarcely more eaget for a change than the nation. Fox and North had committed a fatal error. They ought to have known that coalitions between parties which have long been hostile can succeed only when the wish for coalition pervades tbe lower raniss of both. At the beginning of 1783 North had been the recognized head of the old Tory party, which, though for a moment prostrated by the fiaserous issue of the Amerfcan war, was still a great power in the etete. Fox had, on the other hand, been the idol of the Whigs, and af the whole body of Protestant disienters. Thecoatition at onco alienated the most zealous Tories from North and the most zenlous Whigs from Fox. Two great multitudes wore at once left without any head, and both al once inrned their tyes on Pitt. One party saw in him the only man who could rescue the king: the other saw in him the only man who could purify the partie. ment. He was supported on one side by Archbishop Marthas, che preacher of divine right, and by Jenkinson, the captain el the pratorian band of the kin's's friends; on the other side Dy Jebb and Priestley, Sawbridge and Cartwight, Jack Wilkes and Horne Tooke. On the benches of the Towse of Commons; however, the ranks of the ministerial majority were umbroken; and that any statesman would venture to brave such a manjocity was thought impoasible. No prince of the Hanoverinn bine had ever, under any provocation, ventured to appeal from she representative body to the constituent body. The mindenter, therefore, notwithetanding the sullen looks and mutterad wonds of displeasure with whilch their sugetestions wero reccived in the closet, notwithistanding the roar of obloqay which wrats rising louder and louder every day from evarycomer of the lalond, thought themelves erecure. Such was their confidence to thetr strength that, as soon'as the parhirnont had met, they broughe. forward a singularly boid and ortrinal plan for the gowemment of the Britich teritorias in Indin. What wesp proposed in Ports India bill was that the whole anthority which till that time had been extercised over thone torritories by the East Endia Compawy. should be transferred to seven commisuionos, who rute to be
mamed by pardiament; and were mot to be rembvable at the pleasure of the Crown. Eard Fitawilliam, the moat intimate personal friend of Poz, was to be chairman of this board, and the eldeat: con of North ans to be one of the members.

As coon as the outlines of the scheme were known all the batred which the coelition had excited burst forth with an Mex'a mein astounding explosion. Burke, who, whether right pax. or whong in the conchutions to which ho came, had at lenet the marit of booking at the subject in the sight point of view, vainly reminded his heasess of that mighty population. whoec daily rice might depend on a vole of the Britich parliament. He spoke with ever more thas hin wonted power of thought and lenguage, albaut the desolation of Rohilcund, about the spoliation of Benases, about tho ovil policy which had suffered the tanks of the Carnatic to go to ruin; but he could scarcely obtain a bearing. The coatending partien to their shamen it must be gaid, would listen to none but Buglish topics Out of doars the cry againat the ministry was almost universal. Town and conntry wete united. Corporztions exclainied against the violntion of the charter of the greatest corporation in the realpa. Tories and demoerats joined in prosouncing the proposed board an unconstitutional body. It was to concist of For's nominees. The effoct of his bill wens to give, pat to the Crown, but to him personally, whelber in offict or in opposition, an enormons power, a patronage aufficient to counterbalance the petronage of the treasury and of the admimity, and to decide the elections for fifty boroughs. He knew, it was said, that he was hateful alike to king and people; and he had devised a plan which woutd make him independent of boch. Some micknamed him Cromwell, and some Cado Xhan. Wilberforce, with hls usual felicity of exptcssion, and with very unusual bitterness of fecling, described the scheme as the genuine offspoing of the conalition, ws marked with the features of both its parents, the corruption of one and the-violance of the other. In apite of all opposition, however, the bill was supported in every stage by grent majoritics, was rapidly pased, and was sent up to the Lords. To the ganeral stoninhment, whep the second reading was moved in the upper boume, the Oppoaition proposed as adjournment, and curried it by eighty-geven votes to seventy-nine. The cause of thin strange turn of fortune was soon known. Pist's cousin Eard Tempio, had been in the royal clocee, and had there been acthorized to let it be known that his majesty woruld comsider all who vated for tho bill ais his chtemies. The iganminious comminion wis performed, and instantly a troop of lords of the bedclamber, of bishops who wished to be translated, and pite of Scotch peers who wished to be re-elected, mada entanterer baste to change sides. On a later day the Lords H70. rejected the bill Fox and North were immediately directed to send their seals to the palace by their under-secresearies; and Pitt was appointed first lord of the treasury and chancellor of the exchequer (December 1783).

The gencral opinion was that there would be an immediate dramolution. But Pitt wisely determined to give the pablic fealing time to gather strength. On this point he differed from his kinaman Temple The consequence was that Temple, who had been appointed one of the secretaries of state, resigned his affice forty-eight hours after be had accepted in, and thas relieved the netur government from a great load of umpopalacity; for all men of sense and honour, however strong might be their dislike of the India Bill, disepproved of the manner in which that bill had been thrown out. The fame of the young pritwo minister preserved its whiteness. He could deciare with perfect truxh that, if unconstitutional machinations had boen employed, he Ind been no party to them.

He was, however, surrounded by difficulcies and dangers, In the House of Lords, indeed, he had a majocity; nor could atzy orator of the Opposition in that assembly be considered as a pastch for Thurlow, who was now again chancellor, or for Camden, who cordially supported the son of his old Iriend Chatham. But in the other house there was not a single eminent speaker among the official men who sat round Pitt. His most meful
ancintunt wis Dands, wha, though he had not toppesce, had sense, bnowledie, rendiness and boldness. On the opposite benches was a powerful majority, led by Fox, who was supported by Burke, North and Sberican. The heart of the young miniter, stout as it was, almont died within him. But, whatever his internal emotions might bo, his language and deportment indicated nothing but unconquernble frompess and haughty confidence in this own powess. His contest sainat the House of Commons lested from the 17 th of December 1783 to the 8 th of March 1784. In sixteen divitions the Opposition triumphed Again and agnin the kimg was requested to diamias his minioters; brat he was determined to go to Germany rather than yield. Pitt's resolution never wavered, The cry of the nation in his favour bocame vehement and almont furions Addresses arsuring him of public support came up daily frow every part of the kingdom. The freedom of the city of London was presented to him in a gold box. He was samptuously feasted in Grocers' Hall; and the shopkeepers of the Stand and Fleet Street illminated their honses in his honovr. These things could not but produce an effect within the walls of parliament. The ranke of the majorlty began to waver; a few pasced over to the enemy; some akulked away; many were for capitulating whlle it mas still possible to capitwate with the honotus of war. Negotiations were opened with the view of forming an admindtration on a wide basis, but they had ectrcely bean opened when they were cloed. The Opposition demanded, as a prelliminary article of the treaty, that Pitt should resign the treasury; and with this domand Pitt steadfastly reiused to comply. While the conlest wat raging, the clarkship of the Polls, a slinecure placi for life, worth three thousand a jear, and terable whi a seat in the House of Commoas, became vacant. The appointment wow with the chancellor of the exchequer; nobody doubted that be would appoint himself, and nobody could have blamed hint if he had done so; for such anocure offices had always been defended on the groand that they enabied a few mea of eminent abilities and small incomes to live without any profeasion, and to devote chemselves to the service of the state. Pitt, in spite of the remonstrances of his fricods, gave the Pells to him father's old adherent, Colonel Barre, a man distinguished by talent and eloquence, but poor and afficted with blindness. By this arrangement a pension which the Rockingham Edministration had grented to Barre was saved to the public. Pitt bad his reward. No minister was evcr more rancorously libelled; bet even when ha wis known to be overwhelmed with debt, wheh millions were peasing through his hands, when the wealthiest magnates of the realm were moliciting him for marquisates and garters, his bitterest enemias did not dare to accuse bim of touching unlawful gian.

At length the hard-fought fight ended. A final remons strance. drawn up by Burke with admirable skill, was carried 00 the 8 th of March by a single vote in a full house. The supplies had been voted; the Mutiny Bill had been passed; and the parliament was disolved. The popular consthuent bodies all over the country were ln general enthusiastic on the side of the new goverament. A hundred and sixty of the supporters of the coalition lost their seats. The first lord of the treasury himsolf came in at tho hoed of the poll for the university of Cambridge. Wilbesforce was elected kmight of the great shire of York, in opposition to the whole infuence of the Bitwwilliamen, Cavendishes, Duadases and Saviles. In the midst of suich triumplis' Pitl completed his iwenty-fifth year. He was now the greatest subject that England had seen durint many gencrationss He dominected aboolutely over the cabinet, and was the favourite at once of the sovereign, of the parliament and of the nation. His father had never been so powerful, not? Walpole, nor Mariboecough.

Pitt's first-administration (1784-180r) lasted seventeen yeark That long peniod is divided by a strongly marked line into two abmost exactly equal parts. The first part pwes mint ended and the seooad began in the autaron of 1792. Adminver. Throughout both parts Pitt dieplayed in the highest froliom. degree the talemts of a pariamertery leader. Dering the fint

 the whole nation, his opponents incladed, that a new sinking

 opprebemsions were generally entertained that the public debt,
though much loss than a thind of the debt which wre now bear
 The eight years which ionowed the genaral eiection of 1784
mistery of England. Her trade incressed. Her manufactures

药最
 parxop the master wom be served, the univesity witit be repestade

 14q pantumit

 ${ }^{\text {Pr }}$

author of the first coalition, znow notining of his character or of his history. So far was he from being a deadly enomy to France that his lsudable attempts to bring about a eloser connenion with that coontry by means of a wise and libieral treaty of commerce brought on him the severe censure of the Opposition. He wis told in the Eouse of Commons that he was a degencrate son, and that his partiality for the hereditary foes of our island mas enough to make his great father's bones atir under the paverient of the Abbey.

And this man, whope name, if he had been so fortunate as to die in 1792, woutd have been associated with pance, with free: dom, with philanthropy, with temperate reform; with mild and constitutional administration, Hved to associate his name with irbitrary government, with harsh lims harshly executed, with alien bilis, with gagging bilh, whe suspensions of the Habeas Corpus Act, with cruel punishments inficted on some political agitators, with unjustifable provecutions instigated against others and witb the most contly and most sanguinary wars of modern times. Hie lived to be held up to obloquy as the stern oppressor of England and the indefatigable disturber of Earope. Poets, contrasting his earlier with his later yearm, likened him sometimes to the apostle who kissed in order to betray, and sometimes to the evil angels tho kept' not their first estate. By the French press and the French tribuse every crime that disgraced and every calamity that afficted France was ascribed to the monster Pitt and his guineas. Whale the Jacobins were dominant it was he who had corrupted the Gironde, who had raised Lyons and Bordeaiax against the Convention, who hid suborned Paris to astassinate Lepelletier, and Cecilla Regnault to amasinate Robespierre. When the Thermidorian reaction came, all the atrocities of the Reign of Tetror were imputed to him. Collot D'Herbois and Fouquie Tinville had been his pensioners. It was he who had hired the merrderers of September, who had dictated the pamphlets of Marat and the carmagnoles of Barere, who had paid Leton to deluge Arras with blood and Carrier to choke the Loire with corpses. The truth is that he fiked neither war nor arbitrary government. He wat a lower of peace and freedom, drivetn, by a strese agaduse which it was hardly possibie for any will or any invellect to struggte, ont of the course to which bis melinations potnted, and for which bis abilities and acquirements fitted him, and forced into an policy repugnant to his feelings and unsuited to hin talents.

Between the spring of 1789 and the close of 3798 the publite mind of England underwent a great change. If the change of Pitt's sentiments attricted peculiar notica, it was bot because he changed more than his reighboars, for in fact he changed less tban most of them, but because his position was fare mort conspicuous than theirs, because he was, till Bonaparte appeared, the individual who filled the greatest spece in the eyes of the inhabitants of the civilized world. During a short time the nation, and Pitt as one of the nation; kooked witb inkerest and approbation on the French Revolution. But soon vast confiacations, the violent sweeping away of ancient institutions, the domination of clubs, the barbarities of moles maddened by famine and hatred, produced a reaction. The court, the nobility, the gentry, the clergy, the manufacturers, the merchants, in short nineteen-twentieths of those who had good roofs over their heads and good coats on their backs, became eager intolerant Antijacobins. This feeiling was at least as strong among the minister's adversaries as among his supporters. For in vain attempted to restrain his followers. All his genius, all his vast personal influence, could not prevert them from rising up against hitn in general mutiay. Burke set the example of revolt; and Burke was in no long time joined by Portland, Spencer, Fit:wilham, Loughborough, Carlisie, Malmestrary, Windham, Elliot. In the House of Commons the followers of the great Whig statesman and orator diminished from about a bundred and sirfy to fifty. In the House of Lords he had but ten or twelve adherents left. There can be no doubt that there would have been a similar mutiny on the miniakerfal benches if Pitt had obstinatcly zesisted the general wish. Pressed at once hy his master-and by his celleagues, by old friends and by old.
opponentis; he sbesionad, clowly and reluctantly, the policy which was dear to his heart. Fe leboured hard to avert the European war. When the European war broke out he still flettered himself that it would not be necessary for this country to tske either side. In the apring of 1792 be congralalated the parliament on the prompect of long and profound peace, and proved bis sincerity by propolins large remissions of taxation. Down to the end of that year he continued to cherish the hope that Englend might be able to preserve neutrality. But the pastions which raged on both sides of the Chamel were not.to be restrained. Tho repubticans who ruled France were fuffarned by a fanaticimm resembling that of the Mussulmans, who, with the Koran in one hand and the sword in the other, went forth conquering and converting, eastward to the Bay of Bengal, and westward to the Pillars of Hercules. The higher and middle classes of England were animated by zeal not less fery than that of the crusaders who raised the ery of Deus oult at Clermont. The impulee which drove the two nations to a collision was not to be arrested by the abilities or by the authority of any siaple man. As Pitt was in front of his fellows, and towerad. high above them, he reemed, to lead them. But in fact he was violently pusbed on by them, and, had he held back but a little more than be did, would have been thrust out of their way or tranmpled under their foet.

He ylelded to the current; and from that day his misfortunes began. The truth is that there were only two consistent courict before him. Since be did not choose to oppose himself, side by side with Fox, to the public feeling, Purs wot be should have taken the advice of Burke, and ahould Payy.
have availed himself of that feeling to the full extent. If it Trat lmpossible to preserve peace, he should have adopted the only policy which should lead to victory. He should have proclaimed a holy war for religion, morality, property, order, peblic law, and should have tbus opposed to the Jacobins an entrgy equal to their own. Uuhappily he tried to find a middle patb; and he found one which united all that was worst in both extreases. He went to war; bat be could not understand the peculiar character of that war. He was obstinately blind to the phain fact that he was contending against it state wbich whs also a sect, and that a mew quarrel between England and France was of quite a different kind from the oild quarrels about colonies in Amerlos and fortresses in the Netherlands. It was pitiable to hear him, year after year, proving to an admiring audience that the wieked republic was exhausted, that she could not hold out, that ber credit was gone, that ber assignats were not worth noiore than the paper of which they were made-as if credit wat inecessary to a government of which the principle was rapine, as if Alboin could not turn Italy into a desert till he had negotiated a loan at 5%, if the exchequer bills of Attile had been at par. It was impossible that a man who so completely mistopk the nature of a contest could carry on that contest successfully. Great as Pitt's abilities were, his military idministration was that of a driveller. In such an emergency, and with socb means, such a statesman as Richelieu, as Louvois, as Chatham, as Wellesley, would have created in a few months one of the finest armies in the world, and would soon have discovered and brought forward generals wortby to command such an army. Germany might have been saved by another Blenheim; Flanders recovered by anotber Ramillies; another Poitiers might have delivered the Royalist and Catholic provinces of Frince from a yoke which they abhorred, and might have spread terror even to the barriers of Paris. But the fabt is that, after eigbe yeari of war, after a vast destruction of life, after an expenditure of wealth lar exceeding the expenditure of the American War, of the Seven Years' War, of the War of the Austrian Succession and of the War of the Spanish Succession united, the English army under Pitt was the laughing-stock of all Errope. It could not boast of one single brilliant exploit. It had never shown itself on the Continent but to be beaten, chased, forced to re-embark or forced to capitulate. To take some sugar island in the West Indics, to scatter some mob of hali-naked Irish pemante-such were the most spleadid victorios

WILLIAM

 O grant a poblic maintenance to the Roman Catholic coery, univen would have been a union indeed. But Pitt could execute only one-hall of what he had projected. He succeeded in ohysin. ing the consent of the parliaments of both kingdons to the the union could exist only in manes man mot acoomplished The king imaginod-that his coronation oath boond him to
rfuse his asment to any bill for relieving Roman Cutholics from civil diabilities. Dundas tsiad to explain the matter, but was
dold to kecp his Scotch metephysics to himself. Pitt and Piu's told to keep his Scotch metaphysics to himsell. Pist and Pitl

 the discharge of his functions. He ectually messembled bis (amily, read the coronation outh to them, and told them that) if he broke it, the crown mould immodiately pass to the hous
of Savoy. It, nos.not until after an interremum of several

 we pre-eminently fruitul of paribameatery talooks, a cancina talente could be considerod as even of the second rate. Henry
Addingten was st the head of the treteury. He had heen an
 3 $-2-2=$
 1 Tumaw $t=5$ 3 4 $=2=2$
 ing out of the nuims of old institutions an ecclesiantict

 abitity mass de set, of hithe comseruencer; for be had carrebl

On Pitt the minitem relied. .an on their trusest cuppart 1
 1

 days of fasing, end mose emphatioally of humiination, wa inter, mannksyining for great vicionio. chowed in all that related to the conduct of the warf in, in cetraardimary abilitice Yet this is the simple truth. While hio chemess were conioundec, wiuc him predictions wew人man y enormous cose were ending in rowe nad miextice, wins iubjugeting

 There were tise victorios hiie Iodid and hise Arole his Rivole

 poovro evil which be wibbed to suppres, be put dome Enedish

 mere suppeced of eril deaigss; and that power mas not eubated monerchy and nistocracy were proseribed and pumished vith-
 Burcosexion of governments hatd suffered to ruxt were mit
 moold bave beent treated as mese mividenembutur; want to perd

 Romene Cetbolico werc, rather by th mincortune then by his

to hin own merit, and conshdered Minsulf as we of the grat triumvirate of English statemmen, as worthy to make a third with Pitk and Foa. Meanwhite Pitt's mont intimate triends exerted themselves to effect a change of ministry. His favourite disciple, George Caming, was indefatiguble. He spokerhe wrote; be intrigued; be tried to induce a large number of the supporters of the government to slam a mound robin desirfins a change; he made same of Addington and of Addington's relations In a succestion of Hvely pasquinades. The minister's partisans reiortod with equal acrimory, if pot with eqeal vifactey, Pitt coudd keep out of the affray oaly by keeping out of poitics altogether; and this it socn became imponable for him to do. The treaty of Armiens had scarcely been ilgned when the restle. arabition and the inmupportable insolence of the First Consul convinced the great body of the English people that the peace $s 0$ eagerly welcomed was only a precarious armistica. As it became clearer and clearer that a war for the dignity, the independence, the very exiatence of the nation was at hand, men looked with increasing unessiness on the weak and languld cabinet which would have to contend ageinst an enemy who united move than the power of Loud the Great to more than the genias of Frederick the Groet. They lmagined that Pitt was the only etetesman whe could cope with Bomaparte. This feeling was nowhere atronger than among Aderayton's own colleagues. The preasure patt on him was wo strong that he could not help yielding to it. His first proposition was that some insignificant noblaman should be fists lord of the treasury and nominal head of the admindaration, and that the reat power chould be divided between Pitt and simself, who were to be -aecretarios of state. Pitt, as might have been expected, refoeed even to dificuss such a scheme, and talked of it with bitter mirth. "Which secretaryship wes offered to youp" his friend Wilbero force anked. "Really," sald Pitt," I had not the cariosity to inquire." Addington was frightened into biddeng blgher. Hie offered to resign the treagury to Fitt on condition that there should be no entensive change in the governnsent. But Pita would listen to no sach tertins. Ther cene a dispote suck 3 often arises after negotiations orally conducted, over when the megotiators are mon of etrict hoaous. Pitt gave one account of what had pasced; Addington give anothar; and, though the discrepancles were not woth as mosesarily mpiled any intentional violation of truth on efther side, both were greatly exasperated.

Mreanwrile the quartel whth the First Consul had to come to a crists. On the 16th of May 8803 the king sent a metarge calling on the House of Commons to support him in withstanding the ambitious and encroeching policy of France; and on the 2 and the house took the mestage into consideration.
Pitt had now been living miny months in retirement. There had been a general election since he had spoken in parliament, and there were two hundred members who had never beard him. It was known that on this decasion he would be in his place, and curiosity was wound up to the highest point. Unfortunately, the shorthand writers were, in consequence of some mistake, shut out on that day from the gallery, so that the newspapers contained only a very meagre report of the proceadings. But everal accounts of what passed are extant; and of those accounts the most interesting is contained in an umpublished letter written by a very young member, John William Ward, afterwards eari of Dudley. When Pitt rome he was received with foud cheering. At every pause in his speech there was a hurst of applause. The peroration is said to have been one of the most animated and magnificent evor heard in parlinment. "Pitt's speech," Fox wrote a few days latef, "was admired very much, and very justly. I think it was the best he ever made in that style." The debate was adjourned;-. and on the second nighe Fox replied to it in an oration which, as the most realous Pittites were lorced to acknowledge, left the palm of eloquence doabtful. Addingtom made a pitiable appearance between the two great rivals; and it was observed that Pitt, while exhorting the Commons to stand resolutcly by the executive government againat France, gaid
 minimetr.

War was speedily dedased. The First Consal threatened to invade Eriohnd at the head of the comquerors of Belgium and Italy, and formed a great cemp. near the Straits of Dover. On the other' side of those strinis the whole British pepulation was ready to rise up as 000 men in defence of the soil. In the spring of 1804 it becume ovident that the weakeet of mivistrites Would hisve to deferid itself geginat the stringest of Opponitions, an Oppoinition made up of three Oppositione, each of which would, separstely, have been formidable from abilisy, and which, when united, were also formidable from number, It was pecesarary to give way; the ministry was dismoked, and the rask of performing a govermment was entrusted (May r8on) to Pitl. Pite was of opinion that there mase now an opportanity, such as had naver before offored itself, and such as might nevef offer foseli sgain, of uniting in the prublic zurvice, on honourable terms, in the eminent talents of the kinglom. pura The treasury he reserved for himelf; and to For swand he propowed to asagn ashare of power litele inferior athentionto his own. Tho plan was excellont; but the king them
mould not hear of it. Dull, obstinate, unforgivine, and at that time hatf mad, he pooltively refued to admit For into his secvice. In an evil hour Pitt yielded. All that was lelt was to conatruct a goverameat out of the wreck of Addiaytor's feebbe administration. The small circle of Pitt's personal retainers furnished him with a very few useful assistante, particularty Dundes (who had been created Viscount Melvilte), Lord Harcowby and Canning.

Such was the inaurpicious manner in which Pitt entered on his secood administration (May 12, 1804). The whole hiriory of that administration was of a piece with the commeacement. Almost every month brought mome new disaster or diagrace. To tho war with France was sioon added a war with Spain. The opponents of the ministry were numesous, able and active. His most useful epadjutors he soon lost. Sickness deprived him of the help of Lord Hartowby. It was discovered that Lond Malville had been gailty of bighly culpable laxity in trangactions relating to pablic money. He was censured by the Howse of Commons, daiven from office, ejected from the privy eoruxil and impeached of high crimes and misdemeanouri. The blow fell heavy on Pitt Fis difficulties coxapelled him to reacrt to various expedients. At one time Addington was persuaded to accept office with a peerage; but he brought no uddicional strength to the government. While he remalned in place he was jealous and punctilious; and he soon retired aghin. At another time Pitt renewed his efforts to overcanae his master's aversion to Fox; and it was rumoured that the king's obstinacy was gradually giving way. But, meanwhile, it was impossible for the minister to conceal from the public eye the decay of his health and the constant anxiety which grawed at his heart. All who passed him in the park, all who had interviews with him in Downing Street, saw misery written in his face. The peculiar look which he wore during the last months of his life was often pathetically described by Wilberforce, who used to call it the Austerlitx look.

Still the vigout of Pitt's intellectual faculties and the intrepid haughtiness of his spirit remained unaltered. He had staked everything on a great venture. He had succeeded in forming another mighty coalition against the French ascendancy. The united forces of Austria, Russia and England might, he hoped, opposed as insumnountable barriar to the ambition of the common enemy. But the genius and energy of Napoleon prevailed. While the English troops were preparing to embark for Cermany, while the Russian troops were slowly coming up from Poland, he, with rapidity unprecedented in modern war, moved a hundred thousand inen from the shores of the ocean to the Black Forest, and compelled a great Austrian army to surrender at Um. To the first faint rumowrs of this calamity Pitt would give no credit. He was irritated by the alarms of those around him. "Do not believe a word of it" he said; "it is all a fiction." The mext day he received a Dutch newspaper comtaining the
copímintion. Fie Incw no Dutch. It wes Sunday, and tho public offices were shut. He carried the paper to Lord Malmesbury, who had been minister in Holinnd; end Lard Malmesbury tramilated it. Pitt tried to bear up, but the shock was too great; and ho went away with death in his face.

The news of the bettle of Trafalgar arrived four days later, and seened for a moment to revive him. Porty-eight hours after that mont glorions and most monrmful of victories had boen announcod to the cometry came the Lond Mayer's Day; and Pitt dinod at Geildhall. His popularity had declined. But on this occacion the multitude, greatly excited by the meoent tidings, weleomed him enthtasiastically, took off his horses in Chespside, and drew his carrige up King Street. Whea his health wres drunk, he retumed thanks in two or three of those stately sentences of which he had a boundless command. Several of those who beard him leid up his words in their hearts; for they were the fagt words that he ever uttered in public: "Let us hope that Engiand, having saved herself by her energy, may save Europe by her example"

This was but a momentary rally. Austerlitz soon completed what Uim had begun. Early in December Pitt had retired to Bath, in the bope that he might there sather strength for the approaching sestion. While he was layguiahing there on his cofa arrived the news that a decisive batile had been fought and lost in Moravis, that the coalition was dissolved, that the Continent was at the feet of France. He senk down under the hlow. Ten days later he was 90 emaciated that his most intimate friends hardly knew him. He cane up from Batb by slow journeys, and on the IIth of Jamuary n806 reached his villa at Putney. Pariament was to meet on the arst. On the aoth was to he the perliamentery dinner at the house of the first-lord of the treasury in Downing Street; and the cards were already issued. But the days of the great minister were numbered. On the day on wbich he was caried into his bedroops at Putney, the Marquess Wellesley, whom be had long loved, whom be had sent to govern India, and whost administration had been eminently able, energetic and successfut, arrived in London after an aboence of eight years. The friends saw each otber pace more. There was an affectionate meeting and a last parting. That it was a last partins Pitt did not seem to be ewrere. He fancied himself to be recovering, talled on verious enbjects cheerfully and with an unclouded mind, and pronounced a warm and discerning eulogitm on the marquis's brother Arthtur. "I never," he said, "met with any military man with whom'it was so satisfactory to convense" The excitement and exertion of this interviev were too much for the sick man. He fainted amay; and Lord Wellesley left the boase convinced that the close was fast approaching.

And now members of pariament were fast coming up to London. The chiefs of the Opposition met for the purpose of considering the course to betaken on the firet day of the session. It was easy to guess what would be the language of the king's epeech, and of the address which would be moved in answer tothat speech. An amendment condemning the policy of the goverament had been prepared, and was to have been proposed in the House of Commons by. Lord Henry Petty (afterwards ynd marquess of Lansdowne). He vas unwilling, however, to come forward as the acenser of one who was incapable of defending himself. Lori Grenyille, who had been informed Dowh of Pitt's state by Lord Wellesiey, and had been deeply affected by it, earnestly recommended forbearnace; and Fox, with cherncteristic generosity and good mature, gave his voice ageinst attacking bis now helpless rival. "Sunt lacrymae rerum," be said, "et mentem mortalia tangbunt." On the first day, therefore, there was no debate. It was rumorred that evening that Pitt was better. But on the followIng morning his physicians pronounced that there wero no hopes. It was asserted in many after-dinnor speeches, Grub Street elegics and academic prize poems and priee declamations that the great minister died exclaiming, "Oh my country!" This is a fable, but it is true that the last words which he uttered, while le lonew what be said, wero broken exdemations sbout
 the morning of the agrd of Januny t806, the twenty-fifh anniversary of the day on which he fiest took his seat in partiarment.

It was moped in the Fouse of Compons that Pitt should be homoured with a public fuocrel and a monument. The motion was opposed by For in a apeech which deoorves to be stadied as a model of food taste and good faeling. The task whs the most invidioun that ever an ortater undertooks but it wat performed with a humanity and delicacy which mese marmly acknowledged by the mourning friends of him who was gook. The motion was catried by 288 vates to 89. The a2nd of February was fixed for the funcral. The corpec, having hin in state during iwo days in the Painted Chamber, was borme will great porap to the sorthern trinsept of the Abbey. A spleadid train of princes, nobles, bishops and privy councitlors followed. The grave of Pitt. had been made near to the spot where his great father Iay, near elso to the epot where his great rival was so0n to lio Wilberforce, who caried the banner before the heame, deweribed the afful ceremony with deep feeling As the cofia descended into the earth, be said, the eagle face of Chatham from abowe serened to boak down with constemation into the dart houte which was receiving all that remained of 90 much power and slocy.

Pitt wes emphatically the man of pardiamentary government, tbe type of his cias, the minion, the child, the epoiled child, of the Hoare of Commons. He was a dianinguished nember of the Howes of Commons at twenty-one. The ability which he bad dieplayed in the Honse of Cammons made him the mont powerful subject in Europe before be was twenty-five. It was when the Housp of Commons was to be convinced and persunded that he put forth all his powers. Of those powers we must form our estimate chiely from tradition; for, of all the eminent apeakert of that afe, Pitt has suffered most from the reporters. Bren while he was still living, critics remarked that his eloquence conld not be preserved, that he mutt be heand to be apprecisted. They moro than once applied to him the sentence in which Trecitus deacribes the fate of a seator, whoee rbetoric was udmired in the Augustan age: "Haterii canorum illod et profuem cum ipoo simul exstinctura ent." There is, bowever, abundant evidence that mature had bestoned on Pitt the talents of a great orator; and those talents had been developed in a very peculiar manner, first by his educstion, and secondly by the high officing position to which he rose early, and in which he pasoed tho greater part of his public Hife.

At his first appearance in parllament be showed himedif superior to all his contemporaries in command of language, He could pour forth a long succession of round and stately periods, without premeditation, without ever pausing for a mord, without ever repeating a wond, in a voice of ailver clearness, and with a pronunciation so articulate that not a letter was slurred over. He had less amplitude of mind and less richoes. of imagination than Burke, less ingenuity than Windham, lest wit than Sheridan, lese perfect mastery of dialectical fence and lexs of that highest sort of eloquence. which consists of rescon and passion fused together than Fox. Yet the almost unanimous judgment of thoee who were in the habit of fittening to that remarkable race of men placed Pitt, es a speaker, above Burke, above Windham, above Sheridian and not below Fox. His declamation wa copions, polished and splendid. In power of sascasm he was probably not surpassed by any spenker, ancient of modem; and of this formidable weapon he made merciless use. In two parts of the oratorical art which are of the highest value to a minister of state he was singularly expert. No man knew better how to be luminous or how to be obscure. When be wished to be understood, he never failed to make himself understood. Nothing was out of place; mothing was forgotten; minute details, dates, sums of money, were all faithfully preserved in his memory. On the other hand, when be did not wish to he explicit-and no man who is at the bend of affairs always wishes to be explicit-he had a marvellons power
of saying nothing in language which left on his audience the impression that be had said a great deal.

The effect of oratory will always to a great extent depend on the character of the orator. There perhaps never were two speakers whose eloquence bad more of what may be called the race, mose of the flavour imparted by moral qualities, than Fox and Pitt. The apeecbes of Fox owe a great part of their charm to that warmeth and softness of heart, that sympathy with haman suffering, that admiration for everything great and benutifu, and that batred of cruelty and injustice, which interest and delight us even in the most defective reports. No person, on the other hand, could hear Pitt without perceiving him to be a man of high, intrepid and commanding spirit, proudly conscious of his own rectitude and of his own intellectual superiority, incapable of the low vices of fear and envy, but too prone to feel and to show disdain. Pride, indeed, pervaded the whole man, was written in the harsh, rigid lines of his face, was marked by the way in which be walked, io which he sat, in which he slood, and above all, in which he bowed. Such pride, of course, inflicted many wounds. But his pride, though it made bin bitterly disliked by iodividuals, inspired the great body of his followes in parliament and throughout the country with ceapect and confidence. It was that of the magnanimous man so finely described by Aristotle in the Efhics, of the man who thinks himself worthy of great things, being in truth worthy. It was clonely conoected, too, with an ambition which had no mixture of low cupidity. There was something noble in the cynical disdain with which the mighty minister scattered riches and tikles to right and left among those who valued them, while he spurned them out of his way. Poor himself, he was surrounded by friends on whom be had bestowed three thousand, six thousand, ten thousand a year. Plain Mister himself, he had made more lords than any three ministers that had preceded him. The garter, for which the first dukes in the kingdori were contending, was repeatedly offered to him, and ofiered in vain.

The correctness of his private life added much to the dignity of his public character. In the relations of son, brother, uncle, master, friend, his conduct was exemplary. In the smail circle of his intimate associates he was amiable, affectionate, even playful. He indulged, indeed, somewhat too freely in wine, whith he had early been directed to take as a medicine, and which use had made a nocessary of life to him. But it was very seldoms that any indication of undue excess could be detected in his tones or gestures; and, in truth, two hottles of port were little more to him than two dishes of tea. He had, when be was first introduced into the clubs of St James's Street, shown a strong sease for play; but he had the prudence and the resolution to stop before this taste had acquired the otrength of babit. From the passion which generally exercises the most tyrannical dominion over the young he possessed an immunity, Fhich is probably to be ascribed partly to his temperament and paictly to his situation. His constitution was feeble, he was very ahy; and he was very busy. The strictness of his morals farniabed such buffoons as Peter Pindar and Captain Morris with an inezhaustible theme for merriment of no very delicate kind. But the great body of the middle class of Englishmen colald not the joke. They warmly praised the young statesman for commanding his passions, and for covering his frailics, if be had fraities, with decorous obscurity.

The meempry of Pitt has been assailed, times innumerable, eftea jusly, oftes unjustly; hut it has suffered much lese from

Endmedos of Prus his assuilants than from his eulogints. For, during of men with whom, at one of those terrible conjunctures which confound all ordinary distinctions, he was accidentally and temporally connected, bat to whom, on almost all great questions of principle, he was diametrically opposed. The haters of parliamentary reform called themselves Pittites, not choosing to remember that Pitt made three motions for parliamentary reform, and that, though he thought that such a reform could not safely be made while the passions excited by the French Revolution were raging, he never uttered a word
indicating that be should not be prepared at a more convenient season to bring the question forwand a fourth time. The toast of Protestant ascendancy was drunk on Pitt's birthday by a set of Pittites who could not but be aware that Pitt had resigied his office because he could not carry Catholic emancipation. The defenders of the Test Act called themselves Pittites, though they coild not be ignorant that Pitt bad laid before George III. unanswerable reasons for abolishing the Test Act. The enemies of free trade called themselves Pittites, though Pitt was far more deeply unbued with the doctrines of Adam Smith than either For or Grey. The very negro-drivers invoked the name of Pitt, whose eloquence was never more conspicuously displayed than wheo he spoke of the wrongs of the negro. Thit mythical Pitt, who resembles the genuine Pitt as little as the Charlemagne of Arionto resembles the Charlemagne of Eginherd, has had his day. History will vindicate the real man from calumny disguised under the semblance of adulation, and will exhibit him as what he was-a minister of great talmots, horest intentions and liberal opinions, pre-eminently qualified, intellectually and morally, for the part of a pariamestary leader, and capable of administering with prudence and moderation the government of a prosperous and itranquil country, but unequal to surprising and terrible emergencies, and liable in such emergencies to err grievously, hoth on the side of weaknens and on the side of violence.
(M)

AUt hoarrres.-Lord Macaulay's article, a classic on its subject, writen in 1859 for this Encyclopaedia and included in the gth edition unaltered, is preserved above in its essentials, but has been shortened and readjusted. Among standard biographics are the 5th Ear Stanhopes important Life (4 vols, 2nd ed., 1862), and Lord Roee bery's masterly study in the "Twelve English Statesmen Series" (1891). Seealso the bibliographical note to the Rev. William Hunt's article on Pitt in the Dict. Naf. Biog., and also the same historinn's app. i., pp. 461-462, to his vol. 1. (for the years 1760-1801) of The Political History of Eagland (1905), dealing with the authoritics for the period.

PITTA, in ornithology, from the Telugu pitta, meaning a small bird, latinized by Vieillot in 1816 (Analyse, p 42) as the name of a genus, and since adopted by English ornithologiste as the general name for a group of birds, called by the French Brives, and remarkable for their great beauty. 1 For a long while the

Pillo clegans, male and female.
plttas were commonly supposed to be ellied to the Turdidee, and some English writers applied to them the name of "waterthrushes " and "ant-lhrushes," though there was no evidence of their having aquatic habits or predilections, or of their preying especially upon ants; but the fact that they formed a separate
In qunitholony the word is first found as part of the native name. "Ponnunky pitta." of a bird, given in 1713 by Peiver, in the "mantissa " to Ray's Synopsis (p. 195), on the authority of Buckley (see OrNTr Hology). This bind is the Pita bergalensis of modern omithologists, and is mid by Jerfon (Bidds of Indio, i. 503) now to bear the Telugy name of Pond-inki.
family wes grodurlly admitted. Their position was partly determined by A. H. Garrod, who, having obtained examples for dimection, in a communication to the Zoological Society of Londor, printed in its Proceedings for 1876, proved (pp. 512, 513) that the Pittidae belonged to that section of Paserine birds which he named Mesomyodi. since their syrina, bike that of the Tyrannidae (see King-Bied), has its muscles altached to the middle of its hall-rings, instead of to their extrenities as in the higher Passerines or Acromyodi. They are now placed as a eeparate family Pitidae of the Clamatores division of the Aninomyodine Passeres. There are about fifty specics, divided into a number of genera, confined to the Old World, and ranging from India and North China to Australia, New Guinea and New Britain, with one species in West Africa, the greatest number being lound in Borneo and Sumatra. Few birds can vie with the pittas in brightly-contrasted coloration. Deep velvety Dlack, pure white and intensely vivid scarlet, turquoise-blue and beryl-green-mosdy occupying a considerable extent of gurface-are found in a great many of the species-to say mothing of other composite or intermediate hues; and, though in some a modification of these tints is observable, there is scarcely a trace of any blending of shade, each patch of colour standing out diatinctly. This is perhaps the more remarkable as the feathers have hardly any lustre to heighten the effect produced, and in some species the hrightest colours are exhibited by the plumage of the lower parts of the body. Pittas vary in size from that of a jay to that of a lark, and generally have a strong bill, a thick-set form, which is mounted on rather high legs with scutellated "tarsi," and a very short tail. In many of the forms there is little or no external difference between the sexes.

Placed originally among the Pittidae, but now created to form an allied family Philepitidac, is the genus Philepitta, consisting of two species peculiar to Madagascar. The (wo species which compose it have littie outward resemblance to the pittas, not having the same style of coloration and being apparently of more arboreal habits. The sexes differ grestly in plumage, and the males have the skin round the eyes bare of leathers and carunculated.
(A. N.)

Pistacua, of Mytilene in Lesbos (c. 650-570 B.c.), one of the Seven Sages of Greece. About 611, with the assistance of the brothers of the poet Alcaeus, he overthrew Melanchrus, tyrant of Lesbos. In a wer (606) between the Mytilenaeans and Athenians for the possession of Sigcum on the Hellespont he siew the Athenian commander Phrynon in single combat. In 589 his fellow citizens entrusted Pittacus with despotic power (with the title of Aesymnetes) for the purpose of protecting them against the exiled nobles, at the head of whom were Alcacus and his brother Antimenides. He resigned the government after holding it for ten years, and died ten years later. According to Diogenes Latrius, who credits him with an undouhtedly spurious letter to Croesus (with whom his connexion was probably legendary), Pittacus was a writer of elegiac poems, from which he quotes five lines. His favourite sayings were: "It is hard to be good," and "Know when to act."
See Herodotus v. 27, 94 Diog. Lalert. 1. 4: Lucian, Macrobid, 18: Strabo xilii. 600. 617-6i8: Aristoth, Politics, iii. 12, iti. 14: T. Bergk, Poetae lyrici graeci.
PITIANES (throagh O. Fr. pilance, from Lat phetas, lovingtudness), properly a gift to the members of a religious house for masses, consisting usually of an extra allowance of food or wine on occasions such as the anniversary of the donor's death, lestiyals and the like. The word was early transferred to : charitablo donation and to any small gift of food or money.

PITT-RIVERS, AUGUSTUS HENRT LANR-FOX ($1827-\mathrm{I} 900$), English soldier and archaeologist, son of W. A. Lane-Fox, was bom on the 14th of April 1827. It was not till 1880 thet he apomed the name of Pitt-Rivers, on inheriting the Dorsetshire and Witshire estates of his great-uncle, the second Lord Rivers. Educated at Sandburst, be received a commission in the Grenadier Guards in 1845 , being captain 1850 , Heutenantcolonel 1857, colonel 1867, major-general 2877 and lieutenantgeneral 1882. He served in the Crimean War. and was at the Alma and the siege of Sebastopol. Hin talent for experimental research was utilized in inventigation into
improvemionts of the atray tilice, and be wat layely requoraile for starting the Hythe School of Musketry. It is Hot, however, for his military career, but for his mork as an anthopologist and anchamologist, that General Pitt-Rivers will be remanbered. His interest in the evolution of the rifte early extended itself to other wappons and instruments in the history of man, and be became a collector of articlet illuctrating the developmemt of human invention. His collection became famoun, and, after being exhibited in $\mathbf{1 8 7 4 - 1 8 7 5}$ to the Bethnal Green Museum, was presented in 1883 to the maiversity of Oxfond. Whea, in 1880, General Pitt-Rivers obtained posession of his great-uncle's estutes-practically untouched. by the excavator siace they had been the batilegroend of the Weas Saxoas, the Romans and the Britom--he deveted himell to exploring them. IIfs excavations rownd Ruchmore sesulted in valuable "finds"; be founded a local museum and publiahed several illustrated vohumes. As a meientific archmeokogist he attained high rank. Offord gave him the B.C.L. in 1886; be was president of the Anthropological Institute, and E.R.S. He married, ia 1853 . Alice Margaret, dasghter of the second Lond Stanley of Aderiey, and had a nurienoes fumity; his secood daughter became in $\mathbf{1 8 8 4}$ the wift of Sir John Lubbock (Lord Avebury). General Pite-Rivers died at Rushmore on the fth of May 1900.

PITISBURE. a city of Crawiond conaty, Kinnas, U.S.A., about 130 m . S. of Kanaes City. Fop. (8880), 624; (r8po), 6697; (1000) 10,152, of whom 860 were foreiga-botn; (rg 10 ceasuat, 14,755. It is situated at the intersection of four great railway systems-the Atchison Topebs A Sonta FE, the St Louis \& Sen Francisco, the Kansas City Southern (which maintains shops here), and the Missoun Pacific, and is arved by inter-urban electric railways. The city is the seat of the State Manual Tratning Normal School (rgoj) and of the Pittsbars Business College. Pittsburg is situated near the lead and ainc region of south-east Ransas and soutb-west Miswourt, is in the midst of a large and rich bituminoms coalfield, and lies near naturel gas and oil fields. Among the manofactures are sinc spelter-there are large smelters here-clay products (chiefly vitrified brick, eewer pipe and tile; the clay being obtained from a great underlying bed of shale), blasting powder, packinghouse products and planing-mill products. The total velue of the cily's factory products in 1905 was $\$ 1,824,929$. Pitsburg was settled about 1879, was chartesed as a clty in 1880, and became a city of the first class in 1908.

Pitisbura, or Pittsburea, the second hagest city of Pennsyivania, 'U.S.A., and the county-seat of Allegheny county, on the Allcgheny, Monongahela and Ohio rivers, 440 m . by rail W. hy S. of New York City, 360 m . W. hy N. of Philadelphia, 368 m . N.W. of Washington and 468 m . E. by S. of Chicago. Pop. (1890), 238,617; ${ }^{2}$ (1900), 327,616 , of whom 84,873 were foreign-born, 17,040 were negroes and 154 were Chinese; (rgyo census, after the annexation of Allegheny), 533.905. Of the 84,878 forcign-born in roco, 21,222 were natives of Germany, 18,620 of Ireland, 8902 of England, 6243 of Russian Poland, 5709 of Italy, 4107 of Russia, 3553 of Austria, 3515 of German Poland, 2539 of Wales, 2264 of Scotland, 2124 of Hungary, 1072 of Sweden and 1023 of Avstrian Poland. Area (including Allegheny, annexed in 1g06), 40.67 sq . m . Pittsburg is served by the Pennsylvania (several divisfons), the Baltimore \& Ohio, the Pittsburg \& Lake Erie (controlled by the New York Central System), the Plttshurg, Cincinnati, Chicago \&e Louis (controiled by the Pennsylvania Company), the Pittsburg, Chartiers \& Youghiogheny (controlled jointly by the two preceding railways; 21 m . of track), the Buffalo, Rochester \& Pittsburg, and the Wabash-Pittsburg Terminal (60 m . to Pittsburs Junction, Obio; controlled by the Wabash railway), and the Pitesibors Terminal (also controlled by the Wabash and operating the

[^56]West Side Beht, from Pitis末urg to Clairton, $\left.{ }^{21} \mathrm{~m}.\right)$ railvaya, and by river boats on the Ohio, Monongahela and Allegheny.

Picturesque ralling plateaus, the three rivens and narrow yalleys, from which rise high hills or precipitous blufis, are the principal natural features of the district over which the city extends. Retail housch, wholesale houses, banks, tall office baildings, hotels, theatres and railway terminals are croinded toto the angle, or "The Point," formed at the confluence of the Allegheny and Monongahela rivers, with Fifth Avenue as the principal thoroughfare, tespecially for the retail houses, and Fourth Avenue as the great banking thoroughtare. Pactorics extend for miles along the banks of all three rivers into the tributary valleys; and are the cause of Pittspurg's nickname, "The Smoky City." The more attractive residential diatricts are on the plateau in the eastern portion of the district between the Allegheny and Monongahela rivers and on the hills overlooking the Allegheny river from the north. Overlooking the Monorgabela river is Schenley Part (abont 422 acres), the first city part, of which about 400 acres were given to the city in 2890 by Mrs. Mary E. Schenley. About 2 m . to the north, averiooking the Allegheny river, in Highland Park (about 360 acres), which contains the city reservoirs and a picturesque lake. Adjacent to Schenky Park are Homewood and Calvary cemoteries; and edjacent to Highland Park is Alicgheny cemetery. Acroes the Aliegheny river, in the Allegheny district, are the beautiful Riverviet Park (240 acres), in which is the Allegheny Observal rory, and West Park (about 100 acres). A aumber of bridges span the sivers.

The city has some fine poblic buildings, office buildings and churches. The Allegheay county court-house (1884-1888) is ane of H. H. Richardson's masterpleces. The Nison theare a alo notable architecturally. The high Frick Office buidding bas arterior walls of white granite; in its main hall is a stainedglass window by John La Farge representiog Fortune and hor whed. A hage government building of polished greniteicomtains the post office and the custome offices. Sc Paul's Cathedral (Roman Cetholic, r903-1906) is largely of Indianm linestone. The city is the soe of a Roman Cutholic mad a Protentart Episcopal bahop. In Schenley Piat is the Carsegie Imsitute (estabtwhed by a gift of $\$$ ropoopoco inom Andrein Curnegie, who made further contribations of $\$ 9,000,000$ for its maintenatce), with a manin building containing a bibrary, a department of fine axts, 1 maseun (seo Mosecriss or Screver) and ar music Mall, and severil separate buidding for the tochalcal schools, which had stoe atudents in 1909. The man brildirg; dedicated 3in April 190\%, is $66 \mathrm{~s}_{\mathrm{s}}$. long and 400 ft . vide; in its great entrance hall fa'sarien of mural decorations by John White Alecandet, a mive of the ctiy. The libetry, in which the inatitution had Ins beginning in $\mathbf{2 8 9 5}$, cestains about 306,000 volumes. The Phippe Conservatory was presented to the city in 8893 by Henry Phippl (b. i839), a steel mandfecturer asociated wikn Andrew Cirnegfe. It is the largent in America, end, with its Hall of Rotany, which is utilized in hastraetingschool children in botany, is situated in sthenley' Part. The conservatory is mantained by municipal appropiciations. There is a soological garden in Highlind Part.' In December cgop it was decided that the several departments of the Western University of Pennsylvania, then in different parts of the city, should be brought together on a new campus of 43 acres near the Carnegic Institute. In July rgos the name was changed to "The Univendity of Pittsburgh." The university embraces a college and engineering cchool, the Western Pennsylvania School of Mines and Mining Engineering, a graduate department, an evening acheol of economics, accounts and binances, a summer chool, evening classes, Saturday clasess, and departments of astronomy (the Allegheny Observatory, in the Allegheny district), law (the Pittsburs Law School), medicine (the Western Penmylvanin Misdical College), pharmacy (the Pittsburgh College of Pharmacy) and dentistry (the Pitfsburgh Dental College). Ttre institution had lts beginning in the Pittsburgh Academy, which was opened about 1770 and was incorporated in 1787 . It was incorporated at the Wetern University of Pennayneala in FB_{g} :
but was only a college from that date until r89, when the Western Pennsylvamis Medical College became its department of medicine. In efg5 the department of law was added. the Pittaburgh College of Pharmacy was united to the university. and momen were for the first time admitted. In 1896 the departunent of dentistry was established. In rgo9 the univenity had 151 instructors and 1243 students. In the east end is the Pennsylvania College for Women (Presbyterian; chartered in 1869), with preparatory, collegiate and musical departments. In the Allegheny district are the Allegheny Theological Seminary (United Preshyterian, 1825), the Western Theological Seminary (Presbyterian, opened 1827), and the Reformed Presbyterian Theological Seminary ($\mathbf{5} 856$). Ahbough Allegheny is now a part of Pitzsburg, the two public achool systems remain independent. The Pitusburg High School (five hulldings in 1910) has a normal course; and there are various private schools and academies.

The Pitishurg Gaselte-Tinves is probably the oldent news paper west of the Alleghany Mountains; the Gasette was founded in 1786 and in 1906 was consolidated with the Times (1879) Other prominemt newspapers of the city are the Dispalet (1846), the Clrontiele T.elegroph (1841), the Post (1792; daily, 1842), which is one of the few inflaential Democratic newspapers in Pennsydvanda, the Leader (Sunday, 1864; dally, 1870) and the Prass (1883). Two German daillen, one Slavoaic daily, one Slavonic weekly, two Italian weeklies, and Iron, building, coal and gless trade jounnals are published in the city. In Pitisburg is the publishing house of the United Presbyterian Church, and The Christian Adrocate (weekly, Methodist Episcopal, s834) is published here under the auspices of the gereral conicrence.

The oldest hoepital ts the Reineman (private; 1803) for maternity cases; the munidpal hospital (1876) is for contagious disemses; the Slstens of Charity, the Sisters of Merey, the Inslitotion of Protestant Deaconestes, the Presbytorimn Charch and the United Presbyterian Womar's Ausotiation each have chargt of a hospital; and there is also an eye, oar and throat hotpitad (1855). The Wastern Pomnglvania Instituiton for the inatruotion of the deaf dad damb (5876), in Edgewrood Park, is in part maintained by the state. And the state assints the Home for Apol and mufirm Colored Women (1882), and the Home for Colored Children (288s). Amons other charitable Inatitutiona are the Curtis Home (1894) for destitate wotmen and girts, the Betbeida Hotme (1890) for homeless ginls and thetr childrem, the Fioremce Critenton Home (1893) for bomeles and untortwmate women, the Rocella Foundiling Asytum and Maternity Flospital (1891), the Proustant Honte for Incurables (1883), the Pittsburg Nemboys' Home (1894), the Children's Aid Sociely of Western Pennsylvania, the Pleteburg Aesociation for the Improvement of the Poor and the Wertern Pennsyivania Humane Society.

Pitaburts is in the midet of the most prodactive coalficia. in the country; the region to also sich in petroleum and natural gast. The city is of one of the main libes of communication betwen the eat and the west, is the centre of a vast railiwny system, and has freight yurds with a total capacity for move than 60,000 cars. ita harbotrr has a total length on the three rivers of $37 \cdot 2$ mi, and an average width of about 1000 ft , and has been deepesed by the construction ($\mathrm{in}, 48 \mathrm{y} 9-1885$) of the Davis Island dam, by dredging, under a federal project of rbgis. Shack water navigation has been secused on the Alloghent by locks and darts (1890 and 5896 eqq.) at an expense up to July 1909 of $81,658,804$, and up to that time $\$ 265,035$ had been spent for open-chanmel work. The Monongahela from Piteburg to the Wet Vhrinla state line ($91-5 \mathrm{~m}$.) was improved in 1836 sqq. by a pitvate company which bullt reven locks and dams; this property was condemned and bought for $\$ 3,761,615$ by the United States government in 1897, and utider the project of $\mathbf{1 6 g 9}$ for rebuilding three of the lockis and enlarging another, and that of 1907 for a new lock and dam and for other imptovements, $\$ 2,675.692$ was spent up to July t900. Coal ls brought to the city from the coalfields by beats of the Alleghemy and Monomgahela rivert as well as by mill, and
great fleets of bargen carry coal and other heavy freight, such as steel raik, cotion ties, sheet iron, wire and nails, down the Ohio in the winter and apring. A ship canal to provide water communication between Pittsburg and Lake Erie has been peojected. The railways have a heavy tonnage of coal, coke and iron and sted products, and a large portion of the iron ore that is produced in the Lake Superior region in brought to Pittsburg. In rgos the river traffic amounted to $9,090,146$ tons, most of which was carried on barges down the Ohio. Pitteburg is also a port of entry; in 1907 the value of its imports amounted to $\$ 2,416,367$, and in 1909 to $\$ 2,062,162$.

The value of the factory products in 1905 wan $\$ 165,408,881$, and to this may be added $\$ 45,830,272$ for those of the city of Alkegheny, making a total of $\$ 211,259,153$. In the manufacture of iron and ated products Pittsburg ranks first among the cities of the United States, the value of these products amounting in 1905 to $\$ 88, i 50,805$ or $53 \cdot 3 \%$ of the total for all manufactures; if the manufactures of Allegheny be added they amounted to $\mathbf{5 9 2}, 939,860$ or $\mathbf{4 3} 7 \%$. Several neighbouring cities and towns are also extensively engaged in the same industry, and in 1902 Allagheny county produced about 24% of the pistiron, nearly 34% of the Bessemer steel, more than 44% of the open-hearth steel, moro than 53% of the crucible ateel, more then 24% of the stecl rails, and more than 59% of the structural shapes that were made in that year in the United States. In 1905 the value of Pittsburg's foundry and machine shop-products was $\$ 9,631,514$; of the product of stomm railway repair shops, $\mathbf{8 3 , 7 2 6 , 9 9 0}$ (being 424.8% more than in 1900); of malt liquors, $\mathbf{\$ 3 , 1 6 6 , 8 2 9 \text { ; }}$ of slaughtering and meat-packing products, \$2,732,027; of cigars and cigarettes, $82,297,228$; of ginse, $\$ 2,130,540$; and of tin and terne plate, $\$ 8,645,5 \%$. Electrical machinery, apparatus and supplies were manufictured largely in the city (value in $1905, \$ 1,796,557$), and there was another large plant for their manufacture immediately outaide of the city limite Coke, cut cork, rolled brass and copper were other important products in 1905. In 1900, and for a long period preceding, Pittsburg ranked first among American cities in the manufacture of glass, but in rgos it was outranked in this industry by Muncie, Indiane, Milkille, New Jersey, and Washingtos, PennsyIvania; bet in the district ourside of the city limits of Pitesburs much glass in manufactured, so that the Pittsburg glass district is the greatest in the country, and there are large glass factories m. Washington (18 m, south-west), Charieroi (30 m . south) and Tracatum (15 m. north-east). In Piztaburg or the immediate vicinity are the more important plants of the United States Steel Corporation, including that of the Carnegie Company. Here, 300, are the plants of the Westinghouse Company for the manufacture of electrical apparatus, of air brakes invented by Ceorge Westinghouse (born 1846), and of devices for railway signals wbich be also invented. In the Allegheny district the H: J. Heinz Company has its main pickie plant, the largest mstablishment of the kind in the country.

The Pittsbarg charter of 1816 vested the more important powers of the city government in a common council of 15 members and a aclect council of 9 members, and until 1834 the mayor was appointed annually by these city councils from their own number. By the Wallace Act of the state legislature in 2874 a form of government was provided for cities of three classes, and Pittsburg became a cily of tbe second class (population botween 100,000 and 300,000); under the act of 1895 a new classificalion was made, under wbich Pittsburg remains in the pecond class. An act of 1887 had amended the provisions of the Wallace Act in regard to second class cities by chasging the terms of select councilmen from two to four years and of common councilmen from one to two years. In 1901 a new act was phssed for :the government of cities of the second class. It provided that the executive be a "city recorder "; this provision was repealed in 1903 , when the title of mayor again came into mec. The mayor holds offico for three years, has the powers and jurisdiction oi a justice of the peace, appoints the heads of departments <public safety, public works, collector of delinquent saxes, asessofs, city treamarer, law, charities and coeroction,
and sinking fund commiotion), and may remove any of the officers be has appointed, by a written order, showing cause, to the select council. The dity controller is clected by popular yote. The lesislative bodies are the select and common council,' elected under the law of 3887 ; by a three-fifths vote it may pas resolutions or ordinances over the mayor's veto. The depart. meat of prablic eafety controls the bureaus of police, detectives, fire, health, electricity and building inspection; the department of pablic works controls bureaus of aurveys, construction, highways and ecwers, city property, water, atsemsment of water rents, parks, deed registry, bridges and light. In 1909 the taxable valuation was $\$ 200,771,327$, and the tax rate was 13.8 mill for city property, $9 \cdot 2$ mills on rural property and 6.9 mills on agricultural property. The tax rate for separate indebtedness varied from 6 mills in Allegheny to 16.2 mills in the 43 rd ward. The water-supply of Pitisburg is taken from the Allegheny river and pumped into reservoirs, the highest of which, in Highland Parl, is 367 ft . above the river; and there is a slow sand filtration plant for the filtration of the entire supply.

Pittsburg owed its origin to the strategic value of fte site in the struggle between the English and the Freach for the pones. sion of the North American continent. A few Frenchmen attempted to establish a settlement here in 1731, but were soon driven away by the Indians. In 1953, after the French had laid formal claim to this region and the Ohio Land Company had been formed with a view to establinhing a mettlentent within it, Robert Dinwiddie, governor of Virginia and a shareholder in the Ohio Company, sent Geove Washington with a letter to "the commandant of the French forcen on the Ohio" (then stationed at Fort Le Bocuf, near the present Waterford, about ins m. north of the head-waters of that river) asking him to account for his invasion of territory chaimed by the Eaglinh. This was Washington's first impertant public service. He reached the present site of Pittsburg on the 24th of November 1753, and subsequently reported ${ }^{2}$ that what is now called "The Point," Le. the tongue of land formed by the confluence of the Monongahela and Allegheny rivers, was a mach more favourable situation for a fort and trading post thas the one about two miles up the Monomgabela (near the present site of McKees Rocks) which had been tentatively selected by the Ohio Company. Accondindy, on the 17th of February 1754 a detachment of about to soldiers, zader the command of Captain William Trent, ${ }^{2}$ reached "The Point," and begen so build a fortification (under the auspices of the Ohio Company). which it soems to have been the intention to call Fort Treat, and which was the beginaing of the permanent tettlement here by whites. On the 17 th of the folloming April, however, Emaim Edward Ward, commanding the soldiers, in the absence of Captain Trent, was forced to evecuete the anfinished fortification by \& party. of about roco French and Imdians, under Captain Contrecour, who immediately occupiod the works, which he enlarged and completed, and mamed Fort Dequesne, in honour of Duqueane de Menneville, dovernor of New France in 2752 1755. In the following summer Washington attempted to recover this fort, in a campaign which inchaded the shirmish
${ }^{1}$ His Journal, published in 3754, gives a concise and lucid account of this expedition.
: Whian Trent (c.17t5-1776) was a native of Lancarter county; Pennaylvania, becapre captain in the state militia in 1746 tad eerved against the Freoch and Indians, was for many years, after 1749, a justice of the court of common pleas and genern sessions of the peace for Cumbertand county, Pennsylvania, and in 1750-1756 was the partiner of Cedrge Crogan in an eztensive Irade with the indians According to one mocount, he varited the site of Pittanas and examined its availability for fortification, in August 1753before the arrival of Washington. In 1755 he became a member of the council of Lieut. Governor Robert H. Morris, and in 1758 thecompanted General Fortues's expedition againet Fort Duquemer He acted many tinas as Indian awent: ins hocrative trade with the Indians, conducted from a trading house mear Fort Pitt. was ruined during Pontiac's conspiracy. At the beginning of the War of independence he was given a mejor's comminion to raise troppe in Western Pennsylvants. See Jowited of Captasis Willian Treal (Civeingati, Ohip, 187a), edited by AMred T. Coodrone
(comanonly considered the begiming of the French and MutianSeven Years'-War) on the 28th of May 1754, at Great Meadows (in what is now Wharton township, Fayette county, Pennsylvania, about 50 m . south-east of Pittsburg), bet ween a detachment under bis command and n scouting party under N. Coulon de Jumonville, in which Jumonville and several of his men were killed; the building, at Great Meadows, by Washington, of Fort Necessity, and its capitulation (July 3); and the retreat of Washington to Virginia. Another expedition, led by MajorGeneral Edvrard Braddock, resulted in the engagement known as "Braddock's Defeat " (July 9, 1755), fought within the present borough of Braddock (ahout 8 m . east of Fort Duquesne) in which Braddock's force was practically annihilated, and Breddock was mortally wounded, dying four days later. The fort was finally recaptured by the English in r758, as the result of an elaborate expedition (involving about 7000 troops) planned by Brigadier-General John Forbes ($1710-1759$), and prosecutred, with the assistance of Colonel George Washington and Colonel Henry Bouquet, in the face of great difficulties. General Forbes himself was so ill that he had to becarried in n litter throughout the cempaign. The tropps having readezvoused during the summer (of 1758) at Ray's Town (now Bedford, Pennsylvania), and at Loyalhanna creek (now in Westmoreland county), about 50 m . to the north-west (where Fort Ligonier was built), Colonel Bouquet, commanding the division at the Latter place, despatched Major James Grant ($1730-1806$) at the head of about 850 men to reconnoitre the fort. Gravt advenced to a hill (still known by his name, and upon the crest of which the court-house now stands) within about a quarter of a mile of che fort. Here he rashly divided bis force, and in a sortic of French and Indiens, on the morning of the rath of September; one of his divisions was surrounded, and a general rout ensued in which about 270 of Grant's men were killed, about 40 were wounded, and others (including Grant) were taken prisoners. Forbes's army advanced to within about 15 m . of the fort on the 24th of November, whereupon the French blew up part of the works, set fire to the buildings and retreated down the Ohio in boats. The English occupied the place on the next day and General Forbes ordered the immediate erection of a stockade fort near the site of the old one. In reporting to Lieut.-Governor William Denny (Nov. a6) the success of the expedition be dated bis letter from Fort Duquesne "or now Pitts-Bourgh," and this mame, with its subsequent modification "Pittaburgh." was thereafter more commonly used than that of Fort Pitt, which, as devignating the fortification proper appears to have been first applied by General John Stanwiz to the endarged fort built (at n cost, it was estimated, of $(60,000$) chiefly under his direction furing 1759-1760
The first considerable settlement aroutd the fort sprang up in 1760 ; it was composed of two groupe of houses and cabina, the " lower town," near the fort's ramparts; and the "upper toma," built chiefly along the banks of the Monongahela, and extending as far an the present Markte Street. In April r76r, according to a census of the rettlement, outside of the fort, taken for Colonel Bouquet, there were 332 inhabitants and ro4 houses.

Fort Pits was one of the important objective poines of Pontiac's conspiracy (1763), and as soon as the intentions of the Indians became evident, Captain Simeon Ecuyer, the Swiss officer in command of the garrison (which then numbered about 330); had the housen outside the ramparts levelled and prepared for a siege. The Indians attacked the fort on the and of June (5763), and kept up a continuous, though ineffective, fire upon it from the 27th of July until the ist of August, when they drew of and advanced to meet the relieving party under Colonel Bonquet. They were defeated af Bushy Run, and Colonel Bonquet relieved the fort on the roth of August (see Ponrinc): In i764 Colonel Bouquet added to the fort a redoubt, the "Block House," which still stands, the sole remaining trsee of Fort Pitt, and is owned and cared for by the Daughtera of the American Revolution

A tecondtomn, Laid out in 1764 , by Colonal John Campbell (with the permigaion of the commandant at Fort Pitt), is bounded in
the prebent city by Water Street, Market Streat, Sucend Avelue and Ferry Street, and comprises four block. In Navember 1768, at a generid council of the Six Nitlons with Sir William Johnson and representatives of Pennsylvainia and Virginis held at Fort Stanwix, on the site of the present Rome, New Yorl (q.a.), at which was signed a treaty establiahing the boindary line betwoen the English possessions and the territery claimed by the Six Nations, the Indians sold for \$10,000 to Thonas Penn (1702-1775) and Richard Penn (1706-1777), respectively, the secoond and third sons of William Penn-the founder: Pennsylvatia-by his second wife, the rembining land in the province of Pennsylvania to which they claimed cille, namely the tract lying south of the west brasch of the Susquehnanas river and of a straight line from the north-west corner of what is now Cambria county to the present Kittanning (in Armitrong county), and all of the territory east of the Allegheny river below Kittanning and soath of the Ohio river. To this tramatection the commissioner from Virginia seems to have made no objection; though the tract included the Fort Pitt region and other tercitory then claimed by Virginia. In January-March 1769 the Penve caused to be surveyed the "Manor of Pittsburgh," a tract of about 5700 acres, including much of the original city, intending to reserve it for their private use; but in the following April they offered at public sale the lands in the remainder of their purchase of the preceding year. ${ }^{1}$ At this time the settlement about Fort Pitt comsisted of aboat twenty houses, occupied chielly by Indian traders. By order of General Thomas Gage the fort wete abandoned as a military post in October 177a, and was partly dismantled. In January 1774 it was occupied by an armed force under Dr John Connolly, a partisan of Lord Duimore, governoe of Virginia, and by him was named Fort Danmore (which name, however, was never formally recognized), this being one of Dummore's overt acts ostemsibly in support of his contention that the Fort Pitt region was included in Auguste county, Virginia. In the following April Connolly took forcible possew sion of the court-house at Hanna's Town (near the present Greepsburg), the county-seat of Westmoreland cornty (which then included the Fort Pitt region), a few days afterwands arreated the three justicea who lived in Pittsburg, and for the remainder of the year terrorized tbe settlement. Lord Duamore himself issued a proclamation dated "Fort Dunmore," 17 th Septembet (1774), in which be called upon the inhabitants to ignore the authority of Peansylvania, and to recognize only that of Virginia. A year afterwands Fort Pitt was occupied by a company of Virginia soldiers by order of the Virginia Provincial Convention (assembled at Williamsburg in August 1775), but this move apparently was more for the defence of the frontier in the coming war than an expression on the Peansylvanim-Virgimia boundary dispute; and, in November, Connolly was arrested at Fredericksburg, Maryland, on the charge of furthering Dunmore's plans for invading the westem frontier. The boundary itself was in controversy until 1780 , and the marking of the boundary lines was not completed until $17^{8} \mathrm{~s}$. During the War of Independence the fort whas mairtined as a frontier Indian port, and as a pron tection against the Britiah at Detroit. Soon after the close of the war it was neglected, and by 1791 It was in bad repair; therefore at the time of the Indian bostilities of $\mathbf{r} 792$ another y tockade fort was built near the bank of the Allegheny river and about a quarter of a mile above the site of Fort Pitt, this new fort being named Fort Lafayette, or, as it was more commonly callied, Fort Fayette. After General Anthony Wayne's defeat of the Indians, at Falien Timbers, Ohio (Aug. 20, 1794), Pittsburg loet-its inmportance as a frontier post.

In January 1784 the sale of the land Included in the "Maner of Pitesburgh "was begun hy the grandsons of William Penn, John Penn (1729-1795), the second son of Richand Pema and lieutenant-govermor of Peanaylvania in 1763-1 $77^{\prime \prime}$ and in 1793° 1776; and John Penn (1960-1834), the fourth son of Thowas Pead; and in the following June a new series of town lots was laid out in which was incorporated Colonel Campbell's survey. Thereafter, settlers, chiedy Scotch and Irish, came rapidly.

1 This tract was conficcated by Pennsylvania in 1779.

Pitubtras and the vicinity witnowod mach of tho diborder, and some of the violence agoinat parion and property, incident to the Whisky Insurrection of $1791-94$ Delegatea from Alletheny, Wentmorelend, Washington and Fayette countiea met bere on the yth of Seplember xyor, and paned restohutionas revercly denouncing the excise tax; and a similariy constituted guthering, on the 24th of August 3792, voted to proncribe all persons who ausiated in the enforcement of lams taxing the manufacture of liquor. Thereafter varions persons who had paid the excine tax, or had asaisted in collecting it, were tarred and featbered or had their houses or barns burned. General John Neville ($1731-1803$), having accepted the office of chich excise imspector for Western Penmsylvinia, his fine country reaidenoe, about 7 m . sounth-west of Pittesburg, whas attacked by amob of about 500 men on the 16th and 17th of July 1794. The defendern of the property (who haciuded a squad of moldiers from the garrison at Pittiburg) killed two and wounded zeveral of the attacking party, but they were fimally forced to surrender, and Gencral Neville's mansion and other buildings were burned to the ground. A mass mecting of about gaco citizens of the thove-mentioned counties (many of thein armed militizmen), at Braddoct's Fiedd, on the rat and and of Auguast 1794, threatened to take posecenion of Fort Lafayette and to burn Pittsburg, but cooler oounsel prevailed, and after noting to proscribe several persona, and mareching in a body chrough the streets of the town, the cuowd diaperned without doing any damage. Upon the arrival in the following November of the troops sent by President Washington, a military court of inquiry, held at Pitesburg, oussed the arrest of several persons, who were sent to Philhdelphin for trial, where some of them were found guilty and mantenced to terms of imprisooment, but the sentences were bot enforced.
The town wns made the county-seat in 179x, it was incorporated asa a borough in 1794, the charter was revived in 1804, and the borough was chartered as a city in 1826 . As early as the year of ite incorporation as a borough Philadelphia and Baltimore merchants had etablished an important trade with it. Their goods were carried in Conestoga wagons to Shippensburg and Chambernburs, Pennaylvanis, and Hagerstown, Maryland, taken from there to Pittsburg on pack horses, and exchanged for Pitsburg products; these products were carried by boat to New Ortenns, where they were exchanged for sugar, molnwes, bx. and these were earried through the guli and along the coast to Belkimone and Philadelphin. Boat-building was begun in Pittsbure in 1797 or eariier; the galley "Preaident Adams," buile by the goverument, was hanched bere in 1798, and the "Seaslor Rote," completed in the same yeur, was launched in 1790. In 1707 glamworks which were the firse to use conal as a foel in making glawe were built here; later Pittaburg profited greatly by the use of ite great store of natural gas in the manufincture of glase. In 2806 the manufacture of iron was well begun, and by 1825 this had bocome the leading industry. On the roth of Aprii 1845 a considerable portion of the city was awept by fire, and in July 1877, during the great milway atrike of that year, a lacge amount of property was destroyed by a mob. The commercial importance of the city was increased by the canal trom Phutrburg to Philadelphis, built by the state in rB_{34} at a cont of $\$ 30,000,000$. The first petroleum pipe line reached Pittsburs in 1875. A movement to consolidate the cities of Pietsburg and Aliogheny, together with same adjacent boroughs, was begun in $\mathbf{x 8} 33-1854$. It failed entircly in that year but in 1867 Lawrenceville, Pecbles, Collins, Liberty, Pitt and Oakhand, all lying between the two rivers, were ennexed to Pittsburg; in 1872 there was a further annexation of a district embracing 27 sq. m. south of the Monongahele river; in 1906 Allegheny (q.a), allhough a large majority of those voting on the question in that city were opposed to it, was annexed, and in November 1907 the Supreme Court of the United Slates declured valid the act of the state legialature under which the wete was taken.
See N. B. Crif. The History of Pivashergh (Pitabarg, 1851);
 of the buil-1. D. Rupp (Rittibury, 1849); Witima H. Egle,
 Pa., I0;6) Sarah H. Killiveily, The Eticory of Phusburlh, Its Rise and Progress (Pittraburg, 1go6) ; S. H. Church, Pitteburgh the Induserial City, in L. P. Powelts Historic Tows of die Midas Stase (New Yort, 1899); G. H. Thurston, Pielshorith and Aulegieny in the Camtarinial Yoer (Pitusburg, 1876); Lor a history of the varioun forte as auch. Report of the Commission to Locate the frowtier Forts of Penssylonisia, vol. i. (Harrisburg, Pa., 1896) ; and for a thorough stady of econornic and nocial conditions in Pittuburs, P. U. Kellogy (ed), The Piksherg Surfey (6 vols, New York, 1910 sqq.), prepared under the direction of the Sase Foundation.

PITRANinn, a city and the county-seat of Berkehire connty, Masarchusetts, U.S.A., in the western part of the stase among the Berkshire Filk, and about 150 m. W. of Boeton. Pop. (1890), 17,281; (1900), 81,766 , of whom 4344 were forelgn-born; (I 910 censua), $32,12 \mathrm{Y}$. Area, about 4199 m. It is served by the New Yort, New Haven \& Hartford and the Boston \& Albany (New Yort Central \&e Hudson River) railwaye, and by two inter-urban electric lines. Pittafield is a popular sumaner resort; it Hes in a plain about 1000 ft . sbove sea-level, is surrounded by the picturesque Berkshire Hills, and is situated im a region of numerona labes, one of the hargest-Lake Pontoosuc -being a summer pleasure resort. On either side of the city flow the east and west branches of the Housatonic river. Standing in the public green, in the centre of the city, is the original statue (by Launt Thompson) of the "Marsachusetts Color Betres," which has been reproduced on the battleficht of Gettysburg, Pennsylvania. The principal inscitutions are the House of Mercy Hospital, with which is compected the Henry W. Bishop Memoriad Training School for nurnes, the Berkshire Home for aged women, the Berkshire Athenaeum, contafinigg the public library, the Crane Art Muserm and a Young Men'a Christian Association. Prominent buildings are St Joocph's Cathedral and the bufldings of the Bertshire Life Insurance Company, the Agricultural National Bank and the Berkshire Couply Savings Bank. In the south-western part of Pitefield, on the boundary between it and Hisncock, is Shaker Village, settled about 1790 by Shakers. Pittsfield has weter-power and important manufacturing indostries. In lgos its factory products were valoed at $88,577,358$, or 48.1% more than in 1900. Fully haif of the manufactures comelist of testile goods.

The first settlement in what is now Pitcefied mas mado hia 1743, bet was goon abandoned an account of Indinn tronitien. In $x 749$ the settlement was revived, but the sotilers did not bring their families to the froatier until $\mathbf{5 7 5 9}$. The soctlement was first called "Borsea Elantecion," oc "Poontocench," but in 1761, when it was incorporated as a somnship, tho yane was changed to Pitafield, in bonour of the older Writiam Pitt. In 189r Pituefich was chartered as a city. It wes hose, in the Appleton (or Plunkett) House, known as "Elim Knoll," and built by Thomas Gold, father-idelin of Nathan Appletion, that in 1845 Heary W. Longfellow (who married Nathan Appieton's daughter) wrote his pogam "The Odd Clock on the Sbairs" For thirty years (1849-1672) Pittefield was the hame of the Rev. John Todd ($\mathrm{r} 800-1873$), the author of mumerops books, of which Lectures to Childrom (1834; and serien, 1858) and The Sladeat's Manal (1835) were once widely reed. Frawn ybop 001856 Eltinah Watton ($1758-1842$), a promineat fapmer and merchant, lived at what is now the Country Club, and while there introduced the merino shoep into Berkshime comnty and organined the Berkshire Agricuttural Society; be is semembered for his advocacy of the building of a canal cobnecting the Great Lakea with the Allantic Ocean, and as the muthor of Memoirs: Mem and Timat of she Readutios (1855), edived by his som, W. C. Watson.

FITIETOXI, a city of Luerme county, Pennytvania, U.S.A., on the Susquehanna river just below the mouth of the Lackawanna, about 11 ma . S.W. of Scrantion and about 9 m . N.E. of Wikes-Barre. Pop. (iBgo), 10,302; (1900), 12,596, of whow 3394 were foreiga-born; (1gyo census), 16,26\%. It is anved by the Eric, the Lehigh Valiey, the Deleware, Leckawama 8. Western, the Central of New Jersey, the Delaware Hudson, and the Lackrannas Wyoming Valley railways; there is an electric railvity from Pittaton to Suranton, and a
belt-line electric railway comnects Pittston with Avoca, Nanticoke, Plymouth and Wilkes-Barre. Two bridgea connect the city with the borough of West Pituston (pop., 1910. 6848). Pltestion is in the midst of the richest anthracite coal region of the state, and fire-clay also abounds in the vicinity. In 1005 the value of the factory products was $\$ 1,474,928$ (47.8% more than in 1900). Pituston, named in honour of William Pitt, earl of Chatham, was one of the five original cowns founded in the Wyoming Valley by the Susquehanna Company of Connecticut; it was first settled about 1770 and was incorporated as a borough in 1803. It was chartered as a city in 1894

PITYRIASIS VERSICOLOR (Gr. tIruplaors, acurf, from xirupor, bran), a akin disease, consisting of patches of hrownish discolorations of various sizes and shapes, mostly on the from of the body, and often attended with itching, especially after peating exercise. The pigmentation seems to radiate from the orifices of hair-follicles. The epidermis is in a scaly condition over the patch, and among the debris of the epidermic cell there may be seen minute oval spores due to a vegetable parasite. the Micyosperon furfug. The disease is mostly one of adult age, lound all over the world, and not associated in any special way with poor general health. The treatment consists of rubbing in an ointment of potassium sulphide or one of the mercurial ointments, or using sulpbur-soap hahitually.

PIURA the northernmost maritime department of Peru, bounded north by the Gulf of Guayaquil. NE. by Ecuador, S by the departments of Cajamarca and Lambayeque, and W by the Pacific. Area, 14.849 sq. m., pop. (x906. estimate), $154.080-$ both totals exclusive of the province of Tumbes. or Tumbez (area, about 198039 m ; pop.. In 1906 , about 8000), which has been administratively sepanted from the department for military reasons. The department belongs partly to the arid coastal plain that extends from the Guff of Guayaquil southward mearly to Valparaiso, and partly to a hroken mountainous region belonging to the Western Cordilleras. The coastal zone is traversed by the Tumbes, Chira and Piura rivers, which have their sources in the melting shows of the higher Andes and flow westward across the desert to the coast. The valleys of the Chira and Phura are irrigated and maintain large popalations Rough cotton, called " vegetable wool." and tobacco are the principal products, and are also produced in the valley of the Tumbes and in some of the elevated mountain districts. On the upland pastures cattie have long been raised, and goatbreeding has been added in modern times. Mules also are reared. Petroleum is an important product, and there are wells at a number of places along the const, from Tumbes to Sechara, the most productive being tbose of Talara and Zorritos. There are sulphur deposits in the Sechura desert, and salt is manufactured at some places on the southern coast. The making of Panama hats from the fibre of the "toquila" palm is a household Industry. The capital is Piura (est. pop. 9100 in 1906), on the Piura river, about 35 m . (direct) E.S.E. of Pajta, and 164 ft . above sea-level. It was founded by Pizarno in 1531 under the name of San Miguel, at a place called Tangarara, nearer Paita, but the present site was afterwards adopted. A rallway (60 m long) hy way of Sullana connects with the port of Paita, and an extension of 6 m . runs S.S.E. to Catacaos. Other towns of the department, with their estimated populations in 1006, are: Tumbes, or Tumbez (2300), the most northern port of Peru, on the Gull of Guayaquil, celebrated as the place where Pizarro Janded in 1531; Pajta; Sechura (6450), on Sechura Bay in the southern part of the department. with exports of salt and sulphur. Sullana (5300), an inland town with railway connexions in the fertile Chira valley; Morropon (3800) on the upper Piura, Huancabamba, the centre of a tobacco district in the mountains. and Tambo Grande (6100) and Chulucanas (4600), both in the fertile Piura valley above the capital.

PIOs, the name of ten popes.
Pius 1., pope from about 141 to 154 . Hie was the brother of Hermas, author of the Shepherd

Pros Il (Enez Silvio de' Piccolomini, known in literature as Acmess Silvius), pope from 1458 to 1464 , was born on the $18 t h$
of October 1405, at Corsignano (afterward called Pienza alter him), near Siena. His family, though poor, was noble, and claimed to trace descent from Romulus. The eldest of eightedn children, be had to work on the farm with his father, until a priest taught him the rudiments of letters, which enabled him, at the age of eighteen, to go as a poor student to Siena, dividing his time berween severe humanistic studies and a life of sensual pleasure. He was attracted to Florence by the ceaching of Filello. His father urged him to become Elawyer, but he accepted the position of secretary to Domenico Capranice, bishop of Fermo, and went with him to the council of Basel, where he stayed several years (1432-1435), changing masters Whenever he could improve his position. As secretary of the bishop of Novara he became engaged in a conspiracy against Pope Eugenius IV.; his master was caught and imprisoned, and Aeneas only saved himself by a hasty flight. He was pext (1435) employed as secretary of Cardinal Nicholas Albergati (d. 1443) at the congress of Arras, where peace was made between Ftance and Burgundy. From here he took a long journey to Scotland and Engiand, on a secret diplomatic mission, he had numerous adventures, in one of which he nearly lost his Hife. In 1436 he was back at Basel, and, although a layman. obtained a seat in the council and exercised considerable influence. In order to control it better Eugenius tried to get the council to move to Florence; a minority agreed and seceded; the majority, however, stayed where they were and took vigorous measures against the pope, culminating in his deposition on the 25 th of June 1438. Aeneas took an active part in the council; and thougb he still declined to take orders, he was given a position on the conciliar conclave which elected Amadeus of Savoy as pope under the title of Felix V. In return for his services Feliy made Aeneas papal secretary.

A new period of his career opened in 1442, when he was sent by the council to take part in the diet of Frankforton-Main. Here he met Frederick III. of Germany, who made him poet laureate and his private secretary. He ingratiated himself with the chancellor. Kaspar Schlick, at Vienna, one of whose adventures he celebrated in Lucretic and Eurialus, a novel in the style of Boccaccio. At this period he also wrote his witty but immoral play, Chrisis. In 446 he took orders as subdeacon, and wrote that he meant 10 reform, "forsaking Venus for Bacchus," chiefly on the ground of satiety, and also, as he frankly wrote, because the clerical profession offered him more advantages than he could secure outside it.

Aeneas was useful to Frederick as a diplomatist, and managed to give all partics the impression that he was the devoted advocate of each. During the struggle between pope and council he induced 'Frederick to be neutral for a while. He took an important part in the diet of Nuremberg (1444), and being sent on an embassy to Eugenius in the following year he made his peace with the pope. At the diet of Frankfort (Sept. 1446) Aeneas was instrumental in changing the majority of the electors from their bostile position towards pope and emperor into a friendly one. He brought the good news to Eugenius shortly before his death (Feb. 7, 1447), and made friends with the new pope. Nicholas V., by whom he was made bishop of Siens. He was an agent of Frederick in making the celebrated concordat of Vienna (also called concordat of Aschaffenburg) in Fehruary 1448. His services to pope and emperor brought him the titles of prince of the empire and cardinal, positions which be used rather unscrupulously to get as many lucrative benefices into his hands as possible. Those in Germany brought him two thousand ducats a year.
The death of Calixtus III. (who succeeded Nicholas V.) occurred on the 5th of August r458. After a hot fight in the conclave, in which it seemed that the wrealthy French cardinal, Guillaume d'Estouteville, archbishop of Rouen and bishop of Ostia, would be elected, the intrigues of Aeneas and of his friend Rodrigo Borgia (later the notorious Alexander VI) gave the victory to the cardinal of Siens, who took the title Pius II , with a reminiscence of Virgil's "pius Aeneas." The humanists hailed his election with joy, and focked around to secure a abare
of the good things, but they were bitterty disappointed, as Pius did not prove himself the liberal and undiscriminating patron they hoped. The fall of Constantinople in 1453 had made 4 deep impression upon Pius, and he never censed to preach the crutade against the Turk. In September 1459 he opened a congress at Mantua for the purpose of considering what could be done in this direction. His proposals for the raising of troops and money met with general opposition. The French were angry becunse Pius had crowned the Spanish claimant, Ferdinand, king of Naples, and thus disposed of the pretensions of René of Anjou. The Germans also objected to Pius's plans, but finally agreed to furnish some troops and money, promises which they did not carry out. Pius feit how much the position of the papacy had fallea in importance since the days of Urban and Innocent III., and, helieving that the change was due to the general councils which had asserted power over the popes, he changed his position, which before his election to the papal throne bad been that of a warm advocate of the conciliar claims, and issued (Jan. . 1460) the bull Execrabilis ef in pristinis temporibus itranditus, in which he conderaned as heretical the doctrine that the councils were superior to the popes, and proclaimed the anathema against any one who should dare to appeal to one. He issued another bull at the same time, promising forgiveness of sins to those who would take part in the crusede, and then dissolved the congress.

While Pius was at Mantua war broke out between the French and Spanish in southern Italy, and a rising of the barons devastated the Campagna. Hurrying back to Rome Pius suceeeded in quelling the disorders, and sent his nephew Antonio Todes chini to the aid of Ferdinand, who made him duke of Amalif and gave him his natural daughter Maria in marriage. This measure still further alienated the pope from the French, with whom he was at that time negotiating for the abrogation of the Pragmatic Sanction. When Louis XI. came to the throne (Nov. 1461). be sent to Pius saying that he bad abolished the Pragmatic Sanction, boping in return to get the kingdom of Naples for his countryman Rene of Anjou. When Pius refused to do anything to the prejudice of Ferdinand, Louis changed his attitude, and allowed the protests of the university of Paris and the parlements to persuade him to restore the ancient tiberties of the Gallican Church. At the same time a serious quarrel with the Germans prevented anything being done towards a crusade. George Podiebrad, king of Bohemia, was plotting to depose the emperor Frederick III., who was supported by Pius. Diether, archhishop of Mainz, took the side of Podiebrad, and replied to Pius's measures by appealing to a general council. Ife was declared deposed by the pope, hut kept his seat, and in 1464 compelled the pope to recognire him again. The quarrel with Podiehrad, who was accused of supporting the Utraquist heresy, continued with increasing bitterness, but without any decisive result, until the death of Pius. In the meantime the pope did what he could to further the cause of the crusade. The discovery of alum mines at Tolfa gave him an unexpected pecuniary resource, and to stimulate the zeal of Christendom, Plus took the cross on the 18th of June 1464. He set out for Venice, where he intended to sail for the East, but he was attacked with a fever, and on the 14 th of August 1464 be died.
Pius II. was a voluminous author. Besides poems, a novel and a play, be wrote a number of orations, which were considered models of eloquence in their day. His most valuable work, however, is his Commentaries, a history of his own life and times, told in an interesting and rational manner. He is very frank ahout himsell, and most of the adverse judgments which have been pronounced on his character have been based on his own confessions. He was an opportunist, sailing along with any favourable breeze, and not quite enough in earnest about anything to pursue the same tack steadily for long. We must give him the credit, however, of advocating a statesmanlike policy in the interests of the whole of Europe in trying to get the powers to unite against the Turks, who threatened to overwhelm them all.
 bibliography will be fouad; M. Creighton, fistory of the Papacy during the Reformation, vol. ii. (London, 1882); L. Pator, Huser? of the Popes from the clase of the IEiddle Ages (Eng- trans, 1896, vol. it); Yoigt, Piws IX. (1856-1863). The Commeenlaries of Pius wre pab lished in 1584, under the name of Cobelinus Perwona. His otber works are found in Aencou Siboti opera ammia (Basel, 15si). See also W. Boulting, Aeneas Ssherss (1909).
(P. Sx.)

Prus III. (Francesco Nannl-Todeschini-Piccolomini), pope from the 22 nd of September to the $\mathbf{1 8 t h}$ of October 1503 , wis born at Siena on the gth of May 1439. After studying law 4 Perugia, he was made archbishop of Siena and cardinaldeacon of St Eustachio, when only twenty-two years of age, by his uncie Pius II., who permitted bim to assume the name and amm of the Pictolominl. He was employed by subsequent popes in several important legations, as hy Paul II. at the diet d Regensburg, and by Sixtus IV. to secure the restoration of eccleslastical authority in Umbria. He bravely opposed the policy of Alexander VI., and was elected pope, amid the dir turbances consequent upon the death of the latter, througt the interested influence of Cardinal della Rovere, afterwind Julius II., and was crowned on the 8th of October 1503 . He permitted Cesare Borgia to retum to Rome, but promply took in hand the reform of the curia. Pius was a man od blameless life, and would doubtless have accomplished much bad he lived. His successor was Julius II.
See L. Pastor, Fistory of the Poges, vol. vi., trans, by F. I. Antrobas (London, 1498): M Creighton, History of ihe Papacy, val. v. (Lot don, 1901). F. Gregorovius, Rome vi the Mudde Ages, vol viit trans. Cy Mra G. W. Hamilton (London, 1900-190z) Piccolomuii. "Il Ponaficato di Pio ill.," in Archive stor. val., vol. v. (Fireaze, 1903).
Pids IV. (Giovanni Angelo Medici, or "Medighino "), pope from 1559 to 1505 , was born at Milan on the 31st of March i494 of an obscure family, not related to the Medici of Florence (i) claim to such relationship was advanced aftar Giovanni Angch had attained to prominence). The fortune of the family rat estahlished by an elder brother, Gian Giscomo, who fought bis wry to the marquisate of Marignano and distinguished hirs self in the service of the emperor. Giovanai Angelo studiad in Bologan and Pavia, and for come time followed the lir. Entering the service of the Church, he found favour wit h Puul ill, who entrusted him with the governorship of several important towns, and in 2549 made him a cardinal. Julius III. sent him upon missions to Germany and Hungary. With Paul IV. he was out of favour, because not in sympathy with bis policy, and accordingly retired to Milan. In the protracted and momentors conclave that followed the death of Paul the election of Pits (Dec. 25, 1559) was due to a compromise between the Sparish and French factions.

In temperament and habit Pius was the antithesis of bin predecessor: affable, vivacious, convivial. He was, moreove, astute, diplomatic and experienced in affairs. He allowed the reform movernent free course, hut tried to repair certain it justices of Paul,IV. (for example, releasing and reiastation Morone, who had been imprisoned on a charge of heresy), and mitigated some of his extreme decrees. But to the nephews of Paul he showed no mercy: they were charged with vanous crimes condemned, upon testimony of suspicious validity, and executed on the 5th of March 156r. The Colonnesi, who had been active in the prosecution, recovered Paliano. But under Pius V. judgment was reversed, the memory of the Caraffa rehabilitated. and restitution made to the family. Pius IV himself was pot guitess of nepotism; but the bestowment of the cardinalate and the archbishopric of Milan upon his nephew, the pure and upright Carlo Borromeo, redounded to the honour of hus pontifcate and the welfare of the church.

With England lost to the papacy, Germany overwhelmingly Protestant, and France on the verge of civil war, Pius realized how fatuous was the anti-Spanish policy of his predecessor. He therefore recognized Ferdinand as emperor, and concilialed Philip IL. with extensive ecclesiastical privileges. But subsequently, antagonized by Philip's arrogance, be inclined towards France, and gave troops and money for the war agaicst the Huguenots.

After a suspension of tea years the cenncil of Trent reconvened on the 18th of January 1562. Among the demands presented by the various nations were, the recognition of the equality of the episcopate, communion in both kinds, clerical marriage, and the use of the vernacular in Church services. It required all the pope's diplomacy to avoid compliance on the one hand, and a breach with the powers on the other. Thanks to Morone and Borromeo, however, he achieved his end. The council was dissolved on the 4 th of December 1563, and its decrees and defintions confirmed by the pope (Jan. 26, 1564), who reserved to himself the sole right of interpretation. The decrees were immediately accepted by most of the Catholic states; ondy tardily, however, and with reservation by. France and Spain. Various measutes were taken for carrying the decrees into effect: residence was strictly enjoined; plurality of bencfices prahibited; the Inquisition resumed, under the presidency of Chislieri (afterwards Pius V.); a new edition of the Index published (1564); and the "Tridentine creed" promulgated (Nov. 13, 1564).

After the termination of the council Pius indulged his desire for ease and pleasure, to the great offence of the rigorists. A certain fanatic, Benedetto Accolti, brooding over the pope's unworthiness, felt inspired to remove him, but his plot was discovered and punished ($\mathbf{5 6 5}$). Pius fortified Rome, and contributed much to the embelishment of the city-among other works, the church of Sta Maria degli Angell in the Baths of Dioclelian; the Porta Pis; the Villa Pia in the Vatican Gardena; and the Palace of the Conservatori. He died on the gth of December, and was succeeded by Pius V.

See Panvinio, continuator of Platina. De vitis pontiff, rom. (a contemporary of Pius); Ciaconius, Vitae el res gestae summorums pontiff- ram. (Rome 1601-1602; also contemporary); T. Muller. Das Konklave Pius IV. (Cotha, 1889: more comprehensive than the title euggests); Ranke, Popes (Eng. trans., Austin), i. 323 weq., 35^{8} meq. $;$ and v. Reuriont, Geseh der Slod Rem. iii. $2,534 \mathrm{seq}$ - 730 seq. (I.F.C.)

Paus V. (Michelo Ghislieri), pope from 1566 to 1572 , was bom on the 17 th of January 1504 , in the Milanese. At the age of fourteen be became n Dominican monk. His austerc life, his vehemence in attecking heresy and his rigorous discipline as prior of several monasteries proved his filness for the work of reform, and he was appoinied inquisitor in Corno, where his seal provoked such opposition as to campel his recall ($\mathbf{2 5 5 0}$). The chief inquisitor, Caraffa, convinced of his value, straighiway sent him upon a misaion to Lombardy, and in 5551 appolnted him commisuary-general of the Holy Office When Caraffa became pope, Ghislieri was made bishop of Nepi and Sutri, cardinal (I 557), and finally grand inquisitor, which office he discharged in a manner to make the name of ". Fra Michele dell' Inquisizione" terror. In this office he was continued by Pius-IV., whom, however, he repelled by his excessive severity, and antagonized by his censoriousness and obstinacy. But the movement with which he was 80 fully identified was irresistible; and, after the death of Pius IV., the rigorists, led by Borromeo, had no difficulty in making bim pope (Jan. 7, 1566).

Though pope, Pius did not cease to be a monk: his ascetic mode of life and his devotions suffered no interruption. Without delay he applied himself to the work of reform. Decrees and ordinances were issued with ustonishing rapidity: the papal court was rid of everything unseemly, and became a model of sobriety; prostitutes were driven from the city, or confined to a cartain quarter; severe penalties were attached to Sunday desecration. profanity and animal baiting: clerical residence was enforced; conventuals were compelled to live in strict seciusion according to their vows; catechetical instruction was expoined. A new catechism appeared in 1566 , followed by an improved breviary (1568), and an improved miscal (1570). The use of indulgences and dispensationa was restricted, and the penitential system reformed.

Pius was the nvowed enemy of nepotism. One nephew, it is true, he made cardinal, but allowed him no influence: the rest of his relatives he kept at a distance. By the constitution Admonet nos (March 29, 1567), he forbade the seinvestiture
of fiefo that should revert to the Holy. See, and bound the cardiaals by onth to observe in. In March is69 Pius ordered the expulsion of Lhe Jews from the states of the Church. For commercial ressons thay were allowed to remain in Rome and Ancona, but only upon humitiating conditions. La February 1571, the Umiliati, a degeperate monastic order of Mian, was suppressed on account of its complicity in an attempt upon the life of the archbishop, Carlo Borrappeo.

The election of Pius ta the papacy was the enthronement of the Inquisition: the utter extinction of heresy was his darling ambition, and the posession of power ouly intensifird his pasaion. Tha sules governing the Holy Office werce sharpened; old charges, long suspended, were revived; rank offered no protection, but rather exposed its possessor to fiercer attack; none wers puraued more relemlessly than the cultured, among whom many of the Protestant doctrines had found acceptance; princes and state withdrew their protection, and courted the favour of the Holy See by surrendering distinguished offenders. Cosmo de' Medici handed over Pietro Carnesecchi (and two years Later received in reward the tiele of grand duke, Sept. 1569); Venice delivered Guido Zanetti; Philip II., Bartolome de Carranas, the archbishop of Toledo. In March 1571 the Congregation of the Index was established and greater thoroughness introduced into the pursuit of heretical literature. The result was the flight of hundreds of printers to Switzerland and Germany. Thus hereay was hunted out of Italy: the only regret of Pius was that he had sometimes been too lenient. In 1567 Pius condemned the doctrines of Michael Baius, a-prolessor of Louvain, who taught justification by faith, asserted the sufficiency of the Scriptures, and disparaged outward forms. Baius submitted; but bis doctrines were afterwards taken up by the Jansenista

The political activities of Pius were controlled by one principle, war upon the heretic and infidel. He spurred Philip II. on in the Netherlands, and approved the bloody work of Alva. He denounced all temporizing with the Huguenots, and commanded their utter extermination (ad internecionem usquc). While it cannot be proven that he was privy to the massacre of St Bartholomew, still his violent counsels could not fail to stir up the most savage passions. He exclaimed loudly against the emperor's tolcration of Protestantism, and all but wished his defeat at the hands of the Turks. He urged a general coalition of the Catholic states against the Protestants; and yet published, in sharper form, the bull In coana domini (1508), which was regarded by these verystates as an attack upon their tovereignty. Onc of his cherished schemes was the invasion of England and the dethronement of Elizabelh, whom he excommunicated and declared a usurper (Feh. 25, 2570); but he was obliged to content himself with ahetting plots and fomenting rebellions. He did, however, effect an alliance with Spain and Venice against the Turks, and contributed to the victory of Lepanto (Oct. 6 1571).

Thus lived and wrought Pius, presenting "a strange union of singleness of purpose, magnanimity, austerity and profound religious feeling with sour bigotry, relentless hatred and bloody persecution" (Ranke). He died on the 1st. of May 1572; and was canoaized by Clement XI. in 1712.
See Ciaconius, Vilac al res qestac summorus ponlify. rom. (Rome, 1601-1602; a contemporary of. Pius); Acla sanclorum, maij, tom. it pp. 616 seq, containing the life by Gaburio (1605), based upon an earlier one by Catena (1586): Falloux, Hist. de Sl Pie V. (3rd ed., Paris, 1858), eulogistic; Mendham, Life and Ponificale of Si Pius V. (London. 1832), a bitter polemic. The jife of Pius has also been written by Fuenmayor (Madrid, 1595), Paolo Alessandro Maffci (Rome, 171z), and by T. M. Graneho (Bologna, 1877). His letters have been edited by Caterna (vida sxpra), Goubau (Antwerp. t640), and a select number in a French transation, by de Potter (Paris, 1826). See also Hilliger, Die Wahl Pius $\boldsymbol{V}_{\text {, }}$ zum Papste (Leipzig, 1891): Ranke, Popes (Eng. trans. Austin), i. 361 seq., 344 eegid and vop Reumont, Gesch. der Skd Kom. iii. 2, 557 seq.
(I. F.C.).

Puus VI. (Giovanni Angelo Braschi), pope from 1775 to 1799 was bora at Cesena, on the 27ib of December 1717. After taking the degree of doctor of laws he went to Ferrara and became the private secretary of Cardinal Ruffo, in whose bishopric of Ostia and Velletri he held the post of uditore until 1733 - His
shill in the conduct of a misalos to the cobrt of Naples won him the esteen of Benedict XIV:, who appointed him one of his secretaries and canon of St Peter's. In 175^{8} he was raised to the prelature, and in 1706 to the treasurership of the apostolic chareber by Clement XIII. Those who chafed under his conscientious economies cunningly induced Clement XIV. to sreate him cardinal-pricat of San Onofrio on the a6th of April 1773, a promotion which rendered hin for the time innocuous. In the four months' conclave which followed the death of Clement XIV., Spain, France and Portuyal at length dropped their objection to Braschi, who wis after all one of the more moderate opponents of the anti-Jesuit policy of the previous pope, and be wies elected to the vacant sce on the igth of February 1775 .

His eartier acts gave fair promise of tiberal rule and reform in the defective administrution of the papal states. He showed discrimination in his benovolences, reprimanded Potencianl, the sovernor of Rome, for unsuppressed disorders, appointed a council of cardinals to remedy the state of the finances and relieve the pressure of imposts, called to account Nicolo Bischi for the expenditure of moneys intended for the parchase of grain, reduced the annual disbursements by the suppression of several pensions, and edopted a system of bounties for the encouragement of agriculture. The circumstances of his election, however, involved him in difficultics from the outset of his pontificate. He hid received the support of the ministers of the Crowns and the anti-Jesuit party upon a tacit understanding that he would continue the action of Clement, by whose brief Dominus ac redemplor (1773) the dissolation of the Society of Jesus had been pronounced. On the other hand the eclaxti, who betieved him secretly inclined towards Jesuitism, expected from him some reparation for the alleged wrongs of the previous reign. As a result of these complications Pius was led into a series of half measures which gave litic satisfaction to cither party: ahhough it is perhaps largely due to him that the order was able to escape shipwreck in White Russia and Silesia; at but one juncture did he even seriously consider its universal re-establishment, namely in 1792, as a bulwark against revolutionary ideas. Besides facing dissatisfaction with this temporizing policy, Pius met with practical protests cending to the limitation of papal authority. To he sure "Febronius," the thief German literary exponent of the old Ganican ideas, was himsell led (not without scandal) to retract; but his positions were adopted In Austria. Here the social and ecelesiastical reforms undertaken by Joseph II. and his minister Kaunitz touched the supremacy of Rome so nearly that in the hope of stayitg them Pius adopted the exeeptional course of visiting Vienna in person. He left Rome on the 27th of February 1782, and, though magnificently received by the emperor, his mission proved a fiasco; he wis, however, able a few years later to curb those German archbishops tho, in 1766 hat the Congress at Ems, had shown a tendency towards independence. In Naples difficulties necessitating eertain concessions in respect of feudal homage wiete raised by the minister Tannucci, and more serious disagreements aroste with Leopold I. and Scipione de' Ritef, bishop of Pistola and Prato, upon the questions of reform in Tuscany; but Pius did not think fit to condemn the offensive decrees of the synod of Pistoia (1786) till nearly eight ycars had elapsed. At the outbreak of the French Revolution Pius was compelled to sce the old Gallican Church suppressed, the pontifical and ecclesisstical possessions in France confiscated and an effigy of himself burnt by the populace at tbe Palais Royal. The murder of the repteblican agent, Hugo Basseville, in the streets of Rome (January 1793) gave new ground of offence; the papal court was charged with. complicity by the French Convention; and Pius threw in his fot with the league against France. In 1796 Napoleon invaded Italy, defeated the papal troops and occupied Ancona and Loreto. Pius sued for peace, which was granted at Tolentino on the 19th of February 1797; biut on the 28th of December of that year, in a riot created hy some Italian and French revolutionists, General Duphot of the French embassy was killed and a new pretext furnished for invasion. General Berthier marched to Rome, entered it unopposed on the 13th of Febranty 1798,
and, prociaiming a reppablic, demanded of the pope the remunciation of his temporal authority. Upon his refusal he was taken prisoner, and on the 20th of February was escorted from the Vaticen to Siena, and thence to the Certoss near Florence. The French declaration of war agains! Tuseany led to his removal by way of Parma, Piacenza, Turip and Grenoble to the citada of Valence, where he died six weeks hater, on the 2gth of August 1799. Pius VII. succecded him.

The name of Pius VI. is associated with many and often unpopular attempts to revive the splendour of leo X. in the promotion of ant and puhlic works-the words " Munificentia Pii VI. P. M." graven in all parts of the city, giving rise amongst his impoverissied subjects to such satire as the insertion of a minute loaf in the hands of Pasquin with that inscription bencath it. He is best remembered in connexion with the establishment of the museum of the Vatican, bighun at his suggestion by his predecessor, and with an anpractical and expensive ettempt to drain the Pontine marshes.

Authoritiss.-Zopffel and Benrath, "Pius VI."" in FierzogHauck, Realencyhlopädie. 3rd ed., vol. xv. pp. 471-451 (Leipzig, 1904. with elaborate bibliography): F. Nictsop, \#fishory of the Papacy in the rolt Centowry, vol. i. chap vit. (Loadon, 1go6): J. Gendry, Pis VI. sa pie, sem postificat, d'apris les archives paticases a de mombrens documends inddes (2 vols., Paris, 1907).
(W.W. R.')

Prus VII. (Lueisi Barmabe Chiaramonti), pope from 1800 to 1823, the son of Count Scipione Chiaramonti and the deephy religious Countess Ghini, was born at Cesena on the 14th of August 1740 (not 1742). After studying at Ravenna, at the age of sixtcen he entered the Benedictine monastery of St Mary in his native town: here he wall known as Gregorio. Almost immediately he was sent by his supcriors to Padua and to Rome for a further course of studies in theology. He then held varions teachiog:appointments in the colleges of his order at Parma and at Rome. Ife tras created an albbot of his order by his felative Pius VI., who also appointed him bishop of Tivoli on the 16th of December 1782, and on the $\mathbf{t 4}$ th of February 1785 , because of excellent conduct of office, raised him to the cardinglate and the-me of Imola. At the death of Pius VI. the conclave met at Vemice on the 3oth of Noventber 1799, with the resule that Chiarmonti, the cundidate of the French cardinal-archbishop Maury, who was most skiluily supperted by the secretary of the concletve Ercole Constivi, wal ciected pope on the rigth of March s800. He wits crowned on the 2ist of that month; in the following July he entered Rome, on the irth of Augnsk appointed Consalvi cardinal-dencon and secrelary of etate, and butied himself with admiaistrative reforms.
' His attertion was at orree directed to the ecciesiastical anarchy of France, where, apart from the broad schism on the question of sabmination to the civil constitution of the clergy, diacipline had been so far neglected that a large proportion of the churches were closed, dioceses eristed without bishops or with more than one, Jamsenism and clerical marriage were on the increase, and indifferevice or hostility widdy prevailed amonget the people. Encouraged by Napoteon's desire for the re-otiablishment of the Roman Celtholie.rcligion in France, Pius regotiated the celebrated concordat, which was slgned at Patho on the 15 th of July and ratified by Pius on the rath of August 1801 (see Concorint). The importance of this agreement was, however, considerably lessened by the "arricles organiques" appended to it by the French government on the 8th of April 1802. In 1804 Napoieon opened negotiations to secure at the pope's hands his formal consectation as emperor. After some hesitation Pius was induced to perform the eeremony at Notre Dame and to extend his visin to Paris for four months; but in return for these favours he was able to obtain from Napoleon mertly one or two minor concessions. Pius, who arrived in Rome on the 1 bhh of May 1805, gave to the college of eardinals a rose-colourtd report of his experiences; but disillusionment was rapid. Napoleon soon began to disregard the Ttalian concordit of $\mathbf{8 5 O 3}$, and himself decreed the dissolution of the marriage of his brother Jerome with Miss Patterson of Baltimore. The irritation between France and the Vatican increased so rapidly thit on the and of February $\mathbf{3 8 0 8}$ Rome was
occupied by General Mjollisp a month later the provitoces of Ancona, Macerata, Fermo and Urbino were united to the kingdom of Italy, and diplomatic selations between Napoleon and Rome were broken off; finally, by a decreo isuled from Schonbrunn on the 17th of May 2803, the emperor united the papal statea to France. Pius retaliated by a bull excommunicnting the invaders; and, to provent insurrection, Miollis-either on his own responsibility, as Napoleon afterwards asserted, on by onder of the Intter-employed General Radet to take posseasion of the pope's person. The palace on the Quirioal was broken open during the might of July sth, and, on the persistent refusal of Pius to resciad the bull of excommunication and to renounce his temporal authority, he was carried off, first to Grepobie, thence after an interval to Savona on the Gulf of Genoa. Here he steadfastly rifused canonical institution to the bishops sominated by Napoleon; aind, when it was discovered that he was maintsining a secret correspondence, he was deprived of all books, even of pen and ink. At length, his nerves shattered by insomnis and fever, he was willing to give satisfactory oral apsurances as to the institution of the French bisbops.

In May 1812 Napoleon, on the pretext that the English might tiberate the pope if he were left at Savona, caused the aged and sick pontiff 10 be transported to Fontainebleau; the journey was so hard that on Mount Cenis Pius received the viaticum. Arriving safely, however, at Fontainebleau, he was lodged in a suite of regal magnificence to await the return of the emperor from Moscow. When Napoleon arrived, he entered into personal megotiations with the pope, who on the asth of January 8813 assented to a concordat so degrading that his conscience found no relief till the 24 th of March, when, on the advice of the cardinal Pacca and Consalvi, he abrogated it; and on the oth of May he proceeded to defy the emperor by declaring invalid all the official acts of the new French bishops. In consequence of the battle of Leipzig and the entry of the allied forces into France, Napoleon ordered in January 1814 that the pope be returned to Savona for safe keeping; but soon the course of events forced him to liberate the pope and give back the States of the Cbureh. On the igth of March Pius left Savona, and was received with rejoicing at Rome on the 24th of May. While Consalvi at the Congress of Vienna was securing the reatitution of nearly all the papal territory, reaction had full awing at Rome; the Jesuits were restored: the French legislation, much of which was of great cocial value, was repealed; the Index and the Inquisition were revived. On his return Consalvi canducted a more enlightened and highly centralized administration, based largely on the famous Motn proprio of 1816 ; nevertheless the finances were in a desperate condition. Discontent centred perhaps in the Carbonari, tiberal secret society condemned by the pope in 8821. The chief triumphs of Consalvi were the negotiation of a series of valuable concordats with all the Roman Catholic powers save Austria. In the latter years of Pius's life royalty often came to Rome; the pope was very gracious to exdled kings and showed notable magnanimity toward the family of Napolcon. He also attracted many artists to the city, including the greatest sculptors of the time, one of whom, the Protestant Thorwaldsen, prepared the tomb in which repose the remains of the gentle and courageous pontiff, who passed into rest on the zoth of August 1823. His successor was Leo XII.

AvtBositiss.-Zippfel and Benratb, "Piya VII."" in Herzoge Hauck. Realencyklopadie, xv. $451-458$ (Leipzíg, 1904), (long list of older literature); llario Rinier., La Diplomasia pontiftia nel secolo XIX. (Rome, rgos), two volumes treating the years r800-1803, based largely on Vatican spurctas 1. Rinieri, Napoleone Pio VII. ($\mathbf{1 8 0 4 - 1 8 1 7 \text {), relasiowi storiche sw docwmenti inediti dell a archioio }}$ (caticano (Iurin, 1906); H. Chotard, Le Pape Pie VII. a Savone (Paris, 1887); Mary H. Alies, Pius the Sevenh (London, 1897), a popular Roman Catholic biography; Leo Konig, S.J. Piks VII. Die Soputar Roman candisotice mad dos Reichaphomiondot (innebruct, 1904), based chiefly on Vienve material; H. Welschinger, Le Papr et Trmperew, 1804-1815 (Paris, 1905); Louis Madelin, La Rome de Napolton: la domination trangaise d Kome de 1809 d 1814 ((aris, 1906), an elaborate tudy: L. G. Wickham-Lezg, "The Concordans " (Cismidridge Moden Hislor ${ }^{\prime}$, vol. ix. chi 7. 1906): Lady Blennerthaswets." The Papecy and the Catholic Church (Cambridec Modern Hisiory vot x. ch. 5 . 1907). Both these last have good bibliographics.

Tum VII, (Francesco Xavieso Castiglioni), pope from 8820 to 8830 , who came of anotable family at Cingoi mear Ancona,
 at Rome, beeame vicur-merral at Anegai and later at Faco, and in i800 was appointed binhop of Mortalco. Because he refured the outh of allegingce to tho Napolecaic king of Italy be wes cartied captive to Frunce; bat in 8826 his steadisatness mas rowarded by his being creesed cardibalpsten of Ste Merin in Trustevere; and thin mame year he was tranalited from the mee of Montalto to that of Cosens, In sgax he was made cardinatbishop of Frascati, also grand pendtentiary; and later be become prefoct of the Congtegation of the Inders. In the condeve which followed tho death of Leo XII., Cestigioni, the candidate of France; was elected pope on the 3 tst of March 1829. He avoided nepolism, abandoned the system of enplonege employed by his predeceswor, and published an encyclical condemaing Bible pocieties and aecret astocistions. He rejoiced over Catholic ernamapation in England, recognized Iouia Philippe as king of the French, and exhibited a pacific spirit in dealing vith the problem of mixed marriges in Germany. Worn out with work, he died on the morning of the ret of December 2830. His successor was Cregory XVI.

Authoartrra-ZOpifel and Benrath, "Pisw VIII." in Hersoct

 Ki. 11-50 (London, 1906) ; P. B. Gams, Series episcojorum Cecclesion calholitace (Regensburg, 1873).
(W. W. R.')

Piua IX. (Giovanni Maria Mastai-Ferretij), pope from 1846 10 1878, was born on the 13th of May 1792 at Sinigglia, the fourth son of Count Jerome and Countess Cetherine Vollaxi; tha family of Mastas was of anciant descent, and the thle of count caree to is in the rith ceotury, while later the eldet brench, allied by marriage with the Ferretti family, took that name in addition. He tpent come time af the College of Piacists in Volaterm, and then proceeded to Rome with the intention of entering the pontifical guand as an officer. In spite of hit good connexions, he was disappointed in this aim as it becaman knowa that he suffered from epilepsy. The malady, however; was surmounted; and in 1819 he was ordained priest. After ministering for some time in his native town, he ncoompanied Cardinal Murzi to Chile (1823). On his return he was entrusted by Leo XII. with the direction of the Roman horpital of Saa Michele: in 3830 he received the archbishopric of Spoleto, in 1832 the hishopric of lmola, and in 1840 Gregery XVI. created him a cardinal, with the title Santi Pistre o Marecellino.
On the death of Gregory XVI. (Jume 1, 1846) the Collequ of Candinals met in conclave on the 14th of June, But their deliberations were destined to last but a short while; for, on the 16th of June, Cardinal Mastai Ferretti had already obtained tha requisite two-thirds majority, and ascended the papal chair under the title of Pius IX. In his various capacities be had gained much popularity: he had shown himself to be of a kindly disposition and a zealous churchman, and his reputation for piet y and tact stood high; he possessed, too, a winning personality and a handsome presence.

The reign of Pius IX. began at an extremely critical time. The' problem of the government of the Papal States, transmitted to him by his predecessor, stood in urgent need of solution, for the actual conditions were altogether intolerable. The irritation of the populace had risen to such a pitch that it found vent in revolts which could only be quelled by the intervention of foreign powers; and the ferment in the dominions of the Church was accentuated by the fact that the revolutionary spirit was in the ascendant in all the states of Europe. The proclamation of a general amnesty for all political offenders made an excellent impression on the people; and Pius at once instituted preparations for a reform of the administration, the judicature and the financial system. The regulations affecting the censorahip were mitigated, and a breath of political liberalism vitalized the whole government. Pius at once acquired the reputation of a reforming pope. But the prestige so gained was not sufticient to calm thie people permanently, and two demards were urged with ever increasing energy-a share in the government and a national

Italian policy. The problem of giving the people a due stare in the government was one of peculiar difficulty in the papal states. It was not simply 2 question of adjusting the claintis of monnech and subject: it was necescary, at the same time, to oust the clergy-who, till then, had held all the more important officts in their own bands-from their dominent position, or at least to limit their privileges. That the derical character of the administration could not be indefinitely retained was plain enough, it would seem, to any dear-thinking statesman: for, zince the restoration of the papal stald in 1814, the pernicious eflects of thfy confusion of the spiritual and the secular power could no longer be denied. But Pius IX. lacked the courage and perspicscity to draw the inevitable conclusions from these premises; and the higher clergy at Rome were naturally opposed to a policy which, by laiciang the administration, would have deprived them of the power and privileges they had so long enjoyed. In these circumstances it is not surprising that the pope, while making concesstons to his people, did so with reservations which, so far from restoring peace, served only to aggravate the turmoil.

By a mote proprio of the and of October 1847 the government of the city of Rome was reorganized and vested in a council of 100 members, not more than four of whom were to be clerics. But the pope reserved to himsell the right of nominating the first members, and the new senate was only later to have the right of filling up vacancies by co-optation. The institution of a state council (consulta) was announced on the roth of April 1847; and on the 14th of October it was callied into eristence by a matn proprio. It consisted of 24 councillors, who were to be selected by the pope from a list of candidates to be submitted by the provincial assemblies. A cardinal and one other prelate were to be at its head. The consulta was to be divided into four sections, dealing with (1) legislation, (2) finance, (3) internai administration, (4) the army and public works. Matters of importance were, however, to be submitted to the College of Cardinals, ufter being debated in the consulta. A mots proppio of the agth of December altered the constitution of the ministerial council. Nine mutually independent ministries were formed, and the principle of the responsibility of the minibters was established: but all the positions were filled by cierics.

The agitation for constitutional government was urgent in the demand for further concessions; bot they came too late. On the 12th of February a proclamation of the pope transierred three portfolios to the laity; but the impression produced by the news of the revolution in Paris nullified the effect. At the formation of the Antonelli ministry (March 12), only the three departments of foreign affairs, finance and education, were resetved by the elergy; while the remairing six were entrusted to laymen. On the 14th of March 1848 Pius took the last step, and published a constitution (Furdamental Statute for the Secular Government of the States of the Church). Two chambers were to be formed. The first (afto consiglio) consisted of members hominated for Ife by the pope; the second, of a hundred elected deputics. The laws adopted by these two chambers had first to undergo the scrutiny of the College of Cardinals, before being submitted to the pope for his assent or rejection. Ecclesiastical, or ecclesiastico-political, affairs were exempted from the jurisdiction of the parliament; which was further required to abstain from the enactment of laws conflicting with the discipline of the Church, and from criticism of the diplomatic and religious relations of the Holy See with foreign powers.

The utility of this constitution was never tested; for the demand for an extension of popular rights was now eclipsed by a still more passionate aspiration towards the national unity of Italy. This nationalist movement at once took head against Austria. On the 18th of March the revolution broke out in Milan, and King Albert of Sardinia undertook the conduct of the war against the emperor. When news of the events at Milan reached Rome the populace was swept away in a whiriwind of enthusiasm: the Austrian embassy was mobbed; the imperial arms, surmounting the main gate of the palace, were torn down; and great troops of volunteers clamoured to be led against Austria. Pius was carried away at first on the flood-tide of excitement, and seemed,
after hiss prociamition of the 3oth of March, on the point of conferring his blesaing upon the war against Austria. But the course of political events daring the next few weeks damped his ardour: When, on the 2gth of April, in his aliocatica to the cardiaals, be proclaimed the papal neatrality, the Rotnans received his vacilation as a sign of treachery; and the storm, preciuded from discharging its fury on Austrin, broke over his head. When the ministry in pover resigned office on the ast of May, the Mamiani aiministration was formed, only me cleric heing included. Mamiani himself, whose writings were on the Index, had little sympathy with the pope, and did all that was possible to complete the secularization of government in the States of the Church. He received his dismissal on the ist of August, and was followed by Count Fabbri, then by Count de Rossi, who made the last attempt to reatore order by a moderate liberal policy. On the isth of November, as he was aburut to open the Chambers, he was assassinated on the staircase leading to the hall of session. A state of anarchy ensued. Armed bands gathered before the Quirinal, and attempted to storm it. To avoid further bloodshed the pope was compelled to assent to the formation of a radically democratic ministry under Galetti. The Swiss, who composed the papal guard, were disbanded; and the protection of the pontiff was transferred to the civil militia; in other words, Pius IX. was a prisoner. On the evening of the 24th of November he contrived by the aid of the French and Bavarian ambassadors-the duc d'Harcourt and Coumt Spaurto leave the palace unobserved, in the dress of a common priest, and to reach Gacta in the kingdom of Naples. From this refuge he issued a breve on the 27 th of November, protesting against the sacrilege practised on himself, declaring all actions forced upon him null and void, and appointing a commission to carry on the government in his absence. Since the Chamber declined to recognize this step, and the pope was equally resolute in refusing to hold any intercourse with the deputation which it despatched to him, a supreme Giunla was provisionally created by the Chamber on the rith of December to discharge all the functions assigned to the executive power by tbe constitution. On the 17th of the same month Pius made a public protest; and, as soon as the clections for a national assembly were announced, he forbade any participation in them, menacing the disobedient with the penalties of the Church (Jan. 1, 1849). The elections, however, were held; and on the gth of February the constituent assembly decreed, hy 142 votes to 23 , the erection of a Roman republic. Pius answered by a protest dated the $14^{\text {th }}$ of February. All the ecclesiastical property of the Roman state was now declared to be vested in the republic; convents and religious edifices were requisitioned for seculaı purposes; benevolent Institutions were withdrawn from clerical influence; and church establishments were deprived of the right to realize their possessions. In the beginning of December Pius had already appealed to.the European powers for assistance; and on the 7th of February. 1849 it was resolved in the Conisistory to approach officially France, Austria, Spain and Naples, with a view to their armed intervention. The French republic, under the presidency of Louis Napoleon, was the firsl state to throw troops into Italy. On the 24th of April General Oudinot appeared before Civita Vecchia; only to be defeated at first by Garibaldi. But, after receiving reinforcements, he prosecuted the war surcessfully, and made his entry into Rome on the grd of July; while, in the early part of May an Austrian army advanced into the north of the papal states. On the 14th of July Oudinot proclaimed the restoration of the pontifical dominion; and, three days later, Pius IX issued a manifesto entrusting the government to 2 commission appointed by himself.
On the 12th of April 1850 Pius returned to Rome, supported by foreign arms, embittered, and hostile henceforward to every form of political liberalism or national sentiment. In Gaeta he had mentally cut himself loose from all ideas of progras, and had thrown himself into the arms of the Jesuits. His subsequent policy was stamped by reaction. Whether it might have beea possible to avoid the catastrophe of $\mathbf{1 8 7 0}$ is a dificult question. But there can be no question whatever that the policy which

Pius now inaugurated, of reatoring the old pre-revolutionary conditions, sealed the fate of the temporal dominion of the papacy. He made no attempt to regain the estranged affectiona of the populace, and took no mensures to liberate himself and his subjects from the incubus of the last few years. He even sought to exact vengeance for the events of that period: the state officials, who had compromised themselves, lost their offices; and all grents in aid were forfeited is the recipients were discovered by the secret commissions (consighi di censure) to have taken part in the revolutionary movement. The tribunals extorted declarations on the part of witnesses by floginge, deprivation of food, and like methods of torture. In many cases the death sentence was executed at their instance, though the guilt of the accused was never estahlished. The system of precautionary arrest, as it was termed, rendered it possible for eny man to be thrown into prison, without trial and without verdict, simply on the ground that he lay under suspicion of plotting against the government. The priests, who usurped the judicial function, displayed such cruelty on several oceasions that officers of the Austrian army were compelled to pecord a protest. The consequence of these methods was that every victim-innocent or guilty-ranked as a martyr in the estimation of his fellow-citizens. A subsidiary result was the revival of brigandage, which found a suspicious degree of support among the people. Corruption was rampant among the officials; the police were accused of illicit bargaining with criminals; and nothing but contempt was entertained for the papal army, which was recruited from the dregs of humanity. To this was added a disast rous financial administration, under which the efficiency and credit of the country sank to appalling depths. The system of taxation was calculated with a view to relieving the Church and the clergy, and imposing the main burden upon tbe laity. In this department the family of Cardinal Antonelli seems to have played a fatal part. The secretary of state was born in humble circumstances: when he died he left a fortune of more than $100,000,000$ line, to which a daughter succeeded in establishing her cluim. His brother Felippo was president of the Roman Bank, and his brother Luigi the head of the Annona-an office created to regulate the import of grain. The pope himself had neither the will nor the power to institute searching financial reforms; possihly, also, he wes ignorant of the facts.
The mismanagement which ohtained in the papal dominions could not escape the observation of the other powers. As early as the Congress of Patis in 1856 the Engilsh amhassador, Lord Clarendon, had directed an annihilating criticism against the government of the pontiff; and a convincing proof of the justice of his verdict was given by Pius himseif, in his treatment of the lamous Mortara case. A Jewish boy of this name had been torn from his parents in Rome and the rite of baptism performed on him without their knowledge or consent. The pope flatly refused to restore the "Christian" to his Jewish parents, and turned a deaf ear both to the protest of public opinion and the diplomatic representations of France and England. The sequel to this mode of government was that the growing embitterment of the subjects of the Church came to be sympathized with outside the bounds of Italy, and the question whether the secular authority of the papacy could be allowed to continue became a much-debated problem. Even the expression of the doubt was symptomatic. In 1859 appeared an anonymous brochure, $L e$ Pape et le congres, composed by Laguerronnière, the friend of Napoleon III., in which it was proposed to ensure the pope "un revenu considérable " and the city of Rome, but to relieve him of a political task to which he was not competent. In 1861 enother anonymous pamphiet, Pro causa itolica ad episcopos catholicos, was published in Florence, advocating the eeclesiasticopolitical programme of Cavour; and the pope was horrified when he discovered that it came from the pen of Pasiaglia, the professor of dogmatic theology. In spite of all, the national idea gained strength in Italy, and the movement towards unity found powerful champions in King Victor Emmanuel of Sardinia and his great statesman Cavour. Free scope was given when the understanding between the two powers protecting the papal state-

France and Austria-hroke down. So won as Napoleon and Cavour had come to an agreement war ensued, France and Sardinia being ranged against Austria (1859). The result was that Austria lost the greater part of her Italian possensions, while the pope also forfeited two-thirds of his dominions. By the war of 1866, in which Italy fought on the Prussian side, Victor Emmanuel gained Venice in addition; so that the States of the Church now formed the last remaining obstacle to complete national unity. In September 1864, France-who had been the protectress of these states since 1849 -had concluded a treaty with Victor Emmanuel, undertaking to withdraw her garrison from Rome in two years time; while, on his part, the king agreed to abstain from any attack on the papal dominions, and to guarantee the safety of the pope and the polrimominm Pelri. The emperor Napoleon had, in point of fact, recalled his troops in 1866; hut in 1867, when Caribaldi crossed the frontiers of the papal state at the head of his voluntears, he declared the treaty violated and again threw hia regimenss into Rome. Three years later the time came when he could employ his arms more advantageously elsewhere, and after the outbreat of the war with Germany Rome wis evacunted. The news that the French Empire had fallen produced an electrical effect in Italy: the Italian parliament called on the king to occupy Rome; on the 8th of September Victor Emmanuel crossed the borders; and on the roth of September the green-white-and-red of the tricolour floated over the Capitol. The protests of Pius IX. remained urheeded, and his attempls to secure another foreign intervention met with no success. On the 2nd of October Victor Emmanuel instituted a platiscila in Rome and the possessions of the Church to decide the question of anneration. The result of the suffrage wes that 153,681 votes were given in favour of union with Italy, and 1507 against the proposed incorporation: that is to say only the direct dependants of the Vatican were opposed to the change. The papal state was now merged in the kingdom of Italy, which proceeded to define its diplomatic relations with the Holy See by the law of the 13th of May 2875 (see Iraiz: History).

In liis capacity as head of the Church, Pius IX. adhered to the principles of the Ultramontanist party, and contributed materially to the victory of that cause. The political reaction which followed the revolutionary ere in most quarters of Europe offered a favourite soil for his efforts; and in several countries he found it possible to regulate the relations between Church and state from the standpoint of the curia. In 1852 he concluded a concordat with Queen Isabelia II. of Spajn, proclaiming Roman Catholicism the sole religion of the Spanish people, to the exclusion of every other creed (art. 1); and we find the same provision in another concordat with the Soulh American republic of Ecuador (1862). A third concordat, negotiated with the emperor Francis Joseph 1. of Austria ($\mathbf{1 8 5 5 \text {), entrusted }}$ the supervision of schools and the censorship of literature to the clergy, recognized the canon law, and repealed all secular legistation conflicting with it. France came into line with the wishes of the pope in every respect, as Napoleon needed clerical support in his political designs. Even in Germany he found no resistance; on the contrary, he was able to secure advantageous compacts from individual states (Hesse, 1854; Wurttemberg, 1857). In fact, the growing tendency to romanize Catholicismto bring it, that is to say, into close connexion with Rome, and to a state of dependency on the guidance and instructions of the curia-made special progress in Germany.

Among the most important acts of Pius IX. must be counted his proclamation of the dogme of the Immaculate Conception of the Virgin Mary, by the bull Incffabilis Dews, on the 8 th of December ${ }^{18}{ }_{54}$. In this bull the preservation of Mary from every stain of hereditary sin, in the first moment of her conception, was declared to be a divinely revealed truth, which consequently demanded universal acceptance (see Invaculate Conception). By this means a view, which till then had been no more than a pious bellef, was elevated into a dogma to be held de fide; though grave doubts on the subject had always been entertained, even in the midst of the Church itself. For the inner life of that

Church this solution of the controversy was of great significance, and created a desire for further dogmatic decisions on the Virgin Mary-her resurrection and ascension. But the procedure of Pius IX. proved of far-reaching importance from another point of view. True, he had taken the opinion of the hishops on the subject, and had received the assent of a large majority; none the less, the verdict was pronounced by himself alone, not by an ecumenical council. Thus, by arrogating the function formerly exercised by the ecumenical council, he virtually laid claim to the infallibility which had always been regarded as inherent only in the doctrinal pronouncements of such a council: in other words, he availed himself of a privilege not accorded to him till the i8th of July 1870 .
Though the Marian dogma of 1854 received, with very few exceptions, an enthusiastic welcome in Roman Catholic circles, another measure of the pope, ten years later, excited a painful sensation even among the orthodor members of the Church. As reigning sovereign of the papal states Pius IX. had passed through a "liberal period ": as head of the Church, he had never been liable to attacks of liberalism. Nevertheless, his return from exile left its mark on his spiritual administration. For from this period onwards he deliberately and stubbornly set his lace against the infuence of modernism on ecclesiastical life; showed his displeasure at and distrust of the scientific theology and philosophy which marked a moderate advance (Gunther, Frohschammer and Döllinget); and, entrenched in the stronghold of anedieval ideals, combated the transiormations of the new order of society, and the changes in the relationship between Church and state, which ohtained in most countries of Europe since the French Revolution. After long and careful consultation, the adverse criticisros which be had expressed on various occasions were published on the 8th of December 1864, together with the encyclical Quanta cura, under the title Syllabus complectens praccipmos nostrac aetatis errores (see Syllabus). In this Pius claimed for the Church the control of all culture and all science, and of the whole educational system. He rejected the liberty of faith, conscience and worship enjoyed by other creeds; and bade an easy farewell to the idea of tolerance. He claimed the complete independence of the Church from state control; upheld the necessity of a continuance of the temporal power of the Roman See; and finally, in the last clause, declared that "the pontiff neither can be nor ought to be reconciled with progress, liberalism and modern civilization." The publication of this syllabus created a profound impression: for it declared war on modern socicty, and committed the papacy to the principles of Ultramontanism (g.v.). But, as any attempt to translate its precepts into practice would entail a disastrous conflict with the existing régime as established hy law, Roman Catholic circles have frequently shown a tendency to belitle the significance of the manilesto and to deny that its rules are absolutely binding. But these well-meant explanations, however comprehensible, are refuted by the unequivocal pronouncements of Pius IX., Leo XIII., and many recognized ecclesiastical authorities-e.g. Cardinal Manning, archhishop of West minster, who described the syllabus as an emanation from the highest doctrinal authority in the Church.

The zenith of Pius's pontificate was attained on the 88 th of July 1870 when the Vatican council proclaimed the infallihility of the pope and the universality of his episcopate, thus elevating him to a pinnacle which none of his predecessors had reached and at the same time fulfilling his dearest wish. That, personally, he laid great st ress on the acceptance of the dogma, was a fact which he did not attempt to conceal during the long preliminary deliberations of the council; and his attitude was a not inconsiderable factor in determining its final resolutions. But the loss of the papal states, immediately afterwards, was a blow from which he never recovered. Whenever he hrought himself to speak of the subject-and it was not rarcly-be repeated his protest in the bitterest terms, and, to the end of his days, refused to be reconciled with the " sacrilegious" king of Italy. When, in Germany, the situation created by the Vatican council led to the outbreak of the Kulturkampi, Pius IX. failed to display the tact peculiar
to his succeseor. For, in the eacyclical Quod numgman (Feb. 5, 1875), he took the rash step of declaring invalid the Prussian laws regulating the relationship between Church and state-the only result being that the feud was still further embittered.
In these later years the dark days of his "captivity" were amply compensated hythe proois of reverence displayed by Roman Catholic Cbristianity, which accorded him magnificent ovations as his period of jubilee began to fall due. The twent y-fifth anniversary of his pontificate was celebrated with great splendour on the 16 th of June 1871 ; for he was the first pope who had thus reached the traditional "years of Peter." In 1872 his.8oth birthday gave occasion for new demonstrations; and 1875 was a so-called "year of jubilee." Finally, in 1877, the fifty years of his priesthood were completed: an event which brought him innumerable expressions of loyalty and led to a great manifestation of devotion to the Holy See from all the Roman Catholic world. On the 7 th of February 1878 Pius IX. died. His successor was Leo XIII.

Biographies.-Hülskamp, Papst Piws IX. in seinem Lebem mud \boldsymbol{W} irken (2nd ed., Münster, 18 \%o): Lese, Pius IX. (London, 2 vols. 1872); Gillet, Pie 1X., sa vie el les ockes de son pontificat (Patis, 1877): Shea, Life and Ponlificale of Piws IX. (New York, 18772; Trollope: Life of Pius $1 X$. (London, 2 vols., isfl); F.v. Dothinger "Pius 1X." in his Kleine Sithiften, ed. Reusch (Si utetgatt, 1890), p. $\mathbf{5} 88 \mathbf{8 q} 9$.): Stepischnegg, Papst Pius IX. und stim: Zeif (2 vols., Vienna, 1879): Wappmansperger, Leben und Wirkzd des Papstes Pius IX. (Regensburg, 1879): Pougcois, Histoire de Pie IX., son pontificas et son sied (6 vols., Paris, 1877-1886); Fr. Niciseri, The Hislowy of the Papocy in the soth Century, transtated under the dircction of A. F. Mason. vol. ii. (London, 1006). For his $k=23$ sovereign of the papal slates, soe F. v. Dollinger, Kirche und Kirchen. Papsuym und Kirchenstaas (Munich, 1961); M1. Brosch, Ceschichte des Kirchensleates, vol. ii. (Gotha, 1882); A. F. Nurnberger, Papstume wnd Kirchensta (3 vols., Mainz, 1897-1000); C. Mirbs "Die Geschichtschreibung des vatikanischen Konzils," in ibe Historiscke Zezilschrif, 101. Bd. (3. Folgc, 5 Bd.) 1908, p. 529-600.

Sources.-Acto Pis $1 X$. (4 vols., Rome, $\mathbf{1 8 5 4}$ sqq.); Acta samctae sedis (Ronve, 1865 s4q.). A selection of the documents for the history of Pius IX. will be found in C. Mirbt, Quellen sur Geschichte des Papslums und des romischen Kothdicismus (2nd ed., Tabingen,

(C. M.)

Pros X. (Giuseppe Sarto), elected pope in igos, was born on the and of June 1835, of humble parents, at the little town of Riete in the province of Treviso, Italy. He studied theology at the episcopal seminaries of Treviso and Padua, and was ordained priest in 18 g 8 . For seventeen years he acted as parish priest at various small places in Venetia, until in 2875 he was appointed canon of the cathedral and superior of the seminary at Treviso. In 1880 he refused the bishopric of Treviso, hut in $\mathbf{1 8 8 4}$, on the express command of Leo XIII., he accepted that of Mantua. On the 1 ath of June 1893 he was created a cardinal, and three days later was nominated patriarch of Venice. In Venice he made himself very popular owing to his piety, his simplicity and geniality, and by his readiness to act in harmony with the Italian government. He succeeded Leo XILI. in his election to the papal chalr on the 4th of August igo3. (See Papscy, ad fin.)

PIVOT (Fr. pivel; probably connected with Ital. pivolo, peg, pin, diminutive of piva, pipa, pipe), that on which something turns, specifically a metal pointed pin or short shaft in machinery, such as the end of an axle or spindie. The term occurs írequently in combination with other words, chiefly in technical usage, ef. "pivot-gearing." for a system of gearing in machinery which admits of the shifting of the axis of a driving wheel, so that the power may be communicated in various directions.

PIZAREO, FRANCISCO (c. 1471 or 1475-1541), discoverer and conqueror of Peru, was born at Trujillo in Estremadura, Spain, about 1471 (or 1475). He was an illegitimate son of Gonzalo Pizarro, who as colonel of infaniry afterwards served in Italy under Gonsalvo de Cordova, and in Navarre, with some distinction. Of Pizarno's early years hardly anything is known; hut he appears to have been poorly cared for, and his education was neglected. Shorily after the news of the discovery of the New World had reached Spain he was in Seville, and thence found his way across the Atlantic. There he is heard of in 1510 as having taked part in an expedition from Hispanjola to Urabe
under Alonzo de Ojeda, by whom he was entrusted with the charge of the unfortunate settlement at San Sebastian. He accompanied Balbon (whom he afterwards helped to bring to the block) in the discovery of the Pacific; and under Pedrarias d'Avila he received a repartineento, and became a cattle-farmer at Panama. Here in 1522 he entered into a partnership with a priest named Hernando de Luque, and a soldier named Diego de Almagro, for purposes of exploration and conquest towards the south. Pizarro, Almagro and Luque afterwards renewed their compact in a more solemn and explicit manner, agreeing to conquer and divide equally among themselves the opulent empire they hoped to reach. Explorations were then undertaken down the west coast of South America, in which Pizarro, though left for months with but thirteen followers on a small island without ship or stores, persisted till he had coasted as far as about $9^{\circ} \mathrm{S}$. and ohtained distinct accounts of the Peruvian Empire. The governor of Panama showing little disposition to encourage the advent urers, Pizarro resolved to apply to the sovereign in person for help, and with this ohject sailed from Panama for Spain in the spring of 1528 , reaching Seville in early summer. Charles V. was won over, and on the 26th of July 1529 was executed at Toledo the famous capilulacion, hy which Pizarto was upon certain conditions made governor and captain-general of the province of New Castile for the distance of 200 leagues along the newly discovered coast, and invested with all the authority and prerogatives of a viceroy, his associates being left in wholly secondary positions. One of the conditions of the grane was that within six months Pizarro should reise a sufficiently equipped force of two hundred and fifty men, of whom one hundred might be drawn from the colonies; as he could not make up his due complement he sailed clandestinely from San Lucar in January 1530. He was afterwards joined by his brother Hernando with the remaining vessels, and when the expedition left Panama in January of the following year it numbered three ships, one hundred and eighty men, and twenty-seven borses. The subsequent movements of Pizarro belong to the history of Peru (q.0.). After the final effort of the Incas to recover Cuzco in 1536-37 had been defeated by Diego de Almagro, a dispute occurred between him and Pizarro respecting the limits of their jurisdiction. This led to battle; Almagro was deieated (2538) and executed; hut his supporters conspired, and assassinated Pizarro on the 26 th of June 1541.

PIZZICATO (from Ital. piszicarc, to pluck or twitch), a term in music for a direction to the players of stringed instruments, that the passage so marked is to be played by plucking the strings with the fingers instead of using the bow.

PIZZO, a seaport of Calabria, Italy in the province of Catanzato, 72 m . by rail N.E: of Reggio, situated on a steep cliff overlooking the Gulf of Santa Eufemia, 351 ft. above sea-level. Pop. (1901). 9172 . It has an old castle, in which Joachim Murat, ex-king of Naples, was shot on the $\mathrm{t}^{\text {th }}$ of October 1815 . The people engage in tunny- and coralfishing. In 1783 the town was almost destroyed hy an earthquake, and it suffered some damage from the same cause in 1905.
.PLACARD (i gth cent. Fr. plackart, from plaquier; mod. plaquer, to plaster), a bill or poster pasted or affixed to a wall or in any prominent position for the purpose of giving notice to the public of a proclamation, police or other regulations, or of fortheoming events or the like.

PLACB (through Fr. from Lat. platea, street; Gr. π heris, wide), a definite position in space, whether of limited or unlimited extent. situation or locality; also position in a series or rank: or an office, or employment, particularly one in the service of a government. Special applications are to an open space in a town, 2 group of huildings, row of houses, or as the name of a residence or manor-house. In certain cases this latter use
accounts for the occurrence of parts of a town being known as Place, e.g. Ely Place in London, formerly the site of the town residence of the bishops of Ely. A "place of arms" (Fr. place d'armes), in fortification, means the wide spaces (suitable for the assembly of troops for a sortie) made by the salients and re-entrants of the covered way. The phrase is also used in a strategic sense to express an entrenched camp or fortress in which a large army can be collected under cover previous to taking the field.

PLACENTA (Lat. for a cake), in anatomy, the organ hy which the embryo is nourished within the womb of its mother. When the young one is born the placenta and membranes come away as the "aiterbirth." In human anatomy the organ is a circular disk about seven or eight inches in diameter and one and a quarter inches in thickness at its centre, while at its margin it is very thin and is continuous with the foetal membranes. It wreighs about a pound.
In order to explain the formation of the placenta it is necessary to encroach to some extent on the domain of physiology. Before each menstrual period, during the child-bearing age of a woman, the mucous membrape of the uterus hypertrophics, and, at the period, is cast off and renewed, but if a fertilized ovum reaches the uterus the casting of is postponed until the birth of the child. From the fact that the thickened mucous membrane lining the interior of the uterus is cast off sooner or later, it is spoken of as the "decidua." The fertilized ovum, on reaching the uterus, sinks into and embeds itself in the already prepared decidua, and, as it enlarges, there is one part of the decidua lying between it and the uterine wall ("decidua serrotina". or "basalis"), one part stretched over the surface of the enlarging ovum (" decidua reflexa "or "capsularis") and one part lining the rest of the uterus (" decidua vera ") (see fig i.).

Fromi A. F. Young and A. Robinwon, is Cunniagham's Test-Booth of Amalamy.
Fic. I.-Diagram representing a very young human ovum almost immediately after its entrance into the decidua, and whilst the place of its entrance is still covered with a plug of fibrin. The ectoderm has already proliferated and embraced spaces with a plug of fibrin.. The ectoderm has already proliferated and embraced space

It is the decidua basalis which is specially interesting in considering the formation of the placenta. That part which is nearest the ovum is called the "stratum compactum," hut fariher away the uterine glands ditate and give a spongy appearance to the mucous membrane; which earns this particular layer the name of "stratum spongiosum." Procestes grow out from the surface of the ovum which penetrate the stratum compactum of the decidua basalis and capsularis and push their way into the enlarged maternal blood sinuses; these are the "chorionic villi." Later, the "allantoic "or "abdominal stalk" grows from the mesoderm of the hind end of the einhryo into the chorionic villi which enter the decidua basalis, and in this bloodvessels pass which push their way into the maternal blood sinuses Eventually the original walls of these sinuses, together with the false amnion, disappear, and nothing now separates the maternal from the foetal blood except the delicate walls of the foetal vessels covered by some nucleated noncellular tissue. known as symeytium, derived from the chorionic epithelium. so that the embryo is able to take its supply of oxygen and materials for growth from the blood of ite mother and to give up carbonic acid and excretory matters. It is the gradual enlargement of the chorionic villi in the decidua basalis together with the intervillous maternal blood sinusea thal lorms the placenta : the decidua capuularia and vera eventually become premed
together as the embryo enlarges, and then, as pressure continues, atrophy. The allantoic stalk elongates enormously, and in its later stages contains two arterics (umbilical) and only one vein (owing to the obliteration of the right one) embedded in some loose connective tissue known as "Wharton's jelly." At first the stalk of the yolk-sac is quite distinct from this, but later the two etructures become bound up together (see fig. 2), after which they are known as the "umbilical cord." A distinction must be made letween the allantoic stalk and the allantois; the latter is an entodermal outgrowth from the hind end of the mesodacum or primitive alimentary canal, which in the human subject only reaches a litele way toward the placenta. The allantoic stalk is the mass of mesoderm containing blood-vessels which is pushed in front of the allantois and, as has been shown, reaches and blends with the decidua basalis to form the placenta.

For further details see Quain's Amatomy, vol. i. (London, 1908): and, for literature, O. Hertwig's Mandbuch der Entwickelwngilehre (Jena).

Comparative Anatomy.-If the placenta is to be regarded as a cloee union between the vascular system of the parent and embryo. the condition may be found casually scattered throughout the phylum of the Chordata. In such a very lowly member of the

From A. H. Young and A. Robinoso, to Cunaightamis Tex-Book of Anstomy.
Fig 2.-Diagram. Later stage in the development of the placenta, showing the relations of the foetal villi to the placental sinuses, the fusion of the amnion with the inner surface of the chorion, and the thinning of the fused deciduae (capsularis and vera).
phylum as Salpa, a placenta is formed, and the embryo is nourished within the body of its parent. In some of the viviparous sharks, e.g. the blue shark (Carcharias), the yolk-sac has ridges which fit into grooves in the wall of the oviduct and allow an interchange of materials bet ween the maternal and foetal blood. This is an example of an "umbilical placenta." In the viviparous blennies (Zoarces viviparus), among the teleostcan fishes, two or three hundred young are nourished in the hollow ovary, which develops villi gecreting nutritive material. Among the Amphibia the alpine salamander (Solomandra atra) nourishes its young in its oviducts until the gilled etage of development is past. while in the Reptilia the young of a viviparous lizard (Seps chalcides) establish a communication between the yoll-sac anteriorly and the allantois posteriorly, on the one hand. and the wralls of the oviduct on the other. In this way both an umbilical and an allantoic placenta are formed.

The mammals are divided into Placentalia and Aplacentalia; in the latter grotsp, to which the monotremes and most marsupials
belong, the ova have a great deal of yolk; and the younce born in very immature condition, finish their development in their mother: pouch; but although these mammals have no allantoic placenta there is an intimate connexion bet ween the walts of the yolt-sac and the uterine mucous membrame, and so an umbilical or omphalic placenta exists. The name Aplarentalia therefore only means that they have no allantoic placenta. Among the Placentalia the umbilical and allantoic placentat sometimes coexist for some time, as in the case of the hedgstrog. the bandicoor and the moase. In moet of the lower placenial mimmals the allantois is much more developed then in man. and the moet primitive type of placenta is that in which villi are formed over the whole surface of the chorion projecting into the decidua of the tubular cornu of the uterus. This is known as a "diffuse placenta," and is met with in the pangolin, pig, hippopotamus, camel, chevrotain, horse, thinoceros, tapir and whale. When the villi are collected into a number of round tults or cotyledons, as inf most ruminants, the type is spoken of as a "cotyledonous placenta." and an intermediate stage between this and the last is found in the giraffe.

In the Carnivora, elephant. procavia (Hyrax) and aard vark (Orycteropus), there is a "zonary-placenta" which forms a girdle round the embryo. In sloths and lemurs the placenta is domeshaped, white in rodents, insectivores and bats, it is ventral disk or clasely applied pair of disks, thus differing firon the dorsal disk of the ent-eater, astuadillo and hipher Primates, which is known as a "metadiscoidal placenta." It will thus be seen that the form of the placenta is not an altogether trustworthy indication of the systemic position of its owner. In the difuse and colyledonous placentae the villi do not penetrate very deeply into the decidua, and at birth are simply withdrawn, the decidua being left behind in the uterus, so that these placentae are spoken of as non-deciduate while other kinds are deciduate.

For further details see S. W. W. Turner, Lectures on the Comparative A nalomy of the Placente (Edinburgh, 1876): A. Robinson, "Mammalian Ova and the Fornuation of the Placenta," Journ. Anal and Phys. (1904), xxxviii., 186, 325. For literature up to 1906. R. Wiedersheim's Comparative A natowy of Vertebrates, translated and adapted by W. N. Parker (London, 1gog).
(F.G.P.)

PLAGIARISt, an appropriation or copying from the work of another, in literature or att, and the paseing of of the same as original or without acknowledgment of the real authorship or source. The Lat. plagiarims meant a kidnapper, stcalet or abductor of a slave or child, though it is also used in the modern sense of a literary pilierer or purloiner by Martial (1. 53, 9). The word plogiteme is used in the Digest of the offence of kidnapping or abduction, and the ultimate source is probisbly to be found in plaga, net, snarc, trap, cognate with Gr. $\boldsymbol{\pi} \boldsymbol{\lambda}$ кect, to weave, plait. The idea of plagiarism as a wrong is comparatively modern, and has grown up with the incteasing sense of property is warks of the intellect. (See Copyrtght.)

PLAGIOCLASE, an important group of rock-forming minerals, constituting an isomorphous serics between albite, or soda-felspar and anorthite, or lime-felspar. Intermedinte members are thus soda-lime-lelspars, which in their crystallograpl cal, optical and other physical characters vary progressively with the chemical composition between the two extremes albite ($\mathrm{NaNlSiO}_{3}$) and anorthite ($\mathrm{CaA} \mathrm{H}_{3} \mathrm{Si}_{2} \mathrm{O}_{4}$). This variation is continuous in the scries, hut specific names are applied to members falling between certain arbitrary limits, viz.: Nbite, $\mathbf{A b}\left(=\mathbf{N a A l S i} \mathrm{O}_{2}\right)$; Oligoclase, $A b_{3} A n_{1}$ to $A b_{2} A n_{1}$; Andesine, $A b_{2} A n_{1}$ to $A b_{1} A n_{1}$; Labradorite, $A b_{1} A n_{1}$ to $A b_{1} A n_{3} ;$ Bytownite, $\mathrm{Ab}_{1} \mathrm{An}_{3}$ to $\mathrm{Ab}_{1} \mathrm{An}_{3}$; Anorthite, $\mathrm{An}\left(=\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{3}\right)$.
All the members of the series crystallize in the anorthic (triclinic) system. They possess a perfect cleavage paralld to the basal pinacoid $P\left(\infty_{1}\right)$ and a somewhat less pronounced cleavage parallel tu the pinacoid M (o10). The angle belween these two cleavages varics from $86^{\circ} 24^{\prime}$ in albite to $85^{\circ} 50^{\prime}$ in anorthite. It was on account of the oblique angle between the cleavages that A. Breithaupt in 1847 gave the name plagioclase (Gr. Tihurios, oblique, and wâr, to cleave) to these felspars, to distinguish them from the orthoclase felspar in which the corresponding cleavage angle is 3 right angle. It should be noted that the potash-and potash-soda-felspars, microcline (q.v.) an anorthoclase, though also anorthic, are not included in the plagioclase series of soda-lime-felspars. Crystals are
naselly tebular in habit, paralice to the plane \boldsymbol{M}, as shown in the accompanying figure; sometimes, bowever, they are flattened parallel to P, this being a characteristic habit of the pericline variety of albite; microlitic crystals forming the ground-mass of volcanic rocks aro ussually elongated in the direction of the edge between P and $\boldsymbol{\Psi}$.
Twinning is an important character, which is almost invariably present and affords a ready means of distinguishing the plagioclases from other felspars. Most frequent is the twinning according to the "albite law" with \boldsymbol{M} as twin-plane One half of the twin is turned through 180° about the normal to this plane and the two portions are united along the same plane (for figures of twinsed crystals see Albitis). The basal plancs of the two portions are inclined to each orher at a salient or re-entrant angle of $7^{\circ} 12^{\prime}$ in albite and $8^{\circ} 20^{\prime}$ in anorthite Thin twinning is usually polysynthetic, being many times repeated and giving rise to numerous thin lamellae, which are the cause of the fine striations on the cleavage planes P and paralle! to the edge $P M$, so characteristic of the plaqioclases as ween in hand epocimens. Viewed in polarized light, thin sections of twinned crystals show a very characteristic banded structure parallel to M. A second twin. taw in known as the "pericline-law" becaume of its frequent occurrence in periclise. Here the axis of rotation is the edge $x P$ (the crystallographic axis b) and the plane of composition is the "thombic section ": the latter is a plane which intersects the prism faces T and $\&$ in a rhomb; is is not a poswible face of the cryatal, and its position varies in the different epecies. In addition to being twinned according to these two laws, plagioclase may also be twinned on the Carisbad-, Baveno- and Manebach-laws, as in orthoclase (q.v.).
a specific infections fever, one variety being characterized by buboes (gindular swellings) and carbuncles. This definition excludes many of the celebrated pestilences recorded in history -such as the plague of Athens, described by Thucydides; that not less celcbrated one which occurred in the reign of Marcus Aurelius and spread over nearly the whole of the Roman world (A.D. 164-180), ${ }^{1}$ which is referred to, though not fully described, by the contemporary pen of Galen; and that of the 3rd century (about 253), the symptoms of which are known from the allusions of St Cyprian (Sermo de mortalitale). There is a certain resemblance between all these, but they were very difierent from Oriental plague. "Plague" was formerly divided into two chief varielies: (x) mild plague, pestis mivor, larval plague (Radelific), peste fruste, in which the special symptoms are accompanied by little fever or general disturbance; and (2) ordinary epidemic ar severe plague, pestis major, in which the general disturbance is very severe. Coses which are rapidly fatal from the general disturbance without marked local symptoms have been distinguished as fulminant plague (partis siderans, peste foudroyante).

History up to 1880.-The first historical notice of the plague is contained in a fragment of the physician Rufus of Ephesus, who lived in the time of Trajan, preserved in the Collections of Oribasims.2 Rufus speaks of the buboes called pestilential as being specially fatal, and as being found chiefly in Libya, Egypt and Syria. He refers to the testimony of a physician Dionysius, who lived probably in the grd century B.C. or earlier,

Conslands of Plafioclase Felspars.

Composition.	SiO_{2}	$\mathrm{Al}_{3} \mathrm{O}_{2}$	Na,	CaO.	Sp. gr.	$\begin{gathered} \text { Meiting: } \\ \text { (Centigrade). } \end{gathered}$	Cleavage Angle PI.	Angle of Rhombic Section.	MeanRefractiveIndexf.	Optical Extinction.		
										On P:*	On M.'	In sections 1 M .
Ab	68.7	19.5	11	.	2.624		$8^{86} 6^{\circ} 34^{\prime}$					
$\mathrm{Ab}_{2} \mathrm{Alm}_{1}$	62.0	24.0	8	$5 \cdot 3$	2.659	1340°	${ }^{86^{\circ} 8^{\circ} 8^{\prime}}$	$\pm{ }^{\circ}$	1.542	+10 ${ }^{\circ}{ }^{\circ}$	+ $4^{\circ}{ }^{\circ} 36^{\prime}$	+7*
${ }^{\mathbf{A}} \mathrm{Ab}_{2} \mathrm{An}_{1} \mathrm{Ab}_{1}$	55.6 49.3	28.3 32.6	5.7 2.8	10.4 15.3	2.694 $\mathbf{2 . 7 2 8}$	$1447{ }^{\text {c }}$	${ }^{86}{ }^{\circ}{ }^{\circ} 14^{\prime}$	$\underline{-10}$	1.558 1.570	- $5^{\circ}{ }^{\circ} 10^{\prime}$	- $16^{\circ}{ }^{\circ}$	$\pm 27^{\circ}$
$\mathrm{Ab}_{\mathrm{A}_{2}} \mathrm{Ab}_{1}$	49.3 43.2	32.6 36.7	2.8 0	15.3 20.1	2.728 2.758	14777° 153	$88^{86^{\circ}}{ }^{\circ}{ }^{\prime}$	- 19°	1.578 1.589	$-17^{\circ} \times 40^{\circ}$	- $29^{\circ}{ }^{\circ} 8^{\prime \prime}$	$\begin{aligned} & +48^{\circ} \\ & +53^{\circ} \end{aligned}$

- Anglea measured to the edge PM.

The optical characters of the plagioclaws have been the subject of much etudy, gince they are of great value in determining the conctituente of rocks in thin wetions under the microscope. The mean indices of refraction and the angles of extinction on the cleavaget P and M are given in the accompanying table. (The meaning of the + and - directions will be been from the figure, where the face P alopes from left to right, i.c. the angle between the normals to the faces lettered P and \mathcal{Y} is leme than 90°). The extinction engles on other faces, or in sections of known orientation in the crystal, almo give conctants of determinative value: for example, in ections perpendicular to the plane \boldsymbol{M} the extinctions, which in crystals twinned according to the albite-law are symmetrical with respect to this place, reach the maximum values given in the table. Not only do the directions of extinction (axes of light-elasticity) vary in the different species, but also the optic axial angle, so that whie albite is optically positive, anorthite is negative, and a member near andeyine has an wxial angle of 90°. The tigurea seen in conversent polarized light through the P and M cleavages are characteriatic of the dififerent species. A detailed summary of the optical charsctern and their employment in discriminating the several membera of the plagioclase series is given by H. Romenbuch, Mikroskopisicio Physiographie der Mineralien und Gesteine (4th ed. Stuttgart, 1905).

The plafioclases occur as primary consituente of igneoue rocks of almote every kind, and are ahoo lrequent as accondary mineralo In metamorphic rocks. Albite and oliqoclase are more characteristic of ecidic rocks, whilst the basic members at the anorthite end of the serice are characteristic of rocks containing less silica. The componition may, however, vary even in the same erystal, soned eryitale, with a basic nucleus and with abells succemively more and more acid towards the exterior being common,
For further particulars reapecting individual species and their
 LABM DOMTE; Ourcochast.
(L. J. S.)

PLAeUB (in Gr. तoubs; in Lat. pestif, pestilentia), in medicine, a term given to any epidemic disease causing a great mortality, and used in this sense by Galen and the ancient medical writers, but now confined to a special disease, otherwise called Oriental, Levantine, or Bubonic Plague, which may be shortly defined as
and to Dioscorides and Posidonius, who fully described these buboes in a work on the plague which prevailed in Libya in their time. Whatever the precise date of these physicians may have been, this passage shows the antiquity of the plague in northern Africa, which for centuries was considered as its home. The great plague referred to by Livy (ix. Epilome) and more fully by Orosius (Histor. iv. II) was probably the same, though the symptoms are not recorded. It is reported to have destroyed a milion of persons in Africa, but is not atated to have passed into Europe.

It is not till the oth century of our ers, in the reign of Justinian, that we find bubonic plague in Europe, as a part of the great cycle of pestilence, accompanied.by extraordinary natural phenomena, which lasted fifty years, and is described with a singular misunderstanding of medical terms by Gibbon in hia forty-third chapter. The descriptions of the contemporary writers Procopius, Evagrius and Gregory of Tours are quite unmistekable. ${ }^{\text {a }}$ The plague of Justinian began at Pelusium in Egypt in a.D. 542; it spread over Egypt, and in the same or the nest year passed to Constantinople, where it carried off to,000 persons in one day, with all the symptoms of bubonic plague. It appeared in Gaul in 546, where it is described by Gregory of Tours with the same symptoms as lues inguinaria (from the frequent seat of buboes in the groin). In Italy there was a great mortality in 543, but the most notahle epidemic was in 565 , which 30 depopulated the country as to leave it an easy prey to the Lombards. In 571 it is again recorded in Liguria,
'Amm. Marcell. xxili. 7; ase Hecker, De paste Antomiana (Berlin, ${ }^{18} 15$)
-ib. sliv. cap. 17-Cemeres de Oribase, ed. Bumemaker and Daremberg (Paris, 1851), iii. 607 .
"Evagrius Hist eccles. iv. 29; Procopius, De belie persices. ii. 23, 23.
and in 590 a great epidemic at Rome is connected with the pontificate of Gregory the Great. But it spread in fact over the whole Roman world, beginning in maritime towns and radiating inland. In another direction it extended from Egypt along the north const of Arica. Whether the numerous pestilences recorded in the gth century were the plague cannot now he said; but it is possible the pestilences in England chronicled by Bede in the years $664,672,679$ and 683 may have been of this disease, especially as in 690 pestis inguinaria is again recorded in Rome. For the epidemics of the succeeding centuries we must refer to more detailed works. ${ }^{1}$

It is Impostible, however, to pase over the great cycle of epidemics in the 14th century known as the Black Death. Tmo Bract Dontit

Whether in all the pestilences known by this name
disease was really the same may admit of doubt but it is clear that in some at least it was the hubonic plague. Contemporary observers agree that the disease was Introduced from the East; and one eyewitneas, Gahriel de Mussis, an Italian lawyer, traced, or indeed accompanied, the march of the plague from the Crimea (whither it was said to have been introduced from Tartary) to Genoa, where with a handful of survivors of a Genoese expedition he landed probathly at the end of the year 1347. He narrates how the few that had themselves escaped the pest transmitted the contagion to all they met.' Other accounts, especially old Russian chronicles, place the origin of the disease still farther east, in Cathay (or China), where, as is confirmed to some extent by Chinese records, pestilence and destructive inundations are said to have destroyed the enormous number of thirtecn millions. It appears to have passed by way of Armenia into Asia Minor and thence to Egypt and northern Africa. Nearly the whoie of Europe was gradually overrun by the peatilence. It reached Sicily in 1346, Constantinople, Greece and parts of Italy early in 3347, and towards the end of that year Marscilles. In 1348 it attacked Spain, northerm Italy and Rome, eastern Germany, many parts of France Including Paris, and England; from England it is said to have been conveyed to the Scandinavian countries. In England the weatern counties were first inveded early in the year, and London in November. In 1349 we hear of it in the midlands; and in subsequent years, at least till 8357, it prevailed in parts of the country, or generally, capecially in tbe towns. In 2352 Oxford bout two-thirds of her acadcmical population. The outbreaks of 1365 and r368, known as the second and third plagucs of the reign of Edward III., were doubtless of the same disease, though by some historians not calied the black death. Scotland and Ireland, though later affected, did not escape.

The nature of this pestilence has been a matter of much controversy, and some have doubted its being truly the plague. But when the symptoms are fully described they seem to justify this comelusion, one character only being thought to make a distinction between this and Oriental plague, vis, the special Implication of the lungs as shown by apitting of blood and ofter symptoms. Guy de Cbauliac notes this feature in the earlier epidemic at Avignon, not in the later. Moreover, as this complication was a marked feature in certain epidemics of plague in India, the hypothesis has been framed by Hirsch that a special variety of plague, pertis indica, still found in India, is that which overran the world in the 84 th century. But the same symptoms (haemoptysis) have been seen, though less notably, in many
'See Noah Webster's History of Epidewic Diseases, 8vo (2 vols. London, 1800) (a work which makea no pretenaion to medical kearning, but exhibits the history of epidemics in connexion with physical disasters-as earthquakes, famines, tec.); Lersch, Rleine Pest-Chronik (8 vo , 1880) (e conventent short compendium, but not alwaya accurate): "Athanasii Kircheri Chronologia Petium" (to A.D. 1656), in Scrutimism, pestio (Rome, 1658; Leipzig, 1671, 4to); Bascome, History of Epidemic Pestizences (London, 1851 , 8 vo). The most complete medical history of epidemics is Haser's Geschichte der epidemischen Kromhhoilen (3rd ed., Jena, 1882), forming the third volume of his History of Medicins.
See the original account reprinted with other documents in Haser, op. cil.; also Hecker, Epidemics of the Middue Ages, trans. by Babington, Sydenham Soc. (Londori. 1844): Volkskramkheiten des Mitlelallers, ed. Hirsch (Berlin, 1865); R. Hoeniger, Dee schworse Tod in Demachiond (Berin, 188a).
plague epidemics, even in the latest, that in Russia in 1878-8879, and, moreover, according to the latest accounts, are not a spocial feature of Indian plague. According to a Surgeon-General Francls (Trons. Epidem. Soc. v. 398) "haetnorrhage is not ant ordinary accompaniment " of Indian plague, though when seen it is in the form of haemoptysis. It seems, therelore, impossible to make a special variety of Indian plague, or to refer the hlack death to any such special form. Gabriel de Mussis describea it even in the East, beiore its arrival in Europe, at a bubonic discase.
The mortality of the hlack death was, as is well koown, enormous. It is estimated in various parts of Europe as two thirds or three-fourths of the populatioa in the first penilenct, in England even higher; but some countries were much less severely affected. Hecker calculates that one-fourth of the population of Europe, or 25 millions of persons, died in the whole of the epidemics.
In the 15th century the plague recumed frequently in meatiy all parte of Europe. In the first quarter it was very destractive in Italy, in Spain (especially Barcelona and Seville), In Germany and in England, where London was mevercly visited in 1400 and 1406 and again in 1428 . In $1427,80,000$ permons dicd in Dantzic and the neighbourhood. In 1438-1439 the plague was In Cermany, and its occurrence at Basel was described by Aeneas Sylvius, afterwarde Pope Piu: II. In $144^{8-1450 ~ I t a l y ~(K i r c h e r), ~ G e r m a n y ~}$ (Lerach, from old chronicles), France and Spain, were ravaged by a plague uupposed to have arisen in Asia, scarcely leas dentructive thaa the black death. England was probably seldom quite free from plague, but the next great outbreak is recorded in 147^{2} and following years. In 1466, 40,000 pernons died of plague in Paris: $\ln 1477^{-1485}$ the cities of northern Italy were devastated, and in 1485 Bruseels. In the fifteenth yoar of Henry VII. ($3499-1500$) a envere plague in London caused the king to retire to Calais.
The 16th century was not more free from plague than the isth. Simultaneously with a terrible pestilence which is reported to have nearly depopulated China, plague prevalled over Germany, Holland, Italy and Spain, in the first decade of the century, and revived at various times in the firtt half. In 1529 there was plague in Edinburgh; in London in 1537-1539, and again 1547-1548; and also in the north of England, though probabby not absent before Some of the epidemics of this period in Italy and Germany are known by the accounts of eminent physicians, as Vochs, Fracastor, Mercurialis, Borgarucci, Ingrassia, Massaria, Amici, \&c. ${ }^{4}$ whose writings are important because the question of contagion fint began to be raied, and slso plague had to be diutinguibibed from typhus fever, which began in this century to appear in Ewrope.

The epideraic of 1563-1564 In Loncloa and England was very evere, a thousand dying weekly in London: fip Paris about eha time plague was an everyday occurnence, of which some were lewt afraid than of a headache (Borgarucci). In 8570, 200,000 pernons died in Moncow and the neghbourhood, in 1572, 50,000 at Lyops; in 1568 and 1574 plague was at Edinburgh, and in 1570 at New. cantle. When, however, in 1575 a new wave of plague passed ovar Europe, ita origin was referred to Constantinople, whence it wat said to have spread by mea to Malta, Sicily and Itnly, and by land through the Austrian cerritories to Germany. Others contended that the diseape originated locally; and, indeed, considering previous bistory, no importation of plague would meem necestary to explain its presence in Europe. Italy suffered reverely (Vemice, in 157, lost 70,000); North Europe not lese, though later; London ia 1580-1582. In 1585 Breslau witneseed the most deetructive plague knows in its history. The great plague of 5592 in Londoa seemen to have been a pert of the mame epidenic, which was hardhy extinguished by the end of the century, and is noted in London again in. 1599. Oa the whole, this century shows a decrease of plague in Europe.

Ia the firat half of the r7th cantury plague was still previlent in Europe, though considerably leva so than in the suiddie agea. In the mecond half a still, greater decline in observable, and by the third quarter the disease had disappeared or was disappearing from a great part of weatern Europe. The apidemica in England will be most conveniently considered in one merien. From this time
${ }^{3}$ Vochs, Opusculume de petilentio (r937); Fracastorina, "Do Contagione, Qe." Opera (Venice, 1555); Hieron. Merturialis, De poste, prictsertion de Vinclat el Patarime. (Bacel. 1577); Prower Borgarutius, De peste (Venice, Ig65). Bvo; Filippo Ingrasgis. To formatione ded pestifero morbo . . Palermo e . \because regno di Sicifie (1575-1576, 4to, Palermo, 1376-1577); A. Macarera, De pelie Venice, 1597): Diomedes Anicus, fres traclitum (Venice, 159) 4to; Victor de Bonagentibus, Decem problemata de peste (Venice, 1556), 8vo; Georgius Agricola, De peste libri tres (Bart, 1554) sva The works of English physicians of this period are of titele medicel value; but Lodgees Trafise of ine Plage (Lomion, reoz) devervin mention.
onvards wo have the guidance of the " Bille of Mortiality" lissued in London, which, though drawn up on the evidence of ignorant persons, are doubtlem roughiy true. The accession of Jamea I. in 1603 was marked by a very deatructive plague which killed 38,000 in London. In this and subsequent years the disease was widely difured in England-for finstanoe, Oxford, Derbyshire, Neweastle. It prevailed at the same time in Holland, and had dons so some years previonsly in porthern Germany. In the mame year (1603) one million persons arezaid to have died of plague in Egypt. This plagne is mald to have lasted eight years in London. At all events 101609 we have the mecond great plague year, with a nortality of 11,785. After thia there is a remission till about 1620 , when plague main betan to epread in morthern Europe, especially Germany and Holland, which was at that time revaged by war. In 1625 (the year of the aiege of Breim in Holland) is the third great London phatue with 35.417 deaths-though the year 1624 was remarkably exempt, and 1626 nearfy, 00 , in 1630 was the great plague of Milon, dencribed by Ripamonti. ${ }^{1}$. In 1632 a severe epidemic, epparently plegue, was in Derbyshire. 1636 is the fourth great plague year in London with a mortality of 10,400, and even in the abext year 308i persons died of the mame disease. The mane year 7000 out of 50,000 inhabitunts of Newcatile died of plague; in 1635 fe wat at Holl. About the tatne time, 1635-1637, plague wae pre valent in Holland, and the epidemic of Nijmwegen is celebrated as having been deacribed by Diemerbroeck, whoee work (Tradalus de peste, 4 to, $3641-2665$) is one of the most limportant on the mbject. The Englioh epidemic was widely apread and lasted till 1647 , ia which year, the mortality amounting to 3597, we have the fifth epideroic in London. The army disensea of the Civil Wars west chiefly typhus and malarial fevers, but plagne was not unknown emong them, as at Wallinglord Castic (Willia, "Of Fiavera," Works, ed. 168x, p. 131) and Dunstar Castle. From this time till 8664 littie was heard of plague in England, though it did not cease on the Continent. In Itcland it is said to have been seen for the last time in $1650 .{ }^{2}$

In 1656 one of the most deatructive of all reconded epidemica In Earope raged in Naples; it is said to have carried off 300,000 perzons in the epace of five months. It paseed to Rome, but there wha much leso fatal, making 14,000 victims only-a reault attributed by some tu the precautions and sanitary measurea introduced by Cardinal Gastaldi, whowe wort, a aplendid folio, written on this occasion (Tractatus de asertenda at profiganda peste politicolegalis, Bologina, 1684) in historically one of the most important on the subject of quarantine, \&c. Genoa lost 60,000 inhabitants from the name dinease, but Tuacany remained untouched. The comperatively limited spread of this frightful epidemic in Italy at this time is a moet noteworthy fact. Minorca is said to have been depopuiated. Nevertheless the epidemic apread in the next few years over Spain and Germany, and a little later to Holland, where Amsterdam in 1663 -1664 was again ravaged with a mortality given an 50,000, also Rotterdam and Hearlem. Hambarg auffered in 1664.

The Greal Plague of London.-The preceding enumeration will have prepared the reader to view the great plague of 1664-1665 areat Phane of in its true relation to others, and not as an isolated Lemedon phenomenon. The preceding years had been unusually free from plague; and it was not mentioned in the bills of mortality till in the autumn of 1664 (Nov. 2) a few isolated cases were observed in the parishes of St Giles and St Martin's, Westminster, and a few occurred in the following winter, which was very tevere. About May 1665 the diseaso again became noticeable, and spread, but somewiat slowly. Boghurst, \& contemporsry doctor, notices that it crept down Fiofborn and took six monthe to travel from the western suburbs (fst Giles) to the eastern (Stepnoy) through the cily. The mortality rapidly rove from. 43 in May to 590 in June, 6137 in July, 17,036 in August, $31, \mathrm{x} 9 \mathrm{in}$ September, after which it began to decihne. The total number of deaths from plague in that year, sccording to the bills of mortality, was 68,596 , in a population calmated at 460,000 , out of whom two-thirds are supposed to have fild to escape the contagion. This number is likely to be rather too low than too high, since of the 6432 deaths from spotted fever many were probsbly realiy from phague, though not declared so to avoid painful restrictions. In December there was a sudden fall in the mortality which continued through the winter; but in 1666 nearly 2000 deaths from plague are recorded.

[^57]According to sdrie uthorities, especially Hodges, the plague was imported into London by bales of merchandise from Holland, which came originally from the Levant; according to others it was introduced by. Dutch prisoners of war; but. Boghurst regarded it as of local origin. It is in favour of the theory that it spread by some means from Holland that plague had been all but extinct in London for some sciventeen years, and prevailed in Holland in 1663-1664. But from its past bistory and local conditions, London might well be deemed capable of producing such an epidemic. In the bills of mortality since 1603 there are only three years when no deaths from plague are recorded. The uncleanliness of the city was comparable to that of oriental cities at the present day, and, according to contemporary testimony (Garencieres, Angliae Ragellwm, London, r647, p. 85), litule improved since Erasmus wrote his well-known description. The spread of the diseave only partially supported the doctrine of contagion, as Boghurst says: "The disease spread not altogether by contagion at first ${ }_{2}$ nor began only at one place and spread further and further as an eating sore doth all over the body, but fell upon several places of city and suburbs like rain." In fact dissemination seems to have taken place, as usual, by the conversion of one house after another into a focus of discase, a process favoured by the fatal custom of shutting up infected houses with all their inmates, which was not only almost equivalent to sentence of death on all therein, but caused a dangerous concentration of the poison. The well: known custom of marking such houses with a red crost and the legend "God have mercy upon us!" was no nev' thing: it is found in a proclamation in the poscession of the present writer dated 164 r ; and it was probably older still. Hodges testifies to the futility and injurious effects of these regulations. Tho lord mayor and magistrates not only carried out the appointed administrative measures, but looked to the cleanlinem of the city and the relief of the poor, so that there was little or no actual want; and the burinl arrangements appcar to have been well attended to. The college of physicians, by royal command, put forth such advice and prescriptions as were thought best for the emergency. But it is clear that neither these neeasures nor medical treatment had any effect in checking the disease. Early in November with colder weather it began to decline; and in December there was so little fear of contagion that those who had left the city "crowded back as thick as they fled." As has often been observed in other plague epidemlos, sound peaple could enter infected houses and even aleep in the beds of those who had died of the plague "before they were even cold or cleansed from the stench of the diseased" (Hodges). The symptoms of the disease being such as have been gencrally observed need not be here considered. The discase was, as always, most destructive in squalid, dirty neighbourhoods and among the poor, so as to be called the "poor's plague." Those who lived in the town in barges or ships did not take the disease; and the houses on London Bridge were but little affected. Of those doctors who remnined in the city some eight or nine died, not a large proportion. Some had the rare courage to investigate the mysterious discase by dissecting the bodies of the dead. Hodges implies that be did so, though he left no full account of his observations. Dr Gcorge Thomson, a chemist and a disciple of Van Helmont, followed the example, and nearly lost his life by an attack which immediately followed. ${ }^{4}$

The plague of 1665 was widely spread over England, and was

[^58]senerally regarded ta having been trantmitted from Loadon, as it appeared moatly later than in the metropolis, and in many cases the importation by a particular person could be traced. Placee dear London were earliest afiected, as Brentford, Greenwich, Deptford; but in July or August 1665 it was already in Southampton, Sundermond, Newrastle, Pe A wider dintribution occurred in the next yoar. Oxford entirely eacaped, though the residence of the court and in constant communication with hondon. The exemption was attributed to cleanlinem and good dreinage

After 1665 there was no epidemic of plague in London or any part of Engiand, though eporadic caces sppear in bills of mortality up to 1679; and a column filled up with "o" wat left till 1703. then it inally disappeared. The disappearance of plague fia London was attributed to the Great Fire, but ao such cause existed in other cities. It has aloo been acribed to quarantine, but no effective quarantiae was entablished till 1720 , 0 that the ceseation of plague ia England muat be regarded as apontaneous.

But this was no isolated fect. A similar cessation of plague was noted moon after in the greater part of western Europe. in 1666 a evere plapue raged in Cologne and on the Rhine, which was prolonged till 1670 in the district. In the Netheriands there was plague in 1667-166, but there are no definite notices of it after 1672. France saw the last phague epidemic in 1668, till it reappeared in $172 a$. In the years $1675-1684$ a new plaque epidemic appeared in North Arica, Turkey, Poland, Hungary, Aurtria and Germany, progresing generalify northward. Malta lost 11,000 persons in 1675. The plague of Vienna in' 1679 was very vevere, causing 76,000 or probably more deaths Prague in 1681 lost 83,000 by plague Dreaden was affected in 1680, Magdeburg and Halle in 1682 - In the latter town with a mortality of 4397 out of a popula. tion of about 10,000 . Many North German cities uffered about the same time; but in 1683 the plague disappeared from Germany till the epidemic of 1707 . In Spain it ceased about 1681; in italy certain cities were attacked till the end of the ceatury, but not Later (Hirech).
Plagwe in the 784 Contwry.-At the beginning of this period plague was very prevalent in Constantinople and along the Danube. In 1703 it caused great destruction ia the Ukraine, in 1704 it began to spread through Poland, and Later to Silesia, Lithuanie, Prussia and a great part of Germany and Scandinavia. In Prusai and Lithuania 283,000 pertons perished; Dantzig, Hambury and other northern cities suffered severely. Copenhasen was at tacked in 1710. In Stockholm there was a mortality of 40,000. Certain places near Brunswick ($10^{\circ} \mathrm{E}$.) marked the western limit of the epidemic; and cholera was arreated at the mane apot in later years (Hamer).
At the anme time the plague ipread westward from the Danube to Transylvania and Styria, and (1713) appeared in Austria and Bohernia, causing great mortality in Vienna. Thence it passed to Prague and Ratisbon-to the former, posibly to the Iatter, almost certainly conveyed by human intercourse. This city (12° E.) was the western limit reachod in thig year. Haser states that the piague disappeared everywhere in Europe alter the great hurricane of the 27th of February 1714 .

In 1717 plague raged ecverely in Constantinopie; and in 1719 it made a fresh progreas westrard into Ttansylvania, Hungary, Galicia and Poland, but not farther (about 20° E.). It thus appears that each successive invasion had a more casterly western limit, and that the gradizal narrowing of the range of plague, which began in the 17th century, was still going on.

This process 䮈ered a temporary interruption by the outbreak of plague of southern France in 1720-1722. In 1720 Marseilles became affected with an epidemic plague, the origln of which was attributed by some to contagion through the thip of a Captain Chataud which arrived on the 20th of May 1720. from Syria, where plague at that time prevailed, though not epidemically when he sailed. Six of the crew had died on the voyage to Leghorn. but the disease was declared not to be plague. Cases of plague occurred, however, on the ship, and on the 22nd of June among portery unloading the cargo. Hence, according, to believers in contagion, the disease passed to families in the " old town," the poorest and unhealthiest quarter. In the meantime other thips had arrived from Syria, which were put in quarantine. According to others the plague arose in Marseilies from local causes; and recently discovered data how that suspicious cases of contagious disease occurred in the town before the arrival of Chataud's ship. Opinions were divided, and the evidence appears even now nearly balanced, though the believers in contagion and importation gained the victory in public opinion. The pestilence was fearfully eevere. Thousands of unburied corpsess filled the strects, and in all 40,000 to 60,000 persons were carried off. in December 1721 the plague passed away, though isolated cases occurred in 1722. It pased to, or at least broke ourt in, Arles and Aix in 1720, causing treat mortality, but in Touion not till 1721, when it destroyed

[^59] sxiv. (Parin, 184i).
two-thirdl of the 'popalation'. The eprdemic apread yunany over Provence, but not to other parta of Framee, motwithetandine that, so confened by D'Antrechaus, concul of Toulon, a believer in the exclusive power of contagion, there were abtodant opportunities. The diseate was in fact, is in other eaves, self-limited In all 87,659 pernona are aid to have died ont of a popplation af nearly 250,000:2

This ereat epidemic caused a panic in Engiand which led to the introduction (under Med's adviee) of guarantine regulationas never previously enforted, and alog lad to the publication of many pemphlets, \&c., benide Mead'e rellhwown Discomes on Pestiontie? Contagion (London, 1720).
Plagwe in Sicily in 1743.-An outbrents of plegue at Memina is 1743 is important, not only for fis fatality, but as one of the etroces. cat caves in favour of the theory of imported contagion. Mearinn had been free from plague aince I6e4, and the Sicilians prided themeelvet on the nigour of the quarantine lawe which whre thourtht to have preseryed them. In May 1743 a vesell artived from Coriu. on boand of which had occurred mome suspicfous dethe. The ship and cargo were burnt but coon after cate of a mupicione form of ditease vere obwerved in the houpital and in the poortet parta of the town; and in the mummer a fearful epidemic of plague developed itwelf which deatroyed 40,000 or 50,000 permons, and then became extinct without epreading to ather parta of Sicily.

Spread of Plague from the Eact-independent of the episodea of Marmelles and Mcreina, the epread of plague from the Eate continued to exhibit the abovementioned law of limitation In 173^{8} 1744 the disense was in the Ukraine, Hungary, the bordera of Carniala, Moravia and Austria, extending along the Carpathings as far as Poland $\left(20^{\circ} \mathrm{E}\right)$, and aloo in Bukowina $\left(25^{\circ} \mathrm{E}_{4}\right)$. It lasted till 1745, and then dimppeared from thoee parta for fiftets years. In 1755-1757 plague prevailed ia parts of European Turkey, whence it on one occasion extended into Transyivanis in the neighbonrhood of Cronstadt, where it was checked ($25 \cdot 5^{\circ}$ E. $)^{3}$

In 1770 a destructive plague arose in Moldevia durlag the RugoTurkish War, and ahortly afterwards in Wailachin, aponently endemic in the former country at least. It affected aleo Tranoyvania and part of Hungary, and etill more eeverely Polend, but was confined to Podoliz, Volhynia, the Ukreine and eat Galicia ($5^{\circ} \mathrm{E}$.), not even penetrating en far as Waraw. Aler dentroying, it is mid, 300,000 persons, and Fithout being checked by any quarantine regulation, the plage died out finally in March 177%, being remarmble for its ebort duration and montaneous. limitation (Hater).

In another direction the plague epread over Litile Rumion in 1770 , and desolated Kieff, while in the next year it brole out in Mowcow and produced one of the most destructive epidemics of modern timies. More than 50,000 persoes, nenriy one-fourth of the populstion, were carried off.

The remaining European plague-epidemice of the $\mathbf{2 8 t h}$ century were inconsiderable, but on that very account noteworthy. Trapsylvania was again affected in 1785, Slavonia and Livonia (a district of eastern Galicia) in $1795^{-1796}\left(25^{\circ} \mathrm{E}.\right)$, Volhynia in 1798. The discase, while reappearing in the eeste of the terrible earlier epidemics, was more limited in its range and of ehorter duration. ${ }^{\text {b }}$ An epidemic in Dalmatia in 1783-1784 is noteworthy in connexion with later outbreaks in the same region. In the last years of the century ($1799-1800$) there was a new epidenic in Syria and Egypt, where it affected the French and afterwarde the Engtish atmy.

Plague in the zoth Centwry-Plague appeared at Cosstanthnople in z802-1803, about the same time in Armenia (Kars), and in $180 z$ in Bagdad. It had prevailed since 1798 in Georgia and the Caucasus, and in 1803-1806 began to spread from the north of the Caucasus into Russia, till in 1806 it was established at or near Astrakhan, and in 1807 reached Zaref, 200 m . higher up the Volga. These localities are interesting as being near those where plague appeated in $1877-188_{8}$. It is elso said to have entered the government of Saratov, but probably no sreat distance. The plague remained in the Caucasus and Georgia till 1819 at leant. In 1828-183y is was in Armenia, and again in $1840-1843$, since which time is hat not been heard of in that country.
${ }^{2}$ D'Antrechaus, Relation de la paste de Tonden en 17eit Paris, 1756): G. Lambert. Histoire de la peste de Toulom en $872 y$ (Touloa, 1861), quoted by Hiser, Gesch. der epidem. Kiranhh
: Adam Chenot, Abhandlung oon der Pest (Dreaden, 1776); De Peste (Vienna, 1766).
-Samoilowitz, Memotre ser lu paste th Ressic, 377 (Paris, 178s): Mertens, De la peste en 177^{1} (Paris, 1784).
${ }^{4}$ Loringer, Pest des erients (Berlin, 1837) p. 103; Schraud, Pest in Synwien, 1795 (2 vols., Pesth, 1801).
From the annals of the Moravian community of Sarepte on the Volga, Geschichite der Broder-Gemeinde Surepa, by A. Glituch (Sarepte and Berlin, 18651 ; aloo Thaloman ppddimien de parte fio Cancess (Paris, 1879).

Is $\mathbf{2 8 0 8}$ plague was at Constantinople, in 8809 at Smyrna In 181a was a more general epidemic affecting these places and aleo Egypl. An outbreak at Odessa is supposed to have been brought from Constanlinople, and thence to have passed to Transylvania. In $88: 3$ a aevere plague at Bucharest is supposed to have been brought from Constantinople. About the same time plague prevailed in Bosnia, and is supposed to have passed thence to Dalmatis in 18x5. In 1814-18is it again appeared in Egypt, and ooce more invaded the continent of Europe in Albania and Bosnia. Two insular outbreaks, Malta in 1813 and Corfu in 1855, attracted much attention as being boik tbought to be cases of importation by sea-traffic, ${ }^{1}$ and there seems sood reason for this opinion.

A panic spread through Europe in 8815 in consequence of an outbreak in Noja on the eastern coast of Itaiy. According to one view it was imported from the opposite coast of Dalmatia, though no definite history of contagion was estahished; according to others, it originated endemically in that place. It remained, however, strictly confined to a small district, perhaps in consequence of the extraordinarily rigorous measures of ioplation adopted by the Italian government. In 1898 an bolated epidexaic appeared in Greece in the Moren, supposed to have been brought by troops from Egypt. ${ }^{\text {I }}$ In $1824-1825$ an cutbreak took place at Tutchkof in Bessarabia; the town was strictly isolated by a military condon and the disease did not spread. Cronstadl in Transylvania was the acene of a small outbreak in 2828, which was said to be isolated by similar messures (Lorinser). A far more serious epidemic was consected with the campaign of the Ruscian amay against Turkey in 2828-1829. Moldavia, Wallachia and Bessarabia were widely affected; the digease broke out also in Odessa and the Crimen, and isolated cases occurred in Transylvania. The most sortherly points reached by the plague were near Crernowitz on the frontier of Besaarabia and Bukowinn, and its limitation was as before attributed to the Russian and Austrian military cordons.
In 183: another epidemic occurred in Constantinople and Boumelia; in 8837 again in Roumelia and in Odessn-r-fta last appearance in tbese regions, and the last on the European continent except an isolated outbreak in Dalmatia in 1840, and ope in Constantinople in 1841.4

The plague-pidemics in Egypt between 183.3 and 1845 are very important in the history of plague, since tbe disease was almost for the first time scientifically studied in its home by skilled European physicians, chiefly French. Tbe disease was lound to be less contagious than reported to be by popular tradition, and most of the French achool went so far as to deny the contagiousness of the discase altogether. The epidemic of 1834 2835 was not less destructive than many of those notorions In history; but in $1844-1845$ the disease disappeared.

In 1853 plague appeared in a district of western Arabia, the Asir country in North Yemen, and it is known to have oocurred In the game district in 1815 , as it did afterwards in 1874 and 2879. In 1874 the disease extended within four days' march of Mecca. From the scantiness of population the mortality was not great, but it becane clear that this is one of the endemic reats of plague.

In June 1858 intelligence was received in Constantinople of an cutbreak of disease at the small town Benghazi, in the district of Barce, province of Tripoli, North Africa, which though at first misunderstood was clearly bubonic plague. From later retearches there is reason to believe that it began in 1856 or in 1855. The discase did not spresd, and ceased in the autuma, to
${ }^{1}$ Faulkner. On the Plague in Malks (London, 7820), 8 vo ; I. D. Tully, हistory of the Plague in Malta, Gozo, Corfu and Cephaionia (London, 1821), 8vo; White, Treatise on the Plague (at Corfu) (London 1847); Calvert, "On the Plague in Malta, 7813." Med.Chi. Tramsechons, vi. 8 .
${ }^{1}$ L. A. Coner, Relation de lo peste en Grice, 1827-18a9 (Paris, 1830).

Corinver, Pest des oriewts p. 319.

- For the authoritien, see Hiver, Op. cill.
s J. N. Redcliffe, Ropert of Lecal Gowinment Booed 28y0-r880, suppl., p. 42.
return with less violence in $\mathbf{1 8} 59$, when it died out. In the autumn of 1873 it returned, but came again to a spontaneous termination.

After the epidemic of Benghazi in 1856-r859, plague was next heard of in the district of Maku, in the extreme north-west of Persia in November 1863. It occurred in a scattered population, and the mortality whe not absolutely large.'

In 1867 an outbreak of plague was reported in Mesopotamia (lrak), among the marshes of Hindieh bordering on the iower Euphrates. The epidemic began in December 1866 (or probably earlier) and ceased in June $\mathbf{1 8 6 7}$. But numerous cases of nonfatal mild bubonic disease (mild plague or pestis minor) oecurred both before and after the epldemic, and according to Tholozan similar cases had been observed nearly every year from 1850 to 1865.4

The next severe epidemic of plague in Irak begaa in December 8873 But facts collected by Tholozan show that pestis minor, or sporadic cases of true plague, had appeared in 1868 and subsequent years. The outbreak of $1873-1874$ hegan about 60 m . irom the origin of that of $\mathbf{1 8 6 7}$. It caused a much greater mortality and extended over a much wider area than that of 1867, including the towns of Kerbela and Hilleh. After a short iaterval it reappeared at Divanieh in December 1874, and spread over a much widet area than in the previous epidemics. This epidemic was carefully studied by Surgeon-Major Colvill.2. He estimated the mortality at 4000 . The epidemic ceased in July, but broke out again early in 1876, and in this year extended northwards to Bagdad and beyond. The whole area now affected extended 250 m . from north-west to south-east, and the total number of deaths was believed to be 20,000 . In 2877 plague also occurred at Shuster in south-west Persia, probably conveyed by pilgrims returning from Irak, and caused great mortality.

Alter its customary cessation in the autumn the epidemic began again in October 1876, though sporadic cases occurred all the summer. The discase appeared in 1877 in other parts of Mesopotamis also with less severity than in 1876, but over a wider area, being now anmounced at Samara, a town 70 m . above Bagdad on the Tigris. The existence of plague in Bagdad or Mesopotamia wes not again announced till the year $\times 884$, when accounts again appeared in the newspapers, and in that July the usual official statement was made that the plague had been stamped out.

In 1870-1875 it appeared in a diatrict of Mukr in Persian Kurdistan to the south of Lake Urumiah (far removed from the outbreak of 2863). The epidernic appears, however, to have died out in 1871, and no further accounts of plague there were received. The district had suffered in the great epidemic of plague in Persia in 1829-1835. In the winter 1876-1877 a disease which appears to have been plague appeared in two villages in the extreme north of the province of Khorisann, about 25 leagues from the south-east angle of the Caspian Seia. In March 8877 plague broke out in Resht, a town of 20,000 inhabitents, in the province of Ghilan, near the Caspian Sea at its south-west angle, from which there is a certain amount of trade with Astrakhan. In IB_{32} a very destructive plague had carried off half the inhabitants. In 1877 the plague was very fatal. From March to September 4000 persons were calculated to have died. The disase continued till the apring of $\mathbf{1 8 7 8}$. In 1877 there was a doubtful report of the same disease a! Astrabad, and also in some parts near the Perso-Arghan irontier. In 1878 plague again occurred in Kurdistan in the district of So-uj-Bulak, said by Dr Tholorsm to be the same as in the district of Muveri where it occurred in 1870-1891. These scattered outbreake of plague in Persian territory are the more remarkable because that conntry

[^60]lad been genctaily noted for its freedom from plague (as compared with Asiatic Turkey and the Levant).

A few cases of plague occurred in January 1877 at Baku on the west shore of the Caspian, in Russian territory. ${ }^{1}$

An outbreak of plague on European soil in $1878-1879$ on the banks of the Volga caused a panic throughout Europe. In the summer of 1877 a disease prevailed in several villages in the neighbourhood of Astrakhan and in the city itself, which was clearly a mild form of plague (pestis minor). It caused no deaths (ot only one due to a complication) and died out appar. catly spontancously. An official physician, Dr Kastorsky, who investigated the matter for the government, declared the disease to be identical with that prevailing in the same year at Resht in Persia; another physician, Dr Janizky, even gave it the name of pestis mostras. In October 1878 some cases appeared in the stanisa or Cossack military setilement of Vetlanka, 130 m . from Actrakhan on the right hank of the Volga, which seem to have puzzled the physicians who first ohserved them, but on the joth of November were recognized as being but the same mild plague as had been observed the ycar before near Astrakhan by Dr Dopponer, chief medical officer of the Cossacks of Astrekhan. His report on the epidemic is the only original one we have. At the end of November ${ }^{3}$ the disease became suddenly -more severe, and most of those attacked died; and from the 2 git of December it became still more malignant, death occurring in some cases in a few hours, and without any buboes being formed. No case of recovery was known in this period. At the end of the year it rapidly declined, and in the first weeks of January still more 50 . The last death was on the 24 th of fanuary. In the second half of December, when the disease had already lasted two months, cases of plague occurred in several neighbouring villages, all of an extremely malignant type, so that in some places all who were attacked died. In most of these cases the disease began with persons who had been at Vetlanka, though this was not universaily established. The inhabitants of these villages, terrified at the accounts from Vetlanka, strictly isolated the sick, and thus probably checked the spread of the discase. But it evidently suffered a spontaneous decline. By the end of January there were no cases left in the district except at one village (Selitrennoye), where the last occurred on the gth of February. The total number of cases in Vetlanka, out of a population of about 5700 , was 417 , of whom 362 died. In the other villages there were about 62 deaths from plague, and not more than two or threc cases of recovery. In consequence of the alarm excited by this appearance of plague upon European soil, most European governments sent special commissions to the spot. The British commissioners were Surgeon-Major Colvill and Dr J. F. Payne, who, like all the foreign commissioners, reached the spot when the epidemic was over. With respect to the origin of this epidemic, the possibility of its having originated on the spot, as in Resht and on the Euphrates in very similar situations, is not to be denied. An attempt was made to show that the contagion was brought home by Cossacks returning from the Turkish War, but on absolutely no evidence. In the opinion of Dr Payne the real beginning of the disease was in the year 1877 , in the vicinity of Astrakhan, and the sudden development of the malignant out of a mild form of the disease was no more than bad been observed in other places. The Astrakhan disease may have been imported from Resht or Baku, or may have been caused concurrently with the epidemics of these places by some cause affecting the basin of the Caspian generally.

Plague in India.- It used to be held as a maxim that plague never appeared east of the Indus; nevertheless it was observed during the roth century in more than one distinct centre in India. So long ago as 1815 the disense appeared in Guzerat, Kattywar and Cutch, "after threc years of severe famine,"
${ }^{1}$ J. Netten Radelife, Reports: Tholozan, Histoire de la paste bubonigue en Perse (Paris, 1874).
${ }^{2}$ See Radeiffe. Reports (1879-1880); Hirsch and Sommerbrodt. Pest-Epidemic s878-1879 in Astrachan (Berlin. 1880): Zuber, La Paste d'Astrakhan en $5878-1879$ (Paris, 880); Coivill and Payne, Repporl to the Lord President of the Council (1879),

It reappeared early noxt year, in the same locality, when it extended to Sind as far as Hyderabad, and in another direction southeast as far as Ahmedabad and Dhollerah. But it disappeared from these parts in 1820 or early in 1821 , and was not heard of again till July 1836 , when a disease broke out inte viulence at the town of Pali in Marwar in Rajputana. It spread from Pali to the province of Meywar, but died out spontaneously in the hot season of 1837. The origin of these two epidernics was obscure. No importation from other countries could be traced.

In 1823 (though not officlally known till later) an epidepie broke out at Kerlarnath in Gurwhal, a sub-district of Kumaon on the south-west of the Himalayas, on a high situation. In 1834 and i836 other epidemics occurred, which at laty attracted the attention of govertument. In 1849-1850, ard again in 1852, the discase raged very severely and spread southward. In 1853 Dr Francis and Dr Pearson were appointed a commission to inquire into the malady. In $1876-1871$ another catbreak occurred. The symptoms of this disease, called wahe murree or mohameri by the natives, were precisely those of oriental plague. The feature of blood-spitting, to which much importahce had been attached, appeared to be not a common one. A very remartable circumstance was the death of animals (rats, and more rarely snakes) at the outbreak of an epidemic. The rats brought ap blood, and the body of one examined after death by Dr Francis showed as affection of the lungs."

Oriental plague was observed in the Chinese province of Yunnan from $\mathbf{1 8} 7 \mathrm{r}$, and also at Pakhoi, a port in the Tongking Gulf, in $\mathbf{5 8 2}$-being said to have prevailed thore at least fifteen years. In both places the symptoms were the same, of undoubted bubonic plague. At Pakhoi it recurs neariy every year."

In 1880 therefore plague existed or had existed within ten years, in the following parts of the world: (1) Benghezi, Africa; (2) Persian Kurdistan; (3) Irak, on the Tigris and Euphrates; (4) the Asir country, western Arabia; (5) on the iower Volga, Russia; (6) northern Persia and the shores of the Caspian; (7) Kummon and Gurhwil, India; (8) Yunnan and Pakboi, China.

LITERATURE.-See the following works, berides thome afready quoved: Kamintus, Regimen contra epidimians sive pestem, 4to, C. ${ }^{1}$ 494 (many edtions); facobus Soldus Opus inngre de peste, 4to (Bologna. 1478): Alex. Benedictus, De observatione in pestiventia, 4 to (Venice, 1493); Nicolaus Massa, De febre pestilcrtia, 410 (Venice. 1556, \&c.); Fiotavanti. Regtmenlo della peste, 8vo. Ventice, ${ }^{1556:}$ John Woodall. The Surgeon's Mate, Kolio (London. 1639); Van Heimont. Twmulus pestis, 8vo (Cologre, 1644. 8x.): Muratori, Trallato del governo dclla peste. Modena, 1714: John Howard, An Actount of Lasareltoes in Europe, \&c., 4to (London, 178y): Patrick Russel1. A Treatise of the Plague, 4to (London, t791); Thomas Hancock, Rescarches into the Laws of Pestilence, $8 v_{0}$ (London, 1821); Fodert, Lecons sur hes Epidtwies, Scc. 4 vola 8vo (Paris, 1822-1824); Segur Dupeyron, Recherches historigues, \&c., sur la peste (1837): Bulard, La Pespe orientale, 8vo (Paris, 1839); Griesinger, Die Infectionskramkheiten (2nd ed.. Bvo, Erlangen, 1864).
(I. F. P.)

Hisfory simat ra8o.-The most striking feature of the eariy history of plague sumtiarived above is the gradual retrocession of plague from the west, after a seties of exceedingly destructive outbreaks extending over several centuries, and its eventual disappearance from Enrope. It appears to have come to a sudden ond in one country after another, and to have been seeni there no more. Thowe lying most to the west were the first
"On Indian plague, see Francis, Trans. Epidem. Soc. Lond. iv. 407-408; John Murray, ibid., vol. iv. part 2; J. N. Radcltfe. Reports of Local Government Baard (1975, 8876, $\mathbf{2 8 7 7}$ and for 18791880); Parliamenkiry Popers (1879); Frederick Forbes, On Plagne in North. Wicst Prosiluces of India (Edinburgh, 1840) (Disecrtation): Hirsch, Handbuch der histaricken-geor. Palkologie, i. 209 (1860), (Eng. trans. by Creightoa, Landon, 1883) ; Hecker's Volkskronkheiten des Mittelaliers (Beriin, 2865), p. 101; Webb, Patholegia indica (2nd cd., Calcutra, 1848).
©See J. N. Radclifie's Report for 1879-1880. p. 45; Mansen in Reports of Imperial Chinese Customs, special series No. 2, for halfYear ended the 31st of March 1878. 15th issue (Shanghai); Lowry. "Notes on Epidernic Disoase at Pakhoi " (1882), ibid., D4th issee, p. $\mathbf{3 I}_{\text {. }}$
to be freed from its presence, namely, England, Portugal and Spain. From all these it finally disappeared about 1680, at the close of a period of pandemic prevalence. Northern and central Europe became free about 1714, and the south of France in 3722. The last outbreak in northern Russia occurred in 1770. Ater this plague only appeared in the coutheast of Europe, where in turn it gradually died away during the first half of the 2gth century. In 1841 its long reign on this continent came to asend with an isolated outbreat in Turkey, From that time until quite recently it remained extinct, except in the Eas. The province of Astrakhan, where a very small and limited outbreak occurred in 1878 , is politically in Eucope, but geographically it belongs rather to Asia. And even in the East plague was confined to more or less cleariy localized epidemics; it showed no power of pandemic diffusion. In short, if we regard the history of this disease as a whole, it appears to have lost such power from the time of the Great Plague of London in 2665 , which was part of a pandemic wave, until the present day. Thene was not mezely a gradual withdrawal eantwards lasting nearly two hundred years, but the outbreaks which occurred during that period, violeat as some of them were, showed a conctantly diminishing power of difirsion and an increasing tendency to localization. The sudden reversal of that long process is therefore a very remarkable occurrence. Emergisg from the remote endemic centres to which it had retreated, plague has once more taken its place among the zymotic diseases with which Weatern communities have to reckon, and that Which has for more than a century been little more than a name and a iradition has become the familiar object of investigation, carried on with all the ardour and all the resources of modern science. In what follows an attempt will be made to summarize tho facts and indicate the conclusions to be drawn from recent experience.
Diffusion.-At the outset it in characteristle of this subtle disorder that the present pandemic diffusion cannot be traced with certainty to a definite tlme or place of origin. Herein it differs notably from other exotic diseases liable to similar difiusion. For instance, the last visitation of cholera could be traced clearly and definitely to a point of origin in northern India in the spring of 1892, and could be followed thence step by step in its march westward (see CroLeria). Similarly, tbough not witl equal precision, the last wave of infuenzas was ghown to have started from central Asia in the spring of 1889, to have travelled through Europe from east to west, to have been carried thence across the sea to America and the Antipodes, antil it eventually invaded every inhabited part of the globe (see Intioenza). In both cases no doubt remains that the all-important means of dissemination is human intercoursc. The movements of plague cannot be followed in the sane way. Whth regard to origin, several endemic centres are now recosnized in Asia and Africa, namely, (i) the district of Assyr in Arahla, on the eastern shore of the Red Sea; (2) parts of Mesopotamis and Persia; (3) the district of Garwhal and Kumaon in the North Wert Provinces of India; (4) Yunnan in China; (5) East and Central Africe. The last was recently discovered by Dr Koch. It includes the district of Kisiba in German East Africa, and extends Into Uganda. In applying the term "endemie centres" to these localities, no very precise meaning can be attached to the word. They are for the most part so remote, and the information about them so scanty, that our knowledge is largely guesswork. What we mean is that there is evidence to show that under various names a disease identical with plague has been more or less continuously prevalent for a number of years, but bow long and how continuously is not tnown. Whether any of them are permanent bomes of plague the evidence does not enable ns to say. They seem, at any rate, to have barboured it since its disappearance from Europe, and probably further Inveatigation would diuclose a still wider prevalence. For lnstance, there are good reasons for belleving that the taland of Reunion has been subject, siace 1840 or thereabourts, to outbreaks ander the name of "lymphangits infocNewo," m elegent ouphemism chasmeterastically Frasch. In
all the countrici named plague appears to behave very much as it used to do in Europe from the time of the Black Death onwarda. That is to stay, there are periods of quiescence, with opidemic outbreaks which attract notice at irregular intervals.

Taking up the story at the point where the eaxlier bistorical summary leaves off, we get the following list of countrien in which plague is known to have been preseat in cach year (see Local Government Bourd's Reports): 1889, Mesopotamin; 1881, Mesopotamia, Persia and China; 1882, Persha and Chima; 2883, Chine; 1884, Chine and tiedia (as mehemari); 1885, Persia; 2886, 1887, 1888, India (as mahathari); 2889, Arabia, Pernis and Cbina; 1890, Arabia, Persia and China; 1891, Arabia, Chins and Indis (as mahamari); 189a, Menopotapila, Persia, China, Ruscia (in central Asia); 2893 , Arabin, Chins, Rusaia and India (as mahomars); 1894, Ambia, China and Indie (as mahamari); 2895 , Arabia and Chint; 2896, Arabla, Asia Minor, Chins, Jspan, Rusais and India (Bombay); 2897, Arabia, Chinm, Japen, India, Rusia and East Africa; 1898, Arabia, Persia, Chins, Japan, Rumia, East Alrica, Madageacar and Vienna; 1899. Arabia, Persia, China, Japan, Meropotamis, Eant Africe, Went Africa, Philippine Islands, Stralts Settlemente, Madagucar, Mauritius, Rtunion, Esypt, European Russia, Portugal, Sandwich Islands, New Caledonia, Paragayy, Argentine, Brazil: 1900, to the foregoing should be added Turkey; Anstralia, California, Merico and Clasgow; in rgor, Souih Arice and in 1902 Ruacis chiefly at Odense.

This list is probebly by no means exhaustive, but it sufficiently indicatea in a summary lashion the extent of that wave of diffusion which set in during the closing years of the 1gth century. It did not fully gather way till 2896 , when plague appeared in Bombey, but our modern knowledge of the disease dates from 1894, when it attached Hong Kong and Girat presented itseif to sccurate obsorvation. From this point a more detailed account may be given. Plagne was recognized at Hong Kong in May 1894, and there can be little doubt that it was imported from Canton, where a violent outhreak-said to have caused 200,000 deathy-was in progress a few months cartier, being part of an extensive wave of infection which is believed to have come originally out of the province of Yunnan, one of the recognized endemic centres, and to have invaded a large number of places in that part of Chins, including Pakhoi and other seaposts. Hong Kong was meverely affected, and has never since been entirely free from plague. In two intermediate yeara-1895 and 1897-very few cases were recorded, but more recently the epldemic bas gathered force again. The following table gives the cases and deaths in each of the six yean 1894-1899:-

Year.	Casces.	Deatha	Case Mortality.
			\%
1894	2833	2550	9
1895	134	(368	80
${ }_{1897}^{1896}$: $\quad: \quad: \quad$.	1204 31	18	8
1898	1320	1175	89
1899 . . .	4486	1415	95
Total	6909	6272	907

The excessively high rate of mortality is probably due in part to under-statement of the number of cases. Concealment is practised by the Chinese, who are chiefly atlacked, and it is easier to conceal sickness than death. Plaguc appears to have been equally persistent and dentructive on the mainland in southern Chins during the period indicated, hut no accurale details are available. In 1807 the Portuguese settlements of Leppa and Macso were invaded. In addition to the provinces of Yunnan, Kwang-i and Kwang-tung in southern Cbina, plague is reported to have been present for several years in a district in Mongolia to the north of Peking, and distant about "iweive days' Ide." More recently several localities in Monsolis and Manchuria bave been affected. Formosa was altacked in $\mathbf{1 8 9 0}$, and suffered considerahly in subsequent years; in 1899 the Japanese goverament afficilly reported 2633 cases, with

1974 deatha. Japan itself has had a certain amount of imported plague, but not on a lavge scale. Speaking generally, the disease has persiated and spread in the Far East since 1894, but precise information is lacking, except with regard to Hong Kong W. J. Simpmon in his Repert on the Casuses of the Plagme in Howg Koug (1903) reports the endemicity of the plague in that colony to be maintained by (a) infection among rals often conoected with infectious material in rat runs or in bouses, the virus of which has not been destroyed, (b) retention of minfection in houses which are rat-ridden, and (c) infected clothing of people who bave beea ill or died of plague. He cousiders the outbreaks are favoured by the searonal heat and moisture of the apring and early summer, and the movement from place to place of infected rats or persons. He also believer that human beinga may infect rats. In 3 ro cates at plague examined by Simpeon 56% were bubonic, 40% septic and 4% pneumonic.
In 1896 plague appeared in the city of Bombay. It was certainly presedt in August, but was not recognized until the 23rd of Septamber, and the diagnosis was not bacteriologically confirmed until the z3th of October. This fact should be remembered when fallure to recognize the diseace on its first appearance occury elsewhere. The origin of the Bombay invasion is shrouded in obscurity. It is not even known when or tn what part of the city it began (Condon, The Bombay Plagwe). Several theories have been put forward, and importation by sea from Chins is the theory which has met with most scceplance. The native form of plague, known as makamari, is confined to the southern slopes of the Himalaya. It is described sloove, but that account may be supplemented by some earlicr references unearthed by the Bombay Gasetter (vol. Iv.). Ibn Batesta potices two destructive peatilences in the rath century, and Ferishta one in 1443, which he calls te'men, and describes as very unusual in India. At the end of the r6th century there was a pestilence following a prolonged famine, and in the 17th century two viojent epidemics are recorded under the names ta'un and wdba. In the second of these, which occurred in the Ahmedabed district of the Bombay Preaidency in 1683-89, buboes ase distinctly describel. In the 18 th century several pestilences are recorded without description. It is at lenst probable from these notes that even before the undoubted outbreak, which began in Cutch in 1812, India was no stranger to epidemic plague. To return to Bombay and 1896: the infection spread gradually and slowly at first, hut during the first three months of 1897 not only was the fown of Bombay severely affected, but district after district in the presidency was altacked, notably Poona, Karachi, Cutch Mandvi, Bhiwandi and Daman. The number of cases and deaths reporied in the presidency, exclusive of the city, in each year down to the end of 1899 , was as follows:-

The corresponding figures for Bombay city are:-

	Year.	Casion	Deatha	Came Mortality
$\begin{aligned} & 1896 \\ & 1897 \\ & 1898 \\ & 1899 \end{aligned}$		2,530	1,80t	\%
	\cdots	11.963	10.232	85.7
		19.863	18.160	\%1-2
	- .	19.484	15.830	81.3
	Tote	33.840	46,023	85.4

The total for the presidency, including the city, in four years was 325,632 cases with 252,540 deaths in a population of $26,960,421$ (census of 2801), The population of the city is 821,764, but during the earlier plague period large numbers Hed, so that the foregoing figures do not give the true plague
incidence according to population. Moreover, concealment was extensively practised. The most striking fact brought out by the tables just given is the large and steady increase year by year in the presidency, in spite of all efforts to arrest the spread of infection. It has gone on sibce 8899 , and it has not been confined to Bomblay, but has extended over the whole of India. In 1897 it had alreedy penetrated to Rajputana, the Puajab, the North Weat Provinces and the Central Provinces In the following year Bengal, Madras, Haldarabad and Mywore were invaded. Not all these provinces suffered allke, bat on the whole plague steadily strengthened its hold on india generally, and hardly relared it in any part. The most noteworthy details available are as follows, taken from the plague mortality returns published June 1908. In the Pumjab from 179 deaths in 1897 the mortality renched a maximum of 334,897 in 1905, in Agra and Oudh they rose from 72 in 1897 to 383,802 in 1905, and in Madras Preadency from 1658 in 1899 to $20,125 \mathrm{~mm} 1904$.
The most striking figures, however, are thome for Bombay and Bengal which are given below, as well as the total mortality in India.

Year.	Bengal Presidency (inctuding Calcutta).	Bombay Pretidency (including Bombay City).	All India.
1896	-	2,219	2,219
:897		87.710	47.974
1898 1899	219 3.264	86,191 96.592	89,265 102.369
1900	38,412	33,196	73,576
1901	78,629	128,259	236.433
1902	32,967		48,655
1903	65,680	281.269	68.445
1904	75.438 126.084	233.957 71.363	938.010 940,828
1906	59,619	51.525	300,355

Outside Chinn and India plague has cansed no great mortality in any of the countries in which it has appeared, with the exception perhaps of Arabia, about which very little is known. But some of the outbreaks are interesting for other reasons, and require notice. The first case is the singular occurrence of three deaths at Vienna in October 1893. The carlient victim was an attendant named Barisch, employed in the pathological laboratory of the Vienna General Huepital, and told off to look after the animals and bacteriological apparatus devoted to the investigation of plague, cultures of which had been brought from India by the medical commissioners sent by the Royal Academy of Science in 1897. Barisch was drunk and out all night on the 8th of October; on the 14th of October he fell ill. Plague was suspected, but Dr Mitler, who attended the man and had studied the disease in India, would not admit the diagnosis on clinical grounds, nor was it bacteriologically established until the 10th of October Barisch died on the 18th of October. On the acth one of the nuries, and on the asst Dr Muller, fell ill. Both died of pneumonic plague, from which also Barisch had undoubtedly sufiered. A second nurse and a sister of mercy had feverish attacks, but no further case occurred. Baricch was shown to bave been carcless in the performance of his duties, and to have disergarded instructions; and the inference is that he conveyed the infection to his mouth, and so to the lunge, from the bateriological specimens or inoculated animats. The melancholy incident illustratcs several points of intereas: (i) the correctness of the bacterial theory of camasion, and the identity of the bacillur prslis ts the cause; (2) the infectious character of the pneumonic type of disedue; (3) its high fatality; (4) the difficulty of diagnosis.

The next occurrence of especial interest is the appearance of plague in Portugal in 1899, after an absence of more than 200 years. Its origin is shrouded in obscurity. Oporto, the seat of the outbreak, had no connexion by eea with any plece linown to be infected, and all attempis to trace introduction ended ia speculation or assumption. The most probable theory was that soldiers returning home from infected Portuguese possessions in the East brought it with them, but this does not taplain the selection of Oporto and the escapo of other places. The earliest

Cases, according to retrospective inquiry, occurred in June 1899 ; suspicions were aroused in July, but the diagnosis was not established until August. The conclusion reached, after careful Invertigation by Dr Jorge, the medical officer of health, that the commencement really dated from June, is confirmed by the fact that about that time the riverside labourers, wbo were first affected, began to notice an iliness among themselves sufficiently novel to attract their attention and that of an English shipowner, who from their description suspected plague. Through him the suspicion was conveyed to the Medical Times and Gavetle, in which the suggestion of plague at Oporto was made beiore any puhlic mentlon of it in the town itself. The outbreak never assumed large proportions. It gained ground by degrees untll October, after which it declined, and eventually ceased in Fehruary 1900. No recrudescence has been officially announced. The number of cases recorded in a population of 150,000 was 310 , with 114 deaths, representing a case mortality of 36.7%. They were widely scattered about the town and outlying suburbs; but no further extension occurred, except some isolated casea at Braga, a town 35 m . distant, and one at Lisbon, in the person of the distinguished bacteriologist, Professor Camara Pestana, who contracted the disease in making a post-mortes at Oporto, and died in Lisbon.
The only other appearance of plague in Europe in 1899 was on the Volga. Three places were affected, namely, Kolobovka, and Krasnoyarsk, In the province of Astrakhan, and Samara, higher up the river. All three outhreaks were small and limited, and no further extension took place. A commission appointed by the Russian government pronounced the disease to be undonbtedly plague, and it appears to have been very fatal. The origin was not ascertained.
The mont interesting extensions of plague in 1900 were those in Australia and Glasgow. The following towns were affected in Australia: Sydney, in New South Walen; Adelaide, in South Australia; Melbourne, in Victoria; Brisbane, Rockhampton, Townoville, Cairns and Ipowich, in Queensland; Freemantle, Perth and Coolgardie, in West Australia. In none of these, with the exception of Sydney, did plague obtain a serious bold. The total number of cases reported in Qucensland was only 123, with 53 deaths. In Sydney there was 303 cases, with 103 deaths, a case mortality of 34%. The inlection is supposed to have been brought from Noumen, in New Caledonia, where it was present at the end of r899; and the medical authorities believe that the first case, which oceurred on the 19th of January, was recognized. The outbreak, which hardly reached epidemic proportions, lasted abourt six months. That in Clasgow was on a still smaller scale. It began, so far as could be ascertained, in August r900, and during the two months it lasted there were 34 cases and is deaths. Once more the disense was not at first recognised, and its origin could not be traced. In roor plague invaded South Africa, and obtained a distinct footing both at Cape Town and Port Elizabeth. The total number of cases down to July was 760 , with 362 deaths; the number of Earopeans attacked was 196, with 68 denths, the reat belag natives, Malays, Indinns, Chinese and negroes. With regard to Great Britain, a few nhip-borpe cases have been dealt with et different ports from time to time since 8896, but except at Gingow the disease has nowhere ohtained a footing on land.

Coscalion.-Piague is a specific infections fever, caused by the bacillus pestif, which was identifed in 1894 by Kitasato, and aubrequently, but independently, by Yerin (see Parasitic Disenaes). It in found in the beboes in ordinary cases, in the blood in the so-called "septicsemic" cases, and in the sputum of pneumonic cases. It may atso be present in the urine. Past mortene it is found in great abundance in the spleen and liver. Nothing is known of fis astural history outaide the body, but on caltivation it is apt to undergo numerous involution forms. Its presence in a pacient is reganded as ponitive diagnoatic proof of plague; but fallure to find or to identify it does not pomess an equal nepative value, and should not be too readily accepted, for many instances are recorded in which expert obsorvers have only mecouded in demonotration tit presemce after supested
attempts. It is clear, from the extreme variations in the severity of the illness, that the resisting power of individalas varies greatly. According to the Plague Research Committee of Bombay, the predisposing causes are "those leading to a lower state of vitality," of which insufficient food is probably the most important. There is no evidence that age, sex or race exercises a distinct predisposing influence. The largest incidence in Bombay was on young adults; but then they are more numerous and more exposed to infection, because they go about more than the younger and the older. Similarly, the comparative immunity of Europeans in the East may be explained by their different conditions of life. It is doubtful whether the distinction drawn between pestis mizor and postis major has a real aetlological basis. Very mitd cases occurring in the course of an outbreak of typical plague may be explained by greater power of realstance in individuals, but the epidemic prevalence of a mild illness preceding the appearance of undoubted plague suggests some difference or modification of the exciting cause. "It is impossible," writes Sir Richard Thorne (Local Government Board Report, $\mathbf{x 8 9 8 - 1 8 9 9) , " ~ t o ~ r e a d ~ t h e ~ m e d i c a l ~ h i s t o r y ~ o f ~ t h i s ~}$ disesse in almost every part of the world without being impressed with the frequency with which recognized plague has been preceded by ailments of such elight severity, involving some bubonit enlargement of glands and some rise in body-temperature, as to mask the real nature of the malady." Considering the great importance of arresting the spread of infection at the outset, and the implicit reliance placed upon bacteriological criteria ${ }_{i}$ the aetiology of such antecedent ailments deserves more atten. tion than has hitherto been paid to it. Of course plagre does not stand alone in this respect. Epidemic outbreaks of other diseases-for instance, cholera, diphtheria and typhoid feverare often preceded and followed by the provalence of mild illness of an allied type; and the true significance of this fact is one of the most important probiems in epidemiology. In plague, however, it is of special importance, on account of the peculiarty insidious manner in which this disease fastens lamelf upon a locality.

The path by which the bacillus eaters the body varies. In pncumonic cases it is presumed to enter by tha air-passagea, and in bubonic cases by the akin. The Bombay Plague Research Committee, whose experience is unequalled, tay: "In a number of instances points of inoculation were found on the extremitiea of patients, from which plague cultures were obtained, and in these cases buboes were found above the point of inoculation In the majority of instances, bowever, no local iadication could be found marking the point at which the microbe was implanted." From the fact that becilli are hardly ever found in the blood of bubonic cases it may be inferred that they are arrested by tbe lymphatic glands next above the seat of inoculation, and that the fight-which is the illness-takes place largely in the bubo; in non-bubonic cases they are not so arrested, and the fight takes place in the general circulatory system, or in the lungs. As might be expected from these considerations, the bubonic type is very ifttle infectious, while preumonic cases are highly so, the patients no doubt charging the sarrounding at mospbere by coughing. Whether infection can be introduced through tbe digestive tract by infected food in doubtful. The bacillus is non-resistant and easily killed by heat and germicide sabstances, particularty acids. Little is known of its toxic action; anly a weak toxda has been obtained from cultures. Of the lower animals, mice, rats, guinen-pigs, rabbits, squirrels and monseys are susceptible to the bacillus; borsen, cattle, sheep, goats, pigs, dogs and cats are more or less relistant, but cats and dogs have been known to die of plague (Oporto, Daman, Cutch and Poona). In the Great Plague of London they were believed to carty the infection, and were killed in vast numbers. The bacillas has been demonstrated in the bodies of fleas, flies, bugs and ants.
Clinical Characters.- Onc of the results of recent observation is the clasification of plague cases under three hoeds, Fhich have already been mentioned several times: (1) bubonic, (a) paermonic, (3) aptiosenic. (The word "prati-atenic "is
aloo used instead of "septl-caemic," and though etymologically objectionable, it is otherwise better, as "septicaemic " already has a apecific and quite different meaning.) It should be undergtood that this classification is a clinical one, and that the second and third varieties are just as much plague ns the first. It is necessary to say this, because a misleading use of the word "bubonic" has given rise to the erroneous idea that true plague is neceasarily bubonic, and that non-bubonic types are a different disease altogether. The word " plague "-or "pest," which is the name used in other languages-had originally a gencral meaning, and may have required qualifications when applied to this particular fever; but it has now become a specific label, and the prefix "hubonic" should be dropped.
The illness varies within the wideat limits, and exhihits all gradations of severity, from a mere indisposition, which may pass slmost unnoticed, to an extreme violence, only equalled by the most violent forms of cholera. The mild cases are always bubonic; the other varieties are invariably severe, and almost always fatal. Incubation is generally from four to six days, but it has been observed as short as thirty-six hours and as long as ten days (Bombay Research Committee). Incubation, however, is so difficult a thing lo determine that it is unvise to lay down any positive limit. As a rule the onset is sudden and well marked. The symptoms may be described under the headings given above. (x) Bubonic cases usually constitute three-fourths of the whole, and the symptoms may therefore be called typical. In a well-marked case there is usuelly an initial rigor-in children convulsions-followed by a rise of temperature, with vomiting, headache, giddiness, intolerance to light; pain in epigastrium, beck and limbs; sleeplessness، apathy or delinium. The headache is described as splitting; delirium is of the husy type, like delirium tremens. The temperature varies greatly; it is not usually high on the first day-from 101° to 103°-and may even be normal, but sometimes it rises rapidly to 104° or 105° or even 107° F.; a fall of two or three degrecs on the second or third day has frequently been observed. The eyes are red and injected; the tongue is somewhat swollen, and at first covered with a thin white fur, except at the tip and edges, but hater it is dry, and the fur yellow or brownish. Preseration is maried. Constipation is the zule at first, but diarrhoea may be present, and is a bad sign. A characteristic symptom in severe cases is that the patient appears daved and stupid, is thick in apeech, and ataggers. The condition has often been mistaken for intoxication. There is nothing, however, in all these symptoms positively distinctive of plague, unloss it is already prevalent. The really pathognomonic sign is the appearance of buboes or inflamed glands, which happens carly in the illness, usually on the second day; sometimes they are present from the outsot, sometimes they cannot be detected before the third day, or even later. The commonest seat is the groin, and next to that the axila; the cervical, submaxillary and femoral giands are less frequently affected. Sometimes the buboes are multiple and on both sides, but more commonly they are unilateral. The pain is described as lancinating. If left, they usually suppurate and open outwards by sloughing of the skin, but they may subaide spontaneously, or remain hard and indurated. Petechiac occur over buboes or on the abdomen, but they are not very common, except in fatal cases, when they appear shortly before death. Boils and carbuncles afe rare. (2) Pneumonic plague was observed and described in many of the old epidemics, and particularly by two medical men, Dr Gilder and Dr Whyte, in the outbreak in Kathiawar in 8816; bat its precise significance was first recognized by Cbilde in Bombay. He demonstrated the presence of the bacilli in the sputa, and showed that the inflammation in the lunge was set up by primary plague infection. The preumonis is usually lobular, the onset marked by rigors, with difficult and hurried breathing, cough and expectoration. The prostration is great und the course of the fllness rapid. The breathing becomes very harried-forty to sixty respirations in the minute-and the face dusky. The expectoration scon becomes watery and profuse, with ittle whilish specks, which contain great quantities of
bacilli. The temperature is high and irregular. The physical signs are those of broncho-pneumonia; oedema of the lungs soon supervenes, and death occurs in three or four days. (3) In septicaemic cases the symptoms are those of the bubonic type, but more severe and without buboes. Prostration and cerebral symptoms are particularly marked; the temperature rises rapidly and very high. The patient may die comatose within twenty-four hours, but more commonly death occurs on the second or third day. Recovery is very rare.

There is no reason for doubting that the disease described above is identical with the European plagues of the 14th and subsequent centuries. It does not differ from them in its clinical features more than epidemics of other diseases are apt to vary at different times, or more than can be accounted for by difference of handling. The swellings and discolorations of the skin which play so large a part in old descriptions would probably be equally striking now but for the surgical trealment of buboes. Similarly, the comparatively small destructiveness of modern plague, even in India, may be explained hy the improved sanitary conditions and energetic measures dictated hy modern knowledge: The case mortality still remains exceedingly high. The lowest recorded is 34% in Sydney, and the highest 95% at Hong Kong in 8899 . During the first few weeks in Bombay it was calculated by Dr Viegas to be as high as 99%. It is very much higher among Orientals than among Europeans. In the Bombay hospitals it was about 70% among the former, and between 30 and 40% among the latter, which was much the zame as in Oporto, Sydney and Cape Tawn. It appears, therefore, that plague is less fatal to Europeans than cholera. The average duration of fatal cases is five or six days; in the House of Correction at Byculla, where the exact period could be well observed, it was five and a half days. Patients who survive the tenth or twelfth day have a good chance of recovery. Convalescence is usually prolonged. Second attacks are rarc, but have been known to occur.

Diagnosit.-When plague is prevalent in a locality, the diagnosis is easy in fairly well-marked craes of the bubosic type, but leas so in the other varietics. When it is not prevalent the diagnosia is never easy, and in paeumonic and sepoicsemic cases it is impossible without bacteriological assistance. The earliest cases have hardly ever been even susperted at the time in any outbreak in a fresh locality. It may be taken at frst for almost any fever, particularly typhoid, or for vencreal disease or lymphangitis. In plague coumtries the diseases with which it is most liable to be copfounded are malaria, relapaing fever and typhus, or broncho-pneumonim in pneumonic cases.

Treatment.-The treatment of plague is still aymptomatic. The points requiring most attention are the cerebral symptoms -headache, sleeplessness, delirium, \&c.-and the state of the heart. Alcobol and cardiac stimulants may be required to prevent heart failure. Speaking generally, it is important to preserve strength and guard against coliapse. Extracta of supra-renal gland have been found useful. Buboes should be treated on ordinary suggical principles. An antitoxic'serum has been prepared from horses by the Institut Papteur in France, hut has not met with succeiss. The results in India obtained by British and various foreiga observern were uniformly unfavourable, and the verdict of the Research Committee (1900) was that the serum had "failed to influence favourably the mortality mong those attecked." Succeas was somewhat noisily claimed for an improved racthod tried in Oporto, but the evidence is of little or no value. Of 242 cases treated, 21 died; while of 72 casea not treated, 46 died; hut the former were all hospital patients, and included several convalescents and many caspa of extreme mildness, whereas the non-werm cases were treated at home or not at all, some being only discovered when death had made further concealment imposaible. Later observations have, however, established that the Yersin-Roux merum is of undoubted beacfit when used early in the case, in fact during the first twenty-four hours Very large docea, wo much as 150 cc. may be injected subcutaneously or proferably irtruvenounly, apd it is tinted to modity the whole courte of
the disease. Another aerum bas been prepared by Lustig and Galeotti.
Morbid Anatomy.-(1) Bubonic cases. A bubo is found to consist of a chain of enlarged glande, surrounded by a mass of engorged connective tissue, congulated blood and serum Necrly all the lymphatic glands in the body are a little swallen, but the lymphatic vesteds show littie or no change. The aploen and liver are always enlarged, the former to sometimes twice or thrice its nat ural size. The lunge are angorged and oedematous, and often show bsemorrhages. The kidneys are enlerged and congested. The serous membranes ahow petechise and hacmorrhages. The right side of the heart is frequently dilated, with clots in the cavitien. The heart muscle is normal, or soft and friable. The sabatance of the brail, spinal cond and nervetrunks is normal, but the membranos are engorged. (2) Pneus. monic cases. The lymphatic glands are hardily affected. There is general engorgement and oedema of the hungt, with preumonic patches varying in sixe and isregularly distributed. (3) Septichemic cases. Nearly all the iymphatic glanda in the body are involved, and have a chatacteristic appearance. Thay are enlarged to the size of an almond, rounded, firm and pink; there is some engorgement and oedems on section; the subatance is rather soft, and can be seraped off with a knife. The surrounding tissue is not engorged or oedematous. The description of the other organs given under (x) appliet also to (3) and (3).

Disseminalion.-Given the bacilluz, the questions arise, How is it disseminated? and What are the conditions that favour its propegation? That it is corveyod from persoce to persoa is an undoubted fact, proved by innumerable cases, and taciliy implied by the word "infectious," which is universally allowed. The sick are a source of dangerand one menns of discemination, and, since the illness may be so slight es to pass unrecognized, an obviously insidious one. The amhulatory plague patient goes far to explain the spread of the disease without leaving any track. But there is evidence that persons may carry the infection and give it to others without being ill at all themseives. One such case occurred at Clasgow, and another at Oporto. In the Glasgow case the wife of a laundryman employed in handling plague linen contracted the disease. She was brought into connexion with it in no other way, and there can be no doubt that she took it from her hushand, though he was not ill at all himself. The Oporto instance is still more conclusive. Two little girls had plague at Argonciilhe, a suburh some miles from Oporto, and were the anly cases which occurred in that place. Their father was a riverside labourer, who lodged during the week in Oporto, but went home for Sunday. He was not ill, but several cases of plague occurred in the hause in which he lodged. How the poison passes from one person to another is less ciear. In preumonic cases patients no doubt spread it around them by coughing, and others may take it up through the air-passages or the skin; but even then the range of infection is small, and such cases are comparatively rare. In the vast majority of cases the hacilli are in the lymphatic or the circulatory system, and aerial convection, even for a short distance, seems highly improbable. This view is borne out by the experience in hospitals and with "contacts," which goes to show that with reasonable care and under fair conditions the risk of infection from ordinary plague patients is very small. When persons live crowded together in close contact, and when they are careless with regard to discharges of all kinds from patients, the risk is obviously much increased. Discharges-vomited matters, sputa, urine and faeces-are possible media by which plaguc is spread from person to person. They also contaminate clothing, which thus bucoraes another means of dissemination capable of acting at a distance. This is the most probable explanation of the two cases of indirect infection related above. Failure to catch or induce plague from clothing that has been worn by plague patients proves nothing. Such clothing is not necessarily inlectious; indeed, the probability is that it is not, unless contaminated by discharges. There is no evidence that merchandise and foodstufis are means of dissemination, hat a great deal of evidence
against such a theory. Then we come to the lower animals Attention has been concentrated on rats, and some observers scem disposed to lay upon them the whole hlame for the propagation and spread of plague, which is held to be essentially a rat-borne disease. The susceptiblity of rats has been noted from remote times and in many countries, particutarly in China, hut it has never attracted 20 much attention as during the recent prevalence of plague. From one place after another a great mortality among rats was reported, and the hroad fact that they do die of plague is incontestable. It is therefore easily intelligible that they may play an important part in multiplying and fixing the poison on a locality. As to how they convey it from man to man the grentent prohability is in favour of the flea as an intermediary. Mortality among rats is said to precede the appearance of human plague, but the evidence of this is always retrospective and of a very loose character. At Sydney a careful invertigation wes made; and the conclusion reached by Dr Tiduweli was that " there was no ground for even a suspicion that our epidemic was being maintained by any process of direct coatagion between man and man," but that rats were the carriens. In Glasgow the experience was just the contrary. Personal connezion was traced in every case, and rats excluded; there was no mortality among them, and of 300 caught and esamined none had plaguc (Chalmers). Similarly, at Oporto, personal eonnexion was (raced in all the earier cases; there was no mortality among rats, and no evidence to connect them with the outbreak (Jorge). Again, a comparison between rat. infested and rat-free districts in Bombay showed a much higher incidence of plegue in the latter. A campaign against rals in Bombay, hy which 50,000 or 60,000 were killed in a ahort time, had no effect in checking the disease. Piague-rats have rarely been found in ships sailing from infected ports; and though millions of these animals menst have been carried hackwards and forwardufrom quay to quay bet ween Hong-Keng, Bomhay and the great European ports, they have not hrought the disease ashore.

By far the most important communication on the role of rats in the spread of plague is formed by the " Report on the Plague Investigations in Indis" (Journal of Hygierte, vol. vl. No. 4; vol. vii. No. 3, 1907). The chief conclusions arrived at in the report as the result of experiments are the following:-

1. Healthy rats contracted plague from infected rats when the only apparent means of communication between the two was the rat flea (oulex ckeopis).
2. In 21 experiments out of $38,55 \%$ of healihy rats living in fiea-proof cages have contracted plague after receiving fleas collected from mits either dead or dying of septicaemic plague; consequenily it is proved the rat flea can transmit plague from rat to rat.
3. Clone and continuous contact of playue-infected animale with healihy ones does not infect the latter il fleas are excluded.
4. Should ficas be present an epizootic at once starts and spreads in porportion to the number of ficas present.
5. Guinea-pigs act free in plague-infected houses become infected winh the rat liea and develop plague in a certain percentage.
6. Fleas caught on plague-infected rats are able to infect rats placed in flea prool cages:
7. Guinea-plgs placed in plague-infected houses do not contract plague if they are protected from feens; those placed in cages pros teeted by a border of slicky paper at least six inches in radius, which the fleas cannot jump over, do not contract plague; the otberit not similarly protected, do.
8. Chronic plague may prevall in rats.

On this report it may, therefore, be taken that acrial infection, except, perhaps, in pneumonic cases; may he excluded, and that the chict source of infection is the flea. It was also shown that animals may become infected through the faeces of a flea which has been fed on plague-infected rats. This may serve to explain the manner in which plague-infected linen and clathing may convey the disease. The report alto considers it proved that the bacillus pestis multiplies in the stomach of a flea and may remain a considerable time within its hast.

Browning Smith says ithe following facts are admitted as known. (1) Plague can be carried by fieas from an unhealthy rat. (a) \dot{A} flea can retain the plague bacili; alive for seven or eight days, (3) Man is, in the majorily of cases, infecied ihrough the skin, though ihe puncture may not be seen. (4) The rat pea, when finding no rats, will attack mana and it will also altack other asimals

Very little light has been thrown on the conditions which favour the prevalence of plague. We do not know why it has developed a diffusive activity of late years, nor why it has attacked some places and consistently passed by others, such as Singapore. The words "dirt" and "insanilary conditions" are much used, but such general terms explain nothing. Singapore, where plague has several times been introduced, but never taken hold, is probably quite as dirty and insanitary as Hong-Kong, and it is pertinently remarked by the Bombay Research Committee that filth per se has but little infuence. inasmuch as "there occurred in the House of Correction at Byculla, where cleanliness is brought as near to perfection as is attainable, an outbreak which exceeded in severity that in any of the filthy charwls and tenements around." Again, in Oporto there is an area which combines every possibie sanitary defect-dense overcrowding, great poverty, no light, no air, no drainage, no acavenging, water brought in huckets. Plague got into this quarter, but did not spread there; on the other hand, it appeared in other and vastiy superior parts of the town. Yet in at least one case neitber the patient nor the "contacts" were removed, but were all shut up in one room with a sentry at the door and another in the street. The seasonal variations heve been well marked and extremely regular in Bombay. The disease begins to be active in late aulumn or the heginning of winter, and reaches its beight in February or March, dying down in the summer. Baldwin Lathare made an elaborate examination of the metcorological conditions, and more particulariy of the vapour tension, from which he draws the condusion that the seasonal variations are due to exhalation from the ground. His observations are original and worth attention. A simpler explanation is that the people live more indoors, and are so more exposed to infection during the plague season. The curve shows two rises, one at the beginning of winter, and the other at the commencement of the monsoon, and at both these times the people are driven indoors. A broad survey of the epidemiological facts suggests some general conclusions. The outbreaks fali into two well-defined groups: (x) those in which the disease is destructive and persistent, (2) those in whicb its effects are slight and transient. In the former the poison clearly fastens on the locality, and gradually increases its hoid. The place is infected, not merely the peopie in it; for if they evacuate it, the disease soon ceases among them, and if they return in a short time, they are again attacked. Now the poison is contained, as we have aiready seen, in the discharges from patients, and in such infected localities the standing conditions and the habits of the people combine to retain the discharges on the premises. The floors, mostly of mad covered with dung, are fouled with spittle. vomit, and urine, and, being seldom or never clcanted out, foster a gradual eccumuiation of poison, to which infected rats and the concealment of iilness contribute. These are just the conditions which prevailed in Europe in the old plague days. They do not prevail now in those " white countries " which have been invaded but have repelled the attack with comparative ease and little loss. It may be concluded, with some confidence. from experience and theory alike, that localities where they do not prevail may fail to keep plague out, but have very little to fear from it, except the disturbance of trade caused by the iraditionnl terrors that still cling to the name.

Prevention.-The principles are the same as those which govern the prevention of other infectious diseases. "Sanitary cordons " and the like are obsolete. International.procedure is supposed to be regulated by the Venice convention of 2897 (see Quaxantine), but that instrument contains an optional clause, which allows countries to do as they please with their own frontiers. Except Great Britain and Germany, they all retaln quarantine in a more or less stringent form at seaports. It is generally used as a system of locai extortion imposed upon traveliers and shipping. According to the Venice convention. ships are divided into (1) healthy. (2) suspected, (3) infected. (1) Healthy are those free from plague throughout the voyage, (2) suspecied, those in which plague bas occurred, but no fresh
case within twelve days; (3) infected, those in which plague has occurred within twelve days. Great Britain relies on medical inspection, removal of sick or suspected cases, and supervision of the healthy arriving on an infected ship; infected clothing is burnt and infected ships are disisfected. The procedure is the same as for cholera, but it has been equally successful. Ships pasaing through the Suez Canal are subject to dindilar inspection; sick persons are landed at Mowes Wells, and suppected ones detained. The risk of importing plague from India has been materially lessened by medical inupection of outward-hounid ships at the principal ports. This has been very thoroughly carried out at Bombay with good results. In 1897 pilgrimages from India to the Hedjaz were prohibited. By the Venice convention a number of articles of merchandise are classed as succeptible and liable to be refused admission, but the only ones which there is any reason to consider dangerous are used clothing and rags. A watch should be kept on rats at ports of arrival and on board ships from infected countrics.

When plague is preant in a place, the measures to be takem are the usual ones for dealing with infectious disease, with some additions. The sick and suspected should be removed in epecial ambulances to an isolation hospital, their soiled linen, \&c., should be burnt, and the premises disinfected. Corrosive sublimate in an acid solution is the beat disinfectant, but sulphuric acid, i in 250, is efficient and cheaper. Suspected rases should be bestowed in a special isoiated building until the diagnosis is fully determined. "Contacts" should be kept under observation. Rats should be exterminated is far as possible, especially by means of the Danyaz virus, which spreade a discase amongst rats which cannot be communicated to man. The greatest care should be taken in dealing with the hospital linen and discharges from patients. Hospital staffis whould be kept apart. Inoculation with Haflkine's prophylactic fuid should be offered to all persons willing to avail themselves of it. It is eupecially desirable for hospital and ambulance stafis to be inoculated with a vaccine prepared from sterilized cultures of plague bacillus. Inoculation is harmless, and the results obtained in India justily a favourable opinion of its protective efficacy. ${ }^{1}$ At Hubli, where nearly the whole population was inoculated between the ath of May and the 27th of September
${ }^{1}$ The system of inoculation against plague with a fuid prepared from sterilized virus of the disease was introduced in India by Pro fessor Hafikine early in 1897. The composition of 1his fulid was subjected to a searching inquiry by tbe Indian Piague Commission. who pronounced its employment to be free from danger, and it was used on a large scale in various parts of India without producing injurious eficets. in Sepiember 1902 the standard method of manufacturing this fluid was changed by the director of the Plague Inscitute on his own authority, with the object of expediting the process, and thus meeting the heav;. demand then being made by the Punjab governnient in connexion with a large sclieme of inoculation. The change finvolved the omission of a small proportion of carbolic acid which had up tilt then been added to the original fuid as a further precaution againat contamination. The new fluid, or water agar process, contained no carbolic ecid. ocher methods being relied upon to ensure its purity. On the Grh of November 1902. nincteen persons who had been inoculated on the 301 h of October in the village of Malkowal from a single bottle (labelled $53 \cdot n$) of the new fluid were found to be suffering from tetanus, and zill of them subsequently died. A conminsion, cons sisting of Sir Lawrence Jenkins, Lieut.-Colonel Bomford, M.D., principal of the Medical College. Calcutta, and Major Semple, R.A.M.C., direcior of the Pasteur Institute, Kasauli, was appointed by the government of India to inquire into the disaster. They found that the germ of tetanus had been Imeroduced into the fuid before the bottle was opened at Maikowal, and they thought it probable that this might have occurred owing cinher to insufficieat sterilization or to the process of filling the boutle from a ianger flask having been performed with defective precautions. They also expressed the opinion that carbolic acid was a valuable atemt in rextraining tetanus growth when added to plague prophylictic and they, therefore, thought that its omission was a grave mistake. Experiments undertaken in India by two independent inquiries appeared to confirm the view, and their conclunions, together with the data on which they were based, were submitted with the report of the commission for examination and further experiment to the Lisicr Instituse in London. Wish reference to the findings of the Malkowal commistion the instinute were asked to report: (1) On the comparative efficmy of the standard and nee fluide as a

8898, the mean mortality among the inoculated was $\mathrm{r} \cdot 3 \%$; among the uninoculated $13 \cdot 2 \%$. At Daman the mortality wasinoculated 1.6%, uninoculated 24.6%; at Dharwar, inoculated $\mathbf{5} \cdot \mathbf{2 \%}$, uninoculated 5.2% In all these cases the numbers dealt with were large and the test fair.
Simpson, in The Practilioner (Dec. 1906), gives an analysis of the results of Hafkine's serum inoculations as follows:-

In Poona, out of 5595 uninoculated cases the incidence was 6.8%, while in 1300 inoculated cases it was only 0.33%. Klein also prepares new prophylactic from the dried organs of a guinea-pig, and one of the most interesting experiments is that of Strong (Archiv furSchiffs- mad tropische Hygicne, April, 1906), who uses for producing immunity in man a living virulent culture of the bacillus pestis. He immunized 40 persons with. out mishap and with no more unplensant results than those occurring after vaccination. Inoculation protects against attack, and greatly modifies the illness when it fails to protect. How long the protection lasts has not been determined, hut it appears to be severnl months at least.

The main authorities for the researches into plague are in the official reports of recent years from India and elsewhere. Seq generally W. J. Simpeon, A Treatise on Plague (1905).
(A. SL. ; H. L. H.)
protection againat plague; (2) on the comparative liability of eacis fuid to contaminationi and (3) on the probable origin of tetanus virus in the Malkowal cases. Their report on thesc points (Dec. 1904) contained the following conelusions: (2) "The Institute eces no reason to differ from the conclusions of the commission that the new prophylactic is not leas efficacious than the old. (2) The Institute is of opinion that in the hands of more or les s unskilled workers it is easier to ensure freedom from contamination hy Haffine's ', ata ndard method of manulacturing plague vaccine than with the 'water agar process' as employed by him. (3) The Institute is in entire agroement with the commission as to the yalue of 5% carbolic acid in restraining tetanus growth when added to plague proppylactic, and its experiments emphasize still furthcr the importance of this addition in preventing growth and toxin formation in a vaccine which might be liable to the possilility of contamination with spores of tetamue. (4) The conclusions of the Institute coincide with thowe of the commission that in all probability tetanus wat at the time of inoculation in the fluid contained in the bottle, but that it is impossihle to detcrnine at what stage in its history or In what way the bottele ($53-\mathrm{n}$) became contaminated."
The govermene decided, on the arviree of the director, that only the standard fluid ohould be manufactured at the plague institute. This fluid was sterilized hy methods approved by the Indian Plague Commiasion and contained the requisite proportion of carbolic acid. It was bottled by a new method patented by Dr E. Maynarl.
The reault of the inquirics by the commission and the Listcr Institute led to a protracted controversy with regard to the responsihility of Mr Haffikine's laboracory, and to his subsequent treatment by the government of India: and the leading bacteriologists in England warmly took up his cause. A parlismentary ologists in England warmly Return of Papers "was issucd In Jone 1907, and in. The Timis of the 39 h of duly there appeared a ketter signed by the distinguish cd githologista, Ronald Rosh, R. T. Hewleet, A. S. Grunbaum, W, I. Simpen, R. F. C. Leith. W. R. Smith, G. Sims Woodhead, F. Klien, S. Flexner and C. Hunter Stewart. pointing out that the
evidence, mo far from showing that Mr Hafkinces laboratory was evidence, so far from showing that Mr Hainted with bacteriolugical work that it could have had nothing to do with the occurrence. They agreed that there was strong evidence to show that "the contamination took place when the Gottle was opener at Malkowa, owing to the abolition by the plague authorities of the technique prescribed by the Bombay laboratory, and to the consequent pailure to sterilize the forcepe which were used in opening the bottlo and which during the process were dropped on the ground "; and they complained of the inadequacy of the inquiries made by the Indian government, and ealled for Mr Halkine's exoneration. The evidence showed that it had been much too readily believed thet the ceeanus germs had entered the fluid before the bottle was opened, and that a grave injustice had been done to Mr Haffine. Acting on this view, in November 1907, the Indian government

PLAJOE (Plamrenecier moleste), a specien of fat-fish, cormmon on the conats of northern Europe from Iceland to the Bay of Biscay. It is readily recognized by the yellow or orange-coloured apots which are placed in a row along the doral and anal fins, and scattered over the body. The ayes are on the right wide, and the teeth in the jaws compresed and truncate. The scales are minute and smooth. Plaice, like other flat-fishes, prefer a sandy flat bottom to a rocky ground, and occur in suitahle localities in great abundance; they spawn early in spring, and are in finest condition in the month of May. Individuals of seven or eight pounds weight are considered fish of large size, but specimens of double that weight have been caught.
See the monograph by F. J. Cole and J. Johnstone (Liverpool. 1901); and W. Garstang "" Reports on the Natural History of the Plaico "(Rapports at procis-werbaux du conseil invernational pour rexploration de la mer, 1905 seq.).
PLAID (Gael. ploide, Ir. ploid, usually taken to be derived from Gael. peall, sheepskin, Lat. pellis, skin), an outer garment. consisting of an oblong piece of woollen cloth, which bas formed the principal outer part of the costume of the Highlanders of Scotland. The wearer wrapped himsell in the plaid, the lower portion, reaching to the knees and belted, forming the kilt. Later the lower portion was separated, being called the phili: bcg, the plaid being used as a covering for the shoulders and upper part of the body. The plaids were usually of a checked or tartan pattern. The word is thus used of any cloth made with such a pattern. "Shepherd's plaid" is a cloth with a chequer of hlack on 2 white ground.
PLAIB (0 . Fr. plain, from Lat. planum), a level surface; hence in physical geography a tract of country generally quite flat or comparatively so (see Geocraphy). The adjective "plain" signifies " level," and thence smooth, clear, simple, ordinary, \&c.
PLAIMFIRLD, 2 city of Union county, New Jersey, U.S.A., ahout 24 m . W. hy S. of New York City. Pop. (rgro U.S. census), 20,550. It is served by the Central Railroad of New Jersey and hy electric lines connecting with neighbouring towns. It is situated for the most part on a plain; north-east are heights occupied hy the suburb of Netherwood, and north in Somerset county, on the slope of the first Watchung Mountain, is the borough of North Plainfield (pop. 1910 U.S. census, 61 17), which forms with Plainfieid virtually a single residential and buslness community. Plainfield is one of the most attractive residential suhurhs of New York. The city has an excellent puhlic school system, a good public lihrary, with an art gallery and muscum. The Muhlenherg hospital, club houses and a driving track are features of the city. The value of the factory products increased from $\mathbf{\$ 2 , 4 3 7 , 4 3 4}$ in 1900 to $\$ 3,572,134$ in 1905 , or 46.6%. Plainfield was settled in $\mathbf{1 6 8 4}$, hut it was not until 1735 that the first frame house was crected. In 1760 a grist mill was erected, and for several years the place was called Milltown. The township of Plainfield was created out of West field township in 1847 , and in 1867 Plainfeld was chartered as a city.
plain song, or Plan Cbant (Gregarian Music; Lat. canius planus; Ital. caito gregoriano; Fr. plain chand), a style of unisonous music, easily recognizahle hy certain strongly marked characteristics, some very ancient fragments of which are helieved to have been in use under the Jewish dispensation from a remote period, and to have heen thence transferred to the ritual of the Christian Church.
The theorics advanced as to the origin of this solemn form of ecclesiastical music are innumerable. The most widely spread opinion is that the older portion of it originated with the Psalms themselves, or at least sprang from the later synagogue music. Another theory traces the origin of plain song to the early Greeks; and the supporters of this view lay much stress on the fact that the scales in which its melodies are composed are named after the old Greek "modes." But, beyond the name, no connexion whatever exists between the two tonalities. Less reasonahle bypotheses attribute the origin of the plain song to the Phoenicians, to the Egyptians, to the early Crristian converts, and to the musicians of the middle ages.

Towards the close of the 4 th century Ambrose of Milan, fearing the loss or corruption of the venerable melodies which had been preserved by means of oral tradition only, endeavoured to restore them to their primitive purity, and to teach the clergy to aing them with greater precision. A still more extenaive work of the same natura was undertaken, two centuries later, by Pope Gregory the Great. And thus arece two schoois of ecciesiastical music, still known as the "Ambrosian" and the "Gregorian chant "-the first of which is practised only in the diocese of Milan, while the latter is univerrally accepted as the authorized "Roman use." In order to explain the easential differences between these two schools, we must describe in detail some of the peculiar characteristics of plain song.

The melodies which form the ripertoire of plain chant are not written in modern major and minor scales, but in certain tonalities bearing names analogous to those of the early Greek "modes," though constructed on very different principles. Of these " modes," fourteen exist in theory, though twelve only are in practical use. The intervals of each " mode" are derived from a fundemental sound, called its "final." 1 The compass of each mode comprises eight sounds- that of the first, thitd, fifth, acventh, nioth, eleventh and thirteenth "modes" extending to the octave above the "final," and that of the second, fourth, sixth, eighth, tenth, twelfth and fourteenth ertending from the fourth note below the final to the fifth pote above it. Consequently, the " finals" of the first series, called the "authentic modes," occupy the lowest place in each system of sounds, and those of the second series, called the "plagal modes," the middle place-the same "final" being common to one "authentic" and one "plagal mode." The following tahle exhibits the entire system, expressed in the alphabetical notation peculiar to modern English music-the "final" being indicated in each case by an asterisk, and the poaition of the semitones, from which each mode derives its distinctive character ${ }_{2}$ by brackets.

2. Datm, $=D, R, O, A, B, D$. 2. Puydina, QE, F, G, A, B, C, D, 2 - Acollen, A, B. C. D. E.E, O,A vi. Lexim, $=$ B, $C, D, S, G, 4,2$ 15. Loalne, © C, D, E, P, G, A, B, C

 44. Eppoceana, O, A, B, AC, D, E, F, C. Noo. it and 12 in this series are rejected, for technical reasons
into which we have not spact to enter; they arepractically useless: Of these modes Amhrose used four only-the first lour "authentic modes," now numbered 1, 3, 5 and 7. Gregory acknowledged, and is said by some historians of credit to have invented, the first four "plagal modes "-Nos. 2, 4, 6 and 8. The use of the remaining "modes," except perhaps the ninth, was not formally authorized untll the reign of Charlemagne, who published an official decision upon the subject. In one or other of tbe twelve " modes" recognized by this decision every plain-chant melody is composed. The number of such melodies preserved to us, the genuineness of which is undoubted, is very large; and the collection is divided into several distinct classes, the most important of which are the melodies proper to the Psalm-Tones and Antiphons; the Ordinarium Minsae, the Introits, Gradmals and Ofertoria; the Praefationes, Versiculi and Responsoric; the Hymms and Sequences; and the Lamentationes, Exultef and other music used in Holy Week.
1 Of these classes the most interesting by far is that which includes the psalm-tones, or psalm-Lunes, called by modern English historians, the "Gregorian tones." The oldest of these are tones $\mathbf{1}, 3,5$ and 7 , as sung by Ambrose. The antiquity of rones $2,4,6$ and 8 is less firmly established, though there is no doubt that Gregory the Great sanctioned their use on etrong traditional evidence. In addition to these, a peculiarly beautiful melody in mode 9 , known as the Tonus peregrinus, has been sung from time immemorial only to the pealm In exitu Isred.
1 Analogous to the tonic or key-note of the modern scale.
${ }^{2}$ For fuller information on the subject wee the article "Modes," in Grove's Dictionary of Music.

The oldent version of this melody now extant is undoubtedly to a certain extent impure; hut tradition imputes to it a very bigh antiquity, and even our douhts as to the authenticity of the now generally accepted reading extend only to one singie note. A widely accepted tradition points out this melody as the tune sung to In exidm Isreal, as pert of the Great Hallel (sec Psaius), which is generally (but hardiy rightly) identified with the hymn sung by Christ and His apostles immediately after the Last Supper.

One very powerful argument in favour of the Jewish origin of the psalm-tones lies in the peculiarity of their construction. It is impossible to ignore the perfect adaptation of these venerable melodies to the laws of Hebrew poetry, as opposed to those which governed Greek and Latin verse. The division of the tunc into two distinct strains, exactly balancing each other, points assuredly to the intention of singing it to the two contrasted phrases which, inseparable from the constitution of a Hebrew verse, find no place in any later form of poetry. And it is very remarkable that this constructional peculiarity was never imitated, either in the earliest hymns or antiphons we possess or in thoee of the middle ageo-evidently becsuse it was found imposaible to adapt it to any modieval form of verse-cven to the Ta Deam, which, though a manifest reproduction of the Hebrew pesim, was adapted hy Ambrose to a melody of very differcat formation, and naturally so since so many of its phrases concist of a single dause only, balanced in the following verse. This peculiarity now passes for the most part unpoticed; and the Ta Dewm is constantly sung to a pealm-tone, very much to the detriment of both. But in the middle afes this abuse was unknown; and so it came to pass that, until the "School of the Restoration" gave birth, in England, to the single chant, avowredly built upon the lines of its Gregorian predecescor, and a somewhat later period to the double one, so constructed as to weld two verses of the psalm into one, often with utter disregard to the sense of the words, the venerable pailm-tones atood quite alone-the anly melodies in erintence to which the pealms could be chanted. And so intimate is the adaptation of these plain. chant melodies to the rhythm as well as to the sense of the sacred text, even after its translation into more modern languages, mo strongly do they awing with the one and emphanize the otber, that it is difficult to believe that the composition of the music was not coeval with that of the poetry.

Next in antiquity to the psalm-tones are the melodies adapted to the antiphons, the offertoria, the graduals and the introiss, sung at Eigh. Mass. Those proper to the Ordinarium missac are probably of later date. Those belonging to hymns and sequences are of all ages. Among the latest we poscess-perhaps the very latest of any great importance-is that of Lomda Sion, a very fine one, in modes 7 and 8 , adapted to the celebrated sequence written by Thomas Aquinas about ra6r.

To the melodies adapted to the Lamentationes and the Exulict, as sung in the Church of Rome during Holy Week, it is absolutely impossible to assign any date at all. All we know is that they are of extreme antiquity, and beautiful beyond all description. The melody of Exulict is, indeed, very frequently cited as the finest erample of plain song in exintence.
To assert that melodies so old as these have been banded down to us in their original purity would be absurd. But the presence of corruption rarely passes undetected by the initisted; and vigorous efforts have been made from time to time to purify the received text by reference to the oldest and mont truatworthy MSS. attainable. Such an effort was begun on a very extensive scale by the "Congregation of Rites," at the instigation of Pope Pius IX., in the year r868; and the labours of that learned body, together with those of the monks of Solesmes and elsewhere, have done much towards the restoration of plain chant to the highest state of purity possible. In England the PlainSong and Medieval Music Society, founded in 1888, has also done valuable work by its publications.
(W. S. R.)

PLALNTIPF, one who brings a "plaint" (Low Lat. plowela plangere, beat the breast, lament), the name, in law, of the party who brings an action against another, who is called the
"defendant." In suits for divorce the party bringing the suit is styled the "petitioner," the party against whom it is brought the "respondent."
PLAIT (through O. Fr. pleif, from Lat. pliciswo, folded, Nicare, to fold), properly a fold, especially a fold of cloth, now usually in the collateral form "pleat." "Plait" is now principally applied to entwined strands of rihbon, hair, atraw or fihre.

PLAN (from Lat. planks, flat), a diagram on a flat surface; hence hy analogy any deliberate scheme or design. In architecture, a "plan" is a horizontal geometrical section of the walls of a huilding, or indications, on a horizontal plane, of the relative positions of the walls and partitions, with the various openings, such as windows and doors, recesses and projections, chimneys and chimney-hreasts, columns, pilasters, ac. This term is sometimes incorrectly used in the sense of desige ($q .0$.).
PLANARLAMS, a well-defined group of animals, characterized externally by their ovoid or vermiform shape, their gliding movement and their soft, unsegmented, ciliated bodies: internally by that combination of low somatic type of structure and complex gonidial organization which is characteristic of the Platyelmia (q.e.). Their low type of bodily structure may be exemplified by the facts that the mouth is the oniy means of ingress to and egress from the blind alimentary sac, and that no vascular system is differentiated. Most Planarians are equatic and the cilin that cover the body produce by their beating a stirring of the water. Hence the class is generally known by the name Turbellaria.

Planarians form one of the basal groups of the animal lingdom. They are the simplest of multicellular creeping things. In them the gliding movement has become habitual. The lowest Planarians are still largely free-swimming animalcule and we can trace within the limits of the group the development of the creeping habit and the consequerices that flow from it. It has led to the differentiation of anterior and posterior extremities; to the formation of hilateral symmetry; and tothe development of a mucilage protecting the body against friction. It entails the concentration of the scattered nervous system on the ventral surface and at the anterior end, and it has induced the segregation of the diffused sense-organs in the head. The Planarians occupy a position midway between the simple planula larva of Coclenterates and the egmented Annelids. They have probahiy sprung either from an early Coclomate stock, or represent an Independent class descended from a two-layered parentage diatinct from that of the Coelenterates; a view which is adopted in the presant articie.

Occurrence.-Most Turbellaria are aquatic. They abound on the seashore and in fresh water, amongst weeds or under cover of stones, shells and sand. Few of thers are pelagic or deepwater forms, and only some half-dosen Planatians are known to be parasitic. A large number of land Planarians are known, chiefly from tropical and south temperate countries.

The majority of marine Planarians are nocturnal or eryptozoic, hiding away during the period of low tide to avold desiccation of their soft sticky bodies and coming out at night or during high tide to feed. They are mostly carnivorous, and their movements are correlated largely with the nature of their food. The smaller, more active species occur in companies amongst the finer seaweeds over which they creep or swim in pursuit of their food. The larger marine apecies occur singly or in pairs on Ascidians, Nullipores or Polyzoa, from whence as the tide rises they issue to feed. By the time the next low tide exposes them, these Planarians have so completcly digested their meal that we know very little of its nature. The common fresh-water Planarians form either littlo companies of a dozen or more, usually of a single species, huddled together under a stone or in some cranny (see Pearl [$B]^{3}$), or societies of several species that inhabit Sphagnum and other fresh-water vegetation. This fresh-water planarian fauns is of two kinds, the fauna of permanent and that of temporary shects of water and both show a certain adaptation to their environment. The latter, being suhject to greater extremes of temperature than the lacustrine Planarians, produce Theee references are to the literature at the end of this article.
thick-shelled eggs only. The development of these eggs is rapid in warm water, slow in cold: so that a pool after a few days of carly spring sunshine is soon populated and provision is made for the continuance of the race should a cold snap follow. The heustrine Planarians exribit a different form of edaptation. The eggs laid by many of these animals are either thin-shelled and rapidly hatched or thick-shelled and slowly hatched. The lako-water, however, is in apring, even after subshine, of a much lower temperature than that of pool-water, hut the masees of Sphagnum and other weeds that border lakes and marshes are often warmer than the open water and may be as much as 13° or $15^{\circ} \mathrm{C}$. higher in temperature. Here the Planarians assemble to benefit hy the warmth, and under such favourable conditions lay thin-shelled eggs which rapidly develop; whilst in colder surroundings or at the nnset of winter thick-shelled resting eg8s are laid. In this manner we can understand the ahundance of Planarian life in cold meres and transitory pools in Great Britain, Scandinavih, Finland, Denmark and North America.
In contrast to the general habit among Turbellaria of haunting dim or dark places, the atation chosen by a few species is exposed and strongly illuminated. The marine Conoolula and Polychocrus and the fresh-water Vorfer viridis may be taken as examples. Convoluta porodose occurs among brown weeds which receive much light during neap tides and atrong direct sun or light every fortnight. Polycheerus creepm about the New England shore without resorting hahitually to cover, and is also strongly insolated. Vortax resembles the green Hydra of our ponds in choosing the lightest side of its surroundings; and finally, Contolwa roscoffensis paints the beach green in Brittany, part of Normandy and Natal. In every such case the Planarian is coloured hrown or green by the presence of photoeynthetically active cells and the singular heliotropic habit of these Turbellaria is associated with the illumination necessary for the activity of their coloured cells.

Only one hranch of the Planarians has become terreatrial, hut this has spreid over almost all the whole globe. One species (Rhynchodemus leriestris, fig. 1, e) is fairly common in Great Britaln under stones, logs and occasionally on fungi, hut the Holarctic countries (North America, Europe and North Africs, North Asia) are extremely poor in terrestrial species. In countries lying in the centre and in the south of the great continents and in the south temperate continental islands and archipelagoes these land Planarians become more abundant and varied; and being frequently transported with earth or plants they are often found in hothouses and bolanical gandens far from their native country. Their distribution offers some points of special interest showing a close relationship between the South American fanna and that of Australia and New Zealand: between the land Planarians of Madagascar, of Ceylon and of Indo-Malaya: and a marked contrast between Japan and the rest of the Palaearctic region (see Von Graff [1], 1899).

External Characters.-Planarians range from the minute forms no larger than Infusoria to ovate, marine species, 6 ln . in diameter and to ribbon-bike land forms 8 in . in length. The majority are small, somewhat cylindrical organisms with a flat creeping surface. Others, comprising the common freshwater and marine forms, are flatiened and leal-like, often provided with a pair of tentacles near the front end of the body, and in some cases the whole dorsal surface is beset with papillae. The land forms are eiongate and smooth, and their anterior extremity is often modified into the areuate chape of a cheese-cutter. Their movements are usually of a gliding character. The minuter forms perform short excursions into the water round tbelr station, and in so doing recall Infusoria. The larger forms, in addition to gliding like pellicies, fold the expanded anterior part of their body into a couple of fins, with which they swim alter the fashion of a skate. The folded margins of other forms clasp the weeds on which they live. Adhesion is effected by the mucous investment of the body and frequently by some specially developed local secreciop of dime, or by a sucker. By theve means, aided by chetr
algal-frequenting and cryptic hahits, the Turbellaria, though soft-bodied, are able to withstand the violence of the waves.

The anterior end in all Turbellaria is the site of the chief

a, Convoluta paradoxa, Oe.
b. Vortex virdis, M. Sch.
c) Monotus fuscus, Gf:
d_{2} Thysamosoon brochii, Gr., with elevated anterior extremity (after Joh. Schmidt).

- Rhymehodemus larrestris, O. F. Maller (after Kennel).
f. Bipalium ceres, Mos (after

8. Polycelis cormuta, O. Sch., attached by the pharynx (ph) tos dead worm (after Johnson).
All the fgures of natural size, and viewed from the dorsal surface. $G_{1} c$ and d are marine, b and g are fremb-water, and f are terrestrial. All found in Great Britain except d.

This green effect is due to the infection of the Planarian by a minute alga which multiplies in the tissues and may profoundly sffect the habits and even the structure of its "host." The planarian so affected acquires a heliotropic habit; it becomes gregarious and in extreme cases ceases to ingest solid food. In Conoolula roscoffensis the green cells have become indispensable. They function both as the nutritive and excretory organs of the Planarian, and the young animal cannot develop until it is infected and has acquired a supply of these green cells which become incorporated into its tissues (Gamble and Keeble [7]). Brown algal cells (Zooxanthellae) are known in other species of Convoluda.

Pood.-The food of Turbellarians consists, in the smaller species, of diatoms, unicellular algae, microscopic animals and other Turbellarians; in the larger ones, of worms, mollusca and insects. The fine feeders capture their food chiefly at night hy gulping down the minute organisms that settle or swim in their neighbourhood. The coarse feeders enclose their prey with a coating of slime and then proceed either to engulf it in their expansible mouth or to perforate it hy their trumpet-like pharynx. The mouth is remarkably variable in position (fig. 2). In many flattened Planarians it is placed centrally on the ventral surface somewhat as in a jelly-fish. In the majority it is nearer the anterior end; but in a few remarkably elongate forms it occupies a position near the hinder end of the animal. In the cylindrical forms (Rhabdocoels) a similar variability in the position of the mouth is met with.

Anatomy. The atructure of the Turbellaria though freatly veried in dethil, conforms to a single type of somatic organnzation which is tranaitory in the higher invertebrates. The sexual organs,
on the other hand, are founded on two or mone types, and the astounding complications of these etructures suggest that their evolution has been zoverned by quite other factors or combina. tions of factors than thone that have guided the somatic evolution of the group.

From Camivilisy Netwol Pistory, vol. It "Worma, the," by perminion of
Fio. 2.-A group of Polyciad Turbellaria, illustrating the various positions in which the mouth of Plenariana may cocur, and the concomitant changes in other organs.
A. Anonywns virilis: mouth central, male genital aperture (d) multiple and biradial.
B, Prosthiostomun siphunculus: mouth anterior, the pharynx protruded through it.
C. Cestoplana: mouth posterior (m); pinale; $\%$, female genital aperture; Br, brain; CG, eyes expecially related to the brain; Ey, marginal eyes; w, mouth; $M G$, stamach; $P h$, Pharynx; S_{1} sucker.
The general atructural characters are as followa. The body consist of a muscular envelope covered externally by a ciliated glandular epidermis and of an alimentary sac, cylindrical or branched,

(Alter Bobmig.)
Fig. 3.-To show the structure of the simpleat Turbellaria.
The Ggure represents the left half of a trsnsverse section acrose the body of the Acoelous planarian Hoplodiscts. The mouth (M) is plugged up with a digeztive polynuciaar mase of cytoplanm and the transitions from this to the stellate mattered central parenchyma (SC) and again from the latter to a firmer peripteral zone $(P C)$ are shown. The outermost layer (EP) Is a ciltated epidermis resting on ($B M$), a basement membrane (dark line); the zow of dots beneath this represents the longitudinal mascios (L).
for which the mouth serves both as ingress and egrem. Between this aproctous gut and the integument the body consints of a jelly-like, vacuoleted mesenchymo made up of branched giandcells, excretory cells pigment. and muscle-oells. A space may be econdarily hollowed out around part of the gut: but no coclomic -or true perivisceral cavity exists in the sense in which thete terms are used in higher animats. A nervous system is prepent and consisas of an anterior "brein" and of ramilying gangloatic trunka that are developed in relation to the muscular integument and to the ense-organs for the perception of light and pressure. No
mexpiratory organa are doveloped, probably in correlation with the abrence of a blood-vascular system. On the other hand, the process of reproduction is elaborntely organized. The Planarians are hermaphrodite and, as in so many other small animals, the body, after attaining maturity, becomes in many Planarians practically a grenital sac and is soon exhausted by the repeated calls upon its remerves that are involved in the rapid production of egga and spermatoxoe. The intervale between successive clutches has been found in Consoluta rescoffensis to be a month, thus suggesting the infuence of the lunar tides upon maturation.

Intogument.--The epidermin is ciliated and highly glandutar. It consists of a single layer of cubical or oblong cells with the etructure seen in Kg . 3. The glandular secretion takes various forms, such as mucus, mucinoid granular blocks. or fusiform refringent homogeneous rodis. These rods or "rhabdites" are

(Partly alter Luther: Zitschififir wisuenselafh. Enolagie,
by permision of Wilbedm Eagelpota,.)
Fig. 4.-Portion of a transverve section of Mesostoma chrenbergii.
The epidermis (E) consists of cella divided into an outer and inner zone, the latter containing rhabdites ($R b$); the cilia ($C i$) are thickened about the middle of their lengih. Below the epidermis in the basement-membrane ($B M$), a layer of circular muscies (C) and of longitudinal ones (L). Below this again is the mesenchyma (M), made up of branched celis and dorso-ventral muscle-fibres ($D M$). The mesenchymatous glands ($R m c$) are producing rhammites ($R m$) which pass outwards.
frequently coloured red or yellow, and are highly characteristic of the Turbellaria. Their real use is unknown. In only two genera does the epidermis produce cuticular spines (Acanthotoon, Enantia) on the surface, but chitinoid hooks, spincs and spirals occur frequently on the lining siembrane of the male and female copulatory ducts.

Below the epidermis is a firm batement membrane into which the subjacent muscles are lnserted. They are divided into outer circular and inner longitudinal groups and subdivided in the larger forma by diagonal fibres, and in the most hishly differentiated Planarians there are six muscular layers, two of each kind. In a number of Turbeliaria the musculature is modifed to form a sucker either single or double and anterior or posterior, and it undergoes further modification in connexion with the pharynx and reproductive organs.

Fic. 5.-Integument of Mesostoma lingua, O. Sch.
On the right hand in the epidermis (s) with perforations (l) through which the rhabdites ($s t$) project. Beneath this the basement membrane (bm), and beneath this again the muscular layers consisting of circular (rm), diagonal (sm), and longitudinal (lm) Gbrem
Alimentary Sac.-The alimentary eac conslats of a muscular pharynx opening outwards through the mouth and iawards into a median digentive organ which may be solid or hollow, and in the latter case etraight. lobate or branched. These characters are eorrelated with buch a number of dixtinctive features that the
classification of the Planarian is based on them. Thus we have the Rhabdocoetida with straight gut and the Tricladida and the Polyciadida with triple and multipie branchen to the gut. The Rhabdocoelida are further divided into three groupa: the Acoela

Fic. 6.-Main trunks of the Excretory System of Masostama chrsmbergii, O. Sch., opening to the exterior through the mouth; ph, Pharyax.

(Frum Lankeder's Troetion an 2morsh, Part 1V.)

Fig. 7.-Flame-cell from the

Excretory Systern.
a, nucleus; b, excretnry granulea: c, "flame" ; d, branches of cell: c, beginaing of excretory tube.
with a simple synsytial gut not sharply separated from the surrounding mesenchyma; the Rhabdocoela, with a hollow, gut and a perivisceral schizocodic mpan; and the Alloeococla with a lobate gut and reduced schizococle. The last group leads one naturally to the Tricladida; the Polyclads being an independent group.
The pharynx varies widely in structure. In the Acocla it is a mere thickening and pitting of the integument. In the Rhabdococla a great number of elaborate modifications are found. These are based on the type of a buccal invagination, which forms the pharyngeal sheath, and from the futlom of this there springs a muscular outwardly directed tube or fold. In the Allococoela and Trichadida the pharynx is an elongate protrusible cylinder, and in the Polyclads it may be an immensely distensible frilled organ, the folds of which have independent movement, or an elongate tube. At the base of the pharynx lie the openings of salivary glands. In the Polycladida the eaction of the alimentary sac into which the pharynx opens is a median stomach from which the intestinal branches radiate. The stomach in few forms is provided with digestive glands. The branches possess an independent mueculature and exhibit acrive peristalsis. The intestine of Planarians is not ciliated, and digestion appears to be largely intracelular and not cavitary.

Masenchyma. - The mesenchyma (Bohmig: parenchyma aucul.) consist of a mass of branched vacuolated cells, imbedded in which lie gland-cells, pig. ment-cells and the excretory system. It envelope the genital organs, which though in the mesenchyma are not of it, and it forms en investment to the gut and to the space (achizocoel) which ofren oceurs between the gut and the mass of the mesenchyma. The mesenchymatous gland-cells are of different kinds. (s) Single cells in which rods (rhammites) are developed (fig. of Rmc). Such cells in embryonic life give rise to a proceses which perforates the soft basement-membrane and penetrates between the epidermal cells. The process becomes bollow, and the thammites pass outwards along it on to the burface of the animal, forming in many Turbellarians thickly eet rowe of rode on the hedd. (2) Similar cells contain nematocyste in a few Planarians (Microftemea, Stenostome, Amonymus virilis and Siylochoplana lardo). Whether theae
nematocyete develop in the Turbellarian is doubdiul, and it is not imponible that they are derived from the tissues of some coelenterate animals eaten by the Planarian, as has been shown to be the case in the nematocysts of Eolida. (3) Cells producing aciculate spicules, sometimes associated with a spiral thread. These structures are often associated together in batteries, notably so in the remarkable genus A nonyws.

Execrelory System.-The excretory system consists of protonephridia, that is, of tubes opening to the exterior by one or more

Fic. 9.-Double Eye found on the brain of Polyclads. Each consista of pigment-cup and of four nerve-end celis (rod-cells) in which the nerves terminate.
N, nerve fibres and cells $P c$, pigment-cell. $R c$, rod cell. apertures, and after branching extenaively in the mesenchyma, end blindly in peculiar hollow cells (flame-cells) provided with a bunch of synchronously vibrating cilia. The excretory tubules have a marsedly sinuous course and are provided with cilia. The

Fic. 10.-Macrostoma lineare, Oe., undergoing division. There are 16 individuals. 8 with mouth apertures showing the buds of the first (m), second (m^{\prime}). third ${ }^{(} m^{\prime \prime}$), and fourth ($\mathrm{m}^{\prime \prime}$) generation. The fith generation has not yet acquired mouth aperture. c, ciliated grooves; e, eye spots; i, intertine. motion of these cilia and of the flame-cells is to induce an outward current of the fluld from the canals, but the pentess of exaretion scems to be performed chicfly by the branched mesenchymatous flame-cells. The position of the external opening varies greatly. It may be single or paired, nidventral or terminal, or again multiple and arranged in pairs along the dorsal surfice (Tricladida and prohably in Polycladida). The flarne-cells are arranged in pitirs in Tricladida, hut lie less regulariy in the mesenchyma of most forms. Finally, it is noteworthy that in the Acoela no excretory ystem is known.

Nervous System.-The nervous system is present in all divisions of the order. It consists of a paired, anterior ganglion lying ventral to the gut, and from this are given off, right and leit, dorsal. Isteral and ventral fibres interconnected by a plexus. The nerve-cells are scattered throughout the plexus. The chicf development of the system pocurs in relation to the muscular bodywall, sense-organs and the pharynx. In these characters the nervous system of Planarians shows an interesting trantition from the scattered plexus of Coclenterates to the segmental ganglia and sympathetic nervous system of Annelida.

Sense-organs.-These occur in the form of tactile organs, otocysts and eycs. The whet skin of many Planarians is sensitive, and amongst the ordinary locomotor cilia Ic:us stiff ones are found which it is natural t" think are tactile organs. The bead-end is often provided with epecialized cells the appear to subserve the scnce of touch a. I possibly of taste also. The aituinuct of rhammites, of long stiff cilia, and the great mobility and sensitiveness of this region, bear out this cenclusion. A further development of cephalic, sensory structures occurs in the form of a crescentic groove (Polyclads) of paired. lateral pits (Microstoma, fig. Io) of mobile papillac on the extreme front margin (Land Triclads) aod of extensible tentacles, marginal or nuchal in most Polyclads.
The otocyst occurs constantly in the Acoela and sporadically in every other division of the group. It is with once exception a aingle median organ placed over the brain, and constots of a uns- or bi-cellular anc containing a calcareous
concretion lying in a fluid. From what is known of thene argans in higher invertebrates we may infer that they serve to increase the perception of slow wave-movement and enhance the control of the muscular sense.

Eyes are gemerally preseat in Planarians. Two types are dis cinguishable-eye with a cup-ahaped retina lacing outwards, and those with an inverted retina facing inwards. The former oceve in Triclads and Polyclads around the margin of the body often a hundred or more may be preaent. The latter oceur in all groupt except the Acoela, but are limited to the neighbourhood of the brain or bases of the nuchal tentacies Recent investigation has shown that the easential part of the eyes has in all cases a complicated structure and is not a mere epidermal cell-group encloned by pigment and provided with an optic nerve. On the contrary (Hesse (iol), adequately known eyes are composed of rod-cells that contain each an axial filament or bundle of fibrilae (the termination of the nerve), and the distal end of the rod-cell is converted into a otriated usually broad border where the action of light commences A group of such specialized rod-cells is enclosed in a pigmented cup opening either outwards or inwards and pierced by an optic nerve. The whole is usually depreseed beneath the epidermis, but in some Acoela and Alloeocoela the eyes retain a murfaceposition. In the Polyciads eyes may Increase by diviaion and in Triclads may decrease in number by fusion (Carriere [IID). The marginal and often radial dispotition of the scattered eyes, and the prostomial poaition of the paired eyes, afford interesting evidence of the intermediate position that Manarian oceupy between the radiate Coelentera and the bilateral Annelids.

Reproduction.-All Turbellaria are hermaphrodite, and reproduce sexually, but a few forms (Microstomidae and some Triclads)

Fig. It.-Plan of an Acoelous Turbellarian.
e, Eye.
m, Mucous gland, formerly mistaken for the mouth, which lies in the centre of the body.
of. Otolith.
ov, Ovary.
p. Digesting parenchyma.
b, Testicular follicles.
os, Vesicula seminalis.
d. Male-organ of copulation. dq, Common sexual aperture.

Fig. 12.-Plan of a Rhabdocoelous Turbellarian.
bc, Bursa copulatrix.
cn, Brain.
e, Eye.
4. Germarium.
i, Jatestine.
In, Longitudinal nerve trunk.
n, Mouth.
ph, Pharynx.
55, Receptaculum eeminis
s, Salivary gland.
b. Testia
*, Uterus (containing an ere).
. Yelk gland.
*S, Vesicula eeminalia
d. Chitinous copulatory organ.
\& 8. Common sexual apertore.
bc, Bursa copulatrix.
increase during the summer by fission and during the winter by eggs. The body of the Microstomidae becomes constricted and partially subdivided into two, the posterior hall regeneraties a brais and pharynx. Subsequently each becames agin coaverted inco two sooids, and the process is repested until a chaim is forned as in fig. 10. This breaks up into its constituent members, eacl of which repeate the procesp until the onset of reproduction. The

Triciads, on the other hand, fraguent, whont unctergolng preparetory changes.
The male and femalo senital ducts (goso-ducts) open to the exterior, either through a common chamber on the ventrial surface (most Rhabdocoelide and all Tricladida, figs. 12, 14) or by eeparate apertures that are aloo uavally ventral In the latter cave, the male gonopore is usurally in front of the female one (all Polycladida and zome Rhabdocoelide). A separate opening is cometimes acquired by ose or other of the accessory reproductive orgens (as by the apernoctheca in some Rhabdocoelide in which it is dorsal).

The generative organi of the Planarians are complex. Male and female germ-celin develop in one and the eame individual and reach the exterior by independent ducta. These ducts are provided with accessory glands along their course and terminate in penial

Fic. 13.-Plan of an Alloeocoelous Turbellarian. Lettering as in fig. 12.

Fic. 14.-Plan of a Tricladid. i_{1}, Anterior, and i_{2}, i_{1}, paired pos terior hranches of intestine.
od, Oviduct.
b. Tentacle.
ad. Vas deferens.
O^{-1}, Male, and $ᄋ$. female copulatory organ. Other let ters as in fig. 12.
or vagind structures, of fen of great complexity, which are surrounded by an "atrium" or invagination of the ventral body. wall. From this invagination a special vesicice "uterus " ip often deycloped for the reception of the fertilized exg previous to oviportion.
The Acooela precent the simpleat arrangement. In this group (fig. 11) the male germ-celle arive in follicles each of which is the product of a single sperm-mother-cell. From these foilicles, the mootile spermatozoa enter the paired sperm-duct, which opens by a single aperrure near the hinder end of the animal, and is provided witb a simple unarmed glandular penis. The female germ-cells or ova arise from a paired oyary. some of the celle of which appear to act as numbecells, supplying the young egge with nourishment. When mature the egss are transferred to the oviduct. At the point where the two oviducts join in order to open to the exterior they receive a conical sac (spermot beca) which contains spermatozoa. At this point the eggs are fertilized. and deposited in a mucilaginous man which is attached to alpie or buried in the sand. It is characteristic of the Acoela that the testes and ovaries should mot be continuous with either the sperm-duct or the oviduct reperetively.
In one genus of the Acoelous Turbellaria-Polychacrus-this primitive arrangement undergoes a development which foreshadows the complicated ovaria and vitellaria of higher forme. In Polychocruy the eggs mature in a special roomy chamber and are here provided with yolk which is elaborated by a sterile part of the ovary. Thus we have a differentiation of germ-cells into two pertione allocated to two chambert: fertile ova which open eventu-
ally into the oviduct, and sterile ova that become yolk-cells and open into the brood-pouch.

The remaining Rhabdococlida possess separate ovaries and yolkdends. The union between the two sets of ducts takes place in the genital atrium which is provided with a spermotheca for the fertilization of the ova, but in at least one sub-family (Cylindro. steminac) the spermotheca opens by a special dorsal pore. These ova, together with the yolk and spermatozoa, are then transferred to another atrial diverticulum-t he uterus, in which a shell is formed and from which they are deposited in the form of a cocoon. In addition, a muscular pouch, the so-called "bursi copulatrix," is umally present. The male organs of Rhabdocoelida are no less complex. The testes are either follicular (Allococoela) or compact

Fic. is-Plan of a Polycladid.
ci, Brain.
i. Intestinal branches.
i. Anterior unpaired intestinal branch.
ln, Longitudinal nerve cord.
m, Mouth.
od, oviduct.
os. Ovarian follicle.
ph, Pharynx.
phi, Pharyngeal pouch.

2!, Stomach.

1. Testicular follicie.
m, Uterus.
d, Vas deferena.
σ°. Male copulatory organ, with the male aperture behind.
2. Female copulatory organ, with the female aperture belore it. The eyes are omitted.
(Rhabdocoela), and communicate indirectly or directly with the paired seminal ducts. The ducts unite at the base of an evaginable penis. This muscular organ is provided whth glandular and chitinoid appendages of considerahle complexity, and, in addition to these. a poison gland and duct are sometimes present. In certain genera (Macrorhynchus, Prothynchus) the penis is used for catching prey, perhaps exclusively so in the former genus. The opening of the atrium lato the oral cavity in Cylindrostominae and of the male organ into the mouth of Prorhynchus is possibly explained by this lact.
From the Alloeococla we pass readily to the Triclads. In both of these groups the reproductive organs are based on the same plan: but in Triclads the ecparation of ovarian and viteilarian portiona of the gonad is less perfectly effected. The oviduct transmits the egys from the anteriorly placed ovary, and receives in its course the openings of numerous vitellaria (ng. 14). No distinct spermotheca is developed, but a cocoon is formed ia a special chamber-
the uteruv-which may either be a dilatation of the common oviduct (vagina) or of the atrinm, and may open to the exterior independently (single in Uleriporus, paired in Syncoelidium). In $B d e l l o w r a$ the uterus is said to act as a spermotheca. In addition to these structures, accessory muscular organs are found in Dendrocoelwm and developed to a high degree in land Planarians, where they form the so-called adenochein and adenodactyli (aee von Graff, 1899).

Lastly, the Polyclads offer certain distinctive sexual charactera. The ovaries are follicular, very numeroun, and tbe ova elaborate their own yolk (Gig. 25). The oviducts open into enamber which, after receiving a voluminous shell-gland, opens by a muscular burse to the exterior. No special uterus is developed, but from the point of union of the two egg-chambers a vesicle is given of which may open eparately to the exterior (Triponoporws). The testes are equally diffused and the aeminal vesicles usually form a median muscular eversible asc which opens in front of the female genital pore. In Slylostomwim, however, this penlal organ opens through the tnouth, as in certain Rhabdocoelida. Moreover, it may be paired (Thyscmosdon) or multiple. Thus in Anonymus twelve or mare palrs occur. In Cryptocelides two, four or six may be present, but in this genus they all lie in a common sac. In Polypostic twenty pores occur ranged about the female pore, but the most posteriorly placed of these atructures are devoid of a eminal duct. This condition supports the view that in Polyclads the penis was at first a glandular organ probably uged for attacking prey and that it has become secondarily connected with reproduction. In confirmation of this conclusion we have the observations of Lang (5) that Yurgia stabs the body of other Polyclads with its penis when brought into contact with them. (See Whitman [9].) The genus Laidlavia differs from all other Polyclads in posecsaing a dorsal genital opening.
bevelopment-The development of the Planarians is fairly well known. Except for one or two species of Polyclads, development is direct and without metamorphosis; hut in Thysanosoon and Yungia the embryo develops eight trongly ciliated lobes which form a circumoral band of larval processes. These have been compared with the girdle of Trochosphere larvae and also with the eight rown of swimming plates in Ctenophores. From the name of their discoverer these girdled larvae are called Miller's larvae (fig. 16).

In the Rhabdocoelida the eggs are usually laid in a shell which has characteristic shapes. Each capsule contains a single ovum and several yolk-cells. Segmentation results in the formation of dislocated megacytes and microcytes. The latter give rise to the epidermis which is laid down in bilateral sheets, the former to the various internal organs. There is no distinction of germ-layers, and the gut is gradually organized from the mesenchyme, the rest of which gives rise to the parenchyma. The pharynx and the rudiment of the gonads are the first organs to appear (Breslau [13], 1905). The development of the Acoela differs in certain particulars from that of other Rhabdocoelida. The ova contain yolk-granules, and provisional ciliate proceases.
yolk-cells are absent. Groups of such eggs, each wish its own shell, are laid in a gelatinous envelope. Each ovum segments into a two-layered embryo composed of a ciliated outer layer and a central syncytium. No trace of a distinct enteron.or gut is visible, but as the embryo grows the syncytium becomes diferentiated into a more fluid central portion and a firmer peripteral zone. The former, together with the wandering phagocytes, corresponds functionally to the separate gut of other Rhabdocoelida. Pelagic larvae with a coat of long cilia have been identified by Uljanin as belonging to the Accela.

The development of the Tricladida offers other peculiarities. From four to twenty or more ova are surrounded by several hundred amoeboid yolk-cells in each cocoon. Each exs-cell divides; but, as happens in the capsular ova of cettain Mollusca and Oligochaeta, they do not all survive, some being used up as food by the remainder. The segmented ovum becomes dislocated as in some Rhabdocoels. the blastomeres moving apart from one another. The details of organ-formation are stili imperfectly understood.

The egge of the Polyclads are laid sornewhat like those of the Acoela in a gelatinous envelope, each ovum being provided with yolk and an egyshell which may be operculaie. The majority of species go through direct development. The segmentation of the egg in Discocelis and Leptoplanc has been worked out by Lang and his recults re-interpreted by. Witson and others (Hubrechi
[12]). In Polyclads a dintinction of germ-layers similar to that occurring in the development of Mollusca, Chaetopod-Annetids and certain other Invertebrstes, is early apparent. The ovum by unequal segmentation gives rise to megameres and micromeret and between the two, intermediate cells form one origin for the mesenchyma. The micromeres surround the intermedinte and centrally placed macrometts. The latter undergo division into bypoblast cells and yolk-massee. The similarity of cell-linenge andiads and Coclomate inverteorates, together with trochosphere-like Polyclad larval form (Maller'e hrya), have been the two chief arguments in support of the view that this group is a link between the Planarian and Coelomata. It is at present however, doubtful whether suin highly organised animals as Poly clads can be regarded as in any ense ancestral fonms. Their ne lations to other Turbellaria are quite uncertain, and on present evidence it seems legitimate to hold that they are the most highly differentiated division both in cmbryonic and adult structure.

Systematic A rrangement

Order Twbelloria.-Free-living Platyelmia with aciliated epidermis. A well-developed nervous system and sense-organs concentrated at the anterior end of the body, diffused elsewhere.

Sub-order A. Rhabdocoelda.-Gut syncytial or tubular. Female gonads always compact.

Tribe 1. Acoela (fig. 1I).-Mesenchyma not differentiated into eeparate gut and parenchyma. No excretory organs of protonephridial type. A simple pharynx. A median otocyst (statocyst) over the brain. Small, often flattened forms. All marine and many infected by brown or green algal cells. One species parasitic In Echinoderms.

Tribe II. Rhabdocoeld (fig. 12).-Gut and parenchyma separate, the former a simple straght sac. Vitellaris usually present. Testes compact. Penis and pharynx often complex occasionally protruded through a common opening. Marine and ireeh-water. Many iresh-water forms Infected by algal celts. Typhloplana Grafila, Anoplodiwm, are respectively parasitic in NGphehgs, ia Gabtropods and Holothurians

Tribe III. Alloeocoela-Gut and parenchyma diatinct. In testine straight or lobate. Testes follicular. Penis and pharymx simple. One family with otolith. All marine except Placiartome lemani (deep-water, Geneva) and the Bolhrioplanidae.
Sub-order B. Dendrocoelide.-Large forms with flattened body. branched intestine, follicular teates and follicular ovaries or compact ovaries and yolk-glands.
Tribe 1. Tricladida.-Intestine with three main branches. A pair of compact ovaria and numerous yolk-glands connected by a common duct. A single genital aperture Fresh-water iorms: Plonaris, Dendrocoelum, Polycelis, common. Peculiar forme in Lake Baikal. Marine forms: Gunda setmentala, Bdelloura (external parasite of Limmus). Terrestrial forms: Rhynchodenus, Geoplana, Bipalium.
Tribe II. Polycladida.-Body leaf-like. Inteatine composed of a median stomach with many branched or reticulate coeca; testes and ovaries folljcular; genital openings usually eeparate, the male gonopore preceding the female one. Multiple male gonopores in some forms. All marine and widely distributed; some senera cosmopolitan.
Literature.-(1) L. von Craff (Rhabdocoela, Acoela, Tricladida), Monographic d. Twrbellaricn (I882), vol. i., (1899) vol. ii.; Die A coele (1891); (2) Arbetite ous der wool. /institut 2m Gram (1904, 1005, 1906): (3. "Turbellaria," in Bronn's Klassen v. Ordnungen d. Therreichs, vol. ii. : (4) Turbellara als Parasiven D. Wirthe (Graz, 190.t) ; (5) A. Lang." Die Polycladen," Fauna and Flora of the Gwif of Neples, vol. it. (1884); (6) F. F. Laidlaw (Polyclads) in Zoological Results of Expeditions conducted by Dr Willey, Stanley Gardiner and C. Crossland, Cambridge Univ. Press, and Proc. Lool. Soc. (19021906) ; (7) Gamble and Kecble (Green cells of Convolulc), Qwart Jour. Micro Sci, (1903, 1907) (8) E. R. Pearl (Bionomics of Phanarians), ibd. (1903): (9) Whitman (Hypodermic Impregnstion), Jour. Morphology (1890), iv. 361; (10) Hesse (Eyes ol Planarians), Zeilschr. f. wiss. Zool., vol. Ixi. (1897); (11) Carriere (ditto), "Die Sehorgane der Thiere" (1885): (12) A. A. W. Hubrecht (affinities), Zeilschr. f. Naturwiss (Jena, 190 5); (13) Breslau (Development of Rhabdocoels), Zciuschr. f. wim. Zooh (1905). Besides these special works, useful general accounts of the Turbellaria will be found in Cambridge Nalural Mistory, it. 1-50: A Treatise on Zoology (Black), iv. 1-42, and the reference given by these warks.

Appendix to the Turbellaria.

Class Temnocephaloidea.-This small clase of Phatyelmla posenaten a special interest. It connects the Turbellaria (and in particular the Vorticid rhsbdocoela) with the Trematoda. At the same tine the Temnocephaloidea present certain peculiar structural featurea which entitle the class to an independent position.

The name of the class is derived from the digitate tentaciea which occur on the anterior or lateral margins of the body. The body measures about 5 mm . in liength, and the flattened ventral surface is armed with a sucker. It presents in most genera the appearance of a minvte cephalopod, but in Crespedelle the ponterior
part of the donal murface is rained up into three tranoverne fringed Inmelline. These animals are epizoic, i.e. they live attached to the outer surface of other organisms, but are not ectoparasitic for they idgest Infusoria, Rotifera and Diatoms. Most of the species occur on frem-water cray fish and crabs in Chile. Madagascar, the Malay Archipelago and Australasia. Two Brazilian forms are known, one from the pulmonary chamber of the Mollusc Ampullaria and the other from water tortoises. The zenus Temnocephala is found in all the countries mentioned. The two others, Craspedella and Activodactyidla are only known Irom Australia.

The epidermis offers an interesting transitional structure. It is still, as in Turbellaria, cellular, or rather syncytial without cellboundaries, but in most species has lost its cilia and developed a

Wean Ceminder Notad Fistorg val M. Worus," Ace, by pernimitn of Mentime (Co., Led)
Fic. 17.-The anatomy of Temnocephala (after Haswell).

8 d. Common senital aperture. d, Gut.
ex.3, Excretory sac.
m. Mouth.
an, Ovary.
ond. Oviduct.
ph, Pharynx.
r. Receptaculum vitelli.
rh, Rhabdites.
the, Rhabdite-forming cells.
3C, Sucker.
sh. Shell-gland.
0. Testis.

4, Uterus.
og. Vagina.
05. Vesicula seminalis.
thick cuticle $2 s$ in Trematodes, pierced by the necks of subdermal cland-celits Thewe celle, however, etill retain the Turbellarian charecter of eecretins rbabdites and form thickly-grouped tracts. The mouth. which is placed mear the anterior end, leads into a bulbout pharynx from which a short, broad digestive sac is given of. The exiretory system is peculiar. Besides the ordinary dame cell wingle large canaliculated cells may form the commencement of the tubuics, composed of comparativety few cells with lange nuclei. They open to the exterior by a pair of contractile stes situated dorsally at the level of the mouth as in certain Trematoda. Wach sac is the product of a single cell, and is said to contain everal branches of "flames" or synchronously contractile cilia. The reprorluctive system recalls that of certain Rhabdocoels, whilst the nervous system has retained a more primitive condition. The brain, which is placed over the mouth, gives rise to six main longitudinal tracts interconnected by a subdermal net work. A pair of eyes is placed above the brain.

Clase and order Temmocepholoidea-Platyclmia in which the tattened body is produced into anterior or anterior and lateral tentacular processes and carries a ventral sucker. The epidermis is a ayncytium covered by a thick cuticle. Cilia and rhabdites are present. Family 1. Temnocephalidac: $4-12$ anterior tentreles. Family 11.: Actinodactylellidae. Lateral tentacular proSenes Haswell, Macleay Mcinorial Volume (1893); Plate, Sissberich. Akad. Wiss. Berlin (1894), p. 527. (F. W. GA.)

PLAMCSR, of Planchime (O. Fr. plamcier, or panchice, planking, in architecture, a term cometimes used in the same sense as a sofint, hut more correctly applied to the soffit of the corone in a cornice.

PLANGHE JEAN BAPIETE GUSTAVE ($1808-1857$), French cricic, was born in Paris on the 16th of Fehruary 180․ Intro-
duced by Alfred de Vigny to Francois Butoz, he began to write for the Repue des dewx mondes, and continued to do so until 1840. He resumed his connexion with the journal in 1846 and cont ribated to it untilhis death in Paris on the 18 th of September 1857. Gustave Planche was an alogether bonest critic and refused to accept a place from Napoleon III. Lor lear of compromising his freedom. He was in early life a fervent admirer of George Sand, and be lavished praise on De Vigny. But be had nothing hut scorn for Victor Hugo, whose earlier dramas he characterised as odes, those following Le Rod s'omisse as antitheses, and the later ones as nothing but spectacle. His critical papers were collected under the titles: Portyaits liutraires (8836 1849) ; Nesmeasx parlraits lilleraires (8854); and art criticisms, Etudes sam l'école frangaise (1855).

See Ernest Montegut, in the Revne des dearemondes (June 18g8); Hatafeld and Meunier, Les Cribiques limeraines du XIXP steche (189I).

PLAMCIS, JATE ROBINEOX (1796-2880), English dramatist and antiquary, was born in London on the 27th of February 1796 , the son of a watchmaker of Huguenot descent. In 1810 he was articled to a bookseller. In 888 his first dramatic piece, t burlesque entitled A moroso, King of Litlle Britain, was produced at Drury Lane theatre. From this time onwards he made piay-writing his principal work. In $2820-1821$ he wrote ten pieces for the Adelphi theatre. In 1823 he designed the dresses for Charles Kemble's revival of King Johen at Covent Garden, and superintended its production. This was the first time that an bistorical drama had been "dretsed" in the costume of the period. In 1828 be began writing regularly for Covent Garden theatre, and in 8830 was manager of the Adelphi. On Mme Vestris taking the Olympic theatre in 8838 , Plancbe entered into an agreement with her to write a series of plays. The first of these, Olympic Revels, a burlesque, was given on the opening night of the theatre, the performance being given in correct classical costume. In 1843 his Fair One with the Goldew Locks was produced by Webster at the Haymarket. In 1847 Mme Vestris became manageress of the Lyceum theatre, and Planche was engaged as her leading author and designer, his principal success being the Island of Jewels (1849). Subscquently be wrote for a number of other managements, his last dramatic piece being King Christmas (2871), but he also wrote the songs for Babil and Bijow it Covent Garden (1872). In addition to his dramatic work Planche enjoyed a considerable reputation as an antiquary and heraldic student. He was a Fellow of the Society of Antiquaries, and aided in the foundation of the British Archatological Association in 1843. In 1834 be published The History of British Costemes. In 1854 he was appointed Rouge Croix pursuivant of arms at the Heralds' College, and in 1866 Somerset heraid. In 1869 , at the request of the War Office, he arranged the collection of armour at the Tower of London in chronological order. He died at Chelsen on the 3 oth of May 1880.

Planchés Recollections and Rofechiont were publiahed in 1872.
PLANCK, COTTLIEB JAKOB ($1751-1833$), German Protestant divine and historian, was born at Nurtingen in Wurttemberg, where his father was a notary, on the I 5 th of November $\mathbf{2 7 5}$. Educated for the Protestant ministry at Blabeuren, Bebenbausen and Tuhingen, be became repentent at Tubingen in 1774, preacher at Stuttgart in 1780 , and professor of theology at Gottingen in 1784. At Tubingen be wrote Das Tagabmeh eines newew Ehemonnes. In 17^{8} i be published anonymoysly the first volume of his Gesehichit des protestantischen Lehrbegrifs; the second, also anonymous, appearing in 1783 , and it was completed in six volumes in $\mathbf{s} 800$. It was followed by an extensive Geschichle der chrisulich-kirchlicham Gasellschafloserfarsteng in five volumes (1803-1800). Both wre works of considerable impor. tance, and are charactorized by abundant learning. He died on the 31 th of August 1833. His son Heinrich Ludwig Planck $(1785-1831)$, also professor of theology at Gottingen, published Bemerkungen wher den erstem Bridf an den Timothews (I8o8) and Abriss d. philos. Religionslatere (28as).

PLANCR. KARL CRAISTIAN ($18 \mathrm{~s} 9-1880$), German philosopher, was born at Stuttgart on the 17th of January 1819.: He studied at Tabingen, where he became doctor of philosophy in 1840 and Primaldoent in 1848. During this period the influence of Reiff led him to oppose the dominant Hegelianism of the time. In $1850-185 \mathrm{I}$ he published his great book, Die Weltelter, in which he developed a complete original system of philosophy, hased on the realistic view that thought should proceed from nature to the highest forms of existence in the spiritual life. Not only did Planck oppose the idealism of his confrives; his views were, in another aspect, directly antagonistic to the Darwinian theory of descent, which he specifically attacked in Wakrkeit wnd Flachkeif des Darwinismus (Nördlingen, 1872). The natural consequence of this individuality of opinion was that his books were practically disregarded, and Planck was deeply incensed. The ill success of Die Wellaller nerved him to new efforts, and he repeated his views in Kalechismus des Rechts (1852), Grundlinen einer Wissenschaft der Natur (x864), Seele und Geist (2871), and numerous other books, which, however, met with no better fate. In the meantime he left Tubingen for Ulm, whence he came finally to the seminary of Maulbronn. He died on the 7 th of June 1880 in an asylum after a short period of nervous prostration. After his death a summary of his work came into the hands of K. Kostlin (author of Aesthetics, 1859), who published it in 1881 under the Lille Testament cines Dculschen, Philosophie der Nalur und der Menschheif. Planck's views were elaborately developed, but his method of exposition told heavily against their acceptance. He regarded himself as the Messiah of the German people.
Beside the works above quoted, he wrote Systom des reimen Idealismus (1851): Anthropologie wnd Psychologic auf nolurwissen. schaflicher Grundlage (1874); a political treatise, Bismarch: Süddeulschland med der deutische Nationalstaat (1872); and Logisches Cousalgestas innd notürliche Zeechmdisigheil (1874).
See Umirid. Karl Planch, dessen Warke und Wirken (Tabingen; 1881); and Schmidt, "Das Lebensideal Karl Christian Plancks," in the Vortrdge der philosophischen Gesellschaft (Berlin, 1896).
PLANE. I. In botany, the common name of a handsome tree known botanically as Platanus orientalis, a native of Greece and western Asia, a favourite shade-tree of the ancient Grecks and Romans, and introduced by the latter to south-west Europe. It

Plane (Platanks oriemalis).
1, Leaf. 1 nat. size.
2 and 3 , Base of leaf-stalk showing bud-protecting cap, about 4 nat. size.
4. Male, 5, Female inforescence.

6, Head of fruite, about inat. nize.
7. A lruit with enclosed sced, cut lengthwise.
is one of the most successful trees in London and other large towns; the smooth face of the leaf is easily washed by rain; and the periodical peeling of the bark adso serves to get rid of impurities. It is a large tree with widely spreading hranches and alternate, palmately five-lobed leaves, resembling those of the sycamore in shape, hut quite hairless and of a hrighter green. The hud in the leaf axil is protected during its development by the hollow hase of the ieaf-stalk, which lifts off like an extinguisher when the leaf falls in autuma. The minute, unisexual
flowers are borne in dense pendulous heads, which contain efither male or female flowers; the small one-seeded fruits are densely crowded in a ball, from which they gradually separate in drying, and are readily carried by the wind. The wood, which is hard and heavy, though not strong, is used in Persia and other countries of western Asia lor house construction and furniture. A variety of forms are known in cultivation, the commonest being the maple-lea ved (acerifolia), the London plane, which has usually three-lobed leaves; var. laciniala has very deeply much divided leaves, and var. varicgata, variegated foliage. Platanus occidentalis, an allied species, is a native of the United States, being most abundant and growing to its largest size in the bottom lands of the basins of the lower Ohio and the Mississippi rivers. It was introduced into England eatly in the 17th century, and is occa. sionally met with in western and central Europe. Professor C. S. Sargent (Silva of North A merica) refers to it as the most massive if not the tallest, deciduous-leaved tree of the North American forest; it is known in America as sycamore and buttonwood. It differs from P. orientatis in its less deeply lobed, more leathery pubescent leaves and in the usually solitary balls of Iruit.
2. The name of a carpenter's hand-tool, used for levelling and smoothing (Lat. planus, level) the surface of wood. The machine tool used for a similar purpose for metals is generally known as a planing-machine or planer.
PLANET (Gr. ìandrms, a wanderer), in the ancient astronomy, one of seven heavenly bodies characterized by being in motion relative to the fixed stars, which last appeared immovable upon the celestial sphere. As thus defined the planets were the sun, the moon, Mercury, Venus, Mars, Jupiter and Saturn. In modern astronomy since Copernicus, the term is applied to any opaque body moving around the sun. Taken in its widest sense it applies to the satellites which are sometimes termed secondary planets. Each of these moves around a planet larger than itself, which it accompanies in its revolution round the sun. A planet not revolving round another is termed a primary planet.
The primary planets are classified as major and minor. The former are eight in number and, with the sun, form the principal members of the solar system, under which head their arrangement is described. The earth on which we live is the third in the order of the major planets from the sun. With respect to the positions of their orbits relative to the earth, the other planets are distinguished as inferior and superior. The former, only two in number, comprise Mercury and Venus, which revolve between the earth and the sun. The superior plenets are those whose orbits are outside that of the earth. The synodic revolution of an inferior planet is the time in whlch it performs a revolution relative to the line joining the earth and the sun. This is greater than its actual time of revolution. The phases or appearances presented by such a planet depend upon its configuration with respect to the earth and sun, and therefore go through their complete periods in a synodic revolution. At superior conjunccion the illuminated hemisphere of the planet is presented to the earth so that it presents the form of a full moon. As it moves towards inferior conjunction, the lines from the planet to the sun and to the earth, or the angle sun-earth as seen from the planet, on which the phase depends, continually make a greater angle. At the time of greatest elongation this angle is 90°, and the planet appears one half illuminated, like the moon at first or last quarter. Then, as it approaches inferior conjunction, the visible portion of the disk assumes the crescent form, and while the circle bounding the disk continually increases owing to the approach of the planet to the earth, the crescent hecomes thinner and thinner until, near inferior conjunction, the planet is no ionger visihle. After conjunction the phases occur in the reverse order. The brilliancy of the planet, as measured by the total amount of light we receive from it, goes through a similar cycle of change. The point of greatest brilliancy is hetween inferior conjunction and greatest elongation. In the case of Venua this phase occurs about three or four weeks before and after inferion conjuaction.

Fig. 2.

Fig. 3.

Fig. 4 .

Fig. 5 .

In the figures given above are shown the relative orbits of the planets, the orbits of Mars, the Earth, Venus and Mercury (fg. 1) being drawn to a scale twenty times that of the outer ones-Neptune, Uranus, Saturn, Jupiter (6g; 2). The positions of the planets at ten-day intervals; their actual position on the ist of January 1910 at noon, of their nodes and nearer apses, and the puints when they are farthest distant north and south of the ectiptic, are also given.

The relative sizes of the planets are also given, orientated in their true axial position with regard to the ecliptic. The nearer plancts (and aloo the Moon) are separately compared (Gg. 3); and then shown (on a smailer scale) in comparison with the more distant ones (fig. 4). Finally scale diagrams of the distances of the orbits of the satellite-systems of Saturn, Uranus, Jupiter and Neptune are given (fy. 5),

The phases of a superior planet are less strongly marked, because the lines from the planet to the earth and sun never increase to a right angle. The result is that although the apparent disk of Mars is sometimes gibbous in a very marked degrec, it is always more than half illuminated. In the case of the other superior planets, from Jupiter outward, no variation in phase is perceptible even to telescopic vision. The entire disk always seems fully illumingted.

The most favourable time for viewing an inferior planet is near that of greatest brilliancy. As it recedes further from the earth, although a continually increasing proportion of its diak is illuminated hy the sun, this advantage is neutralized by the diminution in lis sise produced by the increasing distance. When a superior planet is in opposition to the sun it rises at sunset and is visible all night. This is also the time when nearest the earth, and therefore when the circunstances are most favourable for observation.

The greater the distance of a planet from the sun the less is the speed with which it moves in its orbit. The orbit being larger, the time of its revolution is greater in a yet larger degrice. An approximation to the general laws of speed in diferent planets is that the linear speed is inversely proportional to the square root of the mean distance. From this follows Kepler's third law, that the squares of the times of revolution are proportional to the cubes of the mean distsnces.

Nokes on the Plate showing Planetary Spectra.
Only those lines and bands are mentioned which are peculiar to the plancts; the Fraunhofer lines are therelore omitied.

Wave tength.	Remarks.	
4600		
4800 5090	F hydrogen, HF strong.	Neptune, Uranus, Sat urn (?) Neptune, Uranus.
5190 $=$	Broad.	Neptunc, Uranum
5370		Neptunc, Uranus
5430	Broad. unsymmetrical, strong.	Neptune. Utanus, Selurn, Jupiter.
$\begin{aligned} & 5570 \mathrm{~A} \\ & 5700 * \end{aligned}$	Broad. unsymmetrical, strong.	Neptune, Uranus (?). Neptune, Uranus, Satura (?) Jupiter (?).
5980	Strong.	Neptunc, Uranus.
6090 6190	Very strong.	Neptunc, Uranus,
$\begin{aligned} & 6400 \\ & 6500= \end{aligned}$	Broad (3).	Neptune, Uranus. Neptune. Uranus, Jupiter, Saturn (?).
$\begin{aligned} & 6560 \\ & 6670= \end{aligned}$	Chy-drogen, Ha, Broad band.	Neptune, Uranus Neptune, Uranus, Saturn.
[6780	Bright region due to absence of selective absorption which is strong both above and below.	Neptune, Uranus.
6820	Strong. narrow, near above B .	Neptune, Uranus, Saturn, Jupiter.
7020	Strong. broad.	Neptune, Uranus, Saturn, Jupiter.
17140	Bright. unabsorbed region similar to that at 6780 .	Neptune, Uranue
$\begin{aligned} & 7260 \\ & 7500 \end{aligned}$	Strongest band present. Band (?).	Saturn. Jupiter. Saturn.

It was once supposed that the planets were surrounded by comparatively dense atmospheres. The question whether such spectrease is the case, and, if so, what is the physical constituapecte tion of the atmospberes, is a difficult one, on which splomes of little light is thrown except by the spectroscope. the Plameth If any of these bodies is surrounded by a transparent atmosphere like that of the earth, the light which reaches us from it will have passed twice through this atmosphere. If the latter were materially different in its constitution from that of the earth, that fact would be made known by the spectrum showing absorption lines or bands different from those found in the solar spectrum as we observe it. If, however, the planctary atmosphere had the same composition as ours we should see only an intensification of the atmospheric lines, which might be imperceptible were the atmosphere race.

Actual ohservation has thus far shown no well marked deviation in the spectra of any of the innergroup of planets, Mercury, Venus and Mars, from the solar spectrum as we see it. It follows that any atmosphcres these plancts may have must, if transparent, be rare. The evidence in the cases of Venus and Mars is given in the articles on these planets. Taking the outer group of planets, it is found that the spectrum of Jupiter shows one or more very faint shaded bands not found in that of the sun. In Saturn these bands become more marked, and in Uranus and Nicptune many more are seen. The spectra in question have been observed both optically and photographically by scveral observers, among whom Huggins, Voged and Lowrlil have been most successful. It may be said, in a general way, that seven or cight well marked dark bands, as well as some fainter ones are observable in the spectra of the two outer planets. The general conclusion from this is that these planets are surrounded by deep and dense atmospbores, semi-transparent, of a constitution which is probably very different from that of the earth's atmosphere. But it has not, up to the present time, been found practicable to determine the chemical constitution of these appendages, except that bydrogen seems to be an important constituent. (See Plate.)

Intimately associated with this subject is the question of the conditions necessary to the permanence of an atmoephere round 2 planet. Dr Johnstone Stoney investigated these syoumor conditions, taking us the basis of his work the pmemery kinetic theory of gases (Trams. Roy. Dubl. Sac. vi. Alueb 305). On this theory every molecule of a gaseous aphorme mass is completely disconnocted from every other and is in rapid motion, its velocity, which may amount to ove or more thousand feet per sccond, depending on the tempcrature and on the atomic weight of the gas. At any temperature the velocities of individual molecules may now and then increase without any well-defined limit. If at the boundary of an atmosphere the velocity should exceed a certain limit fixed by the mase and force of gravit' of the planet, molecules might fly away through spece as independent bodies. The absence of bydrogen from the atmosphere of the earth, and of an atmosphere from the moon, may be thus explained. If the fundament al hypotheses of Dr Stoncy's investigations are correct and complete, it would follow that neither the satellites and minor planets of the solar system nor Mercury can hove any atmosphere. If the separate molecules thus lying away moved according to the lavs which would govern an ordinary body, they would, after leaving their respective planets, move round the sun in independent orbits. The possibility is thus suggested that the matter producing the zodiacal light may be an agglomeration of gaseous molecules moving round the sun; but several questions respecting the intimate constitution of matter will have to be settled before any definite conclusions on this point can be reached. It is not to be assumed that a molecule would move through the ether without resistance as the minutest known body does, and there is probably a radical difierence between the minutest partide of meteoric matter and the molecule of a gas. The relations of identity or difference between such finely-divided matter as smoke and atmospheric hare and a true gas have yet to be fully established, and until this is done a definite and satisfactory theory of the subject docs not seem possible.

Since the radiation of heat by a planet is, whit our present instruments, scarcely capable of detection and measurement, the temperature of these bodies can be estimated reapmanime only from general physical laws. The laws govem-ofthe ing the radiation of beat have been so developed meots
during recent years that it is now possible to state at lean the general principie on which a conclusion as to the ternperature of a planet may be reached. At the same time our knowledge of the conditions which prevail on other planets is so limited, especially as regards their atmospheres, that only more or less probable estimates of the temperature of their surfaces can even now be made. Summarily stated, some ol the physieal principles are these:-
a. A meutrally coloured body-underatanding by that tecen

Planetary Spectra, photographed at Lowell Observatory, Flagstaff, Arizona, By V. M. Slipher.

Jupiter.

Saturn.

Uranus.

Neptune.

Comparison spectograms of the Moon and Mars, showing absorption bands in that of the latter, which denote the presence of water vapour in the Martian atmosphere (see Mars).

Fig. 1. Orion Nebula. - Typical of the spectrum of the gaseous nebula; contains bright lines of nebulurn, hydrogen and helium. The helium lines are too faint to show in this reproduction.)

Fig. 2. Rigel.-Typical of the helium star spectrum; contains, in addition to the helium series and so-called Orion lines, dart lines of hydrogen.

Fig. 3. Sirius.-The hydrogen type spectrum; contains dark bydrogen lines at their greatest strength and many fine metallic lines.

Fig. 4. Procyon.-Transition or hydrogen-to-solar type spectrum. The hydrogen lines are weaker, the metallic lines stronger. than in Sirius.

Fig. 5. Sun.-Hydrogen absorption fainter, metallic lines stroager and more numerous.

Fig. 5. Arcturus.-Advanced solar type spectrum.

Fig. 7. Betelgeuse.-Typical of the spectrum partaking of the nature of that of the sun and that of the long period variable star exemplified in Fig. 8.

one which absorbs the same fraction of the thermal radiation falling upon it whatever the wave length of this radiationexposed to the sun's radiation in void space tends to assume 8 definite temperature, called the normal temperature, the degree of which depends upon the distance of the body from the sun. This is a result of Kirchhoff's laws of radiation.
2. An atmoephere surrounding such a body, if at rest, will tend to assume a state of thermal equilibrium, in which the temperature will be the same at all heights.
3. If the at mosphere is kept in constant motion by an interchange between its higher and lower portions, the tendency is towerds adiabatic equilibrium, in which the temperature diminishes at a constant rato with the height, until it may approach the absolute zero. The rate of diminution depends upon the intensity of gravity and the physical constants of the gases composing the atmosphere.
4. In tbe actual case of a planet surrounded by an atmosphere and exposed to the sun's radiation, the actual rate of diminution of temperature with height above the surface of the planet lies between the extreme limits just defined, the rate varying widely with the conditions. The general tendency will be towards a condition in which the temperature at the base of the atmosphere is higher than the norrial, while in the upper regions it is lower. The temperature of the surface of the planet on which the atmosphere rests is determined partly by the sun's radiation and partly by the temperature of the air. What we should generally expect in the absence of any selective absorption by the air is that the temperature of the lower air would be higher than that of the material surface on which it rests. But this condition might be reversed by the effect of such absorption in either the air or the material of the planet.
ment. Something of this sort has been suspected in the case of Jupiter, which has several points of resemblance to the sun. The planets Uranus and Neptune which, but for their atmospheres, would approximate to the absolute zero in temperature, may be prevented from doing 50 by the densc atmosphere which the spectroecope shows around them.

A very elaborate investigation of the probable mean temperatures of the surfices of the several piantets has been made by J. H. Poynting, Phil. Trans. (vol. 202a, 1904).

Tables of Planetary Elements and Conslants.

Table I. gives the elements determining the motions of each major planet. and Table II. certain numbers pertajaing to its physical condition. For explanation of terms psed see Orbit. The elemenis are given for the epoch togo, Jan. o, Creenwich mean time, except the mean longitudes, which are lor 1910. Jan. o.
In interpresing or using the numbers it muut be remembered that only the mean distances and mean daily motions can be regarded as well determined and invariable quantities. The other clements are subject to a secular variation, and all vary more or less from the action of the planets. In Table II. the reciprocal of the mass is given, the mass of the sun being unity. Some of thew and other quantities are extremely uncertain. This is eapociatly the case with the mass of Mercury, which the attronomical tablen put at 1/6,000.000 that of the sun, while C. W. Hill has computed Irom an estimate of the prolable density of the planet that it a probably less than $1 / 11,000,000$. In the table we amume the round number $1 / 10,000,000$. The volumes are derived from mictometric measures of the diameters, which are more or less uneertam. From these and the mass foilows the density of each planet. From this again is derived the intensity of gravity at the surface; this Is aiso frequently uncertain. Finally the normal eemperature is that which a black or neutrally coloured body would amaume when every part of it is equally exponed to the sun's rays by a rapid revolution. As has already been intimated, the actual temperature may also depend upon the interior heat of the planet. which is an unknown quantity.

Taile I.-Elements of the Orbits of the Eight Major Planets.

Planet.	Mean Distance from Sun.		Eccentricity of Orbit.	Longitude of Perihelion.	Longriude of Node.	Inclina: tion.	Period of Revolution.	Mean Daily Molion.	Mean Long. itude 2980. jan. 0.
	Astronomical Uniss.	Thousands of Miles.							
	0.387					$7{ }^{\circ}{ }^{\prime}$	$\begin{aligned} & \text { Davs } \\ & 87.069236 \end{aligned}$	4*-0927	3° 32'
Venus	0.3070987 0.7233315	67,269	$0-006821$	130° \% 0^{\prime}	$75^{\circ}{ }^{4} 7^{\prime}$	$3^{\circ} 24^{\prime}$	224.70079	${ }^{4} \cdot 6927$	$73^{\circ} \cdot 53$
Earth	$1 \cdot 0000000$	92,903	0.016751	101.13		-	365.256360	${ }^{\circ} \cdot 9856$	$99^{\circ} 17$
Mars.	1.523688	141.701	0.093309	$334^{\circ} 13^{\prime}$	$48^{\circ} .47^{\prime}$	$1{ }^{*} 58^{\prime \prime}$	686.979702	$0 \cdot 53403$	$47^{\circ} 3{ }^{\prime}$
J dupiter	$5 \cdot 202804$	483.85	0.0 .48254	${ }^{12}{ }^{\circ} 36^{\prime}$	$99^{\circ} \cdot 37^{\prime}$	1"19'	4332.5879	$00^{\circ} .083091$	$181^{\circ} 43^{\prime}$
Saturn	9.538844	887.098	0.056061	90 ${ }^{\circ}{ }^{\circ} 9^{\circ} 9^{\prime}$	113.3	$2^{\circ} 30^{\prime}$	10759-2010	$0 \cdot 033460$	280 ${ }^{\circ}{ }^{\circ} 5^{\circ}$
Uranus	19.19096 30.07067	$\begin{aligned} & 1.784 .732 \\ & 2.796 .528 \end{aligned}$	0.047044 0.008533	$\begin{gathered} 169^{\circ} 3^{7} \\ 43^{\circ} \end{gathered}$	${ }_{13} 3^{\circ}{ }^{\circ} 29^{\prime}$	$\mathrm{I}^{\circ}{ }^{\circ} 46^{\prime}$	$30586 \cdot 39$ 60147.65	$\begin{aligned} & a^{\circ}-011770 \\ & 0^{\circ} \cdot 006020 \end{aligned}$	

Table II.- Phyaical Constanta pertaining to the Major Planeta

Planet.	Angular Semidiameter.		At Dist.	Diameter in Miles	Reciprocal of Mass (O 's mass $=1$ I)	Density.		Gravily at Surface. (i) = 1)	Orbital Velocity. Miles per sec	Normal Temperarure Centigrade.
	Equatorial.	Polar,				(Water = i)	(\dagger = I)			
Mercury	${ }_{8}^{3.30 .46}$	3.30° 8.46	1	2.976 .8 .629	$10,000,000$ 408,000	3.5 3.05	.633 .913	0.2480	29.76 21.77	${ }^{19} 0^{\circ}{ }^{\circ}$
Earth:	$8.79{ }^{\circ}$	$8.76{ }^{\circ}$	1	7.917	333,430	$5 \cdot 53$	1.000	1.00	18.52	19°
Mars	4.80\%	$44^{4} 76^{\circ}$	5	4.316 4.316	3,093.500	3.68	. 666	0. 363	15.00	$=36^{\circ}$
jupiter	48.75 8.75	$17.65{ }^{4}$	3.203 9.539	86.259	3, $\begin{array}{r}1,047 \\ 3,500 \\ \hline 2,35\end{array}$	1.363 0.678	.247 .123	2.68	8.12 6.00	-144*
Saturn	${ }^{8.73 .}$	${ }^{7.88}{ }^{\circ}$	9.539 19.19	72.772 32.879	3.500 $\mathbf{2 2 . 8 6 9}$	${ }^{0.678} 1.1{ }^{\text {d }}$.123 .204	1.13 0.85	6.00 4.24	-177*
Uranus	1.90 1.100°	1.90	19.19 30.07	32.879 29.827	22.869 19.354	1.13 1.79	-304	0.85 8.22	4.24 3.40	-2018

It would follow from these laws that the temperature of the superior planets diminishes rapidly with distance from the sun, and must therefore be far below that of the earth, unless.they are surrounded by atmospheres of such height and densily as to be practically opaque to the rays of beat, or unless they bave no solid crust.

The resemblance of the spectra of Mars, Jupiter and Saturn to that of the sun leads to the conclusion that the atmospheres of these planets are transparent down to the reflecting surface of the body. The temperature of these surfaces must therefore be determined by Kirchhofi's law, undess they racmule the sun in being entirely liquid or gaceous, or in having only solid nuckei surrounded by liquid matter in a condition of continual move-

PLANETS, MINOR. The minor planets, commonly known as asteroids or planctoids, form a remarkable groun of small planctary bodies, of which all the known members but three move between the orbits of Mlars and Jupiter. Uniil recently they were all supposed to be contained within the region just mentioned; but the discovery of one, which at perihetion comes far within the orbit of Mars, and of two others, whichat aphelion pass outside the orbit of Jupiter, shows that no well-defined limit can be set to the eone containing them. Belore the existence of this group ras known. the apparent vacancy in the region occupied by it, as indicated by the arrangement of the planels aecording to Bode's law, had exelted remark and led to the belief that a planet would eventually be found there. Towards the
end of the ISth century the conviction that such a planet existed was so strong that an association of astronomers was formed to search for it. The first discovery of the looked-for planet was not, however, made by any member of this association, but by Giuseppe Piaeci of Palermo. On the 1st of January 1801 he noted a small star in Taurus, which, two days later, had changed its place, thus showing it to be a planet. Shortly after Piazxi's discovery the body was lost in the rays of the sun, and was not again scen until near the following opposition in 180r1802. The orbit was then computed by C. F. Gauss, who found its mean distance from the sun to correspond with Bode's law, thus giving rise to the impression that the gap in the system was filled up. The planet received the name Ceres

On the 28th of March 1802 H. W. M. Olbers (1758-1840) discovered a sccond planet, which was found to move in an orbit a little larger than that of Ceres, but with a very large eccentricity and inclination. This reccived the name of Pallas. The existence of two planets where only one was expected led Olbers to his celebrated hypothesis that these bodics were fragments of a largor planet which had been shattered by an internal convulsion; and be proposed that search should be made near the cemmon node of the two orhits to see whether other frag. ments could be found. Within the next few years two other planeis of the group were discovered, making four. No others were found for more than a generation; then on the 8 th of December 1845 a fifth, Astrea, was discovered by K. L. Hencke of Dricsen. The same observer added a sixth in 1847. Two more were found by J. R. Hind of London during the same year, and from that time discovery has gone on at an increasing rate, until the number now known is more than six hundred and is growing at the rate of thirty or more annually.

Up to 1890 discoveries of these bodies were made by skilful scarch with the telescope and the cye. Among the most successful discovercers were Johann Palisa of Vienna, C. H. F. Peters (1813 - 1890) of Clinton, New York, and James Craig Watson (1838-1880) of Ann Arbor, Michigan. In recent times the discoveries are made almost entirely by photography. When a picture of the stars is taken with a telescope moved by clockwork, so as to follow the stellar sphere in its apparent diurnal rotation, the stara appear on the plates as minute dots. But if the image of a planet is imprinted on the plate it will generally appear as a short line, owing to its motion relative to the stars. Any such body can therefore be detected on the plate by careful examination much more expeditiously than by the old method of visual search. The number now known is so great that it is a question whether they can be much longer individually followed up so as to keep the run of their movements.

Among the distinctive features of the planets of this group one is their small size. None exists which approaches either Mercury or the moon in dimensions. The two largest, Ceres and Juno, prescre at opposition a visihle disk about $r^{\prime \prime}$ in diameter, corresponding to about 400 miles. The successively discovered ones naturally have, in the general average, been smaller and smaller. Appearing only as points of light, even in the most powerful telescopes, nothing like a measure of their size is possible. It can only be tnferred from their apparent magnitude that the diameters of those now known may range from fifteen or twenty miles upwards to three or four hundred, the great majority being near the lower limit. There is yet no sign of a limit to their number or minutencas. From the increasing rate at which new ones approaching the limit of visibility are being discovered, it seems probable that below this limit the number of unknown ones is simply countiess; and it may well be that, could samples of the entire group be observed, they would include bodies as small is those which form the meteors which so frequently strike our atmosphere. Such heing the case, the question may arise whether the total mass of the group may be so great that its action on the major planets admits of detection. The computations of the probabie mass of those known, based upon their probable dianfeter as concluded from the light which thay reflect, have led to the result that their
combined action muat be very minute. But it may well be a question whether the total mass of the countlesa unknown planets may not axceed that of the known. The best anawer that can be made to this question is that, unless the smaller members of the group are alrost perfectly black, a number great enough to produce any observable effect by their attraction would be visible as a faintly illuminated hand in the sky. Such a band is occasionally visible to very keen cyes; but the observations on it are, up to the present time, 80 fcw and uncertain that nothing can positively be said on the subject. On the other hand, the faint "Gegenschein" opposite the sun is sometimes regarded as an intensification of this supposed band of light, due to the increased reflection of the sun's light when thrown back perpendicularly (see Zoonacal Lighr). But this supposition, though it may be well founded, docs not scem to fit with all the facts. All that can be said is that, while it is possible that the light reflected from the entire group may reach the extreme limit of visibility, it seems scarcely possible that the mase can be such as to produce any measurable effect by its attraction.

Another feature of the group is the gencrally large inclinations and eccentricities of the orbits. Comparatively few of these are either nearly circular or near any common plane. Considering the relations statistically, the best conception of the distribution of the planes of the orbits may be gained by considering the position of their poles on the celestial sphere. The pole of each orbit is defined as the point in which an axis perpendicular to the plane intersects the celostial sphere. When the poles are marked as points on this sphere it is found that they tend to group themselves around a certain position, not far from the pole of the invariable plane of the planetary systern, which again is very near that of the orbit of Jupiter. This statistical result of observation is also inferred from theory, which shows that the pole of each orbit revolves around a point near the pole of the invariable plane with an angular motion varying with the mean distance of the body. This would result in a tendency toward an equal scattering of the poles around that of Jupiter, the latter being the centre of position of the whole group. From this it would follow that, if we referred the planes of the orbit to that of Jupiter, the nodes upon the orbit of that planet should also be uniformly scattered. Ex. amination, however, shows a seeming tendency of the nodes to crowd into two nearly opposite regions, in longitudes of about 180° and 330°. But it is difficult to regard this as anything but the result of eccident, because as the nodes move along at unequal rates they must eventually scatter, and must have been scattered in past ages. In other words it does not seem that any olber than a uniform distribution can be a permaneat feature of tbe system.
A similar law hoids true of the eccentricities and the peribelia. These may both be defined by the position of the centre of the orbit relative to the sun. If a be the mean distance and e the eccentricity of an orbit, the geometry of the ellipse shows that the centre of the orbit is situated at the distance ae from the sun, in the direction of the aphelion of the body. When the centres of the orbits are laid down on a diagram it is found that they are not ccattered equally around the sun but a round a point lying in the direction of the centre of the orbit of Jupiter. The statistical law governing these may be seen from hif. 1. Here S represents the position of the sun, and J that of che centre of the orbit of Jupiter. The direction JS produced is thas of the perihelion

Fic. 1. of Jupiter, which is now near longituace 12°. As the perihelion moves by its secular variation, the line SI revolves around S . Theory then shows that for every asteroid there will be a certaia point A near the line SJ and moving with it. Let C be the aciual position of the centre of the planetoid. Theory shows that C is in motion around A as a centre in the direction ahown by the arrow, the linear eccentricity ae being represented by the line SC. It foliows that e will be at a minimum when AC pasee through S, and at a maximum when in the opposite direction. The porition of A is different in the case of diferent planetoids, but is generally about two-thirds of the way from S to J . The lines $A C$ for difierent bodies are at any time scattered miscellancously around the region A ma a centre. AC may be called the constant of eccentricity of the planetoid, while SC reprements its actual but varying ecoentricity,

Cromping of the Plancloids.-A curious feature of these bodies is that when they are classifed according to their distances from the sun a tendency is seen to ctuster into groups. Since the mean distance and mean motion of each planet are connected by Kepler's third law, it follows that this grouping may also be deacribed as a tendency toward certain times of revolution or certain velues of the mean motion around the sun. This feature was first noticed hy D. Kirkwood in $\mathbf{8 8 7 0}$, but at that time the number of planetoids known was not sufficient to hring out its true nature. The ceeming fett pointed out by Kirkwood was that, when these bodies are arranged in the order of their mean motions, there are found to be gaps in the series at those points where the mean motion is commensura ble with that of Jupiter; that is to say, there seem to be no meen daily motions near the values $598^{\circ}, 748^{\circ}$ and B98 8°, which are respecfively 2, at and 3 times that of Jupiter. Such mean motions are nearly commensurable with that of Jupiter, and it is shown in celestial mechanice that when they exist the perturbations of the planet by Jupiter will be very large. It was therefore supposed that if the commensurability should be exact the orbit of the planet would be umstable. Bus it is now known that such is not the case, and that the only effect of even an exact commensurability would be a libration of tong period in the mean motion of the planetoid. The gaps cannot therefore be accounied for on what seemed to be the plausible supposition that the bodies required to fill these gapt originally existed but were thrown out of their orbits by the action of Jupiter. The fact can now be more precisely mated by saying that we have not 50 much a hroken series as a teadency to an accumulation of orbits between the points of commensurability. The law in question can be most readily shown in $\&$ graphical lorm. In fig. 2 the horizonal line represents distances from the sun,
limits of the groups shown in the figure. Eros is so near the sun, and its orbit is so eccentric, that at perihelion it is only about 0.16 outside the orbit of the earth. On those rare occasions when the earth is passing the perihelion point of the orbit at searly the same time with Eros itself, the parillax of the latter will be nearly six times that of the sun. Measurements of parallaz made at these times will therefore afford a more precise value of the solar parallaz than can be obtained hy any ocher purely gcoruetrical measurement. An approach almost as close as the nearest geometrically posaible one occurned during the winter of $1893-1894$. Unfortunately the existence of the planet was then unknown, hut after the actual discovery it was found that during this opposition its image imprinted itself a number of times upon the photographs of the heavens made by the Harvard Observatory. The positions this discovered have been extremely uselul in determining the elements of the orbit. The next near approach occurred in the winter of 1900-1901, when the planet approached within 0.32 of the earth. A combined effort was made by a number of observalories at this time to determine the parallax, borb by micrometric measures and hy photography. Owing to the great aumber of stars with which the planct had to be compared, and the labour of determining their positions and reducing the observations, only some fragmentary results of this work are now available. These are mentioned in the article Pasallax. So far as can yet be seen, no other approach so near as this will take place until January 1931.

A few of the minor planets are of such special interest that some pains will doubtiess be taken to determine their orbits and continue obacrvations upen them at every available opposition. To this class belong those of which the orbits are so eccentric that they either pass near that of Jupiter or approach

increasing toward the left, of which certain equidistant numerical values are given below the line. Points on the line corresponding to each 0.01 of the distances are then taken, and at each point a perpendicular line of dots is drawn, of which the number is equal to that of the planetoids having this mean distance, no account being taken of fractions less than ool. The accumulations between the points of close commensurability with the mean motion of Jupiter may be seen by inspection. For example, at the point 2.59 the mean motion is three times that of Jupiter; at the point 2.8 x twice the mean motion is equal to Give times that of Jupiter; at $3 \cdot 24$ the mean motion is twice that of Jupiter. It will be seen that there is a strong tendency toward grouping near the values $2 \cdot 75$, and a lesser tendency toward $3 \cdot x$ and 2.4 . It is probable that the grouping had its origin in the original formation of these bodies and may be plausibly attributed to the formation of three or more segarate rings which were broken up to form the group.

Continuing the question beyond these large collections, it will he seen that between the values 3.22 and 3.33 there are no orbits at all. Then betweed 3.3 and 3.5 there are nine orbits, The space between 3.5 and 3.9 is thus far a complete blank; then there are three orbits between 3.90 and $3 \cdot 95$, not shown in the diagram.

A group of great interent, of which only three members are yet tnown, was discovered during the years 2906-1907. The mena distasce of each member of this group, and therefore its time of revolution, is so mear that of Jupiser that the relations of the respective orbits are yet unknown. The case thus offered for study is quite unique in the soler system, bua its exact nature camsot be determined umil several meve yenre of observation ere available.

Several phactods of much interent are situated without the
near that of the earth. With most of the others little more can be dooe than to compute their elements with a view of subsequently identifying the object when desired. Unjess followed up at several oppositions after discovery, the planet is liable to be quite lost. Of those discovered before 1890 about fifteen have not again been found, so that if discovered, as they doublless will be, identification will be difficult.

The system of nomenclature of these bodies is not free from diffeculty. When discoveries began to go on ala rapid rate, the system was introduced of assigning to each a number, in the order of its discovery, and using as its symbol its number enclosed in a circle. Thus Ceres was designated by the symbol(1); Pallas by (3), \&e., in regular order. This system has been continued to the present time. When photography wat applied to the search it was frequently douhtfut whecher the planet of which the image was detected on the plates was or was not previously known. This led to the use of capital letters in alphabetical order as a temporary designation. When the alphabet was exbamsted a second letter was added. Thus there are planetoids temporarily designated as A, B, \&c., and AB, AC, se. The practice of applying a name to be selected by the discoverer has also been continued to the present time. Originally the names were selected from those of the gods or goddesses of classical mythology, but these have been so far oxheusted that the name is now left to the discretion of the person selecting it. At prewent it is customary to use both the number and the name, the former being neceasary to the ready finding of the planetoid in a list, while the name cerven for more certain identification.
(S. N.)

Plank, a fiat piece of timber, gawis and pianed; it is technically distinguished from a "board" by its greater thickness, and ahould mapure from a to 4 in. in thickness and from to to at in.
in width. The word comes through the Fr. planche (from postAugustan, Lat. planca, a nasalized adaptation probably of Gr. rdd ξ, something flat, especially a flat stone. The use of the word "plank" in the sense of an article in a political programme is of American origin and is due to the use of "platform" for the programme itself.

PLANETON, a name invented by Professor Victor Hensen for the drifting population of the sea. This is 2 convenient heading under which to discuss not only plonkton proper, but the benthos, or crawling population of the sea-bottom. Scientific investigation of these subjects dates from the reports of the "Challenger " expedition, which, despite its many successors, still stands out as the most important of the oceanographic expeditions, alike by the work achieved, the distance uraversed, the time occupied, and the money devoted to the publication of the results. It laid the foundation of our knowledge of the physics and chemistry of ocean water, of oceanic and at mospheric currents, of the contour of the sea-bottom, and of the main features of distribution of deep-sea life. Later work has confirmed and expanded, but not revoked, the conclusions thus attained. But, in spite of this and of several subsequent expeditions, it cannot be pretended that we are in a position to formulate general canons of marine distrihution other than of the most tentative character. Two fallacies underlie many attempts to define distributıonal oceanic areas for special groups: the one, that such areas can be made to bear some relation to existing geographical or even national divisions; the other, that what is true for one group of the animal kingdom must hold good equally for another. It is necessary at the outset to divest oneself of these errors, oceanic conditions depend only very indirectly upon the distribution of the land, and strongly swimming or freely floating animals are not to be confined by the same factors as determine the distribution of sessile forms, whose range is governed by a variety of circumstances.

As Wyville Thomson pointed out long ago, there is but one ocean. This surrounds the southern half of the globe, and has two large gulfe, generally called the Atlantic and Pacific Oceans, which meet through narrow channels in the small Arctic Ocean, and a balf gulf, the Indian Ocean. The Atlantic and Pacific exhibit a striking homology of atmospheric pressure and of prevalent wind and current; the Indian, to a great extent, resembles the southern half of a larger one, but this resemblance is modified by the neighbourhood of vast land masses. The prevalent winds, dependent on the fairly constant distribution of atmospheric pressure over the great occans, are the most important determinant of curtents. As at most points in the ocean the temperature, salinity and chemical composition of the water are mainly determined by the currents-that is, by the condition at the place whence the water came-it isobvious that a study of currents must precede any general view of the distribution of manne forms.

Regard must be had not merely to the superficial currents indicated in fig. r, but also to the movements of the deeper layer. Ice melting at the poles, together with polar precipitation of bail, snow and rain, yields large quantities of water of low salinity and very low temperature; this water sinks under the warmer salter surface water drifted from lower latitudes, and, creeping slowiy north and south from the poles, covers the bottom of all the great open oceans at very uniformly low temperatures (in some cases as low as $30^{\circ} \mathrm{F}$.). Between surface and bottom the temperature gradually decreases (except where affected by local circumstances), and in the middle layers the existence of slow currents is suspected. The cold bottom water wells up to the surface in certain areas, replacing the surface water drained away by curtents, notably to the wesiward of the great land masses. Ocean water is remarkably uniform as regards its contained salts and gases, and it does not seem likely that we can look to these to explain the facts of distribution. In its temperature. on the contrary, there is enormous variation. While the boltom water of the occan is very cold, and the mid. water of a more or less tntermediate temperature, the surface. water, according as it has drifted from the equator polewards
or in the reverse direction, has a mean annual temperature some where bet ween 84° and $30^{\circ} \mathrm{F}$., losing or gaining heat on its way. In the case of narrow or "closed" seas, and near land masses, eea-water does not exhibit that uniformity of composition which characterizes the open ocean; but even in such cases the temperature is largely infiuenced by adjacent currents, and, though less obviously than in the open ccean, seems to be a very important agent in distribution.

The fauna of the sea is divisitile into the plotaktos, the swimming or drifting fauna which never rests on the bottom (generally taken now to include E. Haeckel's nekton, the strong swimmers, such as fish and cephalopods), and the benthas, which is fixed to or crawle upon the botcom. These groupe require e further subdivition according to depth-the more neopssarily sinfe, to some eoologiste, any water over 100 fathoms is "deep " or even "abysal." It is simplest to begin with the beathos. From

Fic. 1 -Diagram of the Atlantic Ocean, showing the Mais Surface Currenta (some are seasonal only): the correuponding Indian and Pacific currents are cited in parentheses; they ase rarely to arongly marked as in the Allantie

$$
\text { 1. Counterequatorial (also } \mathrm{t}^{\prime} \text { Pacific and fodian) }
$$

. The Equatomal (also 2* Pacific and Indian).
Gulí Sircam proper (Japan Stream).
Brazil Current (Australian Current).
Mozambique Current (recurved ofi Cape Agulhas).
Labrador Current (Kamchatka Current).
Falkland Current.
5. North Atlantuc Drift, generally called Gull Stream (North Pacifix Drift).
5. South Ailantic Drilt. ill defined (South racific Drift).
6. North Árican Current (Mexaco Current).
. Bengucla Current.
Peru Current.

- Antarctic Circumpolar Drift. 7^{\prime}. its mortherly branches an she west sides of Africa and South America.
the shore seawards we may distinguish several wones. Even the tidel rone, between high and low water-mark, is subdivisible by lis fauna and flora. There generally follows on this a very gentle slope to the depth of about 100 fathoms. locally subdivisible into many lesser zoncs. It has been termed the conunental shelf or littoral zone, not very appropriately, sisce it occurs round many occenic tslands. and even away from any land. In this zone, if near land, fall to the botiom the heavy materials produced by land waste and river drainage. The fana of this zone, generally very well characterized, may be
distinguished as the epibenthos. As with the shallowest or tidal zone, its nature varies much more according to latitude and the character of the coast than the deeper zones. Everywhere, however, the epibenthic fauna is exposed to certain definite environanental conditions, as compared with a deeper fauna: namely, a high or fairly high temperature (except near the poles); a fairly good light, with its important consequence, a vegetahle basis of food supply; tide and current to distribute the larvae to a suitable hahita!, which the varied nature of the bottom near land is likely to furnish. Passing farther seawards, we find a steeper slope to about the sco-fathom line, the so-called continental slope. In this zone the environment is absolutely

Fig. 2.-Mean Annual Surface Isotherms of the Atlantic. (After Buchan, "Challexger" Report on "Oceanc Circulation.') On the north-ease and couth-west sides they are deflected polewards by the warm North Aclantic Drifi and Brazil Current; on the mouth. east and north-west sides equatorwards by the cold Labrador and Bengucla Currents. Note the markedly different latitudes of the mame isocherms east and west of South America and Alrica; also the effect of the Falkinod Current against the Brazil Current.
different. The water, no longer subject to seasonal variations of temperature, or to direct sunlight, is cold, and of a nearly uniform annual temperature (300 fathoms, ${ }^{-14.7^{\circ} \text { F.). Light }}$ has disappeared from all hut the shallower part, and with it plant life; tide and current are no longer felt. To the latter fact is due, bowever, a great part of the food supply, which maintains in this zone an ahundant fauna: a great quantity of organic matter, brought down by river action, produced by disintegrated sea-weed, and due to the death of surface organisms, together with the finer clayey materials of land waste, settles to the bottom in quict water, near the 100 -fathom contour, thus making the mud-line the richest reeding.ground in the ocean (Murray). The mud-line is the real upper limit of this zone; ll typically begins at about 100 fathoms, hut may begin at 5 to 20 fathoms In deep sheltered firths, or be pushed down to 300 fathoms where currents are strong. The fauns of this zone may be termed the mesobenthos; it is not so abundant, nor so sharply characterized, as the epibentbos, and yet is sufficiently distinct to deserve at any rate a provisional name. Another
difference of condition between epibenihos and mesobenthos is the pressure of the water; at a depth of 500 fathoms this is, roughly speaking, half a ton to the square inch. It is very doubtful whether this enormous pressure makes the alightest difierence to marine invertebrates, the tissues of which are uniformly permeated by duids, so that the pressure is uniform in every direction; but animals with free gases naturally require time to adjust the gas-pressure when altering their levels. As regards the penetration of light, assimilative reys useful to plant life probably do not reach beyond 150 fathoms. Photograpbic rays have been detected as low as 220 fathoms, and if any light penetrate beyond this depth, it will consist only of blue, violet and ultra-violet rays: it bas been suggested that the red colour prevalent in many deep-sea animals may be a screen from these hurtful rays. Below the 500 -fathom line the oceas bottom exhibits almost uniform conditions everywhere, varied only by the character of the bottom deposit and the amount of food supply. In this zone, which extends from thout 500 fathoms to the greatest depths (which may in some cases exceed 5000 fathoms, or more than 54 m .), the temperature at any given point is uniform throughout the year, and is always very low: the mean at 2200 fathoms is 35.2° F.; at greater depths and in special circumstances less than $30^{\circ} \mathrm{F}$. has been recorded. The darkness is prohably absolute; for food the a nimals are dependent upon each other and upon the incessant rain of dead plankton from higher levels; the pressure may be anything between half a ton and five tons per square inch. To the fauna which lives in these remarkable circumstances the name hypobenthos may be applied.

That each of the three benthic groups is well characterized by a special fauna is shown by the followins table, out of the total numbers of species captured by the "Challenger" at meventy stations in these three zonce:-

	Spcies confined 10 this Zone.	Species occurring in other Zones.
Epibenthos . . .	91%	8%
Mesobenthos . : .	74.	25%
Hypobenthot . . .	61%	38.

Out of the 25% of its specics which the menobenthoe thares with other 20nes, 59% oceur also in the epibenthos, about 40% in the hypobenihos; the mesobenthos, therefore, on these figures, may be taken to consist of 74% of peculiar species, 15% shared with the epibenthos, 10% with the hypolenihos. Speaking of the benthos as a whole, it may be said that the following statement holds good: The number of individuals, the proportion of specien to genera. and the number of individuals of a given speciea, all decrease with lincreasing depth. Animal life also tende to diminish with increasing distance from land: thia may be partly due to the greater lood supply near land, partly to the fact that population is obviously thinnest on the adyancing fringe of a migration.

The plankton can be aubdivided into at least two groupe. The fauna to which light and warmth are more or leas necessary, which feede either upon plants or upon organums nearly dependent upon plant life. may be termed the eppplankion. This launa is capable of a good deal of vertical movement upwards and downwards, the causes of which are still obscure, but most of ite member weem rercly to deucend lower than about 100 fathoms. Below this depth the fauna may be called the mesoplankion. In every area this appears to have its peculiar species, but the careful study by opening and closing tow-nets of the distribution of the mesoplankton is of so recent a growrh that no statistics, sueh as we have of the benthos, are available. It is now generally admirted that the mesoplankton extends to the lowest depths yet eearched (2730 to 2402 (athoms, Valdivia): hut the number of specimens decreases rapidly alter 200 fathoms, and below to00 fathoms very litele ls captured. The conditions of light, temperature. pressure. \&e., are practically those of the corresponding depths of the benthos; es rugards the lood, however, the mesoplankton can only depend on intercepting dead organisms which are falling from hisher horizons, or on capturing the scanty prey of its own zone. It is possible that the plankton immediately over the botom may prove to be sufficiently distinct to be separately clased as kypoplanider.

The main mubdividions of the marine fauma having thus been brielly sketched, it is advisable to consider them in somewhat more detall. The epibenthor is obviously that fauna to which except in polar regione lizhe and warmth Eolberotboe are necesary; and the ebseace of these at greater depths is
probably the chief barier to its vertical extension; the food supply is sufficiently plentiful in, at any rate, the upper parts of the mesobenthic zonc to present no obvious barrier. The chemical constitution of the water (except to animals in brackish water near river mouths) and the pressure appear to exert little or no influence; and only those species which attach themselves to clean hard substances would be repelled by the mud-line.
restrain. In relation to temperature the vide-ranging species are termed eurythermat, the limuted, stenothermal (Aloebius); the terms are useful to record a fact, but are not explanatory. It seems to be the case that to every organism is assigned a minimum temperature below which it dies, a maximum temperature above which it dies, and an optimum temperature at which it thrives best, but theso have to be atudied separately

Fig. 3.-Diagram showing the Coastwise (not scaward) Extension of the Provinces of Epibeathic Gastropods and Lamellibranchs Provinces:-

1. Arctic
2. Boreal of East Atlantic. 2' $^{\prime}$. Boreal of West A.tlantic. 3. Celtic.
3. Luritanian.
4. West African.
5. South Alrican
6. Indo-Pacific.
7. Japanesc.
8. Australian.
9. New Zealand.
10. Aleutian.
11. Californian.
12. Panama.
13. Peruvian.
14. Generally termed Patagonian or Magellanic for purefy epibeathic forms, but in many

Orders part of the circumpolar Antarctic region.
16. Argentinian.
17. Caribbean.
18. Transatlantic.

The chief barrier to a horizontal extension of the epibenthos is undoubtedly temperature. As an example of its distribution may be taken the Gastropod and Lamellibranch Molluscs, as groups of which the distribution has been studied for many years by specialists. The shallow-water species fall into provinces (compare Cooke, Camb. Nat. Hist. vol. "Molluscs," ch. xii.), and a comparison of figs. 1 and 3 shows at once the profound influence upon them of the great currents. Taking the Atlantic Ocean, we find the Arctic species, tempted southwards by the cold Labrador Current, repelled northwards by the warm North Atlantic Drift. The Boreal or sub-Arctic species, many of which are identical on both sides of the ocean (2 and $2^{\prime}, f$ fig. 3), lie much farther southwards on the west than on the east side, from the same causes. The warm-water molluses of West Africa (s) are cut off from those of the east side (7) by the cold water from the great easterly Antarctic Drift, whicb impinges on the Cape, giving it a special fauna (6). On the South American coasts the tropical and temperate fauna reach respectively to $28^{\circ} \mathrm{S}$. and $45^{\circ} \mathrm{S}$. on the cast coast, owing to the warm Brazil Current; but the corresponding groups on the west coast oniy to $5^{\circ} \mathrm{S}$. and $37^{\circ} \mathrm{S}$., being kept back by cold upwelling and Humboldt's Current. This influence is visible in individual species as well as in the facies of a fauna: Purpura lapillus, a temperate form, reaches on tbe east side of the Pacific to $24^{\circ} \mathrm{N}$. and on the Eest Athatic to $32^{\circ} \mathrm{N}$. ; but on the West Pacific oniy to $41^{\circ} \mathrm{N}$. and the West Atlantic to $42^{\circ} \mathrm{N}$., being repelied by the Japab itresm (and other warm currents of the south-west monsoon) and Gulf Stream respectively.

But while some species may be confined to a bay, others to a province, others to an ocean, there are cosmopolitan species which either vertical or horizontal barriers, or both; fail to
for every species. Similarly, in regard to depth, species have been classed as eurybathic and stenobatkic, but, since increased depth practically means diminished temperature, tbese are probably merely expressions of the same fact in another form. That an Arctic sballow-water species should stretch to considerable depths is not surprising, but it is remarkable to find such forms as, for example, Venus mesodessac on a Nev Zealand beach at $55^{\circ} \mathrm{F}$. and in 1000 fathoms at $37^{\circ} \mathrm{F}$. off Tristan d'Acunha. The provinces of zoological distribution, like the geographical divisions of mankind, must be taken merely :o indicate the facies of a well-characterized fauna, not to imply the restriction of all its habitants to that area.
In considering the effect of temperature (and this applies to plankton as well as to benthos down to 100 fathoms), attention must be directed not only to the question of general warmith or cold as expressed by the mean annual temperature, but a'so to the range between the annual extremes: these ranges of variation have been carefully mapped by Sir J. Murray (Geci. Journ. xij. 113; compare ibid. xiv. 34). Still more imporart to the death-rate than these is the suddenness with which such variations occur: many animals are known to endure great extremes of heat and cold if exposed to them gradualiy, but to succumb to rapid alterations of temperature. Ifence the frontier districts (Mischgcbiete) between opposing currents are characterized by a heavy death-rate, and constitute marked barriers A conspicuous instance of such a barrier in distribution is afforded at the Cape. The warm Mozambique Current, with a souib. westerly direction off Natal, meets a north-cast branch of the coid Antarctic Drift, and is beaten back eastwards: a resuis of the constant warring of these hot and cold currents is a high rage of sudden temperature variation. Hence the Cape fansa
consithe mainly of only such apecies from neighbouring provinces us can eadure bigh sudden variations; and the district is practically impamable. For example, nineteen species of Echinoids are known from the Cape district. Of these twelve are peculiar to the Indo-Pacific province, which strecthes from East Arrica to the Sandwich Islands and from Japan to Australiz; two apecies are Southem Occan forms, all but confined to south of $40^{\circ} \mathrm{S}$.; four species are peculiar to the Atiantic Ocean: of these eighteen not one gets past the Cape into the next province; the nineteenth is practically a cosmopolitan (A. Agasuir, "Challenger" Reports: "Echinoiden"; compere abso C. Chun, Ams den Ticfen des W/allmeeres, pp. 157, 158).
Among the barriers to the harizontal extension of epibenthos must be mentioned a wide deep ocrean. The Indo-Pacific fauna ranges from East Africa to about 108° W., stepping from island to island over the Pacific; but this continuity is then broken by 37 degrees of longitude and more than 2000 fathoms of water, and such sessile species as are most Mollusca (c. fig. 3) are unable to reach the American coast. This is presumably due to the fact that the planktonic larvae of epibenthic adults must sectle. on a suitable bottom within a certain period or die. In spite of the direct set of the currents from Florida to the British Istes, the epibenthos of the two is absolutely dissimilar; the similarity of the two Boreal provinces (2 and 2^{\prime}, fig. 3) is to be assigned to a former continuity by way of Greenland, Iceland and Faeroe, a similar continuity, still unbroken, is exhibited by the Aleutian province on both sides of the Pacific. Though larvae cannot cross wide oceans, adults may no douht traverse great stretches occasionally on floating timber, \&c.
This barter by distance may be instanced in another way. In the Arctic regions land masses are continuous or contiguous, and there are many circumpolar species, as, for example, Rhynchenella psilucea; towards the South Pole the southern continent is almost ice-bound, and the available land consists only of the cips of the concinents and of the few oceanic islands. Hence few if any littoral species are circumpoiar. For example, not a single hittoral Ophiurid surrounds the South Pole, but five or six species are circumpolar in the northern hemisphere.

Taking next the mesobenthos and hypobenthos, living at depths where temperature is constant and current practically negligible, Moso- there appears theoretically to be no reason why an brathour organism which can thrive at 500 lathoms should nerpoSendhos. not have a world-wide range over the bottom of all oceans. Yet this is not often, althougb occasionally, known to be the case; and although perhaps, speaking generally, hypobenthic species have wider ranges than epibenthic, still they also seem to be limited. It must, however, be remembered that the ocean is large, decp hauls of trawl or dredge few, and individuals at great depths scattered, so that too much stress must not be laid on this point. The "Challenger" results seem to allow of at least one generalization-the deeper the fauna, the wider its range. This is shown by the following table of the "Challenger" benthos: the first column gives the number of benthos species captured at depths indicated in fathoms by the second cohuma; the perrentage of these species which is known to have been captured between the tropics, as well as south and north of tbe tropics, is shown in tbe third column:-

Number of Specimens.	Horizon.	S. T. N.
4248	$0-100$	0.6
1887	$100-500$	2
616	$500-1000$	4
433	$1000-1500$	7
394	$1500-2000$	7
247	$2000-2500$	9
153	$0 v e t ~ 2500$	9

We can only guess at the causes of the apparently limited range of many decp-sea types. (a) One of these is probably the limited food supply: presumably, ns with a land fauna, there are as many mouths in a given area as it will support, and an equilibrium of species is maintained which will at least hinder the extension of any one. For food the bulk of the deep-water fana
is dependent upon the rain of dead organisms falling from higher levels, these, slowly disintegrating (probably under chemical, not bacterial, action), seem to form with the bottom deposit a kind of nitrogenous ooze, through which many deep-sea organisms slowly swallow their way, as an carthworm goes through earth extracting autriment. (b) Another hindrance to the extension of many deep-sea species is that they arc holobenthic, that is, do not pass through a free-swimming larval stage; the means of dispersal is therefore regulated by the animal's own power of focomotion. Generally speaking, as might be expected, the freely-moving hypobenthos, fish and crustacea, have the widest ranges, and cven these are not helped by currents, as are epibenthic or planktonic forms. The larval history of deepwater forms is, however, unfortunately obscure. (c) Lastly, extension of area of a species being at best dificult in deep water for non-swimmers, the place and date of their first migration must be taken into account; forms which have comparatively recently adopted deep-water life cannot be expected to have spread far from their original centre. As regards this point, in the first place, it is with migration, not with local evolution, that we have to deal: no classes and orders, only a few families and genera, rarely sub-orders, are peculiar to the hypobenthos; the deep members of each group consist for the most part of widely separated genera, the species do not grade into each other. as is 30 often the case in the epibenthos; and evalation could hardly have produced these species and genera under the uniformity of their present environment. This migration downwards from the mud-line has no doubt occurred all over the worid, notably in the Southern Ocean, if we may judge by the richness of the deep-water fauna there to-day; probably also largely in Arctic and sub-Arctic regions, less so in tropicai and temperate zones. As to the dete of migration, the following fact scems to show that it is of comparatively recent origin, and is indeed still in progress: taking the " Challenger " species from the epibenthos, from the mesobenthos, and then from sones of 500 fathoms down to 2500 , each $20 n e$ shares a larger percentage of species with the zone above it than with that below it (except in one case where they are nearly equal). But it is not to be supposed that all our present-day deep-water forms began their migration simultaneously, and we can say with fair certainty that migration to deep water did not begin before the close of the Mesozoic epoch. Had it begun carlicr, we should find typical Mesozoic and even older forms, or their congencrs, at great depths: so far is this from being the case that the most venerable animals of to-day-Lingula, A mphioxus, Limulur, 75% of Crinoids, 90% of Brachiopoda, \&c.-are epibenthic or mesobenthic. On the other hand, it is extremely likely that the Cretaceous epoch marked the commencement of migration. The hexactinellidan sponges are known to have lived in quite shallow water at the date of deposition of the Inferior Oolite; to-day none occur at a less depth than 95 fathoms; and as only two genera are known from the shallow Tertiary deposits, it would seem that the migration began about Cretaceous times ("Challenger" Reports: "Hexactinellida," F. E. Schulze). In 188: (A. Agassiz," Challengcr" Reports: "Echinoidea ") 105 living genera of Echinoides were admitted; of these 23% were known from Cretaceous but not from Tertiary deposits, 35% Irom Tertiary but not Cretaceous, and 40% as Recent only The species of Cretaceous genera constituted only 29% of the epibenthic Echinoids, 44% of the mesobenthic, and no less than 55% of the hypobenthic. These species of Cretaccous genera were distributed fairly evenly over all three zones, but 72% of the species of Tertiary gencra and 55% of the Recent lorms were confined to the epibenthos. As out of the twenty-five living genera known from the Cretaceous only seven are known also from Jurassic deposits, it is obvious that the close relationship is betwcen Cretaceous and hypobenthos, rather than bet ween any other geological and bathymetric horizons. Other instances, such as that of the Eryonidae, seem to point to similar conclusions.

Excepting the essencin alr-breathers, practically every phylum and class and most orders are represented in the beathos. The
epibenthos of warm seas appears to be especially wealthy in such forms as secrete heavy calcareous skeletons; but in colder water, among the epibenthos of polar or sub-polar regions, and the hypobenthos everywhere in open oceans, the predominant forms are those which exhibit litele or no calcareous secretion: even the apparent exceptions, Madreporaria and Echinoderma from great depths, tend to develop slighter skeletons than their warm-water congeners. The lollowing labie will serve to tllustrate this point, and to give an idea of the composition of the epibenthos of cold and warm seas and of the hypobenthos: the figures are the percentages of total species captured in each localtty by H.M.S. "Challenger," the balance being made up by few specirnens in scattered groups:-

	$\begin{array}{\|c} \text { Kerguclen } \\ \text { Area_ over } \\ 1260 \mathrm{fm} . \end{array}$	$\begin{array}{\|c\|} \hline \text { Kerguelen } \\ \text { Arca-oto } \\ 150 \mathrm{fm} . \end{array}$	Cape York0 to 12 /m.	
	0.8	$0 \cdot 0$	$3 \cdot 3$	
	1.2 8.0	1.0 10.7	3.3 57	8
	8.0 3.6	19.7 0.8	57.3	
	33.6	11.7	$7 \cdot 9$	
	6.8	$4 \cdot 6$	1.7	
	6.8	8.0	0.9	
	16.5	25.0	7.6	
	4.4	6.8		
	81.7	77.6	91.2	

While the Madreporaria represent only 3.3% of the species at the tropical station, it muat be remembered that they probably made up 80% or more of the weight.

The epiplankion is dependent either directly or proximately upon light, warmth and the presence of plant life. The wealth Ep of minute organisms near the surface is inconceivable mactea to those who have not seen the working of a two-net: it may be gauged by the fact that a single species is sometimes present in such quantities as to colour thesea over an appreciable area, and by the estimate that the skeletons of epiplankton from a square mile of tropical ocean a hundred fathoms deep would yield 16 tons of lime. In the tropics the wealth of species, and towards the poles the number of individuals of comparatively few species, are characteristic of the latitudes. In temperate and tropical regions there is a great difference between the epiplankton near land and that far out at sea: the former is termed neritic; it extends, roughly speaking, at least as far out as the mud-line, and is characterized by the predominance of what may be termed hemibenthic forms, that is, benthic forms with a planktonic larval stage (Decapada, Polychacta, \&c.), or with a planktonic phase (metagentic Medusac). The horizontal berriers to the neritic plankton are practically those mentioaed as governing the epibenthos; indeed, it would seem that the distribution of hemibenthic aduits is determined by that of their more delicate larvac. Special conditions of wind and current may of courve carry into the neritic zone forms which are characteristic of the open eea, and vice versa. In the neritic epiplankton of polar waters the larvac of hemibenthic forms are almost abven 1; indeed, the development of cold-water benthos, whether shallow or abysual, appears to be in mont cases direct, this Is , without a larval metamorphosis. The epiplankton of the open sea is deacribed as aceanic; it consists almost entirely of holoplanklonic forms and their larvee. The chief barrier to horizontal distrihution, here as elsewhere, is doubtless temperature. For example, through the reports of the "National " cruise (German Plankton Expedition) runs the same story; one fauna characterized their course from Shetiand to Greeoland and Newfoumdland, another the traverse of the Gulf Stream, Sargesso Sea and the Equatorial Curreats. The infuence of temperature may be ganged in another way: where hot and cold currents meet, occur "froatier" districts, in which the respective organisms are intermingled, and can only exist till their maxima or minima are reached. Well-marked examples of such districts occur of New Jemey (Guif Streem and Lebrador Current), in
the China Sez (warm currents of the south-west moasoon and Kamchatka Current), in the Faeroe Channel, south of the Cape (recurving of the Agulhas Current): in some of these the range of variation amounts to as much as $50^{\circ} \mathrm{F}$. in the year, with the result of a colossal dealh-rate of the plankton, and its coroliary, a rich bottom fauna, for which food is thus amply supplied. The majority of the oceanic epiplankton appears to be steno. thermal; for example, few components of the well-charecterized fauna of the Gulf Stream and Sargasso Sea ever reach the Britioh shores alive, although, if current and salinity were the determining factors and not temperature, this fauns should reach to Shetland, and even to Lofoten. It will only be posible to make satisfactory distrihutional aress for these oceanic forms by auch syatematic traverses as that of the "National"; at present it would seem that adjacent species have such different mazima and minima that every species must be mapped separately (compare the distribution-maps of the "National" Plankton Expedition). Some members of the epiplankton are, however, extriordlnarily eurythermal and eurybathic; for example, Calonus frmarchicws ranges from $76^{\circ} \mathrm{N}$. to $\mathbf{5 2 ^ { \circ }} \mathrm{S}$. (excepting perhaps for 10° each side of the equator), and is apparenty indifferent to depth.

In the first hundred fathoms at sea the fall of temperature is gradual and slight, and forms practically no hindrance to the dinenal oscillation of the oceanic epiplankton-the alleged rise and fall of almost the entire fauna. Roughly speaking, the greatest number of animals is nearest the surface at midnight; but different species sink and rise at different times, and to or from different depths. Apart from this diurnal oscillation, unfavourable conditions at the surface send or keep the fauns down in a remarkable way: for erample, in the Bay of Biscay few organisms are to be found in the first fathom in bright andlight, but on a still, hot day the next fev fathoms teem with life; yet after a few minutes' wind or rain these upper layers will be found almost deserted. This leade to the consideration of the hydrostatics of the plankton: apart from strong swimmers, the majority contests the tendency to siok either by some means of diminishing specific gravity (increaning floating power) or by increased frictional resistance. The former is generally attained (c) by increase of bulk through development of a fluid secretion of low apecific gravity (vacuoles of Foreminifara, Rediolaria, \&c.); (b) or of a gelatinous secretion of Jow specific gravity (Medusas, Chaetopod and Echinoderm Larvae, Ckaelogmathe, Thalinece: the characteristic tranaparence of so many oceanic forms is probably attributable to this); (c) by secretion or retention of air or other gas (Physalia, Minyas, Erodre); (d) by development of oil globules (Copepoda, Cladocera, fish ova). Increased frictional reaistance is obtained by flattening out of the body (Phyllosome, Sapphirima), or hy its expansion into lateral processes (Tamopleris, Clakcus), or by the development of long delicate spines or hairs (pelagic Foraminifara, many Radialaria, many Chetopod and Decapod Larvac). In many cases two or more of these are combined in the same organism. Notwithstanding the above acaptations, some of which are adjustable, it is difficult to undentand the mechanics of the comparatively rapid oscillations of the epiplankton, of which both causes and methods are still abecure.

It will be seen from the distribution of the Thecosomatous Pteropoda-a parely oceanic group-how dificult it will prove to draw distributional areas for clases of epiplanktor P. Pelseneer recognises in all ten such provinces ("Challenger" Reports: "Zool.," xix., xxiil.) and 42 good species: of the latter 1 is confined to the Arctic, 4 to the Antarctic province, but of the remaining 37 species and eight provinces 30% occur in all eight, 16% in ceven, and only 35% have as yet been captured in a single province only.

The mesoplanklom has only received serious attention durisy the last few years. In the "Challenger," open nets towed at various depths seemed to show the existence of a deep-water plankton, but this method gives no certain information as to the horizon of capture, the nets being opon in their passage down and up.

Mens. Plation C. Chup
constructed the first efficient net which could be opened and shut at known depths, using a propellar mechanism (Bibl. Zool. vol. i.); and he improved bis ariginal pattern for the "National" and "Valdivia" expeditions. The present writer has devised a net, of which the opening and closing are effected from the deck by heavy weights; this has been used successfulty on the "Siboge" expedition and in cruises of the "Research " (Proc. Zool. Soc., 18g8). W. Garstang has constructed an ingenious net which is uscful in comparatively shallow water, but is open to criticism as being too light for depths beyond 100 fathoms; and several other types are in use. The existence of a mesoplankton, that is, of a plankton living between 100 fathoms from the surface and the bottom, has been generally considerod as definitely proved by these nets. On the otber hand, A. Agassiz, using the Tanner tow-nets, contends that while a mixture of surface and bottom speciea may occar in a closed sea near land, there is no intermediate fauna in the open ocenn between about 200 fathoms from the surface and the bottom; his conclusions, hased on negative evidence, have not met with general acceptance. Animals captured below the first hundred fathoms in the open sea (the Mediterranean, for special physical reasons, is on a special footing) are divisible into at least three categories: (1) those which are eurythermal and eurybathic, e.g. Calanus finmarchicw; (2) those which, so far as we know, are purely mesoplanktonic and never come to the surface, for example, the Radiolarian family Tuscarorides; (3) those which, bie some Schizogoda, spend a larval period in the epiplankton, and scek deeper water when adult, rising to the surface, if at all, only at night. But until the publication of the results of expeditions provided with efficient mesoplankton nets, generalizations about this fauna had better be stated with all reserve. There is, however, a certain amount of evidence to show that the mesoplankton includes different organisms in different betitudes; that surface animals of the north and south, unable to spread into the warmer surface water of lower latitudes, there sink into tbe cooler waters of the mesoplankton; the distribu. tional area of such an organism will be in three dimensions bounded by inotherms (isobathytherms) and isothermobaths. As with the hypobenthos, there seems to be no theoretical reason against the universal distribution of the mesoplankton.

When a more systematic investigation of the various horizons has been carried out, many of the present cases of supposed discontimuows distribudion will doubtless disappear. There are, however, undoubted casem of discontinuity where physical barriers have cut acroes a distributional area, an example of which may be cited here. The Isthmus of Panama was apparently only upraised about Miocene time, haviag been previously an archipelago through which a great circumequatorial current could pass; consequently the benthos of the Panams region shows marked alliance with the Caribbean, with which it was formerly continuous, but practically none with the Indo-Pacific. To the same cause is doubtless attributable the distribution of the five Decapoda which are characteristic of the Sargasso. Sea, thich are circumequatorial oceanic typea, only occasionally fittoral: three of these are known only from the Aliantic, one oceurs in the Atlantic and Pacific, one in the Atlantic, Pacific and Indian Ocesns. The damming of a great circumequatorial current by the Isthmus of Pansma is probehly also responsible for that dislocation of currents which resulted in the present selations of the Gulf Stream and North Atlantic Drift to the Labrador Current, and cut the Athatic Boreal fauna into two discontinuous distriets (2 and 2^{\prime}, fig. 3).

Under the head of discontinuous distribution, the alleged phenomenon known as bipolarily muat he mentioned. In summarising the work of the "Challenger," Sir Joinn Murray maintained on the basis of the reports that numerous species occurred in both polar and sub-potar areas which were absent from the tropic. He regarded them as the hardy survivors of a univensal laune which had withatood that polar cooling which set in towards the close of the Mesozoic period (Murray, Trans. Roy. Soc. Bdin. vol. xxxviii., 1896; G. Pieffer, Verh. deulsch. Zool. Cesellsch. ix. reg9). This view and the fects on which it was
based have been acutely contested, and the question is still far from seitlement (for lists of the literature see A. E. Ortmann Am. Naf. rxxiii. 583; and Miss E. M. Pratt, Moms. Manchetle Soc. vol. xlv., igoi). As regards the purely epibenthic and nessile fauna, there are a few undoubted instances of actual specific identity; in mome clarses, however, such as the Echinodermas, this does not appear to hold (H amburger Magalhaensche Sammelreisa; and F. Romacr and F. Schaudinn's Fame arctica); but even in these the general composition of the fauna and the persence of certain identical and peculiar genera seem to point to something more than a mere "convergence" due to gimilar environmeat. As regards the plankton of the two polar regions and such epibenthic forms as extend also into deep water, the suggestion has been made thet the Arctic and Antarctic benthoa and plankton'are really continuous by way of deep water is the main occans, where the organisms can find a suitably low temperature. As an instance of this, C. Chun (Besich, swischen dest orkt. und antarkt. Planktom, 1897) cites Krohnia hamola, a characteristic Arctic and sub-Arctic constituent of the epiplankton and mesoplankton, known only from the mesoplankton in the tropics, but rising to 38 fathoms et $40^{\circ} \mathrm{S} .26^{\circ}$ E. More exact information, such as may be expected from the various Antarctic expeditions, is required to settle this interesting question with its far-reaching corollarics.
(G. H. Fo.)

See also Zoological Distribution: I Marime.
PLANQUETTE, ROBERT (a850-), French musical composer, was born in Paris on the $315 t$ of July 1850, and educated at the Conservatoire. As a boy he wrote songs and operettas for caft concerts, and sprang into fame as the composer of Les Cloches de Cornetille (Paris, 1877; London, 1878). In this work he showed a fertile vein of melody, which won instant recognition. There is in his music a touch of pathos and romantic fecling, which, had he cared to cultivate it, would have placed him far above contemporary writers of oplea bouffa. Unfortunately, he did little but repeat the formula which originally brought him reputation. Le Chenalier Gaston was produced in 1879 with little success. In 1880 came Les Volisp geurs du $32^{m 0}$, which had a long run in London in 1887 as The Old Gmard, and La Cantinic̀re, which was tranglated into English us Neclarine, though never produced. In 1882 Rip vas Wimble was produced in London, being subsequently given in Paris as Rip, in both cases with remarishle success. The libretto, an adaptation by H. B. Farnie of Washington Irving's famous tale, brought out what was best in Planquette's talent. In 1884 the pbenomenon of an opera by a French composer being produced in London previousiy to bcing heard in Paris was repeated is Nell Coumma, which was toierably successful, but failed completely when produced in Paris as La Princesse Colombina. It was followed by La Crimailltre (Paris, 1885), Swrcouf (Paris, t887; London, as Pawl Jones, 1889), Capacin Therde (London, 1887), La Cocarde triculore (Paris, 189a), Le Talismon (Paris, 1892), Penurge (Paris, 1895) and Mam'selle Quat'sons (Paris, 1897).

PhaNTAGENET, a surname conveniently, but whistorically, applied to the royal line descended from the union of Geoflrcy, count of Anjou, with the empress Maud, who are now styled by historians the Angevin house. It was, hastorically, only a personal nickname of Geoffrey, as was "Beauclerc " of his father-in-law (Henty I.) and "Curtmantel" of bis san (Heary II.), and was derived from his wearing in his cap a sprig of the broom (genet) plant, "whicb in early summer makes the open country of Anjou and Maine a blaze of living gold." When the fachion of personal nicknames passed away, the members of the coyal house were usually named from their birthplace, as Thomas " of Brotherton." Thomas "of Woodstock," Edmund " of Woodstock," Edmund " of Langley," Lionel " of Antwerp," and 80 forth. But Edward I. and his younger brother, the founder of the house of Lancester, had atill nicknames respectively, as "Longshankis" and "Croucbhack." In the later days of the dynasty the surname of Beaufort was adopted hy the legitimated issue of John of Gaunt by Katherine Swynford, but that of Plantagence was bettowed on Arthur, netural wa
of Edward IV., who was croated Viscount L'Tsle. It appears, however, to have been adopted as a surname by Richand duke of York (father of Edvard IV.) somet welve years before hiadeath.

At the dealh of Geoffrey's grandson, Richard L., the suecession was in doubt, John's elder brother Geofirey having left, by the beiress of Brittany, a son and a duughter. But at that epoch the lew of inheritance wat in such a case unsettled, and their right whats not clear. Arthur's fate in well known, and Eleanor, the daughter, was kept captive till ber death in I24x. John's younger son Richard, king of the Romans, teft a son Edmund, earl of Cornwall, with whom his line ended; his elder mon Henry III. left two sons, of whom the younger was created eard of Lancaster and was grandiather of Henry, earl of Lancuster, whose heiress married John of Gaunt (ie. Gbent). Edward I., the elder son, was grandfather of Edward III, the marriages of whose numerous children greatly affected Englinh history. Edward his heir, the "Black Prince," left an only som, who succeeded his grendfather as Richard II., on whose death (1399) this line became extinct. Lionel, the next surviving brother of the Black Prince, left an only child Philippa, who married the earl of March, in whoee heirs was the right to the succession. But John of Gaunt, the next brothar, who had married the heiress of Lancaster and had been creased duke of Lancaster In consequence, refounded the lancastrian line, which obtained the throne in the person of his only son by her, Henry IV., on the daposition of Richard II., to the exclusion of the Infant earl of March. His next brother, Edmund of Langley, who was created duke of York ($\mathrm{I}_{3} 8$), founded the Yorkist line, and was father, by a daughter and co-heiress of Pedro the Cruel, king of Castile, of two sons, Edward, second duke, who was slain at Agincourt, and Richard, earl of Cambridge, who by marrying the granddaughter and eventual heiress of Llonel's daughter Philippa, brought the right to the succention into the house of York

Between their mon and Henry VI. (grandson of Fenry IV.) and Edward and Henry, sons and hein of these rivals, was fought out the dymastic struggle known as "the Wars of the Roses," which proved fatal to several members of both houscs. Richart, the son of Richard and Anne Mortimer, became third duke of York (1425), and was made protector of the realm 1454-1455, being finally declared heir to the throne on the triumph of his side in 1460; but he was slain at the buttle of Wakefield (Dec. 31, 1460). Of his four sons, Edward, the eldest, became king as Edward IV. within three months of his death; Edmund, the second, was alain with his father at Wakefield; George, the third, duke of Clarence, was put to death in 1478; and Richard, the fourth, duke of Cioucester, became king as Richard III. in 1483 and was slain on Bosworth Field in 1485. King Edirard IV.'s two surviving mons, Edward and Richard (the princes in the Tower), had been mysteriously put to death in 1483 , so that the oniy male descendant of the house of York, and indoed of the whole Plantagenet race, was the duke of Clarence's son Edward, earl of Warwick (grandson of "the Kingrasker"), who was imprisoned by Richard III. (his father's younger brother) ln 8483 , and finally execated on Tower Hill, under Henry VII., in 8499.

Of the house of Lancaster, the only son of Henry VI. Was slain after the battle of Tewkeabury (147 x), while Edmund (Beaufort) duke of Somerset, grandson of Johis of Gaunt, was slaln at the first battle of Si Albans (1455), and all his three soms were shain or beheaded. On the death of Henry VI. and his ann in 1471, 30 complete was the extinction of their line that fte representstion vested in the heirs of the two daughters of John of Gaunt by the heiress of Lancaster, vis. Philippa queen of Portugal and Elizabeth countess of Huntingdon. But hy his second wifc, the heiress of Castile, John had left an oniy daughter, wife of Henry III., king of Castife and Leon, who also left descendante, and from his third but ambiguous union sprang the house of Beaufort, whose doubtful claims to his heirship passed with his great-granddaughter Mergaret, by her humbend Edmund Tudor, to their son Henry VII. Aithough Lienry wes ceroful to claim the crown in his own sight (r 485),
he soon fortified that chim by manrying. Elisabeth, didet daughter of Edward IV. and rightful heirees to the throne. The marringe of their eldest daughter Margarat to James IV. of Scotland in 1 gos resulted in the aceascion of James VL. of Scothand, a century later, as neat heir to the thave (see Stewart).
Alehough no other dynaty has reigned so long over England since the Norman Conquest, the whole legitimate male lissue of Coumt Ceofrey Plantagenet is clearly proved to have become extinct in 2499. Of its illegitimate dencendents the house of Cormall was foumded hy Richard, a manal mon of Richard, king of the Romass and earl of Cornwall, who was encestor of Lord Comewall of Fanhope, temp. Fienry VI., of the Cormewalls, "bacons of Burford," and other familits; but the priacipal bouse is that which was founded, at a later diste, by Sir Charics Somerset, matural son of Henry (Betufort) dute of Somerset (beheaded 1464), who was created earl of Worcester in 1513, and whose descendant Henry, marquess and eari of Warcester, obtained the dukedom of Beaufort in 1682. From him deacend the ducal house, who beur the ancient arms of France and England, quarteriy, within a bordure.
(J. H. R.)

PLANTMIII (Lat. plontago), a name given to certain plants with hroad leaves. This is the case with certain specics of Plamlago, Alisma and Musa, to all of which the term is populariy applied. The species of Plamego are mostly weeds with a dense tuft of radical lenves and scapes bearing terminal spites of amall flowens; the long spikes of P. major, when in med, are need for feeding cage-birds; P. lanceolede, wo called from its narrow lanceolate 3 -6-ribbed leaves, is popularly known as ribwort; Alisma P. is the water-plantain, to called from the revemblance of its broad ribbed aerial leaves to those of P. majow. The tropical fruit known as plantain belonge to the genus Mase (see Banara).
PLANTATIOM (Lat. Moulare, to plant), literally the placing of plants in the ground, bence a place planted or a collection of growing things, ace, particulaty used of ground planted with young trees. The term wan early applied, in a figurative remse, to the settlement of people, and particulardy to the coloniration of Nosth America in the earty part of the ryth century and to the settlement of Scotch and Engtiah in the forfeited lands in Ireiand (see below). The practice of sending convicted criminals to serve on the plantations in the colonies became common in the ryth century (eee Deromintiox). These plantations were chiefly in tbe cotton, weygr and tobacco growing colonies, and the term "piantation" is thus particularly applied to edates in tropical or semb-tropical conntries; the propristors of sueh estates axe specifically styled "planters."

The negroes on the plantations of the Southern States of North Arnerice sang their songs and hymps and danced to tunes which were traditional, and are frequently known as "Plantation Songs." It has been ciaimed Prastacion for some of them that they represent the folk songs brought by the first slaves from Mifica; but the more generally accepled view is that they ware those European hymn and eong tunes which the negroes picied up from the revivalist preachers or from the Europenss around them, and adapted to their own strongly marked riythms, which are certaialy of African origin. The earliest songs which becime femiliar to those outalde the Southern States was "Jim Crow," sung by Dan Rice, and introduced to England about 1836. The "Jubilee Singers," a troupe from Fiak Univereity, Nashville, Tennessee, toured the United States and Earope in 1811; but the great popularity of the negro songs and dances, and the traditional instruments, the bones and tambourine (the banjo was not oxiginally used by the genuine negro), was due to the so-called "negro minstrel" troupes, of which the best known in England were Christy's, whence the generic name of Christy Minstrels, and later of the Moore and Burgess troupe at St James's Hall, London, started in 7862 and finally diosolved in rga4.

The best colicction of genuine " plantation songs" and their wordi in Slase Songe of the Unived States (New York, 1875): tee Also
C. L. Edvards, Bohome Sonfs and Shories (Bonton, 1893); J. B. T. Marah. The Story of the Jubilee Singers (Boston, 1895); ;and articles by G. W. Cable on "The Creote Slave Dance" and "Creole. Slave Songs," in the Century, February and April 1886.

Ptantaction of Ulster.--The Irlish rebellion, which had disturbed Ulater during the closing years of Elizabeth's reign, was followed umder james I. by further troubie, due partiy to the inability of the English governiment to underntand the syztem of land ownership prevalent in Ircland. At this time the chief offenders againat the authority of England were the carls of Tyrconnell and Tyrone, but in September 1607 these once powerful nobles fled from the country. The English Lawyers declared that the extensive estates which they held, not in their perzonal capacity, but as the beadm respectively of the tribes of O'Neill and O'Donneil, had become the property of the English crown; and the problem which now confronted James I. and his advisers was what to do with the land, which was much too large to be cultivated properly by the scanty population living thereon. The idea of a plantation or coloniza. tion of Ulster, which was put forward as an answer to this question, is due mainly to Sir Arthur Chichester, the Irish lord deputy; its object was to secure the better cultivation of the land and to strengthen the English influence in Ulster hy granting estates to English and Scottish settiers. Chichester proposed that the native inhabitants should he allowed to occupy as much land as they could cultivate, for he said, "that many of the patives in each county ciaim freerold in the lands they possese, and albeit these demands are not justifiahle by law, yet it is hard and almost impossible to displant them." Even If this advice were carried out on a generous scale, the deputy considered that there would be abundance of land to offer to colonists, and also to reward the class of men known as servitors, those who had served the English king in Ireland. He aubmitted his ideas to Sir James Ley and Sir John Davies, two of the ministers of James L.; they reported to the English privy council, which signified its approval, and after the question bad been illuminated hy Bacon's great intellect, a committee was appointed to make the necessary arrangements. But those responsible for the plantation made one cardinal mistake, a mistake which was to cost the country much in the future. They rejected Chichester's idea of allotting land to the natives on a liberal scale, preferring to turn them out and to parcal out the whoie of the forfeited district anew.

The forfelted lands lay \ln six counties, Tyrone, Donegal, Armagh, Fermamagh, Cavan and Coleraine (Londonderry), and the scheme for the plantation having been drawn up, the necessary survey began in May 1609. This was very inaccurate, but it served its purpose. The land was divided into three sections. One block was set apart for English and Scottish setters, who were not to be allowed to heve any Irish tenants; another was aliot ted to the secrvitors, who might have either English or Irish tenants; and a third was reserved for the Irish. Applications were then entertained from those willing to take up the land, and under Chichester's direction the settiement was proceeded with. The iand was divided into portions of 1000, 1500 and 2000 acres, each colonist undertaking in return for his grant to build a castle or a walled enclosure, and to keep, train and arm sufficient men for its defence. Moreover he must take the oath of supremacy to James, and must not alienate his etetate to an Itishman. He was given two years in which to do the necessary building; during this period he was freed from paying rent, but afterwards he must pay a quit-rent to the Crown. Ascale of rents was drawn up, the native Irish paying af a higher zate than the Engilsh and Scottish settlers. Out of the forfilied lands provislon was made for the maintenance of churches and schools, which were to be erected in conformity with the acheme.

The work progressed very slowly and much of the building was not even begun within the required time. Then in 16is James X ., who bad from the first taken a lively interest in the plantation, sent Lord Carew to report on it. Carew's inspection did not reveal a very levoratihie comdition of athirts, and in

16 r 5 Sir Josiah Bodiey was sent to make a further report about the progress of the work. A third report and survey was made three years later by Nicholas Pynnar, who found in the six countics 1974 British familics, with 6125 men capable of bearing arms. He said that even on the lands occupied by the colonites the cultivation of the soil was still very much neglected The words spoken by Bacon in 16×7 with reference to the plantation had come true. "Take it from me," he said, "that the bane of a plantation is when the undertalisers or planters make such haste to a littie mechanieal present profit, as diratirbeth the whole frame and nobleness of the work for times to come." Another survey took place in 1622, when various changes were suggested, but no serionas alterations were made. On the whole the plantation had been a fallure. Very few of the settlers had carried out their undertaking. In many cases the Irish had remained on the land allotted to the colonista, living under exactly the same conditions as they had done before the plantation, and holding on "whether the legal landlords hiked it or not." As actually carried out the plantation dealt with $5 \times 1,465$ actes. Two-fifths of this was assigned to British colonists, being divided about equally between Englishmen and Scotchmen. Rathef more than one-fifth went to the Church and abont the same amount to the wervitors and the natives. The beat settlers were the Scots, although their tendency to marry with the Irish was noted and condemned during the early years of the settlement.
An important part of the plantation was the settement of thecounty of Coleraine by the corporation of the city of London. Rectiving a grant of practically the whole of the county the corporatlon undertook to spend $£ 20,000$, and within two years to build 200 houses in Derry and 100 in Coleraine. This whes the most successful part of the settlement, and to it Londonderry owes its present name.
The expulslon of the Irish from the land in which by law and custom they had a certain proprictary and hereditary right, although not carried out on the scale originally contemplated, naturally aroused great indignation among them. Attacks on the setters were followed by reprisals, and the plantation may falriy be regarded as one of the causes which led to the terrible massacre in Ulster in $\mathbf{1 6 4 1}$. During Elizabeth's reign a scheme for the plantation of Munster was considered, and under Charles I. there was a suggestion for the plantation of Connaught, hut eventually both were abandoned.
The "Orders and Conditions of Plamtation" are printed la Walter Harri't Hibermica (Dubiin, 1770); and in George Hili: Hislerieal Accound of the Plantation in Ulster, yous-1670(Bellast, 1877). See also S. R. Gardiner. History of England (i899), vol. i.; and R. Bagwell, Irdand undor ike Sluarts (1909), vol. i.

PLAKTLI, CHRISTOPRE ($5514-1589$), French printer, was bom in a village near Tours (probably Saint-Avertin). He lcarnod bookbinding and bookselling at Caen, apd, having married in that townt settled in 1549 as bookbinder in Antwerp, where bo was soan known as the first in his prolcasion. A bad wound in the arm seems to have been the cause zhat first ied him (about 1555) to apply himself to typography. Tho Grst known book printed in his offica was La Instibulione di un4 fancixlla nata nobilmoxie, by J. M. Bruto, with a Freach transiation, and this was soan followed by many other works in French and Latin, which in point of execution rivalled the best printing of his time, while the masters in the art of engraving then flourishing in the Netherlands illustrated many of his editions. In 1562 , Plantin himself being absent in Paris, his workmen printed an heretical pamphlet, which caused his movables to be seized and sold. It seems, however, that he recovered a great deal of the moncy, and in 1563 he associated himself with some friends to carry on his husiness on a larger scesle. Among them were two grand-repphews of Dan. Bomberg, who furmished him with the fine Hebrew types of that renowned Venetlan printer. His editions of the Bible in Hehrew, Latin and Dutch, his Corpus jurris, Latin and Greek classics, and many other works produced at this period are renowned for theis behutiful ercestion and zeturacy. A much greater enteiprise
was planned by him in thove years-the publiction of a Biblia polygloda, which should fix the original text of Old and New Testaments on a scientific basis. In spite of clerical opposition he was supported by Philip LI. king of Spain, who sent him the learned Bepedictus Arias Montanus to take the leading part in the work of editorabip. With his zealous help the work was finished in five years ($556-1573,8$ vole folio). Plantin earned little profit, but received the privilege of printing all liturgical books for the states of King Philip, and the officeof" prototypographus regius." Though outwardly a faithful son of the church, he was till his death the partimn of a mysulcal sect of heretics; and it is now proved that many of their books published without the name of a printer came from his presees together with the misale, breviaries, 8 c ., for the Roman Catholic Cburch.

Besides the polyglot Bible, Plantin published in those years many other works of note, such as editions of St Augustine and St Jerome, the botenical works of Dodonacus, Clusius and Lobelius, the description of the Netherlands hy Gulociardini, \&c. In 1575 his printing-office reckoned more than twenty preses and seventy-chree workmen, besides a similar number that worked for the office at bome. But in November 1576 the town was plundered and in part burnt by the Spaniards, and Plantin had to pay an exorhitant ransom. He established a branch of his office in Paris; and when in 5583 the atates of Holland sought a typographer for the newly erected university at Leiden, he left his much reduced husiness in Antwerp to his sons-in-law John Moerentor (Moretus) and Francis van Raveljughen (Raphelengius), and settled there. When in 1585 Antwerp was taken by the prince of Parma and affairs became there more settled, he left the office in Leiden to Raphelengius and returned to Antwerp, where he laboured till his denth on the rst of July 1589 . His son-in-law, John Moretus, and his descendants continued to print many works of note "in afficina Plantiniana," hut from the second half of the 17 th century the house began to decline. It continued, however, in the ponsension of the Moretus family, which religiously left everything in the office untouched, and when in 1876 the town of Antwerp acquired the old buildings with all their contents, for $1,200,000$ francs, the authorities were able with litlle trouble to create one of the most remarkable museums in existence (the Musbe Plantin, opened August 29, 8877).

See Max Rooses, Christophe Plantin imprimewr ansersois (Antwerp, 1882); Aug. de Becker and Ch. Ruelens, Amanes do Timgrimeric Plantinienase (Brusucle, 1865); Degcorge, La Maisom Plantir (and ed., Brumala, 1878).
(P. A. T.)
plants. In the most generally used sense, a plant is a member of the lower or vegetable order of tiving organized things; the term is also popularly applied to the smaller herbaceous plants, thus excluding trees and shrubs. The early use of the word is for a twig, shoot, cutting or sapling, which was the meaning of Lat. planda for plancla, the root being that seen in planus, fiat, cf. Gr. nharis, broad; planta thus meant a spreading shoot or sucker). Other mearings of "plant "are derived from the verb " to plant " (Lat. plantare, to fix in position or place). It is thus used of the fixtures, machinery, apparatus necessary for the carrying on of an industry or business, and in colloquial or slang use, of a swindle, a carefully arranged plot or trap laid or fixed to deceive; ef. also Plantation. In the following sections the botanical sense of the word is followed, the term being used generally as opposed to "animals."

Classtrication or Plants

Some account of the history of plant classification and the development of a natural system in which an attempt is made to show the actual relationships of plants, is given in the articie Borany. The plant world falls into two great divisions, the higher or flowering plants (Phanerogams), characterized by the formation of a seed, and the lower or flowerless plants (Cryplogams), in which no seed is formed but the plants are disseminated by means of unicellular bodies termed spores. The term

Cryptogam is archate, implying a hidden method of reproduction as compared with the obvious method represented by the flower of the Phanerogam; with the aid of a good microscope it is, however, casier to follow the process of fertilization in many Cryptoganes than in the flowering plants. These two great divisions are moreover of unequal value, for the Cryptogams comprise several grosps differing from each other by charncters as maried as those which separate some of them from the Phanerogams. The following groups of aub-kingdoms are those which ase now generally recognired:-

Cryptozama
 I. Thallophyta,
 III. Pteridephyta.
 Phancrogams of IV. Spermatophyta.

Thallophyta are the moat lowly organised planta and include a great variety of forms the vegetative portion of which consists of a single cell or a number of cells forming a more or leas branched thallus. They are characterimed by the abyence of that dificrentintion of the body tnto root, aterm and leaf which is so marked a fcacture in the higher plante, and by the simplicity of their internal structure. Both aexual and asexual reproduction cocur, but there is usually no definite muccepsion of the two modes marking that altermation of acxual pencration (gametophyte) and manual geperation (eporophyte) which characterise the highar groupe The group has until recent years been regarded at comprising three clasers dis tinguinhed by well-marked physiological fentures-the Algae (including the Seaweeds) which contain chlorophyll, the Fungi which have no chlorophyll and therefore lead a saprophytic or parasitic mode of life, and the Lichens which are comparite organisma condiaing of an ala and a fungua living together in a mutual paratitima (aymbiods); Bacteria were resarded as a meetion of Fungi. Such a system of clamification, although convenient, is not the mont natural one, and a aketch of the sywtem which better expreave the relationshipt between the varions gubdivisioms is given here It has however been deemed adrisable to remain the older eroupa for purpose of treatment in this work, and articlea will be found under the headingt Alcat, Fungi, Bacteria, and Lichens. The study of phylogeny hat argeeted fourteen cinmen arranged in the following equence: (1) Bacteria; (1) Cyancphyoene (Blue-given algae); (3) Flagellatae; (4) Myxomycete (Slimo (ungi); (5) Feridineae; (6) Conjugatae: (6) Diatomaccae (Diatoms); (8) Hetcroconteae: (9) Chrorophyceae (Grcen Algae); (10) Characeae (Stone-
 (13) Phycomycetes (Algal fungi); (ii) Phmeophyecene (Brown Algac). Bactcria (see BacterioLocy) and Cyanophyceae (mee ALGAE), which are often grouped together as Schizophyta, are from points of view of both seructure and reproduction extremely simpla organioms, and atand apart from the remaining groupa which are presumed to have orivinated directly or indirectly from the Flagellatac, a group of unicollular aquatic organisma combinuing animal and plant characteristics which may be regarded as the
stertling-point of unicellular Thallophytes on the one hand and of the Protozos on the other. Thus simple forms included in the Heteroconteae, Chlorophyceae and Phacophycene show an obvions connexion with the Flagcllatar; the Perdineac may be regarded as a further developed Branch; the Conjugatac and Diatomaceae cannot be directly connected: the origin of the Rhodophyceae is also obecure; white the Charmeene are an advanced and isolated group (sec AlaAB). The Mycetoman (q.0.) or Mywomyeetes are a saprophytic proup without chlorophylf of simple atructure and isolated position. The algal fungi Phycomyccten, are ohviously derived from the Green Algae, thile the remalning Fungi, the Eumycetes, appear to have sprunig from the atme atock in the Rhodophyceap (see Fuxai). Owing to the rimilarity of structure and mode of Life it is convenient to treat the Lichens (ev.) an a dispinct class, while recognizing that the component fungus and alga are representatives of their own classes.

The Bryophyta and Pteridaphyta have aprong from the hisher Thallophyta, and together form the hirier group Archegoniatac, so-called from the rorm of the organ (archegomicum) in which the cep-cell is developed. The Archegoniatae are characterized by a well-marked alternation of gametophyte and sporophyte generations: the former bearn the sexuma orpans which are of characterisic structure and known an antheridia (ramb) and archegonia (female) reapectively; the fertilized ezz-cell on germination gives riee to the spore-bearing peneration, and the spores on germination give rise directly or indirectly to a sceond gametophyte.
The Mospes and Liverworts (gee BryorkyTa) include forms with a more or lem leaf-like thallum, such as many of the liverworts and corms in which the plant shows a difierentiation into a skew bearing remarkably simple leaves, as in the true mosacts. They have no true roote, and their structure is purely celtular or conducting hundles of a very simple strueture are present. The independent plant which is enenally autucbed to the soil by hair-fike structurea is the serual geperation, the mporophyte in a stalsed or memile sapmil
which remains alwaye attached to the gametophyte from which it derives the whole or part of its nourishment.

The Ferns and fern-like plants (see Pteridophyta) have on the other hand a well developed independent sporophyte which ti differentiated into stem, leal and root with highly organised intermal structure including irue vacular bundlea. In general structure they approach the Phanerogams with which they form collectively the Vascular Plants at contrasted with the Cellular Plants-Thallophyta and Bryophyta. The gametophyte is a emall thelloid structure which chows varying degrees of independence affording an interepting transition to the next group.

Spermalophyla are characterized by an extreme reduction of the semetophyte generation. The sporophyte is the plant which is differentiated into tem, leal and root, which show a wonderful variety of form: the internal structure also shows increased complexity and variety as compared with the other proup of vaccular plants, the Pteridophyta. The spores, as in the heterosporous Pteridophyta, are of two kinds-microspores (pollen grains) borne in microsporangia (pollen racs) on special leaves (sporophylls) known as stamens, and macroapores (embryo-ate) borne in macroeporangia (ovules) on sporophyils known as carpels. The fertlle leaves or sporophylts are generally aggregated on special shoots to form dowers which may contain one or both kinds. The microspores are tet free from the porangium and carried generally by wind of insect agency to the vicinity of the macrospore, which never leaves the ovule. The male sametophyte is repremented by one or few cells and, except in a few primitive forms where the male cell still retays the motile character as in the Pteridophyta. is carried pasively to the macroapore in a development of the pollen grain. the pollen tube. The Spermatophyta are thus land plants par escellence and have, with the few exceptions cited, lost all trace of an aquatic ancestry. Aquatic plants oceur among aeed plants but these are readaptations of land plants to an equatic environment. After fertilization the female cell, now called the cospore, divides and part of it develops into the embryo (new sporophyle), which remains dormant for a time still protected by the ovule which has developed to become the seed. The seed Is new otructure characteristic of this group, which is therefore often referred to as the Seed-plants. The seed is wet free from the parent plant and serves as the means of dissemination (see Flows F ; Pollination: Feuit, and Seed). The Spermatophyta lall into two classes, Gymnosperms (g.v.) and Angiosperms (g.v.); the former tre the more primitive group, appearing earlier in geological time and thowing more rewemblance in the course of their life-history to the Pteridophyta. A recently diceovered fossil group, the Pteridospermate (bee Palagobotany) have characters inter. mediate between the Pteridophyta and the more primitive seedplants.

In GYMNOSpErus-so-called because the ovules (and seeds) are borne on an open sporophyll or carpel-the microsporophyils and macrosporophylls are not as a rule associated in the same shoot and are generally arranged in cone-like wructures; one or two emall prothallal cells are formed in the germination of the microepore; the male cells are in come older members of the group motite though usualty passive. The ovule is not enclosed in an ovary, and the usually solitary macrospore becomes filled with a prothallus, in the upper part of which are formed several rudimentary archegonis. The fertilized egg-cell (oompore) forms a filamentous structure, the proembryo, from a restricted beeal portion af which one or more embryos develop, one only as a rule reaching maturity. The embryo consists of an axis bearing two or more cotyledons and ending below in a radicle; it lies in a generally copious food-storing cisoue (endosperm) which is the remains of the female prothallus. The plant has a well-developed main root (tap-root) and a single or branched lealy mem which is provided with a means of mecondary increase in thickness. The leaves are generally tough-skinned and last for more than one season.

The Anciospgams. which are much the larger clase, derive their mane from the lact that the carpel or carpels form a closed chamber. the ovary. in which the ovules are developed-asociated with this is the development of a receptive or stigmatic surface on which the pollen grain is deposited. The sporophylls (stamens and carpels) are generally associated with other lesves, known as the perianth, to form a flower; theme subsidiary leaves are protective and attractive in function and their development is correlated with the transport of pollen by insect agency (see ANCIOsperys; Pollishtion. and Flowis). The male gametophyte is sometimes repremented by a transitory prothallial cell: the two male cella are carried pasively down into the ovary and into the mouth of the ovule by means of tha pollen-tube. The lemale gametophyte is extremely reduced; there is a eexual apparatus of maked cells, one of which Is the egiscell which, after fusion with a male cell divides to form a large" auspensorial" cell and a terminal embryo. Endosperm Is formed as the reault of the fusion of the eecond male cell with the eo-called "definitive nucleus" of the embryo-gac (ree Anciosteress). The embryo consists of an axis bearing one (Monocotyledons) or two (Dicotyledons) cotyledons, which protect the stem bud (plumule) of the future plent, and ending below In a fedicle. The seed is enclosed when ripe in the Iruit, a deveiopment of the ovary as a realte of fertilisation of the egt-cell. (A. B. R.)

Anatory or Plants

The term "Anatomy," originally employed in biological science to denote a deacription of the facts of structure revealed on cutting up an organism, whether with or without the aid of lenses for the purposes of magnification, is restricted in the present article, in accordance with a common modern use, to those facts of internal structure not concerned with the conscitution of the individual cell, the structural unit of which the plant is composed.

An account of the structure of plants peturally begins with the cell which is the proximate unil of orgenic structure. The cell is ersentially an individualised mase of protoplasm containing a diferentinted protoplamic body, called a maclews. But all cells which are permaneat tisave-elements of the plantbody possess, in addition, a more or less rigid limiting membrane or cell-wall, consisting primarily of cellulone or some allied substance. It is the cell-walls which connect the different cells of a tissue (sec below), and it is upon their characters (thickness, sculpture and constitution) thet the qualities of the tissue largely depend. In many cases, indeed, after the completion

FxG. 1.-Examples of the differentiation of the cells of plante.
A, Cell (Individual) of the unicellular Green Alge Plowrococees, as example of an undifferentiated autonomous assimilating cell. pr., Cell protoplasta: mn, nucleus: ch., chloroplast; c.v., cell-wall.
B., Plant of the primitive Siphoneous Green Alga Prolasiphon botryoides. The primitive cell ends colourlews tubelets (rhipoids, 7h.) into the mud on which it grows. The subaerial part is eubular or ovoid, and contains the chloroplatt (chi.). There are meveral auclei.

C, Base of the multiceliular filamentous Green Alga Chacomerpha earec. The basal cell hat leas chlorophyll than the others, and is expended and fixed frmily to the rock on which the plant grows by the besal surface. th, thus forming a mudimentary miteoid.
D. Part of branched filamentous thallus of the multicellular Green Alga Ocdachadism. cr. ax., Green axis creeping on the aurface of damp soil; th., colourles mimids penetrating the woil; asc. as., escending axes of preen celly
E. Verical section of frond of the complicated Siphoneous Green Alga Habimeda. The substance of the frond is made up by a single much-branched tube, with interwoven branches. cond. med., Longitudinally running comparatively colourles central (medullary) brasches, which conduct food substances and support the (asr. cor.) green anamilating cortical branches, which are the ends of branches from the medulla and fit tightly together, forming the continuous surface of the plant.
F. Section through the surface tiscue of the Bromn Alpa Cudaris multyhle, showing the waface layer of anamilating cells denmely packed with phaeoplasts. The layeri below have procreacively fower of these, the central celis being quite colouricss.

G, Section showing thick-walled cells of the cortex in a Brown Alga (Heweed). Simple pits (p.) enable conduction to talbe place readily from one to another.
H. Two adjacent cells (leptoids) of a food-conducting atrand in Fucus (a Brown seaweed). The wall between them is periorated, giving pasazete to coaree st rands of protoplasm.
i. End of hydroid of the thalloid Liverwort Elyath, showing the thick lignified wall petetrated by alaple pite.
of the cell-wall (which is secreted by the living cell-body) the protoplasm dies, and a tissue in which this has occurred consiats polely of the dead framework of cell-walls, enclosing in the cavities, originally occupied by the protoplasm, simply watet or air. In such cases the characters of the adult tissue clearly depend solely upon the charticters of the cell-walls, and it is urull in plant-anatomy to speals of the wall with fts encleeed
cavity as "the cell," and the contained protoplasm or other substances, if present, as cell-contents. This is in accordance with the original use of the term "cell," which was applied In the 17 th century to the cavities of plant-tissues on the analogy of the cells of honeycomb. The use of the term to mean the individualized nucleated mass of living protoplasm, which, whether with or without a limiting mambrane, primitively forms the proximate histological element of the body of every organism, dates from the second quarter of the igth century. For a more detailed description of the cell see Cyrosocy and the section on Cylology of Plants below) In all but the very simplest forms the plant-body is built up of a number of these cells, associated in more or less definite ways. In the higher (more complicated) plants the cells differ very much among themselves, and the body is composed of definite systems of these units, each system with its own characteristic structure, depending partly on the characters of the component cells and partly

Fre. ia.-Examples of the differentiation of the tisoue of plants.

1. End of hydroid of the Moss Mmium, showing perticularly thin oblique end-wall. No pits.
K, Optical section of two adjacent leptoids of the Moes Polytrichum juniperinum. The leptoids are living and nucleated. They bulge in the neighbourhood of the very thin crose-wall. Note resemblance to H and R.
L. Optical eection of cell of parenchyma in the same mons. Embedded in the protoplasm are a number of starch grains.
M. Part of clongated stereid of a Moss. Note thick walls and oblique slit-like pits with opposite inclination on the two sidee of the cell seen in surface view.
N, One side of the cad of hydroid (tracheid) of a Pteridophyte (fern), with scalariform pits.
O. Opfical section of two adjacent leptoids (sieve-tube segments) of Pteridophyte, with sieve plates (s. p.) on oblique end-wall and side-walla.

P, Part of spiral hydroid (tracheid) of Phanerogam (Flowering Plant).

Q. Three segments of a "pitted " vessel of Phanerogam.

R, Optical section of leptoid (sieve-tube segment) of Phanerogam, with two proteid (companion) cells. s. ϕ., sieve-plate.

S , Optical section of part of thick-walled stereid of Phanerogam. with almost obliterated cavity and narrow slit-like oblique pits.

T, Part of vertical section through blade of ty pical leaf of Phanerogen. u.e., Upper epidermal cells, with (c) cuticle. (p) Assimilating (palisade) cells. sp., Assimilating (spangy) cells with large lacunae. i.c., Lower epidermis, with st., stoms.

U, Absorbing cell, with process (root-hair) from pilifcrous layer of root of Phanerogam.

V, Endodermal cell of Phanerogam, with suberised central band on radial and transverse walls.
on the method of association. Such a system is called a tissucsystem, the word tissue being employed for any collection of cells with common structural, developmental, or functional characters to which it may be conveniently applied. The word is derived from the general resemblance of the texture of plant substance to that of a textile fabric, and dates from a period when the fundamental constitution of plant substance from individual cells was not yet discovered. It is convenient here to detine the two chief types of cell-form which characterize tissucs
of the higher plants. The term parenchyma is applied to tissues whose cells are isodiametric or cylindrical in shape, prosenchyma tissues consisting of long narrow cells, with pointed ends.
We may now proceed to a syatematic account of the anatomy of the different groups of plants, beginning with the simplest. and passing to the more complicated forms.

Thallophyta.-The simplest members of both the Algae and the Fungi (q.v.) (the two divisions of the Thallophyla, which is the lowest of the four great groups into which the plant-king der is divided) have their bodies each composed of a single cell In the Algae such a cell consists essentially of (1) a mass oi protoplasm provided with (2) a nucleus and (3) an assimilating apparatus consisting of a coloured protoplasmic body, called a chromatophorc, the pigment of which in the pure green forms is chlorophyll, and which may then be called a chloroplast. The whole of these living structures are covered externally by the dead cell-membrane (fig. I A). It is from such a living and assimilating cell, performing as it does all the vital functivas of a green plant, that, according to current theory, all the different celi-forms of a higher plant have been difierentiated in the course of descent.
Among the Greca Algae the differentiation of cells is compara. tively slight. Many forms, even when multicellular, have all their cells identical in strueture and function, and are often spoken of as "physiologically unicellular." The cells Centand are commonly joined end to end in simple or branched filaments. Such differentiation as exists in the higher Duperef types mainly takea two directions. In the fixed forms that then the cell or cells which attach the plant to the substratum citeo have a peculiar form, containing chlorophyll and constitutins a rudimentary fixing organ or shizoid (fig. iC). In certain ispes living oa damp soil. the rhizoids penetrate the substratum, and in addition to fixing the plant absorb food substances (dissolved salts) from the substratum (fig. I B and D).

The second type of differentiation is that between supportina axis and assimilating appendages. The cells of the axis are commonly stouter and have much less chlorophylt than those of the appendages (Draparnaldia). This differentiation is parallel with that between stem and leal of the higher plants. In the group the Siphoncae both these types of differentiation may exist in the single, long, branched, tube-fike and multinucleate "celf " (coeverg:z) which here forms the plant-body. Prolosiphon (fig. 1 B) is $2 n$ example parallel with dedocladium; Bryopsis, with Draparnald.a. In Caulerpa the imitation of a higher plant by the diferentiation of fixing, supporting and assimilating organs (root, stem and Iraf, from different branches of the single cell is strikingly complete. In the Siphoncous family of Codiaceae the branches of the primitive cell become considerably interwoven one with another, so that a dense tissuc-like structure is often produced. In this we pot a further differentiation between the central tubes (branehes of the primitive cell), which run in a longitudinal direction through the body, possess little or no chlorophyll, a nd no doubt serve to condect food substances from one region to another, and the peripheral oncs, which are directed perpendicularly to the surface of the body, ending blindly there, contain abundant chlorophyll, and are the assimilatiog organs (fig, i E).

None of the existing Red Scawceds (Rhodophyceae) has a unicrllular body. The thallus in all cases consists of a branched filamernt of cells placed end to end, as in many of the Green Algae. Eich branch grows simply by the transverse division of its apical c-ll. The branches may be quite free or they may be united laterally to form a solid body of more or less firm and compact consistency. This may have a radial stem-like organization, a central cell-t hrrad giving of from every side a number of short sometimes unicelluiar branches, which together form a cortex round the central thread. the whole structure having a cylindrical form which only brancbes when one of the short cell-branches from the central thread grows out beyond the general murface and forms in its iurn a new central thread, from whose cells arise new short branches. Ot the thallres may have a leaf-like form, the branches from the central threads which form the midrib growing out mainly in one plane and forming a lamina, extended right and left of the midrib. Numerous varis: tions and modifications of these lorms exist. In all cases, while the interfal threads which bear the cortical bramehes consist of clongated celts with few chromatophores, and no doubt serve mainly for conduction of food substances, the superficial cells of the branches themsclves are packed with chromatophores and form the chicf assimilating tissue of the plant. In the bulky forms colourless branches frequently grow out from some of the cortical eclls. and, pushing among the a!ready-formed threads in a longitudinal direction, serve to strengthen the thallus by weaving its original threads together. The cells belonging to any given thread may be recognized at an early stage of growth, because each cell
is connected with its neighbours belonging to the same thread by two depressions or pits, one at each end. The common wall separating the pits of the two adjoining cells is pierced by strands of protoplasm. The whole structure, consisting of the two pits and the wall between is known as a geretic pil. Other pits, connectipg cells not beloging to the same branch, are, however, formed at a bater stage.
Many of the lower forms of Brown Seaweeds (Phoeophyceae) have - thallus consisting of simple or branched cell threads, ses in the green and red forms. The lateral union of the branches to form a solid thallus is not, however, so common, nor is it carried to 30 high e pitch of elaboration as in the Rhodophycete. In a few of the lower forma (Sphacelariaceac), and in the higher forms which poseess a solid thallus, often of very large size, the plant-body is mo longer formed entirely of branched cell-threads, hut consists of what is called a true parenchymatous tissue, i.e. a solid mase of cells, formed by cell division in all directions of apace. In the Laminariacese this tissue is formed by cell division ot what is called an indercalary prowing poimh i.f. a maristematic (cell-dividing) region occupying the whole of a certain transverse zone of the thellus, and cutting off new cells to add to the permanent tissue on both sides. In the Fucaceac, on the other hand, ther is a single prismatic apical cell situated at the bottom of a groove at tho growing apex of the thallus, which cuts of cells from its sides to add to the peripheral, and from its base to add to the central permanent cells. The whole of the tissue of the plant is formed by the division of this apical cell. In whatever way the timuea are originally formed, however, the main leaturet of their differntiation are the ame. According to a law which, as we have seen, applise also to the green and red lorms, the superficial cells are packed with chromatophores and form the assimilatin! tissue (fig. I_{1} F). In these brown types with bodies of considerable thickness (Laminariaceae and Fucaceae), there in however, further differentiation of the internal tisoues. The cells immediately aubjucent to the anperficial asamilating layer form a colourless, or nearty colourless, parenchymatous corlex, which ects as a food storage tiesue (fig, t, C), and surrounds a central medulla of elongated conducting cells. The latter are often swollen at the ends, so that the crostwall meparating two succesive cells has a isarger surace than if the cells were of uniform width along their entire length. Cells of this type are often called trumper-hyphae (though they have no connexion with the hyphac of Fungi), and in epone genera of Laminariacenc thowe at the periphery of the medulla mimalte the marotimes of the bigher planto in a striking degren, even (like these latter) developing the peculiar mbstance callose on or in the perforated crose-walis or sieve-plates A specialized conducting tissue of this kind, used mainly for tranmitting organic substances, is apays developed in plants where the region of esaimilative activity is local in the plant-body. as it is in practicelly all the hirter plants. This is the cone in the Fuesceas, and in a very marted degree in the Laminariacione in question, where the assimilative frond is bome at the end of an extremely long oupporting and conducting stipe. A similar state of thinge exists in some of the more hidhly differentiated Red Senweeds The tisaue developed to meet the demande for conduction in auch cases always shows some of the characters described. It ia known as luplom, each constituent cell being a leproid (Gg. 1, H). In addition to the cell types deveribed, it is a very common oceurrence in these hulky forms for rhizoid-like branches of the cells to grow out, mootly from the cells at the periphery of the medulla, and grow down betwaen the cells, 隹reagthening the whole tismue, as in the Rhodophyceac. This process may result in a considerabic thickening of the thallus. In many laminariacose the thallua also grows regularly in thickness by division of ita surface layer, adding to the aubjacent permanent tisue and thus forming a sacondary merishem.

The ampler Fungi, like the ianpler Green Algae, consist of single cells or simple or branched cell-threade, but among the Thesen of higher kinds masive body is often formed, particucrpangion this.may exhibit coasiderable tissue-differentiation. A characteristic feature of the fungal vegetative plantbody (mycelium) in its formation from independent coenocytic tubess or cell-threads. These branch, and may be packed or interwowen to form a very solid btructure: but each grows in length independently of the others and retmine its own individuality, though its growth in thone typen with a definite external form is of course correlated with that of its neighbours and is aubject to the laws governing the general form of the body. Sugh an independent coenocytic branch of cell-thread is called a kypho. Similar modes of growth occur among the Siphoneovs Green Algat and two among the Rad Seaweeds. A solid lungal body may usually be ceen to consist of eeparate hyphac. but in some cases these are so bent and cloeely interwoven that an appearance like that of ondinary parcnchymatous tisaue is obtained in acction, the etructure being called psetwloparenchyme. By the formation of numerous crosiswalls the rememblance to parenchyma is incteaned The safoce-duyer of the body in the massive Fungi differs in charteter eccording to its function which is not constant throughout the claus, as in the Algac, because of the very various conditions of life to which dificrent Fungi are exposed. In many form it byphae are particularly thickwalled, and may atrikingly retomble
the epidermis of a vascular plant. This is eapecially the case in the lichens (symbiotic organisms composed of a fungal mycelium in association with algal cells), which are usually exposed to very acvere fluctuation in external conditions. The formation of a masaive body naturally involves she localization of the absorptive region, and the function of abeorption (which in the simpler form部 carried out by the whole of the veqetative part of the mycelium penetrating a solid or immersed in a liquid subatratum) is subserved by the outgrowth of the hypbac of the surfacc-layer of that region into rhizoids, which, like those of the Algae living on toid, resemble the root.hairs of the higher plapts. The internal lisswe of the body of the molid higber Fungi, particularly the clongated stalks (stiges) of the Cructifications of the Agarics, consints of hyphate running in a longitudinal direction, which no doubt serve for the conduction of organic lood substances, just as do the "trumper-hyphac," similar in appearance, though not in origin, of the higher Brown Seaweeds. (In one genus (Lectarnms) "milk-tubes," recalling the Laticilerous tubes of many vascular plants, are found.) These clongated hyphae are frequentiy thick-walled, and in some caset form a central strand, which may serve to resist longitudinal pulling strains. This is particularly marked in certain lichens of shrubhy habit. The internal tianues, wither conaisting of obvious hyphate or of peudoparenchyma, may also merve as a storehoune of plantic food mbatances.

Looking back over the progress of form and tissue-differentiation in the Thallophyta, we find that, starting from the simplest unicellular forms with no external differentiation of the body, we can trace an increase in complexity of organization everywhere determined by the principles of the division of physiological labour and of the adnptation of the organism to the needs of its environment. In the first place there is a diflerentiation of fixing organs, which in forms living on a soft nutricnt substratum penetrate lt and become absorbing organs. Secondly, in the Algae, which build up their own food from lnorganic materials, we have a differentiation of supporting axes from assimilatiog appendages, and as the body increases in size and becomes a solid mass of cells or interwoven threads, a corresponding differentiation of a superficial assimilative system from the deep-lying parts. In both Algae and Fungi the latter are primarily supporting and food-conducting, and in some bulky Brown Seawceds, where assimilation is strongly localized, some of the deep celis are highly specialized lor the latter function. In the higher forms a storage and a mechanically-strengthening system may also be developed, and in some aerial Fungi an external protective tissue. The "hyphal " mode of growth, i.c. the formation of the thallus, whatever its external lorm, by branched, continuous or scptate, coenocytic tubes (Siphoneae and Fungi), or hy aimple or branched cell-threads (Red and many Green Algae), in both cases growing mainly or entirely at the apex of each branch, is almost universal in the group, the exceptions being met with almost entirely among the highef Brown Seaweeds, in which is found parenchyma produced by the segmentation of an apical cell of the whole shoot, or by cell division in some other type of meristem.
Bryophyla.-The Bryophyta [including the Liverworts (Hepaticae) and Mosses (Musci)], the first group of mainly terrestrial plants, exhibit considerahly more advanced tissue differentialion, in response to the greater complexity in the conditions of life on land. In a general way this greater complexity may be said to consist (t) in the restriction of regular absorption of water to those parts of the plant.body embedded in the soil, (2) in the evaporation of water from the parts exposed to the air (transpiration). But these two principles do not find their full expression till wo come, in the ascending scries, to the Vascular Plants. In the Bryophyles water is still abeorbed, not only from the soll but also largely from rain, dew, \&c., through the general surface of the suhacrial body (thallus), or in the more differentiated forms through the leaves. The lowest Hepaticae have an ext remely simple vegetative structure, little more advanced than that found in some of the higher Green Algae and very much simpler than in the large Red and Brown Seaweeds. The plant-body (thallus) is aiways small and normally lives in very damp air, so that the demands of lerrettrial life are at a minimum. It always consists of true parenchyma, and is entirely formed by the cultiug of of segments from an apical cell.

A sufficient deveription of the thatlus of the liverworts will be found in the article Bryophyta. We may note the universal Ltror- occurrence on the lower surface of the thallus of fixing werth ind absorbing mizoids in mocordance with the terrestral The Marchanciacese (see article BnyophyTA) mhow conciderable tissue-differentiation, powesaing a diatinct ascimilative syaterm of cells, eonsisting of branched cell threads packed with chloropisats and arising from the basal cells of targe cavitise in the upper part of the thallus. There cavities are completely roofed hy a layer of cells; in the centre of the rool is a pore aurrounded by a ring of special cells. The whole arrangement has a strong reaemblance co the bacunate, mesophyll and stomata, which form the avimilative and tranepiring (water-evaporating) apparatus in the levese of fowering plante. The frondose (thalloid) Jungermanniales show no wach differentiation of an assimilating tisuac, though the uppor cella of the thallus usually have more chlorophyll than the rest. In three genera-Blylia, Symphyogyn and Aywertophyturnthere are one or more strands or bundles consisting of long thickwalled fibre-like (proeenchymatous) cells, pointed it the ends and running longitudinally through the thick midrib. The wall of these cells are strongly lignified (i.e. consiat of woody substance) and are irregularly but thickly studded with simple pits (cee CyTOLOGY), which are usually arranged in spirals running round the cella, and are often elongated in the direction of the spiral (fig. 1, 1). These cells are not living in the adult state, though they eometimes contain the ditorganized remains of protoplasm. They eerve to conduct water through the thallus, the agsimilating parts of which are in these forms often raised above the soil and are comparatively remote from the mazoid-bearing (water-absorbing) region. Such difierentiated water-conducting cells we call hydroids, the tisgue they form hydromu. The sporogonium of the liverworts is in the simpler forms simply a spore-capsule with arrangements for the devclopment, protection and distribution of the spores As such its consideration falls outside the scheme of this article, but in one emall and peculiar group of theac plants, the Anthoceroteas, a distinct assmilating and transpiring system is lound in the wall of the very long cylindrical capsule, clearly rendering the sporogonium largely independent of the supply of elaborated organic food from the thallus of the mother plant (the gamerophyte). A richiy chlorophyllous tissue with numerous intercellular spaces communicates with the exterior by atomata, atrikingly similar to those of the vascular plants (see below). If the axis of such a sporogonium were prolonged downwards into the woil to form a fixing and absorptive root, the whole structure would become a phyaiologically independent plant, exhibiting in many thnugh by no means all respects the leading features of the sporophyte or ordinary vegetative and spore-bearing individual in Pteridophytes and Pbanerogams. These facts, mong others, have led to the theory, plausihle in some respects, of the origin of this sporophyte by descent from an Anthoceros-like sporogonium (eve Premidophyta). But in the Bryophytes the sporogomivis never becomes a sporophyte producing leaves and roots, and always remains dependent upon the gametophyte for its water and mineral food, and the facts give us no warrant for asserting homology (i.e. morphoiogical identity) between the differentiated tissues of an Anthocerotean sporogonium and thoee of the eporophyte in the higher planta Opposed to the thalloid forms are the group of lealy Liverwort: (Acrogynae), whose plant-body consists of a thin supporting stem bearing leaves. The latter are plates of green tissue one cell thick, while the stem consiats of uniform more nr less elungated cylindrical cells. The base of the stem bears numerous cell- filaments (rhizoids) which fix the plant to the substratum upon which it is growing.

In the Masses the plant-body (gametophyte) is always teparable into a radially organized, supporting and conducting axis (stem) mesees. and thin, flat, assmilating, and transpiring appendages number of branched cell-thrcads (rhizoids) which ramily in the soil, fixing the plant and ahsorbing water from soil. (For the histology ol the comparatively simpie but in many reapects aberrant Bog-moses (Sphagnaceae), see Bryophyta.] The stems of the other moseses resemble one another in their main histological features. In a few eases there is a special surface or epidermal layer, but usually all the outer layers of the stem are composed of hrown, thick-walled, Jignified, prosenchymators, fibre-like celle. forming a peripheral skereom (mechanical or aupporting tisaue) which forms the outer corkx. This pasies gradually Into the thinner-walled parenchyma of the inner cortex. The whole of the cortex, stereom and parenchyma alike, is commonly living, and its cells often enntain starch. The centre of the stem in the forms Hiving on soll is occupied by a strand of narrow elongated hydroids, Which differ from those on the liverworts in being thin-walied unlignified, and very aeldom pitted (Gig. $1, J$). The hydrom strand has in most cases no connexion with the leaves, but runs straight up the stem and spreads out below the sexual organs or the foot of the sporogonium. It has been shown that it conducts water with condiderable rapidity. In the stalk of the sposogonium there is a similar strand, which is of course not in direct connexion with, but continues the conduction of water from the strand of the gemetophytic axis In the aquatic, semi-aquatic, and werophilous
types, where the whole u arace of the piant 2bororse water, perpetually in the first two cases and during rain in the last, the hydrom scrand is either much reduced or altogether aboent. In accordance with the general principle already indicated, it is only where mbsorption is localised (s.e. where the plant lives on woil from which It absorba its main supply of vater by means of its beal rhisoids) that a water-conducting (hydrom) etrand is developed. The leaves of mont mones are filat plates, each convisting of a single layer of equare or cblong amimilating (chlorophyllous) cells In many cames the cells bordering the lend are produced into teeth, and very frequently they are thick-walled so as to form a mpporting rim. The centre of the leal is often occupied by a midrib consisting of eweral layere of celle. These are elongated ia the direction of the length of the leaf, are alwaye poor in chlorophyll and form a channel for conducting the producte of astmiletion away from the bal into the stem. This is the Enit indication of a conducting foliar strand or leaf burdile and forms an approach to leptom, thouga it Is oot so specialized as the leptom of the hisher Phaoophycene. Auociated with the conducting parenchym are Irequently found hydroids identical in character with thow of the cemtral atrand of the item, and no douht aervisy to conduct water to or from the leaf acconding as the latter is actint as a tramopiring or a waterbbsorbing organ. In few cases the hydrom strand io continued into the cortex of the stem as a leaf-ivoce bundle (the anatomically demonstratile trace of the leaf jin the etem). This in eeveral cawea runs vertically downward for come distance in the outer cortes, and ends blindly-the lower end or the whole of the trace being band-chaped or mar-chaped to as to prevent a large turface for the abporption of water from the adjacent cortical cells. In other cases the trace pasaes inwards and joins the central hydrom mertind, 60 thet connected water-conducting byatem between suem and leaf is cotablished.
In the higher family of mosees, Polytrichaceas, the differentis ton of conducting tisme reaches a decidedly higher level In addition to the watcreconducting tisue or hydrow there is a welldeveloped tisue (k phom) inferred to be a conducting channel for organic whbsences. This leptom is not oo highly differentiated as in the most advanced Leminariaceae, but shows some of the characters of sieve-tubes with sreat dirtinctness. Each leptoid is an elongated living cell with nueleus and a thin layer of protoplasm lining the wall (fig. 1, K). The whole cavity of the coll is mometimes stuffed with proteid contents. The end of the cell is alightly mollen, fitting on to the similar awollen end of the next leptoid of the row exactly after the fashion of a trumpet-hypha. The end wall is uaually very thin, and the protoplamm on artificial concraction commonly sticke to it just as in a sieve-tube, though no perforation of the wall has been found. Associated with the leptaids are dmilar cells without awollen ends and with thicker croe-walla Beaides the hydrom and leptom, and situated between them, there is a tisese which perhaps serves to conduct moluble carbohydrates, and whoes cells are ondinarily full of starch. This may be called apysiom The atem in this family falls into two divisions, an underground portion bearings thizoids and scales, the rissome. and a leafy aerial stem forming its direct upward continuatron. The heal consiste of a central midrib, several celle thick, and two winge, one coll thick. The midrib bets above a weries of closely set, vertical, longitudinally-running plates of green asamilative cells over which the winga clote in dry air so as to protect the assimilative and transpiring plates from excessive evaporation of water The midrib has a trong band of stereom above and below In tis centre is a band-1haped bundle consisting of rows of leptom. hydrom and amylon cells. This bundie is continued down into the cortex of the stem as a leaf-trace, and passing very slowly through the selerenchymatous external cortex and the parenchymatous, etarchy intemal cortex to jom the central cylinder. The latter has a central strand consitting of filer of large hydroids, esparated from one another by very thin walls, eaeh file being teparated from its neighhour by stout, dark-brown walls. This is probably homologous with the hydrom cylinder in the stems of other moseer It is currounded by (t) a thin-walled, amaller-celled hydrom mantle: (2) an amylom sheath; (3) a leptom mantle, interrupted here and there by starch cells. These three concentric tiscue mantlea are evidently formed by the conjoined basen of the leaf trices, each of which is composed of the same three tissucs. As tive earnal政再 is traced down into the underground athizome portion, these three mantles die out almost entirely-the central hydrom strand [orming the bulk of the cylinder and its eiemente becoming muxed whth thick-walled stereids; at the same time thit central hydrom stereom strand becomes three-lobed, with deep furrow betwreen the lobes in which the few remaining leptords run, separated froos the central mass by a few starchy cells, the remans of the amylom sheath. At the periphery of the lobem are some comparatively thir-walled living cells mixed with a few thin-walled hydroiden the remajns of the thim-walled hydrom mantle of the aerial stem Outaide this are three arce ol large cells showing chanacters typion of the endodermia in a vascular plant, theote are interrupted by strands of narrow, elongated, thick-walled cells, which send branchea into the little brown males borne by the thisome. The surfact layer of the thisome bears rhisoids, and its whole structure strikingly rodemblet that of the typical root of e vascular piant. In Cellarine
 timut, ita interitices beiti illed up with this-malled, starchy parenchyma. in Dowsonith superba, a farye Nev 2 zaland mone the hydroids of the central cylinder of the aterial eters are mived with thick-walled stereids forming a hydrompatereom sernad somewhat like that of the shizone in other Folytrichacese.

The central hydrom atrand in the sete of the eporoponium of mont moses has already been alluded to. Besides this there in usually a living conducting tivere, gometimes differemented as leptorm, lorming mantle round the hydirom and bounded es. temally by a more or lew well-differentiated endodermi, abutting on an irregularly cylindrical lacuma; the latter separatea the centrat conducting cylinder from the cortex of the seta, which, lilot the cortex of the ganetophyte atem, is msually difterentiated into on outer thick-walled atereom and an inser marchy parenchyma, Frequently, also, a considerable differentiation of vegetative tione oceure in the wall of the aporsemperis italf, and in wome of the higher forms a apecial asimilating and trampiring orgat situsted just below the capaule at the top of the eeta, with a richty lacumar chlorophyllous perenchyma and ctomats like those of the will of the capaule in the Anthocerotean liverworts. Thu the fistological difermatiation of the eporcsonium of the higher momes in one of conmiderable complenity: but there is here even lews reacon to muppone that there tiover have any homology (phylosenetic community of exigin) with the aimilut one met with in the higher plants.

The features of histological structure seen in the Bryophytic series are such as we should expect to be developed in response to the exigencies of incressing adsptation to terrestrial life on anil, and of increacing size of the plant-body. In the livermorts Fe find fixation of the thallus by mater-abeorbing thisoids; in certain forms with a localised region of water-absorption the development of a primitive hydrom or water-conducting system; and in others with rather a masive type of thallus the difierentistion of a special ansimilative and transpiring sybtem. In the more hithly developed series, the moneen, this last division of labour takes the form of the diferentintion of special agsinilative organs, the leaves, commonly with o midrib contrining clongated cells for the resdy removal of the products of assimilstion; and in the typical forms with a localised ebsorptive region, a well-developed bydrom in the axis of the plant, well as similar bydrom strands in the leaf-midribs, are constantly met with. In higher forms the conducting strands of the leaves are continued downwards into the stem, and eventually come into connexion with the central hydrom cylinder, forming a complete cylindrical investment apparently distinct from the Letter, and exhibiting differentiation into hydrom, leptom and amylom which almost completely parallels that found among the true vascular plapts. Similar differentiation, differing in some detaila, takes place independently in the other generation, the sporogonium. The stereom of the moss is found mainly in the outer cortex of the stem and in the midrib of the leaf.

Vasculor Plonts.-In the Vascular Pisnts (Pteridopbytes, t.c. ferns, horsc-tails, cluh mosses, \&c., and Phaverogams or Flowering Plants) the main plant-body, that which we speak of in ordinary language as "the plant," is called the sporophyte because it bears the asexual reproductive cells or sporss. The gametophyte, which bears the serul organs, is either a free-living thallus corresponding in degree of differentlation with the lower liverworts, or it is a mass of cells which always remains enclosed in a spore and is parasitic upon the eporoplyte.

The body of the sporophyte in the great majority of the vascular plants shows a considerable increase in complexity over that found in the gametophyte of Bryophytes. The principal new feature in the external conformstion of the body is the acquirement of "true" roofs, the nearest approach to which in the lover forms we sav in the "rhizome" of Polytrichacese. The primary root is a downward prolongation of the primary axis of the plant. From this, as well se from various parts of the shoot system, other roots may originate. The root differs from the shoot in the characters of its surface tiasues, in the absence of the green assimilative pigment chlorophyll, in the arrangement of its vascular syatem and in the mode of growth at the apex, all features which are in direct retation to its normally subterranean life and its firative and absorptive
functions. Whinin the Inifs of the poroplyye foneration the Pteridophytes and Phanerogams aloo difier from the Bryophytes In posecsing epecial assimilative and transpiring organs, the leaves, though these orgion are developed, is we bave seen, is the gametophyte of many liverworts and of all the monees. The leaves, agin, have special histological features adepted to the performance of their epecial functions.

Alike in root, stem and leaf, we can trace a threo-fod division of tissw systems, a division of which there are indications mong the lower plants, and which is the expression of the fundemeneal conditions of the evolution of a bulky differentiated plant-body. From the primitive uniform mas of undifferentinted asimilating cells, whidh We may conceive of as the starting-point of differentistion, though auch an undifierentiated body is only actually realized in the thallus of the lower Algae, there is, (1) on the one hand, a upecinlization of a muface layer regulating the inmodiate relations of the plent with its surroundings. In the typically suhmerged Agge and in submerged plants of every group thin is the aborptive and the main amimilative layer, and may aloo hy the production of mucilage be of use in the protection of the body in various whys. In the tercestrial plants it difiens in the subterranean and subacrial parts, belng in the former proeminently absorptive, and in the latter protective-peovition at the name time being made for the geseone interchange of oxygen and carbon dioxide necessary for respiration and feedingo This surface layer in the typically subserial "shoot " of the sporophyte in Pteridophytes and Phanetogams is known as the epidermis, though the name is reatricted by some writess, on eccount of developmental differences, to the eurface layer of the shoot of Angiosperms, and hy others extended to the surface layer of the whole plant in both these groups. On the other hand, we have (2) an internal differmatation of conducting tissw, the main features of which as eeen in the ganetophyte of Bryophytes have already been fully described. In the Vascular Plants this tisaue is collectively known as the anscular system. The remaining tisue of the plant-body, tissue that we must regard phylogenctically es the remnant of the undifferentinted tiene of the primitive thallus, but which often undergoes further differentiation of its own, the better to fulfil its characteristically vital functions for the whole plant, is know, from its peripheral position in relation to the primitively central conducting tissue, as (3) the corkex. Besides absorption, assimilation, conduction and protection there is another very important function for which provision has to be made in any plant-body of considerable size, especially when raised into the air, that of swepert. Special tissues (stereom) may be developed for this purpose in the cortex, or in immediate connexion with the conducting system, ecoording to the varying needs of the particular type of plant-body. The important function of aration, by which the inner living tissues of the bully plant-body obtain the orygen neceasary for their respiration, is secured by the development of an extensive system of intercellular spaces communicating with the external air.

In relation to lte characteristic function of protection, the epl. dermis, which, as above defined, consists of a ringle layer of cells has typically thickened and cuticularized outer walls. These serve not only to protect the plant against sight Emanmbes mechanical injury from without, and against the entry of emaller parasites, zuch as fungi and bacteria, but also and enpecially to prevent the evaporation of water from within.
At intervals it is interrupted by pores (slomala) leading from the air outside to the syatem of intercellular apaces below. Each stoma is surrounded by a peir of peculiarly modified swonete cpidermal celts called gwadd-cells (ing. 1, T), Which open and
close the pore according to the need for transpiration. The atructure of the stomata of the sporophyte of vascular plants in fundamentally the same an that of the stomata on the sporogonium of the true mosees and of the liverwort Anthoceros. Stomata are often situated at the bottom of pits in the surface of the leaf. This amangement is a method of checking transpiration by creating a atill atmosphere above the pore of the stoma, oo that weter vapour collects in it and diminishes the further outflow of vapour. This type of strus ture, which is extremely various in its detsils, is found especially, as we should expect, in plants which have to economige their water
mupply. The -tomata merve for all poous interchange between the plant and the surrounding air. The guard-cells contain chlorophyll, which is absent trom typical epidermal cells, the latter acting as a tissue for water storage. Sometimes the epidermis is considerably more developed by tangential division of its cellis, forming a many-layered mater-lissme. Thie is found especielly in plantes which during certain hours of the day are unable to cover the water lost through transpiration by the supply coming from the roots. The water stored in such a time supplies the immediate need of the eranspiring cells and prevents the injury which would roeste from their excemaive depletion.

The epidermis of a very large number of species bears hairs of various kinds. The elimplest type consists simply of a uingle starn. elongated cell projecting above the general level of the othera, again, aze branched in various ways; while yet others have the form of a flat plate of cells placed parallel to the leaf surface and inserted on a stalk. The cells of hairs may have living con. tents or they may simply contain air. A very common function of hairs is to diminish transpiration, by creating a still atmosphere between them, as in the case of the sunk stomata already mentioned. But hairs have a variety of other functions. They may, for instance, be glaidular or stinging, as in the common stinging nettle, where the top of the hair is very brittle, easily breaking of when touched. The hharp, broken end penetrates the akin, and into the clight wound thus lormed the formic ecid contaised by the hair is injected.
Mention may be made here of clase of epidermal organ, the kydathodes, the wide distribution and variety of which have been reveaied by recent research. Thene are special organs, Aheatheneas usuaily situated on Ioliage leaves, for the excretion of presure in the water-channels of the plant has come to exceed a certain limit. They are widely distributed, but are particularly abundant in certain tropical climatcs where active root absorption goes on while the air is neariy eaturated with water vapour. In one type they may take the form of specially-modifed cingle epidermal cells or multicellular hairs without any direct connexion with the vascular aystem. The celis concerned like all secreting organs, have abundant protoplasm with large ouclei, and sometimes, organs, have abundant proll-wall is modified as a filter. In a second type they are situated at the ends of tracheal etrands and consiot of stroupe of richly protoplasmic celis beionging to the epidermis (as in the leaves of many ferns), or to the subjacent tiseute (the commonest type in flowering plaots); in this last case the cells in question are known as efrithem. The epithem is penetrated by a network of fine intercellular spaces, which are normally filled with water and debouch on one or moce intercellular cavities below the epidermis. Above each cavity is aituated a so-called water-stoma, no doubt derived phylogenctically from an ordinary stoma, and enclosed by guard-cells which have nearty or entirely lost the power of movement. The pores of the water-atomata are the outlets of the hydathode. The epithem is frequently surrounded by a sheath of cuticularized cella. In other cases the epithem may be absent altogether, the tracheal strand debouching directly on the lacunae of the mesophyli. This last type of hydathode is usually aituated on the edge of the leal. Some hydethodet are active slands, secreting the water they expel from the leaf. [Many other types of glands aloo exist, either in connexion with the epidermis or not, such as nectaries, digestive glands, oil, resin and mucilage glands, Ac. They scrve the most various purposes in the life of the plant, but they are not of significance in relation to the primary vital activitien, and cannot be dealt with in the limite of the present articie.]. The typical epidermis of the shoot of a land plant does not absorb. water, but some plants living in situations where they canoot depend on a regulis auppiy from the roots (e.g. epiphytic plants and desert plants) have absorptive hairs or males on the leal epidcrmis through which rain and dew can be absorbed. Some hydathodes also are capable of absorbing as well as excreting water.

The surface layer of the root, wometimes inciuded under the term epidermis, is fundamentaliy different from the epidermis eaidermss of the stem. in correspondence with its water-absorbing oo Rook function it is not cuticularized, hut remains usually thinbeing produced into delicate tubes which curl round and adhere firmaly to particles of soil, thus at once fixing the root firmly in the soit, and enabling the hair to aboorb readily the thin films of water ordinarily surrounding the particles (fig. I, U). The rool-hair ends blindly and is simply an outgrowth from a surface cell, having no crose-walls. It corresponde in function with the rhizoid of a Bryophyte. At the aper of a root, covering and protecting the delicate tissue of the growing point, is a special root-cap consisting of a number of layers of tissue whote cella break down into mucilage towards the outer surface, thus facilitating the passage of the apex as it is pushed between the particles of soil.
The cortex, as has been said, is in its origin the remains of the primitive asoimilating tisacue of the plant, after differentiation Cartor. of the surface layer and the conducting system. It ite differentiation may be extremely varied, since in the complex
bodies of the higher plaats fos functions are qurneroms. In all green plants which have a upecial protective epidermis, the corter of the shoot has to perform the primitive fundamental function of carbon amsimilation. In the leafy shooc this function is mainly localized in the cortical tiveue of the leaves, known as masophyil,

which is easentially a parenchymatous timuce containing

chloroplazta, and is penetrated by a syatem of intercelifurar spaces to that the wurfaces of the assimilating cells are brought into contact with air to as large an extent as powible, in order to facilitate gaveous interchange between the assimilating cells and the atmospliere. At the same time the cells of the mesophyll are transpiring oclls-ie. the evaporation of water from the leal goes on from them into the intercellular apecce. The only pathwnys for the gaces which thus pass between the celle of the mesophyll and the outside air are the etomata. A land plant hae nearly always to protect itwelf againte over:transplration, and for this reamon the stomata of tbe typical dorsionatral leaf (fig. 2, A), which has distinct upper and lower faces, are placed mainly or exclusively on the lower ade of the leaf, where the water vapour that escapea from them, being lighter than air, cannot prata away from the surface of the leal, but remains in contact with it and thus tendstocheck lurther transpiration. The stomata are In direct communication with the ample syintem of intercelfular spaces which is found in the loosely arranged meeophyll (sponey fursue) on that side. This is the main transpiring tisoue, and is protected from direct ililumination and consequent too great evaporation. The main assimilating tisaue, on the orher hand, is under the upper epidermis, where it is well illuminated, and consists of oblong cells densely packed with chioroplasts and with their long axes perpendicular to the surface (palisade fissue). The intercellular apaces are here very manrow channels between the palisade cells. Leaves whone blades are normally beld in a vertical position poseces palisude tiasue and etomata on both sides (isobilateral lacies) (Gig. 2, B), since there is no difference in the illumination and other external conditions.

Tan t.-Tratruece seciloen of Levers
A. Dorsiveratral leat. S, Inobioneral ionl.

While thowe which are cylindrical or of similar shape (centric leaves) have it all round. The leavea of shade plants have little or no differentiation of palisade tissue. In fieshy leaves which contain a great bulk of tivale in relation to their chiorophyll content. the central memophyll containa little or no chlorophyll and acts an waterstorage tissuc. The cortex of a young stem is usually green, and plays a more or less important part in the assimilative function. It also always poseesses a well-developed lacunar systen communicatint with the external air through stomata (in the young stem) or lewticels (see below). This lacunar bystem not only enables the ceils of the cortex itself to reapire, but also forms channcls through which air can pass to the decper lying tissues. The cortex of the older stem of the root frequently acts as a reserve store-house for food, which gencrally takes the lorm of starch, and it also andets largely in providing the stereom of the plant. In the leaf-blade this sometimes appears as a layer of thickencd subepidermal cells, the hypoderm, often also as subepidermal bundles of aclerenchymatous fibres, or as similar bundles extending right across the leaf from one epidermis to the other and thus actling as struts. lsolated cells (dioblasts), thiclened in various ways, are not uncommonly found supporting the tisuces of the ieal. Ia the larger veins of the leaf, espocially in the midrib, in the petiole, and in the young stem, an extremely frequent type of mechanical tissue is collenchyma. This consists of elongated cells with cellulose walls, which are locally thickened along the original corners of the cells, reducing the lumen to a cylinder, so that a number of vertical piliars of ceilulose cose nected by comparatively thin walls form the framework of the tissue. This tissue remains living and is usually formed quite earty, just belaw the epldermls, where it provides the first peripheral support for a stili growing stem or petiole. Sclortuchyran may be formed later in various ponitions in the cortex, aponding to locel needs. Scattered single stercids or bundles of fibres tre not uncommon in the cortex of the root.'

The innermost layer of the cortex, abutting on the central cylinder of the stem or on the bundles of the leaves, is called the punow blacolerma, and is often differentiated, In the leafberuat aheathe to the bundles. The cell of these aheaths are often distinguished from the rest of the mesophyll by contlining little or no chlorophyll. Occasionally, however, they, are particularly rich in chloroplasta. These hundle sheaths are importsant in the conduction of carbohydrate away from the astimilating cels to other parts of the plant. Rarely in the leaf, frequently in the stem (particularly in Pteridophytes), and universally in the root, the phlceoterma is developed as an endodarmis (eee below). In other caess it does not difier histologically from the parenchyma of the reat of the cortex, though it is often die tinguished by containing particularly abundant atarch, in which case it is known as a starch sheoth.

One of the most striking characters common to the two highest groupt of plants, the Pteridophytes and Phanerogams, is the vasmiter posaension of a double (hydrom-leptom) conducting system. bystem, such as we saw among the higheat mosses, but with sbarply characterized and peculiar features, probably indicating common deacent throughout both these groups. It is confined to the sporophyte, which forms the leafy plant in these groups, and is known as the rascular system. Ansociated with it are other tissues, consisting of parenchyma, mainly starchy, and in the Phanerogams particulariy, of special stereom. The whole tisuse system is known as the stelor system (from the way in which in primitive forms it nuss through the whole axis of the plant in the form of a column). The stelar syitem of Vascular Plants has no direct phylogenetic connexion with that of the mosses. The origin of the Pteridophyta (g.v.) is very obscure, but it may be regarded as certaln that it is not to be sought among the moses, which are in extremely opecialized and peculiarly differentiated group. Furthermore, both the hydrom and leptom of Pteridophyter have marked peculiaritiea to which no parallel is to be lound among the Bryophytes. Hence we must conclude that the conductIng system of the Pteridophytes has had an entirely separate evolution. All the surviving lorms, however, have a completely established double system with the specific characters alluded to. and since there is every reason to believe that the conditions of evolution of the primitive Pteridophyte must have been esentially aimilar to those of the Bryophytem, the various stages in the evolution of the coaducting system of the latter (p. 732) are very useful to compare with the arrangenents met with in the former.

The hydroid of a Pteridophyte or of a Phanerogam is characterentically a dead, usually elongated, cell containing air and water, and 7naw either thin-walied with lignified (woody) spisal (fig t, f.) Emanate or annular thickenings, ar with thick, lignified walls, inpits) of various shapes, e.f. the pits may be separated hy a network of thickenings when the tracheid is reliculate or they may be transversely clongated and separated by bart of thickening like the ruage of a ladder (ocalariform thickening). When, is place of a number of such celle called tracheids, we have a continuous tube with the anme kind of wall thickening, but composed of a aumber of cell. whose crosa walls have disappeared, the resulting structure is called a berfel. Vesels are common in the Angiospermous group of Flowering Plants. The ecalariform hydroids of Ferns (fig. I, N.) have been quite recently shown to poseess a peculiar structure The whole of the middle lamella or originally formed cell-wall meparating one from, another disappears before the adult state is reached, 00 that the walls of the hydroids consint of a framework of lignified bars with open communication between the cell cavitics. The tracheids or veacels indifferently called tracheal alemenis, together with the immediately associated cells (usually amylom in Pteridophytes) constitute the rylem of the plant. This is a morphological term given to the particular type of hydrom found in both Pteridophytes and Phanerogams, together with the parenchyma or otereom, or both, included within the boundaries of the hydrom tisue atrand. The leptoid of a Pteridophyte (fg. 1,0 .) is also an elongated eell. with a thin lining of protoplasm, but destitute of a nucleus, and always In communlcation with the next cell of the leptom strand by perforations (in Pteridophytes of ten not easily demonstrable), chrough which originally pass atring: of protoplam which are bored out by a ferment and converted into relatively coarse " slime strings" along which pass, we must suppose, the organic substances which it is the apecial function of the leptoids to conduct from one part of the plant to another. The peculiar aubstance called callose, chemically allied to ceilulose, is frequently formed over the surface of the perforated end-walls. The etructure formed by a number of such celis placed end to end is called a simedubs (obviourly comparable with a xylem-vemel), and the end-wall or area of endwall occupied by a grocup of perforations, a siow-plata. When the sieve-tube has ceased to function and the protoplasm, elime stringw, and callowe have dimppeared, the perforations through which the time etringe pased are left as relatively lagge holen, easily, visible In wease cases with low powers of the microscope, piercing the cleve-plate. The mieve-tuben, with their sccompanying parer. chyme of scercom, congtitute the tissue called phocm. This is
the term for a morphologically denned tissue cyetem, i.4 the leptom found in Pteridophytes and Phanerogams with its associated cells, and is entirely parallel with the xylem. The ieve-tubes differ, bowever, from the tracheids in being immediately acoociated. apparently constantly, not with starchy parenchyma, but with parenchymatous cells, containing particularly abundant proteld contente which aeem to have a function intimately connected with the conducting function of the sieve-tubes, and which we may call proteid-calls. In the Angiosperms there are always sistercells of sievetube eegments and are called companion-celle

The xytem and phloem are nearly always found in close aseo: ciation in strands of various shapes in all the three main organs of the aporophyte-root, stem and leaf-and form a connected tigoue-syitem runaing through the whole body. In the primary axis of the plant amons Pteridophytes and many Phanerogams, at any rate in its first formed part, the xylem and phloem are associated in the form of a cylinder (stele), with xylem occupying the centre, and the phloem (in the upward-growiay part or primary stem) forming a mantle at the periphery (fig. 4). In
the downward growing part of the axis (primary root), Arragsy however, the peripheral mantie of phloem is interrupted, mond in che xylem coming to the surface of the cylinder the cantral
along (ustally) two or (sometimes) more vertical lines Sulong (usually) two or (sometimes) more vertical lines. cyandar. and is characteristic of all roots (igge. 3 and 10). The cylinder is currounded hy a mantle of one or more layers of parenchymatous cellis. the pericycle, and the xylem is generally separated from the phloem in the stem by a similar layer, the mesocycle (corresponding with the amylom sheath in mones). The pericycle and mesocycle together form the conjuncliva lissuc of the stele in thene simplest typea. When the diameter of the stele is greater, parenchymatous conjunctive tisaue often oecupics its centre and is frequently calied the pith. In the root the mesocycle, like the phioem, is interrupted, aod runs into the pericycle where the xylem touches the latter (fig. 3). The whole cylinder is enclosed by the peculiarly differentiated innermost cell-layer of the cortex, known as the exdodernis. This Layer has ite cells closely united and sealed to one another, 80 to speak, by the conversion of the radial and transverse walls (which eeparate each cell from the other ceils of the layer), or of a band running in the centre of these, into corky substance (fig. $\overline{\text { r }}, v$. .), to that the endndermal cells cannot be split apart to admit of the formation of intercellular spaces, and an air-tight sheath is formed round the cylinder. Such a vascular cylinder is called a haplostele, and tho exis containing it is said to be hoplostelion In the atele of the root the strands of tracheids along the lines where the xylem touches the pericycle are apiral or annular, and are the xylem element first formed when the cylinder is developing. Each strand of spiral or annular first-formed tracheida is called a protoxytem etrand, as distinct from the melargdem or rest of the xylem, which conaists of thick-walled tracheids, the pits of which are often ecalariIorm. The thin-wailed apiral or annular tracheae of the protoxylem aljow of longitudinal etretching hrought about by the active growth in length of the neighbouring living parenchymatous cells of a grow: ing organ. During the procens the thin wall are stretched and the turns of the spiral become pulled apart without rupturing the wall of the tracheid or veasel. If the pitted type of tracheal element were similarly stretched its continuously thickened walis would resist the stretching and eventually break. Hence such tracheade are only laid down in organs whose growth in length has ceased, The stele is called momarch, diarch,.. polyarch according as it contains one, twa. or many protoxylems. When the protoxylem strands are situsted at the periphery of the stele, abutting on the pericycle, as in all roots, and many of the more primitive Pteridophyte stems, the stele is said to be exarch. When there is a mingle protoxylem strand in the centre of the stele, or when, as is more commonly the case, there are meveral protoxylem trands situated at the internal limit of the xylem, the centre of the tem being occupied by parenchyma, the etele is owdarch. This is the case in the stems of moat Phanerogams and of some Pteridophytes. When the protoxylems have an intermodiate position the atelo is mesarch (many Ptetidophyles and some of the more primitive Phanerogams). In mapy casea external prolophloem, usually conaistlng of narrow slevetubes often with wolien walls, can be distinguithed from melephloom.

As the primitive stele of a Pteridophyte is traced upwands from the primary root into the stem, the phloem becomes continucus round the xylem. At the same time the tiele becomes more bulky, all its elements increas- Evolurtion ing in number (fig, 4). Soon a bundie roen of to the first ledf. This conainte of a few xylem elementen a begment of phloem, pericyele, and usually an arc of endodermis, which clowes round the bundle an it detmehes itelf from the stele. As the stele is traced farther upwards it becomes bulkier, as do the succesuive leaf-bundlea which leave it. In many Pteridophytes the aolid haplostele is maintained through. nut the axis. In others a central parenchyma or primition pilfa new region of the primitive stelar conjunctive-appears in the centre of the xylem. In most ferns indernal phoen apperan instead of a parenchyouatous pith (fig. 5). Sometirmes this coodition,
of tine of the Prertab phyters
\qquad

that of the anphifohloic llaplestele, is maintained throoghout the adalt stem (Lindsayc). In the majority of ferna, at a higher level, after the otele has increased preatly in diameter, a large-celled true filh or medullo, resembling the cortex in its charactera, and guite distinct from conjunctive, from which it is separated by an internal endodermis, appears in the centre. These succeasive new tissues, appearing in the centre of the stele, an the stem of a higher fern is traced upwards from ita first formed parts, are all in continuity with the reapective corresponding external tivenes at the point of origin of each leaf trace (see below). Where internal phloem is present this is separated from the internal endodermis by an ondocycle or "internal pericycle," as it is cometimes called, and from the zylem by an pindernal mesocyclo- these two layers, together with the outer meacycle and pericycle conartituting the conjuactive tissue of the now hollow cylindrical atele. (The conjuactive frequently forme a connected whole with bands of
axis. The type of siphonoatele charscteriatie of many ferme ia which are found internal phioem, and an internal endodermis separating the vaccular conjunctive from the pith is known as a solmasidic. The solenoutele of the ferms is broken by the departure of each leal-bundle, the outer and inner endodermis joiring so that the otele becomes horwesboe-shaped and the cortex coatinuous with the pith (fig. 6). Such a break in known as a leaf-zap. A little above the departure of the leal-bundle the stele again cloaea up, oaly to be again broken by the departure of the next leaf-bundle. Where the leaves are crowded, a given lear-gap in not clowed before the next ones appear, and the solenostele thus becomes split up into a number of segments sometimes band-shaped or semilunar, sometimes wodiametric in crosestection (fig; 7). In the latter cese each wegment of the molenostele frequently resembles a otacomat. hapiontcle, the segments of inner endodermis, pericycle, phlown and

starchy sylem-parenchyme, which, when the xylem is bully, usually appear among the trecheida, the phloem also often being penotrated by similar bands of phionm-parsichyma.)

In the other groupe of Pteridophytes internal phloem in nuc found and an internal endodermis but rarely. The centre of the sipheace. stele is however often occupied by a large-celled pith aseb. resembling the cortex in structure, the cortex and pith stele baving a "ground- tisere pith," whether with or without internal phloem, is given the name siphonostele to distinguish it from the solid applostede characteristic of the root. the first-formed portion of the tem, and in the more primitive Picridophyter, of the whole of the
mesocycle joiniag with the corresponding outer megments to form a nearly concentric structure. For this reasor a stem in which the vascular zyatem has this type of structure used to be apoken of as polystedic. the term " ntele "being tranderred from the primary central cylinder of the axis and applied to the vascular strands just described. In thia ure the term lones, of course, ith morpho logical value, and it is better to call euch a eegroent of a brokeo-up otele a meriscle, the whole molenonele with overiapping heldgap being called a dictyontele. The gplitting up of the vacular tube into separate mrandr does not depend wholly upoo the occurreace of leaf-gapa. In come forms other gapa (perforatious) appear in the vascular tube placing the pith and cortex in commamicatione

In other crese the felfexpep are very broad and lont the menscrles evperating them being reduced to comparatively slender strands while there so proment in each gap a networts of fine vescular chreads wome of which run out to the leal, while others form crom-consextons between theag "leaf-trace " strands and also with the man cauhne meristeles Finally the caulune mersitelea themaotven may be renolved usto a number of fire thronds. Such a atructure niny be epolven of as a dismected drejyostela
In oome solenoateluc lerns, and in many dictyonselic ones additional vascular atrands are present which do not form part of the primary porracts. vascular tube. They usually rum freely in the pith and leaf-gape fan the primary tube si the neaghbourhocd of the having the eame structure as the primary one, and concentric with it, occurs in the pith, and others may appear, internal to the first (Malonsa, Saccoloma). Junctions of the first internal cylunder are made with the primary (external) cylinder at the lealgapa, and of the mecond unternal cylinder with the first an the same reighbourhood (fig 81 In dictyoatelic ferms simitar intermal (dictyostelic) cylinders are found in some forms, and ocentionally a large series of such concentric cylinders is developed (Marattraceae) (fig 9). In such cases the vascular system is sud to be polycyefic in contrast with the ordinary monocyclic condition. These internal strands or cylinders are to be regarded as peculiar types of elaboration of the atele, and probahly act at reservous for water-storage which can be drawn upon when the water aupply from the soot is deficient.
The vascular apply of the leaf (leaf-trace) consists of a singie atrand oaly in the haplontelic and mome of the more primitive ceaf-trace iphonostelic forms in the "microphyllous groupe adPulotyp of Pteridophytes (Lycopodiales and Equisctales) in striende. which the leaves are small relatively to the stem, the angle bunde destined for each feaf is a small grand the "megapbyllous " lorms, on the other hand, (Ferns) whose leaves are large relatively to the stem, the departure of the correspondingly large trace causes a pap (leaf-gap) in the vascular cylinder, as already described. In the haplostelic forns the leal-truce appears a a single atrand with a tendency to aseume the shape of a horvechoe on crow-section, and this type is also found in the more primi tive solenostelic types in the more highly developed forms, as aiready indicated. the leal-trace is split up into a number of strands which lenve the base and sides of the leaf-gap independently in the petiole these etrands may increase in number by branching. and though ualiy reducible to the outline of the primitive " horseahoe," more or lean elaborated, they may in some of the complex polycylic dictyontelic types (Maratiaceae) be arranged in several concentric circles, thus imitating the arrangement of strands formed in the etem. The evolution of the vascular structure of the petiole in the higher fems is atrikingly parallel with that of the stem, except in some few special cases.

There is good reason to belicve that the haplostele is primitive in the evoiution of the vascular sygtem. It is found in most of Pardhol of those Pteridophytes which we have cther reasons for considering as primitive types, and essentially the ame Ortaseat woly Pitylegerer. developed primitive conducting system of the mossof as protostelic. In the the of stem is therefore often spoken amphiphloic haplostele or protostele succeeded the simple (ectophoic) protostele in evolution, and that this aa its turn gave rise to the solemostele, which was again succeeded by the dictyostele. Polycycly wras derived independently from monocycly in solenostelic and in dictyostelic forms. Ia the formation of the stem of any fern characterized in the adult condition by one of the more advanced types of vascular structure all stages of increase in complexity from the haplostele of the first-formed stem to the particular condition characteristic of the adult stem are sradually pasped through by a series of changes exactly parailel with those which we are led to suppoee, from the evidence obtanced by a comparison of the adult forms, must have taken place in the evolution of the race. There is no more striking cafe in the plantkingdom of the parallel between ontogeny (development of the individual) and phylogeny (development of the race) 00 well known in many groupe of anmala.

The atele of moat Lycopods is a more or less modified protostele, but in the genus Lycopodium a peculiai arrangement of the xylem

Aborrat

 Sy manms of Pierfitophrtes. and phloem is found, In which the latter, instead of being confined to a peripheral mantle of tissue, forms bands running acrose the tele and alternating with sumilar bands of xyiem (ing- t2). In Saligsindte the stelar system bows profounder modifications. In some forms we find a simple prototele, exarch-poiyarch in one species (S. spimosa), exarch-diarch in several (fig 10) In other apecxes. however, a pecuitar type of polystely is met with, in which the orignal diarch stele gives rite to so-called doral and ventral telar "cords" qhich at first lie on the surface of the primary stele. but eventually; at a higher level meparate from it and form distinct "secondary" telee reaembling the primary one. Similar cords may be formed on, and may eoparta from, theoe eocopdary melow, thue giving rite crepang mern of one species (S. Lyalhis) a polycyclic solenotele is found exictiy parallel with that of the thisome of leras. The gaps in the ourer tubular stele, howrver, are formed by the departurt of aerial branch-tracen, Instead of leal-kracas as in the ferns. The first formed portion of the stem in all specien of Selagisella which have been investigated possesaes an eraich baplostele. The stele of Equrstum is of a very peculiar type whoce retations are not completely cienr. It consints of a ring of endarch collateral bundles. surrounding a hotlow pith. The protowylens of each is a leaf trace, while the metanylem consinting of a right and a ieft portion forms a quite distinct cauline syatem. All the metaxylem: ocit at the nodes into a complete ring.of xylem. The whold atele may be surrounded by a common external endodermia; sometime there is an intermal endodermis in addition, eeparating the bundie Irom the pith; while in other ceasu each bundle potrestes a evparate endodermis marrounding it At the nodes the rebtion of tha endodernis to the bundes undergoes rather complex but definite changea it is probable that this type of tele is a modification of a primitive protostele, in which the main mase of atolar xylen hat become much reduced and incidentally teparated from the leaftraces.

During recent years a number of fowit (Carboniferoua and Permina) plants have been very thoroughly inverigated in the light of modern anatomical knowiedye, and as a retult it has become clear that in those times a large series of plante existed stabersyo internediate in structure between the modern ferms tan of Gre and the modern Gymnosperms (especially Cyeada) and to thete the gencral name "Cycadoflices " has been applied. We now know that many at least of the Cycadofitices bore meds of a type mach more complex than that of more modern weed plants, and in some cases approximating to the seeds of exitine Cycads. Among the Cycadofillces a series of stages is found leading from the primitive lem-protostele to the type of aiphonoseete charucteristac of the Cycads which agrees in eseencials in all the Spermophytes. The main events in this transition appent to have been (1) disappearance of the central xylem of the protostele and replacement by pith, leading to the survival of a number of (menarch) collateral bundlen (see beiow) at the periphery of the atele: (2) pasage from mesarchy to endarchy of these bundlet conrelated with a great lncrease in secondary thickening of the stele The leaves of the more primitive members of this seties were entirey fern-like and possewed a fern-like vascular strand; while in the later members, Including the modern Cycads, the leaf bundles, remaunus unaffected by eecondary thickening, are mesarch, while thowe of the stem-trele have become endarch. Besudes the types forming this tertes, there are a number of otherm (Medullonese and allied forms) which show numenous, often very complex, types of stelar structure, in some cases polystelic, whose orgin and relationship with the simplet and better known types is frequently obscure. Among the existing Cycads, though the type of vascular system conforms on the whole with that of the other existing seed-plants, peculiar structures are often found (e.g. indications of polystely, frequent occurrence of extra-stelar concentric bundles, "anomalous" secondary thicken ing) which recall these complez typen of atelar otructure in the Iosmal Cycadofilices.

The typical structure of the vascular cylinder of the adult primary stem in the Gymnosperms and Dicotyledons is, like that of the hagher ferns, hollow cylinder of vascular tissue enclosing a centrai parenchymatous pith. sumaroo of But, unlike the ferns, there is in the seed-plants no incertain (amilies) and no internal endodermis. The xylem and phloem also, rarely form perfectiy continuous layers as they do in a solenostelic fern The vascular tissue is typically separable into distinct collaleral brendles (figs. 13. 23), the xylem of which is usualiy wedgeshaped in crose-section with the protoxylem elements at the inner extremity, while the phloem forms a band on the outer side of the xylem, and separated from it by a band of conlunctive cissue (nesodesm). These collateral bundles are separated from one anot her by bands of conjumetive tiswues called primary madsllary rays, which may be quite narrow or of considerabie width. When the pith is large ceiled, the xylems of the hundles are eeparated from it by distinct layer of conjunctive tisauc called the endocycle, and a similar layer, the pertycle, separates the phloem from the cortex. The inner layer of the cortex (phlosoterma) may form a well-marked endodermas, or difier in other ways from the rest of the cortex. The pericycle, medullary rays, endocyele and menoderm all form perto of one tissue bystem, the axternal conjumatue, and are only topotraphically separable. The external coajunctive is usually a fiving comparatively small-celled tissue, whose celis are considerabiy elongated in the direction of the stem-axis and frequently contein abundant starch. Certain regions of it, particularly the whole or part of the pericycle, but sometimes also the endocycle, are typically converted into thick-wailed hard (zelerenchymatous) tissue usually of the prosenchymatous (fibrous) type, which is important in strengthening the stem, particularly in endbling ${ }^{5}$ to resist bending strains. The relatively peripheral position in the stem of the pericycie is important in this connexion. Various secondary meristems (se p.74i) cleo arite in the external conjuxctive

Mort of tho collateral bundlen of this apermophytic type of ajphonostele are leaf-trace bundies, z.e, they can be traced upwards from any given point till they are found to pass out of the cylinder, travel through the cortex of the stem and enter a loal The remaining bundies (compensatsom bundles) which go to make up the cylinder are such as have branched off from the leaf-tracen, and will, after joining with others similarly given off, themselves form the traces of leaves situated at a hugher level on the atem. Purely cauline vascular atrands (ie. confined to the stem) such as are found in the dictyonteles of ferns are rare in the floweting plants. The leaf trace of any given leaf rarely consists of a single bundle only (unifascicular); the number of bundles of any given trace is always odd; they may either be situmited all together before they leave the stele or they may be distributed at intervals round the stele. The median bundles of the trece are typically the largeat, and at any given level of the stem the buodles destined for the next leaf above are as a whole larger than the others which are descined to supply higher leaves Leaf-gaps are formed in essentially the name way as in the ferns, but when in the cese of a plurifascicular trace the bundles are distributed at iatervals round the cylinder is obvious thet several gapm must be formed as the dffiferent bundles leave the stele. The gaps, are, however, often filted as they are formed by the development of external conjunctive tissue immediately above the points at which the bundles begin to bend out of the stele, wo that sharply defined open gapa such as occur in fern-steles are but rarely met with in flowering plants The coneritution of the stele of a flowering plant entirely from endarch collateral bundies, which are cither themeelves leaf-tracee or will form leaf. traces after junction with other similar bundien, is the great characteristic of the stem-atele of flowering plante. These collateral bundles are obviously highly individualized. The external conjunctive tissue is often arranged in relation to each bundle separately, the pericyclic fibres for instance, already referred to, being often confined to the bands of pericyclic tisoue abuttiog on the phloem of each bundle, while the cortex and pith frequently form rays in the intervals between the adjacent bundles.
In some cases this individualization is carried further, the cortex and pith becoming continuous between the bundles which appear Aberrast bedded in atrands emTyporiof bedded in a general Stolelo bundle has its own Anyio Apprits. nvestment of own investment of tissue
corresponding with conjunctive and now external conjuncive, called peridenm. The bundles sometimes keep their arrangement in a ring corresponding with the stele, though the continuous cylinder no longer exists (species of Ranunculus). This condition is known as astely. In some astelic sterms (Nymphaeaceac) the number of bundles is greatly increated and they are scattered throughout the ground tissue. A " polystelic "condition a rises in some members of this order by the astociation of collateral bundlee round common centres. A similar phenomenon is seen in two widely eparated genera of flowering plants: Primule \& Aurtula and Gummera (Hajorageae).

The monocotyledons, one of the primary divisions of angiosperms, Morrocoty typically possess large kdonows leavew with broad Trpe. sheathing bases containing a very great number number number of bundies present at any given level of the stem being enormously increased. These bundles are scattered in a definite though not superticially obvious order through the conjunctive tisoue of the stele, which occupies nearly the whole diameter of the etem, the cortex being reduced to a very narrow layer, or disappearing altogether (fig. 3). The maes of conjunctive tissue is developed as a larze-celled "ground-tisure," and round each bundle there is a " perideam " which is often fibrous (fig. t6). It is pomible to auppote that this condition is derived from the aatelic condition already referred to, but the evidence on the whole leads to the concjution that it has arisen by an increase in the number of the bundles within the stele, the individuality of the bundle ascerting ittelf after its encape from the original bundle-ring of the primitive cylinder.

In the atems of many water-plants various stages of reduction of the vascular system, eapecially of the xylera, are met with, and very aften this reduction leads to the formation of a compact stele in which the individuality of the epparate Reduced bundles may be suppresoed, so that a clowed cylinder Hapout. of sylem surrounds a pith. The phoem is generally unceduced, and there is normally a well marked endodermis (fige 17).

In other cases the reduction soes much further, till the endodermis eventually comes to surround nothing hut an intercellular chaanel formed in place of the stelar tisute.

In the blade of a typical leaf of a vaccular plant-essentially a thm plate of satimulating tissue-the vascular system takes the orm of a number of eeparate, usuady branching and anastomosing strands These. with their associated stereom, form a kind of framework which is of great importance in eupporting the mesophyll; but also, and chiefly, they provide a number of channels, penetrating every part of the leal, along which wates and dissolved alts are conveyed to, and elaborated food-ubbetances from, the mesophyll ceils. The bundle-system is of course continuous with that of the petiole and stem. The leal-bundies are always collateral (the phloem being turned downwarde and the xylem upwards). even in Ferns, where the petiolar strands are concentric, and they have the ordinary mesodesm and peridesm of the collateral bundle. The latter is often clerized, eapecially opposite the phloem, and to a less extent opposite the xylem, as in the stem. As a bundle is traced towards its bland termination in the meeophyll the peridesmic stereom first disappesta, the sieve-tubes of the phloem are replaced by narrow elongated parenchyma cells, which coon die out, and the bundle ends with a strand of tracheids covered by the phlococermic aheath.
The structure of the stele of the primary root as it is found in most Pteridophytes and many Phanerogams has been already described. The radial structure is characterstic of alt root-stelen which have in esoential points a remarkably uniform atructure throughout the vacular plants, a fact no doubt largely dependent on the very uniform conditiont under which they live. While the stele of the primary root in borh Gymnosperms and Angionperma is ucually diarch or tetrarch, the largo primary root-steles of many adventitious roots are frequendy polyarch, somerimes with a very large number of protoxylema Such a stele meldon has the centre filled up with xylem, this being replaced by a large-celled pith, so that a eiphonostelic atructure is acquired (fig. 15). Sometimes, however, the centre of a buiky root stele has strande of metaxylem (to which may be added strands of metaphoem) scattered through it, the interntices being filled with conjonctive. The conjunctive of a soot-stele posecoung a pith is often aclerised between the pith and the pericycle. Sometimes all the parenchyma within the stele undergoes this changr. In the roote of come paims and orchids a "polystelic" structure obtains.

In certain families of Angioeperms a pectuliar tisoue, called leniciforams lissme is met with. This taket the form of long unally
siolly brached tober which penetrate the other tivere of the plant matnly in a longitudinal direction. They possess a delicate catioforemes layer of protoplasm, with numerous small nuclei lining Thsen. the wralle, while the interior of the tube (corresponding with the cell-vacuole) contains a fuid called latex, eonsinting of an emulsion of fine granule and drops of very varions substancee suspended in a watery medium in which various other mbatances ((tatis, sugary, rubber-producers, tannins, alkaloids and various ensymus) are diceolved. Of the maspended substancea, grains of caoutchouc, drope of remin and oil, proteld cryatals and etarch greins mey be mentioned. Of this varied miveture of eubstances some are undoubtedly plastic (i.e. of use in conatructing new plant-tigue), others are epparently end-products of meta. bolism, in other worde excrefe, though they are not actually cast out from the plant-body. The relation

(AIter Hibleriach From Vieco Text-Boah of Eatimy, by per: mimion.)
Fro. 1p-A portion of a betici. Hous coepocyte dimetted out of
 of the laticiferous timue to the asximilating cells under which they often end, and the fact that where this tissue is richly developed the conducting parenchyme of the bundles, and cometimes also the weve-tubes, are poorly developed, as well as various other facte, point to the conclasion that the laticiferous syatem has an important function in conductIng plastic aubstances, in addition to action as an excretory reservorr As a secondary function we may recognize, in certain canes, the power of closing woundis, which results from the rapid coagulation of exuded latex in contact with the air. The use of etrtion thats 3 rubber-producers (notably Henea bresiliensis, the Para rubber-trec) depends on this property. The erecs are regularly tapped and the coagulated Latex which exudes is collected and worked up into rubber. Opium is obtained from the latex of the opium poppy (Papaver sommiferum), which contains the alkaloid morphine.

Laticiferous tissue is of two kinds. (1) Laticifcrous cells (coenocytes) (fig. 19) which branch but do not anastomose, and the apices of which keep pace in their trowth with that of the other tissues of the plant (Apocynaceae, most Euphorblaceae, \&c.): (2) lobiciferous vessels (6g 20) which are formed from rows of meristematic cells, the walls separating the cells breaking down, so that a neiwork of laticiferous tubes arisee (Papaveraceac Heves, tre.). In some cases (A liturn. Convolvulaceae, \&c.) rows of cells with latex-like contents occur, but the walls eeparating the individual cells do not break down.

The body of a vascular plant is developed in the first place by repeated division of the fertilized egg and the growth of Develope the products of division. The body thus formed mesef of is called the embryo, and this develops into the adult Provery plant, not by continued growth of all its parts as Thene. in an animal, but by localization of the regions of cell-division and growth, such a localized region being called a growing-point. This localization takes place first at the two free ends of the primary axis, the descending part of which is the primary root, and the ascending the primary shoot. Later, the axis branches by the formation of new growing-points, and In this way the complex system of axes forming the body of the ordinary vascular plant is built up. In the flowering piants the embryo, after developing up to a certain point, stops growing and rests, enclosed within the seed. It is only on germination " of tbe latter that the development of the embryo into the free plant is begun. In the Pterjdophytes, on the ot her hand, development from the egg is continuous.

The trople division of tiasues is laid down in most cases at a very early period of development-in the fowering plants usually before the resting etnge is reached. In many Pteridophytes the first leaf is formed very early. and the firat vascular trand is developed at its base, utually becoraing centinuous with the cylinder of the root; the st rand of the second leaf ls formed in a similar way and runin down to join that of the first, so that the rtem stele is formed by the joined bases of the leaf-traces. In other cases, however, a continuous prinitive stele is developed, extending from the primery conm to the primary root, the leaf-trecte stiming later. This to
correlated with the comparatively Itse formation and small quvelop ment of the fint leaves. The evidence acarcely admits of a decinon as to which of these methods is to be regarded as primitive in dencent. In the seed-forming plants (Phanerogaws) one or more primary leaves (cotyiedons) sre already formed in the resting embryo. In cates where the development of the embryo is advanced at the resting period, traces run from the cotyledons and determine the symmetry of the itele of the primitive axis, the upper part of which often shows stem-ttructure, in some respects at least, and is called the hypocotyledonary stem nr hypocotol, while the lower part is the primary root

(Aver Seche. Troca Vines' Taserbeok of Boteny, by permission.)
Fra. sa-Laticiletous Vescla from the corter of the root Scomomere kispenice, tanyentlal section
A, Slightly magnitiod. B, A small portion bighly magnified.
(radicle) In other cases the root structure of the stele continues up to the cotyledofary node, though the hypocotyl is otill to be dis tingushed from the primary root by the character of its epidermis. On germination of the seed the radicle first growt out, increasing in size as a whole, and soon adding to its tisuues by cell division at us apical growing-point. The hypocotyl usually elongates, by it cells increasing vary greatly in the longitudinal direction both in number and size, so that the cotyledons are rajsed into the air as the first foliage-leaves. Further growth in length of the stem it thencelorward confined to the apical growing point situated between the cotyledons. In other case this growing-point becomes active at ance, there being hittle or no elongation of the bypocotyl and the cotyledon or cotyledons remaining in the seed.
The structure of the growing-pornts or apical meristems varies much in different cases. In most Pteridophytes there is a single large opical cell at the end of each stem and root axis. This usually has the form of a tetrahedron, with its base vocupying the murface of the body of the axis and its dpex pointing towards the interior. In the stem, eegmente are succesaively cut off from the sides of the tetrahedron, and by their subsequent division the body of the stem is produced. In the root exactly the same thing occurs, but eegmente are cut off also from the base of the tetrahedron. and hy the division of these the root-cap is formed (fig. 21) In both stem and root sarly walla eeparate the cortex from the stele. The epidermis in the sten and the surface layer of the root soon becomes differentiated from the underlying timue. fin tome Ptecidophyte stems the apical cell in wedge-shaped, in others prismatic; in the latter case megments are cut off from the end of the primm turned towards the body of the atem In other cases, again, a group of two of four priamatle celle tales the place of the apical cell. Segments are then eut off
from the outer sides of these initial cells. In most of the Phanerogams the apical (or primary) meristem, instead of consisting of a single apical cell or a group of initials, is stratified-i.e. there is
P
Pb

(Altes Strasburger. From Vines' Text-Boal of Bolany, by permisslon.) Fic 31.-Median Longitudinal Section through the Apex of the Root of

Plans craiza.

Apical cell
k. Jnitial scqment of rooteap.
kn. Outermost tayer of root-cip.
p, Walt ranking limis between the pletome Wa and the plenilem P b
e, Wall makkis the inoer limit of the outer
more than one layer of initials (fig. 22) Throughout the Angiosperms the epiderms of the shoot origtnates from separate intials, which never divide tangentially, so that the young shoot is covered by a single layer of dividing cells, the dermalogen. Below this are

(Afier De Bary. From Vines' Text-Book of Brany, by permission.)
Fig. 21.-Median Longitudiall Section of the Growink Point of the Stem of Hidswris onidurit, showing a many hayered meristem.

I, Rudiment of leaf, d. dermatogen.
the initials of the cortex and central cylinder Whether these are always in layers which remain separate is not known, but it is certain that in many cases such layers cannot be distinguished. This, however, may be due to irregularity of division and displacement of the celis by irregular tensions destroying the ohvious layered arrangement. In some cases there is a perfectly definite line of separation between the young cylinder (plerome) and young cortex (persblem). the latter having onc or more layers of initials at the actual apex. This clear scparation between periblem and plerome is mostly found in plants whose stem-apex forms a naked cone, the leaves being produced relatively late, so that the stele of the young stem is obvious above the youngesi leaf-traces (fg. 22). Where the leaves are developed early, they often quite overshadow the artual apex of the stem, and the rapid formation of leaf-tiseue disturbs the obviousness of, and perhaps actually destroys, the etratified arrangement of the shoot initials In this case also,
the differentiation of leaf-bundien, which typienly begins at the base of the leaf and extends upwards into the leaf and downmarda in to the stem, is the first phenomenon in the development of vascular tissue, and is reen at a higher level than the formation of a steie. The latter is produced (expept in capes of complete astely where a cylinder is never formed) fter a number of leff-troces have appeared on diffrent ades of the stem so as to form a circle as seen is transverse ection the space intervening between adjacent bundles becond us bridged by small-celted tione closing the cylinder. In this tinue fresh bundies may become differentiated, and what remsians of it becomes the rays of the fully-formed stele Many cases acist which are intermediate between the two extreme types desiribud. In these the stele becomes obvious in transverse eection at iocut the 昮me level as that at which the first leaf-traces are developed. Where a large-celled pith is developed this often beconaes obvious very eariy, and in some cases it appears to have separat ! initials situated below thone of the hollow vascular cylinder. In sume cases where there is apparently a well-mariced plerome at the apex, this is really the young pith, the distinction between the stelar and cortical initials, if it exiats, being, as is so of ten the case. impossible to make out. The young tissue of the atelar cylinder, in the cave of the modified siphonostele characteristic of the dicotyledonous stem, difiers from the adjoining pith and cortex in its narrow elongated cells, a difference produced by the etopping of transverse and the increased frequency of longitudinal divisions. This is especially the case in the young vascular bundles themselves (desmogen strands) The protoxylem and protophloem are developed a few cells from the inner and outer margins respectively of the desmogen etrand, the desmogenic tisuce left over giving rise to the segments of endocycle and pericycle capping the bundle. Differentiation of the xylem progresees outwards, of the phloem inwards, but the two tuaues never meet in the centre. Sometirnes development stopt altogether, and a layer of undifierentiated parenchyma (the mesodesm) is left between them; or it may continue indefinitely. the central cells keeping pace by their tangential division rith the differentiation of tisaue on esch vide. In this case the formation of the primary bundle pasaes etraight over into the formation of secondary tissue by a curmbum, and no line can be drawn between the two processes The differentiation of the stelar stereom, which usually takes the form of a aclerised pericycle, and may extend to the endocycle and parts of the rays, takes place in most cases later than the formation of. the primary vascular strand. In the very frequent cases where the bundles have conciderable individual"ty. the fibrous "pericyclic" cap very clearly hae a common origin from the same atrand of tisue at the vascular elements themselves In such cases it is part of the peridesm or sheath of elongated narrowcelled tissue surrounding the individual bundle.
The separation of layers in the apical meristem of the root is usually very much more obvious than in that of the stem. The outermost is the calyplpogen, which gives rise to the root-cap. and in Dicotyledons to the pilfierous layer as well. The perablew. one cell thick at the apex. producee tha cortex, to which the piliferous layer belongs in Monocotyledons; and the plerome, which is nearly always sharply separated from the periblem, gives rise to the vascular cylinder In a few cases the boundarics of the different layers are not traceable The protoxylems and the phloem strands are developed afterntely. just within the outer fimit of the young cylinder The differentiation of metaxylem followis according to the type of root-stele, and, finally, any stereom there may be is developed Differentiation is very much more repid-ute. the tissues are completely formed much nearer to the apex, than is the case in the stem. This as owing to the elongating region (in which protoxylem and protophloem alone are differentrated) being very much shorter than in the stem. The roon hairs grow out from the cells of the pliferous tayer immedlately behind the elongating region.

The branches of the stem arise by multiplication of the cells of the epidermis and cortex at a given spot giving rixe to a protuberance, at the end of which an apical meristem is established. The vascular system is connceted in vanous ways with that of the parent axis by the differentiation of bundle-connexions across the cortex of the latter. This ts known as exogenous branch-formation. In the root, on the other hand. the orignn of branches is endogexour. The cells of the pericycle, usually opposite a protoxylem tirand. divade tangentially and give rise to a new growangspoint. The new root thus lasd down burrows through the cortex of the mother-root and finally emerges into the soil. The connexions of its tele with that of the parent axis are made across the pericycle of the latter. Its cortex is never in connexion with the cortex of the parent, bat with its pericycle. Advensulous rools, arising from stems, usually take origin in the pericycle, but sometimes from other parts of the conjuactive.

In most of the existing Pteridophytes, in the Monocotyledons, and in ennual plants among the Dicolyledons, there is no further growth of much structural importance in the tissues after differentiation from the primary meri-

Shapontry 7hesuem stems. But in nearly all perennial Dicotyledons, in all dicotyledonors and gymnospermous trees and shrubs.
and in fossil Pteridophytes befonging to all the great groups, certain layers of cells remain meristematic among the permanent tissucs, or after passing through a resting stage reacquire meristematic properties, and give rise to sacondary bissues. Such meristematic layers are called secondary meristems. There are two chief secondary meristems, the combium and the phellogen. The formation of secondary tissues is characteristic of most woody plants, to whatever class they belong. Every great group or phylum of vascular plents, when it has become dominant in the vegetation of the world, has produced members with the tree babit arising by the formation of a thick woody trunk, in most cases by the activity of a cambium.

The camburm in the typical case, which is by far the most frequent, continues the primary differentiation of xylem and phloem in the desmogen strand (ree above), or arises in the resting mesodeatn or metocycle and adds new (secondary) xylem and phlocm to the primary tissues. New tangential walls arise in the cells which are the seat of cambial activity, and an smitual layer of cells is established which cuts off tossue mother cells on the inside and out. side, alternately contributing to the xylem and to the phloem A tissue mother-cell of the xylem may, in the most advanced types of Dicotyledons, give rise to-(1) a trachend. (2) a segment of a vescel; (3) a xylem-fibre, or (4) a vertical file of xylem-parenchyma cella In the lask cave the mother-cell divides by a number of horizontal walls. A tisure mother-cell of the phloem may give rise to (t) a egment of a sieve-tube with its companion cell or cella; (2) a phioem fibre; (3) a single phloem-parenchyma (cambiform) cell, or a vertical Gie of short parenchyma cells. At certain points the cambium does not give rise to xylem and phloem elements. but cucs off cells on both sides which elongate radially and divide by horizontal walls. When a given initial cell of the cambium has once begun to produce cells of this sort it continues the process, so that a radial plate of parenchyma cells is foumed stretching in one plane through the sylem and phloem. Such a cell-plate is called a medullary ray. It is esentially a living tissue, and serves to place all the living cells of the secondary vascular tissues in communacation. Itconducts plastic substancer inwards from the cortex. and its cells are frequently full of starch, which they store in winter They are accompanied by intercellular channels serving for the conduction of oxygen to, and carbon dioxide from, the living cells in the interior of the wood, which would otherwise be cut off from the means of respiration. The xylem and phloem parenchyma consist of living cells, fundamentally mimilar in most respects to the medullary ray cells, which sometimes replace them altogether. The parenchyma is often arranged in cangential bands between the layers of sievetubes and tracheal elements. The xylem parenchyma is often found in strands associated with the tracheal elements. These strands are not isolated, but form a connected network through the wood. The xylem parenchyma cells ane connected. as are the medullary ray cells, with the tracheal elements by one-sided bordered pits-i.e. pits with a border on the tracheal element side, and simple on the parenchyma cell side. The fibres are frequentl; (ound in tangential bands between similar bands of tracheae or sieve-tubes. The fibrous bands are generally formed towards the end of the year's growth in thickness. The fibres belong to the same morphological category as the parenchyma, various transitions being lound between them; thus there may be thin-walled celis of the shape of fibres, or ordinary fibres may be divided into a number of super posed cells. These intermediate cells, like the ordinary parenchyma, frequently store starch, and the fibrea themselves, though usually dead, cometimes retain their protoplasm, and in that case may also be uned for starch eccumuletions. The veseels and tracheids are very various in size, shape and structure in different plants. They are nearly always aggregated in strands, which, like those of the parenchyma, are not ssolated, but are connected with one another. In a few cases some of the tracheids have very thick walls and reduced cavities, functioning as mechanical rather than as waterconducting elements. All transitions are found between such forms and typical tracheids. These fibre-tracherds are easily confused on auperficial view with the true wood-fibres belonging to the parenchymatous system: but their pits are always bordered. though in the extreme type they are reduced to mere slits in the wall. The sieve-tubee of the recondary phloem usually have very oblique end-walls bearing a row of aieve-platea; platea also occur on the radial side-walls.

The tisauc-elements just described are found only in the more complicated secondary vascular tisaues of certain Dicotyledons. A considerable evolution in complexity can be traced in pasking from the simplest forms of xylem and phioem found in the primary vascular tisaues both among Pteridophytes and Phanerogams to these highly diferentiated types. In the simplest condition we have merely tracheae and sieve-t ubes, respectively associated with Darenchyma. which in the former case is usualiy amylom, t.e. conkisss of starch-containing cells, and in the latter of proteid cells. This type is found in nearly all Pteridophytes and, so far as is known. in Cycadosilices, both in primery and emeondery timus. The stereom

Is furniahed oither by cortical celly or by the tractual elements, in a few cases by fibres which are probably homologous with sievetubes. Among Gymnoeperms the eecondary xylem is stmilarly simple, consisting of tracheids which act as stereom as well as hydrom, and a little amylom; while the phloem-parenchyma sometimes undergoes a differentiation, part being developed as amylom, part at proteid cells immediately essociated with the sieveriube In other cases the proteid cells of the secondary phloem do not form part of the phloem-panenchyma, but occupy the top and bottom celb rows of the meduilary rays, the middle rows consisting of ordinary starchy cells. The top and bottom rows of the xylem ray are often developed as irregularly-thickened radially-elongated tracheida which serve for the radial conduction of water, and communicate with the ordinary tracheids of the secondary xylem by targe bordered pits. The primary vascular tissues of Angiosperms ane likewise nearly always simple, consisting merely of tracheac and sieve-tubes olten associated with amylom. A characteristic peculiarity, both

(Froen Grveais Pagathle Physiology, by permiakion)
Fic is - Section of pert of bypocotyledonary dern of Riciame communde.
e. Surch sbrech, at the ertrumiles of the figure Its oelle are repeneoted aterdis 3, camblum layer.
in the primary and secondary tiseue. is that the proteid cells of the phloem are here always sister-cells of the leptoids and are known as compansow-rells in the secondary tissues of Dicotyledons we may have, as already described, considerably more difterentiation of the cells, all the varieties being referable, however, on the one hand to the tracheal or sieve-tube type, on the other to the parenchyma type. The main feature is the development of special vascular stcreom and storage tisuuc. In some cases special secreting tissues, resin ducts, oil glands, laticiferous tiasue, crystal sacs, \&c.. may be developed among the ordinary secondary vascular elements.

The limit of each year's increment of secondary wood. in those plants whowe yearly activity is interrupted by a regular winter or dry season, is marked by a more or less distinct line, which is produced by the sharp contrast between the wood formed in the late summer of one year the wood formed in the late summer of one year the tracheal clements. or by the preponderance of fibres, or by a combination of these characters, giving a denseness to the wood) and the loose spring wood of the next year, with its absence of fibres, or its numerous large tracheas. The abundance of waterconducting channels is in relation to the need for a large and rapid supply of waler to the unfolding leaves in the spring and early summer. In Gymnosperms, where veseels and fibres are absent, the late summer wood is composed of radially narrow thick-walled tracheids. the wood of the succeeding spring bcing wide-celled and thin-walled, to that the limit of the year's growth is very well matked. The older wood of a large tree forming a cylinder in the centre of the truak trequently undergoes marked changes in character The living elements die, and the walls of all the cells often become hardened, owing to the deposit in them of spectal substances. Wood thus altered is known as heart-wood, or dyromen, as distinguished from the young sap-wood, or alburnsum, which. forming a cylinder next the cambium, remains alive and carries on the acrive functions of the xylem. particularly the conduction of water The heart. wood ceases to be of any use to the tree except as a mupport. but owing to its drynese and hardnesa it alome is of much use for industriaf purpowes. The great hardnem of tak is due to the silice deposited in the heart-wood. and the special eolouring matters of various woods. such as eatinwood. ebony. Ac., are confined to the heart-wood. In some cases the heart-wood. instead of becoming specially hard. remains soft and easily rots, so that the trunk of the tree frequently becomes hollow, as is commonly the case in the willow. Heart-wood is first formed at very different epochs in the hfo of a tree, according to the species-e.g. after fifteen to twenty years in the oak, forty years in the sah. de.

In many annual plants no cambium is lormed at aH, and the atme is true of most perennial Pteridophytes and Monocotyledons. cembitra When the vascular tissue of such plants is arranged Casteme in separate bundles these are said to be closed. The Srome bundles of plante which form cambium are, on the contrary, called open. In stems with open bundles the formation of cambium and secondary tissuc may be confined to these, when it is said to be entirely fascicular. In that case either very little mecondary tissue is formed, as in the gourds, nome Ranunculaceac. dc., or a considerable amount may be produced Iclematis, barbery, ivy). In the latter event the cells of the primary rays are either merely st retched radially, or they divide to keep pace with the growth of the bundles. If this division occurs by means of a localized mecondary meristem connecting the cambual layern of adjacent bumdles, an interfascicular is formed in addition to the fascicular cambium. The interfascicular cambium may form nothing but parenchymatoue tissue, producing merely continuations of the primary rays. Such rays are usually broader and more conspicuous than the secondary rays formed within the wedges of wood opposite the primary bundles, and are distinguished as proncipal roys (rom these narrower subordsnate or foscicular rays (fig 24). This is the typical case in most trees where the primary bundles are close together. Where the primary bundles are larther apart, so that the primary rays are wider, the interfascicular cambium may form several fairly broad (principal) secondary rays in sontinuation of certain radial bands of the primary ray, and between these, wedges of secondary xylem and phloem: or, finally, secondary xylem and phloem may be formed by the whole circumference of the cambium, fascicular and interfascicular alike, interrupted only by narrow secondary raye, which have no relation to the primary ones.

(Alter Tuy, from Groen's VrideSte Phyridogy, by permisaion) Fre. i4-Section of 1bree year-atd shem of Liare
4 periderm: c, cortiz; Nh, phlocm with alternating strands of Gbres, weve tubes and pareochyman; pry, pricipal ray; ty, subordionte ray, cs. cary bium.

In a good many cases, wometimes in isolated genera or species, sometimes characteristic of whole families, socalled onomabous cambial bayers are formed in the stem. either an an extension of. or in addition to, the original cambial cylinder. They are frequently aseociated with irregularities in the activity of the original cambium. Irregularity of cambium occurs in various families of woody dicotyledonous plants, mostly among the woody climbers, known as liemes, characteristic of tropical and sub-tropical lorests. In the simplest cases the cambium produces xylem more freely along certain tracts of the circumference than along others, so that the stem lowes tts original cylindrical form and becomes elliptical or tobed in section. In others the secundary phloem is produced more abundantly in those places where the secondary xylem is deficient. so that the stem remaina cylindrical in section, the phloem occupying the bays left in the xylem mass. Sometimes in such cases the cambium ceases to be active round these bays and joins across the outside of the bay, where it resumes ite pormal activity, thus isolating a phloem strand, or, as it is sometumes called, a phlocm island, in the midst of the xylem. The signifcance of these phenomena. which present many minor modifications in different cases, is not fully understood, but one purpose of the formation of phlocm promontories and iutands seems to be the protection of the sieve-tubes from crushing by the of ten considerable peripheral pressure that is exercised on the
stems of theme lianes Sometimes the original cambial ring is broken into several ares, each of which is completed into an indepen. dent circle, to that severai independent secondary vascular cylinders are formed. The formation of additional cambial cylinders or bands occurs in the most various families of Dicotyledons and in some Gymnosperms. They may arive in the pericycle or endocycle of the stele, in the cortcx of the stem, or in the parenchyma of the secondary xylem or phloem. The activity of the new cambum is often associated with the stoppage of the original one. Sometime the activity of the succestive cambiums simply results in the formation of concentric nings or arcs of eccondary xylem and phloem. In other casea a most intricate arrangement of secondary tissue masses is produced, quite impossible to interpret unless all stages of their development have been followed. Sometimes in lianes the whole stem breaks up into separate woody strands, often twisted like the strands of a rope, and running into one another at intervals An ordinary cambium is scarcely ever found in the Monocotyledons, but in certain woody forms a secondary meristem is formed outside the primary bundles, and gives rise externally to a litele secondary cortex, and internally to a secondary parenchyma in which are developed numerous zones of additional bundles, usually of concentric stmucture, with phloem surreunded by xylem.
The cambium in the root, which is found generally in those plants which possess a cambium in the stem, always begins in the conjunctive tissue internal to the primary phloems, and forms new (secondary) phloem in contact with the Canblues primary, and secondary zylem internally. In roots which thicken but slightiy, whose cambium usually a ppears late. it is contined to these regions. If the development of secondary tissues is to proceed further, arcs of cambium are formed in the pericycle external to the primary xylems, and the two setsof cambial arcs join, forming a continuous, wavy line on transverse section. with bays opposite the primary phloems and promontories opposite the prinary xylems. Owing to the resistance offered by the hard first-formed sccondary xylem, the bays are pustued outwards as growth proceeds, and the wayy line becomes a circle. Opposite the primary xylems, the cambium either (a) forms parenchyma on both sides, making a broad, secondary (principal) ray, which interrupts the vascular ring and is divided at ita inner extremity by the islet of primary xylem; or (b) forms secondary xylem and phloem in the ordinary way, completing the vascular ting. In either case, narrow. mecondary cays are forned at intervals, just as in the stem. Thus the structure of an old thecened root a pproximates to that of an old thickened stein, and so far as the vascular tissue is concerned can often only be distinguished from the latier by the position and orientation of the primary xylems. The cambium of the primary root, together with the tissues which it forms, is always directly continuous with that of the primary stem, juit In the same way as the tissues of the primary stele. The so-called anomaloua cambiums in roots follow the same lines as those of the stem.

In nearly all plants which produce secondary vascular tissues by means of a cambium there is another layer of econdary meristem arising externally to, but in quite the same fashion as, the camblum, and producing like the latter an external Piedianea and an internal secondary tissue. This is the phellogen,

Pledit and the whole of the tissue it gives rime to is known as Prridersa and the whole of the tistue it gives rise to is known as periderw. The phellogen derives its name from the fact that its external product is the characteristic tissue known as cork. This consists typucally of clope-fitting layers of cells with completey suberized walls, intended to replace the epidermis as the external protective layer of the plant when the latter, incapable as it is of further growth after its original formation, is broken and cast of by the increase in thickness of the stem through the activity of the cambium. Cork is also formed similarly in the root after the latter has passed through its primary stage as an absorptive oryan, and its structure is becoming astimilated to that of the stem. The internal tissue formed by the phellogen is known as phelloderm, and coodists usuatly of ordinary parenchyma. The phellogen may ariec, in the first place, tn any tissue of the axis external to the actual vascular tissues-i.e. in the epidermis itself (rareiy), in any Layer of the cortex. or in the pericycle. Its most usual seat of origin in the sem is the external layer of the cortex immediately below the epidermis, in the root, the pericycle. All the tissues external to the cork are cast off by the plant. The extent of development of the phelloderm is dependent upon whether the phellogen has a superficial or a deep-seated origin. In the former cese the formintion of phelloderm is trivial in amount; in the latter, considerable. since this tinsue has to replace the cast-off cortex, as metabolic and particulariy a storage tissue.

Provision is made for gaseous interchange between the internal tisgues and the external air aiter the formation of cork, by the development of lenticels. These are epecial organs witich leaumen interrupt the continuity of the impermeahle layer of Lanthen ordinary cork-cella. A lenticel is formed by the phellogen al g given spot dividing very actively and glving rise to a loose tissue of rounded cells which soon lose their contents, and between which air can pass to the tissues below (fig. 25). A lenticel appears to the naked eye as a rounded or elongated scar, of ten forming a distinct prominence on the surface of the organ. The lenticels of the gtern arc usually formed bonesth stomate. whose function they talise up after the
stomata have been ruptured aded cete off with the rest of the epider mis. Both cork and phelloderm may be differentiated in various ways. The former often has its cells lignified, and may consist of alternate layers of hard and soft cells. The latter may develop stereom, and may also be the seat of origin of new formations of various kinds-a.e. eupplementary vascular bundles, anomalous cambial zones, ice. It is often enormously developed and forms a very important tissue in roots. In the stem of a tree the original

Fra. 25.-Leaticel in the trasorane sectioa of a twie of Elder.
 arachanom coapinning chlorophyti.
phellogen is replaced by successive new phellogenic layers of deeper and deeper origin, each forming its own layer of cork. Eventually the new phellogens reach the level of the eecondary phloem, and are formed in the parenchyma of the latter. keeping pace in their inward march with the formation of fresh wecondary phuoem by the cambium. The complex system of dead and dying tissues cut of by these euccessive periderms, together with the latter themselvesin fact, everything outwide the innermost phellogen. constitutes what is often known botanically as the bark of the tree. Rhytidome is. however, a preferable term, as the word bark has long been established in popular usage to mean all the tissue that can easily be peeled off-i.e. everything down to the wood of the tree. The rough surface of the bark of many trees is due to the successive phellogens not írisugg in regular concentric zoncs, but forming in arcs which join with the carlier-formed arcs, and thus causing the bark to come off in takes or thick chunks. A liyer of cork ia regularly formed in most Phanerogams across the base of the petiole before leaf fall. so as to cover the wound caused by the separation of the leaf from the stem. Special "wound-cork" is also often formed round accidental injuries so as to prevent the rotting of the tissues by the soaking in of rain and the entrance of fungal sporet and bacteris. A peculiar modification of periderm is formed by the phellogen in the submerged organs (roots or stems) of many aquatic or marsh-loving plants. Thjs may take various forms and may cover the whole of the organ or be localized in special regions; but its cells are always living and are separated by very large interceilular spaces containing air. This tissue is called acrenchym, and no doubs its function is to facilitate the respiration of the organs on which it is formed and to which the access of oxygen is dificult. In other cases. a similar formation of spongy but dead periderm tissue may occur for the same purpose in special patches, called prowmotodos, on the roots of certain trees living in marahy places, which rise above the soil in order to obtain air.

Mistory and Bibliography.-The atudy of plant anatomy was begun in the middle of the seventeenth century as a direct result of the construction of microscopes, with which a clear view of the structure of plant tissues could be obtained. The Englishman Grew and the Italian Malpighi almost simultancously published illustrated works on the subject, in which they described, for the most part very accurately, what they s ww with the new instruments. The subject was practically dormant for nearly a century and a half, latgeiy owing to the dominance of elassificatory botany under the influence of Linnecus. It was revived by several German workers, prominent among whom were Treviranus and Link, and later Moldenhawer, as well as by the Frenchmen Mirbel, at the beginning of the 1gth century. The new work largely centred round a discussion of the nature and origin of messels, conspicuous fealures in young plant tissues which thes acquired an Importance ln the contemporary literature out of proportion to their real signif. cance in the constraction of the vascular plant. The whole of the writings of this time are dominated by a preoccupation with the functions of the different tissues, in itself an excelient standpoint for investigation, but frequently leading in the case of these early investigators to one-sided and distorted views of the facts of structure. The ploneer of modern plam anatomy was Hugo voo Mohl (A. 1840), who carofully inventigated and
described the facts of anatomical structure without attemptiag to fit them into preconceived views of their meaning. H_{4} produced a solid body of accurately described facts which has formed the socure groundwork of subsequent advance. From Mohl down to the eighth decade of the century the study of anatomy was entirely in the hands of a group of German investigators, prominent among whom were several of the most eminent founders of modern scientific botany-such, for instance, as Nigeli, Sanio and De Bary. To the first we owe the secure foundation of our knowledge of the structure and course of the vascular strands of the higher plants (" Ueber den Bau und die Anordnung der Gefassbundel bei den Stamm und Wurzel der Phanerogamen," Beilrdgt sur missouschafllichan Bolanik, Heft i., Leipzig, 1859); to the second the eatablishment of the sound morphological doctrine of the central cylinder of the axis at the starting-point for the consideration of the general arrangoment of the tiscues, and the first clear distinction between primary and secondary tissues (Botomische Zeitung, 1861 and 1863); to the last the putting togethor of the facts of plant anatomy known up to the middle of the eighth decade of the century in that great encyclopsedia of plant anetomy, the Vergleichande Anatomie dar Vegelationsorgane bei dew Phanarogamen und Farnen (Stuttgart, 1876; Eng. trans., Comparation Anatomy of the Vegelative Organs of the Phanerogams and Faxns, Oxford, 2882). In 1870-1871 Van Tieghem published hia great work, "Sur la Racine," Ann. sci. nat. laf. (Paris). This was not only in itseif an important contribution to plant anatomy, but served as the starting-point of a series of researches by Van Tieghem end his pupils, which has considerably advanced our knowledge of the details of histology, and also culminated in the foundation of the doctrine of tbe stele (Van Tieghem and Douliot, "Sur la polystélie," Ans. sci mat. bot., 1887; Van Tiegbem, Traild de botanigme (and ed. Paris; 1889-1891). This has had a most important effect on the developraent in recent years of morphological anatomy.
In the progress of the last three decades, since the publication of De Bary's great work, five or six main lines of advance can be distinguistred. First, the knowledge of the details madera of histalogy has of course advanced greatly in the prograse of direction through the ceaseless activity of very the Sublect numerous, mainly German, workers, though no fundamentally new types of tissue have been discovered. Secondly, the histology of fossil plants, particularly woody plants of the carboniferous period, has been placed on a sound basis, assimilated with genetal histological doctrine, and has considerably enlarged our conceptions of plant anatomy as a whole, though again without revealing any entirely new types of structure. This branch of the subject, founded by Corda, Coppert, Stenzed and others in Germany, was enormously advanced by Williamson's work on the Coal Measures plants, recorded in the magnificent serics of memoirs, "Researches on the Organization of Fossil Plants of the Coal Mcasurea " (Phil. Traws. Roy. Soc., vols. i.-xix., s875-1893). The work of Solras Laubach in Germany, Remault and Bertrand in France, and in recent years, of Zeiller in France, and Scott, Seward and others in England, has advanced our knowledge of the anatomy of lossii plants in an important degree. While convincing us that the plants of past ages in the earth's history were exposed to very similar conditions of life, and made very much the same adaptive responses as their modern representatives, one of the main results of this line of work has been to reveal important data enabling us to fill various gape in our morphological knowledge and to obtain a more complele picture of the evolution of tissues in the vascular plants. One of the most atrihing incidents in the progress has been the recognition within the last few years of the existence of an extinct group of plants lying on the borderland between Filicales and Gymnosperms, and known as the Cycadofilices, a group in which, curiously enough, the reproductive organs remained undiscovered for some time after the anatomy of the vegetative organs was sufficiently well known to afford clear evidence of their true affinities. Thirdly, we have to record very consjderable
progress in our knowledge of distinctively morphological anatomy, i.e. the study of tissues from the standpoint of evolution. The Russian plant anatomist, Russow, may be said to have founded the consideration of plant tissues from the point of view of descent (Verglecchende Uniersuchungen aber due Leibbundelkryptogamen. St Perersburg, 1871, and Betrachtungen aber Leitbuaded mid Grundgruebe, Dorpas, 1875). He was ably followed by Strasburger (Ueber den Baw wad die Verrichuangen des Leilungsbahnen in dem PRansen, Jena, 1801). Haberlandt and others. The explicit adoption of this point of view has had the effect of clearing up and rendering definte the older morphological doctrines, which for the most part had no fixed criterion by which they could be tested.
Since about i895 this branch has been most actively pursurd in Engiand, where the work of Boodle and of Gwynne-Vaughan especially on Ferns) has been the most important, leading to a coherent theory of the evolution of the vascular system in these plants (Tansley, Evolution of the Filicinean Vascular Syslem, Cambridge, 1908); and in America, where Jeffrey has published important papers on the morphology of the vascular tisoues of the various groups of Pleridophytes and Phanerogams and has sought to express his conclusions in a general morpho. logical theory with appropriate terminology. As a result of this actlvity Van Ticghem's so-called "Stelar theory" has been revised and modified in the light of more extended and detailed anatomical and developmental knowledge. Schoute's Dic Steldr-Theorie (Gröningen, 1902), gives an important critical account of this subject
Fourthly, altention must be called to the great development of what is called "Systematic Anstomy," i.e. the study of the anatomical features characteristic of the smaller groups of flowering plants, i.e. the orders, families, genera and specics. Radjkofer (1883) was the firat to call attention to the preat importance of this method in systematic botany, as providing fresh characters on which to hase a natural classification. Solereder's great work, Systemalisthe Annlomie der Dicolyledonen (Stultgart, 1898-1g08: Eng. trans., Systematic A nalomy of Dicolyledous, Oxiond, 1908), brings together 80 many of the facts as are at present known in an orderly arrangement. Theoretically this branch of the subject should connect with and form the completion of "morphological anatomy," but the field has not yet been sufficiently explored to sllow of the necessary synthcsis. The true relation of "syatematic" to "ecological " anatomy (see below) also awaits proper elucidation.

Fifthly, we have to record the foundation of the modern study of "physiological anatomy" (i.e. the study of the specific functions of the various (issues) by Schwendener (Das mechanische Princip im Ban der Monocotylen, 1874, and other works), followed by numerous pupils and others, among whom Haberlandt (Physiologische Pfatisem-Anatomic, Leipzig, ist ed., 1884, 4th ed., 1909, and other works) is pre-eminent. The pursuit of this study has not only thrown valuable light on the economy of the plant as a whole, but forms an indispensable condition of the advance of morphological anatomy. A great deal of work still remains to be done in this department, which at the present time affords one of the most promising felds of anatomical investlgation.

Finally we may mention "ecological anatomy," i.e. the study of anatomical features directly related to the habitat. A very considerable body of knowledge relating to this subject already exists, but further work on experimental lines is orgently required to enable us to understand the actual economy of plante growing under different conditions of life and the true relation of the hereditary anatomical characters which form the subject matter of "systematic anatomy" to those which vary according to the conditions in which the individual plant is placed. On these lines the future of anatomical study presents almost inexhaustible posaibilities.
(A. G. T)

Parysiolocy or Plants

The so-called regelable physiology of a generation ago was in strear of onimal, and particularly of Auman, physioloty, the
study of the latter being followed by many mote observers, and Irom its relative degree of advancement being the more capable of rapid development. It was fully recognized hy its followers that the dominating influence in the structure and working of the body was the protopleam, and the division of labour which it exhibited, with the accompanying or resulting differentiation into various tissues, was the special subject of investigation. Many who followed the study of vegetable structure did not at that time give an equal prominence to this view. The early histological researches of botanists led thern to the recogntion of the vegetable cell, and the leading writers In the middle of the 1oth cencury poineed out the probable idensity of Von Mohl's "protoplasm" with the "sarcode " of zoologists. They laid great stress on the nitrogenous nature of protoplasm, and noted that It preceded the formation of the cell-membrane. But by the ordinary student of thirty years later their work was to some extent overlooked, and the cell-woll assumed a prominence to which it was not entitled. The study of the differentiation of protoplasm was at that time seldom undertaken, and no particular attention was paid either to fixing it, to enable staining methods to be accurately applied to it, or to stadying the action of chemical reagents upon it. It is only comparatively recently that the methods of histological investigation used by animal physiologists have been carefully and systematically applied to the study of the vegetable organisms. They have, however, been atteaded with wonderful results, and have revolutionized the whole atudy of vegetable struclure. They have emphasized the statements of Von Nohl, Cohn, and other writers alluded to, that the protoplasm is here also the dominant lactor of the body, and that all the peculiaritics of the cell-wall can only he interpreted in the light of the needs of the living substance.
The Nalure of the Organization of the Plant, and the Redations of the Cell-Membrane and the Prolopharm.-This view of the structure of the plant and this method of investigation lead us to a greatly modified conception of its organization, and afford more completely an explanation of the peculiaritics of form found in the vegetable kingdom.
The study of simple organisms, many of which consist of nothing but a little mass of protoplasm, exhibiting a very rudimentary degree of differentiation, so far as our methods enable us to decermine any at all, shows that the ducies of exlstence can be discharged in the absence of any ccil-wall. Those organisms which possess the latter are a little higher in the scale of life than those which remain unclothed by it, but a comparison of the behaviour of the two quickly cnables us to say that the membrane is of but secondary importance, and that for those which posscss it, it is nothing more than a protective coveripg for the living substance. Its physical properties, permeabílity by water, extensibility and elasticity, receive their interpretation in the needs of the latter. We come, accordingly, to regard it as practically an exoskcleton, and its functions as distinctly subordinate to those of the protoplasm which it clothes. If we pass a titule higher up the scale of tiie we meet with forms consisting of two or more cells, each of which contains a similar minute mass of living substance. A study of them shows that each is practically independent of the others; in fact, the connexion between them is 50 slight that they can separate and each become free without the slightest disadvantage to another. So long as they are connected together mechanically they have apparently the power of influending one another in various ways, and of passing liquid or gascous materials from one to another The conjoined organism is, in fact, a colony or association of the protoplasmic units, though each unit retains its independence. When we pass, again, from these to examine more bulky, and consequently more complex, plants, we find that the differences which can be observed between them and the simple lowly forms are capable of being relerred to the increased number of the protoplasmic units and the consequent enlarged bulk of the mase or colony. Every plant is thus found to be composed of a number of these protoplamaic units, or, as they may. preferably be termed.
motonerts, all of which ere at first emactly alike in mppearance and in propertica. This is evident in the case of such plants as have a body consisting of filaments or plates of cells, and is Hitule less cosaspicuoun in those whose masas is but emall, thourg the crille ane evidencly capable of computation in three dimeensions. It doen not at firto appear to be the same with the bulkier phants, such as the ordinary green herba, shrubs or trees, but a sturdy of their earlier development indicutes that they do sot at the outect differ in any way from the simple undififerentiated lorms. Each commences its exianence as a simple naked protoplant, in the embroyo-anc or the archegonium, as the case may be. After the curious fusion with another similar proto plast, which conastintes what we call lertilization, the next stage in complexity already noted may be oberved, the protoplasm becoming clothed by a cell-membrane. Very soon the single cell gives rine to a chain of cells, and this in turn to a cell mass, the individual units of which are at first quite uniiortn. With increase of number, however, and consequently enlargement of bulk in the colony, differentiation becomes compuleory The roquirements of the several protoplants must be met by supplies from without, and, as many of them are deep reated, varietien of need arise, so that various members of the colony are set apart for special duties, mames of them being devoted to the discharge of one function, others to that of another, and so on. Such limitations of the powers and properties of the Individuals have for their ohjeet the well-being of the community of which those individuals are consittuents.
Physiologicol and Morphological Differentiation.-The firt trdication of this differentlation in the vegetative body of the plant caa be seen not only in the terrestrial green plants which bave been particultriy referred to, but abso in the bulkier senweeds. It is an extenclon of the first differentiation which wha obeervable in the simple protoplasts first discussed, the formation, that is, of a protective covering. Fwius and tis allies, which Corm conspicuous members of the larger Algae, have their external cells much mander, more closely put together, and generally much denser than the rest of their tiasue. In the iowly as well as the higher green plants we have evidence of epecikiization of the external protoplasts for the same purpose, which takes various shapes and shows different degrees of completeness, culminating in the elaborate barks which clothe our forest trees.
The second prominent differentiation which presents itself takes the form of a provision to supply the living sabstance with water. This is a primal necessity of the protoplast, and every cell gives evidence of its need hy adopting one of the various ways in which such need is supplied. What littie differentiation can be found to exist in the protoplasm of the simple unicellular organism shows the importance of an adequate water-supply, and indeed, the dependence of life upon it. The naked cells which have been alluded to live in water, and call therefore for no differentiation in connexion with this necessity; but those which are surrounded by a cell-wall always develop within themselves a pacuole or cavity which occupies the greater part of their interior, and the hydrostatic pressure of whose contents keeps the protoplasm in contact with the membrane, setting up a condition of turgidity.

The need for a constant supply of water is partly based upon the constitution of protoplasm, so far as we know it. The apparently structureiess sabstance is saturated with it; and if once a cell is completely dried, even at a low temperature, in the enormous majority of cases its life is gone and the restoration of water fails to enable it to recover. Besides this intimate relationship, however, we can point to other features of the necessity for a constantly renewed water supply, The protoplasm derives its food from substances in solution in the water; the various waste products which are incident to its life are excreted into it, and so removed from the sphere of its activity. The raw materials from which the food is constructed are absorbed from the exterior in solution in water, and the latter is the medium through which the gaseous constituents necessary for life reach the protoplasm. Moreover, growth is essentially
dependent upon water-uppply. There is ittle wooder, then, that in a colony of protoplasts such as constitute a larige plane a considerable degree of differentiation is evident, bearing upon the queation of water mupply. Certain cells of the exterior are set apart lor absorption of water from the soil, this being the source from which supplies are derived. Othens are devoted to the work of currying it to the protopinats situated in the Interior and at che astromitiee of the plant, a conducting system of considerable complexity being the sesult.

Obber collections of cella ase in many cases set apart for giving rigidity and strengith to the mases of the plant. It is evident that as the later increases in hulk, more and more attention must be paid to the dangers of aprooting by winds and stormas. Various mechnnisms have boen adopted in dilferent chses, some connected with tbe subterrancas and others with the sub-seria! portions of the plant. Another kind of differentiation in such a cell-mans as we are dealing with is the retting apart of particular groupe of cells for various metabolic purposes. We have the formation of numerous mechanisms which have arisen in connexion with the queation of food supply, which may not only involve particular cells, hut also lead to differentiation in the protoplasm of those celle, ass in the development of the chloroplasides of the leaves and other green parta.
The inter-relations of the members of a large colony of protoplasts such as constitute a tree, dermand much adjustment. Relations with the exterior are continually changing, and the needs of different regions of the interior are continually varying, from time to time Two femures whicb are ementially proteplesmic assume a great importance when we consider these relations. They are the power of receiving impressions or stimuli from the exterior, and of communicating with each other, with the view of co-ordinating a suitable repponse. We have nothing struetural which corresponds to the former of these. In this matter, differentiation has proceeded very dififrently in animals and plants respectively, no nerves or sense organs being structurally recognizahle. Communication between the various protoplasts of the colony is, however, carried on hy means of fine protoplasmic threads, which are continuous through the cell-walls.

All the peculiarities of structure which we encounter consequently support the view with which we started, that the protoplasm of the plant is the dominant factor in vegetabie structure, and that there need be but one subject of physiology, which must embrace the behaviour of protoplasm wherever found. There can be no doubt that there is no fundamental difference between the living substance of animals and plants, for many forms exist which cannot be referred with certainty to either kingdom. Free-swimming organisms without cell-membranes exist in both, and from them series of forms can be traced in both directions. Cellulose, the material of which vegetable cell-walls are almost universally composed, at any rate in their early condition, is known to occur, though only seldom, among animal organisms. Such forms as Voltox and the group of the Myxomycetes have been continually referred to both kingdoms, and their true systematic position is still a subject of controversy. All physiology, consequently, must be based upon the identity of the protoplasm of all living beings.
This method of study has to a large extent modified our ideas of the relative importance of the parts of such an organism as a large tree. The interest with which we regard the latter no longer turns upon the details of the structure of its trunk, limbs and roots, to which the living substance of the more superficial parts was subordinated. Instead of regarding these as only ministering to the construction of the hulky portions, the living protoplasts take the first place as the essential portion of the tree, and all the other features are important mainly as ministering to their individual well-being and to their multiplication. The latter leature is the growoth of the tree, the well-being of the protoplasts is its life and health. The interest passes from the bulky dense interior, with the claborate features of its cell-walls, to the superficial parts, where its life is in evidence. We see herein the reason for the great subdivision of the body, with its
fincly cut twigs and their ukimate expansions, the leaves, and we recognize that this subdivision is only an expression of the need to place the living substance in direct relationahip with the environment. The formation and gradually increasing thickneta of its bark are explained by the continually increasing need of adequate protection to the living cortex, under the strain of the incressing framework which the enormous multiplication of its living protoplasts demands, and the development of which leads to continual rupture of the exterior. The increasing development of the wood as the tree grows older is largely due to the demands for the conduction of water and mineral matters discolved in it, which are made by the increased number of leaves which from year to year it bears, and which must each be put into communication with the central mass by the formation of new vascular hundles. Similar consideratlons apply to the peculiar features of the root-system. All these points of atructure can only be correctly interpreted after a consideration of the needs of the individual protoplasts, and of the large colony of which they are members.
Gascous Interchanges and their Mechanism.-Another leature of the construction of the plant has in recent years come into greater promineace than was formerly the case. The organism is largoly dependent for its vital processes upon geseous interchanges. It must receive a large constituent of what ultimately becomes its food from the air which surrounds it, and it must also take in from the same soutce the oxygen of its reapiratory processes. On the other hand, the aerial environment presents considerable danger to the young and tender parts, where the protoplasls are most exposed to extremes of heat, cold, wet, \&c. These must in some way be harmonizod. No doubt the primary object of the cell-wall of even the humbleat protoplast is protection, and this too is the meaning of the coarser tegumentary seructures of a bulkier plant. These vary corsiderably in completeness with its age; in its younger parts the outer cells wall undergoes the change known as culicularization, the material heing changed both in chemical composition and in physical properties. The corky layers which take so prominent a share in the formation of the bark are similarly modified and subserve the same purpose. But these protective layers are in the main impermeable by gases and hy either liquid or vapour, and prevent the access of eit her to the protoplasts which need them. Investigations carried out by Blackman, and by Brown and Escombe, have shown clearly that the view put forward by Bousaingault, that such abtorption of gases takes place througb the cuticular covering of the younger parts of the plant, is erroncous and can no longer be supported. The difficulty is solved by the provision of a complete system of minute intercellular apaces which form a continuous serics of delicate canals between the cells, extending throughout the whole substance of the plant. Every protoplast, except in the very young regions, has part of its surface abulting on these, so that its wall is accessible to the gases necessary for its vital processes. There is no need for cuticularization bere, as the external dangerous infuences do not reach the interior, and the processes of absorption which Boussingault altributed to the external cuticularized celis can take place frecly througb the delicate cell-walls of the interior, saturated as these are with water. This system of channels is in communication with the outer atmosphere through numerous small apertures, known as stomata, which are abundast upon the leaves and young twigs, and gaseous interchange between the plant and the air is by their assistance rendered constant and safe. This system of intercellular spaces, extending throughout the plant, constitutes a reservoir, charged with an atmosphere which differs somewhat in its composition from the external air, its gaseous constituents varying from time to time and from place to place, in consequence of the interchanges between itself and the protoplasts. It constitutes practically the exterior environment of the protoplasts, though it is ramify. ing through the interior of the plant.

The importance of this provision in the caseof aquatic vascular plants of sturdy bulk is even greater than in that of terrestrial organisms, as their environment offers considerable obstacles
to the renewal of the air in thetr interior. They are without stomata on their submerged portions, and the entry of gises can only take place by'difission from the water through their external cells, which are not cuticulatzed. Those which are only partially submerged bear stomata on their exposed portions, so that their enviromment approximates towards that of a terrestrial plant, but the communication even in their cate is much leas eary and complete, so that they need a much larger reservoir of air in their interion. This is secured by the development of much larger intercelluiar spaces, amounting to lacune or pasiages of very considerable sire, which are fourd ramifying in different mays in their interior.
Trusspiratios.- In the case of terrestrial plants, the continual renewal of the water contained in the vacuoles of the protoplasts demands a copious and continuous evaporation. This serves a double purpose, bringing up from the soil continually a supply of the soluble mineral matten necemsary for their metabolic processes, which only enter the plant in solutions of extreme dilution, and at the same time keeping the plant cool by the process of evaporation. The latter function has been found to be of extreme importance in the case of plants exposed to the direct access of the sun's rays, the heat of which would rapidy cause the deatb of the protoplasts were it not employed in the evaporation of the water. Brown and Escombe have shown that the amount of solar energy taken up hy a green leaf may often be fifty times as much as it can utilise in the constructive processes of which it is the seat. If the heat were allowed to aceumulate in the leaf unchecked, they have computed that its temperature would rise during bright sunshine at the rate of more than $12^{\circ} \mathrm{C}$. per minute, with of course very rapidly fatal resulta. What is not used in the constructive processes is employed in the evaporation of the water, the leal being thus kept cool. Whether the leaf is brightly or only moderately illuminated, the same relative proportions of the total energy absorbed are devoted to the purposes of composition and construction respectively. This large evaporation, which constitutes the so-galled wanspiration of plants takes place not into the external air hut into this same intercellular apace system, being possibie only through the delicate cell-walls upon which it abuts, as the external costing, whether bark, cork or cuticle, is impermeable hy watery vapour. The latter ultimately reaches the external air by diflusion through the stomata, whose dimensions vary in proportion as the amount of water in the epidermal cells becomes granter or less.

Hechanism and Funclion of Stomala.-It is not quite exact to speak of cither the gaseous interchanges or the transpiration as taking place through the stomata. The entry of gases into, and exit from, the cells, as well as the actual exhalation of watery vapour from the letter, take place in the intercellular space system of which the stomata are the outlets. The opening and closing of the stomata is the result of variation in the turgidity of their guard cells, which is immediately aflected by the condition of turgidity of the cells of the epidermis contiguous to them: The amount of watery vapour in the air passing tbrough a stoma has no effect upon it, as the surfaces of the guard crils abutting on the air chamber are strongly cuticularized, and therefore impermeable. The only way in which their turgidity is modified in by the entry of water into them from the contiguous cells of the general epidermis and its subsequent withdrawal through the same channel. This opening aad closing of the stomata must be looked upon as having a direct bearing only on the emission of watery vapour. There is a distinct advantage in the regulation of this escape, and the mechanism is directly connected with the greater or smaller quantity of water in the plant, and especially in its epidermal cells. This power of varying the area of the apertures by which gases enter the internal reservoits is not advantageous to the gaseous inter-changes-indeed it may be directly the reverse. It may lead to an incipient asphyxiation, as the supply of oxygen may be greatly interfered with and the escape of carbon dioxide may be almost stopped. It may at other times lead to great difficultics in the supply of the gascous constituents which are used in the
manufacture of food. The importance of transpiration, is, however, 20 great, that these risks must be run.

The Ascent of Water in Trees.-The supply of water to the peripheral protoplasts of a tree is consequently of the first importance. The means by which such a supply is ensured are by no means clearly understood, but many agencies are probably at work. The nstural source of the water is in all cases the soil, and few piants normally obtain any from elsewhere. The water of the soil, which in well-drained soil is met with in the form of delicate films surrounding the particles of solid matter, is absorbed into the plant by the delicate hairs borne by the young roots, the entry being effected by a process of modified osmosis. Multitudes of such hairs on the branches of the roots cause the entry of great quantities of water, which by a subsequent similar osmotic action accumulates in the cortex of the roots. The great turgidity which is thus caused exerts a considerable hydrostatic pressure on the stele of the root, the vessels of the wood of which are sometimes filled with water, but at other times contain air, and this of ten under a pressure less than the ordinary at mospheric pressure. This pressure of the turgid cortex on the central stele isknown as root pressure, and is of very considerable amount. This pressure leads to the filling of the vessels of the wood of both root and stem in the early part of the year, before the leaves have expanded, and gives rise to the exudation of fluid known as bleeding when young stems are cut in early spring.

Root pressure is one of the forces co-operating in the forcing of the water upwards. The evaporation which is associated with transpiration is no doubt another, but by themselves they are insufficient to explain the process of tifting water to the tops of tall trees. There is at present also 2 want of agreement among hotanists as to the path wbich the water takes in the structural elements of the tree, two views being beld. The older is that the water travels in the woody cell-walls of the vascular bundlies, mainly under the action of the forces of root pressure and transpiration, and that the cavities of the vessels contain only air. The ot her is that the vessels are not empty, but that the water travels in their cavities, which contain columns of water in the course of which are large bubbles of air. On this view the water flows upwards under the influence of variations of pressure and tension in the vessels. These forces however fail to furnish a complete expianation of the ascent of the current, and others have been thought to supplement them, which have more or less weight. Westermaier and Godlewski put forward the view that the living cells of the medullary tays of the wood, hy a species of osmosis, act as a kind of pumping apparatus, by the aid of which the water is lifted to the top of the tree, a series of pumping-stations being formed. Though this at first met with some acceptance, Strasburger showed that the action goes on in great lengths of stem the cells of which have been killed by poison or by the action of heat. More recently, Diron and Joly in Dublin and Askenssy in Germany have suggested the action of another force. They have shown that columns of water of very sman diameter can so resist tensile strain that they can be lifted bodily instead of flowing along the channel. They suggest that the forces causing the movement are complex, and draw particular attention to the pull upwards in consequence of disturbances in the leaves. In these we have (t) the evaporation from the damp delicate cell-walls into the intercellular spaces; (2) the imbihition by the cell-wall of water from the vacuole; (3) oamotic action, consequent upon the subsequent increased concentration of the cell sap, drawing water from the wpod cells or vessels which abut upon the leaf parencbyma. They do not, of course, deny the co-operation of the other forces which have been suggested, except so far as these are inconsistent with the motion of the water in the form of separate columos rather than a flowing stream. This view requires the existence of certain anatomical arrangements to secure the isolation of the separate columns, and cannot be said to be fully established.
Nalure of the Food of Plonts.- The recognition of the fundamental rdentity of the living substance in antmals and plants has directed attention to the manner in which plants are nourighed, and especially to the exact nature of their food. The idea was till recently currently accepted, that anything which plants absorbed from تithout, and

Which went to build up their orgenic mubationce, or to supply thenm with onergy, or to exert some beneficial inluence ypon their metabolism, constituted their food. Now, as the materials which plants aboorb are carboa dioxide from the air, and various inoryanic compounds from the woil, together with water, it is ciear that il this view is correct, vegetable protopleam must be fed in a very different way from animal, and on very different miterials. A study of the whole veretahle kingdon, however, negatives the theory that the compounds absorbed are in the strict sense to be called food. Fungal and phanerogarric parasites can mabe no upe of anch mabatances as carbon dioxide, but draw elaborated products from the bodies of their hosts. Those Fungi which are maprophytic can only live when supplied with organic compounds of mome complexity, which they derive from decomposing animal or vegatable matter. Even in the higter flowering plants, in which the processes of the aboorp tion of mbatances from the enviroament has been moent fully atudied, there is a stage in their life ia which the nutritive processes approsimate very closety to thowe of the group last mentioned. When the young sporophyte firt begins its independent life- whea, that is, It exists in the lorm of the embryo in the seed-its living substance has no power of utilizing the simple inorganic compounds spoken of. its nutritive pabuium is supplicd to it in the shape of certain complex organic substancos which have been stored in some pert or other of the meed, sometimes even in its own tinuen, by the parent plant from which it springs. When the tuber of a potato begins to germinate the ahoots which if puts out derive their food from the aecumulated store of nutritive material which has been laid up ia the cells of the tuber. If we examine the eeat of active growth is a young noot or twig, we find that the cells in which the organic substance, the protoplasm, of the plant is being formed and increased, are not supplied with carbon diokide and minerai matter, but with such elaborated material as sugar and proteid nubstances, or othens closely allied to them.

Tdentily of the Food of Amimals and Planks.-It is evidently to the actual seats of consumption of food, and of consequent nutrition and Increase of living substance, that we should turn when we wish to inquire what are the nutritive materials of plants. If we go back to the first instance cited, the embryo in the seed and itI development during germination, we can ascertain what is necessary for its life by inquiring what are the materiala which are deposited in the seed, and which become exhausted by consumption as growth and develop: ment procced. We find them to consiat of representatives of the great classes of foodstufiz on which anima! protoplasm is nourished, and whose presence renders sceds such valuable material for animal consumption. They are mainly carbohydrates such as starch and sugar. proteids in the form of globulins or albumoses, and in many eases fats and oils, while certain other bodies of similar nutritive value are less widely distributed.
The differences between the nutritive processes of the animal and the plant are not therefore fundamental, as they were formerly held to be. The general vegetatle protoplasm has not the capacity of being nourished by inorganic substances which are denied to the living substance of the animal world. Differences connected with the mode of supply of nutritive material do exist, but they are mainh correlated with the structure of the organisms, which makes the method of absorption different. The cell-walis of plants render the entry of solid material into the organism impossible. The food must enter in solution in order to pass the walls. Moreover, the stationary habit of plants. and the almost total absence of iocomotion, makes it impossible for them to seek their food.

The Special Apparalus of Plants for constructing Focd.-The explanation of the apparent difference of food supply is very simple. Plants are furnished with a constructive mechanism by which they are enabled to fabricate the food on which they live from the inorganic, gaseous and liquid matters which they absorb. The fact of such absorption does not render these substances food; they are taken in not as food, but as raw naterials to be subjected to the action of this constructive mechanism, and by it to be converted Into substances that can nourish protoplasm, both vegetable and animal. It is sometimes forgotten, when discussing questions of animal nutrition, that all the food materials of all living organisms are prepared originally from inorganic substances in exactly the same way. in exactiy the same place, and by the same machinery. Which is the chlorophyl/ apparatus of the vegetable kingdom. A consideration of these facts emphasizes still more fully the view with which we set out, that all living zubstance is fundamentally the same, though differentiated boit anatomically and physiologically in many directions and in different degrees. All is nourished alike on materials originally prepared by a mechanism attached to the higher vegetable organism, and capable of being dissociated, in theory at least, from its own special means of nutrition, if by the latter term we understand the appropriation by the protoplasm of the materials so constructed.
The chlorophyll apparatus of plants demands a certain description. It consists essentially of a number of minute corpuscles or plastids, the protoplasmic substance of which is impregnated with a green colouring matter. These bodies, known zechnicaliy as chloroplasts, are found embedded in the protoplasm of the cells of the mesophyll of foliage leaves, of certain of the cells of some of the leaves of the flower, and of the cortex of the young twiga and petioles. Usuality
they are abwent from the cells of the epidermis, though in some of the lower plants they are met with there also. The plastids are not rigidly embedded in the cytoplasin, but are capable of a certain amount of movernent therein. Each is a mall protoplamaic body, fo the meahes of whose aubetance the green colouring matter chlorophyl is contained in some form of solution. Various solvents, such as bensene, aleohol and chloroform. will disuolve out the pigment, leaving the platid colourlets. Chlorophyti is not soluble in water, nor in acids or alkalies without decomposition.

These plastids are especially charged with the duty of manufacturing carbohydrates from the carbon dioxide which the air contains, and which is aboorbed from it after it has entered the intercellular pasages and has so resched the cell containing the plastids. This action is found to take place only in the prewence of light. preferably moderate sunlight. The reason for the distribution of the chloroplats described above is consequently seen. The relation of the chlorophyll to light has been studied by many observers. If a colution of the pigment is placed in the pach of a besm of light which is then allowed to fall on a prism, the resulting spectrum will be found to be modified. Instead of preaenting the appearance of a continuous band in which ali the colours are represented, it is interrupted by everea vertical dark speces. The rays which in the abeace of the solution of chlorophyll would have occupied thoee paces have no power to pans through it, or in other worde chlorophyil asorbs those particular rays of tight which are miscing.
The absorption of these rays impits that the pidment absorbs ediant enersy from the eun, and gives us come explanation of its power of constructing the carbohydrates which has been mentioned as the special work of the apparatus. The working of it is not at ail completely undentood at preaent, nor can we sty exactly what the part played by the pigment and what is the role of the protoplasm of the plastid. It is not certain either whether the action of the chlorophyll apparatus is confined to the manufacture of carbohydrates or whether it is concerned, and if 20 how far, with che construction of protcids also.

As the action of the chlorophyll apparatus is directly dependent upon light, and the immediate resuit of its activity is the buitding up of complex compounds, it has become usual to opesk of the processes it sets up under the name of photosynthesis.

Photorynthesis.-In the presence of light and when the plant is aubjected to a suitable temperature, photosynthesis commences, provided that the plant has access to air containing its normal amount of carbon dioxide, about 3 parts, or rather less, in 10,000 . The process involves the inter-action of water also, and this, as we have geen, is always present in the cell. In addition, certain inorganic elts, particularly certain compounds of potassium, are apparently necessary, but they seem to take no part in the chemical changee which take place. The original hypothesit of Baeyer sug. pated that the courve of events is the following: the carbon dioxide decomposed into carbon monoxide and oxygen, while water is simultaneously split up into hydrogen and oxygen; the bydrogen and the carbon monoxide unite to form formaldehyde and the oxygen is exhaled. This explantion is unsatislactory from many points of view, but till quite recently no acceptable alternative has been advanced. There is no evidence that carbon monoxide is ever produced, indeed there are strong reasons for disbetieving in its occurrence. The formation of formaldehyde has till recently not been eatisfactorily proved, though it has been obtained from certain leaves by distiliation. Certain Algac have been found capable of forming nutritive carbohydrates in darkness, whea supplied with compound of this body with sodium-hydrogen-suiphite. But it is certain that it can only be present in a ceil in very mail amount at any moment, for an extremeiy dilute aolution acts as a poison to protoplasm. If formed, as it probably is, it is immediately changed into some more complex combination, and wo readered incapable of exerting its poisonous action.
Beayer's hypothesis was entertained by botanists partly becaupe it explained ibe gaseous interchanges accompanying photosynthesis. Theme show that definite intate of carbon dioxide is alwayt accompanied by an exhalation of an equal volume of oxyeen.
Recent investigations have confirmied Baeyer's view of the formation of lormaldeliyde, but a different explanation has been recently advanced. The first chemical change suggested is an interaction between carbon dioxide and water, under the influence of light acting through chlorophyll, which leads to the simultaneous formation of lormaldehyde and hydrogen peroxide. The formaldehyde at once undergoes a procese of condensation or polymerization by the protoplasm of the plastid, while the hydrogen peroxide is said to be decomposed into water and free oxygen by another agency in the celi, of the nature of one of the enaymes of which we shall speak later.

Polymerization of the aldehyde wate also a fenture of Beeyer's hypothesis, so that this vicw docs not very materially differ from thote he edvanced. More emphanais is, however, now laid on the ection, of the plastid in polymerization, while the initial stages are utill not definiteiy explaincd.

The stepw which lead from the appearance of formaldehyde to that of the first well-defined carbohydrate are again matters of speculation. There are many posibilities, but no definite body of timpler composition than a sugar has molar been detected. Nor
is the nature of the first formed sugar certain; the general opinion has been that it is a simple bexose such as glucose or fructose. $\mathrm{C}_{4} \mathrm{H}_{1} \mathrm{O}_{4}$. Brown and Morris in 1892 advanced strong reasons for thinking that cane-iugar, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{11}$, in the fint carbobydrate syatheused, and that the hesoses found in the plant remple frow the decomposition of this. The whole story of the different sugars existing in the plant-their relations and their several functions-requires renewed investigation.
The first visible carbohydrate formed, one which appears mo repidly on the commencement of photesyntheas as to fave been regarded as the first evidence of the wetting up of the process, is starch. This is met with in the form of small granular specks in the substance of the chloropiast, specks which assume a blue colour when treated with a solution of modine. Its very prompt appearance, as soca as the apparatu: becante active, led to the opinice formeriy held, that the work of the latter was complete only when the starch was lormed. We have seen that the starch is preceded by the formation of sugar, and its appearance is now interpreted as a sign of surplus manufacture. As much sugat as is produced ia escets of the imrnediale requirmenti of the cell is converted iato the incoluble form of starch by the plastidsof the chlorophyll apparatus, and is so withdrawn from the sphere of action, thereby enabling the construction of further quaniities of sugar to take place. The presence of too much sugar in colution in the alp of the cell inhibits the activity of the chloroplasts; hence the necemity for ite removal Surch, indecd, wherever it appeara in the plant seems to be a seserve store of carbohydrate material, deposited where it is found fot longer or shorter periods till it is meeded for consumption. The readiness with which it is converted into sugar fita ft enpecialty to be a reserve or stored material.

Proteid Formation.- We have seen that it han been surgented that the chlorophyll apparatus may perhaps be concerned in the manufacture of proteids as well as of carbohydrate. If not. there matist exist in the green plant, tide by side with it, amolher mechariang which is concerned with the manufacture of che complest compound in which nitrogen is present. The indepeadence of the two is tuggested by the lact that fungi can live, thrive and grow in nutritive media which contain carbohydrates together with certain sales of ammonia, but which are free from proteids. It is eertain that their protoplasm cannot be nourished by inorpanic compounds of nitrogen n_{0} any more than that of animale. We must therefore surmise their possession of a merhanism which can const ruct proteids, if supplied with these compounds of nitrogen together with sugar.

The probability is that this mechanism is to be found in theen plants in the leave"-at ony rate there is a certaia body of evidence pointing in this direction. It may be, however, that there is no apecial mechanism, but that this power is a particular differentistion of a physiological kind, existing in all vesetable protoplastn, or in that of certain cells. The ideta of an identity of protoplaten does not involve a denial of epecial powers developed in is in diferent situations, and the postersion of such a power by the vegetable ceil is not more striking than the location of the powers of co-ordination and thought in the protoplasm of cells of the human brain.

But if we accept cither view we have still to examine the procent of construction in detail, with wiew to ascertaining the stapes by which proteid is built up. Here unfortunately we find ourselves In the region of speculation and hypothesis rather than in that of fact. The nitrogen is absorbed by the plant In some farm of combination from the soil. The green plant prefers as a rule mitratest of varions metals, such sa calcium, magnetiom or potasium. The fungue ceems to do better when supplied with compounds of ammonia. The nitrogen of the at mosphere is not called into requisition, except by a few plants and under special conditions, as will be explained Inter. The fate of these inorganic compounds has not been certainly traced, but they give rise later on to the presence in the plant of various amino acid amides, such as leucin, glycin, asparagin, \&c. That these are stages on the way to proteids has been inferred from the fact that when proteids are spitt up by various means, and especially by the digentive mecretions, thene nitrogen-containing acids are amons the producta which realt.

While we know little of the processes of proteid-construction, we are almost completely in the dark also as to what are the particular proteids which are first const ructed.

Opinions are conflicting also as to the conditions under whach proteids are formed. There is a certain amount of evidence that at any rate in sorne cases light is neceasary, and that the violet rays of the spectrum are chiefiy concerned. But the subject requires elucidation from both chemical and biological poimts of view.

The normal green plant is seen thus to be in posseacion of a complete machinery for the manuifacture of its own food. The way in which such food when manufactured is incorporated into, and enabled to build up, the living substance is again hidden in obscurity. This is, however, also the case with the nutrition of animal protoplasn.

The building up and nutrition of the living mbatance by the foods manufactured or abmorbed is properly spolen of at the amsmilation of such lood. Up to very recently the orisinal absorptios and subsequent treatment of the carbon dioxide and the compounds of nitrogen has been called by the same term. We frequently find the expreasion used, "the 'ancimilution' of carbon dioxids, or of
mitrogen." As this is not the incorporation of either into the living sabstance, but is only its manufacture into the complex substances which we find in the plant, it seems preferable to limit the term "assimilation" to the processes by which foods are actually taken inte the protoplasm.
Symbiosis.-Though green plants thive poseses a very complete mechanism for the manufacture of their different foodstuffe, it is not always exe reined to the fulleat extent. Many of them are known to supplement it, and some almost entirely to replace it, by absorbing the food they need in fully prepered condition from their ervironment. It may be that they procure it from decomposing organic matter in the soii, or they may get it by bsorption from other plants to which they attach themplves or they may in rare cases obtain it by preging upon insect life. The power of green plants, not even specialised in any of these directions to abworb certain carbohydrates, particularly sugars, from the soil was demonstrated by Acton in 1889. Similar olvervations have been made in the cite of various compounds of nitrogen, though these have not been to complex as the proteids. It was lormerly the custom to regard as parasites all those plants which inserted roots or toot-like organt into the tisucs of other plants and abeorbed the contents of the Iatter. The most conspicuous case, perthaps, of alf these if the mistetoe, which flourishes luxuriantly upon the apple, the poplar aad other trees. Bonnicr has drawn attention to the fact that the mistletce in its tura, remaining green in the winter, contributes food material to its host when the later has lost its keaves. The telationship thus existing he chowed to be mutually beneficial, each at one time or another supplying the necemsitics of the other. Surch a relationship is known as symbiosis, and the large majority of the cases of so-called parasititm among green plants can be referred to it. Bonnicf showed that the same relatinnship could be proved in the casce of such plants as the rattle (Rhmonthus), the eytebright (Enphrasia), and orher members of the Natural Orders. Scrophulariaceae and Santalaceae, which effect a union between their roots and the roots of other plants growing near them. The unton taking place underground, while the bulk of both partners in the tymbiosis gises into the air, renders the amociation a little difficult to see, but there is no doubt that the plants in qucetion do afford etach other amistance, forming, as it were, a kind of partnership. The most pronounced case of parasitism, itat of Cuscuta, the dodder, which infests perticularly clover fields, appears to differ only in degree from thone mentioned, for the plant, bare of leaves as it is. yet contains a fittle chlorophyll. The advantages it can offer to its host are. however, infinitesimal when comparcd with the injury it does it. Many other cases of sym biosis have been investigated with tome completeness, especially those in which lower plants than the Phanerogams are concerned. The relations of the Alga and the Funtus, which have formed a close asacolationship in the structure known as the Lichen, were established many yoars ago. Since about 1880 our knowledge of the species which can enter into such nelationships has been materially extended, and the fungal corefituents of the Lichens are known to include Basidionycetes as vell as Acomycetes.

Mycerhines. -The most interesting cascs, however, in which Fungi form symbiotic relationships with green plants have bern discovered In connexion with forent trees. The roots of many of the latter, white growing treely in the soil are found to be surrounded with a dense feltwork of fungal myectium, which sometimes forms a mase of considerable sise. The plants showing it are not all forent trees, but inciude also some Pleridophytes and some of the prothallis of the Ferns, Club-moseen, Liverworts and Honsetails. The true nature of the relationship was first recognized by Pitfler in 1877 , but few eases were known till recent years. Very complete examination, however, has now been made of many instances, a ad the name sintoraise has been given to the bymbiotic union. Two clasmes are gecognized. In the first, which are called ertotropir, the fungal Glaments fom a thick felt or aheath round the root, either complet dy encloging it or leaving the apex free. They teldom ponetrate the living cells, though they do so in a lew cases. The rool-hairs penctrate between masses of the byphac of the Fungun, This type of mycorhizs is found among the Poplars, Oaks and Fir trces. The other type is called endctropic. The fungal filaments cilher penctrate the epidermis of the root, or enter it from the stem and manify in the interiof. Some make their way through the crlls of the ouset part of the cortex towards the root-tip. and form a mycelium or lelt work of hyphae, which generally occupics two or three layers of cells. From this branches pass into the middie region of the cortex and remify through the interior hall of its cells. They often cause a considerable hypertrophy of the tisoue. From the outer cortical mycelium, again, branches pass through the epidermis and gaow out in the woll. In such cascs the roots of the plants are usually found spreading in soits which contain a large monount of humus, or decaying vegetable matter. The organic compounds of the lateer are abeorbed by the protruding fungal flaments, which take the place of root-hairs, the tree ceasing to develop the laiter. The food to absorbed passes to the outer cortical mycclium, and from this to the inner hyphae. which appear to be the or gans of the interchange of substance, for they are attracted to the neighbourhood of the nuclei of the cells, which they epter, and in which they form agelomerstions of interwoven filamente. The prothalli of the Pterido-
phytes. which form similar symbioes, show a somewhat different proxte of arrangement, the Fungi cecupying the external or the lowet layers of the thalloid body.

The discovery of the widespread occursence of this mycorhisat symbiosia must be held to be one of the most important resulis of reaserch upon the nutritive procesees of plants during the closing decade of the tgth century. Among green plants the symbionts include Coniters, Orchids, Heaths, Gaks, Poplar and Beeches, though all do not derive equal advantages from the association. Momotropas afford an exteme case of it, having loat their chlorophyi almost entirely, and come to depend upan the Fungi for their nutriment. The fungal constituents vary considerably. Each species of green plant may form a mycorhize with two or three different Fungi, and a single species of Fungus may enter into symbiosis wish several green plants. The Fungi that have been discovered taking part In the union include Eurotiwm, Pythimem, Boletws, Agaricus, Laclariur, Pewicillizm and many others of less frequent occurrence. All the known species belong to the Oomyceten, the Pymenomycetes, the Hymonomyceten or the Gasteromycetes. The habit of forming mycorhizas is found more frequentiy in warm climatcs than cold; indeed, the percentage of the flors exhibiting this peculiarity ceems to increase with a certain regularity from the Arctic Circle to the equator.

Firetion of Nibroges.-Another, and perhapa an even more important, instance of aymbiotic association has come to the front during the same period. It is an alliance between the plants of the Natural Order Leguminosae and curtain bacterium-like forms which find a home within the tisuses of their roots. The importance of the symbiosis can only be understood by considering the relationship in which plants stand with regard to the free nitrogen of the air. Long ago the view that this ges might be the source of the combined nitrogen found in different forms within the plant, was critically examined, particularly by Boussingault, and hater by Lawea and Cilbert and by Pugh, and it wes ascertained to be erroneous, the plants only tacing nitrogen into their tubstance when it is presented to their roots in the form of nitrates of various metals, or compounds of ammonia. Many writers in recent years, mong whom may be named especially Hellijegel and Willarth, Lawes and Cilibert, and Schlosing and Leurent, have shown that the Lesuminosat, and group form conspictrous cxceptions to this rule. While they are quite capable of taking up nitrates from the soil where and so long as these are prosent, they can srow and thrive in soil which contains no combined nitrogen at all, deriving their supplies of this element in these cases from the air. The phenomena have been the subject of very careful and critical examination for many years, and may be reparded as satiafactorily established. The power of fixing atmospheric nitrogen by the higher plants seems to be confined to this solitary group, though it has been stated by varlous obaervers with more or less emphasis that it is shared by others. Frank has claimed to have found oats, buckbeans, spurry, tumipa, mustard, potatoes and Norway maples excrcising it; Nobbe and oihers have mputed ite posecsion to Dlacagnus. There is little direct evidence pointing to this extension of the power, and many experimenters directly contradict the statements of Frank.
The power exercised by the Leguminoses is aspociated with the presence of curious tubercular awellings upon their roots, which are devcloped at a very carly age, as they are cultivated in ordinary aoil. If experimental plants are grown in sterilied soil, these sweltings do not appear, and the plant can then use no atmospheric nitrogen. The sweliings have been found to be due to a curious hypert rophy of the tisuce of the part, the cells being filled with an immense number of minute bacietium-like orgenisms of Y, X or Y shape. The development of these structures has been studied by many observert, both in England and on the conlinent of Europe. They appeas to be present in large numbers in the eoil, and toinfect the Legaminous plant by altackint its root-hairs. One of these bairs can be men to be penetrated at a particular apot, and the entering body is then found to grow along the tength of the hair till it reaches the cortex of the root. It has the appoterance of a delicate tube which has granular contents, and is provided withan apex that appears to be open. The wall of the tube is very thin and delicate, and does not ecem to be componed of cellulose or any modification of it. Careful staining dhows that the eranular substance of the interior renliy consints of a large number of delicate rod-fike bodies. As the tube grows down tbe hair it maintains its own indegendence, and does not fuse with che contents of the root-hair, whose protoplam temains quite distinct and eeparate. After making its way into the Interior, the intruder aets up a considerable hyper trophy of the tivere, causing the formation of a tubercle, which soon chows a certain dificrentiation, brtmehes of the vascular bundles of the root beins supplied to it. The rod-like bodies from the interior of the tube. which has considerable resemblance to the sooptoen of many Bacteria, are liberated into the interior of the cells of the zmbercle and fill it, Inereasing by a process of bramehing and fisaion. When this otape is rethed the invading tubes and their ramifications frequently disappear, leaving the cells full of the bacterioids, at they have been called. When the root dies later sueh of thewe et remalin are dif charged into the wiil, and are then ready to infect bev plante. In some cases the sooploes thread or tube has not been meen, the organism consinting entirely of the becterioids.

This peculiar relationshlp suggente at once a symbionts, the Fungus gaining its nutriment mainly or entirely from the green plant, while the latter in wome way or other is able to urilise the free nitrogen of the air. The exact way in which the utilization or fration of the nitrogen is effected remains undecided. Two views are still receiving certain suppost, though the second of them appears the mose probable. These are: (1) That the green plant is so stimulated by the symbiotic asacciation which leads to the hypertrophy, that it is able to fix the nitrogen or cause it to enter into combination. (2) That the fixasion of the gas is carried out by the fungal organism either in the soil or in the plant, and the nitropenous substance so produced is absorbed by the organism, which is in turn consumed by the green plant. Certain evidence which eupports this view will be refersed to later.

Whichever opinion is held on this point, there seens no room for douht that the fixation of the nitrogen is concerned only with the root, and that the green leaves take no part in it. The nodules, in particular, appear to play the important part in the process. Marchall Ward has directed attention to evereral points of their structure which bear out this view. They are supplied with a regular system of conducting vascular bundles communicating with those of the roots. Their cells during the period of incubation of the symbiotic organism are abundantly supplied with starch. The cells in which the fungoid organism is vigorously fourishing are exceedingly active, showing large Eive, brilliant nuclei, protoplitm and vacuole, all of which give signs of intense metabolic activity. The sap in these active tissucs is alkaline, which has been interpreted as being in accordance with Locw's suggestion that the living protoplasm in presence of an alkali and lree nitrogen can build up ammonium nitrate, or come similar body. It is, however, at present entirely unknown what substances are formed at the expense of the atmospheric nitrogen.

The idea that the atmospheric nitsogen is gradually being made use of by plants, although it is clearly not easily or commonly utilized, has been growing steadily. Besides the phenomena of the symbiosis just discused, certain experiments tend to show that we have a constant fixation of this gas in the coil by various Bacteria, Researches which have been carried out since 1885 by Berthelot, Andree, Laurent and Schlareing, and more recently by Koseowitsch, seem to establish the lact, though the details of the procese remain undiscovered. Berthelot imputes it to tbe action of several species of soil Bacteria and Fung, including the Bacterium of the Leguminospe, when the latter is cultivated free from its ordinary host. Laurent and Schicening affirm that the free nitrogen of the air can be fixed by a number of humble green plants, principally lowly green Algae. They mutt be exposed freety to light and air during the process, or they fail to effect is. Frank has stated that Pexicilliwn cladiosporioides can flourish in a medium to which no niurogen but that of the atmosphere has accers. Kossorvitsch claims to have proved that fixation of nitrogen takes place under the influence of a bymbiosis of certain Alpae and soil Bacteria, the process being much facilizated by the presence of sugar. The Algae include Nostoc, Cystococews, Cylindrospermum and a few other forms. In the sym: blocis the Algae are supplied with nitrogen by the bacteria, and in turn they construct carbohydrate material, part of which goes to the microbet. This is supported by the fact that if the mixed cultura is placed in the light there is a greater fixation than when it is left in darkneas. If there is a plentiful supply of carbon dioxide, mose nitrogen is fixed.

Nutrification and Denitrifications in tho Soil.-Another aspect of the nitrogen question has been the subjoct of much investigation and controversy since 1877. The round of changes which nitrogenous organic matter undergoes in the soil, and bow it is ultimately made use of again by plants, presente sorme curious featurts. We have eeen that when nitrogenous mater is preqent in the condition of humus, some plants can absorb it by their roots or by the aid of mycorbizas. But the changes in it in the usual course of mature are much more profound than theme. It becomes in the woil the prey of various microbes. Ammonia appeara immediately as a product of the disruption of the nitrogen-containing organic molecule. Later, oxidation processes take place, and the ammonia gives rise to aitrates, which are aboorbed by plants. Theac two procesees go on tucceasively rather than simultaneously, so that it is only towards the end of the decomposition of the organic matter that nitrification of the ammonia which is formed is set up. In this procest of nitrification we can distinguish two phases, fisst the formation of nitrites, and mecondly their oxidation to nitrates. The researches of Warington in England and Winogradsky on the Continent have matiofactorily shown that two distinct oyganisme are concerned in it, and that probably more than one species of each exirts. One of them comprising the genera Nitrosomomas and Nitrasacoccus, hat the power of oxidiaing aatts of ammonium to the condition of compounds of nitrous acid. When in a pure culture this stage has been reached no further oxidation takes place. The oxidation of the nitrites into nitrates is effected by another organism, much maller than the first. The mame Nilrobacler has been given to this genus, most of our knowledge of which is due to the neacarches of Winogradsky.

The two kinds of organism ara usually both prewent in the same ail, thove of the accond type immediately, axidiaing the nitritea which thome of the first form from ammonium alts, The Nifro-
bacter format not ofly canoot asidise the latter bodies, but they are very injuriously afiected by the presence of free ammonia. When cultivated upon a suitable nutritive material in the laboratory, the organism was killed by the pincyence of -o15 \% of this gas, and serioualy ioconvenienced 'by one-third as much. Except in this respect, however, the two classes show gront mmilarity, A very intercsting peculiarity atraching to them is thair distaste for orgasye nutriment. They ean be cultivated most readily on manses of gelatinous ailica impregnated with the appropriate compounds of nitrogen, and their growth talosa place mont copiously in the absence of light. They meed a litile carbongte in the autrient matcrial, and the mource of the carbon which is found in the increased bulk of the plant is partly that and partly the cartion dioxide of the air.

We have in these planks a power which appears special to thern, In the posecsaion of porne mechanism for the construction of organic substance which difiens easentially from the chlorophyll appararus of green plants, and yet brings about substantially similar results The eteps by which this carbon dioxide is built up into a compound capable of being amimilated by the procoplasm of the cels are not known. The energy for the purpose appears to be aupplied by the oxidation of the molecules containing nitrogen, so that it in dependent upon euch oxidation taking place. Winogradaky has inveatigated this point with great care, and he has come to the conclusion that about 35 milligrammet of nitrogen are oxidied for each milligramme of carbon absorbed and fixed.

Deposition and Digestion of Reserve Materials it Plants and A wimals,-As we have ecen, the tendency of recent resparch is to prove the identity of the mode of nutrition of vegetable and animal orgunisms, The material on which they feed is of the wame description and its treatment in the body is precisely similar. In both groupe we find the preacice of nutritive material in two forms, one specially fitted for transport, the other for storage. We have geen that in the plant the processes of construction go on in the seats of manufacture faster than those of consumption. We have the surplus sugar, for instance, deponited as starch in the chloroplasts themselves. The manulacture goes on very actively 80 long as light shines upon the leaves, and we find towards night a very ereat surplus stored in the cells. This excess of manufacture is one of the features of plant life, and is exhibited, though In varicus degrees, by all green planta. The accumulated material is made to minister to the need ol the plant in various waya; it may be by increasing the bulk of the plant, as by the formation of the wood of the trunk. branches and roots; or it may be by laying up a atore of nutritive materials for purpotes of propagation, as in tubers, corms, seeds, \&c. In any case the surplus is continuously being removed from the seat: of its construction and deposited for tonger or shorter periods in other parte of the structure, usually near the regions at which its ultimate consumption will take place. We have the deposition of starch, alcurone grains, amorphous proteids, fats, \&c.; in the neighbourhood of growing points, cambium rings and phellogens; also the more prolonged stornge in tubers, seeds and other reproductive bodies. Turning to the animal, we meet with aimilar provisions in the storage of glycogen in the liver and other parta, of fat in various internal regions, and so on. In both we find the reserve of food, so far as it is in excess of immediate need, existing in two canditions, the one suitable for transport, the other for storage, and we see continually the transformation of the one into the other. The formation of the storage form at the experse of the travelling tream is due to the activity of some protoplamic strucsure-it may be a plastid or the general protoplasm of the cell-and is a procests of eccretion. The converse process is one of a true digesting. which deserves the name no less because it is intrecellular. Wie find procemes of digestion strictly comaparable to those of the alimentary canal of an animal in the case of the invectivorous Nepenthes, Drosera and ather similar plante, and in the saprophytic Fungi. Those which now concern us recali the utidization of the slycogen of the liver, the stored fats and proteide of other parts of the animal body being like them intracellular.
Entymes.--The agents which effect the digestive changes in plants have been studied with much care. They have been found to be mainly enzymes, which are in many cases identical with those of animal origin. A vast number of thern have bsen discovered and investigated, and the majority call for a brief notice. Their number. indeed, renders it necessary to classify them, and rather to look at groups of them than to examine them one by one. They are usually classified according to the materials on which they work, and we may here notice especially four principal groups the members of which take part in the digestion of reserve materials as well as in the processes of external digestion. These decompose respectively carbohydrales, glucosides, proteids and fats or oils. The ection of the enzyme in nearly every case is one of hydration, the body acted on being made to take up water and to undergo a subsequent decomposition.

Among those which act on carbohydrates the most important are: the two varieties of diartase, which convert starch into maltose of malt sugar; in ulase, which forms fructose from inulin; impertase, which converts cane sugar into glucose (grape augar) and fructose; diucose or malluse, which produces grape sugar from maltose; and Gyose, which bydrolyre cellulome Another ensyme mhich doa
not appear to be concerned with ditreation so dirvetly as the others is pectase, which forme vegetable jelly from pectic substances occurring in the cell-wall.

The ensymes which act upon glucosides are many; the best known are ammalsinand myposin, which split up respectively amygdalin, the apecial glucoside of certain plants of the Roanceae; and simigrin, which has a wide distribution among those of the Cruciferae. Others of less irequest occurrence are erthrosym, thamese and gandtherase.

The proteolytic enzymes, or those which digest proteids, ase usually divided into two groups, one which breaks down ordinary proteids into diffusible bodies, known as peptones, which are thempelves proteid in character. Soch an enzyme is the pepsist of the ctomach of the higher animals. The other group attacks these peptones and breaks them down into the amino-acids of which we have spoken before. This group is represented by the erepsim of the pancreas and other organs. A third enzyme, the trypsim of the pencreas, ponsestes the power of both pepoin and erepain. The relationships existing between these enzymes are atill the subjects of experiment, and we caninot regard them as exhaustively' examined. It is not quite certain whether a true pepsin exists in plants. but many trypains have been discovered, and one form of erepein, at least, is very widespread. Among the trypsing we have the papdin of the Papaw Iruit (Carica Papaya), the bromelit of the Pincapple, and the enzymes present in many germinating seeds, in the seedlings of several plants, and in other parte. Another enzyme, remeth, which in the animal body is proteolytic, is frequently met with in plants, but its function has not been ascertained.

The digestion of fat or oil has not been adequately invertigated, but its decomposition in germinating seeds has been found to be due to an enzyme, which has been called lipase. It splite it into a fatty acid and glycerine, but seems to have no further action. The detaits of the further transformations have not yet been completely followed.

Oxidases.-Another class of enzymes has been discovered in both animals and plants, but they do not apparently take any part in digestion. They set up a process of oxidation in the substances which they attack, and have consequently been named osidases. Very little is known about them.

In many cases the digestion of reserve food materials is effected by the direct action of the protoplasm, without the intervention of enzymes. This property of living substance can be proved in the case of the cells of the higher plants, but it is especially prominent in many of the more lowly organisms, auch as the Bacteria. The processes of putrefaction may be alluded to as affording an instance of such a power in the vegetable organisms. At the same time it must be remembered that the recretion of enzymes by Bacteria is of widespread occurrence.

Supply and Distribution of Energy in Plands.-It is well known that one of the conditions of life is the malntenanct of the procese whieh is known as respiration. It is marked by the contant and continuous absorption of a certain quantity of oxygenand by the exhalation of a certain volume of carbon dioxide and water vapour. There is no direct connexion between the two, the oxygen is absorbed almost immediately by the protoplasm, and appears to enter into eome kind of chemical union with it. The protoplasm is in a condition of instability and is continually breaking down to a certain extent, givins rise to various substances of different degrees of complexity, come of which are again built up by it into its own substances, and others. more simple in composition, are given off. Of thete carbon dioxide and water are the most prominent. These respiratory procesees are associated with the liberation of energy by the protoplasm, energy which it applies to various purposes. The asamilation of complex foods consequently may be regarded as supplying the protoplism with a potential store of energy, as well as building up its substance. Whenever complex bodies are built up from simple ones we have an absorption of energy in some form and its conversion into potential energy; whenever decomponition of complex bodies into simpler ones takes place we have the liberation of fome or all of the energy that was used in their construction.

Since about 1880 considerable attention has been directed to the question of the supply, distribution and expenditure of enetgy in the vegetable kingdom: This is an extremely important question, since the supply of energy to the animal world has been lound to depend entirely upon the vegetable one. The supply of energy to the several protoplasts which make up the body of a plant is as neceseary as is the transport to them of the food they need; indeed, the two things are inseparably connected. The source of energy which is the only one accessible to the ordinary plant as a whole is the radiant energy of the rays of the sun, and its absorption is mainly due to the properties of chlorophyll. This colouring matter, as shown by its absorption spect rum, picks out of the ordinary beam of light a large proportion of its red and blue rays, together with somet of the green and yellow. This energy is obtained especially by the chloroplastids, and part of it is at once devoted to the construction of carbohydrate material, being thus turned from the kinetic to the potential condition. The other constructive processes, which are dependent pertly upon the oxidation of the carbohydrates 10 lormed, and therefore upon an expenditure of part of auch energy, also mark the storage of energy in the potential form. Indeed, the construc* tion of protoplasm itself indicates the same thing. Thus even in
thear constructive procemes there occurs a consinnt patanepe of energy backwards and forwands from the kinetic to the potential condition and vice versa. The outcome of the whole round of changes, however, is the fixation of a certain part of the radiant energy abeorbed by the chlorophyll. The rays of the visiblespectrum do not supply all the energy which the plant obtains. It has been suggeoted by several botanists, with considerable plausibility, that the ultra-violet or chemical rays can be absorbed and utilised by the protoplasm without the intervention of any pigment such as chlorophyll. There is some evidence pointing to the existence of this power in the cells of the higher plants. Again, we have evidence of the power of plants to avail themselves of the heat raya. There is, no doubt, $\frac{2}{2}$ direct interchange of heat between the plant and the eir, which in many cases reaults in a gain of heat by the plant. Indeed, the tendency to absorb het in this way, either from the eir or directly from the suniitht, has aiready been pointed out as a danger which needs to be averted by tramspiration.

There is probably but little transformation of one form of kinetic energy into another in the plant. It has been suggested that the red pigment Amocyan, which is found very commonly in young developing dhoots, petioles and midribs, effects a convertion of light reys into heating onet, wo facilitating the metabolic procenses of the plant. This is, however, rather a matter of speculation. The various electrical phenomena of plants also are obscure.

Certain plants possess another source of energy which is common to them and the animal world. This is the abeorption of elaborated compounds from their environment, by whore decomposition the potential energy expended in their construction can be liberated. Sach a wource is commonly met with among the Fungi, the insectivorous plants, and such of the higher plants as have e maprophytic habit. This source is not, however, anything new, for the elaborated compounds so absorbed have been primarily constructed by other plants through the mechanism which has just been described.

The question of the distribution of this stored energy to the separate protoplants of the plant can be seen to be the same problens as the distribution of the food. The material and the energy po together, the decomposition of the one in the cell retting free the other, which is used at once in the vital processes of the cell, being in lact largely employed in constructing protoplasm orstoring various products. The actual liberation in any cell is only very gradual, and generally takes the form of heat. The metabolic changes in the cells, however, concern other decompositions sida by side with those which involve the building up of protoplasm from the products of which it feeds. So long as lood is supplied the living substance is the seat of transformations which are continually proceeding, being partially decomposed and again constructed, the new food being incorporated into it. The changes involve a continual liberation of energy, which in mott cases is ceused by the respiration of the protoplatm and the oxidation of the oubetances it contains. The need of the protoplasm for oxygen has already been spoken of: in ite absence death soon supervenes, respiration being stopped. Respiration, indeed, is the expression of the liberition of the potential energy of the protoplasm itself. It is not certain how far substances in the protoplasm are directly oxidized without entering into the composition of the living substance, though this appears to take place. Even their oxidation, however, is cffected by the protoplasm acting as an oxygen carrier.

The supply of oxygen to a plant is thus eeen to be as directly connected with the utilization of the energy of a cell as is that of lood concerned in its nutrition. If the access of oxygen to a protoplast is intcrfered with its normal respiration soon ceases, but frequently other changes upervene. The partial asphyxiation or suffocation stimulates the protoplasm to set up a new and perhapa supplementary series of decompositions, which result in the liberation of energy just as do thone of the respiratory process. One of the constant features of respiration-t he exhalation of carbon dioxide can still be observed. This comes in almost all such cases from the decomposition of sugar, which is split up by the protoplasm into alcohol and carbon dioxide. Such decompositions are now generally spoken of as anadrobic respiration. The decomposition of the complex molecule of the sugar liberates a certain amount of energy, as can be meen from the study of the fermentation wet up by yeast, which is a process of this kind, in that it is intensifed by the absence of oxygen. The liberated energy takes the form of heat, which raiees the temperature of the fermenting wort. It has been ascertained that in many cases this decomposition if effected by the secretion of an enzyme, which has been termed symase. This body has been prepared from active yeast, and from fruits and other parts which have been kept for some time in the absence of oxygen. The protoplasm appears to be able also to bring about the change without secreting any enzyme.

Expenditure of Enerty by Plants.-The energy of the plant is, as we have seen. derived originally from the kinetic radiant energy of the sun. In wuch cells as are capmble of absorbing it, by virtue of their chlorophyll apparatus, the greater part of it is converted into the potential lorm, and by the transport from cell to cell of the compounds constructed every part of the plant is put into possession of the energy it needs. The store of energy thus accumulated and distributed has to subserve various purposes in the economy of the plant. A certain part of It is devoted to the malntenance of
the framewort of the fabric of the cell, and the construction of a continuously increasing skeleton; part is used in maincaining the normal temperature of the plant, part in constructing various subetances which are met with in the interior, which serve various purposes in the working of the vital mechaaiam. A great part again fis utilized in that increase of the body of the plant which we call growth.

Growth, as usually apoken of, Includes two escentially different procewes. The first of these, which may be rexarded as growth proper. is the manufacture of additional quantitics of tiving sulbotance. The second, which is usually included in the term, is the increase of such accessories of living substance as are necemary for its well-being. These include cell walle and the various stored products found in growing cella. There is clearly a difference between thene two categorica. The formation of living subutance is a process of building up from simple or relatively aimple materisls: the construction of its cellulowe framework and supporting subatance is done by the living substance after its own formation is completed, and is attended by a partial decomposition of sueh living substance.
Growth is always going on in plants while they are alive. Even the oldeat trees put out continually new keaves and twiss. It dows not, of courme, follow that increase of bulk is alwayt conspicuous; in auch trees death is preseat tide by side with Ife, and the one often countertalances the other. As, however, we can casily sec that the constructive procesess are much greater than thote which lead to the disapprearance of material from the plant-body, there is gencrally to be seen a conspicuous increase in the substance of the plant. This is in nearly all cases, attended by a permanent change in form. This is not perhaps no evident in the case of axial organs as it is in that of leaves and their modifications, but even in them it can be detected to a certain cxtent.
In the lowliest plants growth may be co-extensive with the plantbody; in all plants of any considerable size, however, it is localized in particular regions, and in them it is associated with the formation of new protoplasts or cells. These regione have been called erowing points. In much stems and roote as cocrease in thicknews there are other growing regions, which consist of cylindrical sheaths known as cambimen layert or phallozens. By the multiplication of the protoplasts in these merismatic areas the substance of the plant is incresed. in other words, as theme growing regions consist of eclls, the growth of the entire organ or plant will depend upon the behaviour of the cells or protoplasts of which the merismatic tisuucs are composed.
The growth of such a cell will be found to depend mainly upon five conditions: (I) There must be a supply of nutritive or plastic materials, at the expense of which the increase of its living zubstance can take place, and which supply the needed potential energy. (2) There must be a supply of water to such an extent as to set up a certain hydrostatic premure in the cell, for_only turgid cells can grow. (3) The supply of water must be associated with the formation of oamotic substances in the ecll, or it cannot be made to enter it. (4) The eell must have a eertnin temperature, for the activity of a protoplast is only possible wilhin certain limits, which differ in the case of different plants. (5) There must be a supply of oxygen to the growing eell, for the protoplast is dependent upon this gas for the performance of its vital functions, and particularly for the liberation of the energy which is demanded in the constructive procesees. This is evident from the consideration that the growth of the cells is attended by the growth in surface of the cell wall, and as the latter is a mecretion from the protoplasm, such a docompositioa cannol readily take place unless oxygen is admitted to it.

When these conditions are present, the course of the growth of a cell appears to be the following: The young cell, immediately it is cut off from its fellow, absorbs water, in conscquence of the presence in it of ommotically active substances. With the water it takes in the various nutritive substances which the former contains in solution. There is set up at once zecrtain hydrostatic pressure, due to the turgidity which ensues upon such absorption, and the extensible cell wall stretches, at first in all directions. The growth or increase of the protoplasm at the expense of the nutritive matter for a time keeps pace with the increased size of the ccll, but by and by it becomes vacuolated as more and more water is attracted into the interior. Eventually the protoplasm usually forms only a lining to the cell wall, and a large vacuole filled with cell sap occupics the centre. The growth of the protoplasm, though considcrable, is therefore not commensurate with the increase in the size of the cell. The stretching of the ecll wall by the hydrostatic pressure is fixed by a secretion of new particles and their deposition upon the original wall, which as is becomes slightiy thicker is capabic of still greater extension, much in the same way as a thick band of indiarubber is capable of undergoing greater stretching than a thin one. The increase in surface of the cell wall is thus due-firstly to the stretching caused by turgidity, and secondly to the formation and deposition of new substance upon the old. When the limit of extensibility is reached the cell wall increases in thicknese from the continuation of the latter of the two processes.

The rate of growth of a cell varies gradually throughout its course; it berins alowly, increases to a maximum, and then becomes slower till it stope. The time during which these regular changes in the rate can be obmerved in generally apoken of as the gromd period of growith,

If we consider the behaviour of a growing organ zuch na a root, we find that, like a cell, it shows a grand period of growth. Just behind its apex the ceils are found to be all in process of sctive division. Growth is small, and consists mainly in an increase of the quantity of protoplasm, for the cells divide again as moon an they have reached a ecrain sige. As new cells are continually formed in the merimatic mase thoee which are farthest from the apex gradually crase to divide and a different procesa of growth takes place in them, which is associated more particularly with the formation of the vacuoles, conequent upon the ctrablishment of considerable hydrostatic premure in them, thus causing the bulk of the cells to be greatly enlarged. Here it is that the actual extension in kength of the root takes plase, and the cells reach the maximum point of the grend period. They then gradually lose the power of growth, the oldeat oncs or thomefarthent from the apex perting with it first, and they pase gradually over into the condition of the permanent tiasuea.
The sanc order of events may be ascertained to take place in the atem; but ia this region it is complicated by the oceurrence of nodes and internodes. growth in length being confined to the latter, many of which may be frowing simultancoudy. The region of growth in the atem is, as a rule, much longer than that of the root. The zrowth of the leaf is at first apical, but this is not very prolonged, and the subsequent enlargement is due to an intercalary growing region near the base.

The turgidity in the eells of a growing member is not uniform, but shows a fairly thythmical variation in ill differene parth If the member is one which shows a difference of structure on two sides, such as a leal, the two sides frequently show a difference of degree of turpidity, and consequently of rate of growth. If we consider a leaf of the common fern we find that in ite young condition it is cloacly rolled up, the upper or ventral surface being quite concealed. As it gets older it gradually unfolds and expands into the adult form. This is duc to the fact that while yqung the turgidity and consequent growth are greater in the dormal side of the leaf, to that it becomes rolled up. As it develops the maximum turgidity and growth change to its upper wide, and so it becomes unfolded or expanded. These two conditions are generally deacribed under the names of hyponasty and epincsty respectively.

Cylindrical organs may exhibit mimilar phenomena. One mide of a stem may be more turgid than the oppositc one, and the maximum turgidity, with its consequent growth, may alternate between two opposite sidets The growing apex of such a stem will altermately incline, first to one side and then to the other, exhibiting a kind of nodding movement in the two directions. More frequently the region of maximum turgidity pasees gradually round the growing zone. The apex in this case will deseribe a circle, or rather a apiral, as it is clongating all the time, pointing to all points of the compane in succossion. This continuous change of position has been called circumnulatios, and is held to be universal in all growing cylindrical organa. The pasaage of the maximum turgidity round the atem may vary in rapidity in different places, causing the circle to be replaced by an ellipse. The bending to two sides alternately, described alove, oftea called simple nutation, may be regarded at only an extreme instance of the latter.

Neroous System of Plants.-So far we have considered the plant almost exclusively as an individual organism, carrying out its own vital processes, and unaffected by its surroundings except in $s 0$ far as these supply it with the materials for it well-being. When we consider, however, the great variability In those surroundings and the consequent changes a plant must encounler, it appears obvious that interaction and adjustment between the plant and its environment must be constant and well balanced. That such adjustment shall take place postulates on the part of the plant a kind of perception or appreciation of the changing coavitions which affect it.

Careful examination soon shows an observer that such perceptions exist, and that they are followed by certain purposeful changes in the plant, sometimes mechanical, sometimes chemical, the object being evidently to secure some advantage for the plant, to ward of some danger, or to extricate it from some difficulty. We may speak, indeed, of the plant as possessed of a rudimentary nervous system, by the aid of which neressary adjustments are brought about. The most constantly occurring changes that beset a plant are connected with illumination, temperature, moisture, and contact with foreign bodies. Setting aside otber susceptibilities, we have evidence that most plants are sensitive to all these.

II a growing stem receives stronger illuminatioa on one side than anol her, its apex slowly turns from the vertical in the direction of the light source, continuing its change of position until it is in a direct line with the incident rays. If a root is similarly illuminated, a similar change of direction of growth follows, but
in this case the organ grows away from the light. These movements are spoken of as heliotropic and apheliolropic curvatures. The purpose of the movements bears out the contention that the plant is trying to adjust itself to its environment. The stem, by pointing directly to the light source, secures the best illumination possible for all of its leaves, the latter being distributed symmetrically around it. The root is made to press its way into the darker cracks and crannies of the soil, so bringing its root-hairs into better contact with the particles round which the hygroscopic water hanger Leavea reapond in another way to the same infuence, placing themselves across the path of the beam of light.

Similar sensitivenesses can be demonstrated in other cases. When a root comes in contact at its tip with some hard body, auch as might impede its progress, a curvature of the growing part is set up, which takes the young tip away from the stone, or what-not, with which it is in contact. When a sensitive tendril comes into contact with a foreign body, its growth becomes so modified that it twines round it. Many instances might be given of appreciation of and response to other changes in the environment hy the growing parts of plants; among them we may mention the opening and closing of flowers during the days of their expansion. One somewhat similar phenomenon, differing in a few respects, marks the relation of the plant to the attractlon of gravity. Observation of germinating seedlings makes it clear that somehow they have a perception of direction. The young roots grow vertically downwards, the young atems vertically upwards. Any attempt to interfere with these directions, by placing the seedlings in abnormal positions, is frustrated by the seedlings tbemselves, which change their direction of growth by bringing about curvatures of the different parts of their axes, so that the root soon grows vertically downward again and the stem in the opposite direction. Other and older plants give evidence of the same perception, though they do not respond all in the same way. Speaking generally, stems grow upwards and roots downwards. But some stems grow parallel to the surface of the soil, while the hranches both of stems and roots tend to grow at a definite angle to the main axis from which they come. These movements are spoken of as different kinds of geotropic curvatures. This power of perception and response is not by any means confined to the growing organs, though in these it is especially striking, and plays a very evident part in the disposition of the growing organs in advantageous positions. It can, however, be seen in adult organs, though instances are less numerous.

When the pinnate leaf of a Mimosa pudica, the so-called sensitive plant, is pinched or struck, the leaf droops rapidly and the leaficts become approximated together, so that their upper surfaces are in contact. The extent to which the disturbance spreads depends on the violence of the stimulation-it may be confined to a few leafiets or it may extend to all the leaves of the plant.

The leaves and leaflets of many plants, e.g. the telegraph plant, Desmodium gyrans, behave in a similar way under the stimulus of approsching darkness.

A peculiar sensitiveness is manifested by the leaves of the socalled inscctivorous plants. In the case of Dioncea muscipula we find a two-lobed lamina, the two lobes being connected by a midrib, which can play the part of a kind of hinge. Six sensitive hairs spring from the upper surface of the lobes, three from each; when one of these is touched the two lobes rapidly close, bringing their upper surfaces into contact and imprisoning anything which for the moment is bet ween them. The mechanism is applled to the capture of insects alighting on the leaf.

Drosera, another of this lnsectivorous group, has leaves which are furnished with long giandular tentacles. When these are excited by the settling of in insect on the leaf they slowly bend over and imprison the intruder, which is detained there meanwhile hy a sticky excretion poured out by the glands.

In both these cases the stimulation is followed, not only by movement, but by the secretion of an acid liquid containing a digestive juice, by virtue of which the insect is digested after being killed.

The purposeful character of all these movements or changes of position indicates that they are of nervous origin. We have in them evidence of two factors, a perception of some features of the environment and following this, after a longer or shorter interval, a response calculated to secure some advantage to the responding organ. We find on further investigntion that these two conditions are traceable to differont parts of the organs concerned. The perception of the changes, or, in other words, the reception of the stimulus, is associated for example, with the tips of roots and the apices of stems. The first recognition of a specially receptive part was made hy Charles Darwin, who identified the perception of atimulation with the tip of the young growing root. Amputation of this part involved the cessation of the response, even when the conditions normally causing the stimuLation were maintained. Francis Darwin later dernonstrated that the tips of the piumules of grasses were sensitive parth. The responding part is situated some little distance farther back, being in fact the region where growth is active. This bending part has been proved to be insensitive to the stimuli. There is consequently a transmission of the stimulus from the sensitive organ to a kind ol motor mechanism situated some little way off. We find thus threc factors of a nervous mechanism present, a receptive, a conducting, and a responding part. The differentiation of the plant's substance so indicated is, however, physiological only; there is no histological difference between the cells of these regions that can be associated with the several properties they possess. Even the root tip, which shows a certain differentiation into root cap and root apex, cannot be said to be a definite sense organ in the same way as the sense organs of an animal. The root is continually growing and so the scnsitive part is continually changing its composition, cells being formed, growing and hecoming.permanent tissue. The cells of the tip at any given moment may be sensitive, but in a few days the power of receiving the stimulus has passed to other and younger colls which then constitute the tip. The powcr of appreciating the environment is therefore to be associnted with the protoplasta only at a particular stage of its development and is transitory in its character.
What the nature of the stimulation is we are not able to say. The protoplasm is sensitive to particular influences, perhaps of vibration, or of contact or of chemical action. We can imagine though perhaps only vaguely, the way in which light, temperature, moisture, contact, \&c., can affect it. The perception of direction or the influence of gravity presents greater difficulty, as we have no ciear idea of the form which the force of gravity takes. Recently some investigations by Haberlandt, Noll, Darwin and others have suggested an explanation which has much to recommend it. The sensilive cells must clearly be influenced in some way by weight-not the weight of external organs but of some weight within them. This may possibly be the cell sap in their interior, which must exercise a slightly different hydrostatic pressure on the basal and the lateral walls of tbe cells. Or more probably it may be the weight of definite particulate structures in their vacuoles. Many experiments point to certain small grains of starch which are capable of displacement as the position of the cell is altered. Such small granules have been observed in the sensitive cells, and there is an evident correlation between these and the power of recciving the geotropic stimulus. It has been shown that if the organ containing them is shaken for some time, so that the contact between them and the protoplasm of the cells is empbasized, the stimulus becomes more efficient in producing movement. This reduces the stimulus to one of contact, which is in harmony with the observations made upon roots similarly stimulated from the exterior. The stimulating particles, whether starch grains in all cases, or other particles as well, have been termed staloliths.
We have spoken of the absence of structural differentiation in the sense organs. There is a similar dificulty in tracing the paths by which the impulses are transmitted to the growing and curving regions. The conduction of such stimulation to parts removed some distance from the sense organ suggests paths of transmission comparable to those which transmit nervous
impulses in animals. Again, the degree of differentlation is very slight anatomically, but delicate protoplasmic threads have heen shown to extend tbrough all cell-walls, connecting together all the protoplasts of a plant. These may well serve as conductors of nervous impulses. The nervous mechanism thus formed is very rudimentary, but in an organism the conditions of whose life render locomotion impossible great elaboration would seem superfluous. There is, however, very great delicacy of perception or appreciation on the part of the sense organ, stimuli being responded to which are quite incapable of impressing themsclves upon the most highly differentiated animal.

The power of response is seen most easily in the case of young growing organs, and the parts which show the motor mechanism are mainly the young growing cells. We do not find their behaviour like that of the motor mechanism of an animal. The active contraction of muscular tissuc has no counterpart in the plant. The peculiarity of the protopiasm in almost every cell is that it is especially active in the regulation of its permeability by water. Under different conditions it can retain it more strongly or allow it to escape more freely. This regulation of turgor is as characteristic of vegctable protoplasm as contraction is of muscle. The response to the stimulus takes the form of increasing the permeability of particular cells of the growing structures, and so modifying the degree of the turgidity that is the precursor of growth in them. The extent of the area affected and of the variation in the turgor depends upon many circumstances, but we have no doubt that in the process of modifying its own permeability by some molecular change we have the counterpart of muscular contractibility.

The response made by the adult parts of plants, to which reference has been made, is brought about by a mechanism similar in nature though rat her differently applied. If the leaf of Mimosa or Desmodium be examined, it will be scen that at the base of each leaflet and each leaf, just at the junction with the respective axes, is a swelling known as a pulvinus. This has a relatively large development of succulent parenchyma on its upper and lower sides. In the ereet position of the leaf the lower side has its cells extremely turgid, and the pulvinus thus forms a cushion, holding up the petiole. On stimulation these cells part with their water, the lower side of the organ becomes flaccid and the weight of the leaf causes it to fall. The small pulvini of the leaficts, by similar changes of the distribution of turgidity, take up their respective positions after receiving the stimulus. In some cases the two sides of the pulvini vary their turgidity in turns; in others only the lower side becomes modified.

Similar turgescence changes, taking place with similar rapidity in the midrib of the leaf of Dionaea, explain the closing of the lobes upon their hinge. More slowly, but yet in the same way, we may note the change in turgidity of certain cells of the Drosera tentacies, as they close over the imprisoned insect.

Organic Rhylhm.-It is a remarkahle fact that during the process of growth we meet with rhythmic variation of such turgidity. The existence of rhythm of this kind has been observed and studied with some completeness. It is the immediate cause of the phenomena of circumnutation, each cell of the circumnutating organ showing a rhythmic enlargement and decrease of its dimensions, duc to the admission of more and less water into its interior. The restraint of the protoplasm changes gradually and rhythmically. The sequence of the phases of the rhythm of the various cells are co-ordinated to produce the movement. Nor is it only in growing organs that the rhythm can be ohserved, for many plants erhihit it during a much longer period than that of growth. It is casy to realize how such a rhythm can be modified hy the reception of stimuli, and can consequently serve as the basis for the movement of the stimulated organ. This rhythmic affection of vegetahle protoplasm can be observed in very many of its functions. What have been described as "periodicitics," such as the daily variations of root-pressure, afford familiar instances of it. It reminds us of a similar property of animal protoplasm which finds its expression in the rhythmic beat of the heart and other phenomens.

Avthoriries.--Sachs, Lectures on the Physiolopy of Flante, trantlated by Marshall Ward; Vines, Lectures on whe Physiology of Plants: Pfeffer, The Physiology of Plants, trans. by Ewart; Reynolds Green, Introduction to Vegetable Physialogy; The Soluble Ferments and Fermenkation; Detmer Practical Plont Physiology, trans. by Moor; Darwin and Acton Practcal Phyriology of Planels; Davenport, C.B., Experimeutal Morphology, vols. i. and li.; Verwom, Ceneral Physiology, trans. by Lec; Bütechl, Investigation on Microscoptic Forms and os Proloplasm, trans. by Minchin.
(J.R.GR)

Pathology of Plants

"Phytopathology" or plant pathology (Gr. \$urbv, plant), comprises our knowledge of the symptoms, course, causes and remedies of the maladies which threaten the We of plants, or which result in abnormalities of structure that are regarded, whether directly injurious or not to life, as unsightly or undesirable. In its systematized form, as a branch of botanical study, it is of recent date, and, as now understood, the subject first received special attention about 2850 , when the nature of parasitism began to be intelligible; but many disjointed references to diseased conditions of plants had appeared long before this. The existence of blights and mildews of cereals had been observed and recorded in very ancient times, as witncss the Bible, where half a dozen references to such scourges occur in the Old Testament alone. The epidemic nature of wheat-rust was known to Aristotle about 350 8.C., and the Grecks and Romans knew these epidemics well, their philosophers having shrewd speculationa as to causes, whlle the people held characteristic superstitions regarding them, which found vent in the dedication of special festivals and deitics to the pests. Pliny knew that flies emerge from galls. The few records during the middle ages are borne out by what is known of famines and pestilence. Shakespeare's reference in King Lear (Act II., sc. iv.) may be quoted as evincing acquaintance with mildew in the rith century, as also the interesting Rouen law of Loverdo (x660). Malpighi in 1679: gave excellent figures and accounts of leaf-rolling and gall insects, and Grew in 1682 equally good descriptions of a leafmining caterpillar. During the $18 t h$ century more academic treatment of the subject began to replace the scattered notes. Hales ($1727-1733$) discussed the rotting of wounds, cankers, \&z., but much had to be done with the microscope before any real progress was possible, and it is easily Intelligible that until the theory of nutrition of the higher plants had been founded by the work of Ingenhouss, Priestley and De Saussure, the way was not even prepared for accurate knowledge of cryptogamic parasites and the diseases they induce. It was not till De Bary (1866) made known the true nature of parasitic Fungi, based on his researches between 1853 -1863, that the vast domain of epidemic diseases of plants was opened up to fruitful investigation, and such modern treatises as those of Frank (2880 and 1895), Sorauet (1886), Kirchner (1800), were gradually made possible.

Plant pathology embraces scveral branches of study, and may be conveniently divided as follows:-

1. The observation and accurate description of symptoms (Diagnosis).
2. The study of causes or agencies inducing discase (Aefiologs).
3. The practise of preventive and remedial measures (Therapeulics).

In plants, however, the symploins of disease are apt to exhibit themselves in a very general manner. Our perceptions differentiate hut imperfectly symptoms which are due to very different causes and reactions, probably because the organization of the plant is so much less. highly specialized than that of higher animals. The yellowing and subsequent casting of leaves, for instance, is a very gencral symptom of disease in plants, and may be induced by drought, extremes of temperature, insufficient or excessive illumination, excess of water at the roots, the action oi parasitic Fungi, insects, worms, \&ic., or of poisonous gases, and so forth; and extreme caution is necessary in dealing with amateur descriptions of such symptoms, especially when the untrained eyc has taken no cognisance of, or has only vaguely observed, the numerous collateral circumstances of the case.

The causes of disease may be provisionally classified somewhat as follows, but it may be remarked at the outset that no one of
these proximal causes, or agents, is ever solely responsible; and it is very easy to err in attributing a diseased condition to any of them, unless the relative importance of primary and subordinate agencies is discoverable. For instance, a Fungus epidemic is impossible unless the climatic conditions are such as to favour the dispersal and germination of the spores; and when plants are killed of oring to the supersaturation of the soil with water, it is by no means obvious whether the excess of water and dissolved materials, or the exclusion of orygen from the root-hairs, or the lowering of the temperature, or the accumulation of foul products of decomposition should be put into the foreground. In every case there are chains of causation concerned, and the same factors will be differently grouped in different cases.

Bearing in mind these preceutions, we may classify the proximal causal agents of disease as-

L.-External agencien.

A. Non-living.
a. Material.
1. Physical-
Soil.
Water.
Atmosphere.
2. Cbemical-
Soil.
Water.
Atmotphere.
b. Non-material

1. Tempersture.
2. Other agencies.
B. Living.
a. Animals.
3. Invertebrata.
b. Plants.
4. Phanerogame,
5. Cryptogame.
II,-Internal agencies.

While such a classification may serve its purpose as a sort of index, it must be confessed that the limits of its usefulness are soon reached. In the finst place, the so-called "internal causes" of disease is probably a mere phraye covering our ignorance of the factors at work, and although a certain convenience attaches to the distinction between those cases where tender breeds of plants apperently exhibit internal predisposition to suffer more readily than others from parasites, low temperatures, excessive growth, \&c.-as is the case with some grafted plants, cultivated hybrids, \&e.-the mystery involved in the phrase "internal causes " only exists until we find what action of the living or nonliving environment of the essential mechanism of the plant has upset its equilibrium.
I.-Passing to the recognized external agencies, the physical condition of the soil is a fruifful source of discase. If too closely packed, the soil particles present mechanical obstacles to growth; if too reteative of moist ure, the root-hairs suffer, as already hinted; if too open or over-dralned, the plant succumbs to drought. All those propertics of soil known as texture, porosiry, depth, inclination to the horizon, \&c., are concerned here. Many maladies of plants are traceable to the chemical composition of soilsdeficiency of autritive salts, especially nitrates and phosphatea; the presence of poisonous ealts of iron, copper, \&ec., or (in the soil about the roote of trees in towns) of coal-gas and wo forth. But it is worthy of special attention that the mere chemical composition of agricultural and garden soils is, as a rulc, the least important feature about them, popular opinion to the contrary notwithstanding. Ordinary eoils will almost always provide the necessary chemical ingredients if of proper physical texture, depth, Scc. (see Fungi and Bacteriology).

As regards water, its deficiency or excess is a relative matter, and although many of the minor maladies of pot-plants in windows and greenhouses controlled by amateurs depend on its misuse, water alone is probably never a primary cause of disense. Its over-supply ls, however, a frequent cause of predisposition to the attacks of parasitic Fungj-e.s. the damping of of beedlingsand in zaturated soils not only are the roots and root-hairs kitled by asphyxiation, but the whole course of soil fermentation is altered, and it takes time to "sweeten" such by draining, because not only must the noxious bodies be gradually washed out and the Jost salts restored, but the balance of suitable bacterial and fungal dife must be restored.

The afmosphere is a caute of disease in the neighbourhood of chernical works, lange towas, volcanoes, \&c., in mo far as it carries acid gases and poisons to the leaves and roots; but it is usual to assochate with it the action of excessive humidity which brings about those tender watery and more or lesetiolated conditions which favour parasitic Fungi, and diminish transpiration and therefore nutrition. It is customary to speak of the disantrous effects of cold winds, snow, hail and frost, lightning, \&e., under the heading of etmospheric influences, which only khows once more how imposaible it is to separate causes individually.

Turnine to the mem-material axternal agents, probably no factors ase more somponsible for II -health in plants than tomproature and
ligh. Every plant is conetraiaed to carry out its functions of germinatioa, growth, nutrition, reproduction, \&e., between certain limits of temperature, and somewhere betwcen the extremes of these linits each Iunction finds an optimurn temperature at which the working of the living machinery is at its best, and, other things being equal, any great departure from this may induce pathological conditions; and many disasters are due to the failure to provide such suitable temperatureo-s.e. in greenhouves where plants requiring very different optimum temperatures and illumination are loept together. Equally disastrous are those climatic or seatonal chnages which involve temperatures in themselves not excestive but in wroag sequence; how mayy more useful plants could be grown in the open in the United Kingdom if the deceptively mild祭ringt were not 80 often followed by frosts in May and June! The indirect eflects of temperature are also important. Trees, of Which the young buds are "nipped" by frost, would frequently not suffer material injury, were fit not that the small frostericks eerve as points of entry lor Fungi; and numerous cases are known where even high temperatures can be endured on rich, deep, retentive soils by plants which at once succumb to drought on thallow or non-retentive zoils.

Ail chlorophyil plants require light, but in very different degrees, as exemplified even in the United Kingdom by the shade-beariag beech and yew contrasted with the light-dcimanding larch and hirch; and at with temperature so with light, every plant and even every organ has its optimum of illumination. The "drawn "or etiolated condition of over-shaded plants is a case in point, though here again the eoft, watery plant often really succumbs to other disease agents-e.g. parasitic Fung--supervening on it nonresistant condition.

Animals and plants as agents of disease or injury form part of the larger subject of the struggle for existence between living organisras, as is recognized even by those who do not 00 readily apprehend that discased conditions in general are always signs of defeat in the struggle for existence between the suffering organim and its environment, living and non-living.

The Vertebrata come within the scope of our subject, cbicfly at destructive agents which cause wounds or devour young whoots and foliage, de. Rabbits and other burrowing animals injure roots, squirrele and birds snip of buds, horned cattle strip of bark, and 20 forth It is among the Invertehrata that epidemics of destruction are referred to, though we should bear in mind that it is only the difference in numerical proportion that prevents nur speaking of an epidemic of elephants or of rabbits though we une the term when speaking of blight insects; there is little consistency in the matter, as it is usual to speak of an invasion or scourge of locusts, caterpillars, \&c. Insect injuries are very varied in defree and in kind. Locusts devour all before, them; caterpillars defoliate the plant, and necessitate the premature utilization of its reserves; other insects (c.e. Grapholitha) cat the buds or the roots (e.s. wireworms), and ao maim the plant that lts foliage suffers from want of water and assimilation is diminished, or actual withering follows, Many aphides, \&c., puncture the leaves, suck out the sap, and induce various local deformations, arrest of growth, pustular swellings, \&c., and if numerous all the evils of defoliation may follow. Others (e.g. miners) tunnel into the leaf parenchyma, and so put the assmilating areas out of action in another way. It should be remembered that a single complete defoliation of a herbaceous annual may so incapacitate the assimilation that no stores are available for seeds, tubers, \&c., for another year, or at most so little that fechle plants only come up. In the case of a tree matters run somewhat differenty; most large trees in full Coliage have far more assimilatory surface than is immediately necessary, and if the injury is confinod to a single year it may be small event in the life of the tree, but if repeated the camhium, bud-stores and fruiting may all suffer. Many larvae of beetles, moths, \&c., bore into bark, and injure the cambium, or even the wood and pith; ia addition to direct injury, the interference with the transpiration current and the access of other parasites through the wounds are also to be feared in proportion to the numbers of ineccta at work. Various local hypertrophics, including galls, result from the increased growth of young tissucs irritated by the punctures of insects, or by the presence of egss or larvac left behind. They may occur on all parts, buds, leaves, stcms or roots, as showa by the numerous specics of Cynips on onk, Phylloxcra on vincs, \&c. The local damage is small, but the gencral injury to assimilation, abworption and other functions, may be important if the number: increase. In addition to insects, various kinds of worms, molluses, \&c., are eometimes of importance as pests. The so-called celWorms (Nematodes) may do immensc damage on roots and in the grains of cercals, and cuery onc knows how predatory slugs and snails are. (See Economic Entomology.)

Plants as agents of damage and discase may be divided into those larger forms which as wecds. epiphytes and wo forth, do injury hy dominating and shading more delicate species, or by gradually cxhausting the soil, \&e., and true parasites which actually five on and in the tissucs of the plants. It must be remembered that phancrogams also include parasitic specics-ce. Cuscuta, Loranihes, Viscum, Thesium, Rhinandius, \&c.-with various capacitien for injury. These enemins are as a rule wo conspicuous that

Fe do nat look on their depredations as disenses, though the gradual deteriaration of hay under the exhausting effects of root-parasites like Rhinanthus, and the onslaught of Cuscuta when unduly abundant, ahould teach us how unimportant to the definition the question of size may be.
It ls, however, among the Fungi that we find the mont dinastrous and elusive agents of disease. Porasitic Fungi may be, an regands their direct action, purely local-e.j. Schindia, which forms gallllke swellings on the roots of rushes; Gymasyorasimm, causing excreacences an juniper stems; numerous leaf Fungi such as Puccinia, Aecidium, Seploria, \&e., causing yellow, brown or black spots on leaves; or Ustilago in the anthers of certain flowers. In such cases the immediate damage done may be alight; but the effects of prolonged action and the summation of numerous attacke at numerous points are often enomous, certain of these leafdiseases costing millions sterling annually to some planting and agricultural communities In other casea the Fungus in virulent and rampant, and, instead of a local effect, exerts a general deatructive action throughout the plant e.g. Pythiwm, which causes the " damping of " of seedlings, reducing them to a putrid mase in a few hours, and Phylophehora, the agent of the potato disease. Many Fungi, in themselves not very agent of the potato disease, important and far-reaching secondary efects. Thus, many Hymenomycetes (Agarics, Polyporci, \&k.) live on the wood of trees This wood is in great part already dead substance, but the mycelium gradually invades the vessels occupied with the transmigaion of Weter up the trunk, cuts off the current, and so kills the tree; in other cases such Fungi attack the roots, and se induce rot and starvathon of oxygen, resulting in "touling." Numerous Fungi, though conspicuous as parasites, cannot be anid to do much individual injury to the host. The extraordinary malformations known as "Witches' Brooms," caused by the repeated branching and tufting of twigs in which the mycelium of Exoascus (on birch) or Aecidium (on silver fir) are living, may he borne in coasiderable numbert lor yeare without any very extensive apparent injury to the tree. Again, the curious distortions on the atems of nettlea attacked by the Aecidium form of the heteroecious Puccina Caricis (bee FUNGI. for Heteroeciam), or on maize stems and leaves at tecked by Ustilago Mfaydis, or on the inflorescence of crucifers infested with Cyslopis, \&c., are not individually very deatructive; it is the cumulative effects of numerous attacks or of extensive epidemics which eventually tell. Some very curious detaila are observable in these cases of malformation. For instance, the Aecidium elatinum first referred to causes the new shoots to differ in direction, duration and arrangement, and even shape of Coliage leaves from the normal; and the shoots of Euphorbic infected with the aecidia of Uromyees Pisi depart so much from the normal in appearance that the attacked plants have been taken for adifferent specics Similarly with A nemone infested with Puccinic and Vaccinium with Calyplospora, and many nther cases of deformations due tn hypertrophy or atrophy. Inthances of what we may term tolerated parasitism, where the host plant seems to accommodate itself very well to the presence of the Fungus, paying the tax it extorts and nevertheless not succumbing but managing to provide itself with mufficient material to go on with, are not rare; and these secm to lead to those cases where the mutual accommodation between host and guest has been carried oo far that each derives some benefit from the association-symbionis (see FUncI).
II. The hinds of disedse due to these various ageinclem are very different. A plant may be diseased as a whole, because nearly all its tissues are in a morbid or pathological condition, owing to some Fungus pervading the whole-e.g. Pythiwn in scedlings-or to a poison diffusing from cell to cell; in the case of unicellular plants-a.g. an alga infested with a Chytridium-indeed, matters can hardly be otherwise. But the case it obviously different where a plant dies because some eseential organ or tissue tract has been destroyed, and other parts have suffered because supplies are cut of -te.g. when the upper parts of a tree die off owing to destruction of the roots, or to the ringing of the stem lower down, and consequent interference with the transpiration current. In a large number of casea, however, the discase is purely local, and does not itself extend far into the organ or tiasue affected.

If a mass of living plant-tissue is cut, the first change observed is one of colour: the white "ficsh " of a potato or an apple turns brown as the air enters, and closer examinntion shows that cell walls and contents are alike affected. The cut cells die, and oxidized products are concerned in the change of colour, the brown juices exuding and soaking into the celi-walls. The next change observable after some hours is that the untouched cells below the cut grow larger, puth up the dead surface, and divide by walls tangential to it, with the formation of tahloid cork-cells. The layer of cork thus formed cuts out the dead debris and serves to protect the uninjured cells below. Such healing by cork formation is accompanied by a rise of temperature: the active growth of the dividing cells is accompanied by vigorous metabolism and respiration, and a state of "wound fever " uppervenes until the healing is completed, The phenomena described cotur in all cases of cientrization of wounds in nature-e.g. lead-issue, young stems, roots, \&c., when cut or pierced by insects, thorns and so forth. They are con-
it is from the actively growing " callus" developed at the surface nf the wounded tissues of cuttings, buddings, prunings, \&c., that the healing and renewal of tissues occur of which advantage is taken in the practice of what might well be termed plant surgery. A third phenomenon observabie in such healing tiasuen is the increased flow and accumulation of plastic materials at the teat of injury. The euhanced metabolism create a current of draught on the supplies of available food-atuffs aroind. The phesomenon of irritability here concerned is well shown in certain cages where a parasitic organimn gains access to a cell-e.g. Pleolrachelus causes the invaded Pilobalys to awell up, and changea the whole course of its cell metabaliam, and rimilarly with Plasmodiophara in the roots of turnips, and many other cases.

Irritation and hyperirophy of cells are common efges of the presence of parasites, an evinced by the numerous malformations galle, witches-brooms, \&c, on djsensed plants The now well-known fact that small doses of poisonous auhstances may act an stimuli to living protoplasm, and that respiratory activity and growth may be accelerated by chloroform, ether and even powerful mineral poisont, much an mercuric chloride, in minimal dowes, offers mome explanation of these phenomena of hypertrophy, "wound fever," and other responses to the presence of irritating agents. Still further incight is afforded by our increasing knowledge of the enzymes, and it it to be remarked that both poisons and enrymes are very common in just such parasitic F ungi as lnduce divcolorations, hypertrophies and the death of cello-ig. Bolrytis, Ergal, Be Now it is clear that if an organism gaina access to all parts of a plant, and stimulates all or most of its cells to hypertrophy, we may have the latter behaving aboormally-i.e. it may be dineased through out; and such actually oceurs in the case of Euphorbig pervadod with Uromyces Pisi, the presence of which alters the whole aspect of the host-plant. If such a general parasite carries its activitics farther, every cell may be killed and the plant lorthwith destroyede.g. Phytophinore in potatoes. If, on the other hand, the irritating agent is local in its action, causing only a few ceils to react, we have the various pimples, excremcences, outgrowthe, \&c., exhibited in ouch cases as Usiliago Maydis on the maize, various galle, witches'brooms, \&c.

It must not be overlonked that the living cells of the plant react upod the parasite as well as to all external agencies, and the nature of disease becomes intelligible only if we bear in mind that it congists in much altered metabolism-defiected physiology-as is here implied. The reaction of the cells may be in two directions moreover. For instance, auppose the effect of a falling temperature is to 20 modify the metabolism of the cells that they fill up more and more with watery sap; as the freczing-point is seached this may result in destructive changea, and death from cold may resulit. II, on the contrary, the gradual cooling is met hy a corresponding depletion of the cells of water, even intense cold may be sustained without injury.

Or, take another case. If the attack of a parasite is met by the formation of some aubstance in the protoplasm which is chemotactically repulsive to the invader, it may be totally inca pable of penetrating the cell, even though equipped with a whole armoury of cytases, diastatic and ather enzymes, and poisons which would easily overcome the more passive reaistances offered by mere cell-walla and cell-contents of other plants, the protoplasm of which forms bodies chemotactically attractive to the Fungus.

The various degrees of parasitism are to a certain extent explained by the foresoing. In order that a Fungus may enter a plant it must be able to overcome not merely the resistance of cell-walls, but that of the living protoplasm; if it cannot do this, it must remain outside as a mere epiphyte, e.g. Fumago, Herpotrichia, \&c., or, at most, wegetate in the intercellular spaces and anchor itself to the cell-walle, e.g. Trichosphaeria. The inability to enter the cells may be due to the lack of chemotactic bodies, to incapacity to form cellulose-dissolving enzymes, to the existence in the bostcells of antagonistic bodies which neutralize or destroy the acide, enzymes or poisons formed by the hyphae, or even to the formation and excretion of bodies which posion the Fungus. But even when inside it does not follow that the Fungus can kill the cell, and many cases are known where the Fungus can break throunh the ceil's first lines of defence (cell-wall and protoplasmic lining): but the struggle goes on at close quarters, and various degrees of hypertrophy, accumulation of plastic bodies or secretions discolorations, \&c., indicate the suffering of the still living cell Finally, cases occur where the invaded call so adapts itgelf to the presence of the intruder that jife in common-symbiosis-rewalte.

The dissemination of plant parasites 临 favoured by many circumstances not always obvious, whence an air of mystery reganding epidemics was easily created in carlicr times. The toposes of Rusts, Erymiphene and other Fungi may be converyed from plant to plant by snails; those of tree-killing polyporen ace., by mict, rabbits, rats, \&c, which rub their fur againgt the hymenophores Bees carry the spores of Selerotinia as they do the pollen of the bilberries, and flies convey the conidia of ergot from grain to sraim. Insects, indeed, are largely concerned in disecminating Funci, either on their bodies or via the alimentary canal. Norms brires spores to the surface of soil, ducks and other birds convey them on their muddy feel, and, as is well-known, wind and opher physical
agencies are very efficient in dimemination. The part played by man also counts for much. Gardeners and farm labourers convey spores from one bed or field to another; carted toil, manure, \&ec, may abound in spores of Smuts, Fmserime, Polyporei and in aclerotia and articles through the post and so forth often carry infective spores. Every time a carpenter saws irech timber with a saw secently put through wood attacked with dry-rot, be riske infect. ing it with the Fungus; and similarly in pruning, in propagating by cuttings, \&ec.

The annual losses due to epidemic plant diseases attain proportions not easily estimated. As regards money value alone the following figures may merve in illustration. In 1882 the United States was calculated to have lost $[40,000,000$ to $[60,000,000$ from inast and other pests. The wheat-rust costs Australia $\mathbf{f 2}, 000,000$ to f3,000,000 annually, and in 1891 alone the loss which Prussia unfered from grain-rusts was cstimated at $\{70,000,000$ sterling.
The terrible losecs sustained by whole communities of farmers pianters, forcsterm, \& c. . from plant discascs have naturally stimu lated the search for remedies, but even now the search is too often conducted in the spirit of the believer in quack medicines, although the agricultural world is awakening to the fact that before any measures likely to be successful can be attempted, the whole chain of causation of the disease must be invcstigated. Experience with epidemics, dearly bought in the past, has shown that one fruitiu cause is the laying open to the inroads of some Fungus or insect hit herto leading a quite endemic life in the fields and foreste, large tracts of its special lood, along which it may range rampant without check to its dispersal, nutrition and reproduction. Numerous wild hypotheses as to changes in the constitution of the host-plant leading to mupposed vulnerability previoudy non-existent, would probabty neyer have seen the light had the full significance of the truth becn grasped that an epidemic reault when the external factors favour a parasite somewhat more than they do the bost It may be that in particular cases particular modes of cultivanion disfavour the host; or that the soil, climate or ceasons do so; but overwhelming evidence exists to show that the principal causes of epidemice reside in circumstances which favour the spread, nutrition and reproduction of the pest, and the leswon to be lcarnt is that precautions against the ettablishment of such favouring conditions must be sought. Neverthelest, epidemics occur, and practical measures are devised to meet the various cascs and to check th. ravages already begun. The procedure consists in most cases in spraying the afiected plants with poisonous solutions or emulsions or in dusting them with fungicidal or inecticidal powders, or applying the fumes of lethal gases. For the composition of the numerous liquids and powders special works must be consulted, but the following principles apply generally. The poison must not be atrong enough to injure the rooten leaves, \&c., of the host-plant or allowed to act long enough to bring about such injury. Carc and intellizence are eapecially needful with certain insteticides fuch as poisonous gasen, or the operators may wifter. It is worse than wecess to apply drastic remedics if the main facts of the Hichistary of the pest are not known; e.g. the application of ordinany antiseptic panders to leaves inside which a Fungus, wich as a Uredo or Ustilap, is geowing can only result in failure, and similarly if tobaceo lumes for jastance, are applied then the insects concerned are hiberaating in the ground bencath. Such applications at the momeat whem spares are germinating on the leaves, e. f . Peromosporg, or to the young mycelia of epiphytic parasites, e.g. Erysiphe, or the atceping in bot water of thoroughly ripe hard graina to which aporse are attached, e.f. Vstilago, and filling a grcenhouse with hydrocyanic acid gas when young insects are commencing their ravages, e.2. Red-spider-all these and similar procedures timed to catch the pest at a vulnerable stage are intelligent and profitable prophylactic measures, as has been repeatedly shown. Numerous special methods of preventing the spread of Fungi. or the migrations of insects, or of trapping various aninals; of leaving infested ground fallow, or of growing another crop uscicas to the pest, \&ec.; are also to be fownd in the practlcal (reatises More indirect methods, such as the grafting of less resiatant acions on more vigorous stocks, of raising special late or carly varictics by crosing or telection, and so on. have also met with success; but it mus be understood that "resistant" in such cases usually means that some peculiarity of quick growth, early ripening or other Hfe-feature in the plant is for the time being taken advantage of. Among the mont interesting modern means of waging war against epidemic pests is that of introducing other epidemics tunong the pests themselves-e.g. the infection of rats and mice aith disease bacill, or of locusts with insect-killing Fungi, and eignat the succesdul carrying out of such measures are not wanting. That the encouragement of insectivorous birds has been profitable is well, cstablished, and it is equally well-known that their destruc. fion may lead to disastrous ipsect plagucs.

Dintaser and Symptoms, - The symptoms of plant disesses are ts almeady said, apt to be very general in their nature, and are cometimes to varuely defined that lithe can be learned from tbem as to the cames at work, We may often distinguish hetween pinary symptoms end secondary or subordinate
symptoms, but for the purposes of classification in an article of this scope we shall only attempt to group the various cases under the mare obvious signs of discase exhihited.

1. Discolorations are among the commonest of all signs that a plant is "eickly" or diseased. The principal symptom may show itself in general pallor, including all casea where the normal healthy green hue is replaced by a sickly yellowish hue indicating that the chlorophyll apparatus is deficient. It may be due to insufficient illumination (Etiolation), as seen in geraniums kept in too shaded a situation, and is then accompanied by soft tissues, elongation of internodea, lcaves usually reduced in sixe, sec. The laying of wheat is particular case. False etiolation may occur from too low a temperature, often scen in young wheat in cold springs. Cases of pallot due to too intensc illumination and deatruction of chlorophyll muat also be distinguished. Chlorosis is a form of pallor where the chlorophyll remains in abeyance owing to a want of iron, and can be cured by adding ferrous salts. Lack of other ingredients may also induce chlorotic conditions. Yellowing is a common sign of watez-logered roots, and if accompanicd by wilting may be due to drought. Over-transpiration in hright wintry weather, when the roots are not absorbing, often resulta in yellowing. In other cases the prescace of insects, Fungi or poisons at the roots may be looked for. Albinism, with which variegated folinge may be consldered, concerns a diferent set of causes, still obscure, and usually regarded as internal, though experiments go to show that some varicgations are infectious.
2. Spolled Leaves, \&ic.-Discoloured spots or patchea on leavis and other herboccous parts are common symptoms of disease, and often furnish clues to identification of causes, though it must be remembercd that to sharp line divides this elass of symptoms from the preceding. By far the greater number of spot-diseases are due to Fungi, as indicated by the numerous " lcaf-diseases" described, but such is by no means always the case. The spot or patch is an area of injury; on (or in) it the cell-contents are suffering destruction from shading, blocking of stomata, loss of tubstance or direct mechanleal injury, and the plant anfers in proportion to the area of leaf surface put out of action. It is somewhat artificial to classify these disenses according to the colour of the spots, and often impossible, because the colour may differ according to the age of the part attacked and the stage of injury attained; many Fungi, for instance, induce yeliow spots which become red, brown or black as they get older, and 80 on. White or grey spots may be due to Peronospora, Erysiphe, Cystopses, Enlyloma and orher Fungi, the mycelium of which will be detected in the discoloured area; or they may be scale insects, or the results of punctures by Red-spider, \&e. Yellow spots, and especially bright ornnge spots, commonly indicate Rust Fungi or other Uredineae; but Phyllosticta, Exooscus, Clasterosporium. Synchytrium, dac, also induce similar symptoms. Certain Aphldes, Red-spider, Phylloxera and other insects also betray their presence by such topots. It is a very common event to fiod the early stages of Injury indicated by pale yellow spots, which turn darker, brown, red, black, \&c., later, e.g. Dilophio, Rhytisme, \&c. Moroover, varicgations deceptively like thewe discase apots are known, eqf Senecio Raempferi. Red spots miny indicate the presence of Fungi, e.g. Polystigtwa, or Insects, d.g. Phyloptus. Brown spots are charmetcristic of Phytophihora, Puecteig, \&c., and black oncs of Pusicladium, Ustilay, Rhytisma, \&e. Both are common as sdvanced tymptoms of deatruction by Fungi and insects Brillinatly coloured spots and petches follow the actlon of acld fumss on the vogetation near towns and lactorics, and such particoloured lanves often present striking resemblance to autumo follage. Symptoms of tcorching owing to ahnormal Insolatione.g. In greenhouses where the sun's rays are concentrated on particular spoty-and a ccrtain class of obscure discaers, such as "silver-loaf" in plums, "foxy legves "in various plants, may alio be placed here.
3. Wounds.-The principal phenomena resulting from a pimple wound, and the response of the irritated cells in healing by cork and in the formation of callus, have been indicated above. Any clean eut, fracture or brume which injures the cambium over a limited area is met with tlie same response. The injured cell die and turn brown; the living cells bencath grow out, and form cork, and under the released presture bulge outwards and repeatedly divide, forming a miss of tucculent regenerative tissue known as callus. Living centi of the pith, phloem, cortex, fec., may aleo co-operate in this formation of retenerative tissue, and if the wound is a mere knife-cut in the "bark," the protruding lipe of callus formed at the edges of the wound soon mect, and the slit is healed over-occluded, If a plece of bark and cortex are torn off, the occlusion takes longer, because the tissues have to crecp over the exposed area of wood; and the same is true of transverse cut severing the branch, as may be scen in any properiy pruned tree Wounds may be artlicially grouped under such heads as the following: Burrows and excavations in bark and wood due to horing insects, especialiy beetles. Breakages and abrasions due to wind, snow, lightning, and other climatie agents. Cuts, breakages, ac., due to man and other vertebrate animals. Erosions of leave" and herbaceous parte by caterpillars, slugs, carwigs and 20 forth. Front-eracks, ecotching of bark by un and fire, ge., and
wounds due to plants which entwine, picrce or otherwise materially injure trees, dec, on a large scale.
4. Excrescences.-Outgrowths, more or less aboormal in character, are frequent signs of discased organs. They are due to hypertrophy of young tissues, which may undergo profound alterations aubsequently, and occur on all parts of the plants. The lajury which initiates them ray be very slight in the first place-a mere abrasion, puncture or Fungus infection-but the minute wound or other disturbance, instead of healing over normally, is frequently maintained as a perennial source of irritation, and the regenerative tissues grow on month after month or year after year, resulting in extraorainary outgrowths often of large size and remarkable shape. Exerescences may be divided into those occurring on herbaceous tissucs, of which Calls are well-known examples, and those found on the woody stem, branches, \&c., and themselves eventually woody, of which Burrs of various kinds afford common illustrations. Among the simplest examples of the former are the hairs which follow the irritation of the cells by mites. These hairs often occur in tufts, and are so coloursd and armanged that they were long taiken for Fungi and placed in the " genus "Erineum.

Cecidic or galls arise by the hypertrophy of the subepidermal cells of a lenf, cortex, \&c., which has been pierced ly theovipositor of an insect, and in which the egg is deposited. The irritation eet up by the hatching egg and its resulting larva appears to be the stimulus to development, and not a poison or enzyme injected by the insect. The extraordinary forms, colours and textures of tho true galls have always formed some of the most intercsting of biological questions, for not only is there definite co-operation between a given species of insect and of plant, as shown by the facts that the same insect may induce galls ol different kinds on different plants or organs, while different inseets induce different galls on the same plant-e.f. the numerous galls on the oak-but the gall itself furnishes well adapted protection and abundant stores of nutriment to its particular Jarva, and olten appears to be borne without injury to the plant. This latter lact is no doubt due to the production of an excess of plastic materials over and above what the tree requires for its immedinte needs. Galls in the wide sense-technically Cecidia-are' not always due to insects. The nodules on the foots of leguminous plants are induced by the presence of a minute ogganism now known to do no injury to the plant. Those on turnips and other Crucifcrae are due to the infection of Plasmodiophora, a dangerously parasitic Myxomycete. Nodules due to "ecl-worms" (Nematodes) are produced on numerous chases of plants, and frequently result in great losses-e.g. tomatoes, cucumbers, \&e, ; and the only too well known Phylloxera, which cost France and other vine-growing countries many millions sterling, is another casc in polnt. Fungus-galls on leaves and stems are exemptified by the "pocket-pluns" caused by the Eroasceae the black blistering swellings of Ustilago Maydis, the ycllow awellings on nettles due to Aecidiam, \&e.
In many cases the swellings on leaves are minute, and may be termed pusiules-ce.e, those due to Synchylfium, Protomjces, Cyslopus, many Ustilagincac, \&c. These cases are not easily distinguishod superficially from the pustular outgrowth of actual mycelia and spores (stromata) of such Fungi as Nectria, Puccinio. \&c. The cylindrical stem-swellings due to Calyplospora, Epichloe, \&c., may also be mentioned here, and the tyro may easily confound with these the layers and cushions of eggs laid on similar organs by moths. There is a class of gall-like or pustular outgrowths for Which no external cause has as yet been determined, and which are therelore olten ascribed to internal causes of disense. Such are the cork-warts on clms, maples, \&c., and the class of outgrowths known as Infumescences. Recent researches point to definite external conditions of moisture, affecting the processes of respiration and transpiration, \&c, as being responsible for some of thesc. The "ecab" of potatoes is another case in point. Frost blisters are pustular swellinge due to the up-growth of callus-tissuc into cavities caused by the uprising of the superficial cortex under the action of intense cold.
Turning now to outgrowths of a woody nature, the weil-known burrs or "knaure," so common on elms and other trees are cases in point. They are due to some injury-c. 2 bruising by a cartwheel, insects-having started a callus on which ad ventitious buds arise, or to the destruction of buds at an early stage. Then, stores of food-materiai being accumulated at the injured place, other buds arise at the base of or around the injured one. If matters are propitious to the development of these buds, then a tuft of twigs is lormed and no burr; but if the incipient twigs are also de. troyed at an carly stage, new buds are again formed, and in larger numbera than before, and the continued repetition of these processcs leads to a sort of conglomerate woody mass of fused bud-bascs, not doad, but unable to grow out, and tlus cach contributing a crowded portion of woody material as it slowly grows. There are many varieties of burrs, though all woody outgrowths of old troes are not to be confounded with them, e.f. the "knees" of Taxodium, \&c. Many typical burrs might be described as witches'brooms, with all the twigs arrested to extremely short outgrowths. Witches'-brooms are the tufted bunches of twies found on silver firs, birches and other trees, and often present resemblanees to birds' nests or clumps of mistletce if only seen from a distance.

They are branches in which a perennial Fungus (Aecidiwn, Exoasews. ec.) has obtained a hold. This Fungus stimulates the main twig to shoot out more twigs than usual; the mycelium then enters each incipient twig and stimulates it to a repetition of the process, and to in the course of years large broom-like tufts result, of ten markedly different from the normal.

But undoubtedly the most important of the woody excresocnces on trees are carkers. A canker is the result of repeated frustrated attempts on the part of the cullus to heal up a wound. If a clean cut remains clean, the cambium and cortical tiesucs soon form callus over it, and in this callus-regenerative tisuc-new wood, ke., soon forms, and if the wound was a small onc, no trace is visible after a few vears. But the occluding callus is a mass of delicate succulent cells, and offers a dainty morsel to certain insectse.g. Aphides-and may be casily penctrated by ccrtain Fungi such as Peaiza, Nectrio; and when thus attacked, the repeated conflicts between the cambium and callus, on the one hand. trying to heal over the wound, and the insect or Fungus, on the other, destroying the new tissues as they are formed, fesulta in irrcgular growths; the still uninjured cambium area goos on thickening the brarth. the dead parts, of course, remain unthickened, and the portion in which the Fungus is at work may for the time being grow more rapidly. Suclt cankers often commence in mere insect punctures, frosted buds, cracks in the cortex, \&e., into which a germinating spore sends its hypha. The seriousnest of the damage done is ittustrated by the ravages of the larch dieease, apple canker, \&c.
5. Exmedions and kotling.-The outward aymptoms of many discases consist in excessive discharges of moisture, often accompanied by bursting of over-turgid cells, and eventually by putrefactive changes. Conditions of hyper-turgesceneg are common in herbaceous plants in wet scasons, or when overerowded and in situations too moist for them. This unheaithy state is frequently combined with etiolation: what is termed rankness is a particular case, and if the factors concerned are removed by drainage, weeding out, free transpiration, \&c., no permanent harm may result. With secdlings and tender plants, however, matters are frequently complicated by the onslaughts of Fungi-e.s. Pyihimm, Peronospora, Completoria, Volulella. Botrylis, \&c. That such overturgescence should lead to the bursting of fieshy fruits, such as gooseberrics, tomatocs and grapes, is not surprising, sor can we wooder that fermentation and mould Fungi rapidly sprend in such fruits; and the same is true for bulbs and herbaccous organs gencrally. The rotting of rhizomes, roots, \&c., also comes into this eategory; but while it is extremeiy dificult in given cuscs to explain the course of events in detait, certain Fungi and bacteriz have been so definitely associated with thest roots-e.g. beet-rot, turnip discase, wet-rot of potatoes-that we have to consider each case separatcly. It is, of course, impossible to do this here, but I will briefly discuss one or two groups of cones.

Honey-dew.-The sticky condition of leaves of trees-e.g. limein hot weather is owing to exudations of sugar. In many cages the punctures of Aphides and Coccidene are shown to be responsible for such exudations, and at least one instance is known where a Fungus-Claviceps-causcs it. But it also appears that honey: dew may be excreted by ordinary processea of over-turgescence pressing the liquid throuph water-pores, as in the tropical Coesalpinia, Colliandra, \&c. That these exudations on leaves should afterwards scrve as pabulum for Fungi-e.g. Fumago, Amlewnario -is not surprising, and the leaves of limes are ofteo black with them.

Ffux.-A common event in the exudation of turbid, frothing liquids from wounds in the lark of trees, and theodours of putrefaction and even alcoholic fermentation in these are sufficiently explained by the cocxistence of albuminous and saccharine matiers with fungi, yeasts and bacteria in such fluxcs. It is clear that in these cascs the obvious symptom-the flux-is not the primary one. Some wound in the succulent tissucs has become infected by the organisms referred to. and their continued action prevents heating. At ccrtain seasons the wound "bleeds," and the organ-isms-some of which, by the bye, are remarkable and interesting forms-multiply in the nutritious sap and ferment it. The pheno menon is, in fact, very like that of the fermentation of palm wine and pulque, where the juices are obtained from artificial cuts.

Comparable with these cascs is that of Cuckoo-spil, due to the juices sucked out by Aphrophthora on herbaceovs plonts of all kinds. Outflows of resin-Resinosis-also come under this general heading; but although some resin-fluxes are inced to the destructive action of Agaricus mellews in Conifers, others, as well as certain forms of Cummosis, are still in need of explanation.

Bacieriosis.-Many of the plant discases involving rot have been ascribed to the action of bacteria, and in some cases-e.e. cabbage rot, bulb-rot of hyacinths, \&c, carnation disease-there is evidence that bacteria are causally connected with the discose. It is not sufficient to find bacteria in the rotting tissucs, however, nor even to be successful in in lecting the plant through an artificial wound, unless very special and rritical precautions are taken, and in many of the alieged cascs of bacteriosis the saprophytic bacteria ia the tissues are to le regarded as mercly secondary agents
6. Necrosis.-A number of discases the obvious myptoms of which are the local drying up and death of tisulus, in many cancs

With secondary results on organs or pafts of organs, may be brought together under this heading. No sharp line can he drawn betwern these diseases and some of the precedigg, inasmuch as it of con depends on the external conditions whether necrosis is a dry-rot, in the sense I employ the term here, or a wet-rot, when it would come under the preceding eategory. The " "ying back" of the twigs of trees and shrubs is a frequent case. The cortical tissues gradually shrink and dry up, turning brown and black in patches or all over, and when at lingth the cambiuta and medullary ray tissues dry up the whole ewig dies off. This may be due to frost, especially in "thin-barked" trees, and often occurs in beeches, pears, \&c,; or it may result from bruising by wind, hailstones, gun-shot wounds in coverts, \&e., the latter of course very local. It is the common result of fires passing along too rapidly to burn the trees; and " thin-barked " trees-hombeain, beech, firs, \&c-may exhibit it as the results of sunburn, especially when exposed to the south-wrest after the removal of shelter. The effects of frost and of sunburn are frequently quite local. The usual necrosis of the injured cortex occurs-drying up, shrivelling, and consequent stretching and cracking of the dead cortex on the wood beneath. Such frost-cracks, sun-cracks, \&c., may then be slowly healed over by callus, but if the conditions for necrosls recur the crack may be again opencd, of if Fungi, \&c., interfere with occlusion, the healing is prevented; in such cases the local necrosis may give rise to cankers. The dying back of twigs may be brought about by many causes. Creneral attacks of leaf-discases invariably lead to starvation and necrosis of twigs, and similarly with the ravnges of caterpillars and other insccts. Drought and consequent defoliation result in the same, and these considerations help us to underatand how old-established trees in parks, \&c., apparentiy in good general health, become "stag-lieaded" by the necrosis of their upper twigs and smaller branches: the roots have here penetrated into absoil or other unsuitable medium, or some drainage scheme has deprived them of water, \&c., and a dry summer just turns the scale. Such phenomena are not uncommon in towns. where trees with their roots under pavement or other impervious covering do well for a time, but suddenly lail to supply the ciown aufficiently with water during some hot summer.
7. AOnslrosities. - A large class of cases of departure from the mommal form, depending on different and often-obscure causes, may be grouped together under this heading; most of them are of the lind termed Teratological, and it is dificult to docide how far they should be regarded as pathological if we insist that a disense threatens the existence of the plant, since many of these mallorma. tions-c.g. double flowers, phyllody of foral parts, contortions and fascinations, dwarfing, malformed leaves, \&c,-can not only be tranemitted in cultivation, but occur in nature without evident injury to the variety. In many cases, however, monstrositics of flowers have been shown to be due to the irritating action of minute insects or Fungi, and others are known which, nlthough induced by causes unknown to us, and regarded as internal, would not be likely to survive in the wild condition. This subject brings the donain of pathology, however, into touch with that of varietion, and we arc profoundly ignorant at to the complex of extcrinal conticions which would decide in any given case how far a variation in form would be prejudicial or otherwise to the continued existence of a specics. Under the head of malformations we place cascs of atrophy of parts or general dwarfing, duc to starvation, the attacks of Fungi or minute insects, the presence of unsuitable food-materials and so on; as well as cases of transformation of stamens into petals. carpels into leaves, and so forth. Roots are often flattened, twisted and otherwise distorted by mechanical obstacies; stems by excess of food in rich soils, the attacks of minute parasites. overgrowth by climbing plants, \&c. Leaves are especinliy apt to vary, and although the lormation of crests, pitchers, puckers, \&c., niust be put down to the results of abnormal development, it is often difficult to draw the line between teratological and mercly varietal phenomena. For instance, the difference between the long-stalked aod finely-cut leaves of A nemone attacked with rust and the normal leaves with broad segments, or betwoen the urceolate leaves oc. casionally found on cabbages and the ordinary form-in these cases undoubtedly pathological and teratological respectively-is nothing like to great as between the upper and lower normal. leaves of many Umbelliferac or the submerged and floating leaves of an aquatic Ranunculus or Cabomba. When we come to phenonicna such as proliferations, vivipury, the development of "Lammas shoots." adventitious buds, epicormic branches, and to those malformations of flowers known as peloria, phyllody, virescence, \&c. while assured that definite, and in many cases recognizable, physiological disturbances are at work, we find oursclves on the borderland between pathological and physiological variation, where each case must be exsmined with due regard to all the circumstances, and no gereralization seems possible beyond what has been sketched. This is equally true of the phenomena of apogamy and apospory in the light of recent rebearches into the effects of external conditions on reproduction.

This sketch of an enormous subject shows us that the pathology of plants is a special department of the study of variations which threaten injury to the plant, and passes imperccptibly into the
study of variations in general. Moreover, we have good reasons for inferring that different constcllations of external causes may determine whether the internal physiological disturbances induced by a given agent shall lead to pathological and dangerous variations, or to changes which may be harmless or even advantagcous to the plant concerned.
Authorities.-General and Historical,-Berkeley, "Vegetahle Pathology," Gardener's Chronicle (1854) p. 4 : Plownight, British Uredineae and Ustilagineae (1889); Eriksson and Henning. Die Getreideroste (Stockholm, 1896); De Bary, Compuratipe Morph. and Biod. of the Fungi, ' ${ }^{\text {che. (1887); Frank, Dic Krankheiten der }}$ Pfaneen (1895-1896); Soraucr, Handbuch der Pflansenkrankkeiten (1906): Ward, Disease in Plants (1901). Causes of Disease, \&c.Pleffer, Physialogy of Plants (Oxford, 1900); Soraucr. Trealise on the Physiology of Plants (1895); Bailey. The Principles of Agricullupe (1898); Lafarp Technical Mycology (1898); Hartig, Diseases of Trees (1894); Marshall Ward, Proc. Roy. Soc. (1890) xlvii. 394; and Timber and some of its Diseases (London, 1889). Fungi.See Fungi and Bactenia; also Marshall Ward, Discases of Plants (Romance of Science Scries), S.P.C.K.; Matsce, Text-Booh of Plant Diseases (1899); Tubeuf, Diseases of Plands (London, 1897); Insect s.-Ormerod, Manual of Injurious Insects (1890); C. V. Riley, Inscal Life, U.S. Department of Agriculture (1888-1895) ; Judeich and Mitsche, Lehrbuch der mittelewropdischen Forstinseklenkunde (Vienna, 1889). Healing of Wounds, \&c.-Shattock, "On the Reparatory Processes which occur in Vegetable. Tissucs," Journt. Lienn. Soc. (1882) xix. 1; Richards, "The Respiration of Wounded Plants," Ank of Bof. (t896), x.531; and "The Evilution of Heat by Wounded Plants," AnM. of Bot. (1897), xi. 29. Enzvmes.-Green. The Soluble Ferments and Fermentation (1899). Chemotaxis, \&c. -Miyoshi. "Die Durchbohrang von Membranen durch Pilzfaden," Pringsh. Jahrb., 8. (1895), xxvili. 269, and literature, Parasinism, \&e.Marshall Ward, "On some Relations between Host and Parasite; \&e."" Proc. Roy. Soc. xlvii. 393; and "Symbiosis," Ann. of Bot. (1899), xiii. 549 , with literaturc. Specialization of ParasicismSalmon, in Massce's Tex-Book of Fuwgi (1906), pp. 146-157. Statistice.-See Wyatt, Agriculhural Ledger (Calcutta, 18.15), p. 71 ; Balfour, The Agricultural Pests of India (1887), p. 13: Eriksson and Henning, Die Getreideroste; the publications of the U.S. Agricultural' Department; the Kew Bullctin; Zeilschriff für Pfaneenkrankheitn, and elcewhere. Spraying, \&c.--Se Lodernall, The Spraying of Plants (1806), and nuntrous references in the publications of U.S. Agricultural Dcpartment, Zeilschr. f. Pflangenkrankheiter, the Gardener's Chronicle, \&c. Etiolation, \&c,-Pfeffer. Physiology of Plants, and other works on physiology. Albinisn, \&xc. Chemurch, "A Cbemical Study of Vegetable Albinism." Jowrm. Chem. Soc. (1879, 1880 and 1886): Bcijerinck. "Weber ein Contagium." \&c., in Verhand. d. kön. Acad. F. Wet. (Amsterdam, 1898); Koning in Zeilschr. f. Pflamenkraxkh. (1899), ix. 65; Baur. Ber. dextschen bot. Ges. (1904), xxii. 453; Sivexngsber. berlin. Akad. (Jan. 6, 1906); Hunger, Zcilschr. f. Pfanmenkrankheiter (1905) xv. Heft 5 . Wounds, \&c.-Marshall Ward, Timber and some of its Diseases, p. 210 ; Hartig, Diseases of Trees (London, 1804) Cecidia and Galis.-Kuster, "Beitrage zur Kenntniss der Gallenamitomic," Flora (1900), p. 117; Patkologische Pftansencmatomif (1903): Molliard, Revwe fénérale de bot. (1900). p. 157. Canker.Frank, Krankheiken der Pfanzen, and papers in Zeilkhr. f. Pilanzenkrankh. Rotting, \&c.-Migula, Krit. Uebersicht derjenigen Pfanzenhrankheiten, welche angeblich durch Bakterien perursacht werden (1892); Smith. "Pseudomonas campestris," Cent. f. Bakt. B. iii. 284 (1807); Arthur and Bolley, Bactarios is of Carmations, Purdue Univ. Agr. Station (1806), vii. 17; A. F. Woods, "Stigmonose, a Discasc of Carnations,' Vegctable, Physiol. and Pathol. Bull. IV U.S. Department of Agriculture (igno); Sorauer, Handbuch der Pianzenkrankheilen (1905), 18-93. Frost, Droaght, \&c.-Hartig. Lekrouch dep Anal. und Phys. der Pflanzen : Fischer. Foresi Prolection, iv. of Schlich's Manwal of Forestry. Tcratology, \&c.-Masters, Vegetable Teratology, Ray Society (1869); Molliard. "Cecidies florales," Ans. Sci. Nat. sér. 8, i. (bot.) p. 67 (i895). (H. M. W.)

Ecolocy of Plants

Introduction.-The word ecology is derived from ofkos, a house (habitat), and λ bros, a discourse. As a botanical term, ecology denoles that branch of botany which comprises the study of the relations of the individual plant, or the species, or the plant community with the habitat. Following Schröler ${ }^{2}$ (Flahault and Schröter, 1910:24), the Icrm oulccology may be used for the study of the habitat conditions in relation to the single species, and the term synecology for this study in relation to plant communities.

From the phytogeographical standpoint, ecology is frequently termed ccological plant gcography. Thus Warming ${ }^{2}$ (1901: i and z)
: Flahault and Schrōter, Phylogeographical Nomenclature: reports and gropositions (Zurich, 1910).

Warming, Occology of Plan/s (Oxford, 1909).
subdivided plant geography into floristic plant geography and ecological plant geography. The former is concerned with the division of the carth's surface into major districts characterized by particular plants or taxonomic groups of plants, with the subdivision of these floristic districts, and with the geographical distribution (both past and present) of the various tayonomic units, such as species, genera, and families. On the other hand, ecological plant geography sceks to ascertain the distribution of plant communities, such as associations and formations, and enquires into the nature of the factors of the habitat which are related to the distribution of plants-plant forms, species, and communities. In a gencral way, floristic plant geography is concemed with specics, ecological plant geography with vegetation. The study of the distribution of species dates back to the time of the carly systematists, the atudy of vegetation to the time of the early botanical travellers. Humboldt,' for exampie, defined his view of the scope of plant geography as follows: " C'est cette acience qui considère les vegetaux sous les rapports de leur association locale dans les diférents climats" (1807: 14).

The Habilat-The term habilat, in its widest sense, includes all the factors of the environment which affect a plant or a plant community, though the term is frequently used to signify only some of these factors. The factors of the habitat may be grouped as follows: geographical, physical, and biological.

Csographical Factors.-Geographical position determines the particular species of plants which grow in any particular locality. This matter is bound up with the centres of origin and with the past migrations of specics; and such questions are ususlly treated as a part of floristic plant geography. Here, therefore, floristics and ecology meet. Flahault and Schroter;' in defining the term habitat. appear to exclude all geographical lactors. They state that "the term habitat is understood to include everythlng relating to the factors operative in a geographically defined locality, so far as these factors influence plants ' (1910: 24); but the exclusion of geographical and historical factors lrom the concept of the hahitat does not appear to be either desirable or logical.
Physical Factars.-These are frequently classified as edaphic or soil factors and climatic factors; but there is no sharp line of demarcation between them. Edaphic factors include all those relating to the soil. The water content of the soil, its mincral content, its humus content, its temperature, and its physical characteristics, such as its depth and the wize of its component particles are all edaphic faetors. Climatic factors include ali those relating to atmospheric temperature, rainfall, atmospherie humidity, and light and shade. Factors connected with altitude, aspect, and exponure to winds are also climatic: such are often spoken of as physiographical factors. The difficulty of sharply delimiting edaphic and climatic factors is seen in the case of temperature. Soil temperature is partly dependent on the direct rays of the sun. partly on the colour and constitution of the soil, and partly on the water content of the soil. Again, the temperature of the air is afferted by radiation from the soil; and radiation differs in various coils.
Biological Factors.-These include the reactions of plants and animals on the habitat. Here again. no aharp boundary-line can be draven. In one sense, the accuniulation of humus and peat is a hiological factor, as it is related to the work of organisms in the soil; but the occurrence or otherwise of these organiams in the soil is probably related to definite edaphic and climatic conditions. Again, the well-known action of earthworms may be said to be a biological work; but the resulting acration of the soil causes edaphic differences; and earthworms are absent from certain soils, such as peat. The pollination of flowers and the dispersal of seeds by various animals are biological lactors; but poliination and dispersal hy the wind cannot be so regarded. The influence of man on plants and vegetation is elso a biological factor, which is frequently ignored as such, and treated as if it were a thing apart.

When the nature and effect of ecological factors have become more fully understood, it will be possible to dispense with the above artificial classification of factors, and to frame one depending on the action of the various factors; hut such a classitication is not powsible in the present state of knowledge.

Ecolagy and Physiology. - Whilst our knowledge of the nature and effect of habilat is still in a very rudimentary condition, much progress has been made in recent years in the study of plant communities; but even here the questions involved in relating the facts of the distribution of plant communities to the
${ }^{1}$ Humboldt and Bnnoland, Essai sur la glographic des plantes (Paria, 180).
Flahaut and Schroter (op. cil.).
factors of the habitat are very imperfectly understood. This is due to a lack of precise knowledge of the various habitat factors and also of the responses made by plants to these factors. Until much more advance has been made by ecologists in the investigation of the nature of hahitat factors, and unuil the effect of the factors on the plants has been more closely investigated by physiologists, it will remain impossible to place ecology on a physiological basis: all thnt is possible at present is to give a physiological bins to certain aspects of ecological research. Obviously no more than this is possible until physiologists are able to state much more precisely than at present what is the influence of common salt on the plants of salt-marshes, of the action of calcium carbonate on plants of calcareous soils, and of the action of humous compounds on plants of tens and peat moors.
Ecological Classes.-Many attempts have been made to divide plants and plant communities into classes depending on habitat factors. One of the best known classifications on these lines is that by Warming. Warming recognized and defined four ecological classes as follows:-
Hydrophytes.-These live in a watery or wet subatratum, with at lcast 80% of water. Warming includad plants of peat-bogs among his hydrophytes.
Xeropkyles.-These are plants which live in very dry places, where the suhatratum has less than 10% of water.
Holophytes.-These are plants living in situations where the substratum contains a high proportion of sodium chloride.
Mesophytes.-These are plants which live in localities which are neither apecially dry nor apecially wet nor specially salty.
Such terms as hydrophytes, xerophytes, and halophytes had been used by plant geographers before Warming's time e.g., by Schouw; ${ }^{4}$ and the terms evidently supply a want felt by bot anists as they have come into general use. However, the terms are incapable of exact definition, and are only useful when used in a very general way. The above classification by Warming, although it was without doubt the best ecological classification which had, at the time, been put forward, has not escaped criticism. The criticisms were directed chicfly to the inclusion of sand dune plants among halophytes, to the exclusion of halophytes from xerophytes, to the inclusion of "bog xerophytes" among hydrophytes, to the inclusion of all coniters among xerophytes and of ali deciduous trees among mesophytes, and to the group of mesophytes in general.
Schimper ${ }^{5}$ made a distinct advance when he distinguished bet ween physical and physiologicai dryness or wetness of the soil. A soil may be physically wet; but if the plants absorb the water only with difficulty, as in a salt marsh, then the soil is, as regards plants, physiologicaliy dry. All soits which are physically dry are also physiologically dry; and hence only the physiological dryness or wetness of soils need be considered in ecology.

Schimper used the term rerophyles to include plants which live in soils which are physiologically dry, and the term hygrophytes those which live in soils which are physiologicaily wet or damp. Schimper recognized that the two classes are connected by transitional forms, and that it is useless to attempt to give the matter a statistical hasis. It is oniy in a general sense like Schimper's that such ccological terms as xcrophytes have any value; and it is not possible, at least at prescnt, to frame ecoiogical clases, which ahali have a high acientific value, on a basis of this natureWhilst Schimper objected to the constitution of a special category, such as mesophytes, to include all plants which are neither pronounced zerophytes nor pronounced hygrophytes, he recognized the neceasity of a third class in which to place those

[^61]plants which, like deciduous trees and bulbous plants, are hygrophytes during one season of tbe yeat and zerophytes during another season of the year. Sucb plants, which comprise the great majority of the species of the central European flora, Schimper termed tropophyles.

Recently, Warming ${ }^{1}$ (1909: 136), assisted by Vahl, bas modified his earlier classification, and adopted the following:-
A. The soil (in the widest sense) is very wet, and the abundant water is a vailable to the plant (at least in hydrophytes).

1. Hydrophytes.-These include plants of the plankton, or microphytes that foat free on water, of the pleustom, or macrophytes which float on or are suspended in water, and of the beakhos, or all aquatic plants which are fixed to the sabstratum.
2. Helephytes.-These are marsh plants which nommally have their roots in monking soil hut whose branches and roliage are more or less aerial. Warming admits there is no sharp limit between marsh plants and land plants; and it seems equally obvious that there is no sharp limit between some of his helophytea and some of his hydrophytes. For example. the difference belween aquatic plants with foating lea ven, such as the yellow water-lity (N ymphaea lutea) and thooe with erect leaves, such as Typha angustifotic, is probably more apparent than real. Among helophytes, Warming places planes of the reed swamp, and includes such trees as the alder (Alnes rounadifolia), willows (e.\&., Salix alba, S. fragilis, S. cinerec, S. pentandra), birch. and pine, when these grow in marshy placea.

B. The soil is physiologically dry.

3. Oxylophytes.-These plants, sometlmes spoken of as " bog xepophyles.' grow in soik which contain an abundance of free humous compounds, and include plants which grow on fens and moors.
4. Psychrophyles.-There include the plante which grow on the cold soils of subnivest and poler districts.
5. Halophyles.-Theme are plante which grow on saline soils.
C. The soil is physically dry.
6. Lithophyles.- These are plants which grow on "true rock," but not "on the loose soil covering rock, even though this may entertain species that are very intimately asocciated with the rock. Still to this limitation an exception must be made in lavour of the vegetation growing in clefts and niches "(Warming, 1909:240). Many Algae. lichens, and mozes are lncluded among lithophytea, and almo Sexifrest Aisoon, S. opposilifolia, Silcue acaulis, and Gnaphalium lubeo-album.
7. Psemmophytes.-These are planta which grow on and and pravel. Plants of send-dunes, whether in maritime or inland localities, are psammophytes, as well as plants (such as Callwna owigaris) of dune heaths, dune "bushland" or scrub, and dunc forest.
8. Chersophyles.-Here are placed certain " xerophytic perennial herbs "which occur on "particular dry kinds of soil. such as limestone rocks, stiff clay, and so lorth " (Warming, 1909: 289).
D. The climate is very dry, and the properties of the soil are decided by climate.
9. Eremophytes.-Under this term, are placed plants of deserts and steppes.
10. Psilophytes.- Here are placed plants found in "s savannahvegetation, viz. (i.) "thorny savannah-vegetation, including (a) orchard-scrub, (b) thorn-bushland and thom-forest; (ii.) true savannah: tropical and sub-lropical savannah; (iii.) savannah-forest, including bush-lorest in Africa and "campos serrados "in Brazil' (Warming, 1909: 293 et seq.).
11. Sclerophyllows formalions, e.p., garigues, mäquis, and forests of evergreen oaks (Q. Ilex, Q. Balloia, Q. Suber), and of Eucalyptus spp.
E. The soil is physically or physiologically dry.
12. Coniferows forest formafioms, e.g., of Pinus sybuestris, Picee execlsa, Abies pectinata, Larix sibirica, L. decidua.
F. "Soil and climate favour the development of mesophilous formations."
13. Mesophytes.-Warming defines mesophytes as " plants that show a preference for soil and air of moderate humidity, and avoid soil with standing water or containing a great abundance of salts" ($1909: 317$). Under mesophytes, Warming places plants occurring in "Arctic and Alpine, mat-grassland and mat-herbage" " in " matvegelation of the Alps." in meadows, in pasture on cultivated soil, in ". mesophytic bushland," in deciduous dicotyledonous forests, and in evergreen dicotyledonous forests.

This new system of Warming's, wbilst probably too involved ever to tome into general use, must be taken as superseding his older one; ${ }^{2}$ and perhape the best course open to botaniats is to select such terms as appear to be helprul, and to use the sclected terms in a general kind of way and without demanding any precise definitions of them: it must aiso be borne in mind that the

[^62]various cinsses are neither mutually exclusive nor of equivalent rank. From this point of view, the following terms will perhaps be found the most serviceable:-

Hydrophyles (submerged aquatic plants).-Planta whose vegetative organs live wholly in water; e.g., most Algae, many mosses. such as Fonfinalis spp., and liverworts, such as Jungermanmia spp.; a Iew. Pteridophytes, such as Pindarie spp., /soilks spp.. several flowering plants, much as Palamogelon pectinalms. Ceralophyllwiw spp, Houlonia palmstris, Utricularia mpp. Littorella lacustris.
Hewi-hydrophyles (awamp plants, marsh plants, \&c.).-Plants whoee vegetative organs are partly submerged and partly aerial; Vaucheria Lerrestrit, Philomatis fonlama, Scapania wndulala, Mar-
 angustifoitia, Pkragmiles commwnis, Scirpus lecustris, Nymphaca lulea, Oenanthe fistulose, Bidens cernue.

Hygrophyles.-Plants which are sub-evergreen or evergreen but not sclerophyilous, and which tive in mopre moils: e.p.0 Lastraes Filix-mas, Poa pralensis, Carex evalis, Plantago lanceolata, and Achilloea Yillefodium.
Xerophytes.-Plants which grow it very dry soils; e.s., most lichens, Ammophila (Psamma) arenaria, Elymms arenarius, Ansbasis arelioides, Zilla macroplera, Sedum acra, Bupleurum sprmosum, Artemisia herba-alba, Zollitoffara arborescems.
Malophyles.-Plants which grow in very saline soils; esf., Trighochin mariimimm, Salicornia spp., Zygophylum cornulum, Aster Tripolimm, Artemisia marilima. It ahould be recognized. however, that "'a halophyte, in lact, is coe form of xerophyte" (Warming. 1909: 219).
Sclerophyllous Plants.-Theze are plants with evergreen icathery leaves, and typical of tropical, sub-tropical, and warm temperate regiont; e.f., Ouerces Suber, Ihex Aquifotium, Hedera Helix. Emcolyp tus Globulse, Rosmerimus officinalif. Selecophyllous leaves ave usually characterized by entire or sub-entire margins, a thick cuticie, small but rarely sunken stomata, a well-developed and close-set palisade tissue and a leeble system of air-spaces.
Hydro-serophytes (" bog xerophytes "). -Plants which live in wet, peaty soils, and which poness acratlon channels and xerophilous heaven; e.g.; Cladity Mariscas, Eiriophorym angustyfoliam, Rubus Chamacimorus, and Vaccininm Viis.Idaca. The term" oxylophyte " is open to the objection that some peaty waters are alkaline. and not actdic as the term implies. Many plants of peaty woils are aclerophyllous.
Tropophyes.-Plants which are hygrophytes during some favourable part of the year and xerophytea during the reat of the year: e.f.- deciduous trees and shrubs, deciduous herbaceous plants with underground perennating organs, and annuals and ephemerais.

Plant Communities.-The study of plant communities (Formationslekre or synecology) has made much progress in recent years. Even here, however, general agreement has not been reached; and the questions involved in relating the facts of the distribution of plant communities to the factors of the habitat are very imperfectly understood. Plant communities may be classified as follows:-

A plant assaciation is a community of definite floristic composition: it may be characterized by a single dominant species; or, on the other hand, it may be characterized by a number of prominent species, one of which is abundant here, another there, whilst elsewhere two or more species may share dominance. The former are pure associations, and are weil illustrated by a heather moor, where Calluna vulgaris is the dominant plant. The latter are mixed associations, such as fens, where diflerent facies are produced by the varying abundance of characteristic plants, such as Cladium Mariscus, Phragmitcs communis, Molinia coerulca, Calamagrostis lanceolala, and Jincus oblusiforys. Tbe different facies are possibiy reiated to slight differences in a generally uniform habitat: it is unscientife to regard them as due to chance; stili, in the majority of cases, the causes of tbe different facies have not been demonstrated. A iocal aggregation of a species other than the dominant one in an association brings about a plant socitty; for example, societies of Erica Tetralix, of Scirpus caespilosus, of Molinia coeruled, of Carex curla, of Narthccium assifragum, and others may occur within an association of Calluna vulgoris. The piant societies are also doubtless due to slight variations of the habitat.

The plant association is sometimes referred to in technical language, the termination efum is added to the stem of the generic name, and the specific name is put in the genitive. Tbus
"See Moss, " The Fundamental Units of Vegetation: historical development of the concepts of the plant association and the plant tormation." Bolany School (Cambridge, t9io).
an association of Quercus sessilifora may be referred to as a Quercetum sessiliforac.

A plant formation is a group of associations occupying habitals which are in essentials identical with each other. Thus, associations of Agropyrum (Triticum) junceum, of Carex arcnaria, of Ammophile (Psamma) arenaria, and of other plants occur on sand dunes: the associations are related by the general identity of the habilat conditions, namely, the physiological dryness and the loose soil; hut they are separated by differences in floristic composition, especially hy different dominant species, and by minor differences of the common habitat. The whole et of aseociations on the sand dunes constitutes a plant formation.

The plant formation may be designated in technical language by tbe termination -ion added to a stem denoting the habitat. Thus, a sand dune formation may be termed an Arenarion. The associational term, in the genitive, may be added to the formational term to indicate the relationship of the formation and the association; tbus, 2 plant ascociation of Ammophila arenaria belonging to the plant formation of the sand dunes may be designated an Arenarion Ammophilae-arenariae (cf, Moss, op, cil. 1910: 43).
The question of universal names for vegetation units is bound up with that of the universality or otherwise of particular formations. "Remote regions which are floristically distinct may possess areas pbysically almost identical and yet be covered by different formations" (Clements, ${ }^{1}$ 1905: 203). For example, the sand dunes of North America and those of western Europe are widely separated in geographical position and therefore in floristic composition, yet they are related by common physical factors. This relationship may be indicated by the addition of some prefix to the formational name. For example, an Arenarion in one climatic or geographical region might be termed an a-Arenarion and one in a different region a β-Arenarion, and so on (Moss, loc. cil.).

It is, however, frequently desirable to conslder such allied formations as a single group. Such a group of formations may be designated a plant federation: and this term may be defined as a group of formations, which are characterized by common edaphic factors of the habitat, and which occur in any geographical region. Thus, different geographical or climatic regions are characterized by salt marshes. The latter all agree in their edaphic characteristics; but they differ climatically and in foristic composition. The salt marshes of a given region conslitute a single plant formation: the salt marsb formations of the whole world constitute a plant federation.

Again, it is possible to atrange plant associations into groups related by a common plant form. Thus woodland associations may be classified as deciduous torests, coniferous forests, sclerophylious forests, \&c. These, in a general way, are the "formations " of Warming, ${ }^{2}$ and (in part) the "climatic formations" of Schimper.' Thus the various reed-swamps of the whole world constitute a "formation "in Warming's sense (rgos: 187).

There is much difference of opinion among ecologists and plant geographers as to which of these points of view is the most fundamental. Among British authorities, it is now customary to adopt the position of Ciemenls, who states (1909:292) that " the connexion between formation and habitat is so close that any application of the term to a division greater or smaller than the habitat is both illogical and unfortunate," and that (1905:18)" habitats are inseparable from the formations which they bear " (cl. Moss, 29:0).

From the standpoint of plant communities, it is convenient to divide the earth's surface into (1) tropical districts; " (2) sub. ${ }^{1}$ F. E. Clements, Research Methods in Eeology (1905), Lincoln, Neb., U.S.A.
${ }^{3}$ Warming (1909, op. cit.). ${ }^{\text {S }}$ Schimper (1898. op, cil.).

- The nomenclature of the terms (floristic as well as ecological) used in geographical botany is in a very confused state. In the present article, the term "district" is used in a general sense to indicate any definite portion of the earth's surface. For a ditcussion of such phytogeographical terms, see Flahault, "Prenier esaai de nomenclature phytogégraphique," in Buh. Soc. languedocionme de Gfogr. (1901); and also in Bull. Torr. Bol. Club (190t).
tropical and warm temperate districts; (3) temperate districts; (4) cold temperate and Irigid districts.
f. Tropical Districts.-The vegetation of tropical districts hes been mubdivided by Schimper (1903:260, et seq.) at lollows:(i.) Tropical woodland: (a) rain lorest, (b) monsoon forest, (c) usvana forest, (d) thorn forest. (ii.) Tropical grasoland: (a) savana, (b) stcppe. (iii.) Tropical desert: (a) scrub, (b) succulent plants, (c) perennial herbs.
Schimper regards the minor divisions as groups of "elimatic formationa "; and he also distinguishes certain tropical "edaphic formations." such as mangrove swampe. He sates that rain forests and high monsoon lorests in the tropics occur when the average rainfall is over 70 in . (178 cm .) per annum, and that tropical thorn forest may prevail when the mean annual rainfall is below 35 in.
A tropical rain forest exhibits great varicty both of species of plant and of plant forms. There is greal diversity in the irees and masses of langted lianes, and a wealith of flowers in the lealy forest crown. Humboldt ${ }^{\text {b }}$ points out that whilst temperate forests finequently furnish pure associations, such uniformizy. of association is usually absent from the tropics. Some tropical forests exhibit dense foliage from the forest floor to the topmost loaly layer; and the traveller finds the mass of foliage almost impenctrable. Other trupical forcsts aflord a Iree passage and a clear outlook. It is obvious that tropical forests will eventually be subdivided into plant associaltons; but the difficulties of deter. mining the relative abundance of the species of plants in the upper layers of tropical rain and monsoon foresia are very great. One of the best known results of the great struggle for light which takes place In tropical forests is the number of epiphytic plants which grow on the high branches of the trees.
The leaves of the trees are frequently of leathery consiatency. very glossy, usually evergeren, entire or nearly so, and seldom hairy: and thus they agree closely with the leaves of sclerophyllous forest generally.
Monsoon forests are characteristic of localities with a seasonal rainfall. The trees usually lose their foliage during the dry scasoa and renew it during the monsoon rains. With a less abundant rainfall, savana forest and thorn forest occur. Less precipitation induces tropical grassland, which according to Schimper (1903: $3+6$) is of the savana type; but Warming (1909: 327) thinks that all grassland in the tropios is artificial. Still greater drousbi induces desert vegetation; but, an deserts are more characteristic of subtropical districis, they are discussed later on.
Mangrove soomps, or tropical tidal lorests, occur in maline or brackish swamps on flat, muddy shores in the tropics; and, being almost independent of atmospheric precipitations, Schimper regards them as "edaphic formations." However, tbey are climatic communities in the sense that they occur only In hot districts Cases such as this illustrate the difficulty of regarding the dis. tinction between "climatic formations" and "edaphic formations" as absolute. The plants exhibit markedly xerophilous structures; and many of the fruits and sceds of the mangrove irees and shrubs are provided with devices to cnable them to float and with curious pncumatophores or "prop roots.". The latter serve as supports and also as a means of supplying air to the parts buried in the mud. The scedlings of characteristic species of Rhizophoraceae germinate on the irecs, and probably perform some assimilatory work by means of the typocotyl.
Other tropical " edaphic formations" occur on eandy shores, where the creeping Jpomoea biloba (Pes-capprae) and trees α Barringlonia form characteristic plant aseociations.

The succession of associations on new soils of a tropical shore has recently been described by Ernat. ${ }^{6}$
2. Warm Temperate and Sublropical Districts.-In subtropical and warm temperale districts, characterized by mild and raiay winters and hot and dry summers, we find two types of foresss First, there are forests of evergreen trees, winh thick, leaibery leaves. Such forests are known as sclerophyllous foreats, and they occur in the Mediterranean region, in south-west Alrica, in mouth and south-west Australia, in central Chile, and in western Califorais. In the Mediterranean district, forests of this type are sometimes dominated by the Cork Oak (Quercus Suber) sometimes by the Holm Oak (Q. Ikx). When these forests become degenerate. máquis and garigues respectively are produced. Maquis and garigues are characterized by the abundance of shrubs and undershrubs, especially by shirubby Lequminous planis, and by species Cisius and Lavandula. Secondly, there are foreats of conilerous trees. In the Mediterranean region. even at comparatively low altitudes, foresta occur of the maritime pine (Pinus maritima) and of the Aleppo pine (P. halepersis) : and these forests are also related to maquis and garigues respectively in the same way as the evergreen oaks. The occurrence of lorests of thim sype in the Mediterranean and in Arctic regions, whose domina nt apecies belong to the same genus (Pinus) and to the same plant form, renders it "Humboidt, Eng. tram. by Sabine, Aspects of Nature (Londor 1849).

Eng. trans. by Seward. The New Flora of the Volcemic Islead of Krakalaw (Cambridge, tgos).
difficult to regard "coniferous forests" as a natural ecological group. At much higher altitudes, in the south-west of the Mediterranean region, forests occur of the Atlantic cedar (Cedrus allantica). These occur from about 4000 ft . (1219 m .) to about 7000 ft . $(2133 \mathrm{~m}$.) on the Atlas Mountaine. Some selerophyllous forests of the eattern Atlas Mountains are, owing to a comparatively high rainfall, characterized by many deciduous trees, such as Fraxinus oxyphylla, Ulmus campestris (auct. alg.), Alnw rotundifolia, Salia pedicellata, Prunus ayium, \&c.; and thus they have some elements in common with the deciduous forests of central Europe.
The fortats of these subtropical and warm temperate regions are situated near the eea or in mountainous regions, and (as already atated) are characterized by winter rains In inland localitied, where the rainfall is much lower, steppes occur. For example, in southern Algeria, a region of steppes is aituated on a flat plateau, about 3000 [t. (914 metres) high, between the southern slopes of the Tell Atlas and the northern slopes of the Sabaran Atlas. The rainfall, which occurs chiefly in winter, only averages about 10 in. (254 mm .) per annum. Here we find open plant associationts of Halla or Esparto Grass (Stipa tenacissime) alternating with steppes of Chih (Artemisic herbe-alba); and each plant association extends for several scores of miles. In the hollows oi this steppe region, salt water lakes occur, known as Chotts; and on the saline soils surtrounding the Chotes, a salt marsh formation occurs, with specien of Salicornia, come of which are undershrubs.
Where the rainfall is still hower, deserls occur. At Ghardaia. in south-eastern Algeria, the mean annual rainfall, from 1887 to 1892, was about 4 i in . (114 mm .). In 1800 , it fell as low as 2 in . (53 mm) (Schimper, 1903:606). At Beni Ounil and Colomb Bechar. in south-western Algeria, I was informed, in March 1910, that there had been no rain lor about three years. Here the grawelly desert is characterized by ""cushion plants," such as Anabasis areliotdes; by "switch plants," such as Retama Relam: and specially by spiny plants, such as Zisyphus Lotus and Zilla macropteris: whereas succulent plants are rare. Both in the steppe and in the desert, small ephemeral species occur on the bare ground away from the large plants and especially in the wadis, Steppe and desert formations are of the open type.
3. Temperale Disiricis.-Temperate disiricts are characterized by forests of deciduous trees and of coniferous trees, the latter being of different species from those of the warm temperate districts, but frequently of the same plant form. The identity of plant form of many of the conifers of both temperate and of warm temperate districts is probably a matter of phylogenetic and not of ecological importance.
Britain is fairly typical of the west European district. In these islands, we find forests ${ }^{1}$ or woods of oak (O uercus Robur and Q. sessilifiora). of birch (Betula tomentosa), of ash (Fraxinus excelsior), and of beech (Fagus sytvotica). In central Scotland, forests occur of Pinus syberstis; and, in south eastern England extensive plantations and self-sown woods occur of the same species.
Just as in the Mediterranean region, the degeneration of forests has given rise to maquis and garigues, so in western Europe, the degeneration of forests has brought about different types of grassland, hear hs, and moors.
4. Cold Temperale and Frigid Districts.- In the coldest portion of the north temperate zone, forests of dwarfed trees occur, and these occasionally spread into the Arctic region itself (Schimper, 1904: 685). Schimper distinguishes moss iundra, Polytrichum tundra, and lichen tundra; and the lichen tundra is subdivided into Cladonia Iundra, Platysma lundra, and Alectoria heath. Where the climate is most rigorous, rock tundra occurs (p. 685).

The types of vegetation (tropical forests, sclerophyllous forest. temperate forests, tundra, \&c.) thus briefly outlined are groups of Schimper's "climatic formations." Sucb groups are interesting in that they are vegctation units whose physiognomy is, in a broad sense, related more to climatic than to edaphic conditions. For example, Schimper, after describing the sclerophyllous woodland of the Mediterranean district and of the Cape district, says: "The scrub of West and South Australia in its ecological aspect rescmbles so completely the other sclerophyllous formations that a description of it must seem a repetition." This resemblance, however, only has reference to the gencral aspect or physiognomy of the vegetation and to the plant forms: the floristic composition of the various sclerophyllous-and other physiognomically allicd-associations in the various geographical districts is very different; and indeed it is true that, just as the general physiognomy of plant associations is related to climate, so their floristic composition is related to geographical position. Hence, in any cosmopolitan treatment of vegetation, it is necessary to consider the groups of plant communities from the standpoint of the climatic or geographical district in which they orcur; and this

[^63] School (Cambridge, 1910).

Indeed is consiatently done by Schimper. Finally, withln any district of constant or fairly constant ciimatic conditions, it is possible to distinguish plant communities which are related chiefly to edaphic or soil conditions; and the vegetation units of these definite edaphlc areas are the plant formations of some writers, and, in part, the "edaphic formations" of Schimper.
When a district like England is divided into edaphic areas, a general classification such as the following may be obtained:-
I. Physically and physiologisally woet habitats, with the accompenying plant communities of lakes, reed suemps, and marthes.
2. Physically wet bat phystologically dry habitats: with the accompanying plant communities of fens, moors, and sall manshes.
3. Phyrically and phystologically dry habilats, with the accompanying plant communties of tend dures and sandy heathr with little humus in the soll.
4. Habilats of medium mennest, with the accompanying plant communitics of woodlands and erasslands. This class miny be subdivided as follows:-
a. Habitats poor In mineral salts, especially calcium carbenate, often rich in acidic humous compounds, and characterlzed by cak and bireh woods, ciliceous pasture, and heaths with much acidic humus in the sandy soll.
b. Habitaty rich in mineral salts, especially calcium carbenate, poor in acidic humous compounds, and characterized by ash woods, beech woods, and calcareous pasture.

Ecalogical Adaplations.-It is now possible to consider the ecological adaptations which the members of plant communties show in a given geographical district such as western Europe, of which Engiand of course forms a part. In the present state of knowledge, however, this can only be done in a very meagre fashion; as the effect of habitat factors on plants is but litule understood as yet cither by physiologists or ecologists.

Hydrophyles and hemi-hydroptyles (aquatic planta).-Of marine hydrophyce, there are, in this country, only the graso-wracks (Zosters marima and Z., nama) among the higher plants. Even these specics are sometimes left etranded by low epring tides, though the mud In which they are rooted remains saturated with mea-water. Although many plants typical of freak water are able 10 grow also in brackish water, there are only a few apecies which appear to bo quite confined to the latter habitats in this country. Such epecies perhaps include Ruppia mayihma, R. spiralis, Zanmichdtia maritima, Z. polycerpa, Potamogelon intaryptus (- P. flabellatus), and Naias marina.

In freshwater lakes and ponds, especially if the water is stagnant, aquatic plants are abundant. Aquatic vegetation may be conveniently classified as follows:-
Aquatic plants with submerged leaves: Chara spp., Naias spp., Polamogeton pectinatus, Caratophyllun spp. Myriophyllum spp., Hollonic palustris, Utricularia spp.

Aquatic plants with submerged and floating leaves: Glyccija fuitans, Ranwnculus pellatus, Nymphaca (Nupher) lules, Calltriche stagnalis, Polamogelon polygonifolsws.

Aquatic plants with floating leaves: Lemna spp., Hydrocheris Morsws-ranae, Castulia (Nymphoca) albo.

Aquatic plants with submerged leaves and erect leaves or stems: Sagillaria sogilifolio. Scirpus lacwsiris, Hippuris vulgaris, Sium latifoliwm.
Aquatic plante with erect leaves or stems (reed swamp plants): Equisetum palustre, Phragmiles commsmas, Glyccria equalica, Carex riparia, Iris Pseudacorus, Rumex /Iydrolapalhwm, Oemamhe fishulosa. Bidens spp.

Marsh plants: Alogecurus geniculatus, Carex disticho, Juncys spe., Callhe palustris, Nasturlism polustre.

In many equatic plants, the endosperm of the seed is absent or very scanty. The root-system is usually small. Root-hairs are frequenty missing. The submerged stems are slender or hollow. Strengthening tissue of all kinds (and sometimes even the phloem) is more or less rudimentary. The stems are frequently characterized by acration channels, which connect the acrial parts with the parts which are buried in practically airless mud or silt. Submerged leaves are usually filamentous or narrowly ribbonshaped, thus exposing a large amount of surface to the water, some of the diseolved gases of which they must absorb, and into which they must also excrete certain gascs. Stomata are often absent, absorption and excretion of gases in solution being carricd on through the epidermal layer. Chleroplastids are frequently present in the epidermal cells, as in some shade plants. Very few aquatic plants are pollinated under water, but this is welfknown to occur in species of Zostera and of Naies. In auch plants, the pollen grains are sometimes filiform and not spherical in shape. In the case of aquatic plants with acrial flowers, the latter obey

[^64]the ordinary lams of pollination. Heterophylly is rather common among aquatic plants, and is weli seen in several aquatic species of Ranunculus, many species of Polamogelon, Sagitlaria sagittifolia, Scipus lacustris, Caslalia (Nymphoea) alba, Hippwris vulseris, Callatriche spp., Sium latifolimm.

Insectivorous species occur among aquatic plants; e.g. Ulricularia spp., which are locally abundant in peaty waters, are insectivorous.

Xerophyles.-These plants have devices (a) for procuring water, (b) or for storing water, (c) or for limiting transpiration; and these adaptations are obviously related to the phymically or phyaiologically dry habitats in which the plants live. Plants of physically dry habitats, such as deserte and sand dunes, have frequently long tap-roots which doubtless, in some cases, reach down to a subterranean water supply. The same plants have sometimes a superficial root system in addition. and are thus able to usilize immediately the water from rain showers and perhaps also from dew, as Volkens' maintains. Root-hairs give an enlarged superficial area to the roots of plants, and thus are related to the procuring of water.
The stems of some xerophytes, e.g. Cactaceous and Craspulaceous plants, may be succulent. is. they have tissues in which water is stored. Some deserts, tike those of Central America, are specially characterized by succulents; in oxher deserts, such as the Sahara, succulents are not a prominent feature. Other xerophytes again are spinous. "Switch plants." such as Retama Relom and broom (Cytisus scoparius), have reduced leaves and some assimilating tissue in their stems: and stomata occur in grooves on the stem.

The transpiring surface of zerophytes is frequently reduced. The ordinary leaves may be small, absent. or spinous. In "cushion plants" the leaves are yery small, very close logether, and the low habit is protective against winds. The latter, of course, greatly increase transpiration. A " cushion plant " (Anabasis aretioides) of the north-western Sahara, Irequently shows dead leaves on the exposed side whilst the plant is in full vigour on the sheltered siode. The buds and leaves on the exposed side are probably killed by sand blasts. Many xerophytes are hairy or have sunken stomata which may be further protected by partial plugs of wax: the stomata are frequently in grooves: the leavea are frequenily rolked-sometimes permanently so. whilst sometimes the leaves roll up only during unfavourable weather. These adaptations tend to lessen the amount of transpiration by protecting the atomata from the movements of the air. In species of Encalyptus. the leaves are placed edge-wise to the incident rays of light and heat. The corinceous keaves of "sclerophyllous plants" also, to some extent, are similarly protective. In such leaves, there are a well-marked cuticle, a thick epidermis, a thick hypodermis ar least on the upper wide of the keaf, well-developed palisade tissue, and apoorly developed system of air-spaces. Such adaplations are well seen in the leal of the holly (llex aquifolium). Warming. however, states that "ikex aqwifolimm is undubitably a mesophyte" (1909: 135).

Halophyles, or plants which live in saline soils, have.xerophyric adaptations. A considerable proportion of halophytes are suceulenis, i.e. their leaves and, to some extent, sheir stems have much water-utoring tissue and few intercellular spaces. Some halophytes rend to lose their succulence when culivated in a nonsaline soil: and some non-halophytes tend to become succuient when culcivated in a salty soil; there is, it need searcely be stated, litite or no evidence that such characters are transmitted. British salt marshes furnish few instances of spiny plants, though surh occur occasionally on the intand salt marshes of continental districts. Salsola Kali is British, and a hemi.halophyte at least: and it is rather spiny. Warming states that " the stomata of true, succulent, littoral halophytic herbs, in cases so far investigated, are not sunken" (1909:221). It is possible, however, that the absence of sunken stomata, and the occurrence of some other halophytic features, are related merely to the succulent habit and not to halophytism, for succulent species often occur on non.saline coils. Similarly, she small amount of cuticular and of epidermal protection, and of lignification in succulent halophytes may also be related to the same circumstance. Forms of "stone colls" or "stereids" occur in come of the more suffruticose halophytes. as in Arthrocnewsum \& Lawcum. The interesting occurrence ol certain halophytes and hemi-halophytes on wea-shores and also on mountains is probably to be explained by the past distribution of the specics in question. At one time, such plants were probably of more general cocurrence: now they have been extirpated in the intermediate localities, chiefly owing to the cultivation of the land in these places by man. In the west of Ireland and in the Farbes, where certain intand and lowland localities are still uncultivated. Plantago maritima and other halophytes occur in quantity and side by side with mome " Alpine species," such as Dryas oclopelala.

The effect of common ralt on the metabolism of plants is not understood. Lesage ${ }^{2}$ has shown that the height of cerain plants is decreased by cultivation in a saline soil, and that the leaves of TVolkens, Die Florg der dgyplisch-arabischew Wiste (Berlin. 1887).

2 exage, " Recherches exptrimentales sur kes modifications des teuilles chez les plantes maritimes," in Res. gin. de bol. (18go), vol iu.
plants under such conditions become smalier and more succulent. fie showed further, that the increase of common sait in the soil is correlated with a reduction in the number and size of the chloroplastids, and cherefore in the amount of chlorophyli. On the other hand, sonne plants did not respond to the action of common salk, whilst others were kilied. Warming (1909: 220) quotes Grifon (1898), to the effect that "the assimilatory activity is less in the halophytic form than in the ordinary form of the same apecies." Suhimper had previously maintained that the action of common sit in the cell-sap is detrimental as regards apsimilation. Many marine Algae appear to be able to regulate their omotic capacity to the surrounding medium; and T.G. Hill ' hes shown that the roothairs of Salicornia pomess this property. There has, however, been performed upon halophyten very litte physiologicaily ex. perimental work which commands general acceptance.
Bog Xeropiytat live in the peaty soil of fens and moors whicb are physically wet, ut which are said to be phymiologically dry. Related to the physiolug ical drought, such plants poseese some xerophytic characters: and. related to the pbysical wetness, the plante posscsa the teration channels which characterize many hydrophytes and hemi-hydrophytex. The occurrence of xerophytic characters in plants of this type hais given rise to much difference of opinion It is cometimes maintained, for example, by Schimper, that their xerophytic characters are related to the physiological dryness of the habitat: this, however, is denied by others who maintain (Clements. 1905; 127) that the xerophytism is due to the persisrence of ancestral structures. It is possible, of coursc, that each explanation is correct in particular cases, as the views are by no means mutually exclusive. With regard to the occurrence of plants, such as Juncus effusus, which possess xerophytic characters and yet live in wituations which are not ordinarily of marked physiological dryncss, it should be remembered that such habitats are liable to occasional physical drought: and a plant must eventually succumb if it is not adapted to the extreme conditions of its habitat. The xerophytic characters being present, it is not surprising that many marsh plants, like Juncus effusus and Iris pseudocorms, are able to survive in dry siluations, such as banks and even garden rockeries.

Tropophyles.-These plants are characterized by being xerophytic during the unfavourable meason. For example, deciduous trees shed their keaves in winter: geophytes go through a period of dormancy by means of buibs, mhizomes, or ocher underground organs with buds; whilst annuals and ephemerals similarly protect themselves by means of the seed habit. All such plants agree in reducing transpiration to zero during the unfavourable season, alt hough few or no xerophytic characters may be demonstrable during the period favourable to growth.

Hytrophyles.-Living, as these plants do, under medium conditions as repards soil, moisture and climate, they exhibit no characters which are markedly xerophytic or hydropbytic. Hence, such piants are frequently termed mesophyles. Assimilation goes on during the whole year, except during periods of frost or when the plants ase buried by snow. An interesting special case of hygrophytes is seen with regard to plants which live in the shade of loreats. Such plants have been termed sciophyles. Their stomata are frequently not limited to the underside of the leaves, but may occur scattered all over the epidermal surface. The epidermal cells may contain chlorophyll. Strengthening tissue is feebly developed. Many sciophyics are herbaceous tropophytes, and are dormant for more than half the ycar, usuaily during late summer. autumn and early winter. It may be that this is a hereditary character (cf. "bog xerophytes'"), or that the physical drounht of summer is unfavourable to shade-loving plants. In this connexion, it is interesting that in the east of England with the lowest summer rainfall of this country, many common sciophytes are absent or rare in the woods, such, for example, as Melice unifitore, Allium wrsinum. Lycknis dioica, Oxalis Acetosella, and Asperula odorata. However, the cause of the absence or presence of a given species from a given locality is a department of ecology which has been studied with little or no thoroughness.

Cakicole and Calcifuge Species.- Plants which invariabiy inhabit calcareous soils are sometimes termed calcicoles; calcifuge species are those which are lound rarely or never on such soils. The effect of lime on plants is less understood even than the effect of common salt. Doubtiess. the excess of any moluble mineral salt or solts interferes with the osmolic absorption of the noolsi and although calcium carbonate is insoluble in pure water, it is slightly soluble in water containing carbon dioxide. In England. the following species are confined or almost confined to calcarcous woils: Asplenium Ruta-minraria. Melica nulans, Carex digitala, Aceres anthropophora, Ophrys apifera, Thalictrum, minus, Helianhemus Chamercistes, Viola hıria, Linum perenne, Geranium lucidum, Hippocrepis comose. Potentilla verna, Viburnum Lantana, Galium asperam (-G. syt vestrc). A spernla cynanckice, Senecio campestris. The following plants, in England. arc calcifuge: Lastreea Oreopter is, Hetcus mollis, Carex echinata, Spergule arvensis. Polygala serpyilacea, Cytisus
${ }^{3}$ T. G. Hill, "Observations on the Ommotic Properiies of the Root. Hairs of certain Salt Marih Plants," in The Neo Phytologis (1908), vol. vii.
seoparius, Potentilla procwubens, Galium hercyuicum ($=$ G. saxatile), Gmaphalium syloaicum, Digitalis purpurea. Other plants occur indifferently both on calcareous and on non-calcareous soils.
It is sometimes eaid that lime acts as a poison on some plante and not on others, and sometimes that it is the phyaiological dryness of calcareous soils that is the important factor. In relation to the latter theory, it is pointed out that some markedly calcicole species oceur on sand dunes; but this may be due to the lime which in frequently present in dune sand as well as to the physical dryness of the moil. Further, no theory of calciolous and calcilugous plants can be regarded as satislactory which lails to account for the fact that both kinds of plants occur a mong aquatic as well as among terrestrial plants. Schimper (1903: 102) thinks that in the case of squatic plants, the difference must depend on the amount of lime in the water, for the phymical nature of the substratum is the same in each case. Again, acidic humus does not form in calcareous soils; and hence one does not expect to find plants characteristic of acidic peat or humus on calcareous soils. Some such species are Blechnwm boreale. Aira flexuoso. Calluna vulparis, Vaccixixm, \yrillws, Rubus, Chamacmorus, Empetrum migram, Drosere spp. Some, at least, of these species possess mycorhiza in their roots, and are perhaps unable to live in soils where auch organisms are absent.

In England the number of calcicole species ls greater than the number of silicolous species. It would therefore be curious if it were proved that lime acts on plants as a poison. It Is said that some plants may be calcicoles in one geographical district and not in another. However, until more is known of the exact chemical composition of natural-as contrasted with agricultural-soils. and until more is known of the physiological efferts of lime. it is impossible to decide the vexed question of the relation of limeloving and lime-shunning plants to the presence or absence of calcium carbonate in the soil From such points of view as this. it is indeed true, as Warming has recently stated, "that ecology is only in its infancy.'
(C. E. M.)

Cytology or Plants

The elementary unit of plant structure, as of animal structure, is the cell. Within it or its modifications all the vital phenomena of which living organisms are capable have their origin Upon our knowledge of its minute structure or cytalogy, combined with a study of its physiological activities, depends the ultimate solution of all the important probiems of nutrition and growth, reecption and conduction of stimuli, heredity, variation, sex and reproduction.

The Cell Theory.-For a general and historical account of the cell theory see Cyrology. It is sufficient to note here that cells, were first of all discovered in various vegetable tissucs by Robert Hooke in 1665 (Micrographia); Malpighi and Grew (1674-1683) gave the first clear indications of the importance of cells in the building up of plant tissues, but it was not until the beginning of the 1gth century that any insight into the rea! nature of the cell and its functions was obtained. Hugo von Mohl ($18+6$) was the first $t 0$ recognize that the easential vital constituent of the plant cell is the slimy mass-proto-plasm-inside it, and not the cell wall as was formerly supposed. The nucleus was definitely recognized in the plant cell by Robert Brown in 1831, but ins presence had been previously indicated by various observers and it had been seen by Fontana in some animal cells as early as 1781. The cell theory so far as it relates to plants was established by Schlciden in 1838. He showed that all the organs of plants are built up of cells, that the plant embryo originates from a single cell, and that the physiological activities of the plant are dependent upon the individual activities of these vital units. This conception of the plant as an aggregate or colony of independent vital units governing the nutrition: growth and reproduction of the whole cannot, however be maintained. It is true that in the unicellular plants all the vital activities are performed by a single cell. but in the multicellular plants there is a more or less highly developed differentiation of physiological activity giving rise to different tissues or groups of cells, each with a special function. The cell in such a division of labour cannot therefore be regarded as an independent unit. it is an integral part of an individual organization and as auch the exercise of its functions must be governed by the organism as a whole.
General Strmeture and Diferentiation of the Vegetable Cell.The simplest cell forms are found in embryonic tissues, in reproductive cells and in the parenchymatous cells, found in various parts of the plant. The epidermal, conducting and strengthening tissucs show on the other hand considerable modifications both in form and structure.

The protoplasm of a living cell consists of a semifluid granular substance, called the cytoplasm, one or more nuclei, and sometimes centrosomes and plastids. Cells from different parts of a plant differ very much in their cell-contents. Young celle are
full of cytoplasm, old cells generally contain a large vacuole or vacuoles, containing cell-sap, and with only a thin, almost invisible layer of cytoplasm on their walls. Chlorophyll grains, chromatophores, starch-grains and oil-globules, sll of which can be distinguished either by their appearance or by chemical reagents, may also be present. Very litule is known of the finer structure of the cytoplasm of a vegetable cell. It is sometimes differentiated into a clearer outer layer, of hyaloplasm, commonly called the ectoplasm, and an inner granular endoplasm. In some cases it shows, when submitted to a careful examination under the highest powers of the microscope, and especially when treated with reagents of various kinds, traces of a more or less definite structure in the form of a meshwork consisting of a clear honogeneous substance containing numerous minute bodies known as micrasomes, the spaces being filled by a more fluid gromed-substance. This structure, whicb is visible both in living cells and in cells treated by reagents, bas been interpreted by many observers as a network of threads embedded in a homogeneous ground-substance. Butschli, on the other hand, interprets it as a finely vacuolated foam-structure or emulsion, comparable to that which is observed when small drops of a mixture of finely powdered potash and oil are placed in water, the vacuoles or alveoli being spaces filled with liquid, the more solid portion representing the mesh-work in which the microsomes are placed. Evidence is not wanting, however, that the cytoplasm must be regarded as, fundamentally, a semifluid, homogeneous substance in which by its own activity, granules, vacuoles, fibrils, \&c., can be formed as secondary structures. The cytoplasm is largely concerned in the formation of spindle fibres and centrosomes, and such structures as the cell membrane, cilia, or flagella, the coenocentrum, nematoplasts or tribrioids and physodes are also products of its activity.

Protoplasmic Movements.-In the cells of many plants the cytoplasm frequently exhibits movements of circulation or rotation. The cells of the staminal hairs of Tradescantia virginica contain a large sap-cavity across which run, in all directions, numerous protoplasmic threads or bridges. In these, under favourable conditions, streaming movements of the cytoplasm in various directions can be observed. In other forms such as Elodea, Nitella, Chara, \&c., where the cytoplasm is mainiy restricted to the periphery of the sap vacuole and lining the cell wall, the streaming movement is exhibited in one direction only. In some cases both the nucleus and the chromatophores may be carried along in the rotating stream, but in others, such as Nitella, the chloroplasts may remain motionless in a non-motile layer of the cytoplasm in direct contact with the cell wall.'

Desmids, Diatoms and Oscillaria show creeping movements probably due to the secretion of slime by the cells; the swarmspores and plasmodium of the Myxomycetes exhibit amoeboid movements; and the motile spores of Fungi and Algac, the spermatozoids of mosses, ferns, \&c., move by means of delicate prolongations, cilia or flagelia of the protoplast.

Chromalophores.-The chromatophores or plastids are protoplasmic structures, denser than the cytoplasm, and casily distinguishable from it by their colour or greater refractive power. They are spherical, oval, fusiform, or rod-like, and are always found in the cytoplasm, never in the cell-sap. They appear to be permanent organs of the cell, and are transmitted from one cell to another by division. In young cells the chromatophores are small, colourless, highly refractive bodies, principally located around the nucleus. As the cell grows they may become converted into lencoplasts (starch-formers), chloroplasts (chlorophyllbodies), or chromoplasts (colour-bodies). And all three structures may be converted one into the other (Schlmper). The chloroplasts are generally distinguished by their green colour, which is due to the presence of chlorophyll; but in many Algae this is masked by another colouring matter-Phycoerythrin in the Florideae, Phycophacin in the Phaeophyceac, and Phycocyanin
${ }^{1}$ Ewart. On the Physics and Physiolozy of Protoplasmic Streaming in Plants. (Oxford. 1903). gives an excellent account of the phenomena of protoplasmic streaming with a full diacussion of the probeble causes to which it is due.
in thie Cyanophyceac. These subslances can, however, be dissolved out in water, and the green colouring matter of the chloroplast then becomes visible. The chloroplast consists of two parts, a colourless ground substance, and a green colouring matter, which is contained either in the form of fibrils, or in more or less regular spherical masses, in the colourless ground-mass. The chloroplasts increase in number by division, which takes place in higher plants when they have attained a certain size, independent of the division of the cell. In Spirogyra and allied forms the chloroplast grows as the cell grows, and only divides when this divides. The division in all cases takes place hy constriction, or by a simultaneous splitting along an equatorial plane. Chloroplasts are very sensitive to light and are capable in some plants of changing their position in the cell under the stimulus of a variation in the intensity of the light rays which fall upon them. In the chromatophores of many Algae and in the Liverwort Anthoceros there are present homogencous, highly refractive, crystal-like bodies, called pyrenoids or starch-centres, wbich are composed of proteid substances and surrouaded by an epvelope of starch-grains. In Spirogyra the pyrenoids are distinctly connected by cytoplasmic strands to the central mass of cytoplam, which surrounds the nucleus, and according to some abservers, they increase exclusively by division, followed by a splitting of the cytoplasmic strands. Those chromatophores which remain colourless, and serve simply as starch-formers in parts of the plant not exposed to the light, are called leucoplasts or amyloplasts. They are composed of a homogeneous proteid substance, and of ten contain albuminoid or proteid crystals of the same kind as those which form the pyrenoid. If exposed to light they may become converted into chloroplasts. The formation of atarch may take place in any pert of the leucoplast. When formed inside it, the starch-grains exhibit a concentric stratification; when formed externally in the outer layers, the stratification is excentric, and the hilum occurs on that side farthest removed from the leucoplast. As the starch-grains grow, the leucoplasts gradually disa ppear.
Chromoplasts are the yellow, orange or red colour-bodies found in some flowers and fruits. They arise either from the leucoplasts or chloroplasts. The fundamental substance or stroma is colourless and homogeneous. The colour is due to the presence of xanthophyll, or carotin or both. The colouring matters are not dissolved in the stroma of the chromoplast, but exist as amorphous granules, with or without the presence of a protein crystal, or in the form of fiae crystalline needles, frequently curved and sometimes present in large numbers, which are grouped together in verious ways in bundles and give the plastids their fusiform or triangular crystalline ahape. Such crystaliine plastids occur in many rruits and flowers (e.g. Tamus communis, Asparagus, Lonicera, berrics of Solancae, flowers of Cacalia coccinca, Tropacolxm, brects of Strclitzia, \&c.), and in the root of the carrot. In some cases the plastid disappears and the cryatalline pigment only is left. In the red variety of Cucurbite pepo these crystals may consist of rode, thin plates, flat ribbons or spirals. Starch grains may often be seen in contact with the pigment crystals. The crystaline form appears to be due entircly to the carotin, which can be artificially crystallized from an alcohol or ether solution. In addition to the plastids, there are found in some plant-cells, e.g. in the epidermal cells of the leaf of specics of Vanilla (Wakker), and in the epidermis of different parts of the flower of Funkxa, Ormilhogalxm, \&c. (Zimmermann). highly refractive bodies of globular form, elcioplasts, which consist of a granular protein ground-substance containing drops of oil. They are stained deep red in dilute solution of alkanin.
Substances contained in the Protoplasm.-Starch may be found in the chlorophyll bodies in the form of minute granules as the first visible product of the assimilation of carbon dioxide, and it occurs in large quantities as a reserve food material in the cells of various parts of plants. It is highly probable that starch is only produced as the result of the activity of chromatophores, either in connexion with chromoplasts, chloroplastsorleucoplasts. Starch exists, in the majority of cases, in the form of grains, which are composed of stratified layers arranged around a nucleus or bilum. The stratification, which may be concentric or excentric, appears to be duc to a difference in density of the various layers. The outcr layers are denser tban the inner, the density decreasing more or less uniformly from the outside layers to the centre of hilum. The outermost, newly formed layer is composed of a more homogeneous, denser substance than the
inner one, and can be distinguished in all starch-grains that are in process of development. The separate layers of the starch-grain are deposited on it by the activity of the chromatophore, and according to Meyer the grain is always surrounded by a thin layer of the chromstophore which completely separates it from the cytoplasm. The layers appear to be made up of elements which are arranged radially. These are, according to Meyer, acicular crystals, which he calls trichiles. The starch grain may thus be regarded as a crystalline structure of the nature of a spherecrystal, as has been suggested hy many observers.

Whether the formation of the slarch grain is due to a secretion from the plastid (Meyer, 1895) or to a direct transformation of the proteid of the plastid (Timberlake, 1901) has not been definitcly established.

Aleurone.-Aleurone is a proteid substance which occurs in seeds especially those containing oil, in the form of minute granules or large grains. It may be in the form of an albumen crystal sometimes associsted with a more or less spherical body-globoid-composed of a combination of an organic substance with a double phosphate of magnesium and calcium. Albumen crystals are also to be found in the cytoplasm, in leucoplasts and rarely in the nucleus
clycogen, substance related to starch and sugar, is found in the Fungi and Cyanophyceac as a food reserve. It gives a characieristic red-brown reagtion with iodine solution. In the yeast cell it accumulates and disappears very repidly according to the condilions of nutrition and is sometimes so abundant as to fill the cell almost entirely (Errera, 1882, 1895: Wager and Peniston, 1910).

Volutin occura in the cytoplasm of various Fungi, Bacteria, Cyanophyceae, diatoms, \&c., in the form of minute granules which have a characteristic reaction towards methylene blue (Meyer). It appears to have some of the cha racteristics of nucleic acid, and accord. ing to Meyer may be a combination of nucleic acid with an unknown organic base.
Numerous other substances are also found in the cytoplasm, ouch as tannin, fats and oil, resins, mucilage, caoutchonc, guttapercha, sulphur and calcium oxalate crystals. The cell sap contains various substances in solution such as eugars, inulin. alkaloids. glucosides, organic acids and various inorganic salts. The colours of flowers are due to colouring matters contained in the tap of which the chief is anthocyanin.

Reference must also be made here to the enzymes or unorganized fermenta which occur so largeiy in the cytoplasm. It is probable that moat, if not all, the metabolic changes which take place in a cell. such as the transformation of starch, protcids, sugar, cellulose; and the decomposition of numerous other organic subutances which would otherwise requite a high temperature or powerful reagents is also due to their activity. Their mode of action is similar to that of ordinary mechanical catalytic agents, such as finely divided platinum (see Baylise, The Nature of Ensyme Action, and J. R. Green, The Soluble Fermenis).

The Nucleus.-The nucleus has been demonstrated in all plants with the exception of the Cyanophyceae and Bacteria, and cven here structures have been observed which resemble nuclei in some of their characteristics. The nucleus is regarded as a controlling centre of cell-activity, upon which the growth and development of the ceil in large measure depends, and as the agent by which the transmission of specific qualities from one generation to another is brought about. If it is absent, the cell loses its power of assimilation and growth, and goon dies. Haberlandt has shown that in plant cells, when any new formation of membrane is to take place in a given spot, the nucleus is found in its immediate vicinity; and Klebs found that only that porison of the protoplasm of a cell which contains the nucleus is capable of forming a cell-wall; whilst Townsend has further shown that if-the non-nucleated mass is connected by strands of protoplasm to the nucleated mass, either of the same celi or of a neighbouring cell, it retains the power of forming a cell-membrane.

The Structure of the N uclews.-In the living condition the resting nucleus appears to consist of a homogeneous ground substance containing a large number of small chromatin granules and one or more large spherical granules-nucieoli-the whole being surounded by a limiting membrane which separates it from the cytoplasm. When fixed and stained this granular mass is resolved into a more or less distinct granular network which consists of a substance called Linin, only slightly stained by the ordinary nuclear stains, and, embedded in it, a more deeply stainable substance called Chromatin. The nucleolus appears to form a part of the Linin network, but has usually also a strong affinity for nuclear stains. The staining reactions of the various
parts of the nucleus depend to some extent upon their chemical constitution. The chromatin is practically identical with nuclein. This has a strong attraction for basic aniline dyes, and can usually be distinguished from other parts of the cell which are more easily coloured.by acid anilines. But the staining reactions of nuclei may vary at different stages of their development; and it is probable that there is no method of staining which differentiates with certainty the various morphological constituents of the nucleus.

Our knowledge of the chemical constitutions of the nucleus is due to the pionetr researches of Sir Lauder Brunton. Plosz. Mieschet. Kossel and a host of more recent investigators. Nucicin is a complex albuminoid substance containing phosphorus and iron in organic combination (Macallum). It appears to be a combination of a protein with nucleic acid. Recent researchee have thown that the nucleic acid can be broken up by chemical means into a number of different compounds or bases. The results at first obtained were very confusing and seemed to show that nucleic acid is very variable in constitution, but thanks to the work of Schmiedeberg and Stendel (Germany), lvar Bang (Sweden) and Walter Jones and Levene (America), the confusion has been reduced to some wort of order, and it now beems probable that all ordinary nucleic acids yield two purine bases, adenine and guanine, two pyrimidine bases, cytosine and thymine and a hexose carbohydrate, the identity of which is uncertain. ${ }^{1}$

The N ucteolus -In the majority of plant-nuclei, both in the higher and lower plants, there is found, in addition to the chromatin network, a deeply stained spherical or slightly irregular body (sometimes more than one) called the nucleolus (fig. 2, A to D) It is often vacuolar, sometimes granular, and in other cases it is a homogeneous body with no visible structure or differentiation. The special function of this organ has been a source of controversy during the past few years, and much uncertainty still exists as to its drue nature. It forms a part of the linin or plastin network of the nucleus and may become impregnated with varyiug quantities of chromatin stored up for use in the formation of the chromosomes and other nuclear activities. The relation of the nucleolus to the chromosomes is clearly seen in the reconstruction of the daughter nuclei after division in the cells of the root-apex of Phoseolus (fig. 1, A to F). The chromosomes (fig. 1, A) unite to form an irregular mass (fig. 1, B) out of which is evolved the nucleolus and nuclear network (figs. 1, E, F) by a fusion of the chromosomes (fig. 1, C, D).

Centrosome.-The centrosome is a minute homogeneous granule found in the cytoplasm of some cells in the neighbourhood of the nucleus. It is generally surrounded by a granular or radiating cytoplosmic substance. In plant cells its presence has been demonstrated in the Thallophytes and Bryophytes. In the higher plants the structures which have been often described as centrosomes are too indefinite in their constitution to allow of this interpretation bcing placed upon them, and many of them are probably nothing more than granules of the fragmented nucleolus. The centrosomes in plants do not appear to be permanent organs of the cell. They are prominent during cell-division, but many disappear in the resting stage. They are more easily seen, when the nucleus is about to undergo mitosis, at the ends of the spindle, where they form the centres towards which the radiating fibres in the cytoplasm converge (see fig. 7, E G). The centrosome or centrosphere is usually regarded as the dynamic centre of the cell and a special organ of division; but its absence in many groups of plants does not lend support to this view so far as plant-cells are concerned.

Nuclear Dioision. The formation of new cells is, in the case of uninucleate cells; preceded by or accompanied by the division of the nucleus. In mullinucleate cells the division of the nucleus is independent of the division of the cell. Nuclear division may be tndirect or direct, that is to say it may either be accompanied by a series of complicated changes in the nuclear structures called milosis or karyokinesis (fig. 2), or it may take place by simple direct division, amilosis, or fragmentation. Direct division is a much less common phenomenon than was formerly supposed to be the case. It occurs most frequently in old cells, or in cells which are placed under abnormal conditions.
${ }^{1}$ Sce Halliburton. Science Progress in the 201k Century (1909). wol iv.

It may also take place where rapid proliferation of the cell is going on, as in the budding of the Yeast plant. It takes place in the internodal cells of Cbaraceac; in the old internodal cells of

Fig. 1.-Reconstruction of the daughter nuclei of Pkaseolus.
Tradescantia; and in various other cells which have lost their power of division. It has been shown that, in cells of Spirogyra placed under special conditions, amitotic division can be induced, and that normal mitosis is resumed when they are placed again under normal conditions. Amitosis is probably connected by a series of intermediate gradations with karyokinesis.
Litosis.-In indirect nuciear division the nucleus undergoes a series of complicated changes, which result in an equal division of the chromatic substance between the two daughter nuclel. Four stages can be recognized. (1) Prophase.-The nucleus increases in size; the network disappears, and a much convoluted thread takes its place (fig. 2, B). The chromatin substance increases in amount; the thread stains more deeply, and in most cases presents a homogeneous appearance. This is commonly called the spirem-figure. The chromatin thread next becomes shorter and thicker, the nucleoli begin to disappear, and the thread breaks up into a number of segments-chromosomes-which vary in number in different species, but are fairly constant in the same species (fig. 2, C, D). Coincident with these changes the nuclear membrane disappears and a spindle-shaped or barrelshaped group of threads makes its appearance in the midst of the chromosomes, the longitudinal axis of which is at right angles to the plane of the division (fig. 2, F). At each pole of this spindle figure there often occur fibres radiating in all directions into the cytoplasm, and sometimes a minute granular body, the centrosome, is also found there. (2) Melaphase.-The chromosomes pass to the equator of the spindle and become attached to the
spindle-fibres in such a way that they form a radiating starshaped figure-Aster-when seen from the pole of the spindle. This is called the nuclear plate (fig. 2, E, F, G, H). As they pass into this position they undergo a longitudinal splitting by which the chromatin in each chromosome becomes divided into equal halves. (3) Anaphase.-The longitudinal division of the chromosomes is completed by the time they have taken up their position in the nuclear plate, and the halves of the chromosomes then begin ta move along the spindle-fibres to opposite poles of the spindle (fig. 2, I, J). Many observers hold the view that the chromosomes are pulled apart by the contraction of the fihres to which they are attached. (4) Telophase.-When they reach the poles the chromosomes group themselves again in the form of stars-Diastcr-with spindle-fibres extending between them (fig. 2, K). The chromosomes then fuse together again to form a single thread (fig. 2, L), a nucleolus appears, a nuclear membrane is formed, and daughter nuclei are thus constituted which possess the same structure and staining reactions as the mother nucleus.

The apindle figure is probably the expression of forces which are set up in the cell for the purpose of causing the separation of the daughter chromosomes. Hartog has endeavoured to show that it can only be formed by a dual force, analagous to that of magnetism. the spindle-fibacs being comparable to the lines of force in a magnetic field and possibly due to electrical diferences in the cell. The spindle arises partly from the cytoplasm, partly from the nucleus, or it may be derived entirely from the nucleus-intranuclear spindle-as occurs in many of the lower plants (Fungi, \&c.). The formation of the spindle begins in the prophases of division. A layer of delicate fiamentous cytoplasm-kinoplasm-may collect around the nucleus, or at its poles, out of which the spindle is formed. As division proceeds, the filamentous nature of this cytoplasm becnmes more prominent and the thrcads begin either to converge towards the poles of the nucleus, to form a bipolar spindle, or may converge towards, or radiate from, several different points, to form a multipolar spindle. The wall of the nucleus breaks down, and the cytoplasmic spindle-fibres become mixed with those derived from the nuclear network. The formation of the spindle differs in details in different plants.

The significance of this complex seriés of changes is very largely hypothetical. It is clear, however, that an equal quantitative division and distribution of the chromatin to the daughter cells is brought about; and if, as has been suggested, the ehromatin consists of minute particles or, units which are the earriers of the hereditary characteristics, the nuclear division also probably results in the equal division and distribution of one half of each of these units to each daughter cell.

Reduction Divisions (Meiosis).-The divisions which take place leading to the formation of the sexual cells show a reduction in the number of chromosomes to one-half. This is a necessary consequence of the fusion of two nuclei in fertilization, unless the chromosomes are to be doubled at each generation. In the vascular cryptogams and phanerogams it takes place in the spore mother cells and the reduced number is found in all the cells of the gametophyte, the full number in those of the sporophyte. We know very little of the details of reduction in the lower plants, but it probably occurs al some stage in the life history of all plants in which sexual nuclear fusion takes place. The reduction is brought about simply by the segmentation of the spirem thread into half the number of segments instead of the normal number. In order to effect this the individual ch romosomes must become associated in some way, for there is no diminution in the actual amount of nuclear substance, and this leads to certain modifications in the division which are not seen in the vegetative nuclel. The two divisions of the spore mother cell in which the reduction takes place, follow each other very rapidly and are known as Heterotype and Homotype (Flemming), or according to the terminology of Farmer and Moore (1905) as the meiotic phase. In the heterolype division the spirem thread is divided longitudinally before the segmentation occurs (fig. 2, B), and this is preceded by a peculiar contraction of the thread around the nucleolus which has been termed synapsis (fig. 1, A). A second contraction may take place later, immediately preceding the eegmentation of the thread. It has been suggested that synapsis may be connected with the carly longitudinal splitting of the thread, or with the pairing of the chromosomes, but $i t$ is possible
that it may be connected with the transference of nucleolar substance to the nuclear thread. The segments of each chromosome are usually twisted upon each olher and may be much contorted (fig. 2, C, D), and appearances are observed which suggest a second longitudinal division, but which are mare

(Aler Gripoire) F1G. 2.-Various Stages in the Nuclear Division of the Pollen Mother-cells of Litium,
probably due to a folding of the segment by which the two halves come to lie more or lezs parallel to each other, and form veriously shaped figures of greater or less regularity (fig. 2, E). The chromosomes now become attached to the spindle-fibres (fig. 2, F, G) and as the daughter chromosomes become pulled asunder they often appear more or less V-shaped so that each pair appears as a closed ring of irregular shape, the ends of the V 's being in contact thus-<> (6ig. 2, H, I, J, K). This V has been variously interpreted. Some observers consider that it represenes a longitudinal half of the original segment of the spireme, others that it is a half of the segment produced by transwerse division by means of which a true qualitative separation of the chromatin is brought about. The problem is a very difficult one and cannot be regarded as definitely setted, but it is difficult to understand why all this additional complexity in the division of the nucleus should be necessery if the final result is only a quantitative separation of the chromatin. It seems to be fairly well established that in the meiotic phase there is a true qualitative division brought about by the pairing of the chromosomes during synapsis, and the subsequent separation of whole
chromosomes to the daughtet nuclei. The mothod by which this is brought about is, however, the subject of much controversy. There are two main theories: (1) that the chromosomes which finally separate are at first paired side by side (Allen, Grégoire, Berghs, Strasburger and others), and (2) that they are joined together or paired end to end (Farmer and Moore, Gregory, Mottier and others). Good cytological evidence bas been adduced in favour of both theories, but further investigation is necessary hefore any definite conclusion can be arrived at. The second or homotype division which immediately follows reverts to the normal type except that the already split chromosomes at once separate to form the daughter nuclei without the intervention of a resting stage.

Cell Division.-With the exception of a few plants among the Thallophytes, which consist of a single multinucleate cell, Caulerpa, Vaucheria, \&c., the division of the nucleus is followed by the division of the cell either at once, in uninucleate cells, or after a certain number of nuclear divisions, in multinucleate cells. This may take place in various waya. In the higher plants, after the separation of the daughter nuclei, minute granular swellings appear, in the equatorial region, on the connecting fihres which still persist between the two nuclei, to form what is called the cell-plate. These fuse together to form a membrane (fig. 1, C, D) which splits into two layers between which the new cell-wall is laid down. In the Thallophytes the cytoplasm may be segmented by constriction, due to the in-growth of a new cell wall from the old one, as in Spirogyra and Cladophora, or by the formation of cleavage furrows in which the new cell-wall is secreted, as occurs in the formation of the spores in many Algae and Fungi. Cell budding takes place in yeast and in the formation of the conidia of Fungi.
In a few cases hoth among the higher and the lower plants, of which the formation of spores in the ascus is a typical example, new cells are formed by the aggregation of portions of the cytoplasm around the nuclel which become delimited from the rest of the cell contents by a membrane. This is known as frce cell formation.

In Fucws and allied forms the spindle-fibres between the daughter nuclei disappear early and the new cell-wall is formed in the cytoplasm.
Cell Membrane.-The membrane which surrounds the protoplasts in the majority of plants is typically composed of cellulose, together with a number of other substances which are known as pectic compounds. Some of these have a neutral reaction, others react as feeble acids. They can be distinguished by their insolubility in cuprammonia, which dissolves cellulose, and by their behaviour towards staing, some of which stain pectic substancea hut not cellulose. Cellulose has an affinity for acid stains, pectic suhstances for basic stains. Tbe cell-membrane may become modified by the process of lignification, suberization, cuticularization or gelatinization. In the Fungi it is usually composed of a modified form of cellulose known as fungus cellulose, which, according to Mangin, consists of callose in combination either with cellulose or pectic compounds. The growth of the cell-wall takes place by the addition of new layers to those already formed. These layers are secreted by the protoplasm by the direct apposition of substances on those already in existence; and they may go on increasing in thickness, both by apposition and by the intussusception of particles probably carried in through the protoplasmic fibres, which penetrate the cell-wall as long as the cell lives. The growth of the cell-wall is very rarely uniform. It is thickened more in some places than in others, and thus are formed the spiral, annular and other markings, as well as the pits which occur on various cells and vessels. Besides the internal or centripetal growth, some cell-walls are thickened on the outside, sucb as pollen grains, oospores of Fungi, cells of Peridineae, \&ic. This centrifugal growth must apparently take place by the actlvity of protoplasm external to the cell. The outer protective walls of the oospores of some Fungi are formed out of protoplasm containing numerous puclei, which is at an early stage separated from the protoplasm of the oospore. In the Peridineae,

Diatoms and Desmids, according to recent researches, the thickenings on the outer walls of the cells are due to the passage of protoplasm from the interior of the cell to the outside, through pores which are found perforating the wall on all sides.

Cell-walls may become modified by the impregnation of various substances Woody or lignified cell-walla appear to contain substances called coniferin and vonillin. in addition to various other compounds which are imperfectly known. Lignified cissues are coloured yellow by aniline sulphate or aniline chloride, violet with phloroglucin and hydrochloric acid, and characteristic rcactiona are also given by mixtures containing phenol, indol, skatol, thallin, sulphate, \&ce. (see Zinmermannis Microtechnique). Staining reagent can also be used to differentiate lignified cel-walls. Cuticularized or subcrized cell-walls occur especially in those' cells which perform a protective function. They are impervious to water and gasea. Both cuticularized and subcrized membranes are insoluble in cuprammonia, and are coloured yellow or brown in a solution of chlor-iodide of zinc. It is probable that the corky or suberized cells do not contain any cellulose (Gilson. Wisselingh); whilst cuticularized cells are only modified in their outer layers, cellulose inner layers being still recognizable. The suberized and cuticularized cell-walls appear to contain a fatty body called suberin, and such cell-walls can be stained red by a solution of alcanin, the lignified and cellulose membranes remaining unstained.

Fertilisation.-The formation of the zygote or egg-cell lakes place usually by the fusion of the contents of two cells, and alwaya includes, as an essential fcature, the fusion of two germ nuclei. In many of the lower plants the fusing cells-gamedes-are precisely similar so far as size and general appearance are concerned; and the whole contents of the two cells fuse together, cytoplasm with cytoplasm, nucleus with nucleus, nucleolus with nucieolus and plastid with plastid. The gametes may be motile (some Algac) or non-motile, as in Spirogyra, Mucor, Basidiobolus, \&c. In many of the lower plants and in all higher plants there is a difference in size in the lusing cells, the male cell being the smaller. The reduction in size is due to the absence of cytoplasm, which is in some cases so small in amount that the cell consists mainly of a nucieus. In all cases of complete sexual differentiation the egg-cell is quies-

(From Wibme After Guignard and Moutlicr.)
Fig. 3.-Fertilization in the Lily. a, Antipodal cell: sp, polar nuclei $;$ $p h$, pollen tube.
A. Two vermiform nucki in the embryo sac: one approaching the eggnucleus, the other uniting with the upper polar nucleus.
B, Union of the vermiform nuclei with the egg-nucleus and the two polar nuclei.
C, Fusion of the germ nuclei in the egs-cell. cent; the male cell may be motile or non-motile. In many of the Fungi the non-motile male cell or nucleus is carried by means of a fertilizing tube actually into the interior of the egg-cell, and is extruded through the apex in close proximity to the egg nucleus. In the Florideae, Lichens and Laboulbeniaceae the male cell is a non-motile spermatium, which is carried to the female organ by movements in the water. In Monoblepharis, one of the lower Fungi, in some Algae, in the Vascular Cryptograms, in Cycads (Zamia and Cycas), and in Ginkgo, an isolated genus of Gymnosperms, the male cell is a motile spermatozoid with two or more cilia. In the Algae, such as Fucus, Votvox, Oodogonium, Bulbochcele, and In the Fungus Monoblepharis, the spermatozoid is a small oval or elongate cell containing nucleus, cytoplasm and sometimes plastids. In the Characeae, the Vascular Cryptogams, in Zamia and Cycas, and in Cinkjo, the spermatozoids are more or lcss highly modified cells witb two or more cilia, and resemble in many respects, both in their
structure and mode of formation, the spermatozoids of animals. In Characeae and Muscineae they are of elongate spiral form, and consist of an elongate dense nucleus and a small quantity of cytoplasm. At the an-

LAlter Webber.)
Fig. 4.-Spermatozoid and Fertiliza. tion in Zamia. hy means of a polien tube. In the is carried to the oosphere Vascular Cryptogams, and in those of Cycos, Zamia and Ginkgo, the cilia arise from a centrosome-like body which is found on one side of the nucleus of the spermatozoid mother-cell. This body has been called a blepharoplast, and in the Pteridophytes, Cycads and Ginkgo it gives rise to the spiral band on which the cilia are formed. Belajeff regards it as a true centrosome; but this is douhtful, for while in some cases it appears to he connected with the division of the cell, in others it is independent of it. The eggcell or oosphere is a large cell containing a single large nucleus, and in the green plants the rudiments of plastids. In plants with multinucleate cells, such as Albugo, Pcronospora and Vaucheria, it is usually a uninucleate cell differentiated by separation of the nuclei from a multinucleate cell, but in Albugo bili it is multinucleate, and in Sphocroplea it may contain more than one nucleus. In some cases the regioa where the penetration of the male organ takes place is indicated on the cosphere by a hyaline receptive spot (Oedogonium, Vaucheria, \&ci.), or by a receptive papilla consisting of hyaline cytoplasm (Peronosporeate). Fertilization is effected by the union of two nuclei in all those cases which have been carefully investigated. Even in the multinucleate oosphere of Albugo bliti the nuclei fuse in pairs; and in the oospheres of Sphaeroplea, which may contain more than one nucleus, the egg nucteus is formed by the fusion of one only of these with the spermatozoid nucleus (Klebahn). In the higher Fungi nuclear fusions take place in basidla or asci which involve the union of two (fig. $7, ~ A$) nuclei, which may be regarded as physiologically equivalent to a sexual fusion. The union of the germ nuclei has now been observed in all the main groups of Angiosperms, Gymnosperms, Ferns, Mosses, Algae and Fungi, and presents a striking resemblance in all. In nearly all cases the nuclel appear to fuse in the resting stage (Gg. 3, C). In many Gymnosperms the male nucleus penetrates the female nucleus before fusing with it (Blackman, Ikeno). In other cases the two nuclei place themselves side by side, the nuclear membrane between them disappicars, and the contents fuse togeiber-nuclear thread
with nuclear thread, and nucleolus with nucieolus-so completely that the separate constituents of the nuclei are not visible. It .was at one time thought that the centrosomes played an important part in the fertilization of plants, but recent researches seem to indicate that this is not so. Even in those cases where the cilia band, which is the product of the centrosome-like body or hlepharoplast, enters the ovum, as in Zamia (c in fig. 4, B, C, D), it appears to take no part in the fertilization phenomena, nor in the subsequent division of the nucleus. During the process of fertilization in the Angiosperms it has been shown by the researchea of Nawaschin and Guignard that in Lilium and Fritillaria both generative nuclei enter the embryo sac, one fusing with the oosphere nucleus, the other with the polar nuclei (fig. 3, A, B). A double fertilization thus takes place. Both nuclei are elongated vermiform atructures, and as they enter the embryo sac present a twisted appearance like a spermatozoid without cilia (fig. 3, A, B). It has since been shown by other observers that this double fertilization occurs in many other Angiosperms, both Dicotyledons and Monocotyledons, so that it is probably of general occurrence throughout the group (see Anglosperus).

The Nucleus in Relation to Heredily.-There is a certain amount of cytological evidence to show that the nucleus is largcly concerned with the transmission of hereditary characters. Whether this is entirely confined to tbe nucleus is, however, not certain. The strongest direct evidence scems to be that the nuclear substances are the only parts of the cells which are always equivalent in quantity, and that in the higher plants and animals the male organ or spermatozoid is composed almost entirely of the nucleus, and that the male nucleus is carried into the female cell without a particle of cytoplasm.'
Since, however, the nucleus of the female cell is always accompanied by a larger or smaller quantity of cytoplasm, and that in a large majority of the power plants and animals the male cell also contains cytoplasm, it cannot yet be definitely stated that the cytoplasm does not play some part in the process. On the other hand, the complex structure of the nucleus with its separate units, the chromosomes, and possibly even smaller units represented by the chromatin granules, and the means taken through the complex phenomena of mitosis to ensure that an exact and equal division of the chromosomes shall take place, emphasizes the importance of the nucleus in heredity. Further, it is only in the nucleus and in its chromosomes that we have any visihle evidence to sccount for the Mendelian segregation of characters in hybrids which are known to occur. Visible differences in the ehromosomes have even been observed, especially in insects, which are due apparently to an unequal division hy which an additional or accessory chromosome is produced, or in some cases one or two extra chromosomes which differ in size from the others. These differences indicate a separation of different elements in the formation of the chromosomes and bave been definitely associated with the determination of sex. It is possihle, however, that the segregation of characters in the gametes may depend upon something far more auhile and elusive than the chromosomes or even of possiblé combina. tions of units within the chromosomes, but so far as we can see at present these are the only structures in the cell with which it can be satisfectorily associated. Boveri in fact has put forward the view that the cliromosomes are elementary units which maintain an organic continuity and independent existence in the cell. The cytological evidence for this appears to be made stronger for animal than for plant cells. From numerous Investigations which have been made to trace the chromosomes through the various stages of the nuclear ontogeny of plant cells, it appears that the individuality and continuity of the chromosomes can only be concclved as possible if we assume the existence of something like chromasome centres in the resting nucleus around which the chromosomes become organized for purposes of division. Rosenberg (1909) adduces evidence for
${ }^{1}$ Strasburger (1909) states very definitely that he has observed the entrance of the male nucleus into the egg without a trace of cytoplasm.
the existence of chromosomes or "prochromosomes" in resting nuclei in a large number of plants, but most observers consider that the chromiosomes during the resting stage become completely resolved into a nuclear network in which no trace of the original chromosomes can be seen.

Special Cell-Modifications for the Reception of Stimuli.-In studying the physiology of movement in plants certain modifications of cell-structure have been observed which appear to have been developed for the reception of the stlmuli hy which the response to light, gravity and contact are brought about. Our knowledge of these structures is due mainly to Haberlandt.

Organs which respond to the mechanical stimulus of contact are found to possess special contrivances in certain of their cells-(1) eensitive spots, consisting of places here and there on the epidermal cells where the wall is thin and in close contact with protoplasmic projections. Thiese occur on the tips of tendrils and on the tentacles of Drosera: (2) tensitive papillae found on the irritable filaments of certain stamens; and (3) tensitive hairs or bristles on the leaves of Dionaea muscipula and Mimosa pudica-all of which are so constructed that any pressure exerted on them at once reacts on the protoplasm.

Response to the action of gravity appears to be associated with the movements of slarch grains in certain cells-statolith cells-by which pressure is exerted on the cytoplasm and a stimulus sct up which results in the geotropic response.

The response to the action of light in diatropic leaves is, according to Haberlandt, due to the presence of epidermal cells which are shaped like a liens, or with lens-shaped thickenings of the cuticle, through which convergence of the light rays takes place and causes a differential illumination of the lining layer of protoplasm on the basal walls of the epidermal cells, by which the stimulus resulting in the orientation of the leal is brought about. Fig. $5, A$, shows the

A
Fig. 5.

A, Epidermal cells of Saxifraga hirsufum. B, of Tradescanlia fuminensis. convergence of the light to a bright spot on the basal walls of the epidermal cells of Saxifra ga hirs ulum and fig. 5. B, shows a photograph taken from life through the epidermal cells of Tradescantia fuminensis. Not withstanding the fact, however, that these cells a re capable of acting as very efficient lenses the explanation given by Haberlandt has not been widely accepted and evidence both morphological and physiological has been brought forward against it.

The presence of an eye-spot in many motile unicellular Algae and awarm spores is also probably concerned with the active respoase to light exhibited by these organisms. In Euglema viridis, which has been most carefully studied in this respect, the flagellum which brings about the movement bears near its base a minute spherical or oval refractive granule or swelling which is located just in the hollow of the red pigment-spot (fig. 6); and it has been suggested that the association of these two is analogous to the association of the rods and cones of the animal eye with their pigment layer, the light absorbed by the red pigment-spot setting up changes which react upon the refractive granule and being transmitted to the flagellum bring about those modifications in its vibrations by which the direction of movement of the organism is regulated.

The $N u c l e i$ of the Lower Plants.-It ls only in comparatively recent times that it has been possible to determine with any degree of certainty that the minute deeply stainable bodies described more especially by Schmits (1879) in many Algae and Fungi could be regarded as true nuclei. The researches of the last twenty years have shown that the structure of the nucleus and the phenomena of nuclear division in these lower forms conforms in all essential details to those in the higher plants. Thus in the Basidiomycetes (fig. 7) the nuclei possess all the structures found in the higher plants, nuclear membrane, chromatin network and nucleolus (ig. 7, B), and in the process
of division, chromosomes, nuclear spindle and centrosomes are to be seen (ig. 7, C-G). The investigations of Dangeard, Harper, Blackman, Miss Fraser and many others have also

(Fram the Journal of the Limmean Seciaty, "Zoclogy" wol. Ixvii)
Fig. 6.-A, Eye-spots of Euglena viridis. B, Anterior end of Euglena showing the flagellum with its swelling just in the hollow of the eye-spot.
shown that in the Ascomycetes, Rust Fungi, \&c., the same structure obtains so far as all essential details are concerned.
The only groups of plants in wbich typical nuclei have not been found are the Cyanophyceae, Bacteria and Yeast Fungi.

(Frome the Amelt of Botrany, wola. vi. and vigi)
Fig. 7- Nuclei and Nuclear Division in the Basidiomycetes.
A to D, Amanita muscarius; E to G, Mycena galerirubalus.
A, Basidium with two nucki. B, single nucleus due to the fusion of the two preexisting nuclei. C, Nuclear thread eegmenting. D, Nuclear cavity with chromosomes. E, Chromosomes on the spindle. F, Separation of the chromosomes into two groupe. Ci. Chromosontes grouped at opposite ends of the spindle to form the daughter nucle.

In the Cyanophyceae the contents of the cell are differentiated into a central colourless region, and a peripheral layer containing the chlorophyll and other colouring matters together with granules of a reserve substance called cyanophycin. Chromatin is contained in the central part together with granules known as volutin, the function of which is unknown. The central body probably plays the part of a nucleus and some observers consider that it has the characters of a typical nucleus with mitotic division. But this is very doubeful. The central body seems to consist merely of a spongy mass of slightly stainable substance, more or less impregnated with chromatin, which divides by constriction. At a certain stage in the division figures are produced resembling a mitotic pitise (3 s 8,8), which are not, in

(From Srac. Roy. Sac., vol. Lxuii)
F1c. 8.-Cell Structure of the Cyanophyceae. A and B, Tolypothrix lanata: (1) Young, (2) Old cells. C. Oscillaria limose: transverse microtome section.
the opinion of the writer, to be interpreted as a true mitosis. It is interesting to note that in many species the formation of new cell-walls is initiated before any indication of nuclear division is to be seen.

The bacteria, in most cases, have no definite nucleus or central body. The chromatin is distributed throughout the cytoplasm in the form of granules which may be regarded as.a distributed nucleus corresponding to what Hertwig has designated, in protozon, chromidia.

In the yeast cell the nucleus is represented by a homogenous granule, probably of a nucleolar nature, surrounded and perhaps to some extent impregnated hy chromatin and closcly connected with a vacuole which often has chromatin at its periphery, and contains one or more volutin granules which appear to consist of nucleic acid in combination with an unknown hase. Some observers consider that the yeast nucleus possesses a typical nuclear structure, and exhibits division by mitosis, but the evidence for this is not very satisfactory.

Tissues.-The component parts of the tissues of which plants are composed may consist of but slightly modified cells with copious protoplasmic contents, or of cells which bave been modified in various ways to perform their several functions. In some the protoplasmic contents may persist, in others they disappear. The formation of the conducting tubes or secretory sacs which occur in all parts of the higher plants is due either to the elongation of single cells or to the fusion of cells together in rows hy the absorption of the cell-walls separating them. Such cell-fusions may be partial or complete. Cases of complete fusion occur in the formation of laticiferous vessels, and in the spiral, annular and reticulate vessels of the xylem. Incomplete fusion occurs in sieve tubes. Tubes formed by the elongation of single cells are found in bast fibres, tracheides, and especially in laticiferous cells.

Laticiferows Tissue.-The taticiferous tisure consists of a netmork of branching or anastomosing tubes which contain a coagulable fluid known as latex. These tubes penetrate to all parto of the plant and occur in all parts of the root, stem and leaves. A protoplasnic lining is lound on their walls which contains nuclei. The
wails are pitted, and protoplasmic connexions het ween the laticiferous tubes and neighbouring parenchyma-cells have been seen. There are two types of laticiferous tissue-non-articulate and articulate. The non-articulate tissue which occurs in Euphorbiaceane. Apocynaceas, Urticaceae, Aclepiadacese, consists of long tubes, equivalent to single multinucleate cells, which ramily in all directions throughout the plant. Laticiferous vensels arise by the coolescence of originally distinct cells. The cells not only fuse together in longitudinal and transverte rows, but put out transverse projections. which fuse with others of a similar nature, and thus form an anastomosing netiwork of tubes which extends to all parts of the plant. They are found in the Compositae (Cichoriaceae), Campanulaceae. Papaveraceae, Lobeliaceac. Papayactac, in some Aroideae and Musacese, and in Euphorbiaceae (Manihol, Hever). The nuclei of the original cells persist in the protoplataic membrane. The rows of cells from which the laticiferous vessels are formed can be distinguished in many cases in the young embryo while atill in the dry seed (Scott), but the latex vescels in proceas of formation are more easily seen when germination has begun. In the process of cell-fusion the cell-wall swells slightly and then begine to dissolve gradually at come one point. The opening, which is at first very small, increases in sice, and before the crons-wall has entirely disappeared the contents of the two cells become continuous (Scott). The absorpt ion of the cell-walls takea place very early in the germinating seedling.

Sieve Tubes.-The sieve tubes consist of partially fused rows of cclls, the transverse or lateral walls being perforated by minute openings, through which the contents of the cells are connected with cach other, and which after a certain time become closed by the formation of callus on the sieve plates. The sicve tubes contain a thin lining layer of protoplasm on their walls, but no nuclei, and the cell sap contains albuminous gubstances which are coagulable by heat. Starch grains are sometimes present. In close contact wirh the segments of the sieve tubes are companion cells which communi. cate whth the sieve tubes by delicate protoplasmic strands; they can be distinguished from ordinary parenchy matous cells by their small size and dense protoplagm. Companion cells are not found in the Pteridophyta and Gymnosperms. In the latter their place is taken by certain cells of the medultary rays and bast parenchyma. The companion cells are cut off from the game cells as those which unite to form the sieve tube. The mode of lormation of the sieve plate is not ccrtainly known; but from the fact that delicate connecting threads of protoplasm are present between the cells from their frst development it is probable that it is a special case of the normal protoplasinic continuity, the sieve pores being produced by a sccondary enlargement of the minute openings through which these delicate strands pass. According to Lecomte, the young wall consists partty of ccllulose and partly of a substance which is not cellulove, the lat ter existing in the form of slight depressions, which mark the position of the future pores. As the sieve plate grows these non-cellulose regions ywell and gradually become converted into the same kind of mucous substance as that contained in the tube; the two cells are thus placed in open communication. Il this is correct it is easy to see that the changes which take place may be initiated by the orisinal dclicatc protoplasmic strands which past through the cellwall. (For further information regarding tissues, see the bection on A nalomy above.)

Proloplasmic Continuity-Except in the unicellular plants the cell is not an independent unit. Apart from their dependeace in various ways upon neighbouring cells, the protoplasts of all plants are probably connected together by fine strands of protoplasm which pass through the cell-wall (Tangl. Russow, Gardiner, Kienitz-Gerlof and others) (fig. 9). In Pinm: the presence of connecting threads has recently been demonstrated throughout all the tissues af the plant. These protoplasmic strands are, except in the casc of sieve tubes, so delicate that special methods have to be employed to make them visible. The basis of these methods consists in causing a. swelling of the cell-wall hy means of sulphuric acid or ainc chloride, and subsequent staining with Hoffmann's blue or other aniline dyes. The results so far obtained show that the connecting threads may be either "pit-threads" which iraverse the closing membrane of the pits in the cell-walls (fg. 9, B), or "wallthreads" which are present in the wall of the cell (fig. 9, A). Both

(Ater Gardisea)
Fig. 9.-Continuity of protoplasm of cells of Tames commentis (A) and endorperm of Lilimin Mertogem (B).
pit-threads and wall-threads may occur in the same cell, but more often the threads are limited to the pits. The pit-threads are larger and stain more readily than the wall-threads. The threads vary in size in different plants, They are very thick in Viscum album, and are well seen in Phascalus mullifarus and Lilium Martagon. They are present from the beginning of the development of the cell-wall, and arise from the spindle fibres, all of which may be continued as connecting threads (endosperm of Tamus cammunis), or part of them may be overlaid by cellulose lamellae (endosperm of Lilium Marlagan), or they may be all overlaid as in pollen mother-cells and pollen grains of Hellchoras foetidus. The presence of these threads between all the cells of the plant shows that the plant body must be regarded as a connected whole; the threads themselves probably play an important part in the growth of the cell-wall, the conduction of food and water, the process of secretion and the transmission of impulses.

Literature.-The following is a list of a few of the more important papers in which fusther information and a more complete list of literature will be (ound: Allen, "" Nuelear Division in the Pollen Mother-cells of Lilium canadense." Annals of Botany (1905). vol. xix. ; Berghs, "La Formation des chromosomes hétcrotypiques dans la sporogenese wégetale," La Cellufe (1904), vol. xxi. ; Blackman. "On the Fertilization. Alternation of Generations, and Gencral Cytology of the Uredineac," Ann, of Bof. (1904), vol. xviii. ; Butschli, Unkersuchungen über mikroskapische Schäume und das Protoplasma (Leipzig. 2892 ; Enc trans, by Minchin, London, 8894); also Untersuchingen aber Strikiup (Leipzig, 1898); Courchct. "Recherches sur les Chromoleucites." Anm.d. scs. nat (bot.): (ı888); Delage, L'A nnde biologique: comples rendus annuels des travaux de biologie générale (Paris,1895).\&c.: Farmer, "Recent Advances in Vegetable Cytology," Science Profress (1896), vol. v.;" The Cell and some of its Constituent Structures.' Science Progress (1897), Farmer and Moore, "On the Meiotic Phase in Animalsand Plants," Quayt. Jaurn. Micr. Sei. (1905). vol. xlviii.; Farmer and Dighy, "Sudies in Apospory and Apogamy in Ferns," Ann. ©j Bot. (1907), vol xxi. " "On the Cytological Fcatures exhibited by certain Varietal and Hybrid Ferns."Anm. of Bot. (rgro), vot Liv.; Fischer, Fixirung, Farburg und Bau des, Pratoplasmas (Jena, 1899); Flemming, "Morphologie der Zelle," Erebonisse der inntomie und Entwoichelungsgeschichte (1896): Gardincr. "The Histology of the Cell-Wall, with Special Relerence to the Mode of Connexion of Cells," Proc. Roy. Soc. ($1897-1898$). lxii., and his carlicr papers there cited: see also Prac. Camb. Phil. Soc. (1gO8), vol. ix." "The Genesis and Development of the Wall and Connecting Threads in the Plant Ccll. Prctiminary Communication," 1roc. Roy. Soc. (tgoo), Ixvi.; Gates, "A Study of Reduction in Oenotitra rubrinervis," Bal. Gaz. (1908), vol. xlyi.; Green, "The Cell tembranc," Science Progress (1897), new scrics, vol. i.; Grégoire, "Les Cinéses pollintques chez les Lilicaçées," La Cellule (8899), vol. xvi.; " Les Résuftats acquis sur tes cineses de maturation dans tes deux rêgnes." La Cellule (1905), vol. xxii. and (1910) vol. xxvi.; Gregoire and IVygacrts, " La Reconstitution du noyau et la formation des chronnosomes dans les cineses somatiques," i. La Cellule (1go3), vol. xxi. :Guignard, "Sur les antherozoides et la double copulation sexuclle chez les vegétaux angiospermes." Comples rendus (1899), 128; Haberlandt, Physialapische Pflanzenanofomic (Leipzig, 190n): Die Liehsinnesorgame der Zaubblatter (Leipzis, 1905); R. A. Harper, Sexual Reproduction and the Organizalion of the Nucleus in cerlain Middews (pub. Carncgic Institution, 1905); M. Hartog, "The Dual Force of the Dividing
 morphologie es reproduction (Paris, 1896); O. Hertwige Dae Zelle und die Gewebe (Jena, 1893 and 1898 ; sce Eng. ed.. London. 1894): Hirase, "Etudes sur la Ícosondation et l'Embryogénie du Ginkgo biloba," Journ. Coll. Scr. Imp. Umiv. Uapan, 1895): Ikeno, "Untersuchungen über dic Entwickclung der Geschlech tsorgane und den Vorgang der Berruchtung bei Cycas revoluta," Jahr. f. wiss. Bolanik (i898), 32; Lee, The Microlomist's Vade Mer um (London, 1900); Macallum " "On the Detection and Localization of Phosphorus in Animal and Vegetabie Cells," Proc. Roy. Soc. (1898), vol. \xiii.; "On the Distribution of Assimilated Iron Compounds other than Haemoglobin and Hacmatins, in Animal and Vegctable Cells." Ouarl. Sourn. Micr. Sci. (ı896), vol, xuxviii. Meyer, Untersuchungen riber die Stürke-Kómer (Icna, 1895); Montgomery, " Comparative Cytological Studics, with especial regard to the Morphology of the Nucleolus." Jowrs. of Afopphology, vol. xy (Boston, 1899) ; D. M. Mottier, "The Development of the Heterotype Chromosomes in Potlen Mother-cetls," Ann of Bot. (1907), vol. xxi., "On the Prophases of the Heterotype Mitosis in the Embryo-sac Mother-cell of Lilium. "A An. of Bot. (1909), vol. xxiii.: Fecundation in Plands (Carnexie Institution, 1904); Nawaschin. "Resultatc einer Revision der Befruchtungsvorgange bei Lufums Marlagon und Fritillaria temella," Bull. de lacad. des sel de St Petersbourp (1898):""Ueber dic Befruchtungsvorgange bci ciniger Drotylc-
"Cytolopische und morphologische Studien an Drosera Longijotsa X ratundiforra.". Kungl. srenska velenskapsakad, handl. (1gog), vol xliy., Salter, "Zur näheren Kenntniss der Starkekorner," Pringsh. Jahrb. (1898), Sargant. "The Formation of the Sexual Nucle in Luitum Marlagon, I. and I!" Ann. of Bot (1896-1897).vols. x. and xi. "Recent Work on the Results of Fertilization in Angrosperms," Ann. of Bat. (Igoo), vol. xiv.; Schmper, "Sur l'Amidon et les Leucites," Ann. des sct. nat. (bot.) (1887); Scott," Development of Articulated Laticilcrous Vessels," Quart. Journ. Micr. Sci. (1882) "On the Laticiferous 'Tissue of Manihob Glazioni (the Ceard Rubber)." Quart. Journ. Micr. Sct. (1884); Strasburger, "Chromosomenzahlen, Plasmastrukturen, Vererbungstrager und Reduktion* stcilung،" Juhrb. wiss. Bot. (1go8), vol. xlv,; //istolagische Bettrage vols. i. to vii. (Jena) ; Strasburger and ophers, "Cytologische Studien aus dem Bonner botanischen Institut." Jahrb, fur whssensch. Botansh (1897), vol. 30; Wager. "On Nuclear Division in the Hymenomycetes," Ans. of Bot. (1893), vol. vii. ; "On the Structure and Reproduction of Cystopus candidus,' ${ }^{\text {' }}$ Ann; of Bot. (1896), val. x. "The Cell Structure of the Cyanophyccac." Prac. Ray. Soc. (1goz). vol. Ixxii.; Wager and Peniston, "Cytological Observations on the Yeast Plant," Ann. of Bot. (igio), vol. xxiv : Webber, "The Development of the Antherozoids of Zamia, " Bot. Gaz. (1897), vol xxiv. i Wilson, The Cell in Development and' Inhertance (New York and London, 1900); Zimmermann. "Sammel-Referate aus dem Gesammtgebiete der Zellenlehre," Beikefte $24 m$ bot. Centralbd. (1893 and 1894); Die Marphologie und Physiologre des pfanzlikken Zellkernes (Jena, 1898).
(H. W. ${ }^{\bullet}$)

Morphology of Plants

The term morphology, which was introduced into science by Goethe (1817), designates, in the first place, the study of the form and composition of the body and of the parts of which the body may consist; secondly, the relations of the parts of the same body; thirdly, the comparison of the bodies or parts of the bodies of plants of different kinds; fourthly, the study of the development of the body and of its parts (antngeny); fifthly, the investigation of the historical origin and descent of the body and its parts (phylogeny), and, lastly, the consideration of the relation of the parts of the body to their various functions, a study that is known as organography.
It is this last department of morphology that was the first to be pursued. The carliest scientific result of the study of plants was the recognition of the fact that the various parts of the body are associated with the performance of different kinds of physiological work; that they are, in fact, organs discharging special functions. The origin of the organography of the present day may be traced back to Aristotle, who described the parts of plants as "organs, though very simple ones." It was not until many centuries had passed that the parts began to be regarded from the point of view of their essential nature and of their mutual relations; that is, morphologically tnstead of organographically. Joachim Jung, in his fsagoge phyloscopica (1678), recognized that the plant-body consists of certain definite members, root, stem and leaf, and defined them by their difierent form and by their mutual rclations. This point of view was further developed in the following eentury by Caspar Friedrich Wolff (Theoria generationis, 1759), who first followed the development of the members at the growing-point of the stem. He observed that the "appendicular organs," as he called the leaves, are developed in the same way, whether they be foliageleaves, or parts of the flower, and stated his conclusions thus: "In the entire plant, whose parts we wonder at as being, at the first glance, so extraordinarily diverse, 1 finally perceive and recognize nothing beyond leaves and stem (for the root may be regarded as a stem). Consequently all parts of the plant, except the stem, are modificd leaves." Similar views were arrived at by Goethe, though by the deductive rather than the inductive method, and were propounded in his famous pamphlet, Versuch die Melamorphase der Pfansen ess erkldren (1790); from which the following is a quotation: "The underlying relationship between the various external parts of the plant, such as the leaves, the calyx, the corolla, the stamens, which develop one after the other and, as it were, out of one anothcr. has long been generally recognized by investigators, and has in fact been specially studicd, and the operation by which one and the same organ presents ilself to us in various forms has been termed Metamorphosis of Plants"

Pure Aforphology.-Thus it became apparent that the many
and various organs of plants are, for the most part, different forms of a small number of members of the body, which have been distinguished as follows, without any reference to function. The thellus (thallome) is a plant-body which is not differentiated into the members root, stem and leaf; it is the morphologically simplest body, such as is of common occurrence in the lower plants (e.g. Thallophyta). In a differentiated body the slem (caulome) is an axis capahle of bearing leaves and (directly or indirectly) the proper reproductive organs. The leaf (phyllome) is an appendicular member only borne by a stem, hut differing from it more or less obviously in form and development, though co-ordinate with it in complexity of structure. The rood is an axis which never bears either leaves or the proper raproductive organs (whether sexual or asexual) of the plant. The hair (trichome) is a superficial appendage of simple structure, which may be borne hy any of the other members. The emergence is also an appendicular member of more complex structure than the hair (e.g. the prickles of the rose). Further, it has heen found convenient to designate the leal-bearing stem as a whole hy the term shool, so that the body may, as Sachs suggested, be primatily analysed into shoot and root.
At the present time some ohjection is being taken to this purely morphological conception of the body and its parts as being too ahstract. It is urged that the various parts are, as a matter of lact, organs; and that it is therefore inadmissibic to ignore their functions, as is done in the foregoing definitions. To this it may be replied that pure morpbology and organography are not alternatives, hut are two complementary and equally necessary modes of considering the composition of the plant-body. Moreover, the ahstract terms "stem," " leaf," "root," \&ac., are absolutely indispensable; and are continually used in this sense by the most ardent organographers. It has not yet been suggest ed that they should be replaced by organographical terms; were this accomplished, descriptive botany would become impossible.
It is also urged against these definitions that they are not of universal applicability; that there are exceptional structurcs which cannot be hrought within the limits of any one of them. But admitting the validity of this criticism, and even going so far as to question the possibiity of ever devising absolutely inclusive and, at the same time، exclusive definitions, no sufficient reason is adduced for giving up all attempt at morphological analysis.
Homology.-All members belonging to the same morphological category are said to be homologous, however diverse their functions. Thus, in a phancrogam, the sepals, petals, stamens and foliage-leaves all come under the categary leaf, though some are parts of the perianth, others are spore-bearing organs (sporophylls), and others carry on nutritive processes. The bomology of members was based, in the first instance, upon similarity of deveiopment and upon similar relations to the other parts of the body, that is, upon ontogeny. But since the general adoption of the theory of evolution, similarity of descent, that is of phylogeny, has come to form an essential part of this conception; in other words, in order that their homology may be established the parts compared must be proved to be homogenetic.

The introduction of the phylogenetic factor has very much increased the difficulty of determining homologies; for the data necessary for tracing phylogeny can only be oblained by the study of a series of allied, presumabiy ancestral, forms. One of the chief difficultics met with in this line of research, which is one of the more striking developments of modern morphology, is that of distinguishing between organs which are "reduced," and those which are really "primitive." The object of the phylogenetic study of any organ is to trace it back to its primitive form. But, as will be pointed out later, organs are often found to have undergone "degencration " or "reduction," and such reduced or degenerate structures may easily be mistaken for primitive struetures, and so the investigator may be misled.

The effect of the phylogenetic factor in homology may be illustrated in the following cases. The leaves of the true monses
and those of the club-mosses (Lycopodium, Selaginalla) being somewhat alike in general appearance and in ontogeny, might be, and indeed have been, regarded as homologous on that ground. However, they belong respectively to two different forms in the life-history of the plants; the leaves of the mosses are borne hy the gametophyte, those of the cluh-mosses by the sporophyte. In accordance with the prevalent antithetic view of the alternation of gencrations in these plants (see Plants, Repronuction of), the forms distinguished as sporophyte and gametophyte are not homogenctic; consequently their leaves are not homologous, hut are only functionally similar (bomoplastic; sce iufra).

Another effect is that different degrees of homology have to be recognized, just as there are different degrees of relationship or affinity bet ween individual plants. When two organs can be traced along the same line of descent to one primitive form, that is when they are found to the monophyletic, their homology is complete; when, however, they are traceable to two primitive forms, though these forms belong to the same morphological serics, they are polyphylctic and thercfore oniy incompletdy homologous. For instance, all the leaves of the Bryophyta are gererally homologous inasmuch as they are all developments of the gametophyte. But there is reason to helicve that they bave been differentiated quite independently in various groups, such as the Marchantiaccae, the Jungermanniaceac, and the mosses proper; consequently their phylogeny is not the same, they are polyphyletic, and therefore they are not completely homologous, hut are parallel developments.

Analogy--Considering the parts of the body in relation to their functions, that is as organs, they are found to present pecuinarities of form and structure which are correlated with the functions that they have to discharge; in other words, the organ shows adaptation to its functions. All organs performing the same function and showing similar adaptations are said to be analogous or homoplaslic, whatever their morphoiogical nature may be; hence organs are sometimes both homologous and analogous, sometimes oniy analogous. The tendrils of a vetch and of a cucumber arc analogous, and also homologous because they both belong to the category leaf; but they are only analogous to the tendrils of the vine and of the passion-fower, which belong to the category stem.
Metamorphosis.-It has already been pointed out that each kind of member of the body may present a varicty of forms. For example, a stem may be a tree-trunk, or a $\frac{1}{}$ wining stem, or a tendril, or a thorn, or a crecping rhizome, or a tuher; a leaf may be a green foliage-leaf, or a scale protecting a bud, or a tendril, or a pitcher, or a floral leaf, either sepal, petal، stamen or carpel (sporophyll); a root may be a fibrous root, or a swollen tap-root like that of the beet or the turnip. All these various forms are organs discharging some special function, and are examples of what Wolni called "modification." and Gocthe "metamorphosis." It may be inquired what meaning is to he attached to these expressions, and what are the conditions and the nature of the changes assumed by them. The leaf of the higher plants will be taken as the illustrative case because it is the most "plastic " of the members, the one, that is, which presents the groatest variet y of adaptations, and hecause it has been most thoroughly studied.
In this، as in all morphological inquiries, two lines of investigation have to be followed, the phylogenetic and the ontogenetic. Beginning with its phylogeny, it appears, so far as present knowledge goes, that the differentiation of the shoot of the sporophyte into stem and leal first occurred in the Pteridophyta; and, in accordance with the views of Bower (Origin of a LandFlora), the primitive leaf was a reproductive leaf, a sporophyll, from which the foliage-leaf was derived hy progressive sterilization. From the nature of the case, this view is not, and could not be, based upon actual ohservation, nor is it universally accepted; however, it scems to correspond more closely than any other to the facts of comparative morphology. It was formeriy assumed, and the view is still heid, that the foliage-leaf was the primitive form from which all others were derived, mainly on
the ground that, in ontogeny, the foliage-lear genernlly precedes the sporophyll. The phylogeny of the various floral leaves, for instance, was generally traced as follows: foliage-leaf, bract, sepal, petal, stamen and carpel (sporophylls)-in accordance with what Goeibe termed "ascending metamorphosis." Recent researches, however, more especially those of Celakovsky, tend to prove that the perianth-leaves have been derived from the stamens (i.e. from sporophylis); that is, they are the result of "descending metamorphosis.". Moreover there is the fact that the flowers of nearly all the primitive phanerogams, such as the Gymnosperms, consist solely of sporophylls, having no perianth. There is thus a considerahle body of evidence to support Bower's view of the primitive nature of the sporophyll.
Accepting this view of the phylogeny of the leaf, the perianthleaves (sepals and petals) and the foliage-leaves may be regarded as " modified" or "metamorphosed " sporophylls; that is, as leaves which are adapted to lunctions other than the bearing of spores. The sepals are generally organs for the protection of the flower-bud; the petals, for attracting insects by their conspicuous form and colour; the foliage-leaves, for the assimilation of carbon dioxide and other associated functions. But this phylogenctic differentiation of the organs was not what Wolf and Goethe had in mind; what they contemplated was an ontogenetic change, and there is abundant evidence that such changes actually occur. Taking first the conversion of memhers of one morphological category into those of another, this has been actually ohserved, though rarely. Gorbel (Organography) gives several instances of the conversion of the root into a shoot in lems, and a few in phanerogams (Lislera orata, Neollia nidusasis, Anthuriu(longifolium). Much more common is the conversion of one form of a member into another form. The most varied changes of this kind have been described, and are generally familiar as "monstrosities'; the study of them constitutes, under the name of teratology, a distinct department of hiology. A simple case is that of "doulle " dowers, in which the number of the petals is increased by the "metamorphosis" of stamens; or again the conversion of floral leaves into green leaves, a change known as "chloranthy." These changes may be brought about hy external causes, such as the at lacks of insects or of fungi, alterations in external conditions, \&c., or by some unexplained internal disturbance of the morphological equilibrium. They can also be effected experimentally. Gocbel has shown that if the developing foliage-leaves of the fern Onoclea struthiopleris be removed as they are formed, the subsequently developed sporophylls assume more or less completely the habit of foliage-leaves, and may be sterile. Similarly bud-scales can be caused to develop into foliage-leaves, if the buds to which they belong are caused to grow out in the year of their formation lyy the removal of the existing foliage-leaves.
Useful and suggestive as they often are, teratological facts played, at one time, too large a part in the framing of morphological theories; for it was thought that the "monstrous" form gave a clue to the essential nature of the organ assuming it. There is, however, no sufficient reason for regarding the mongtrous form as necessarily primitive or ancestral, nor even as a stage in the ontogeny of the organ. For when the older morphologists spoke of a stamen as a " metamorphosed " lcaf, it was implied that it originated as a foliage-leaf and subsequently became a stamen. As a matter of fact, a stamen is a stamen and nothing else, from the very beginning. The development of the organ is already determined at its first appearance upon the growing-point; though, as already explained, the normal course of its ontogeny may be intericred with by some abnormal external or internal condition. The word "metamorphosis" cannot, in lact, be used any longer in its original sense, for the change which it implied does not normally occur in ontogeny, and in phylogeny the idea is more accurately expressed by the term "differentiation." Hnwever, it may still be uscful is describing "monstrosities," and perhaps also those cases in which an organ serves first one purpose and then another, as when a leafy shoot eventually becomes a thorn, or the base of 2 foliage-icaf becomes a bud-scale.

Differmatiation.-Any account of the general morphology of living organisms is incomplete if it does not include some attempt at an explanation of its causation; though such an attempt cannot be carried lar al the present time. A survey of the vegetable kingdom indicates that cvolution has proceeded, on the whole, from the simple to the complex; at the same time, at has been already mentionod, evidence of reduction or degeneration in common. Thus in the scrics Bryophyta, Pleridophyta, Phancrogamia, whilst the sporophyte presents progressive development, the gametophyte presents continuous reduction.

Evolution means the gradual development of "highly organized" from "lowly organized" forms; that is, of forms in which the "physiological division of labour" is more complete, from those in which it is less complete; of forms possessing a varicty of organs, from forms posscssing but few. DifferentiaLion means the development and the specialization as organs of various parts of the body. It presents itself in two aspects: there is morphological differentiation, which can he traced in the distinction of the members of the body, root, stem, leal, \&c.; there is physiological differentiation, which can be traced in the adaptation of thesc members to various functions. But, in actual aperation, these two processes are simultancous; every member is devcloped as an organ for the performance of some apecial function.
Factors in Evolution.-Evolution in the race involves progressive differentiation in the individual; hence the causes of evolution and of differentiation must be the same. The evolution of higher from lower plants, it is generally assumed, has proceeded by variation. With regard to the causation of variation Derwin says (Origin of Species, ch. v.): "In all cases there are two factors, the nature of the organism, which is much the mont important of the two, and the nature of the conditions. The direct action of changed conditions leads to definite or indefinite results. In the latter case the organization seems to become plastic, and we have much fluctuating variability. In the former case the mature of the organism is such that it yields readily, when subjocted to certain conditions, and all or nearly all the individuals become modified in the same way."
In spite of the statement that the " nature of the organism" is the most important factor in variation, the tendency amongst cvoiutionists has been to take much more account of the influence of external conditions. Exceptions to this attitude are Lamarck, who speaks with regard to animals (but not to plants!) of "la composition croissante de l'organisation" (Philosophie zoologique, t. i.), and Nageli, who attributes variation to causes inherent in the "idioplasm," and has elaborately worked out the view in his Abstammungslehre.

The position assumed in this article is in agreement with the views of Lamarck and of Nagcli. All but the lowest plants visibly tend towards or actually achieve in various degrees the differentiation of the body, whether sporophyte or gametophyte, into stem, lcal، root, \&c., that is, the differentiation of parts not previously present. It is inconceivable that external conditions can impart to an organism the capacity to develop something that it does aot already possess: can impart to it, that is, the capacity for variation in the direction of higher complexity. The alternative, which is here accepted, is that differentiation is essentially the expression of a developmental tendency inherent in the protoplasm of plants. Just as every crystallizable chemical substance assumes a definite and constant crystalline form which cannot be accounted for otherwise than by regarding it as one of the properties of the substance, so every living organism assumes a characteristic form which is the outcome of the propertics of its protoplasm. But whereas the crystalline form of a chemical substance is stable and fixed, the organized form of a living organism is unstable and subject to change.

Infuence of External Conditions.-This position does not, however, exclude the influence of external conditions; that influence is undeniable. Darwin's expression "the nature of the organism " has been interpreted in the preceding paragraph to mean an inherent tendency towards higher organization; that interpretation may now be completed by adding that the
organism is susceptible to, and cari respond to, the action of external conditions. There is every reason to believe that plants are as "irritable" to varying external conditions as they are to light or to gravity. A change in its external conditions may act as a "stimulus," evoking in the organism a response of the nature of a change in its form. As Darwin has pointed out, this response may be direct or indirect. In illustration of the indirect response, the evolution of the Bryophyta and of more highly organized plants may be briefly considered. It is generally admitted that life originated in water, and that the earliest plants were Algae. The study of existing Algae, that is of plants that have continued to live in water, shows that under these conditions no high degree of organization has been reached, though some of them have altained gigantic dimensions. The primitive water-plants were succeeded by land-plants, a landflora being gradually established. With the transition from water to land came the progressive development of the sporophyte which is the characteristic feature of the morphology of the Bryophyta and of all plants above them in the scale of life (see Bower, Origin of a Laxd-Flora). This evolution of the sporophyte is no doubt to be correlated with the great change in the external conditions of life. There is no conclusive ground for regarding the action of this change as having been direct, it is more reasonable to regard it as indirect, having acted as a general stimulus to which the ever-increasing complexity of the sporophyte was the response.
Adaptation.-The morphological and physiological differentiation of the plant-body has, so far, been attributed to (1) "the nature of the organism," that is to its inherent tendency towards higher organization, and (2) to the "indefnite results" of the external conditions acting as a stimulus which excites the organism to variation, but does not direct the course of variation. The "definite results" of the action of external conditions have still to be considered.
It is a familiar observation that climatic and edaphic (nature of soil) conditions exert an influence upon the form and structure of plants (see Plants: Ecology of). For instance, some xerophytes are dry and hard in structure, whilst others are succulent and fleshy. This so-called direct effect of external conditions upon the form and structure of the body differs from the indirect effect in that the resuiting variations bear a relation, of the nature of adaptation, to those conditions; the effect of the conditions is not only to cause variation, but to cause variation in a particular direction. Thus all existing hygrophytes (excepting the Algac) are considered to have been derived from land-plants which have adapted themselves to a watery habitat. The effect can also be demonstrated experimentally: thus it has been observed that a xerophyte grown in moist air will lose its characteristic adaptive features, and may even assume those of a hygrophyte.
Climatic and edaphic conditions are not, however, the only ones to affect the structure and composition of the body or its parts; other conditions are of importance, particularly the relations of the plant to animals and to other plants. For instance, the "animal traps" of carnivorous plants (Drosera, Nepenthes, \&c.) did not, presumably, originate as such; they began as organs of quite another kind which became adapted to their present function in consequence of animals having beet accidentally caught. It is also probable that the various forms of the angiospermous flower, with its many specialized mechanisms for pollination, may be the result of insect.visits, the fowers becoming adapted to certain kinds of insects, and the insecis having undergone corresponding modification. Parasites, again, were derived from normal autotrophic plants, which, as the parasitic habit became more pronounced, acquired the corresponding characteristics of form and structure; there is, in fact, the group of hemi-parasites, plants which still retain autotrophic characters though they are root-parasites.
Though adaptation to the environment seems sometimes to be considered, especially by neo-Lamarckians, as equivalent to, or at least as involving, the evolution of bigher forms from lower, there does nol appear to be any evidence that this is the
case. The effect of external conditions is confined to the modification in various directions of members or organs already existing, and one very common direction is that of reduction or entire disappearance of parts: for instance, the foliage-leaves of certain xerophytes (e.g. Cactaceac, Euphorbiacene), of parasites, and of saprophytes. Moreover, had the evolution of plants proceeded along the line of adaptation, the vegetable kingdom could not be subdivided, as it is, into the morphological groups Thallophyta, Bryophyta, Pteridopbyta, Phanerogamis, but only into physiological groups, Xerophyta, Hygrophyta, Tropophyta, \&cc.
In endcavouring to trace tbe causation of adaptation, it is obvious that it must be due quite as much to properties inherent in the plant as to the action of external condicions; the plant must possess adaptive capseity. In other words, the plant must be irritable to the stimulus exerted from without, and be capable of responding to it by changes of form and structure Thus there is no essential difference between the "direct " and the "indirect "action of external conditions, the difference is one of degree only. In the one case the stimulus induces indefinite variation, in the other definite; but no bard-and-fast line can be drawn between them.

Adaptive characters are often bereditary, for instance, the seed of a parasite will produce a parasite, and the same is tree of a carnivorous plant. On the other hand, adaptations, especially those evoked by climatic or edaphic conditions, may only be shown by the soedling if grown under the appropriate external conditions; here what is hereditary is not the actual adaptation, but the capacity for responding in a particular way to a certain set of external conditions.
Summary.-The general theory of differentiation propounded in this articlo is an altempt at an analysis of the factors termed by Darwin "the nature of the organism" and "the nature of the conditions." It is assumed, as an inevitable conclusion from the facts of evolution, that plant-protoplasm possesses (1) an inherent tendency towards higher organization, and (2) that it is irritable to external conditions, or to changes in them, and can respond to them by changes of form which may be either indefinite or definite (adaptive). Thus it is that the variations are produced upon which natural sclection has to work.

Material Cause of Differentiation.-It may be inquired, in conclusion, if there are any facts which throw light upon the internal mechanism of difierentiation, whether spontaneous or induced; if it is possible to refer it to any material canse. It may be replied that there are such facts, and though they are but few as yct, they suffice to suggest an hypothesis that may eventually prove to be a law. Sachs was the first to formulate the theory that morphological differences are the expression of differences in material composition. He considered, lor instamer, that stems, leaves, roots and fowers differ as they do because the plastic substances entering into their structure are diverse This view he subsequently modifed to this-that a relatively small proportion of diverse substance in each of these parts would suffice to account for their morphological differcaces This modification is important, because it transicrs the formative influence from the plastic substances toabe protoplasm, sugsesting that the diverse constituents are produced (whether spontaneously or as the result of stimulation) as secretions by the protoplasm. It is an obvious inference that if a small quantity of a substance can affect the development of an entire orgas it probahly acts after the madner of an entyme. Beyerinck has, in fact, gone so far as to speak of "formative enrymes"

It is not possible to go into all the facts that might be adduced in support of this view: one case, perhaps the most pregnant. must suffice. Beyerinck was led to take up the decided position just mentioned by his researches into the conditions determining the formation of plant-galls as the result of injury by insects He found that the development of a gall is due to a temporary modification of the part affected, not, as is generally thougbr, in consequence of the deposition of an exg by the insect, but of the injection of a poisonous substance which has the effert of stimulating the protoplasm to develop a gall instead of normel
structure. If this be so, it may justifiably be inferred that both normal and abnormal morphological features may be duc to the presence of enzymatic substances secreted by the protoplasm that determine the course of development. At any rate this hypothesis suggests an explanation of many hitherto inexplicable facts. For instance, it has been pointed out in the article on the reproduction of plants that the effect of the fertilization of the female coll in the ovule of a phancrogam is not confined to the female cell, but extends more or less widely outside it, inducing growth and tissucchange. The ovule develops into the sced; and the gymaeceum and even more remote parts of the fower, develop into the fruit. The facts are familiar, but there is no means of explaining them. In the light of Sachs's theory the interpretation is this, that the act of fertilization causes the formation in the female cell of substances which are transmitted to adjacent structures and stimulate them to further devciopment.
Literature.-As the scope ol this artick limits it to the general principles of the morphology of plante, comparatively few facts have been adduced. Full morpholosical and organographical details are given in the articles on the variove groupe of planth, such as those on the Algac. Broophyta, Peeridophyta, Angioeperms, Gymnosperms, ace. The following works may also be conaulied. Schimper. Plant-Geagraphy (Clarendon Presa, Oxford); Gocbel, Organaprapky (Clarendon Prest, Oxford); Bower, The Oripin of a Land-Flora (Macmillan); Beycrinck, "Ueber Cecidien (Bot. Zeilung, 1888).
(S.H.V.')

Distrmution of Plants

Common cipericnce shows that temperature is the most important condition which controls the distribution of plants. Those of warmer countries cannot be cultlvated in Britigh gardens without protection from the rigours of winter; still less are they able to hold their own unsided in an unfavoarabie climate. Temperature, then, is the fundamental limit which gature opposes to the indefinite extension of any one species. Buffon remarked " that the same temperature might have been expected, all other circumstances being equal, to produce the same beings in different parts of the globe, both in the animal and vegetable kingdoms." Yet lawns in the United States are destitute of the common English daisy, the wild hyacinth of the woods of the United Kingdom is absent from Cermany, and the foxglove from Switzerland. We owe to Buffon the recognition of the limitation of groups of species to regions separated from one another by "natural barriers." When by the aid of man they surmount these, they often dominate with unexpected vigour the native vegetation amongst which they are colonists. The cardoon and milk thistle, both European plants, cover tracts of country in South America with impenctrable thickets in which both man and beast may be hopelessly lost. The watercress blocks the rivers of New Zealand into which it has been introduced from Europe. The problem, then, which plantdistribution presents is twofold: it has first to map out the earth's surface into "regions" or "arens of vegetation," and secondly to trace the causes which have brought them about and led to their restriction and to their mutual relations.

The earliest attempts to deal with the first branch of the inquiry may be called physiognomical. They endeavoured to define "aspects of vegetation" in which the "forms" exhibited an obvious adaptation to their climatic surroundings. This has been done with success and in great detail by Grisebach, whose Vcgetation der Erdc from this point of view is still unsurpassed. With it may be studicd with advantage the unique collection at Kew of pictures of plant-life in its broadest aspects, brought together by tbe industry and munificence of Miss Marianne North. Grisebach declined to see anything in such "forms" but the production by nature of that which responds to external conditions and can only exist as long as they remain unchanged. We may agree with Schimper that such a point of view is obsolete without rejecting as valucless the admirable accumulation of data of which it admittedly fails to give any rational explanation. A single example will be sufficient to illustrate this. The genus Senecio, with some 1000 specics, is practically cosmopolitan. In erternal babit these exhibit
adaptations to every kind of climatic or physical condition: they may be mere weeds like groundsels or ragworts, or climbers masquerading like ivy, or succulent and almost lealless, or they may be shrubs and even trees. Yet throughout they agree in the essential structure of their foral organs. The cause of such agrecment is, eccording to Grisebach, shrouded in the decpest obscurity, but it finds its obvious and complete explanation in the descent from a common ancestor which he would unhesilatingly reject.

From this point of view it is not sufficient, in attempting to map out the carth's aurface into "regions of vegreation," to have regard alone to adaptations to physical conditions. We are compelled to take into account the actunal affinity of the plants inhabiting them. Anything short of this is merely descriptive and empirical, and affords no rational basis for inquity into the mode in which the distribution of plant-life has been brought about. Our regions will not be "natural" unless they mark out renl discontinuities both of origin and affinity, and these we can only seck to explain by reference to past changes in the carth's history We arrive thus at "the essential aim of geographical botany," which, as stated by Schimper, is "an inquiry into the causes of differences existing among the various floras." To quote further: "Existing floras exhibit only one moment in the history of the carth's vegetation. A transformation which is sometimes rapid, sometimes slow, but always continuous, is wrought by the reciprocal action of the innate variabulity of plants and of the varability of the external factors. This change is due partly to the migratoons of plants, but chicfly to a transformation of the plants covering tbe carth." This transformation is duc to new characters arising through variation. "If the new characters be usciul, they are selected and periected in the descendants, and constitute the so-called 'adaptations' in which the cxiernal factors acting on the plants are reflected." Tho study of the nature of these adaptations, which are often extremely subtle and hy no means merely superficial, is termed Ecology (see above).
The remark may conveniently find its place here that plants which have reached a high degree of adaptive specialization have come to the end of their tether: a too complicated adjustment has deprived them of the elasticity which would enable them to adapt themselves to any further change in their surroundings, and they would pass away with conditions with which they are too inextricably bound up. Vast doras have doubless thus found their grave in gcologic change. That wrought by man in destroying forests and cultivating the land will be no less effective, and already specimens in our herbaria alone represent species no longer to be found in a living state. Extinction may come about indirectly and even more surely This is easy to happen with plants dependent on insects for their fertilization. Kronfeld has shown that aconites are dependent for this on the visits of 2 Bombus and cannot exist outside the area where it occurs.
The actual and past distribution of plants must obviously be controlled by the facts of physical geography. It is concerned witb the land-surface, and this is more symmetrically disposed than would at first sight appear from a glance at a map of the world. Lyell points out that the eye of an observer placed above a point between Pembroke and Wexford, hat. $52^{\circ} \mathrm{N}$. and long. $6^{\circ} \mathrm{W}$., would bebold at one view the greatest possible quantity of land, while the opposite hemisphere would contain the greatest quantity of water. The contincntal area is on one side of the sphere and the oceanic on the other. Love has shown (Nature, Aug 1, 1907. p 328) that this is the result of physical causes and that the existence of the Pacific Occan " shows that the centre of gravity of the earth does not coincide with the centre of figure." Onc half of the earth has therelore a greater density than the other. But "under the influence of the rotation the parts of greater density tend to recede further from the axis than the parts of less density . . . the effect must be to produce a sort of furrowed surface." The furrows are the greal ocean basins, and these would still persist even if the land surface were enlarged to the $1+00$ fathoms contour. These considerations
preclude the possibility of solving difficulties in geographical distribution by the construction of hypothetical land-surfaces, an expedient which Darwin always stoutly opposed (Life and Letters, ii. 74-78). The furrowed surface of the earth given the land-area a star-shaped figure, which may from time to time have varied in outline, but in the main has been permanent. It is excentric as regards the pole and eends tapering extensions towards the south. Sir George Darwin finds a possible explanation of these in the screwing mation which the earth would suffer in its plastic state. The polar regions travelled a little from west to east relatively to the equatorial, which lagged behind.

The great primary divisions of the earth's flora present themselves at a glance. The tropics of Cancer and Capricorn cut off with supprising precision (the latter somewhat less so) the tropical from the north and south temperate zones. The north temperate region is more sharply eeparated from the other two than the south temperate region from the tropical.
I. Norif Tzmperate Region (folarclic).-This is the largent of all, circumpolar, and hut for the break at Bering Straits, would be, as it has been in the past, continuous in both the old and new worlds It is characterized by its needle-leaved Conifcrae, its eatkin-bearing (Amentactace) and other trees, deciduour in winter, and its prolusion of herbaceous species.
II. South Temperate Region. - This occupies widely separated areas in South Arrica, Australia, New Zcaland and South America. These are connected by the presence of peculiar types, Proteaceac, Restinceae, Rutaceas, dec, mostly shrubby in habit and on the whole comewhat intolerant of a moist climate. Individual species are extremely numerous and often very restricted in area.
III. Tropical Region.-This is characterized by the presence of gigantic Monocoryledons, palms, Musaceae and bamboos, and of evergreen polypetalous treen and figs. Herbaccous plants are rare and mostly epiphylic.

A consideration of these regions makes it apparent that chey are to a large extent adaptive. The boreal is cold, the austral warm, and the tropical afords conditions of heat and moisture to which the vegetation of the others would be intolerant. If we take with Drude the number of known families of flowering plants at 240, 92 are generally disperned, 17 are noore restricted, while the semainder are either dominant in or peculiar to separate regions. Of these 40 are boreal, 22 austral and 69 tropical. If we add to the latter figure the families which are widely dispersed, we find that the tropics posecse 161 or almost exactly two-thirds of the large groups comprised in the world's vegetation. M. Casimir de Candolle has made an independent investigation, based on Hooker and Bentham's Genera plantarum. The result is unfortunately (1910) unpublished, but he informa the present writer that the resule leads to the striking con. clusion: "Li vegetation est un phénomene surtout intertropical, dont nous ne voyons plus que restes afaiblis dans nos rexioas tempérées." In attempting to account for the distribution of existing vegetation we must take into aceount palacontological evidence. The results arrived at may be read as a sequel to the article on Palaeobotany.

The regetation of the Palacozoic era, till cowards its close, was apparently remarkably homogencous all over the world. It was characterized by arborescent vascular Cryptogams and Cymnosperms of a type (Cordaiteae) which have left no descendants beyond it. In the southern hemisphere the Palacozoic flora appears ultimateiy to have been profoundly modified by a lowering of temperature and the existence of glacial conditions over a wide area. It was replaced by the Glossopleris flora which is assumed to have originated in a vast continental area (Gondwana land), of which remnants remain in South America, South Africa and Australa.
The Glos sopteris flora gradually sproad to the northern hemisphere and intermingled with the later Palaeozoic flora wheh still persisted Both were in curn replaced by the Lower Mesozoic flora, which agan is thought to have had its birth in the hypothetical Gondwana Land, and in which Gymnosperms played the leading part formerly taken by vascular Cryptogams Fhe abundance of Cycadean plants is one of its most striking features. They attained the highent degree of structural complexity in the Bennettiteac, which have been thought even to loreshadow a foral organization. Though now on the way to extinction, Cycadeae are still widely represented in the sout hern hemisphere by genera which, however, have no counterpart in the Mesozoic era. Amongst Conifers the archaic genera, Ginkgo and Araucaria still persist. Once widely distributed in the Jurassic period throughout the world, they are now dying out - the former is represented by the solitary maiden-hair tree of China and Japan; the latter by some ten species confined to the southern hemisphere, once perhaps their original home. With them may be associated the anomalous Sciadopilys of Japan.

- So far the evolution of the vegctable kingdom has proceeded with. out any conspicuous break. Successive types have arisen in ascending sequence, taken the lead, and in turn given way to others. But
the later period of the Mesonoic era saw the almost mudden advent of a fully developed angioepermous vegetation which rapidly ocrupied the earth's surface, and which it is not easy to link on with any that preceded it. The closed ovary implies a mode of fertilization which is profoundly different, and which was probably correlated with s simultaneous development of insert life. This wat accornpanied by a vegetative organization of which there is no obvions foreshadowing. As Clement Reid remarked. "World-wide floras such as seem to characterise some of the older periods, have ceased to be, and plants are distributed more markedly according to geographical provinces and in climatic zones." The field of evolution has now been trensferred to the nortbern hemispbere. Though Angiosperms become dominant in all known plant-bearing Upper Cretaceous deposits, their origin dates even earlier. In Europe Heer's Popndus primacoa from the Lower Cretaceous in Greenland was long accepted as the oldest dicotyledonous phant. Other undoubted Dicotyledons, though of uncertain affinity, of similar ace have now been detected in North America. The Cenomanian rocis of Bohemia have yielded remains of a sub-tropical flora which hat been compared with that existing at present in Australia. Upper Cretaceous formations in America have yielded a copious fiora of a wrm-ternpern te climate from which it is evident that at least the geaeric types of numerous not closely related existing dicotyledonots trees had already come into existence. it my be admitted that the identification of fragmentary leal-remains is at mott preatrions. Even ${ }_{1}$ however, with this reservation, it is difficult to reaist the mast of evidence as at whole. And it is a plausible conjecture that the vegetation of the globe had alrcady in ite main leatures been constituted at this period much as it exists at the present moment. There were onks, beeches (erarcely distinguishable (rom existins species). birches. plance and willows (one closely related to the living Salar candida), laurels, represented by Sassafras and Cinnamownm, magnolias and tulip trees (Liriodendron), myrtles, Ligwidambar: Diospyras and ivy. This is a flora which, thinned out by losere. practically exists to this day in the southern United Suates. And onc essentially similar but adapted to slightly cooler conditions existed as far north as the latitude of Greenland.

The tertiary era opens with a clumate in whach during the Eocene period something like existing tropical conditions must have obeaiped in the northern hemisphere. The remains of palms (Sabal and Nipa) as well as of other Jarge-leaved Monocotyldons are preserved. Segwoin (which had already appeared in the American Upper Cre taccous) and the deciduous cypress (Taxodann distichmen) are found in Europe. Starkie Gardner has argued with much plausibility that the Tertiary floras which have been lound in the far north must have been of Eocene age. That of Grinnell Land in lat 81° consisted of Conifers (including the living spruce), poplars and willows, such as would be found now 25° to the toutb. The flore of Diaco Island in lat. 70° contained Sequota, plancs, maples and magnolias, and closely agrees, with the Miocene flora of central Europe. Of this copious remains have been found in Switserland and bave been investigated with great ability by 0 . Heer. They point to cooler conditions in the northern hemisphere: palme and tropical types diminish: deciduous tree incretse. Sequeia and the tulip-tree still remain: figa are abundant; laurels are represented by Sassafras and camphor; herbaceous plants (Ranunculaceae, Cruciferae, Umbelliferae) are prement, though, as might be expected, only fragmentarily preserved.

We may draw with some certainty the conclusion that a generl movement southward of vegetation had been brought about. While Europe and probably North America were occupid by a warm temperate fiora, tropical types had been driven southward, while the adaptation of others to arctic conditions had become accentuated. A gradual refrigeration proceeded through the Pliocene period. This was accompanied in Europe by a drastic wreding out of Mioceme types, ultimatcly leaving the flora pretty much as it now exists This, as will be explained, did not take place to anythng tike the same extent in North America, the vegetation of which still preaerves a more Miocene facies. Torresa, now confined to North Americe and Japan, still lingered, as did Ocotes, now proiunely developed in the tropics, but in north temperate regions onhy existing in the Canaries the evergreen oaks, so characteristic of the Miorene, were reduced to the existing Quercus ilex. At the close of the Pliocene the European flora was apparently little different from that now existing, though ame warmer types auch as the waterchestnut (Trapa molams) had a more northern extension. The glacial period effected in. Europe a wholesale extermination of temperate types accompanied hy a southern extension of the arctic flora. But its operation was in great measure local. The Pliocene flors founc refugen In lavaured localities from which at its clone the lowlands were restocked while the arctic plants wrere left behind on the mountains. During the milder interglacinal period mome southern types, such as Rhadodendron ponticum, still held their own. but ultimately succumbed.
The evidence which has thus been briefly summarised; points usmustakably to the conclusion that existing vegetation orgmated in the northern hemisphere and under climatic conditions corresponding to what would now be termed sub-tropical. It occupied a continuous circumpolar ares which allowed free communication between the old and new worlds. The gradual differentiation of their floras
has been brought about rather by extermination than specializtion, and their dimiactive facies by the development and multiplication of the surviving types.

The distribution of mountain barriers in the Old and New Worlds is in etriking contrast. In the former they run from cast to west: in the latter from north to south. In tlee Old World the boreal zone is almast shapply cut off and afforded no means of escape for the Miocene vegetation when the climite became more scvere. Thus in the Mcditerrancan region the large groupt of palms, figs, myrtles and laurels are cach only represented by single surviving specics. The great tropical family of the Genneracese has left bohind a few outiiers: Ramondia in the Pyrences, Haberlea in tho Balkans, and Jankaec in Thessaly; the Pyrences also posesss a miaute Dioscores, sole Europear survivor of the yams of the tropics.
In North America there is no such barricr: the Miocene fiora has been able to escape by migration the fluctuations of climate and to return when they ameliorated. It has preserved its characteristic types, buch as Mugnolia, Liriodendron, Liquidambar, Torreya, Taxodium and Sequoia. While it has been cuetomary to describe the Miocene fiora of Europe as of a North American type, it would be more accurate to describe the latter an having in great mensure prescrved its Miocene chamcter.
If mountains serve as barriers which arrest the migration of the vegctation at their base, their upper levels and summits afford lines of communication by which the foras of colder regions in the northern hemisphere can obtain a southern extension even across the tropics. They doubt less equally supply a path by which southern temperate types may have extended northwards. Thus the characteristic assemblage of plants to which Sir Joseph Hoolecr has given the name Scandianvian "is present in every latitude of the globe, and is the only one that is 80 " (Trass, Lins. Soc. xxilij. 353). In the mountains of Peru we find such chameteristic northern genera as Draba, Alchemilla, Saxifrage, Valeriame, Gentiana and Bartota. High elovations reproduce the physical conditions of high latitudes The aqueous vapour in the atmosphere is transparent to luminous but opeque to obscure hent-rays. The latter are retained to warm the air at lower levels, while it remains cold at higher. It resules that besides a horivontal distribution of plants, there is also an altitudinal: a fact of cardinal importance, the first obervation of which bas been attrihuted to Tournoiort.

Speaking generally, all plants tend to exhiust particular constituents of the soil on which they grow. Nature thercfore has provided various eontrivances by which their seeds are disseminated beyond the actual position they occupy. In a large number of enses chese only provide for migration within aufficient but narrow limits; such plants would be content to remain local. But other physical agencies come into play which may be bricfly noticed. The hrst of these is wind: it cannot be doubted that small sceds ean be ewept up like dust and eraneported to congiderahle distancess This is certainly the case with fern-spores. The vegetation of Krakatos was completely exterminated in 1883 by a thick coat of red-hot pumice. Yet in 1886 Treub found that it was beginning to cover itself again with plants, including eleven epecies of ferns; but the nearest cource of supply was 10 m . distant Sceds are carried with more facility when provided with plumes or wings. Treub found on Krakatoa four species of composites and two grasses. Water is another obvious mesns of transport. The littoral vegetation of coral islands is derived from sea-borne fruits. The seeds of Went Indian plants are thrown on the wettern shores of the British Isles, and as they are capable of germination, the specics are only prevented from establishing themseives by an uncongenial chmate. Travers picked up a seed of Edrerdsic in the Chatham Ialands, evidently washed ashore from New Zcaland (Linn. Soc. Joura. ix. 1865). Rivers bring down the plants of the upper levels of their basins to the lower; thus species characteristic of the chalk are found on the baaks of the Thames near London. Birds are even more effctive than wisd in transporting seeds to long distances. Seeds are carriged in woil adbering to their feet and plumage, and aquatic plants have in consequence for the most part an exceptionally wide range Fruit-pigeons are an cffective means of transport in the tropics by the undigested sceds which they void in their encerement. Qusdrupeds also play their part by carrying seeds or fraits entaagled in their coats. Xanhimm spinosum has spread from the Rusian steppes to every stock-raising country in the world, and in some casea hat made the industry impossible. Even insects, as in the case of South African locusts, have been found to be a meant of ditatributiag meeds.
The primary zegions of vegetation, already indicated, and their subordinate provincea may now be considered more in detail.
I. Noxth TzMrematr Regron.-Many writerson the distribution of animals prefer to separate this into two regions of "primary rank": the Polaearctic and the Nearctic. But to justify such a division it is necessary to establish either an exclusive possession or a marked predominance of types in the one which are correspondingly deficient in the other. This camnot apparently be done for insects or for birds; Newton accordingly untes the two into the Holarctic region. It equally lails for plants. To take, for example, one of the most charactenstic features of the Palaearctic region, its catkin-bearing deciduous trees: is North America we find precisely the samersenert
as in the Old Word-oaks, chestnuts, beeches, hazels, hornbeams, birches, alders, willows and poplars. Or to take the small but welldefined group of five-leaved pines, all the species of which may be seen growing side by side at Kcw under identical conditions: we have the Weymouth pine (Pinys Strobus) in castern North America, P. monticola and the sugar plne (P. Lambertiana) in Californin, P. Ayacahwele in Mcxico, the Arolla pine (P. Cembra) in Switacrland and Sibetia, P. Pewce in Grecce, the Bhotan pine (P. cxeclsa) in the Himalayas, and two other species in Japan. Amongst broadlenved trees Juglans has a simitar Holarctic range, dencending to the West Indies; to has Aescalus, were it not bicking in Europe; it becomes tropical in South America and Malaya. if we turn to herbaccous plants, Hemsky has pointed out that of the thirteen genera of Ranunculaceat in California, elcven are British.

While the tropics preterve for us what remains of the preTertiary or, at the latest, Eocenc vegetation of the earth, which formerly had a mucli wider extension, the flora of the North Teraperate region is often described as the survival of the Miocenc. Engler thercfore calle it Arcto-Tertiary. We must, however, agree with Starkie Gardncr that it is only Miocene as regards its present position, which was onginally farther north, and that its actun origin was much earlict, There hat been in cffect a successive shitting of zones of vegetation southwards from the pole. Their distinetive and adaptive characteristics doubtless began to be catablished as s00n as the phancrogamic flora was constituted. There is no reason to suppose that the peculiatitics of the arctic florn are more modern than those of any other, though there is no fossil evidence to prove that it was not so.

The North Temperate rerion admits of subdivision into several well-marked sub-regions. The general method by which this is effected in this and other eases is atatistical. As A. de Candolle, hovever, points out, exclusive reliance on this may be misleading unkes we also take into account the character and affinitics of the plants dealt with (Geot7. Bot. i. 1166). The numerical predominance of certain familics or their absence affords criterin for marking out boundary lines and tracing relationships. The analysis of the form of the British isles will afford an jllustration. This was Frst attempted in 1835 by H. C. Watson, and his conclusions were enloreed ten years hiter by Edward Forbes, who denlt also with the fauna. Warson showed that Seotland primarily, and to a less extent the north of England, possessed species which do not reach the south. Such are the crowberry (Emperrum migrum), Triculalis exropaen, Rubus saxatilis and the globe-flower (Trollius curopacus). He further found that there was an element which he termed "boreal fifeenth of the whole flora. "This was not confined to the north but may occur on the mountains of England and Wales: Salir herbaces, Stlewe acoulis and Dryas octopetala will serve as examples. Even so small an area as that of Britain ilustrates what has already been pointed out, that the species of a flora change both with latitude and alcitude. Watson further brought out the striking fact that the west and east of Britain each had specics peculiar to it; the former he chameterised as Astantic, the latter as Germanic. The Cornish heath (Erica vagans) and the maiden-hair forn (Adtantum CaprlinsVemeris) may serve as instances of the one, the man-orchis (Aceras anheropophora) and Reseda luics of the othcr. Ireland illustrates the same fact. It possesscs about 1000 species, or about two-thirds the number of Britain. On its western shores there are some twenty, such as Saxifraga umbrose, Erice medilerranea and Arbutus tarelo, which are not found in Britain at all. The British Phanerogamic flora, it may be remarked, does not contain a single endemic specios, and 38% of the total number are common to the three northem contincnts.

The analysis of larger arcas yields results of the stime kind. Within the eame region we may expect to find considerable differences as we pass from one meridian to another. Assuming that in its circumpolar origin the North Temperate flora was fairly homogencous, it would mect in its centrilugal extension with a wide range of local conditions; these would favour the preservation of numerous specics In some gencra, their greater or less climination in others. Thus comparing the Nearctic and Palacarctic floras we find striking differences overlying the points of agreement already indicated. The former is poor in Cruciferac, Caryophyllaccae, Umbelliferac, Primulsceae and Labiatac; but for the occurrence of Callwne in Newfoundland it would have no heaths. On the other hand, it is rich in Compositae, especially Solidago and Asler, Polmoniacese, Axclepiadaceac, Hydrophyllaceac and Cyperaceae, and it has the endemic Sarracenia, type of a fa mily structurally allied to poppies, of which of the remaining genera Daringlonia ls Californian, and Heliamphora Venezuelan. There distinctions led Sir Joseph Hooker to chaim for the two divisions the rank of primary regions. Darwin doubted, however, whether they ought to be separated ((ife, iii. 230). Lyell, discussing the lacts of zoological distribution, admits that "the farther we go north : the more the discordance in genera and species diminishes " (Principles, it. 3fo); and Hemsley finds that not less than 75% of the genera in the flora of eastern North America "are represented in the old world," and, according to Asa Gray, 50% in Europe.

Latitudinally the rexion subdivides naturally into several wellmarised sub-regions which must be briefly discuved.

1. The Arctic-Alpine sub-region concists of races of plants belonging originally to the general fora, and recruited by subsequent additions, which have been specialized in low etature and great capacity of endurance to survive long dormant periods, nometimes even unbroken in succesaive years by the transitory activity of the brief summer. It is continuous round the pole and roughly is bounded by the arctic circle. Mature seeds are highly tolerant of cold and have been whown to be capable of withstanding the temperature even of liquid hydrogen. Arctic planta malse their bri.f gruwth and fow it a temperature little above freexing-point and are depersdent for their heat on the direct rays of the sun. Characteristic represencatives are Popaver wudicaule, Saxifraga oppositifolia, which forms a profuse carpet, and Dryas oclopetala. Such plants perhaps extend to the most morthern lands at present known. On May 3oth, in Ward Hunt's Island, lat. $83^{\circ} 5^{\prime}$, Sir George Nares found that "vegetation was fairly represented as regards quantity in the poppy, saxifrage and mali tufts of grama." We may compare this with extreme apine conditions: on a spot above the Aletsch glacier at a height of $\mathbf{1 0 , 7 0 0} \mathbf{f t}$. Ball found the temperature one inch below the surface to be 83°, and he collected " over forty epecies in flower." Taking the whole arctic flora at 762 species, Hooker found that 616 occurred in arctic Europe, and of these 586 are Scandinavian. Beyond the arctic circle some 200, or more than a quarter, are confined to the mountains of the northern hemispbere and of "still more southern regions." This led Hooker to the striking observation already quoted. The arctic flora contains no genus that is peculiar to it, a ad only some fifty apecies that are so. Christ has objected to terming the arctic flore Scandinavian, but the name implies nothing more than that Scandinavia has been ite chief centre of preservation.

A detailed examination of mountain floras show that a larre local element is present in each besides the arctic. The one is in fact the result of similar physical conditions to that which has produced the other. Thus Saxifrage cerwme is rexarded an an alpine form of the lowland S. rawnlala. Comparing the Alps with the Pyrenees, according to Ball, each has about hall its flora common to the other: * the Ape have 172 endemic species and at least 15 genera that are not found in the Pyrenees, while the latter range counts about 100 endemic species with several (dix or seven) genera not found in the Alpa." Drude has accordingly suggested the substitution of the term "High-mountain forms" Ior Apine, which he regards as misleading. Its meaning has, however, become synonymous and is consecrated by usage.

The repetition of the same species in the arctic regions and in the high mountaint of the North Temperate region is generally a ttributed to the exchenge which took place during the glacial period. This was first suggested by Edward Forbes in 1846, though the idea had carlier suggested iteclf to Darwin (Life, i. 88). It took place south wards, for the arctic flora is remarkably uniform, and, as Chodat points out, it shows no evidence of having been recruited from the aeveral mountain floras. That the asctic flora was driven south into Central Europs cannot be contested in the face of the evidence collected by Nathorst from deposits connected with the boulderclay. And Reid has shown that during the glacial period the existing flora was replaced by an arctic one represented by wuch plants as Salix polaris, S. herbacea, S. reticulald and Betmla manel, At the and time the then existing alpine foras descended to lower levela, though we may agree with Ball that they did not necestarily become extinct at higher ones as long as any land-sufface remained uncovercd by ice. At the close of the glacial period the alpine floras retreated to the mountains accompanied by an arctic contingent, though doubtless many opecies of the latter, such as Saliz polaris, failed to establish themselves Cbrist, while admitting an ancient endemic elerment, auch as Campanila andes in the arctic-alpine flore of Europe, objects that a Scandinavian colonization could not furnish such characteristic plants as the larch and edelweisa. He traces lio otamin home of the bulk of existin; alpine planta to northern Asia, the mountains of which appear to have eacaped glaciation. At the close of the glacial epoch the north tiantic flora epread weatwards into Europe and intermingled with the surviving vegetation. Some species, such as A newore dpina, whicl are wanting in the Arctic flora of the Otd World, he thinks must havit reached Europe by way of Greenland from north-east America.
2. The Intermediate sub-region compris the vegetation of the large area occupied by the steppes of the Gid Warld, the prairies of the new and the forest region of both. Thu former support a copious herbaceous flora, the characteristics of wich in the Old and New Worlds have been already briefly summanized. In tha formar that of Europe and of Central Asia are continums. Of epecies common to the two, Maximowicz finds that Mancluria possesses 40% and scarcely 9% that are endemic. Of a collet tion of about goo species made in that country by Sir Henry James rearly a thind are British. This confirms the theory of Christ that Eur ape was reatocked mainly from Asia after the close of the glacial epo :h, the south being closed in it. In the new world no southern batiers existed and it is more dilicult to draw the line between contigwous sub-regions.

The dominat characteristica of the arboreous vegetation are, besides deciduous and amentiferous trecs, Coniferae, especially the more recent tribe of Abietineze-pines, silver-firs, hemlocks, pruces and larches, of which. unlike the older typen no reprementative
croenes the tropic. The prominent deciduous trees of Europe appear to be of eastern origin, and the progress of western migration has continued to historic times. The evidence of the peat bogs show that the Scots fir, which is now extinct, was sbundant in Denmark in the Roman period. It was succeeded by the semsile-fruited oak, which was in turn supplanted by the pedunculate form of the same tree. Quercus Robwr has left no trace in the Tertiary depoaits of Europe and is is mont neariy allied to east Ariatic species. The oak in turn has been almost superseded in Denmark by the beech. which, if we may trust Julius Caesar, had not reached Britain in his time, though it existed there in the pre-glacinl period, but is not native in either Scotland or Ireland. Its eastern limit in Europe is a tine from Konigsbers to the Caucasus; thence through China it is continued by varietal forms to Japan. It has a solitary representative in North America.

Broadly speaking, the American portion of the sub-resion consiss: of an Arlantic and Pacific forest area and an intervening non-forest one, partly occupied by the Rocky Mountains, partly by intervening plains. Its arboreal vegetation is richer both in genera and species than that corresponding to it in the Oid Worid. Clacial elimination has been less severe, or rather there has been, at any rate on the Aclantic side, an unimpeded retum of Miocene types. The Atlantic area has Gve magnolias, a tulip tree, an Anonacea (Asimina), two Ternitroemiaceae (Stwartia and Cordonia). Liquidambar, Vits' (the fox-grape, V. Labrusca, reappears in Japan), and others; an assemblage, as long ago pointed out by Asa Gray, which can only be paralleled in the Chino-Japanese region, another centre of preservz-tion- of Miccene types. All theme are wanting in the Pacific area, though there are indications ia its pold-bearing. gravels that it once posesesed them. On the ocher hand, the latter ${ }^{9}$ is rich In coniferous types beyond any country except Japan " (A. Gray), but till we reach California these are boreal in type. The Attantic flora has also numerous oaks and maples, tignalized by their autumnal coloration. These were abundant in Tertiary Europe, as they are now in Japan, and reprevent perhape a cooler element in the flora than that indicated above. The bighlands of Central America and the West Indies have prewerved a number of Chino- Japanese typeo-Bocconis, Deutsie, Abelia, \&c.- not met with elsewhere in the New World.
3. The Medilerrameo-Oriendal swb-region contraste no less vividly with the Intermediate than the Arctic-Alpine. It includes the Azores aad Canaries, the Mediterrancan basin, northern Arica as lar as the Atlas and Sahara, Asia Minor, Persia and the countries eastwand as far as Sind, being bounded to the north by the mountains which run from the Caucasus to the Hindu-Kush. Its extreme richnesw in number of species (it comprises six-sevenths of the European flora) and the extremely restricted areas of many of then point to a great antiquity. The Mediterranean basin has been a centre of preservation of Miocene vegetation: the olcander is said to have been found in local deposits of even earlier age, and the holm oak (Quercus Ilex) is the living representative of a Miocene ancestor. Extensions of the flore occur southwards of the high mountains of tropical Arrica i Adenocerpas, a characteristic Mediterrancan genus, has been found on Kilimanjaro and 2000 m . distant on the Cameroons. Two British plants may be added which both reach North Airica: Sawicula exropaco extends from Abywinia to the Cameroons and southwards to Cape Colony and Madagascar; Sambucus Eholas reaches Uganda. The Mediterranean, however, has apparently been a barricr to the couthward passege of the arcto-alpine flora which is totally wanting on the Atlas. The vegetation of the subregion is rich in shrubs: myrtie, bay, Cistus, Pistacic, Arbuns, heaths in its western portion, and the ground-palm (Chamacrops). It is even richer in more herbaceous plants tolerant of a hot summer; giant Umbelliferae (uuch as Ferula) are eapecially characteristic and yield gum-resins which have long been reckoned valuable. Or the 1000 known apecies of Autragalss it possesses 800 . Evergreen onks and Conifers form the foresta. Asia Minor has a Liquidamber. The Argan tree (Argania Sideraxylon), which forms forests in Morocco, is a remarkable aurvivor of a tropical family (Sapotaceae). Amongst Conifers Cedrus is especially noteworthy; it is represented by geo graphical races in the north-west Himalaya, in Syria, Cyprus and North Arica.
This well-marked aub-region has a deeper interest than the botanical. It has been the cradle of civilization, and to it is due the majority of cultivated plants. Such are the date in Meaopotamia (a second apecies of Phoenix occurs in the Canaries); most European fruite e.s. the vine, fig, mulberry, cherry, apricof, walnut; pulses 6.g. the bean, pea and lentil; pot-herbs, e.p. lettuce, endive, beet, ridish, cress; cereals; and fodder piants such as lucerne and carob.
4. The Chino-Jppanese sub-region.-Of the vesetation of China till recently very little has been known. In 1873 Elwes pointed out that the Ifimalayan myifauna extended into north-west China and established the Rimalo-Chinese aub-region. Shortly afterwards the collections of Prejewalsky confirmed it for the flara. And we now know that, excluding the southern tropical area it has the seme character throughout the whole of China proper. We may therefore regard the Himalayan fora as a westward exteasion of the Chincse rather than the latter as a development of the former. Of lour gencra which Hooker singles out as the largest in Sikkim. in China Corydalis has 7^{6} apecies, Saxifraga 58. Pedicularis 129, and Primule 77. .. Of Rhododindros there are 134 species. Upwards of 8000
apecies are known out of a probable toted of mot lese than 12,000, and of thewe more than hall are eademic. The number of species to a staus, 3 , is only hall thet tound in oxher largu areat. This apgregation of genera and of endemic epseien is charncteristic of the circumarerential portions of the earth's land surface. the expentign of the one and the further advance of the other is arrested. The sub-region is probably sharply cut of from the intermedinte. Maximowica finds that 40% of the plante of Manchuria are common to Europe and Asia, but the proportion cals sharply to 16% in the case of Japan. Its connexion with the Mediterraneo-Oriental sub. segion is still more remote. China has no Cistas or heath. only a single Farmie, while Astrapalws in reduced to 35 epecies. There are two species of Pistacias and lour of Lequidamber. The afriusty to Allagicic North America is strondy marked as it has long been known to be in Japan. China hat 66 epecies of Quercus, 35 of Vuss, 2 of Aescyuss, 42 of Actf, 33 Magnoliaceas (including two specres of Liriodendron), 12 Anonmcean, 71 Ternstroemucene (encluding the tea-plant), and 4 of Chitige, which has a solitary weitern reprewencative in Madeir. Trachycerpus and Rhaps are charmcteratic palms, and Cycadeate are repreanted by Cyces.
5. The Mfrico-A mericas sub-region has as ite northern boundary the paralle! of lat. 36° as Car as New Mexico and then northwards to the Pacific coast at lat. 40°. The eastern and weatern haives are contrasted in climate-the former being moink and the latter dry-and have been distinguished by some soologints as distinct aubregions. They are in fact in some degree comparable to sub-regions 3 and 4 in the Old World. The sbeence of marked natural boundanies makes any precise north and south limitation difincult. But it has been a centre of preservation of the Tasodieae, a triba of Coniferse of great antiquity Taxadium (with single species in China and Mexico) is represeated hy the decidvous cypress (T. distuchwn), which extends from Florid to Texas. The two specie of Sequele, the "Wellingtonia" (S. gigamiad) a nd the redwood (S. spmperirent), are confined to California. In the eastern forente the prevalence of Magnoliaceac and of Clethre and Rhodedendros continues the alliance with eastern Asia. Florids derives a tropical element from the Antilles. Amonget palms the Corypheae are repremented by Sabal and Thrimax, and there is a solitary Zamia amonget Cycads. The wetterg diry areas have the old-world leguminous Astrogalue and Prosopis (Mesquit), but are especially characterised by the northward extension of the new-world tropical Cactacene, Irammillaria, Cerese and Opuntia, by bucculent Amaryllideae such as Agave (of Which the to-called "American aloe" is type), and by arboreacent Libiacese (Yucca). Amongat palms Worlingtonia, Brahed and Erybhes (ali Corypheac) replace the eastern genera. On the weot coast Cupressus Lawsoniana replaces the northern Thwye siganlea, and a laurel (UTmbellularie of isolated affinity) forms forests. Caliionia and Arizona have ench a species of Platanns! a dying-out genus. Elsewhere it is only represented by P. occidendalis, the largest tree of the Atlantic forests from Maine to Oregon, and by $\boldsymbol{P}_{\text {. oriendalis in the eastern Mediterranean. Otherwise the Califor- }}$ nian flora is entirely deficient in the characteristic features of that of eastern North America. Nor, with perhape the interesting exception of Castamopsis chrysophyilla, the colitary representative in the New World of an eask Asiatic genus, which ranges from Oregon to California, has it any affinity with the Chino-Japanese sub-region. its closest connexion is with the South American Andine.
II. The Trofical Regios.-The permanence of continents and great oceans was first insigxed upon by J. D. Dana, but, as already stated, has hatèr received support on purely physical grounds- It precludes the explanation of any common features in the dissevered portions of the tropical area of vegetation by lateral communications, and throw back their origin to the remotest geological antiquity. In point of lact, rewmblance is in the main confined to the higher groupo, such as families and large genera; the amaller genera and apecies are entirely different. No genus or epecies of palm, for example, is common to the Old and New Worids. The ancient broad-leaved Gymnoegerm Guelum has a lew surviving ppecies scattered through the tropics of both worlds, one reaching Poly nesia.

1. Africon sub-region.-Western Arabia must be added to the Arican continent, which, with this exception and poscibly a former European connexion in the far wett, has had apparently from a very early period an almowt insular character. Bentham remarka (Journ. Linn. Soc, xiti. 492): "Here, more perhapa than in any other part of the globe, in Compositae as in so many other orders, we may fancy we see the scattered remains of ancient races dwindling down to their last representatives." It is remarkable that the characteristic features of the Miocene flora, which in other parts of the world have spread and developed southwards, are conspicuou dy absent from the Arrican tropical flora. It hat no Magnolia. ceae, no maples, Pomaceae, or Vacciniacese. no Rhododendron and no Abietineac. Perhaps even more striking is the aboence of Cupuliferae: Quercus, in particular, which Irom Tertiary times has been a conspicuous northern type and in Malayan tropical conditions has developed others which are widely divergent. Palms are exrikingly deficient : there are only three out of 79 genera of Areceae, and the Corypheae are entirely absent. But including the Mas carene islands and Seychelles the Borasseme are exclusively African. Aroideae are poorly represented compared with either South

Arnefica or Malays. A peculiar fetture in which tropical Africn enends alone is that at leatit one-afth and probably more of the epecies are common to both sides of the contineat and presumably eretch right acrom it. An Indian element derjved Irom the northeape is moer marked on the eastern side; the Himalaytn Glorsose will nufice as an example, and of more tropical types Phonnx anl Calasens amonger palms. The forest flora of Madaguecar, though inctuding an endernic family Chlaenaceae, is eamentially tropical Arican, and the upland florm south temperate.
2. The Iado-Magas subregion includes the Iadian and Malayan peninsulas Cochin-China and mouthern China. the Malayan archiperago, and Philippines, with New Guines and Polyncsia; excluding the Sandwich lislands Probably in point of number of speciet the preponderant Iamily la Orchidewe, though, as Hemaley remarks, they do not "give character to the scensery, or constitute the bulk of the vogetation" In Malaym and castward the forests are rich in arborement figs, burels, myrtlea; nutmegs, oaks and bamboos Dipterocarpeas and Nepenthreste only extend with a fow outliers into the Alrican sub-region. Screw pines have a closer connexion. Compositate are deficient. Amongat palnm Areceate and Calamene are prepondarant. Cycade are reprewented by Cycas itwell, which in everal apecics ranges from southern India to Polynesia. In Indiz proper, with a drycr climate, grasera and Leguminome tale the lead in the number of species. But it has iew distinctive botanical features. In the north-wegt it meets the Meditarranco-Oriental and in the porth-ent the Chino-Jopasese sub-regions, while wouth India and Ceylon have received a Malayan contribution. Bensal has no Cycas, oaks or nutmegt. Apart from the occurrence of Cycas, the Atiatic character of the Polynesian flora is illustrated by the distribution of Meliaceac. C. de Candolle finds that with one exception the species belong to genera representad in one or other of the Indian peninsulas.
3. The Soulk Amerioan sub-region is perhzps richer in peculiar and distinctive types than cither of the preceding. As in the IndoMalayan sub-repion, epiphytic orchids are probably mont numerous in point of species, but the gerern and even sub-ribes are far more restrieted in their renge than in the Old Wortd: 4 sub-tribes with 74 genera of Vandeace are confined to South America, though varying in rage of climate and altitude Aroonger arboreous lamilies Leguminome and Euphorbinceac are prominent: Hewea belonging to the latter is widely dittributed in various species in the Amazon banin, and yields Para and other kinds of rubber. Amonget Rubiaceat, Cinchoneas with some outliers in the Old World have their beadquarters at cooler levels. In Brazil the myrtles ate represented by "monkey-pots" (Lecythideae). Nearly related to myrtles are Melastomaceae which, poorly represented in the Old World, have attained here to prodigious a development in generg and species, that Ball looke upon it the seat of origin of the family. Amongit Ternstrocmiaceae, the singular Marcgravieae are endemic. So also are the Vochysiaceae allied to the "milkworts." Cactaceae are widely spread and both northwards and southwards extend into temperate regions. Screw pines are replaced by the nearly allied Cyclanthacese. The Amazon basin is the richest area in the world in palms, of which the Cocoineac are confined to South America, except the coco-nut, which has perhaps spread thence into Polyncsia and east ward. The singular shrubby Amaryllids, Vellozieac, are common to tropical and South Airica, Madagascar and Brazil: Aroids, of which the tribes are not restricted in their distribution, have two large endemic genera, Philodeadron and Anthuraum. Amongrt Cycads, Zamia is confined to the New World, and amonget Conifers, Araucaria, limited to the southern hemisphere, has scarcely less antiquity; Pinews reaches as far south as Cuba and Nicaragun
The flora of the Hawaiian Islands has complicated relations Out of the 860 indigenous plants, 80% are endemic, but Hillebrand finds that a large number are of American affinity.
III. The South Temperate Region contrasts remarkably with the northern. Instead of large continuous areas, in which local characteristics sometimes blend, it occupies widely dispevered territories in which specialization, intentified by long separation, has mostiy effaced the posability of comparing species and even genera, and compels us to seek for points of contact in groups of a higher order. The resemblances consist, in fact, not so much in the exis tence of one general facies running through the regions, as is the case with the northern fiora, but in the presence of peculiar types, such as those belonging to the families Restiaceae, Proteaceae, Ericaceae, Mutisiaceae and Rutaceae.

1. The South African sub-regson has a flora richer perhapa in number of species than any other; and these are often extremely local and restricted in area. it exhibits in marked degree the density of species which. as already pointed out, is explicable by the arrest of further southern expansion. Hemsley remarks that the northern genus Erica, which covers thousands of equare miles in Europe with very few species, is represented by hundreds of species in a comparatively small area in South Africa." There is an interesting comnexion with Europe through the so-called Iberian flora. Bentham (Pres. addy. Linn. Soc., i86q, p. 25) points out that " the westEuropean species of Erica, Genisteae, Lobelia, Gladiolws, \&c., are some of them more nearly allied to corresponding Cape species than they are to each orher; and many of the somewhat higher races, groups of species and genera, have evidently diverged from stocks
now unrepresented anywhere but in South "Africa." This flora extende from Ireland to the Canares and reappears on the highlands of Angola. On the eastern side the southern flora finde representatives in Abymainia, including Prolea, and on the monntuing of equa. torial Africa, Calodemaross copense occurring on Kilimanjaro. This is the mont northern reprementative of the Rutaceous Diomenc, which ars replaced in Australis by the Boronieac. The Proceaceons penus, Famrea, occurs in Angola and Madagascar. The characterFtic genus Pelargowium has a few Mediterranean reprementatives, and one even occurs in Asia Minor. In all thene cases it is a nice quention whether we are tracing an ascending or descending stream. Darwin thoughe that the migration southwards would alweys be preponderant (O rigin of Species, $\mathbf{5}^{\text {th }}$ ed., 458). Other characteristic leatures of the fora are the abundance of Compoaitac, Asclepiadeae, and petaloid Monocotyledous generally, but eapecialiy Orebidene (terrestrial speciea prodominating) and Iridacsac. There is a marked teadency towards a succulent habit. The neariy related Ficoideac replece the new-wrid Cectaceac, hut the habit of the latter is simuLated by fleshy Euphorbias and Aselepiada, jusz as that of Agase in by the liliaceous Alos. South Arrica has only two palma (Phomix and Hyphacme). In the Gnetsceous Wcherischic it possesses a vegutable type whose extracrdinary peculiarities make it beem amongst contemporary vegetation much as come strange and extinct animal form would il muddenly endowed with life. Conifers are mantily represented by Callitris and Podocarpus, which is common ta all three sub-regions; and Cyeads by, the endemic Encephalartos and Stangeria.
2. The Australian sub-regios conuints of Australia, Tasmania, New Caledonia and New Zealand, and, though partly lying within the tropic is moot naturaliy treated as a whole. They are linked together by the presence of Proteaceace and of Epacrideas, which talie the place of the nearly allied heaths in South Alrica. The mont dominant order in Australia is Leguminosae, Including the acacias with leaf-like phyllodes (ahsent in New Zealard). Myrtaccae comes next with Ewalyphes, which forms three-fourths of the forests, and Medaleucs; both are absent from New Caledonia and New Zealand; a few specien of the former extend to New Guinea and one of the Intter to Malaya. Cupuliferae ase absent except Fagus in Australia and New Zealand. The wo-called "onks" of Australia are Casuarina, which also occurs in New Caledonia, but is wanting in New Zealand. The giant rushes XanChorrhoes and Kingia are peculiar to Australia. Palms are pooriy sepresented in the sub-region and are of an lado-Malayan type. Annongst Conifers, Podocarpus is found throughout, Agathis is common to Australia, New Zealand and New Caledonia; Arawcoria to the first and last. Of Cycads, Australin and New Caledonia have Cycas, and the former the endemic Macrosamia and Bowenia. The Australian land-aurface must be of great antiquity, possibly Jurassic, and its isolation scarcely less ancient. In Lower Eocene timen it fiors appears to have been distinctly related to the existing one. Littie confidence can, however. be placed in the identification of Protemceous or, indeed, of any distinctively Austrelian plants in Tertiary deposits in the northern hemisphere. The Australian fiora has extensions at high levels in the tropics; such exists on Kinabalu in Borneo under the equator. The Proteaceous genus Helicia reaches as far north as China, but whether it is otarting or returning must as in other cases be left an open question.
While the fors of New Caledonia is rich in species (3000), that of New Zealand is poor (1400). While so many conspicuous Australian elements are wanting in New Zealand, one-eighth of its fora belongs to South American genera. Especially noteworthy are the Andine Acaena, Gunnera, Fuchsia and Calcedaria. By the same path it has received a remarkable contribution Iram the North Temperate region; such familiar gencra as Ranurculus, Epilobium and Veronica form more than 9% of the gowering plants. And it is interesting to note that while the tropical forms ol Quercus failed to reach Australia from Malaya, the temperate Fogus crept in hy a back door. Three-quarters of the native species are endemic ; they seem, however, to be quite unahle to resist the invasion of new-comers, and already 600 plants of loreign origin have succeeded in establishing themecives.

The Andine sub-region extends from Peru to the Argentine and follows roughty the watershod of the Amazon. In the New World, as already explained, the path of communication between the northern and southern hemispheres has always been more or less open, and the temperate fora of southern America does not exhibit the lsolation characteristic of the southern region of the Old World. Taking, however, the Andean flora as typical, it contains a very marked endemic ciement; Ball finds that half the genera and four-filths of the species are limited to it; on the other hand, that hall the species of Gamopctalae belong to cosmopolitan gencra such as Valeriana, Gentiana, Bartsit and Gnapholikm. The relation to the other sub-regions is slight. Eriocae are wholty absent, and it han but a single Epacrid in Fuexin. Protcaceae are more marked in Guevina and Embothrium. Of Restiaceac, a single Leplocarpus has been found in Chile. On the other hand, It is the headquarters of Mutisiaceac, represented in South Africa by such genera as Oldenburgia and Gerbera and by Trichocline In Australia. Tropecolum takes the place of the neariy allied South African Pelargonium. There has been an interchange between it and the Mexico-Americin aub-region,
but as usual the northern has been prepoaderant. Prosopis extends
to the Argentine; other charactertsic genern are Onnothera, Gelatis Collomia, Hediotropimes and Britrichimm, In the ascending meream may be mentioned-Larrea, a amall genus of Zygophyllese with headquarten in Paraguay and Chile, of which one species, L mexicama, is the creonote plant of the Colorado desert, where it forms dense scrab; Acsens; the Loasaceme, of wisch Mentelic reaches North Americt, Petxwla and Lippia. Compositne compone a quarter of the Andean form, which is a greater proportion than in any is the world. Baceheris, with mome 250 apecies, ranges over the whole continent from the Scraits of Magellan and, with seven specier to Cailiornla. Melagtomaceate, copiouly represented in tropical America, are more leehly mo in Pery and tholly manting in Chile A few Cactacese extend to Chilo. Of Cupuliferve, Qwercus in three apecies only reaches Colombia, but Fagus, with only a aingle one in North America, is represented by several from Chile southwards and thence extends to New Zealand and Tasmania. The Magrolisceous genus Drimys, with a aingle apecies in the new world, follows the same track. Bromeliacese are represented by Rhodostachys and the ternperate Pays. Palms as usual are lew and not nearly related. Wetlinia occurs in Peru, Trithrinast in Chile with the monotypic Juboea, Juania, also monotypic, is confined to Juan Fernander. Amongst Coniferac Podocarpws is common to thls and preceding sub-regions; Libocedrus extends' from Californis to New Zealand and New Caledonia ; Fianoys is found in Chile and Tasmania ; and Aramcaria in its moat familiar epecies occurs in Chile.
4 The Antarctic-Alpine region is the complement of the AreticAlpine, but unlike the latter, lits scattered distribution over nomerom isolated points of land, remote from great continental areas, from which, during migrations like those attending the glacial period in the northern hemisphere, it could have been recruited, at once accounts for its limited number of apecies and their contracted range in the world. On the whole, it consists of local species of some widely distributed northern genera, such as Carex. Poa, Ramwa culus, \&c., with alpine types of strictly south temperate genern, characterisfic of the separate localitiea. The monotypic Pringlea antiscorbutica, the "Kerguelen Island cabbage," has no ner ally in the southern hemisphere, but is clowely related to the northern Cochlearia.

Such a summary of the salient facts in the geographicul distribution of plants sufficiently indicates the tangled fabric of the earth's existing floral covering. Its complexity refects the corresponding intricacy of geographical and geological evolution.
If the surface of the globe had been symmetrically divided into sea and Land, and these had been distributed in bands bounded by parallels of latitude, the character of vegetation would depend on temperature alone; and as regards its aggregate mass, we should find it attaining its maximum at the equator and sinking to its minimum at the poles. Under auch circumstances the earth's vegetation would be very different from what it is, and the study of plant distribution would be a simple affair.

It is true that the earth's physical geography presents certain broad features to which plants are adapted. But within these there is the greatest local diversity of moisture, elevation and isolation. Plants can only exist, as Darwin has said, where they must, not where they can. New Zealand was poorly stocked with a weak flora; the more robust and aggressive one of the north temperate region was ready at any moment to invade it, but was held back by physical barriess which human aid has alone enabled it to surpass.

Palaeontological evidence conclusively proves that the surface of the earth has been successively occupied by vegetalive forms of increasing complexity, rising from the simplest algae to the most highly organized flowering plant. We find the ultimate explanation of this in the facts that all organisms vary, and that their variations are inherited and, ii useful, perpetuated. Structural complexity is brought about by the superposition of new variations on preceding ones. Continued existence implics perpetual adaptation to new conditions, and, as the adjustment becomes more refined, the corresponding structural organization becomes more elaborate. Inheritance preserves what exists, and this can only be modified and added to. Thus Asclepladeae and Orchideac owe their extraordinary foral complexity to adaptation to insect fertilization.

All organisms, then, ate closely aclapted to their surroundings. If these change, as we know they have changed, the organisms must change too, or perish. In some cases they sarvive by migration, but tbis is often prohibited by pbysical berriers

These, however, have often protected them from the competition of more vigorous invading races. Fagus, starting from the northern hemisphere, has more than held its own in Europe and Asia, but has all but died out in North America, finding conditions lavourable for a fresh start in Austratarla. The older sypes of Gymnosperms are inelastic and dying out. Even Pinesy has found the tank of crousing the tropics insuperable.
The whole story points to a general distribution of flowering plants from the northern hemisphere southwards. It confirms the general belief on geological grounds that this was the seat of their development at the cloee of the Mesomic era. It is certain that they originally existed under warmer conditions of climate than now obtain, and that progrealive refrigeration has supplied a powerful impulee to migration. The tropics eventually became, what they are now, great areas of preservation. The Northern Temperate region was denuded of its floral wealth, of which it only retains a comparativoly scanty wreck. High mountain leveis supplied paths of communication for stocking the South Temperate region, the fioras of which were enriched by adapted forms of tropical typea. Such profound changes muse necesarily have been accompanied by enormous elimination; the migrating hosts were perpetually thinned by falling out on the way. Further development was, however, not stopped, but in many cases stimulated hy migration and settlement in new homes. The northern Qeercws, arrested at the tropic in the new world, expanded in that of the old into new and striking races. And it cannot be doubted that the profusion of Melastomaceace in South America was not derived from elsewhere, but the result of local ovolution. There is some evidence of a returning stream from the south, but as Hooker and A. de Candolle have pointed out, it is insignificant as compared with the outgoing one. Derwin attributes this to the fact that "the northern forms were the more powerful " (Origis of Species, sth ed., p. 458).
The result of migration is that races of widely different origin and habit have had to adapt themselves to similar conditions. This has brought about superficial resemblance in the floras of different countries. At first sight a South African Euphorbic might be mistaken for a South American Cactus, an Aloe for an Agare, a Senecio for ivy, or a New Zealand Veronica for a European Salicornic. A geographical botany based on such resemblances is only in reality a study of adaptations. The investigation of these may raise and solve interesting physiological problems, but throw no light on the facts and genetic relationship which a rational explanation of distribution requires. If we study a population and sort it into soldiers, sailors, eeclesiastics, lawyers and artisans, we may obtain facts of sociological value but learn nothing as to its racial origin and composition.
In the attempt that has been made to map out the land surface of the earth, probable community of origin has been relied upon more than the possession of obvious characters. That sub-regions framed on this principle should show interrelations and some degree of overlapping is only what might have been expected, and, in fact, confirms the validity of the principle adopted. It is interesting to observe that though deduced exclusively from the study of flowering plants, they are in substantial agreement with those now generally adopted by zoologists, and may therefore be presumed to be on the whole " natural."

Authorimies.-A. de Candolle. La Geograghie botanique raisomnde, (Paris and Geneva, 1853); A. Grisebach, Le Vigetalion dx globe, transt. by P. de Tchihatchel (Paris, 1875); Engler, Versuch einer Ennovicklumgseeschichte der Ploñ土erroch (Leipzig, 1879-1882); Oncar Drude, Manuel de ghographic bolanique, tranal. by G. Poirault (Paris, 1897): A. F. W. Schimper, Plant Geography, tranal. by W. R. Fisher, (Oxford, 1903).
(W. T. T.-D.).

PLANUDES, MAXI and theologian, flourished during the reigns of Michael VIII. and Andronicus II. Palaeologi. He was born at Nicomedia in Bithynis, but the greater part of his life was spent in Constantinople, where a monk be devoted himself to study
and teaching. On eatering the monantery he changed his original name Manuel to Maximus. Planudes possessed a knowiedge of Latin remarkable at a time when Rome and Italy were regarded with hatred and contempt by the Byzantines. To this socomplishment be probably owed his selection as one of the ambacsadors sent by Andronicus II. in 1327 to remonstrate with the Venetians for their attack upon the Genoese settiement in Pera. A more important reault was that Planudes, especially by bis tramalations, paved the way for the introduction of the Greek language and literature into the Weat.

He was the author of numerous works ; notably a Greek grammar in the form of question and answer like the 'RenTinara of Monchopulus, with an appendix on the so-called "political" verre; a treatise on oyntax; a biography of Aesop and a prose vernion of the fablen; scholia on certuin Greek authors; t wo hexameter poems, one a eulogy of Claudius Ptolemaeus, the other an account of the sudden change of an ox into a mouse; a treative on the method of calculating in use amongut the Indians (ed. C. J. Gerhurdt, Halle, 1865); and echolia to the firtit two books of the Arihmelic of Diophant us. His numerous translations from the Latin Included Cicero's Somminm Scipionis with the commentary of Macrobius: Caesar's Gallic War: Ovid's Heroides and Medamorphasas; Boetius, De conselatione philosaphias; Aupustine, Do zrimicale. These trambations were very popular during the middle ages as textbooks for the study of Greek. It is, however, as the editor and compiler of the collection of minor pocms known by his name (nee Anrtolooy: Greek) that he is chieny remembered.

See Fabricius, Bibliohecs proeca, ed. Harles, xi. 682; theological writings in Migne, Patrologia graeca, cxivii; correspondence, ed. M. Treu (1890), with a valuable commentary: K. Krumbacher, Geschichte der byzantinischen Lillerafur (r897); J. E. Sandys, Hisf. of Class. Schol. (1906), vol. i.

PLAQUE a French term for a small flat plate or tahlet, applied particularly to reetangular or circular ornamental plates or tablets of hronze, silver, lead or other metal, or of porcelain or ivory. Small plaques, plaquelles, in low relief in bronse or lead, were produced in great perfection in Italy at the end of the y gth and beginning of the roth centuries, and were uaually copies of ancient engraved gems, earlier goldamith work and the like.

PLASENCIA, a city of Spain and an episcopal see, in the north of the province of Ciceres. Pop. (1900), 8208. Plasencia is situated on the river Jerte, a subtributary of the Tagus, and at the foot of the sierras of Bejar and Vera. The place has some interest on account of its fine walls, bailt in 1197 by Alphonso VIII. of Castile, and its cathedral, begun in 1498, a favourable specimen of the orrate Gothic of its period. The Hieronymite convent of Yuste, the scene of the last years of the emperor Charles V. ($1500-1558$), is 24 m . east.

PLAssey (Paldsi), a village of Bengal on the river Bhagirathi, the scene of Clive's victory of the 23rd of June 1757, over the forces of the nawab Suraj-ud-Dowlah. The fall of Calcutta and the " Black Hole" atrocity led to instaat action by the East India Company, and Clive, with as many troops as could be spared, undertook a campaign against the nawab, and soon reoccupied Calcutta. Long and intricate negotiations, or rather intrigues, followed, and at the time of the battle the loyalty of most of the nawab's generals had been effectually undermined, though assistance, active or passive, could hardly be counted on. With this douhtful advantage, Clive, with 1100 European and 2100 native soldiers, and 10 field-pieces, took the field against the nawab, who had 50,000 men, 53 heavy guns, and some French artillery under M. de St Frais. Only the river Bhagirathi separated Clive's little force from the entrenched camp of the enemy, when the English leader, for once undecided, called a council of war. Clive and the majority were against fighting, Major Eyre Coote, of the 3gth Foot, and a few others for action. Coote's soldierly advice powerfully impressed Clive, and after deep consideration he altered his mind and issued orders to cross the river. After a fatiguing march, the force bivouacked in a grove near Plassey early on tbe 23rd. The nawab's host came out of its lines and was drawn up in a huge semicircle almost enclosing the little force in the grove, and St Frais' gunners on the right wing opened fire. Clive replied, and was soon subjected to the converging fire of 50 heavy guns. For hours the unequal fight was maintained,
until a rainstorm stopped it. The English covered up their guns, hut the enemy took no such precaution. Mir Mudin, the only loyal general of the nawah's army, thinking that Clive's guns were as useless as his own, made a disastrous cavalry charge upon them; he lost his own life, and his colleagues then had the game in their hands. Mir Jagar persuaded the nawah to retire into the entrenchments. St Frais stood fast until one of Clive's officers, Major Kilpatrick, successfully drove him in. Clive followed up this success hy cannonading the camp at close range. But the rank and file of the native army, ignorant of the treachery of their leaders, made a furious sortie. For a time Clive was hard pressed, hut his cool generalship held its own against the undisciplined valour of the enemy, and, noticing Mir Jagar's division in his rear made no move against him, he led his troops straight against the works. After a short resistance, made chiefly hy St Frais, the whole camp fell into his hands. At a cost of 23 killed and 49 wounded this day's work decided the fate of Bengal. The historic grove of mangoes, in which Clive encamped on the previous night, has been entirely washed away hy changes in the course of the river; but other relics of the day remain, and a monument has recently been erected.
PLASTER, a mixture of lime, hair and sand, used to cover rough walling of lathwork between timbers (see Plasterworx); also a fine white plaster of gypsum, generally known as "plaster of Paris." The word (also as "plaister ") is used in medicine of adhesive mixtures employed externally for the protection of injured surfaces, for support of weak muscular or other structures, or as counter-irritants, soothing applications \&c. The ultimate derivation of the word is the Gr. $\mu_{\mu \pi} \lambda$ actpor or $\quad 1 \pi \pi \lambda a \sigma r o v$ in the medical sense, from \boldsymbol{k}, on, and $\pi \lambda \lambda^{2} \sigma \sigma \omega \nu$, to dauh or smear.
PLASTRR CP PARIS, a variety of calcined gypsum (calcium sulphate) which forms a hard cement when treated with water (see Cement). The suhstance ohtained its name in consequence of being largely manufactured in the neighbourhood of Paris.
PLASTER-WORK, in building. Plastering is one of the most ancient of handicrafts employed in connexion with huilding operations, the earliest evidence showing that the dwellings of primitive man were erected in a simple fashion with sticks and plastered with mud. Soon a more lasting and sightly material was found and employed to take the place of mud or slime, and that perfection in the compounding of plastering materials was approached at a very remote period is made evident hy the fact that some of the earliest plastering which has remained undisturhed excels in its scientific composition that which we use at the present day. The pyramids in Egypt contain plasterwork executed at least four thousand ycars ago (probahly much earlier) and yet existing. hard and durahle, at the present time. From recent discoveries it has been ascertained that the principal tools of the plasterer of that time were practically identical in design, shape and purpose with those used to-day. For their finest work the Egyptians used a plaster made from calcined gypsum just like the "plaster of Paris" of the present time, and their methods of plastering on reeds rescmble in every way our "lath, plaster, float and set" work. Hair was introduced to strengthen the "stuff," and the whole finished somewhat under an inch thick. Very early in the history of Greek architecture we find the use of plaster of a fine white lime stucco. Such has been found at Mycenac. The art had reached perfection in Grecce more than five centuries before Christ, and plaster was frequently used to cover temples externally and internally. in some cases even where the huilding was of marhle. It formed a splendid ground for decorative painting, which at this period of Grecian history had reached a very high degree of beauty. The temple of Apollo at Bassae, huilk of yellow sandstone about 470 日.c., is an excellent example. Pavements of thick, hard plaster, stained with various pigments, were commonly laid in Greek temples. The Roman architect Vitruvius, in his book on architecture written about 16 в.c., gives detailed information concerning the methods of making plaster and the manner of using it. "The lime used for stucco," he writes, "should be
of the best quality and tempered'a long time before it in wanted for use. The Greeks, besides making their stucco work hard with thin coats of marble-dust plaster polished with chalk or marhle, caused the plaster when being mixed to be heaten with wooden staves hy a great number of men. Some persons cutting slabs of such plaster from ancient walls use them for tables and mirrors." Pliny tbe elder tells us that " no builder should employ lime which had not been slaked at least three years," and that "the Greeks used to grind their lime very fine and beat it with pestles of wood." In England the walls of large houses and mansions were formerly plastered above the wainscoting and coloured, while the ornamented plaster ceilings of the time of Henry VLII., Elizabeth and James I., are still the admiration of lovers of the art. Still earlier specimens of the plasterer's bkill are extant in the pargeted and ornamented fronts of half-timbered houses. With regard to the smaller buildings, comprising small dwelling-houses and cottages, the general application of plaster is of comparatively late date; for wainscoted walls and boarded ceillnge or naked joists alone are frequently found in houses of not more than a century old both in England and on the Continent.
In the more common operations of plastering, comparatively few tools and few materials are required, hut the workman efficient in ali branches of the craft will possess a very large variety of implements. The materials of the workman are laths, lath nails, lime, sand, hair, plaster of paris, and a variety of cements, together with various ingredients to form colouring washes, \&c.
Wood laths are narrow stripa of some straight-grained wood generally Baitic or American fr, in lengtha of from two to lour m Give feet to suit the distances at which the timbers of
a floor or partition are wet. Lathe are about an inch Laven wide, and are made in three thicknesaes; "single " (f to tit in. thick), "lath and a half" (f in. thick), and "double" (f to in. thick). The thicker laths should be used in ceilings, to stand the extra strain, and the thinner variety in vertical work such as partitions, except where the latter wijl be subjected to rough usage, in which case thicker laths become necessary. Laths are ubually miled wilh a space of about in. between them to form a key for the plaster. Laths were formerly alij made by hand. A large quantity however, are now made by machinery and are known as sawn laths, those made by hand being cailed rent or fiven laths. Rent laths give the bet results, as they aplit in a line with the grain of the wood, and are stronger and not so liable to 1 wist as machine-made laths, some ol the fibres of which are usually cut in the process of sawing. Latbs must be nailed so as to break joint in bays three or four feet wide with ends butted one againrt the oiber. By breaking the jointi of the laining in this way the tendency for the plaster to crack along the line of joints is diminighed and a better ley is obtaioed. Every lath should be nailed at each end and wherever it crosses a joist or stud. All timbers over three inches wide should be counterlathed, that is, have a fillet or double lach nailed along the centre upon which the laths are ther nailed. This is done to preserve a good key for the plaster. Walls liable to damp are sometimes battered and lathed in orifer to form an air cavity between the damp wall and the plastering.
Lathing of metal, either of wire or in the form of perforated sheels, is now extensively used on account of its firc-proof and lestiag quality. There are very many kinds of this material made in different designs under various patents, the best-known in England being the Jhilmil, the Bostwick, and the Expanded Metal lathing. The two last-named are abo widely used in America.
Lathing nails are usuaily of iron, cut. wrought or cast-and in the better class of work they are galvanized to prevent rusting. Zine nails are sometimes used, but are cortly.

The lime principally used for internal plastering is that calcined from chalk or other nearly pure limestone, and is known as fac, pure, chalk or rich lime. Hydraulic limes which are referred to in the articles Bricxwore and Mortar, are also used by the plasteret, chiefly for external work. Perfect slaking of the calcined lime before being used is wery inportant as, if used in a partially slaked condition, it will " blow "whin is position and blister the work. Lime should therefore be rua at soon as the building is begun, and at least three weeks shoald elappe between the operation of running the lime and lisa use.
Hair is uned in plaster as a binding medium, and gives tenaciry to the material. Ox-hair, which is cold in three quatioles, is the kind usually apecified; but horsehair, which is shorter. is sometimes substituted in its stead or mixed with the ox-hair in the lower qualities. Good hair should be long, sroas. and free from grease aad dirt, and before use must be weit beater to separate the lumpa. In America, gontio' heir in frequently menh
thongh it is not so strong as ox-hair. The quantity used in good work is one pound of hair to two or three cubic feet of coarse stuff.

Manila hemp fibre has been used as a substitute for hair. As a result of experiments to ascertain its strength as compared with

Sebanose that of other materiale, it was found that plaster for flater slabs made with Manila hemp fibre broke at 195 lb , and goate hair ater mixed with Sisal hemp at 150 lo , jute at 145 ib , manner. Two barrels of mortar were made up of equal proportions of lime and sand, one containing the usual quantity of goats' hair, and the other Manila fihre. After remaining in a dry cellar for nine months the barrels were opened. It was found that the hair had been almost entirely eaten away by the action of the lime, and the mortar consequently broke up and crumbled quite easily. The mortar containing the Manila hemp, on the other handy showed great cohesion. and required some effort to pull it apart, the hermp fibre being apparently quite uninjured. Sawdust has been used as a substitute for hair and also instead of sand as an aggregate. It will enable mortar to stand the effects of frost and rough weather. It is useful sometimes for heavy cornices and similar work, as it renders the material light and strong. The awdust should be used dry.

Some remarks are made on the ordinary mands for building in the articles on Briciwori and Mogtar. For fine plasterer's sand. work special sands, not hitherto referred to. are used, such as silver sand, which is used when a light colour and fine texture are required. In England this fine white and is procured chiefly from Leighton Buzzard.

For external work Portand cement is undoubtedly the best material on account of its strength, durability, and weather resisting axieral properties. The first coat or rendering is from to

Wort.

in. thick, and is mixed in the proportioas of from onc part of cement to two of aad to one part to five of sand. The Gnishing or setting coat is about it in. thick, and is worked with a hand float on the surface of the rendering, which must first be well wetted.
Stucco is a term loovely applied to nearly all kinds of externai plastering, whether compowed of lime or of cement. At the present

streces.

 time it has fallen into disfavour, but in the early part of the igth century a great deal of this work was done. The principal varieties of stucco are common. rough, trowelled and bastard. Cement hau largely superseded lime for this work. Common stucco for external work is usually composed of one part hydraulic lime and three parts sand. The wall should be sufficiently rough to form a key and well wetted to prevent the moisture being absorbed from the plaster.Rough stucco is used to imitate stonework. It is worked with a hand float covered with rough felt, which forms a sand surface on the plaster. Lines are ruled before the stuff is oet to represent the joints of stonework. Trowelled stucco, the finishing coat of this work, consists of three parts sand to two parts fine stuff. A very fine smooth surface is produced by means of the hand float. Baslard slucco is of similar composition, but less labour is expended on it. It is laid on in two conts with a skimming float, scoured off at once, and then trowelted. Coloured slucco: lime stucco may be executed in colours, the desired tints being obtained hy mixing with the lime various oxides. Black and sreys are obtained by using forge ashes in varying proportions, greens by green enamel, reds by using litharge or red lead. and blues by mixing oxide or cartonate of copper with the other materials.
Rough-cas! or Pebble-dash plastering is a rough form of external plastering in much use for country houses. In Scotland it is termed "harling." It is one of the oldest forms of external plastering. In Tudor times it was employed to fill in between the woodwonk of half-timbered framing. When well exccuted with good material this kind of plastering is very durable. Rough. casting is performed by first rendering the wall or laths with a coat of well-hared coarse tuff composed either of good hydraulic lime or of Portland cement. This layer is well ecratched to give a key for the next coat, which is also composed of coarse stufi knocked up to a mmooth and uniform consistency. While this coat is still soft, gravel, shingle or other small stonea are evenly thrown on with a small coop and then brushed over with thin lime mortar to give a uniform surface. The shingle is often dipped in hot lime paic, woll stirred up. and used as required.

Sgraffio (italian for "scratched") is scratched ormament in plaster. Scratched ormament is the oldest form of surface decoration, and at the present day it is much used on the continent of Europe, especially in Germany and Italy, in both external and internal situations. Properiy treated, the work ls durable, effective and inexpensive. The process is carried out in this way: A first coat or rendering of Portland cement and sand, in the proportion of one to three, is haid on about in. thick; then follows the colour coat, cometimes put on in patches of difierent tints as required for the finished design. When this coat is nearly dry, it is finished with a smouth-skimming. Ir to in. thick. of Parian, selcnitic or other fine cement or lime, only as much as can be finished in one day being laid on. Then by pouncing through the pricked cartoon, the design is transferred to the plastered surface. Broed spacee スx! 13*
of background are now exposed by removing the finishing coat thus revealing the coloured plaster bencath, and following this the outlines of the rest of the design are scratched with an iron knife through the outer skimming to the underlying tinted surface. Sometimes the coats are in three different colours, such as brown for the first, red for the second, and white or grey for the final coat. The pigments used for this work include Indian red, Turkey red Antwerp hlue, German blue, umber, ochre, purple brown, bone black or oxide of manganese for black. Combinations of these colours are made to produce any decired tone.

Lime plastering is composed of lime, sand, hair and water in proportions varying according to the nature of the work to be done. In all cases good materials, well mixed and skilfully applied, are emential to a periect result. Plaster is Ioveraed applied in suoceasive coats or layers on walls or lathing, Worth. and gains its name from the number of these coatg. "One coat " work it the coarseat and cheapest class of plastering, and is limited to inferior buildings, such as outhouses, where merely a rough coating is required to keep out the weather and draughts This is described as "render" on brickwork, and " lath and lay " or "lath end plaster one coat " on studding- "Two coat "work is often used for factories or warchouses and the less important rooms of residences. The first coat is of coarse stuff finished fair with the darby foat and acoured. A thin coat of setting stuff is then laid ong and trowelled and brushed smooth. "Two coat " work is described as " render and wet " on walls, and "lath, plaster and set," or "lath, lay and set" on lathe. "Three coat" work is usually specified for all good work It consists, as its name implies. of three layers of material, and is described as "render, float and eet" on walls and "lath, plaster, float and set," or "tath, lay, foat and wet." on lathwork. This makes a strong, strajght, sanitary coating for walls and ceilinge. The process for "three coat "work is as follows: For the first coat a layer of well-haired coarse stuff, ahout in. thick. is put on with the laying trowel. This is termed "pricking up" in London, and in America " scratch coating." It should be laid on diagonally, each trowelful overlapping the previous one. When on laths the tuff thould be plastic enough to be worked through the spaces between the laths to form a key, yet so firm as not to drop off. The nurface while still soft is scratched with a lath to give a key for the next coat, which is known as the second or "floating coat," and is 1 to in. thick. In Scotland this part of the procest is termed "straightening" and in America "hrowning," and is performed when the first coat is dry, so as to form a straight surface to receive the finishing coat. Four operations are involved in laying the second coat, namely, forming the screeds; flling in the spaces between the screeds; scouring the surface: keying the face for finishing. Wall screeds are plundied and cciling ecreeds levelled. Screeds are narrow strips of plastering, carefully plumbed and levelled, so as to form a guide upon which the floating rule is rua, thus wecuring a perfectly horizontal or vertical surface, or, In the care of circular work a uniform curve.

The " Gilling in." or "flanking," consists of laying the spaces between the screcds with coarse stuff, which is brought flush with the level of the erreeds with the foatlny rule.

The "ecouring" of the floating coat is of great importance, for it consolidates the material. and, besidea hardening it, prevents it Irom cracking. It is done by the plasterer with a hand float which he applics vigorounly with a rapid circular motion, at the same time spriakling the work with water from a stock brush in the other hand. Any sunall holes or inequalities are filled up as he proceeds. The whole surface should be uniformly scoured two or three times, with an interval between each operation of from six to twenty-four hoars. This process leaves the plaster with a close-grained and fairly smooth buriace, offering little or no key to the cont which is to follow, To obtain proper cohesion, however, a roughened lace is necesary, and this is obtained hy "keying" the surface with a wire brush or nail float, that is, a hand float with the point of nail cticking through and projecting about 1 in.; sometimes a point is put at each corner of the flont. Arter the floating is finiahed to the walls and ceiling, the next part of internal plastering is the running of the cornice, followed by the finishing of the cciling and walls.

The third and final coat is the "ectting coat," "which should be about in. thick. In Scothand it is termed the " finishing." and in America the "hard finish "or "putty coat." Considerable aki!! is required at this juncture to bring the work to a perlectly true finish. uniform in colour and texture. Setting stuff should not be applied until the floating is quite firm and nearly dry, but it munt not be too dry or the moisture will be drewn from the setting stuff.

The coarue stuff applied as the first coat is composed of and and lime, usually in proportions approximatins to two to one, with hair mixed into ft ln quantities of about a pound to two or three cubic fect of mortar. It should be mixed with clean water to much a conastency that a quantity picked up on the point of a trowel holds well together and does not drop.

Floating stuff is of finer texture than that used for "pricking up." and is used in wofter state. enabling it to be worked well into the keying of the first coat. A smalter proportion of hair is also used.

Fine stuff mixed with and is used for the retting coat. Fios
utuff, or lime putty, is pure lime which has been staked and then mixed with water to a semi-fluid consistency, and allowed to stand until it has developed into a solt paste. For use in setting it is mixed with fine washed and in the ratio of one to three.

For comicea and for setting when the cecond coat is not allowred time to dry properly, a apectal compound must be used. This is often " gauged " atuff, composed of three or four parts of lime putty and one part of plaster of Paris. mixed up in small quantities immediatcly before use. The plaster in the material caumes it to eet rapidly, but if it is present in too large a proportion the work will crack in setting.

The hard cementry used for plastering, such as Parian. Keene's, and Martin's. are laid generally in two coats, the first of cement and sand to to in. in thicknese, the second or setting coat of neat cement about i in. thick. These and similar cements have gypsum as a base, to which a certain'proportion of another subatance, buch as alum, borax or carbonate of soda, is added, and the whole baked or calcined at a low temperature. The plaster they contain causes them to eet quickly with a very hard smooth surface, which may be painted or papered within a few hourt of its being finished.
The by-laws made by the London County Council under 51 of the London Council (General Powers) Act 1890 set forth the description and quality of the aubstances of which plastering is to be made for use in buildings erected under its jurisdiction.

Plaln, or unenriched, mouidings are formed with a running mould of zinc cut to the required profile. Enrichments may be added after the main outline moulding ls zet, and are Moustiages cast in moulds made of gelating or plaster of paris. For a cornice moulding two running rulea are usual, one on the wall, the other on the ceiling, upon which the mould is worked to and fro by one workman, while another man roughly lays on the plaster to the shape of the moulding. The mitres at the anglea are finished oft with joint rules made of sheet steel of various lengths, three or four inches wide, and about one-eighth inch thick, with one end cut to an angle of about 30°. In some cames the stcel plate is let into a " stock" or handie of hardwood.

Cracks in plastering may be caused by settlement of the huilding, and by the use of inferior materials or by bad workmanahip, but cracks. apart from these causes, and taking the materials and the too fast drying of the work, caused through the laying of plaster on dry waile which suck from the composition the moisture required to enahle it to met, by the application of external heat or the heat of the sun, by the laying of a coat upon one which has not properly set, the eracicing in this case being caused by unequal contraction, or by the use of too small a proportion of and.

For partitions and ceilings, plaster slabs are now in very general use when work has to be finished quickly. For ceilings they require smate aimply to be nailed to the joists the joints being made coat. In some cases, with fire-proof floors, for instance, the slabs are hung up with wire hangers so as to allow a space of several inches betwreen the soffit of the concrete foor and the ceiling. For partitions the slabs frequentiy have the edges congued and grooved to form a better connexion; often, too, they are holed through vertically, so that, when grouted in with gemi-fluid plaster, the whole partifion is bound together, as it were, with plaster dowels. Where very great strength is required the work may be reinforced by small Iron rods through the slabs. This forms a very strong and nigid partition which is at the same time fre-resisting and of light weight, and when finished measurea only from two to four inches thick. The slabs may be obtained either with a keyed surface, which requires finjohirg with a setting coat when the partition or ceiling is in poaition, or a amooth finished face, which may be papered or painted immediatciy the joints have been carefully made. Partitions are also formed with one or other of the forms of metal lathing previously referred to, fixed to iron uprighte and piastered on both sides. So strong is the result that partitions of this clase only two or three inches thick were used for temporary celle for prisoners at Newzate Gaol during the rebuilding of the new seasions house in the Old Bailey. London.
Fibrous plaster is given by plasterert the sugesestive name " stick and rag," and this is a rough description of the material, for it is Pioreme compoted of plaster laid upon n baclaing of canvas Fiastira stretched on wood. lt is much used for mouldings, and omamental work, which, being worked in the shop and then nalled or otherwise fixed in position, asyes the delay often attendant upon the working of omament in poaition.

Desachy, a French modeiler, took out in 1856 a patent for "producing architectural mouldings, ornaments and other works of art, with surfaces of plaster," with the aid of plaster, glue, wood, wire, and canvas or other woven fabric. The modern use of this material may be aaid to have started then, but the use of fibrous plaster was known and practised by the Egyptians long before the Christian era: for ancient coffins and mummies still preserved prove that linen stiffened with plaster was used for decorating coffins and making maxks. Cennino Cennini, writing in 1437. says that fine linen soaked in glue and plagter and laid on wood was used for forming stounds for painting, Canvas and mortar were in general
use in Great Britain up to the middle of the lest century. This work is also much used for temporary work, auch as exhibition buildings.

The priscipal books of refereace on the subject are: W. Mitiar. Plastening, Platn and Decoralive: G. R. Burnell, Limer, Cements. Mortars and Mastics; Rivington, Notes on Buildint Construclion, Part III." Building Materials"; the wories on architecture of Robert and James Adam.
(J. Br.)

PLATA, RID DE LA, or RIVEE Plati, a funael-shaped estuary, on the east side of South America, extending W.N.W. from the sea about 170 m . The discovery of the South Sea by Balboa, then governor of Castilla del Oro, of which Darien formed a part. created a lively desire to learn something of its coast-line, and the year following (in 1514), the Spanish monarch concluded a navigation contract with Juan Diaz de Solis, then Pioto Mayor, to search for a strait connecting the Atlantic with the newly found ocean, explore the coasts of the latter and commugicate with Pedrarias de Avila, the new governor of Castille del Oro; and, if it were found to be an island, to report to the superior authorities of Cuba, De Solis set sail from the port of Lepe on the 8 th of October 1515, reached the Bay of Rio de Janeiro on the ist of Jamuary 1516 , and continuing southward to lat. 55° entered the great eatuary now known as the Plata, which, for a short period of time, was called the de Solis and the Mar Dulce. Ascending it to the vicinity of the island of Martin Garcia, near the mouth of the Parana river, de Solis was amhushed and killed in the early pert of 1516 by Guarani Indians while attempting to capture some of them. In the 'frst months of 1520 Magellan explored the Ria de la Plata, and afterwards, in the same year, discovered and navigated the straits which bear his name. This discovery led to the voyage of Sehastian Cabot, who fitted out an expedition in I 526 to reach the Spice Islands by the Magellan toute. Owing, however, to shortness of provisions and the insubordination of his men Cabot abandoned his proposed voyage to the Moluccas, and, ascending the Mar Dulce, discovered the Parand river and reached a point on the Paraguay near the site of the present city of Asuncion. Here he met many Guaranl Indians wearing silver ornaments, probably obtained in trade across the Gran Chaco, from the frontier of the Inca Empire. In exchange for beads and trinkets Cabot acquired many of these ornaments and sent them to Spain as evidence of the richness of the country in precious mctals and the great importance of bis discoverica. The receipt of these silver baubles caused the name of Rio de la Plata to be applied to the third (perhaps the second) greatest river of the Western Continent.

The extreme hreadth of the river at its mouth is 138 m . It narrows quickly to 57 m . at Montevideo, and at its head, where it receives the united Parani and Uruguay rivers, its width is about 25 m . Its northern or Uruguayan shore is somewhat elevated and rocky, while the southern or Buenos Airean one is very lov. The whole estuary is very shallow, and in no place above Montevideo exceeds 36 ft . in depth when the river is low. The bottom generally consists of enomous banks of sand covered with from so to 20 ft . of water, and there is a continuous and inl ricate channel, of about 22 ft. depth only, to within 14 m. of the port of Buenos Aires. The remaining distance has a depth of 18 ft . in the uncertain channel. The Plate is simply the estuarine receptacle of two mighty streams, the Uruguay and Parana, which drain the Plata hasin. This has an area of $1,198,000$ sq. m., or over two and one-half times that of the Parlfic slope of the Andes, and comprises the most fertile, healthiest and best part of Brazil, a large portion of the Argentine Republic, the whole of Paraguay and south-eastern Bolivin, and most of Uruguay.

The Uruguay river has a length of about 1000 m . Many small streams from the western slope of the Brazilian Serra do Mar unite, in about $27^{\circ} 45^{\prime} \mathrm{S}$., to form this river, which then flowe W.N.W., serving as the boundary between the ststes of Santa Catharina and Rio Grande do Sul, as far as 52° W., near which it receives a considerable tributary from the north., called the Pepiri-guazi. Between $27^{\circ} 58^{\prime}$ and $33^{\circ} 34^{\prime} \mathrm{S}$. three important tributaries join it from the east-the Ipul-guara, the Ibicul and the Negro, the last being its main affluent.

The Pepiri-guazd was one of the limits between the possessions of Portugal and Spain. Its lower course is about 250 ft . wide, but higher up it narrows to about 30 ft ., and runa with great violence between high wooded banks. It is navigable for canoes fnr about 70 m . above its mouth, as far as its first fall. The Rio Negro has a delta of several large islands at its confluence with the Oruguay Its head-water: are in the couthern part of Rio Grande do Sul, but the main river belonge entirely to the state of Uruguay, which it cuts midway in its cource from northeast to souch-west. Its lower reaches are ravigable for craft of moderate draught.

From the time the Uruguay leaves the coart range of Brasil it runs for a long distance through a beautiful, open, hilly country, Cerre but afterwards enters a foreat belt of high lands. At oftion
Uneamer
the river Pepiri-guasd it turns suddenly to the eouthwest, and continues this course to its junction with the
Parank and Plata. Near Fray Bentos, 61 m . before
reaching the Plata, it forms a great lake, about 56 m . long and from 4 to 6 m . wide. At Punta Gorda, where it debouches into the Platn, it is only 1 m . to $\mathrm{t} \$ \mathrm{~m}$. wide, but is $\varphi \mathrm{ft}$. deep. From the Pepiri-guazd junction ita banks are high and covered with foreat as far down as $27^{\circ} 30^{\prime} \mathrm{S}$., where the river is 2300 ft . wide and from 10 to 40 ft . deep. The Uruguay is much obstructed by rocky barriers. Four miles below its confluence with the Pepiri-guaza It has a cataract, about 8 m . long, with a total fall of 26 ft . at low water, The river near the Pepiriguazd is 1550 ft . wide, but abaut if m . before reaching the cataract its width is reduced to 600 ft , Along the cataract it is closed in between high precipitous walls of black rock only 70 ft . apart. Above Punta Gorda, 212 m ., is the Salto Grande, which has a length of 15 m . of rapids, the sreatest mingle fall being 12 ft ., and the difference of level for the entire length of the rcefs 25 ft . These croes the river diagonally, and during floods all, excepting a length of 11 m . of them, are submerged. Nine miles below the Saltn Grande is the Salto Chico, which bars navigation during six months of the year, but in flood-time may be pased in craft drawing 5 ft. of water. The Uraguay can be navigated at all seasons by vessels of $4 \frac{1}{1} \mathrm{ft}$. draught as far np as the Salto Chico, and of 14 ft . up to Paysandu for a greater part of the year. Fray Bentos may be reached all the year round by any vessel that can ascend the Parand. Above the navigable lower river there is launch and canoe navigation for many hundreds of miles upon the main artery and its branches, between the rapids which are met with from time to time. The Uruguay has its annual floods, due to the rains in its upper basin. They begin at the end of July and continue to November, attaining their maximum during September and October. At the marrow places the river rises as high as 30 ft ., but its average rise is 16 ft . It flows almost for its entire courue over a rocky bed, generally of red sandstone, at times very coarse and then again of extremely fine composition. Except in floods, it is a clear-water stream, and even at fts highest level cariea comparatively little silt.

The Parana (the " Mother of the Sea " in Guarani) drains a vast arca of southern Brazil. It formed by the union of the Rio The Pivranal and the Affloets Grande and Paranáhyba, and is about 1600 m . long from its extreme source in Goyaz to ita function with the Paraguay, and thence 600 more to the Plata estuary. Its average width for the latter length is from I to 3 m . Its Rio Grande branch descends from the slope of the Serra da Mantiqueira, in the region where the orographic syatem of Brazil culminates near the penk of Itatiaia-assh, almost in sight of Rio de Janeiro. It is about 680 m . long, but only navigable in the stretches between the many reefe, falle and rapids which interrupt its regular flow. Among its numerous afluents the principal one is the Rio das Mortes, nsing in the Serra Mantiqueira. It is 180 m . long, with two sections, of a total of 120 m ., which are navigable for launches, The main brench of the Paranh, the Paranáhyba, riscs ia about $15^{\circ} 30^{\prime} S$. on the couthern slopes of the Pyseneos Mountains. It drains a litele-known region of Croyaz and westera Minas Geraes, lying upon the immediate southern watershed of Brazil.

Bcsides these rivers, the Parand has many long and powerful affluents from the Bracilian states of Sao Pauio and Parana. Most of them, altbough obstructed by rapids, are navigable for launches and anoes. Anong the castern tributaries are the Tidte, the Paranápanema, formerly known as the Anemby, and the Iguazu.

The Tiete, over 700 m . long, rises in the Serra Paranapicaba and flows in a north.west direction. Its course is broker by fifty. four rapids, and the lower river by two fails, the Avanhandava, 44 ft . drop, and the ltapura, 65 ft .

The Paraná-pancma is about 600 m . long, and rises in a ramification of the Serra Paranápicaba which overlooks the Atlantic Ocean. Its general course is north-west. It is navigabic for a distance of onily about 30 m . above its mouth, and for its whole courve it has to many obskructions that it is useless for commercial purposen.

The Iquazú, also called the Rio Grande de Curutiba, has its sources on the slopes of the Serra do Mar of Brazil, and flows nearly west. through thick forcsts, along the line of $26^{\circ} \mathrm{S}$. Its navigation is difficult even for amall craft, as it is full of reefs, rapids and cataracts. Sixtcer. miles above its mouth is the magnificent Salto del Iguaza. sometimcs called the Victoria Fall, round which canoes have to be trassported 37 m . belore quiet water is seached again. The width
of the falls, measured along their crest or edge, is $2 \frac{1}{4} \mathrm{~m}$.; part of the river takes two leaps of about 100 ft . each, but a portion of it plunges down the whole depth in unbroken mass. Its mouth is about 800 ft . Wide, and the depth in mid-river 40 ft .

The Parana, at a point 28 m . above the mouth of the Tiete, is Interrupted by the falls of Urubuponga, but below theme it has unobstructed navigation for abaut 400 m ., as far down as the falls of Guaira, in $24^{\circ} 3^{\prime} 5$., where the siver form a lake 41 m . long and 21 m . Wide, preparatory to Cowren breachin the Serm and at m. wid, preparatory to Poftas, its right of way. It has torn deep gorge through the mountains for a length of about 2 m ., where it is divided into several channels, filled with mpids and catdracts. It finally gathers ite waters into a single volume, to plunge with frightiul velocity through a long caflon only abaut 300 ft. Wide. From these so-called falls of Guairs, or "Sete Quedas," as far as it confluence with the Paraguay river, the Parank has carved a marrow bed through an immense cap of red sandstone, along which it sometimes flow with great rapidity, occasionally being interrupted by dangerous narrows and rapida, where the banks in some places clome in to a width of 450 to 600 ft ., although the average is from 1200 to 1600 ft . At the mouth-east angle of Paraguay the Parand is prevented from continuing its natural southern courve to the river Urugumy by the highland which cross the Aryentine province of Misiones, and connect thoee of Rio Grande do Sul with the Caaguazd range of Paraguay. Here, therefore, it is turned weotwarda; but before eacaping from its great asadstone bed it is obstructed by aeveral neefs, notably at the rapids of Apipe, which are the last before it joins the placid Paraguay. 130 m . ferther on. From the Apipe rapids there is a vate triangular space at the south-western corner of Paraguay but littie above sea-level, consisting of low, sandy ground and morases, at times flooded by the Paraguay river. This district, united to the equally enormous area occupied by the Ybera lagoon and its surrounding morases, in the northern part of the Argentine province of Corrientes, was probably the delta of the Parand-river when it emptied Inta the ancient Pampean Sea.
The river Paraguay, the main affluent of the Parana, rises in Matto Grovo, in the vicinity of the town of Diamantino, about 14*24' S. It flows wouth-westwards, as far as Vilia Mnria, along the foot of the high platesu which divides it from the Cuyaba River to the east, and then, turning

Parnation southwards, econ reaches the moramexpansion of Xarayes, which it traverses for about 100 m. A few miles below Villa Maria it receives an affuent frons the north-west, the Jaurfy which has itg source nearly in contact with the head-waters of the Guapore branch of the river Madeira. The Curyabs, which is known as the Saio Lourenco for 90 m . above its confluence vith the Paraguay, has its sources in $13^{\circ} 4^{\prime}$ S., almost in touch with thove of the Tapajos branch of the Amazon. Abave the town of Cuyabd it is from 150 to 400 ft . wide, and may be navigated up atream by can res for 150 m .; but there are many rapids. The town may be reached from the Paraguay River, at low water, by craft drating is in. According to the observations of Clauss, Cuyabais only 660 ft . above sea-level. From the junction of the Sao Lourengo (or Cuyaba) with the river Paraguay, the latter, now a great atream, moved slucgishly southwards, spreading its watert, in the rainy season, for hundreds of miles to the right and left, as far couth as 20°, turning vast gwampe into great lakeg-in fact, temporarily restoring the region, for thousands of square miles, to its ancient lacustrine eondition.

On the west side of the upper Paraguay, between about $17^{\circ} 30^{\circ}$ and $19^{\circ} 5$., are zeveral large, shaliow lagumas or lakes which recelve the drainage of the southern sopes of the Chiquitos sierras, but represent mainiy the couth-west overfiow of the vast morass of Xarayas. The principal of theme lakes, naming them from north to south, are the Uberaba the Gaiba, Mandiort and the "Bahia" de Cacerabal Puraguy. is the largest. The northern division of the leke belat Uberabs to Brasil but the wouthern one, gout two-thirds of its entirely bisected from north to south by the boundary iine between Braid and Bolivia, according to the treaty of 1867 . It is in great part surrounded by high ground and hills, but its eouthern coast is swampy and flooded during the rainy season. The weat shore is historic. Here, in 1543, the conquistador, Martines de Irala, founded the "Puerto de los Reyea," with the idea that it might become the port for Peru; and Irom Lake Gaiba eeveral expeditions, in Spanish colonial daya, penetrated 500 m . across the Chaoo to the frontier of the empire of the Incas. At the Puerto de los Reyed Balivia laid out a town in December 1900. in the forlorn hope that the "Port" may eerve as an gutict for that commercially suffocated country, there being no other equally good aecesaible point lor Bolivia on the Paraguay River.

South of the Sao Lourenco, the first river of importance which entera the Paraguay from the east is the Taquary, about $19^{\circ} \mathrm{S}$. It rises in the Serra Cayapo, on the southern extension of the Matto Grosso table-land. South of this stream about 50 m . a considerable river, the Mondego, with many branches, draining a great area of extreme south- ern Matto Grosso, also flows into the Paraguay; and tetill farther couth, near 21°, is the Apd tributary, which forms the boundary between Paraguay and Brazilian Matto Grovo.

The Pilcomayo is of more importence from its length than from its volume. It rises among the Bolivian Andes north of Potosi The and north-weat of Sucre, races down the mouttains to Plosemoves their base, crowes the Chaco plains, and pours into the branch of importance until it reaches about $2 I^{\circ} S_{\text {., where }}$ it is joined from the south-wrest by the river Pelaye upon which Tupiza, the most southerly city of Bolivia, is situated. The Pelaya rises upon the lofty inter-Andean plateau, and, taking an easterly course, saws its way acroes the inland Andean range, turns northwards and then eastwards to unite with the Picomayo, which it is said at least to equal in volume. Juat below the junction is the fall of Guarapetendi, 23 ft . high. From this point to the mouth of the Pilcomayo the distance in astraight line is 480 m ., although by the curves of the river, which is extremely tortuous, it is about double that distance. According to Storm, who quotes Captain Baldrich, the river bifurcates at $21^{\circ} 51^{\prime}$ S., but again becomes a single stream at $23^{\circ} 4^{\prime}$, the right channel being the greater in volume. It is probable that bet ween 23° and $24^{\circ} \mathrm{S}$. It throws E.S.F. three great arms to the river Paraguay, the upper portions of which have yet to be explored, but the lower parts he ve been examined for 100 to $200 \mathrm{~m} . \mathrm{up}$ from the Paraguay. Enumerating from north to south, they are called the Esperanza, the Montelindo and the Mach. From 180 to 200 m . above its mouth the Pilcomayo filters through a vast wamp about 100 m . in diameter, through which there is no principal channcl. This swamp, or perhaps shallow lagoon, is probably partly drained by the river Confuso, which reaches the Paraguay between the Pilcornayo and Mach. A northern branch of the. Pilcomayo, the Fontana, the junction being at $24^{\circ} 36^{\prime} \mathrm{S}$., is probably also a drainage outlet of the ame great awamp.
For the first 100 m . below the fall of Guarapetendi the Picomayo is from 600 to 1000 ft . wide, but it 50 distributes its waters through its many bifurcations, and loses so much from infitration and in awamps, and by cvaporation from the numerous lagoons it forms on either side of its course, that its channel is greatly contracted before it reaches the Paraguay. From Sucre to the Andean margin of the Chaco, a distance of about 350 m . by the river, the fall is at least 8000 it.-a sufficient indication that its upper course is useless for purposes of navigation.

The missionaries in 1556 first reported the existence of the Pilcomayo, which for a long period of time was known as the Araguny. In 1721 Patino and Rodriguez partially explored it, and since then numerous attempt have been made to test its navigability, all of which have been failures; and several of them have ended in disaster and loss of life, so that the Pilcomayo now has a sinister reputation.

The Bermejo river flows parallel to the Pilcomayo, and enters the Paraguay a few miles above the junction of this with the Parana. 740 Bermefor Its numerous sources are on the eastern frontage of the inland Andes. between the Bolivian town of Tarija and the Argentine city of Jujuy. Its most northerly tributary is the San Lorenzo, which, after being aupmented by eeveral small streams, takes the name of Rio de Tarija. This running east, and then taking a general goutheasterly course, joins the Bermejo in $22^{\circ} 50^{\prime} \mathrm{S}$. at a point called the Juntas de San Antonio. Thence, dying eouthwards, the Bermejo finally. in $23^{\circ} 30^{\prime}$ S., receives its main affuent, the San Francisco, from the south-west. The latter has its source in about $22^{\circ} 30^{\circ} \mathrm{S}$., and, under the name of Rio Grande. runs directly eouthwards, in a deep mountain valley, as far as Jujuy. It then turns eastwards for 50 m ., and is joined by the Lavayen from the south-west. Theme two streams form the San Franciso, which, from their junction, runs north-castwards to the Bermejo. The average width of the San Francisco is about 400 ft ; it is seldom over 2 ft . deep, and has many shoals and sandbanks. From its junction with the latter stream the Bermejo llows cuth east wards to the Paraguay with an average width in its maio channel of about 650 ft ., although narrowing al times to 160 and even 100 . In its course, however, it bifurcates and ramifics into many channels, forming enormous islands, and frequently leaves old beds for new ones.
Since the exploration of the Bermejo by Patino in 1721 , it has often been examined from its sources to its mouth, with a view to ascertain its navigability. Captain Page ia 1854 and 1859 found it impracticable to ascend it over 135 m . in the dry season, with a listle steamer drawing 23 in. of water; but in food-time, ia December 1871, he succeeded, in 60 days, in reaching a point 720 m . from its mouth, in the steamer "Alpha." 53 ft . long and 30 in. draught. He aiterwards penetrated another $100 \mathrm{~m} . \mathrm{up}$ stream. The round voyage cook a year, owing to the swift currents, shoals, quickesands, snags and fallen trees.
The Salado. about 250 m . south-west of and approximately parallel to the Bermejo. is the only great tributary which the Parana receives from the west below its confuence with the Paraguay. Irom extreme head waters are in the Argentine province Setedo. of Salta, and they drain a much broken Andean region the rivers Santa Maria and Calchaqui. which unite near the town of San Cartos and form the river Guáchipas. Having received the Arias, the GuSchipas runs north-eastwards about 50 m. , and then it changes its name to the Juramento, which is retained until the river reaches the Chaco plains at the base of the foot-hills of the Ander.

Here it becomes the Salado, a mame it preserves for the remindof its course. It joins the Parana near Santa Fe in $31^{\circ} 39^{\prime}$ souts and $60^{\circ} 41^{\prime}$ west. Explorers of the Salado, inclusive of Capenin P_{4} ? in 1855, claim that its lower half is navigable, but the many efions which have been made to utilize it as a commercial route have $4 B$ resulted in failure.

As the Pilcomayo, the Bermejo and the Salado wander about ix country, ever in search of now channels, they erode and tear azz great quantities of the Pampean material, distolve it into silt, dr: pour it into the Paraguay and Parano rivers. The engineer Pellest estimates that "the soil annually subtracted from the territors x the Chaca by the Bermejo alone equals $6,400,000$ cubic yards.

South of its confuence with the river Paraguay, the Parsis washes the western foot of a series of sandstone blufis for 30 mila Thence for 240 m . the bordering hills are about 80 ft. high, but at Goya the country is almont on a level with the niver. Near the boundary-line between Corrientes and Entre Rios the banks are very low on both sides of the river, and continue so for nearly 100 m : Diarther down, for Igo m., the lcit bank is mergioo high at south-east wards for escarped. At Diamante they trend inka ancient channel of the river. From 31 30° south to the bead of is. Plata eatuary the western bank of the Parank is a precipitous b of reddish clay, varying from 25 to 75 ft above mean river lewi It is being gradually undermined, and tumbles into the sais in great blocks, adding to the immense volume of silt which the rive carrics. According to Ramon Lista, "the lowest kevel of its Paraná is in October and Novermber, and, save an occasional fresh. it remains otationary until the beginning of summer, when its wa:-begin to rise, reaching their maximum about the middle of Februar: in the lower part of their course." The difference between low and high river is generally about 12 ft ., depending upon the varyidg quantity of rains in Brazil and the melting of the Andean snows Below its junction with the Paraguay the Parand has an average current of $2 \frac{1}{\mathrm{~h}} \mathrm{~m}$. an hour, and the river varics in width from I to 3 m , at low water; but in fioods it secms almost a continuous Inlxe, broadening to 10 and 30 m . and burying many of its numerous islanda and marginal swamps under a vast sheet of water. and obliteratirz its many parallel Lateral channels and intricate systems of connecting canals.
In the middle Paranh, from the mouth of the lguned to the mouth of the Paraguay river, there are many islands, come of them lage rocky and high above the uiver. From Paraguay to the city of Rosario, islands are numerous, many of them of great area; and again below Rosario they soon increase in number and size untll the Plata estuary is reachen In flood-time the upper portion of the trees being out of water. thel have the appearance of hoating forests. Then the river of ten rain wild work with ita banks, and builds up or sweeps a way entire indans lenving deep channels instead. Mouchez in 1857, wearching for \ddagger : islands the porition of which he had fixed in the previous year. foust in their place 25 and 32 ft . of water. The lower delta of the Parars does not share in these phenomena; ite islands and main channs appear more fixed. This probably is due to the less elevation attained by the warers in flood-time, and the numerous branches which distribute them into the Plata cstuary. This must have extended. in a very recent geological period, inland from its present bead to at least $\mathbf{3 2}^{\circ} \mathrm{S}$.; but the enormous quantity of silt which the Pararí receives from its Paraguay afluent, and from the tributaries which reach it from the Andes, has filled this length of about 220 mm . with these muddy islands, which reat upon a aandy bed of great depeh.

The frontage of the Parand delta is 40 m . across, almost in a straight line from north to south. Through this the river finds its way to the Plata by cleven outlets, large and small,
the two principal once being the Parand-guaxh and the Paraná de las Palmas.

The mean flow of the Missiggippi river at New Orleans is 675.000 cub. ft. per eecond, and its dood maximum about $1,000,000 \mathrm{ft}$ The minimum of the Plata past Buenos Airen is 534,000 , the man:mum 2,145,000. It may therefore be fairly assumed that the yearly discharge of the great North American river is not superior, and may be inferior, to that of the Plata.
The Parant is navigable at all times as far up as the Sio Lourenço river by craft drawing 3 ft . of water, and to within a few risies of Asuncion, the capital of Paraguay, by vessels drawing 9 it The city of Parana may al ways be reached with a draught of 12 and Rosario with 15 ft . of watcr.

The commercial development of the Plata basin mey be cooveniently illustrated by statistics for the year 1822, which marts the beginning of independent rule in its republics; for
1854, when the steamboat and the railway first began
to play a part in this quarter of the work; and in 1898 and rego. as indicating approximately the state of affairs at the end of the sigh century. In Buenos Aires, for example, the foreign trade (entered and cleared) in 1822 aggregated 107,170 tons: in $1834,342,163$ tons: and in 1899, 5,046,847 tons. The consting and river trade of the same port increased from 150.741 tons in 1854 to $3,695,088$ tors is 1899. But taking inta account all the Argencine ports, escept
thowe which lie to the mouth of the Plata, there was for the six years ending with 1899 an annual average of $14,000,000$ tons for the overseas commerce and $11,000,000$ tons for the river and coasting trade. On the other, or northern, bank of the stream the chief port is Montevideo; and its forsign commerce increased from an aggregate of 50,000 tons in 1822 to 150,000 tons in 1854 and to 4,069,870 tons in 1898, the river and coasting trade having increased lrom 50,000 tons in 1822 to 150,000 tons in i854 and to $3,915,421$ tons in 1898. The total forelgr trade of the Plata valley thus increased from over 157,000 tons in 1822 to nearly $18,100,000$ tons in 1898-1899. Its growth since the opening of the aoth century has been pbenomenal and promises to become gigantic. The Andew on the west, the in. terior of South America on the north, great rivers, and the Brazilian mountains on the cast of the Plata basin are obstacles which compel the rich and varied products of at least $1,500,000 \mathrm{aq}$. mm . of fertile country to meek accem to the ocean by a single avenuc-a he Plata estury.
(G.E.C.)

Platarh, or Plataeae, an ancient Greek city of Boeolia, situated close under Mt Cithacron, near the passes leading from Peloponnesus and Attica to Thebes, and separated from the latter city's territory hy the river Asopus. Though one of the smallest Boeotian towns, it stabbornly resisted the centralizing policy of Thebes. In 519 B.c. it invoked Sparta's help against its powerful neighbour, but was referred by king Cleomenes to Athens (for the date, see Grote's Hislory of Greece, ed. 1907, p. 82, note 4). The Athenians secured Plataen's independence, and thus secured its enduring friendship. In 400 the Platacans sent their iull levy to the assistance of the Athenians at Marathon, and during the invasion of Xerxes they joined eagerly in the national defence. At Artemisium they volunteered to man several Athenian ships, and subsequently abandoned their town to be burnt by Xerxes. In 479 they fought against the Persians under Mardonius in the decisive battle which bears the name of the city. In this campaign the Persian commander, retiring from Attica before the combined Peloponnesian and Athenian levy, had encamped in the Asopus plaiz in order to give battle on eround suited to his numerous cavalry. The Greeke under the Spartan regent Pausanias at first did not venture beyond the spurs of Cithacron, but, encouraged by successful skirmishing, advanced towards the river and attempted a flanking movement so as to cut Mardonius off from his base at Thebes. The operation miscarried, and in their exposed condition the Greeks were severely harassed by the enemy's horse, which also blocked the Cithaeron passes against their supply columns. Pausanias thereupon ordered a night retreat to the hilly ground near Plataca, but the movement was badly executed; for whereas the Peloponnesians in the centre retired beyond their proper station, the Spartans and Athenians on the wings were still in the plain at daybreak. The Persians immediately fell upon these isolated contingents, but the Spartan iniantry bore the brunt of the attack with admirable steadiness, and both wings ultimately rolled hack their opponents upon the camp. When this was stormed the enemy's resistance collapsed, and Mardonius's army was almost annihilsted. This great victory was celebrated by annual sacrifices and a Festival of Liberation (Eleutheria) in every fourth year at Plataen, whose territory moreover was declared inviolate.

In spite oi this guarantee Plataca was attacked by Thebes at the beginning of the Peloponnesian War (431) and formally besieged by the Peloponnesians ($429-27$). The garrison after capitulating was put to death, and the city razed by the Thebans. The remaining Plataeans received a qualifed franchise in Athens, and in 421 were settled on the territory of Scionc. Expelled by Lysander in 404 they retumed to Athens, until in 387 Sparta restored them in their native town as a check upon Thebes. The city was again destroyed by Thebes in 373, and the inhabitants once more became citizens of Athens. Plataea was rebuilt by Philip and Alerander of Macedon, and during the rest of antiquity enjoyed a safe but obscure existence. It continued to flourish in Byzantine and Frankish times. The walls of the town, which at various periods occupied different portions of the triangular ledge on which it stood, remain partly visible. Recent excavations have discovered the Heraeum; but the temple of Athens the Warlike, huilt from the Persian spoils and adornad by the most famous artista, has not been identifiod.

Authoarries.-Strabo p. 411 ; Pausenias ix. 1-4; Herodotus vi. 108, viii. 1, ix. 25-85; Plutarch, Aristides, 11-21: Thucydides ii. 1-16, 71-78, iii. 20-24, 52-68; Isocrates, Phataicus; G. B. Grundy, The Topopraphy of the Batle of Plolaec (London, 1894) and Greal Persian War (London, 1901), ch. xi.; W. Woodhouse is Journal of Hellenic Studies (1898), pp. 33-59; H. B. Wright, Tke Campuipn of Platicea (New Haven, I904) R. W. Macan, Herodotus, vii.tx. (London, 1908), appendix; W. M. Leake, Travels in Northern Grrece, $\mathrm{ch} .2 \mathrm{vi}$. pp. 323-367 (London, 1835); A mer. Journ. of Archacology, 1890, pp. 445-475; 1891, pp. 390-405; B. V. Head, Historia mennorum, p. 294 (OxIord, 1887).
(M.O.B.C.)

PLATE. The word " plate" (connected with Gr. $\boldsymbol{\pi}$ 人arfo, flat, Late Lat. plota-lamina, and Span. plata, silver), in the sense to which it is restricted in the following article, is employed to denote works in silver or gold which belong to any class other than those of personal ormaments or coins. ${ }^{1}$ As implying a thin sheet of metal, the term has come to be used in various technical connexions, and has been transferred by analogy to other materiais (e.g. glass). A "plate," as the common name for the table utensil (ol whatever inaterial), derives its usage partly from the metal prototype and partly from an etymological connexion with French plal, dish, Latin platus, flat. (See also Pewter; Saeftield Plate; Metal-Work.)

On account of the ease with which gold can be worked and the purc state in which it is generally found, it is probable that this was the first metal used by man; and it is cortain that, in some countries at least, he attained to the most marvellous skill in its manipulation at a time when the other arts were in a very elementary condition. As an instance of this we may mention a sword of the bronze age, found in a barrow near Stonchenge, and placed in the muscum at Devizes: The hilt of this sword is covered with the most microscopically minute gold mosaic. A simple design is formed by fixing tesserae, or gather pins, of red and yellow gold into the wooden core of the handle. Incredible as it may appear, there are more than two thousand of these gold tesserae to the square inch. The use of silver appears to belong to a rather later period, probably berause, though a widely spread metal in almost all parts of the world, it is usually lound in a less pure state than gold, and requires some skill to smelt and refine it. Thougb both thesc precious metals were iargely and skilfully used by prebistoric races, they were generally employed as personal ornaments or decorations for weapons. Except in Scandinavian countries, but little that can be called "plate" has been discovered in the early barrows of the prehistoric period in western Europe.

Ancient Egypt.-An enormous amount of the precious metals was annually brought as tribute to the Egyptian kings; according to Diodorus, who quotes the authority of Hecataeus, the yearly produce of the royal gold and silver mines amounted to 32 millions of minne-that is, about 133 millions sterling of modern money. Though this estimatc is probably an exaggeration, the a mount must have been very great. The gold chicfly came from. the Nubian mines in the western desert in the Wadi "Alaki and the neighbouring valleys. A map of these mines, duting from the time of Rameses II. (I300 日.c.), has been preserved. Silver was not mined in Egypt itself, and came mostly from Asia Minor even at the earliest period. Thed gold was comparatively common, silver a great rarity. Later, gold appcars to have been relatively more abundant than silver, and the diflerence in value between them was very much less than it is now.

In the language of the hieroglyphs silver is called "white gold," and gold is the generic name for money-unlike most languages, in which silver usually has this special meaninga fact which points strongly to the priority of the use of gold, whicb archaeological discoverics have repdered very probable. Among the treasures of the "royal tombs" at Abydos, dating to the Ist and IInd Dynasties, much gold was found, but no
'In medicval English the term "a plate" was occasionally used in the mense of a silver vessel. A curious survival of this use of the word still exists at Queen's College, Oxford, where the scrvants may yet be heard asking at the buttery for so many "plates of beer," that is, silver tankarda.
${ }^{-}$Hoare, Ameinit Willshire (1840).
silver. On the walls of one of the tombs at Beni Hassan there is an interesting representation of a gold- and silver-smith's workshop, showing the various processes employed-weighing, melting, or soldering with the blow-pipe, refining the metal, and polishing the almost finished bowl or vase. Owing to the Egyptian practice of burying with tbeir dead personal ornaments and jewelry, rather than other possessions less intimately connected with the person of the doceased, but few specimens of either gold or silver plate have survived to our times, whereas the amount of gold jewelry that has been discovered is very large, and shows the highest degree of skill in working the precious metals. We can, however, form some notion of what the larger works, such as plates and vasces in gold and silver, were like from the frequent representations of them in mural sculpture and paintings. In many cases they were extremely elaborate and fanciful in shape, formed with the bodies or heads of griffins, horses, and other animals real or imaginary. Others are simple and graceful in outline, enriched with delicate surface ornament of leaves, wave and guilloche patterns, hicroglyphs, or sacred animals. Fig. I shows a

Fic. i.-Gold Vase. from wall-paintings at Thebes. as early as the time of Tethmosis IIl., when, as we know, the Phoenician cities had already existed for centuries, we find the ships of Arvad, of Byblos and of Tyre well known in the harbours of the Della, and even bringing tribute of foreign vases to the river quays of Thebes itself. We cannot doubt that much of the precious plate of gold and silver used by the Egyptians at this time and specifically described as foreign tribute was made in Egyptian or egyptizing style by Phocnician artists. But plate of really foreign type as well as origin was also brought to Egypt at this time by the Phoenician "Kefti ships" from Kcfti, the island of Crete, where the "Minoan "culture of Cnossos and Phaestus was now at its apogee. Ambassadors from Kefti also brought gold and silver vases as presents for the Egyptian king, and on the walls of the tomb of Senmut, Queen Hatshepsut's architect, at Thebes, we see a Keftian carrying a vase of gold and silver which is the duplicate of an actual vase discovered at Cnossos by Dr Arthur Evans. The art of the "Minoan" and "Mycenaean "goldsmiths exercised considerable influence upon that of the Egyptians; under the XXth Dymasty, about 1150 B.c., we find depicted on the tomb of Rameses III. golden stirrup-vascs (Biagelkannen) of the wellknown Mycenacan type, and in that of Imadua, an officer of Rameses IX., golden vases imitating the ancient Cretan shape of the cups of Vaphio. In fact, it is more than probable that the Egyptians and Phoenicians maryfactured plate of "Minoan " and "Mycenaean" types long after the ancient culture of Crete and the Aegean had come to an end. In the time of Rameses III., about 1300 n.c., a clearly defined Asiatic influence appears in the decoration of some of the gold plate. A gold basket represented in the tomb of this king at Thebes, has on its side a relief of the sacred tree between two beasts, an Asiatic idea.

The chief existing specimens of Egyptian plate are five silver phiouce (bowls), found at the ancient Thmuis in the Delta, and now in the Cairo Museum (Nos. 482-486 in the cataloguc). These are modelled in the form of a lotus blossom, most graceful in design, but are apparently not carlicr than the 4 th century B.c. Of the splendid toreutic art of a thousand years before,
of which we gain an idea from the wall-paintings mentioned above, but few actual specimens have survived. The Louvre possesses a fine gold patera, $6 \frac{1}{\mathrm{i}} \mathrm{in}$. across, with figures of within a lotus border in repowsst work; an inscription on the rim shows it to have belonged to Thutii, an oficer of Tethmosis IIL (Mdm . soc. ant. de France, xxiv. 1858). Thutil's bowl is a typical specimen of the Egyptian plate of the XVIIIth Dynasty, and its design is precisely that of the hundreds of blue glazed falence bowls which were made at the time, and of which some perfect specimens and many fragments (especially from Deir cl-Bahri) are in our muscums. These were imitated from metal originals, just as most of the carly Cretan pottery vessels were.

A splendid bronze bowl, which shows us what rope of the finer gold and silver plate was like, was lound in the tomb of Hetaai, a dignitary of the XVIIIth Dynasty, at Thebes a few years ago, and is now in the Cairo Museum (No. 3553 in von Bissing's catalogue). The engraved decoration, representing birds and animals in the papyrus-marshes, is very fine and evidently of native Egyptian work. The silver bowl at Berlin, said by di Cesnola to have come from Athienou in Cyprus, is certainly of XVIIIth Dynasty date, but, though purely Egyptian in style, more probably of Phoenician than Egyptian workmanship.

Assyrian and Phoenician Plate.-The art of making gold and silver plate, whet her it originated in Egypt and passed thence to Crete or not, was evidently on its own ground in Egypt and in Minoan Crete. In Asia it was an exotic art, introduced from Egypt through the Phoenicians. In fact, it may be doubted whether any of the bronze imitations of plate found in Ascyria are of Assyrian manufacture; they are probably Phoenician imports. The British Muscum possesses a fine collection of these bowls, mostly found in the palace at Nimrud, and so dating from the 9 th and 8 th centuries (reigns of Assur-naxir-pal to Sargon). Though they are made of bronze, and only occasionally ornamented with a few silver studs, they are evidently the production of artists who were accustomed to work in the precious metals, some of them in fact being almost identical in form and design with the silver phialae found at Curium and elsewhere in Cyprus. They are omamented in a very delicate and minute manner, partly hy incised Unes, and partly by the repousse process, finally completed by chasing. Their designs consist of a central geometrical pattern, with one or more concentric

Fig. 2.-Silver Bowl, about 7 in. in diameter, found in a tomb in Cyprus, with repoussé reliefs of Egyptian and Assyrian style.
bands round it of figures of gods and men, with various animals and plants, such as antelopes amid papyri, which are derived from the Egyptian designs of the XVIIIth Dynasty. Often there is a strange admixture of Assyrian and Egyptian atyle.

Bulls, for instance, are usually represented as with a single mighty horn, curving to the front (in the style of the ancient Babyloninn seals), ralher than with both horns showing, in Egyptian fashion. When figures of gods and men are shown, the principal groups are purely Assyrian imitations of Assyrian temple-reliefs, in fact-such as the sacred tree between the two attendant beasts, or the king engaged in combat and vanquishing a lion cingle-handed; while mingied with thesc are figures and groups purely Egyptian in style, such as the hawkheaded deity, or a king slaying a whoie crowd of captives at one blow. Occasionally one sees traces of the ancient Mycenaean influence, or perhaps rather of the young Ionian art which had now arisen out of the ashes of that of Mycenae. These Phoenician imitative designs are still good imitations. But a century or so inter we meet with them again on the silver bowls and dishes from Cyprus, in which the imitations have become bad. The same mixture of subjects was still in vogue, but confusion has been superadded to mixture, and we find kings in Assyrian robes and Egyplian wigs slaying Syrian dragons with Egyptian wings, and so on. Fig. a gives a silver dish from Curium containing exampies of the above-mentioned subjects. It is a characteristic specimen of this mixed Phoenician art, of which di Cesnola seems to have collected a remarkable number of exsmples. In addition to the numerous silver phialac some were found, with similar decoration, made of pure gold. To the same period as these bowls from Cyprus belong the similar specimens of Phoenician plate from Etruscan graves at Pracneste and Cervetri in Italy. Those from the Regulini-Galassi tomb can hardly be earlier than the 6th century, so that this peculiar Mischkunst of the later, type may well be dated to the 7tb-sth centurics.
References.-Von Bissing, "Metallgefisse " Caipo Museum Catalogue (1901): "Eine Bronzeschale mykenischer Zcit," Jahrb. Inst. (i898); L. P. di Cesnola, Cyprus; Layard. Nineveh. \&C.
(H. R. H.)

Prehistaric.Greece: "Minoan "and" Mycenacan" Periods.In the early history of the goldsmith's art no period is more important than that of the Greck Bronze age, the period of the prehistoric civilization which we call "Minoan" and "Mycenaean," which antedated the classical civilization of Greece by many centuries, and was in lact contemporary siad probably coeval with the ancient cuiture of Egypt. In Greece during this, her first, period of civilization, metal-work was extensively used, perhaps more extensively than it ever was in the history of later Greek art. So generally was metal used for vascs that even as early as the "Middle Minoan "period of Cretan art (some 2000 years B.C.) the pottery forms are obvious imitations of metal-work. The art of the metal-worker dominated and influenced that of the potter, a circumstance rarely noted in Egypt, where, in all probability, the toreutic art was never so much pat ronized as in Minoan Greece, alt hough beautiful specimens of plate were produced by Egyptian and Phoenician artists. Also but few of these have come down to us, and we are forced to rely upon pictured representations for much of our knowledge of them. It is otherwise in carly Grecce. We possess in our museums unrivalled treasures of anciont toreutic art in the precious metals from Grecee, which date from about 2500 to 1400 g.c., and as far as mass and weight of gold are concerned are rivalled only by the Scythian finds. These are the well-known results of the excavations of Schliemann at Troy and Mycenac and of others elsewhere. They do not by any means suffer in point of additional interest from the fact that they were madc and used by the most ancient Greeks, the men of the IIeroic age, probably before the Greek language was spoken in Greece.

The most ancient of these " Ireasures" is that discovered by Schlicmann in $\mathbf{8 7 3}$ buried, apparently in the remains of a box, deep in the fortification wall of Hissarlik the ancient Troy. It comsists of vases and dishes of gold and silver, and of long tongue-shaped ingots of silver. In consonance with the carly date (perhaps about 2500 日.c.) to which they are probably to be assigned (Schliemann ascribes them to the second Trojan (ity) these objects are all of simple type, some of the vases being
unornamented jugs with tubular suspension-handics on the sides. Here we have metal imitating stonework, as, later, pottery imitales metal. These are of silver. A unique form in gold is a boat-shaped cup with handies at the sides (Plate I., fig. 23), at Berlin, which weighs 600 grammes. One vase is of electrum (one part of silver to four of gold).

A treasure of much the same date (the second " Early Minoan " period, about 2500 b.c. or before) was discovered in Miay 1908 in graves on the island of Mochlos, off the coast of Crete, by R. B. Seager. This is, however, of funcrary character, like part of the treasures discovered in the shaft-graves of Mycenae, and, while including diadems, golden flowers, olive branches, chains, and so forth, for the adomment of the dead, does not include much gold used by the deceased during life.

The much later Mycenaean treasures include both funerary ohjects of thin gold and objects of plate that had actually been used. Among the former shouid be especially noted the breastplates, diadems and masks which were placed on the bodics of the chicftains whom Schliemann, great in faith as in works, honestly belicved to be Agamemnon and his court (and he may not have been very far wrong). Among the latter we may mention the small fiat objects of gold plate, littic sphinxes and octopuses modelled in relief, small temples with doves, roundels with spiral designs, and so on, which were ornaments for clothing, and the golden plate decorations of weapon-handles. The great cast-silver bull's head with the gold rosette on its forehead may perhaps have been regarded simply as a beautiful object of price, and buried with its owner. Similar protomae of bulls (of goid or silver) were brought by Minoan ambassadors as presents to the Egyptian court in the reign of Thothmes III. Gold and silver vases were found both in the shaft-graves, in the treasure-pit close by, and in chamber tombs at Mycenac. The most usual shape in the shaft-tombs is that well known to us from the vases of Vaphio, described below; among other types may be mentioned specially the δ ejras $\alpha \mu \phi u k i r e \lambda \lambda o v$ with doves feeding above its handles (Plate I., fig. a1; from a restored reproduction) - סocal be re入etdoes duфls ixagtop xpiotias $v \in \mu$ iOorro; the golden jug with spiral decoration from the fourth grave; and the cup with lions of Egyptian appearance chasing each other round its bowl, lound in grave 5 . The fragment of a silver vase with a scene in high relief of slingers and bowmen defending their town against besiegers from grave 4 (Plate l., fig. 22), is an object unrivalled in ancient art. On this, as on the bull's head, we have gold overlaid on silver (with an intermediate plating of copper); on a silver cup from the same grave we find gold inlay, and on another silver cup, from a chamber-tomb, enamel and gold inlaid. How the Minoan goldsmith could combine silver with gold and the two with bronze we see on the marvellous inlaid dagger-biades from Mycenae, with their pictures in many-coloured metals of lion-hunts, cats chasing birds, and so forth, which show that he was perhaps the greatest master of all time in this art.

We speak of him as "Minoan," because most of the metal objects found at Mycenac are, if not of actual Minoan workmanship and imported from Crete, at any rate designed in accordance with the Minoan taste of the "Great Palace Period" (Late Minoan i. and ii.) at Cnossus. They arc only" Mycenaean " in the sense that they were found at Myecnac. Of the art of the gold vase maker in the Mycenacan period properly speaking (Late Minoan iii.) we oblain an idea from the pictures of golden BHgelkannen with incised designs of zigzags, \&c., represented on the walls of the tomb of Rameses 111. at Egyptian Thebes. The objects from the Myecnacan shaft-graves are much older than this, as are also those from the next treasure we shali mention, that from Acgina, now in the British Muscum. The gold cups and other objects of this treasure, with their fine but simple decoration, are certainly to be ascribed to the best Minoan period, although when first puhlished Dr A. J. Evans was inclined to assign them to so late a date as c. A.D. 800 . They are surely some seven hundred years older, having no characteristic of the decadent "sub-Mycenaean" period, as

Dr Evans would doubtless now agree. These objects were probably found in a tomb.

Dr Evans's excavations at Cnossus, those of the Italians at Phacstos and Hagia Triada and those of the British school at Palaikastro have not produced any very striking examples of the Minoan goldsmith's art in his own country, though splendid bronze bowls and vases have been found, which give us a good idea of what the plate must have been like, as do also the gilt steatite imitations of plate mentioned below. One of the bronze vases from Cnossus ceactly resembles one of gold and silver which was brought to Egypt by the ambassadors in Queen Hatshepsut's time ([resco in the tomb of Senmut). But we possess a fine silver cup (of the Middle Minoan period) from the American excavations at Cournia, and two examples of the finest Minoan gold plate, which were discovered outside Crete, in the famous "Vaphio cups," with their cmbossed representations of bull-netting, which have been illustrated so often as triumphs of ancient art (Plate I., figs. 24, 25). These are of Cretan workmanship, though found in Laconia, and are no doubt contemporary with the vases of black steatite with relicfs showing a harvest-home procession, gladiatorial combats, and a king recciving or bidding farcwell to a warrior with his armed followers, which have been found by the Italians at Hagia Triada in Crete. These were originally overlaid with gold leal, and are undoubtedly imitations in a cheap material of golden embossed vases of the same style as those found at Vaphio.

Next in order of time came the objects of gold and silver plate lound by the expedition of the British Muscum at Enkomi In Cyprus, which perhaps represent a somewhat later phase of Minoan art, but certainly cannot now any longer be regarded as belonging to the very late period to which they were at first assigned. One silver vase found at Enkomi is of the "Vaphio" shape, which first appears in Cretan pottcry as early as the Middle Minoan period, contemporary with the XIIth Egyptian Dynasty (c. 2000 b.c.), and even then is clearly an imitation of a metal original. Slightly modified, this type remained late in use, as we find it represented among other golden vases on the walls of the tomb of Imisil or Imadua, an Egyptian official of the time of Rameses IX. (c. 1100 b.c.) at Thebes. But some, at least, of the Enkomi finds must be carlicr than this.

The Egyptian representations of Minoan vases of gold and silver in the tomb of Senmut at Thebes (c. 1500 b.c.) and of tater Myecnacan golden Bugelkomnen in that of Rameses III. (c. 1150 B.c.) bave been mentioned already. During the age of Mycenacan and sub-Mycenacan decadence the art of the Greek goldsmith necessarily passed through a period of eclipse, 10 arise again, with the other arts, in rich and luxurious Ionia probably. The Homeric poems preserved for later days a traditional echo of the glorious works of the metal-workers of the Heroic age.

References.-Troy and Myccnae: Schuchhardt, Schliemane's Excarvations: Tsounias-Manatt, The Mycenaean Age, passim. Vaphio: Tsountas-Manatt. Aigim, A. J. Evans in Journ. IIell. Stud., xiii. 195-226. Cnossus: Vvans. Ann. Skh. Ath. (1901-1007)- llagia Triada: Savignoni, Pernier and others, Rendiconta della R. Accademia dei Linsce (Rnine, 1g02-1g06): Cournià: Mrs Boyd Hawes, Gournid (Philadelphia, 1gos). pl. c.: Mochlos (unpublished). For Egypian references see Hall, A \%n. S(h. Ath. (igo4): "Kefius and the Peoples of the Sea " (igos); "The Keftiufresco in the lomb of Senmut.
(H. R. H.)

Etruscan Plate.-The Etruscans were specially renowned for their skill in working all the metals, and above all in their gold work. Large quantities of exquisite gold jewelry have been found in Etruscan tombs, including, in addition to smaller objects, sceptres, wreaths of olive, and plates decorated with Giligreework and animal figures, which were used as personal ornaments (breast plates, girdles, diadems, \&c.). In the Museo Kircheriano in Rome is a magnificent specimen of the last form of ornament; it is covered with nearly a hundred little statuettes of lions arranged in parallel rows; and the Valican (Museo Gregoriano) possesess a very fine collection of similar objects from the "Regulini-Galassi" tomb at Cacre. Little, however, that can be classed under the head of plate has yet been found.

Hellewic Plate.-The period of "geometrical" art which followed the Mycenaean age was one of decline in material prosperity and artistic skill. We possess some specimens of the work then produced in tbe precious metals in the gold diadems placed on the head of corpecs interred at Athens (Archoologische Zeilung, 1884, pls. viii., ix.; cl. Athenische Millheilungen, 1896,

Fig. 3.-Silver Cantharus Irom Rhodes, with gold mounts. Posaibly the form of the Homeric Bres dudubraMop.
p. 367; and G. Perrot and C. Chipiez, Histoire de Tart dans l'antiquilt, vii. 245). The period of Oriental influence is represented by the finds of gold ornaments made at Camirus in Rhodes (sec Greex Art, fig. : 1). Fig. 3 shows a silver cup, with gold mounts, also found at Camirus, apparently a work of the same early date. A remarkable find of gold objeets was made in 1882 at Vettersielde in Brandenburg; the principal piece was a gold fish (see Greek Art, fig. 10) with ornaments in reliel. These objects recall by their style early Ionic art, but were probably produced in one of the Black Sca colonies, since similas objects have been found, together with later work, in Crimean graves (see below), and exchanged for the amber of the Baltic coasts. Croesus especially encouraged the art, and paid enormous sums for silver vases and cups to the most renowned artists of his time, such as Glaucus and Theodorus the Samian.

The British Museum posscsses a fine specimen of archaic Greek plate, found at Agrigentum in Sicily. This is a gold phiale or bowl, about 5 in . across, with central boss or

Fic. 4.-Archaic Gold Phiale, found at Agrigentum, now in the British Muscum. It is shown in section below. It is 5 in . in diameter.
omphalos ($\phi \dot{d} \lambda_{y} \mu e \sigma \delta \mu \phi$ a λ_{0}) which scems once to have contained a large jewel. Round the inside of the bowl are six figures of oxen repousse in relief, and at one side a crescent, formed by punched dots. A delicate twisted moulding surrounds the edge; the workmanship of the whole is very skilful (see fig. 4).

Pliny ($N . H$. xxxiii. 154 sqq.) gives a brief valuable account of the art of silver chasing (cadatura, Gr. тopeurufit).
In the best times of Greek art the chief works in gold and silver seem to have been dedicated to religious purposes, and to have been seldom used for the ostentation of private individuals. Vessels for the use of the temples, tripods in gald or silver
of the richest work, and statues of the gods were the chilef objects on which the precious metals were lavished. ${ }^{\text {? }}$
The gold used by the Greeks probably came from Asia Minor or Egypt, while the mines of Laurium, in the mountains which form the promontory of Sunium in Attica, supplied an abundant amount of silver for many centuries. According to Pliny,
of Ulysees and Diomedes carrying off the Palladium. Enormous prices were given by wealthy Romans for ancient silver plate made by distinguished Greek artists; according to Pliny, the last-mentioned cup, which weighed 202 ., was sold for 10,000 denarii ($\mathbf{E} 350$). It is worthy of note that a large number of the artists named by Pliny were natives of Asia Minor, and

Fic. 5.-Greck Silver Vase, 4th century b.c., from South Russia.

Pheidias was the first sculptor who produced works of great merit in the precious metals; he mentions a number of other Greck artists who were celebrated for this class of work, but does not give their dates. The chiel of these were Mentor and Mys (both of the sth century b.c.), Acragas, Boethus, the sculptors Myron

Fic. 6.-Silver Crater, found in Ithaca. (3i in. high.)
and Stratonicus, as well as the well-known Praxiteles and Scopas. In Pliny's time many works in gold and silver by these artists still existed in Rhodes and elsewhere. Among later workers he specially mentions Zopyrus, who made two silver cups, emborsed with the scene of the judgment of Orestes by the Areopagite court,' and Pychcas, who made a bowl with reliefs
'The gold eagles on the escred omphalos at Delphi were notable examples of this: sce Pindar, Pyth. iv 4.
It has boen (hought that a wiver cup in the Corini collection
it is very probable that the Asiatic school of silversmiths had at least as much influence on Roman coeldura as that of Alexandria, whose importance has been overrated by Schreiber.
The finest extant examples of Greek plate are those lound in the tumuli of south Russia, especially in the neighbourhood of Kertch, the ancient Panticapacum. Fig. 5 shows a silver vase found in 1862 at Nikopol in the tomb of a native Scythian prince. The native horse-tamers of the steppes are represented on the shoulder with wonderful naturalism, and the work is beyond doubt that of an Athenian artist of the 4th century s.c. Splendid examples of goldwork were lound in the cumulus of Kuloha, about 03 kilometres from Kertch, which was excavated in 1830 and found to be the burial-place of a Scythian prince and his wife. The jewelry and plate found in this tomb, which were clearly of Greek origin, comprised (amongst other objects) an electrum vase 13 cm . high, representing Scythians in their native costume, one of whom is extracting a neighbour's tooth, another binding up a wound, a third stringing a bow, besides several silver vases and two gold medallions with reproductions of the head of the Athena Parthenos of Pheidias. In these Crimean tombs are often found golden crowns in the form of oak leaves, some of which belong to late Roman times. The finest extant example of a gold wreath, however, is that discovered at Armento in south Italy and preserved in the Antiquarium at Munich, it bears an inscription of the 4 th century B.c., showing that it was dedicated by a certain Kreithonios. In 1812 Dr Lee discovered at Ithaca a beautiful crater, 3 f in. high (sce fig. 6), and a phiale or patera, gi in. across, both of silver, repouss and chased, with very rich and graceful patterns of leaves and flowern picked out with gilding. ${ }^{2}$ These are probably not later than the 5 th century b.c. Many silver mirror-cases, with repousse figure-subjects in high relief, have been found at various places; as, for instance, one with a beautiful seated figure of Aphrodite found at Tarentum and now in the British Museum.4
at Rome (Michaclis, Das corsixische Silberzefdss, 1859; cf. W. Amelung. in Romische Mitcilungen, 1906, pp. 289 sq9.) may reproduce the design of Zopyrus.
${ }^{3}$ Sce Archoeologia, xxxili. 36-54.
${ }^{4}$ Ibid. xuxiv. 265-272.

The Victoria and Albert Museum contains an exquisite little silver vase, found in the haths of Apollo at Vicarcllo in Italy (fig. 7), enriched with a band in low relief of storks devouring serpents executed with gemlike minuteness and finshprobably not later than the 3 rd century b.c. The British Museum has a luttle vase of similar form and almost cqual beauty, though perhaps later in date, it is decorated with bands of vine branches in a graceful flowing pattern, and is partly gilt.

Gracco-Roman Plate.-During the last century of the Republic the growing luxury and ostentation of the wealthy Romans found expression in the collection of claborate specimens of plate.

The works of the old Greek masters were the most highly prized, but contemporary artists, such as Pasiteles, also attained distinction in this branch of art. Amongst the numerous finds of silver plate made in modern times we may distinguish (a) temple treasures made of up of votive offerings, such as the treasure of Bernay in France (dep. Eure), discovered in 1830 and preserved in tbe Cabinet des Médailles, which belonged to the shrine of Mercurius Canetonnensis, (b) private collections.

Fig. 8.-Silver Crater, 15 in. high, from the Hildesheim find. (Berlin Museum.)
The most famous of these are the Hildesheim treasure, in the Berlin Museum, discovered in 1869, which has been thought (without adequate reason) to have formed part of the campaigning equipment of a Roman military commander, and the Bosco Reale treasure, found in 2895 in a villa near Pompeii, whence its owner was endeavouring to remove it when buried hy the eruption of Vesuvius. These collections contain pieces of various dates. The Bernay treasure, in part belonging to the 2nd century a.D., contains oenochoai (ewers) with mythological subjects in relief inspired hy classical Greek models-the theft of the Palladium was the subject of a famous cup of Pytheas, mentioned by Pliny-which must belong to the early imperial period. The Hildesheim treasure, again, contains two barbaric vases, without feet or handles, together with such fine pieces as the crater figured (fig. 8),
whose decoration recalls that of the Ara Pacis Augustae (see Roman Art), and a cylix with a seated figure of Athena in high relicf, soldered on to the centre of the bowl, which appears to be of Greek worknanship. Such detachable figures were termed cmblcmata, in the Bosco Reake treasure is a cup with such a bust, typifying the province of Africa. Great value was also set upon crusloc, i.e. bands of repousse work forming an outcr covering to a shooth silver cup (cl the Rothschild vases, Roman Art). Such works commonly have Latin inscriptions incised on the foot giving the weight of the piece, the cup and emblema being weighed separately The artustic value of Roman plate is discussed under Roman Art.

Among later specimens of Roman plate the most remarkable is the gold patera, nearly 10 in in diameter, found at Rennes in 1777, and now in the Paris Bibhotheque-a work of the most marvellous delicacy and high finish-almost gem-like in its minuteness of detail. Though not earlier than about 210 A.D. a slight clumsiness in the proportion of its embossed figures is the only visible sign of decadence. The outer rim is set with sixteen fine gold coins-aurei of various members of the Antonine family from Hadran to Getz. Tbe central emblema or medallion represents the drinking contest between Bacchus and Hercules, and round this medallion is a band of repousse figures showing the triumphal procession of Bacchus after winning the contest. He sits triumphant in his leopard-drawn car, while Hercules is led along. helplessly intoxicated, supported by bacchanals. A long line of nymphs, fauns and satyrs complete the circular band.
Late Roman plate is also represented by a series of large silver dishes, to whicb the name missornum is often, tbough perhaps wrongly, applied. These were used for presentations by emperors (whose portraits they sometimes bear) and distinguished officials. Three are preserved in the Cabinet des Medailles of the Bibliotheque Nationale at Paris-the "shield of Scipio," found in the Rhone near Avignon, about 26 in . in diameter, with a relief representing the restoration of Briseis to Achilles;' the "shield of Hannibal,"' chicfly remarkable for

Fic. 9.-Shield of Theodosius.
its size (it is 72 cms . in diameter and weighs 10 kilogrammes); and a third, decoratod with a group of Hercules and the Nemean lion. ${ }^{3}$ Other well-known examples of this form of art are the ${ }^{\text {Cl }}$ C. S. Reinach in Gazette des beavx-arts (1896).
${ }^{2}$ Cf. E. Babelon. in Bulletin de le sociéle des antiquaires de la France (1800). p. 228.
${ }^{2}$ C. E. Piot, in Gasette archbologique (1a86).
"ahield of Theodosius" at Madrid (fig. ρ), which represents the emperor seated between Valentinian II. and Arcadius'; the "shield of Valentinian." at Geneva "; the " shield of Aspar" at Florence ${ }^{2}$; and a fine dish found at Aquilein, now at Vienna. ${ }^{4}$

The British Muscum contalns some fine specimens of late Roman silver work, found on the Esquiline in 1793 (ci. Visconti, Unc Supelletilic d'argento, Rome, 1825 ; the objects are publishod and described in Mr Dalton's Calalogne of the Early Christian Antiquilics in the British Museum, pp. 61 sqq., pls. xiii.-nx.). The most remarkable of these are: (i.) a silver casket decorated in repousse, with the inscription SECONDE ET PROJECTA VIVATIS IN CRISTO, doubtless a wedding gift to a couple bearing the names of Secundus and Projecta, whose portraits appear in a medrllion on the centre of the lid; (ii.) four statuettes representing personified cities-Rome, Constantinople, Antioch and Alexandria (cf. P. Gardiner in J. H. S., r888, ix. 77 sqq.). This treasure appears to belong in the main to the 5th century A.D., though some minor pieces may be earlier.

Bibliography.-A general account will be found in Smith's Dictionary of Antiquilies. 3rd ed., s.r. "Caclatura" (without illustrations), and in Daremberg and Saglio's Dictionnaire des antiquilts, under the same heading (with several cuts). The passenges in ancient writers which reler to the art will be found in Oberbeck's Antike Schriftquellen Nos. 2167-2205; Pliny's account is most conveniently studied in K. Jex-Blake and E. Sellers, The Elder Pliny's Chaplers on the History of Apt, pp. 2 aqq. The finds made in southern Russia were published in the Anliquite's du Bosphora cimmérien (St Petersburg, 1854); the Comples rendus de la com. mission imperiale (St Petersburg. 1859 sqq .) ; and the Recuecil des antiquites de la Scythie (1866-1873). The first of these works. which is very rare, has been republished on a reduced icale by M. Salomon Reinach, in, his Bibliothique des monuments fiyurls (Paris, t 89 2) with notes; and all the more important objects are figured in Antiquiffs de la Russie méridionale, by Kondakoff, Tolstoy and Reinach (Paris, 1891-1892). For Graeco-Roman plate the most importa nt works are Héron de Villefoseces publication of the Bosco Reale treasure in the Monnments Piot, vol. v. (cl. the articles by the same author and M. Thedenat on "Les Tresors de vaisselle d argent trouvés on Gaule," Gazetle archéologique, 1883_{3} 1884), and Der hildesheimer Silberfund, by E. Pernice and F. Winter (Berlin, 1901). Reference should also be made to T. Schreiber, "Die alexandrinische Toreutik," (Abhandilumeth der sachs. Gesellsch.' der Wissenschaften, 1894, vol. xiv.), whose theories are somewhat exaggerated; and A. Odobescu, Le Trésor de Pefrossa (1889-1900), which deals with a find of barbaric plate and jewelry made in Rumania, but gives much information on the history of the art. For early Greek work, see R. Schneider, "Goldtypen des griechischen Ostens, Berichte der sächs. Gesellschaft der Wissensehaflem (1891 , p. 204), and A. Furtwängler, Der Goldfund won Vettersjelde (I883). For Etruscan metal-work, sce J. Martha, L'Art ttrusque, ch. xvii. An interesting popular account of ancient work in precious metals will be cound in E. T. Cook's Popular Hardbook to the Grcek and Roman Antiquities in the British Musewm, pp; 569 sqq.
(H.S. J.)

Oricntal, African Plate, Erc.-Some very curious pieces of plate, both in gold and in silver, have been found in northern India in which country the goldsmith's art is of great antiquity;' these appear to be of native workmanship, but the subjects with which they are embossed, and the modelling of the figures, show that they were produced under late Roman influence, or in some cases possibly even Groek influence in a highly degraded state, handed down fiom the time of Alexander's Indian conquests. A fine gold casket (Buddhist relic) said to date from about 50 b.c. is worthy of note. In the British Museum are an Indian silver dish (3rd-4th century A.D.) ${ }^{7}$ and an earlier one, ascribed to C. A.D. 200.

Under the Sassanian kings of Persia (from the 3rd to 6th centurics) very massive and richly decorated gold vases, bowls,

[^65]and bottles were made (fig. 10). Those which still exist show a curious mingling of ancient Assyrian art with that of Rome in its decline. Reliers representing winged lions, or the sacred treebet ween its attendant beasts, alternate with subjects from Roman mythology, such as the rape of Ganymede; but all are treated alike with much originality, and in a highly decorative manner. A fine example of Persian work of the early 19thcentury(datedi817) is the circular gold dish, richly enamelled, which is in the Victoria and Albert Museum, where a large collection of Oriental plate may be studied. Here may be seen a gold rose-water sprinkler of gold, en-

Fig. ro.-Sassanian Gold Bottle, about 10 in. high. In the Vienna Museum. tirely covered with richly enamelled flowers, Mogul work, 17th century; fine Burmese gold work found in A.D. $1484-1485$ in a Buddhist temple, Rangoon; remarkable gold ornaments of tho Burmese regalia; and a large elcphant howdah, from the Punjab, made of silver, parcel gilt, the top covered with silver plates of large repousse foliage. Tibetan craftsmen work is represented by numerous vessels for sacred and domestic purposes, mostly of metal, partially mounted in silver, which display the skill of the Tibetans in the 19th century. Of the skill of the Hindus as goldsmiths, abundant evidence is afforded by the Ramayana and Mahdbhorata, though very Kitle of their ancient gold and silver work has survived. In India the people of the Cashmere valley have long been famous for their natural superiority as craftsmen, as was Lucknow for its utensils of gold and silver, much of it richly enamelled in the 18 th and 19th centuries. Chanda in the Central Provinces was once celebrated for its skilled goldsmiths, and the plate of Cutch and Gujarat in the Bombay Presidency has enjoyed a well-deserved reputation. The uncontaminated indigenous designs of the Sind goldsmiths' work call for special notico. Indian plate, as is quite natural, has often been infuenced by European designs: for instance, the beautiful gold and silver work of Cutch is Dutch in origin, while the ornate throne of wood covered with plates of gold, early rgth century, used by Ranjit Singh (at South Kensington) also displays European influence. Much of the Siamese decorative plate of the r8th and 19th centurics is of silver-gilt and nielloed. In the Rijks museum, Amsterdam, is a collection of silver dishes, bores of gold and silver, jewelry, \&c., all of excellent workmanship, from Lombok. African goldsmiths' work is represented in the British Museum by the gold ornaments from Ashanti, where there are also some gold ornaments from graves in Central America and Colombia. Ancient Abyssinian work can be studied at the Victoria and Albert Muscum in the gold chalice, gold crown of the Abuna of Abyssinia, another more ornate crown of silver-gilt, a fine shield with silver-gilt filigree, and other objects.
The gold and silver work of Russin resembles in style that of Byzantium at an early period. Shrines and other magnificent pieces of plate in the treasury of the cathedral at Moscow (see Weltmann, Le Tresor de Moscow, 186r), though executed at the end of the 15 th and 16th century, are similar in design to Byzantine work of tbe with or 1ath century, and cven since then but little change or development of style has taken place.

The caliphs of Bagdad, the sultans of Egypl, and other Moslem rulers were once famed for their rich stores of plate,
which was probably of catreme beauty both to deaign and wockmanship. Little or nothing of this Moalem plate now remains, and it is only possible to judge of its style and magnificence from the fine works in hrass and other less valuable metals which have survived to our time.
Towards the end of the roth century the Rhine villey became the centre of a school of goldsmiths, who produced splendid examples of their work-a mixture of Byanntine art with their own original designs. The book-covers, portable altars and other objects, preserved at Trier and Aix-la-Chapelle, are notable examples produced at that centre. The magnificent book-cover from Echternach, now at Gotha, is of the school of Trier.

Early Medieral Plate.-The Gothic, Gaulish and other semi-barbarian peoples, who in the 6th century were masters of Spain, France and parts of central Europe, produced great quantities of work in the precious metals, especially gold, often of great magnificence of design and not without some skill in workmanship. The Merovingians encouraged the art of the goldsmith hy spending immense sums of money on plate and jewelry, though only two examples oi their great wealth in church vessels have survived-the gold chalice and paten of Courdon, now at Paris. Fine examples of Carlovingian work, which was mainly wrought in the monasterics in the north of the Frankish dominions and on the Rhine, may be studied in the covers for the Gospels, in the Bibliotheque Nationale in Paris. In 1837 a large number of pieces of very massive gold plate were found at Petrossa in Rumania; mucb of this find was unfortunately broken up and melted, but a considerable portion was saved, and is now in the museum at Bucharcst. These magnificent objects are all of solid gold, and consist of large dishes, vases, ewers, baskets of open work, and personal ornaments (fig. 1I). Some of them show a strong Roman influence in their design, others are .more purely barbaric in style. To the first of these clasess belongs a very fine phiale or patera, 10 in . in diameter. In the centre is a seated statuette of a goddess, holding a cup, while all round, in high relief, are standing figures of various male and female deities, purely Roman in style. Though the execution is somewhat clumsy, there is much reminiscence of classical grace in the attitudes and drapery of these figures. A large basket and other pieces, made of square bars of gold arranged so as to form an open pattern of stiff geometrical design, have nothing in common with the vessels in which Roman influence is apparent, and can hardly be the work of the same school of goldsmiths. ${ }^{1}$ The date of this Petrossa treasure is supposed to be the 6th century. The cclebrated Gourdon gold cup and tray now preserved in Paris belong to about the same date. They are very rich and magnificent, quite free from any survival of classic influence, and in style resemble the Merovintreasure. gian gold work which was lound in the tomb of Childeric 1 . The cup is 3 in . high, shaped like a miniature two-handled chalice; its companion oblong tray or plate has a large cross in high relief in the centre. They are elaboratcly ornamented with inlaid work of turquoises and garnets, and delicate filigree patterns in gold, soldered on.
In the 6th century Byzantium was the chicf centre for the production of large and magnificent works in the precious metals. The religious fervour and the great wealth of Justinian and bis successors filled the churches of Byzantium, not anly with enormous quantities of gold and silver chalices, shrines, and other smaller pieces of ecclesiastical plate, but even large altars, with tall pillared baldacchini over them. fonts, massive candelabra, statucs, and high screens, all made of the precious metals. The wealth and art istic splendour with which St Peter's ${ }^{1}$ Soden Smith, Treasxre of Petrassa (1869).

In Rome and St Sophia in Constantinople were enriched in now almost inconceivable. To read the mere inventories of these treasures daszles the imagination-such as that given in the Liber pontificalis of Anastasius Bibliothecarius, which includes the long list of treasures given by Constantine to St Peter's before he transferred his seat of emplre to Byanntium (330), and the acarcely less wonderful list of gold and silver plate presented to the same basilica by Pope Symmuchus ($498-514$).

Some early Byzantine plate of the 6th century is in the British Museum; an inscribed paten of the roth and inth centuries is in Halberstadt Cathedral in Germany, and numerous ecclesiastical vessels are in the Treasury of St Mark's, Venice.
Early in the medieval period France and other Western countries were but little behind Italy and Byanatium in their production of masaive works, hoth secular and religious, in the precious metals. At this time every cathedral or abbey church in Germany, France and even England began to accumulate rich treasures of every kind in gold and silver, ewriched with jewels and enamel; but few specimens, bowever, still exist of the work of this early period. The most notable are Charlemagne's regalia ${ }^{\text {a }}$ and other treasures at Aix-la-Chapelle, a few preserved at St Peter's in Rome, and the remarkable set of ecclesiastical utensils which still exist in the cathedral of Mona near Milan-the gift of Queen Theodelinda in the early part of the 7th century.' The treasure of Nagy-Szent-Miklos, consisting of aeveral vessels of gold, of Hungarian origin (8.h-gth century), is in the Imperial Museum at Vienna.

The existing examples of magnificent early work in the precious metals mostly belong to a somewhat later period. The chief are the gold and silver altar in Sant' Amhrogio at Milan, of the pth century; the "Pala d'Orv," or gold retable, in St Mark's at Venice, begun in the roth century; the silver allar-front in St Domenico's Cburch at Palermo; the shrine of silver-gilt (wilh later additions) in the church of St Simeon at Zara, Dalmatia, by Francesco di Antonio of Sesto near Milan, 1380; and the gold altar-frontal given by the emperor Henry II, and his wite Cunigunde, at the beginning of the irth century, to the cathedral at Basel. The last is about 4 ft . high hy 6 ft . long, repousst in high relief, with Ggures of Christ, the three archangels, and St Benedict, standing under an arcade of round arches; it is now in the Musee Cluny in Paris. A similar gold frontal, of equal splendour, was that made for the archbishop of Sens in 999. This was melted down by Louis XV. in 1760, but fortunstely a drawing of it was preserved, and is published by Du Sommerard (Album, gth serics, pl. xiii.). Reliquaries of great spicndour were made of the precious metals, one of the most notable being that conteining the skulls of the three kings in Cologne Cathedral. This shrine, which resembles in form a building of twu storeys, was wrought in the 12 th century. The covers of the Textus in the Victoria and Albert Muscum are bighly important examples of goldsmiths' work; they are of gold and silver. decorated with enamel and set with stones, probably dating from the 12 th century.

Celtic.-The skill in metal-working of the Celtic people in the British Islands, especially in Ireland, in Pagan and Christian times, is well known, and need hardly be emphasized hert. While much has perished, much happily remains in proof of their extraordinary skill in working gold and silver, particularly in jewelry. The most remarkable specimen of their technical skill and artistic perception is the famous Ardagh chalice of the gthroth century (in the museum at Dublin) (Plate II., fig. 31), which is composed chicfly of silver, with enrichments of gold and gilt bronee, and with exquisite enamels. The intericed ormament is a feature of Celtic work, and may further be studied in the celcbrated Tara brooch, with its seventy-six varieties of designs as well as in otber exquisite examples of jewelry. Further evidence of Celtic skill is forthcoming in the shrines for the sacred bells in Ireland, not to mention other ecclesiastical

[^66]ornaments. These are of great beauty, and the silver shrine of the bell of St Patrick ($1001-1105$) displays the interlaced scroll ornament in a striking degree. With the introduction of Gothic art into Britain the special characteristics of Christian Celtic art in Ireland gradually died out.

Anglo-Saxon.-Judged by the examples of Anglo-Sation jewelry discovered, the Anglo-Saxon craftsmen brought their art to a high state of perfection, though hardly equal in merit to the Celtic. A large quantity of their metal-work is of bronze, frequently enriched with gold and enamel. Happily, there is preserved one priceless specimen of the goldsmith's art of this period--namely, the famous Alfred jewel of gold, now in the Ashmolean Museum at Oxford, with a portrait, believed to be of Alfred the Great, in cloisonnd enamel. Another notable specimen is the Ethelwulf ring in the British Muscum. Though ecclesiastical vessels, doubtless of the precious metals, appear in Anglo-Saxon illuminated manuscripts, the only piece of plate of that time at present known is the plan silver cup of the latter part of the gth century, found with gold and silver jewelry and pennies at Trewhiddle in Cornwall, which is now in the British Museum. ${ }^{1}$ There is, however, an important example of metalwork embellished with silver plates-namely, the portable altar of St Cuthbert at Durham.

A most valuable description of the various methods of work practised by gold- and silversmiths in the 1 rtb and rath centuries is given by the monk Theophilus in his Diversarum artium schedula (Hendrie's ed., 1847). He minutely describes every possible process that could be employed in making and ornamenting elaborate pieces of ecclesiastical plate-such as smelting, refining, hammering, chasing and repousst work, soldering, casting (by the "cire perduc" process), wire-drawing, gilding with mercury amalgam, and the application of niello, enamel and gems.

The silversmith of those days, as in classical times, was not only a thorough artist with a complete sense of beauty and fitness in his work, but he was also a craftsman of the most varied fertility of resource, and made himself thoroughly responsible for every part of his work and every stage through which it passed-a most striking contrast to the modern subdivision of labour, and eagerness to produce a show of neatness without regard to real excellence of work, which is the curse of all igthcentury handicrafts, and one of the main reasons why our modern productions are in the main neither works of true art nor objects of real lasting utility.

Italian Plate.-Before the latter part of the 15 th century, large pieces of silver work were made more for ecclesiastical use than for the gratification of private luxury. The great silver shrine in Orvieto Cathedral, made to contain the hloodstained corporal of the famous Bolsena miracle, is one of the chief of these. It is a very large and elaborate work in solid silver, made to imitate the west front of a cathedral, and decorated in the most sumptuous way with figures cast and chased in relief, and a wonderful series of miniature-like pictures embossed in low relief and covered with translucent enamels of various brilliant colours. This splendid piece of silver work was executed about 133^{8} by Ugolino da Siena, one of whose other works, a fine reliquary, is also at Orvieto. The other most important pieces of silver work in Italy are the frontal and retahle of St James in the cathedral at Pistoia ${ }^{2}$ and the altar of San Ciovanni at Florence. On these two works were employed a whole series of the chief Tuscan artists of the 14 th and 15 th centurics, many of whom, though of great reputation in other branches of art, such as painting, sculpture on a large scale, and architecture, did not disdain to devote their utmost skill and years of labour, to work which we now as a rule consign to craftsmen of the very smallest capacity. The following celebrated artists were employed upon the altar at Florence: Antonio Pollaiudo, Michelozzo, Verrocchio, as well as less prominent artificers, Betto Geri, Leonardo di Ser Giovanni and Betto di Francesco Bettl.

Among the distinguished names of Florentines who during
${ }_{2}$ Victoria History of Cornuoll, i. 375 .
2E. Alfred Jones, "The Altar of Pistoia, "The Reliquary (January, 906), pp. 19-28.
the space of one century only, the 15 th, worked in gold and silver, the following may be given to suggest the high rank which this class of work took among the arts: Brunelleschi, Ghiberti, Donatello, Luca della Robbia, the two Pollanuoli, Verrocehio, Michelozzo, Ghirlandalo, Botticelli, Lorenzo di Credi, Baccio Baldini and Francia. The citics of Italy which chiefly excelled in this religious and beautiful class of silver work during the 14 th and 1 gith centuries were Florence, Siena, Arezzo, Pisa, Pistoia, Bologna, where there are fine 141 h -century silver reliquarics executed by Jacopo Roseto da Bologna for the heads of St Dominic and St Petronio in the church of St Stefano. Perugia, where Paolo Vanni, Roscetto and others worked in the 14 th and early 15 th centuries, and Rome.

Owing to the demoralization and increase of luxury which grew in Italy with such startling rapidity during the carly years of the toth century, the wealth and artistic skill which in the previous centurics had been mainly devoted to religious objects were diverted into a different channel, and became for the most part absortice in the production of magnificent pieces of platevases, ewers, dishes, and the like-of large size, and decorated in the most lavish way with the fanciful and over-luxuriant forms of ornament introduced by the already declining taste of the Renaissance. This demand created a new school of metalworkers, among whom Benvenuto Cellini ($1500-1571$) was perhaps the ablest and certainly the most prominent. His graphic autobiography makes him one of the foremost and most vivid figures of the wonderful 16th century, in wbich often the most bestial self-indulgence was mingled with the keenest enthusiasm for art. The large salt-cellar made for Francis I., now at Vienna, is the only piece of plate which can be definitely assigned to Cellini. The splendid Farnese casket, with crystal plaques engraved by Giovanni di Bernardi, in the Naples Museum, has been wrongly attributed to Cellini. His influence on the design of plate was very great, not only in Italy and France, but also in Germany. ${ }^{3}$ During the $17^{\text {th }}$ century fine pieces of plate were produced in Italy, many of them still retaining some of the grace and refinement of the earlier Renaissance.

The papal treasure, containing priceless examples of the goldsmith's art, was almost entirely depleted by Pius VI. to pay the indemnity demanded by Napoleon. The tiara of Julius II. by Caradosso, and the splendid morse of Clement VII. by Benvenuto Cellini, coloured drawings of which are preserved in the Print Room, British Muscum, are among the objects then destroyed.
A valuahle source of study of Lialian plate (now destroyed) is contained in the three volumes of drawings. execuled between 1755 and 1764. by (irauenbroch, in the Museo Correr at Venice.

Cermany.-From very carly times Germany was specially famed for its works in the precious metals, mostly for ecclesiastical use. In the 15 th century a large quantity of secular plate was produced of beautiful design and skilful workmanship. Tall covered cups on stems, modelled with a series of bosses something like a pineapple, beakers

Fig. 12.-Silver Beaker, decorated with open work, filled in with translucunt enamels. German or Flemish, of the 15 h century: (S.K. M.) and tankards, enriched with Gothic cresting and foliage, are
: See Eugzne Plon. Benvenelo Cellini, sa vic. Etc (1883); also Cellini's own work, Dell' Opeficeria (1568).
among the most important pieces of plate. During the 16 th century Augsburg and Nuremberg, long celcbrated for their silver work, developed a school of craftsmen whose splendid productions have often been ascribed to the great Cellini himself. In the first decade of the 16th century, Paul Mullner, a Nuremberg goldsmith, furnished Frederick the Wise with several silver-gilt reliquaries for his collection at Wittenberg. Later in the same century came the Jamnitzer family of Nuremberg, chief among them being Wentzel Jamnitzer. one of whose masterpieces, an enamelled silver centre-piece, belongs to the baroness James de Rothschild of Paris. Mathaeus Wallbaum of Augsburg was another celebrated goldsmith of the 16th century. His chief works are religious ornaments of ebony mounted in silver, and the Pommerscher Kunstsctrank in the Kunstgewerbe Museum, Berlin But the chie[German goldsmith of the 16 th century was Anton Eisenhoit ${ }^{2}$ of Warburg, who wrought the fine crucifix (1589), the chalice and other ecclesiastical vessels which belong to the Fürstenberg family. Other notabie craftsmen of this period were Hans Petzolt and Melchior Bayr, the latter having made tbe silver altar (with scenes from the Life of Christ after Dürer)

Fig. 13.-Silver Cup, 81 in, high, usually attributed to jamnitzer, usually attributed to parmite probably by Fint. Made at Nuremberg about the middie of the ith century. (S. K. M.)

Fig. 14-Ewer by François Briot, about 10 in. high. Middle of 16 th century.
for the king of Poland, which is in the Sigismund chapel in Cracow Cathedrai.' Jakob Mores, the eider, of Hamburg, was employed by the royal house of Denmark. A large number of his original designs for plate are in the public art ibrary at Berlin. Jakob Mores, the younger, executed the silver altar at Frederiksborg in the 17 th century. In Germany the traditions of earlier Gothic art were less rapidly broken with, and many purely Gothic forms survived there till the end of the 16 th century, and Gothic decorative features even later. In the first half of the 17 th eentury. though the technical skill of the German silversmiths reached a high standard of merit, there was some falling off in the execution and in the purity of outline in their designs. Germany is richer in secular plate than any other country. The remarkable royal collections of plate in the green vaults at Dresden, Gotha and Munich, as well as public museums in Germany, including the treasure of Lineburg at Berlin, aflord excellent opportunities for the study of the German goldsmith's art, the remarkable chalice, 12 th century, of St Gothard's church, Hildesheim; the celebrated Kaiserbecher of Osnabrick ${ }^{1}$ Lessing. Dre Silber. Arbeiten son Anton Eisenhoil (1880).

- Illustrated by Ordzywolski, in Renesaus w Polsce, pla. 11-12.
of the 13 th century; the cup given by the emperor Frederick III. and Malhias Corvinus to Vienna in 1462, and the splendid ewer of Goslar, 1477, are notable specimens of early German work. In England the only public collections of German plate worthy of notice are the "Waddesdon " in the British Museum, and the Victoria and Albert Museum. Prior to its dispersal among his five daughters, the late baron Carl von Rothschild's collection at Frankfort-on-Main was the most extensive private collection in existence. The Gutmann collection, acquired by Mr J. Pierpont Morgan, contans many rare preces, as does that of the baronesses Alphonse and Salomon de Rothschild in Paris.

Many of the most beautiful vessels of crystal, agate, \&e., formerly attributed to lialian artists, were carved and engraved and set in beautiful enamelled gold and silver mounts, in southern Germany in the 16 th and 17 th centurics. At the end of the igth and the beginning of the isth centuries household plate and other ornaments were frequently decorated with painted enamels, mostly originating from Augshurg. Dinglinger of Dresden and his school at about this time exercised considerable influence in the production of ornaments in pearl and other materials, elaborately carved, mounted and enamelled.

Several specimens exist of the models of cups required of candidates for the rank of master-craftsmen in the second half of the i6th century. One of these, at the Victoria and Albert Muscum, is belicved to have been wrought by Martin Rehlein of Nuremberg in 1572-1573.2

Many of the famous $1 \mathrm{~g}^{\text {th }}$ and 16 th century artists-such as Martin Schön, Israel von Mecken, Aldegrever, Aldorfer, Brosamer, Peter Flotner, the Behams, Hopfer and Hans Holbein the younger, supplied the silversmiths with designs for plate. Several of Holbein's original designs, including one for the gold cup probably wrought by his friend, John of Antwerp, for Queen Jane Scymour, are in the Print Room, British Museum, where there is also an original design for 2 table fountain by the celebrated artist, Albrecht Dürer. Virgil Solis of Nuremberg (1514-1562) was especially fertile in designing plate, and be executed a large series of etchings of designs for vases, cups, ewers, tazze, \&c.4 Many of the German silver ewers and basins resemble those made :n pewter at the end of the i6th century by François Briot and Gaspar Enderiein, who migrated from Switzerland to Germany.

Switherland.-This country produced several silversmiths whose work in the main follows that of the German school. The three historical beakers in the national library at Zurich were made in that city from money sent out as gifts from England hy the three English bishops, Jewel of Salisbury, Horn of Winchester, and Parkhurst of Norwich, in appreciation of the hospitality afforded them during their exile at Zujrich, in the reign of Queen Mary Is Important plate was wrought al Berne, Rappersweil and other Swiss towns.

Russia.-In no country is the ecrlesiastical and secular plate of greater interest than in Russia, where so many different influences have been at work in its designs and decorationByzantine, Oriental, Gothic, Renaissance, \&c. The "golden age" of ecclesiastical art was undoubtedly the 57 th century, when the churches and monasteries were being enriched with many priceless ornaments in the precious metals. Enamels of great richness-which had been introduced there hy Hungarian artists-nieilo and precious stones were employed in the decoration. A drinking - cup or bowl exclusively Russian in form and character, known as bratina, was largely made (see the fine one of gold, enamelled and set with precious stones, in the royal collection at Vienna), as was a smaller bowl, called caarka, witb a single bandle. Another secular vessel, peculiarly Russian, is the koosh, a pointed or boat shaped bowl with a long handle. Much of the domestic plate after Peter the Great's time was influenced by that of western countries, particularly Germany.

Poland.-Though not without a character of its own, the

[^67]ecclesiastical plate of Poland 'came under the influence both of Germany and Hungary. Many of the sacred vessels of late medieval times are decorated with enamels and niello. In the 17th century ecclesiastical vessels encrusted with corals are met with, such as those given by Michael Wisniowiecki, king of Poland, to the church of Czeustochowa. A magnificent 17 thcentury chalice of gold, beautifully enamelled, given by the bishop of Plock and Breslau, son of Sigismund Ill., is in Plock cathedral. Many important pieces of plate still exist in churches in Poland, though a Polish origin is not claimed for them; for instance, the ioth-century chalice at Trzemeszno, where there is also another chalice of about the same period. The cathedral of Cracow contains many priceless examples, such as the 14thcentury gold cross given by Casimir the Great; the gold crucifix of Mathias Corvinus, and the gold reliquary, $\mathbf{r} 6 \mathrm{~h}$ century, of St Stanislas, hishop of Cracow.
France.-France, like England, has suffered grievous losses in its plate, though it can show a larger array of medieval church vessels than can England. The chief specimens of medieval plate are the gth-century casket and the seated staluette of St Foy (roth century) in the treasure of Conques; the cross of Laon (c. 1200) in the Louvre; the ciborium (early s3th century) in the treasury of Sens; the cross of the same period in Amiens Cathedral; the caskets of St Taurin (c. 1250); the reliquary of St Epine, given by St Louis; the virgin of the abbey of Roncevaux (Navarre, 14th century); and the virgin given by Queen Jeanne d'Evreux to St Denis in 1339. One of the most cherished possessions of the British Museum is the celebrated gold and enamel cup of the kings of England, French. work of the 14 th century. No doubt the visit to Paris of Cellini exercised a great influence in the goldsmith's att there, though, unfortunately, no examples have survived. The extravagances ol Louis XIV. and his court led to the destruction of all the royal plate of France, as did the Revolution of 1780 of vast quantities of domestic plate. It was not until the early part of the 18 th century that any signs of revival are visihle in the art of the silversmith. Chief among the Paris goldsmiths of that time are Claude Ballin the younger, Thomas Germain, and, later in the century, Frangois Thomas Germain, who made the royal plate of Portugal and several pieces for the court of Russin.
The Low Countries.-Flemish silversmichs of the late medieval period were as skilful as they were in the Renaissance. So little Flemish plate remains that pictures of the Flemish school are recommended as the chief sources of study of ecclesiastical vessels. A fine covered silver beaker, decorated with open work and translucent enamel in the South Kensington Museum, and another covered with figures and foliage in niello, in the print room of the British Museum, are notable examples of Flemish work of the $15^{\text {th }}$ century. A large tripych, 1_{3} th century, is in the Rothschild bequest to the Louvre. Ornate rosewater ewers and basins, which came in with the Renaissance, such as the important pair dated 1535 in the Louvre, were made at Antwerp and other places.
The Utrecht silversmith, Paul van Vianen (early 17th century) wrought many fine pieces of plate, including the silver bas-relie's in the Rijks Museum at Amsterdam, where there are five fine bas-reliefs in silver by the Belgian silversmith, Mathias Melin. Two other members of the same family, Adam and Christian van Vianen, were also prominent silversmiths of this time. An earlier Dutch silversmith, Christian van Vianen of Utrecht, made the vesscls for the altar of St Gcorge's Chapel, Windsor, for Henry VIII.
Two important pieces of Dutch plate are the covered tazzashaped cup of William the Silent, date about 1573, helonging to the carl of Yarborough, ${ }^{2}$ and another large cup of the same form ($\mathbf{1 5 9 5 \text {), known as the "Breda cup," in the possession of }}$ the Hohenlohe family. Considerable quantitics of plate were produced at Amsterdam (where Johann Lutma the elder-d. 1669- was a well-known silversmith), Haarlem, the Hague and many other places. The numerous 17 th -century Dutch pictures
${ }^{2}$ Poxcydziecke and Rastawiecki. Polish Silver Work (1853-1869).
of still life and other subjects afford opportunities for the study of tazee, beakers and other domestic vessels in silver. Hendrik J̈anseens, a Dutch engraver of about 1640, executed many designs for goldsmiths and jewellers.
Spain and Porlugal.-Spanish plate was largely influenced in the middle ages by that of France and Flanders and the art of the Moors. But little medieval plate exists in Spain, mosi of it having been destroyed at the time when a taste for more elaborate ornaments sprang up as a result of the introduction of fresh wealth from the colonies in the New World. The following examples may be singled out: a cross of wood, covered with gold filigree work, set with stones (A.D. 808), in Oviedo Cathedral, where there is also 2 larger cross of wood and gold, dating from later in the same century. A Moorish casket of wood covered with thin silver plates is in Gerona Cathedral. The reliquary of Alphonso III. and his queen (A.D. 866-896 covered with embossed silver plates of the symbols of the evangelists; the inthcentury chalice at Silos; chalices of the $13^{\text {th }}$ and early 14th centuries in the cathedrals of Santiago and Toledo; and Don Martin's great armehair, of wood covered with claborate silver. gilt plates, in Barcelona cathedral. The Spanish monstrances of the isth century are noticeable hecause of the Flemish influence displayed, while those of the early part of the 16 th century, such as that hy the celehrated silversmith, Enrique Arfe, in the cathedral of Cordova, is remstrable for its ornate character. The latter's grandson, Juan de Arfe y Villafane (who wrote De varia conmenswracion, : 585 , on silverwork and other arts) became a chicl maker of these magnificent monstrances; for instance, the celebrated example in Seville cathedral. He was associated with Pacheco in executing statues. About the 1 sth century Barcelona became famed as a centre for the silversmith's art, and the Libros de pasantia, or silversmiths' examination books, still preserved in that city, contain a large number of designs for jewel-work. Seville likewise had an important gild of silversmiths, as did the following cities: Toledo, Valladolid, Burgos, Cordova and Salamanca. The celehrated lamily of Becerril wrought. fine plate at Cuenca in the 16th century. Many chalices and some domestic plate of the 16 th and early 1 ith centurics are embellished with small enamelled disks, some of which show Saracenic influence in details. The Victoria and Albert Museum possesses a fine collection of Spanish goldsmith's work.

Portuguese plate displays in its Gothic features a very florid style, in imitation of that adopted by architects in the reign of Don Manuel (1495-1 521). A typical example of this extravagance of Gothic motives may be seen in the monstrance of Belem, which was made from gold brought from the East by Vasco da Gama.

Austric and Hungary.-Austrian plate is, like that of Switzerland, largely based on German models. The ecclesiastical plate of Hungary in the 15 th and 16 th centuries is celehrated for its enamelled work of a flowered design enclosed in filigree wireintroduced from Italy. This enamelled decoration was continued in the rith century, but without the filigree wire, and it is then described as "Transylvanian." Much of the secular plate of the 16 th and 17 th centurics in north and east Hungary is influenced hy German plate, while that in Transylvania is frequently inspired by Oriental designs.

English. -There is strong evidence of the importance attached to English medicval plate by Continental pcoples, as there was to the magnificent English illuminated MSS., and, later, to the embroidered vestments, opas anglicanum. But, unfortunately, the ruthless destruction of plate during the Wars of the Roses, the Reformation and the Great Rebellion has spared but lew medieval pieces to which we can point. Under the name of Protestantismevery ecclesiastical vesse! with a device savouring of "popish superstition" was instantly destroyed. The inventories of the great eathedralsand religious houses plainly reveal their marvellous wealth in gold and silver vessels.

Norfolk is richer than any other county in pre-Reformation chalices and patens.' The well-known " Gloucester "candlestick, - Norfolk Arck. xii. 85-
though composed of inferior metal, is an illustration of the fine plate wrought in England in the 12th century, while the ancient anointing spoon of the sovereigns of England at the Tower of London is an historical relic of the end of the 12 th century (with the bowl altered for Charles II.). The earl of Carysfort is the fortunate possessor of a silver-gilt censer of about 1375 and an incense ship, of about 1400 , found in Whittlesea Mcre in 1850, and formerly belonging to Ramscy Abbey. ${ }^{1}$ Only one pre-Reformation English gold chalice has survived, which with its paten and a silver crosier was given to Corpus Christi Collcge, Oxford, by its founder, Bishop Foxe (Plate II., fig. 26). Both bear the London date-letter for $1507-1508$. Another historical relic which has come down to the present day, though in a restored form, is the gold ampulla of about the end of the 14th century in the Tower of London. The universitics of Oxford and Cambridge, though sadly depleted of their plate, can still show some notable pieces. The carliest example at each is a drinking horn, both of the 14th century, at Queen's College, Oxford, and Corpus Christi College, Cambridge. Other notable horns are the Pusey horn ${ }^{2}$; the celebrated Bruce horn with the seals of John of Gaunt attached, and one at Christ's Hospital.

Mazer bowls, made of wood mounted in silver and even in gold, and frequently engraved with scriptural and other inscriptions (see Plate Ib fig. 28), were popular drinking vessels in England in medieval times. Many of these have survived, the earliest specimen being one of Edward 1I. at Harhledown hospital. They ceased to be made after the reign of Elizabeth (Archoealogia, i. 129). Medieval coco-nut cups, mounted in silver, are of frequent occurrence in England, the best known examples being in the possession of the colleges at Oxford and Cambridge and several of the city compunies. As has been mentioned belore, but few examples of early plate exist; the following is a brief list of some of the most notable pieces, other than those previously enumerated: the "Sokborn" cup (c. 1450), and the "Anathema " cup (1481-1482) at Pembroke College, Cambridge; the Leigh cup (1409) at Mercers' Hall; the ivory and silver cup ($1525-1526$) of the duke of Norfolk; the pastoral staff (c. 1367) at New College, Oxford; the Richmond cup (c. isio) at Armourers' Hall; the "election cup" (c. 1520) at Winchester College; and the Foundress' plate, consisting of a fine covered cup (1435-1440). two salts (c. : 500), a beaker and cover ($1507-1508$), and a salt ($1507-1508$) at Christ's College, Cambridge. Of Elizabet h's reign, the finest examples are probably the salt of the Vintners' Company (Plate II., fig. 27), and the rosewater dish and ewer of the duke of Rutland. Stoneware jugs, as the well-known example

Fic. 15.-Silver Cup, 43 in. high, with embossed gold band; found in a grave in the east of Zealand (Denmark). This cup dates from the carlier part of the Iron Age. ($x_{5} 8 \mathrm{I}$) from West Malling, Kent, and Chincse porcelain vessels were elaborately mounted in Elizabethan times, a goodly proportion of the former having been done by goldsmiths at Exeter.

The Celtic races of both England and Ireland appear to have possessed great wealth in gold and silver, but especially tbe former. It seems, however, to have been mostly used in the manufacture of personal ornaments, such as torques, fibulae and the like. A magnificent suit of gold armour, repowse with simple patterns of lines and dots, was found some years ago at Mold in Flintshirc, and is now in the British Muscum. ${ }^{2}$ The amount of old jewelry found in Ireland during the past century has been enormous; but, owing to the unfortunate law of " treasure-trove," by far the greater part was immediately

[^68]- Archocologia, iii. 3, xii. 377. i lbid. xxvi. 42.
melted down by the finders. Little of this period that can be called plate has been discovered in the British Isles-unlike Denmark and other Scandimivian countries, where the excavation of tombs has in many cases yielded rich results in the way of massive cupa, bowls, ledles and horns of solid gold, mostly decorated with simple designs of spirals, concentric circies, or interlaced grotesques. Others are of silver, parcel-gilt, and some have figure suhjects in low relief (fig. 15). In like manner, during the Saxon period, though gold and silver jewelry was common, yet little plate appears to have been made, with the exception of shrines, altar-frontals and vessels for ecclesiastical use, of which every important church in England must have possessed a magnificent stock. With regard to English secular plate, though but few early examples still exist, we know from various records, such as wills and inventories, that the 14 th contury was one in which every rich lord or burgher prided himself on his fine and massive collection of silver vessels; on festive occasions this was displayed, not only on the dinner-table, but also on sideboards, arranged with tiers of steps, one above the other, so as to show off to advantage the weighty silver vases, flagons and dishes with which it was loaded. The central object on every rich man's table was the "nef "-a large silver casket, usually (as the name suggests) in the form of a ship, and arranged to contain the host's napkin, goblet, spoon and knife, with an assortment of spices and salt. No old English "nefs" are now known. Great sums were often spent on this large and elaborate piece of plate, e.g. one made for the duke of Anjou in the $14^{\text {th }}$ century weighed 348 marks of gold. The English silversmiths of this pefiod were highly skilled in their art, and produced objects of great beauty both in design and workmanship. One of the finest specimens of Edward III.'s plate which still exists is a silver cup belonging to the mayor and corporation of King's Lynn. It is graceful and chalice-like in

Fig. 16.-Silver Cup, with translucent enamels. Probably English work of the 14th century.

F10. 17.-Silver-gitt Salt-cellar, $14 \frac{1}{2}$. high. Given to New College, Oxiond, in 1493.
form, skilfully chased, and decorated in a very rich and elaborate way with coloured translucent enamels (fig. 10) of ladies and youths, several with hawks on their wrists. Silver salt-cellan were among the most elaborate pieces of plate produced during the $15^{\text {th }}$ century. Scveral colleges at Oxford and Cambridge still possess fine specimens of these (fig. 17); a favourite shape was a kind of hour-glass form ricbly ornamented, made between about 1480 and 1525 .

Fig. 22.-Fragment of a Silver Vase with Relief Design, showing the Defence of a City; from Mycenae (Late Minoan i.).
Fig. 23.-Golden Cup from Troy (Early Minoan iii.; 2500 b.c. or earlier).
Fio. 24, 25.-Gold Cups of Vaphio (Late Minoan i.).
Greek Plate of the Bronze Age (Prehistoric Period).

Photo, Hills o Sawnders, by permission of Cortms Chmotd College. Fig. 26.-Gold Chalice and Paten of Bishop Foxe.

Photo, Southzoare photo Eng. Co.
Fig. 27.-Salt of the Vintners' Company (Elizabethan).

By furmission of Chrichton Bros.
Fiz. 28.-Braikenbridge Mazer Bowl.

From Jackson, History of English Plafc, by Dermission of C. J. Jackson, F.S.A.

Fig. 29.-Gold Cup and Cover, Charles II.

From Gardner, Old Silveravert, by permission of B. T. Batsiord. Fig. 30.-Tudor Cup.

By Aeromissiom of the Royal /risk Academy.
Fiz. 31.-Ardagh Chalice.

But few existing specimens of English plate are older than the beginning of the igth century Among the few that remain the principal are chalices-such as the two large silver-git ones found in the coffin of an archbishop of York, now used for boly communion in the cathedral, and a fine silver chalice from the church of Berwick St James. Wilts, now in the British Museum. Both this and the York chalices are devoid of ornament, and, judging from their shape, appear to be of the first haif of the $13^{\text {th }}$ century, which is the date of the fine medieval chalice and paten found near Dolgelly some years ago (the iat ter now believed in some quarters to be of German origin). Several Tudor cups are in existence: the celebrated one of 1521 (Plate II., 6ig. 30), an earlicr one, 1500 ; two covered ones of about 1510 and 1512 at Sandwich and Wymeswold, respectively; one (1515) at Corpus Chisti College, Oxford, and the Bodkin cup (1525) of the Corporation of Portsmouth. A very early beaker (1496) is in a private collection, as is also a smail Tudor bowl ($1525-1526$). The earliest known chalices of silver include the Gourdon chalice and paten, the St Cozlin chalice at Nancy (1oth century); the 12 th-century specimen in the abbey of Wilten in Tirol.
It is interesting to note the various changes of form through which the ecclesiastical chalice pasced from carly Christuan tumes Cheltoen till the i6th century. It was at first an ordinary secular cup wuth two handies, classical in form and of large capacity, because the latty as weli as the clergy recelved the wine. The double handles were of pracical use in passing the cup round like a modern "loving cup" The frat alieration was the omisson of the handles. 10 that it took the form of a large hemispherical. bowi with a round foot, and a knop for security in holding it. For some centuries it appcars to have been the custom for the priest to hold the chalice, while the communicant sucked the wine through a sulver tube or "fistula." Some of the most magnificent carly examples of this form of chalice have the bowi mounted in bands, set with jewels, and ennched with minute filigree work-s design which appears to have been taken from those cupa, such as the four magnificent examples in the treasury of St Miark's at Venice, which have their bowl cut out of crystal. onyx or nome other precious stone. The finest examples of this class are the Ardagh chalice, now in the Dublin Muscum,

Fig. 18. - Elizabethan Chalice. and the chalice of St Remigius, in Rems cathedral; both are most magnificent specimens of the taste and akill of toth to 11th century goldamiths. In the 12 th and 13 th centuries the design becomes sumpler; there is a distinct shaft, extending above and beiow the knop; and on the foot is marked a cross. not found in the earlier ones. to show which side the priest is to hold towards humself at celebration. The next alteration in the form of chalice, which occurred in the 14th century; was to make the foot not circular in plan but polygonal or lobed. to that the cup might not roll when laid on its side to drain. after it had been rinsed out. This form lasted in most countries till about 1500 , and in England till the Reformation. Then the bowl, which in the previous two or three centuries had been slowly reduced in size, owing to the gradually introduced practice of refusing the wine to the laity, was suddenly made more capacious. and the form was altered to the shape shown in fig. 18, in order that the Protestant "communion cup ", might bear no resemblance to the old Catholic '" massing chalice." This was ordered to be done in 1562 (see Arch. Journ. xxv. 44-53). The best account of the evolution in (he form of English medieval chalices and patens is by W. H. St John Hope and T. M. Fallow, in Archoeologia, vol. xliii.

Secular plate during the 5 th and $\mathbf{1 6 t h}$ centuries was frequently similar in style to that made in Germany, though the English silversmiths of the latter century never quite equalled the skill or artistic tafent of the great Nuremberg and Augsburg silver-workers. In the 17 th century, during the reigns of James I . and Charles I., many fine pieces of plate, especially tall cups and tankards, were made of very graceful form and decoration. The greater part of this, and all carlier plate, especially the fine collections belonging to the universities, were melted down during the Civil War. In Charles II.'s reign returning prosperity and the increase of luxury in England caused the production of many magnificent pieces of plate, often on a large scale, such as toilet services, wine-coolers, and even fire-dogs and other furniture. These are very florid in their ornament, much of it

[^69]under Dutch influence, and mostly have lost the beautiful forms of the century before (fig. 19 and Plate II., fig. 29). In the early part of the ${ }^{\text {8th }}$ century the designs of English piate were to some extent influenced by the introduction of French omaments by the large band of French silversmiths who sought refuge in England after the revocation of the edict of Nantes. Chief among these Frenchmen (though probably not a refugee himself) was Paui Lamerie, who produced a large number of notable specimens, the largest of which is a fine wine-cooter in the Winter Palace, St Petersburg. Through the greater part of the reign of Ceorge III. English plate is more remarkable for its plain solidity than for artistic merit. With the advent, however, of the taiented architects, the hrothers Adam, came a taste for plate with classical characteristics. The South Kensington Museum has a small, though fine, collection of plate, varying

Fic. 19.-Covered Cup of Solid Gold, 6 in. high, c. 1660-1670. Given to Exeter College, Oxford, by Ceorge Hall, Bishop of Chester.
in date Irom 1770 to 1788, in the Adam style. Many of Flax: man's designs were produced in plate, among the most important being the "Shield of Achilles," in silver-gilt, at Windsor Castle. Thomas Stothard, the painter, exccuted several designs for goldsmith's work for Rundell and Bridge.

The Assay of Gold and Silver Plate.-The primitive method of testing the purity of the metal was by marking a streak with it on the touchstone, and comparing the colour of the mark with that made by various pieces of gold or silver of known degrees of purity. Assay by cupellation is now employed for silver: a piece of the silver to be tested is melted with some lead in a cupel or boneash crucible; the lead is oxidized, and rapidly sinks into the bone-ash, carrying with it any other jmpurities which are present. The residue of pure silver is then weighed, and by its loss shows how much alloy it contained. Gold is now tested by an elaborate chemical process by which the trial bit is dissolved in acid, and then thrown down in the form of precipitate, which can be examined by a careful quantitative analysis (see Assayme).

The standard of purity required in the

Fig. 20.-Silver Vase, II in. high, dated 1772. Designed by the brothers Adam. time of Edward I. Was, for gold, that it should be of the "Paris touch," i.c. 191 carats out of 24 . Before then 22 carats was the standard. Silver was to be "of the sterling alloy," viz. in oz. 2 dwt. to the pound. Except lor a time during the 16 th century this standard of silver has been kept up, and is still required by law.

Hall-marks on Siforr.-In the i3th century the English Gild of Gold-and Silver-smiths had grown intorreat importance, and had acquired monopolies and many special privileges. In order to keep the standard up to the required purity the system of requiring each article to be stamped with certain marks was introduced by royal command. The first of these was the
king's mark-a leopard's or lion's head crowned. This was introduced in 1300 by Edward I. (29 Edw. I. stat. 3, c. 30). The second, the maker's mark, was instituted in 1363 (37 Edw. III. c. 7). This might be any badge, or initial chosen by the master silversmith himself. The third was the Year letter or assayer's mark; this was an alphabet, one letter being used for a year, counting from the day of the annual election of the warden of the Goldsmiths' Company. When one alphabet was exhausted another with differently shaped letters was begun. The earliest existing piece of plate which has the three marks is the chalice (with paten, 1479-1480), at Nettlecombe, Somerset. Other marks, subsequently introduced, were the lion passant, first used in 1544 ; the lion's head erased; and a full-length figure of Britannia, used ouly between 1697 and 1719-1720; and, lastly, the portrait of the reigning sovereign, which was used from 1784 to 1890 , when the duty on gold and silver plate ceased. In addition to these general hall-marks, the plate made in various provincial towns had certain special assay and hall-marks.
The best work on hall-marked plate and the marks themselves, with the history of the Goldsmiths' Company, is C. J. Jackson's English Goldsmiths and their Marks (1905), where will be lound illustrations of the marks found on plate wrought in Scotland and Ireland, and at English provincial gilds-York, Norwich, Exeter. Chester, Lincoln. Newcastle, Birmingham, Sheffield and other places. E. Alfred Jones's book, Old English Gold Plate (1907), illustrates and describes gold plate only.

Modern Plate in the East.-Though little plate of real artistic merit is now made in Europe, in the East among the Moslem and Hindu races there still survive some real taste in design and skill in execution. Delhi, Benares, Lucknow, Cutch and other places in India and Kashmir still produce a quantity of beautiful silver and gold work-chiefly ewers, basins, rose-water sprinklers, salvers, coffee-pots and the like. These are of graceful form, covered wit h rich repasess work, or more often with very delicate chased patterns. Their style in the main is Moslem, but some combine an Arab form with native Indian surface decoration. This class of work is not a revival, but has been practised and handed down by unbroken tradition, and with little or no change in style from the 16 th century or even earlier. ${ }^{\text {a }}$ The silversmiths of Persia, Damascus and other Eastern places are still skilful, and retain some good tradition in their designs. They are, however, more occupied in the production of personal ornaments than in making larger works of silver or gold.

Authorities,-Scandinavian and Celic Plate-Worsaac, Primerul Antiguities of Denmark (1849): Afbildninger fra de Kongelige Musetum (i854): "Industrial Arts of Denmark" S.K.M. Handbook (1882): Atlas de l'archeologie du nard (1857); Anderson, Mindelblade fra de danske kongers Samling (1867); Danmarks, Norges, of Sverigs historic (i867); Madsen, Afbuldninger af danske Obdsager (1868-1876); Montelius, Antiquriês suédozses (1873-1875); Stralsund, Der Goldschmuck von Hiddensoe (I88i): Hildebrand, "Industrial Arts of Scandinavia," S.K.M. (1882); Reeves, Shrine of St Patrick's Bell (1850): Wilde, Catalogue of Antrquities of Cold, Koyal Irish Academy (i862); Margaret Stokes, Early Christan Arl in Ireland (1875); J. Romilly Allen, Callic Art in Pagan and Chrisham Times (1904).

Danish.-C. Nyrop, Meddelelser ond dansk Guldesmrdekunst (1884): Bernhard Olsen, De kjobenhavnske Guldsmedes Aarker fra Tiden for Aaret. 1800 (1892)
llalian.-L. Caglieri, Compendio delle vile dei santi orefiei ed argenueri (1727): Il. Samuario delle reliquic assia il iesoro della básilica di S. Antonio di Padong (1851): "Stanziamenti e contratti per opere di oreficeria (XIV.-XV. cent.)," Perugia: R.Commissione Giornale, t. 333. iii. 206, 225 (1872-1874); Filangieri, Documenti per la storia, le arle e le industric delle provintie napoltone (1883-1891); Antonio Pasini, II Tesoro di San Marco Vencaza (2 vols., 1885-1886): "Orferres et l'ortevrerie en Savoie," Chambery: Soc. sotorsienne mémoires, xxiv. 329 (1886): A. Guarneri, Esposizione di Palermo. Catalogo della collezione di antica oreficeria ed argenleria (1891); L. Fumi, Il Santwario dal SS. Corporale nel duomo di Oreteto (1896): Congresso eucaristico ed esposisione di arte sacra antica in Orvelo (1597): Congresso eucaristico di Vevezio (1898): A. Cocchi, Les Anciens reliquaires de Senio Maria del Fiore et de San Giowanni de Florence (1903); O. H. Gigliali, Pistosa, nelle sue opere d'crte (1904): Catalogo penerale della mostra d'arte antica abruzzese in Chisti (1905) ; E. Manceri. Notizie di Strilic, arle viii. 388 (1905); P. Piccirilfi, Oreficeria medieqafe aquilana: due cimell net Victoria and Abert Musesm di Londro (1905); F. Ferrari, L'Oreficerie in Aquila
(1906): S. J. A. Churchill, "The Goldsmiths of Rome under the Papal Authority," with valuable bibliography, Papers of Britssh School at Rome, vol. iv. (1907): Catalogo della mostra d'antica arte Umbra (Perugia. 1907); Corrado Ricci, Il Palazzo pubblica di Sıena - la mostra d' antica arle senese.

Russian, $\in c$.-A. P. Sonzoff, an intustrated book on some Russian plate (1857-1858); A. Maskell, Russian Art and Art Objects in Russia (1884); C. de Linas, Les Origines de l'orfeorcric clonsonné: Viollet-le-Duc. Art russe; Andiquities of the Russian Empire.

Austrian and Hungarian.-B. Czobor and I. Szalay, Die historischen Denkmailer Ungarns (1897-1901); E. Radisics and J. Szendrei, Treasure of Hungarian Art (Hung.) (Budapest. 1897-1901); J. Mihalik, "History of Goldsmiths' work at Kassa " (Hung.), in vol. xxi. of Archacological Proceedings of H ungarian A cademy (1899): "Zur Geschichte der Wiener Gold- und Silberschmiedekunst." by E. Leisching, in Kunst und Kunsthandwerk, vii. 343 (1904): "Alt Troppauer Coldschmiedekunst," by E. W. Braun. in Zeilschrifl für Geschichte . . oesterreichisch Schlesiens, i. 24 (1go5): J. Hampel. Allerthumer des fruhen Millelallers in Ungapn (Brunswick. 1907): Katalog der Ausstellung von all-oesterreichischen Caldsckmicdoarbe ilen (Kaiser Franz Jooef Museum in Troppau); A. IIg. Wiener Schmiedewerk.
German, EC.-Manuscripts (W. Jamnitzer), "Ein gar kunsllicher und wolgetziertes Schreiblisch sampl allerhant kunsilichen silbert und wergulten newerfwnden Instrumentein" (1585), col. drawings Sibmacher, Enturirfe fuir Goldschmiede (1879); R. Bergau, Wenled Jamnitzer (1880): Erreugnisse der Silber. Schmiede Kunst ams dem 16 bis 18 Jahrh. (1883); Luthmer, Der Schatz des Freihertr K. wom Rothschild (2 vols., 1883-1885); Luthmer and Schuermann, Gross-herroglith-hessische Silberkammer (1884); C. A.von Drach, Allere Sitherarbeiten in den kgl. Sammlungen ais Cassel (1888); Marc Rowalserg. Der Goldschmiede Merkzeichen (1890); J. H. HefnerAltsect. Deutsche Goldschmiede-werke des 36. Jahyh. (1890); Marc R-walverg, 17 Blatl aus dem grossherzoghich saichsischem Sulberschatz int Schlosse su Wermar (1891); Die K Mnstkammer in groushereng luhen Residenzschlosse su Karlsruhe (1892); Siebsehn Blall aws dem he - gituch Anhallischen Sulberschate im Schlosse su Dessam (1895) F. Snrre. Due berliner Goldschmiede Z unfl (1895); P. Seidel "Hux auves de Wenzel Jamnitzer," Dep Silber- und Goldschats arts. 3 S , xx .221 (1898); Eugen von Nottbeck und W. Neurnann Grschichte u. Kunstdenkmaler der Stadt Reval (1899): Bernhard Olven. De hamburgske Culdsmede Jakob Mores d. oeldres og d yngres Arbejder for de danske Konger Erpederik 1I. og Christian IV. (1903), (Dre Arbeilen der Ramburgischen Goldschmiede Jacob Mores. Voler und Sohn. fuir die dimischen Könige Frederick 11. und Chrastion (V.): J. Sembritzki, Verzeichniss in Memel sorhandeket alkrer Erzeugnisse der Edelschmiedekunst (1904): H. P. Mitcheil, "Two works bý Wentzel Jamnitzer." Art Journah, p. 105 (10n5) W. Neumann, Verzeichnis ballischer Coldschmiede. ihrer Merkzeichen and Werke (1905): E. Hintze, Die breslamer Goldschmiedir (1906) ; E. Alfred Jones." The gold and silver plate of W. D. von Raitenau, prince-archbishop of Salzburg, in the Pisti Palace." Connorsseur. xviii. 20 (1907): "The Plate of the Emperor of Germany," Connoisseur, nos. 51 and 54; Illustrated Catalogue of Early Gepman Art (Burlington Fine Aris Club, 1908): Richard Graul, Lezpziger Gold. und Silberschmiedearbeiten des Milledaliers (Igo8); A. Weiss, Das Handwepk der Goldschmiede uy Augsburg bis 1681 ; E. von Schauss, Die Schalzkammer des bayeriscken Kömigs hauses; "Duke of Portland's Gold Cup." Archeologia, lix. 233.

French, Burgundiaht, Eic.-J. C. Delafosse, Nomelle iconologie hislorgque, fol, (1771); E. Aubert. Tresor de l'abbaye de Saint Mourice d'Agaume (1872): Mely, Le Trésop de Chartres (3886); L. Palustre et X. Barbier de Montault, Le Trésor de Trives (1886); J. D'Arbaumont et L. Marchant, Le Trésor de la Saink-Chapelle de Dijon d'apres ses anciens intentaires (1887); C. G. Bapst, Eludes sur l'orfêrerie francaise au XVJII' siècle. le Germain, orfèresseulpleurs did Roy (1887); Allum de l'exposition de l'ant ancrew au pays de Liefe: orfivrerie religieuse (1888); Calalogue raisonne des prices d'opfereric francaise composent la callection du maryuis do Fo: (d Lisbon we) (1889): L'Orfíveric francaise a la cour de Portugal au XVIII", sièle (1892); E. Mantz, Histoire de l'art pendant la Renaissance (1891); W. Cripps, Old French Plate (1893); H. Havard, Hisboire de t'orfeurerie fransaise (1896) : Invenlaze de l'orfazeric et des joyaux de Louis 1. (1903): E. Molinier: Un Memwment d'orficperie francaise du XIIIe, stecke, Soc. des antiq. de France, p. 477 (1004): F. Pasquier, "Objets précieux de la maison de Foix au quinzième siecle"" Sociétus des beaux arts, Mémoires (1904); L. de Earcy.
"Croix de la Roche-Foulques," Revue de l'arl chrétien, p 337 (1go5): J. J. Marquet de Vassclot, Catalogue raisanné de la collection Marlin Le Roy (1906); Histoire de l'art, ii. 988-999 (with bibliography), edited by André Michel (1907), \&c.; A. Lefranc, so planches d ancienne orfitrerie empire.
Low Counirics.-Van Loon, Histoire metallique des Pays-Bas (Hague, 1732-1737) : Schacpkens, Trésor de l'art ancicn en Belgique (1846); Tentoonstrllung A msterdam (illustrations), (1877): for marks on Duich plate, see Nederlandsche Kunstbode (1879); Exposition refrospectiop d'objets d'art en or et en argent. Amsterdam (1880): Roddaz. L'Ane ancien d l'exposition nationale belge (1882); LerevardenProvincial Friesch Genootschap (1902): Catalogue of the Exhibition
at Bruges (1903); Catalogue of the Exchibution at Litge (ig05); J. Helbig. L'Art Mosan.
Spanish-Riano, Industrial Arts in Spain (1879); Davillier, L'Offererie en Espagne (1879); Mwseo espallol de anhiguedades (1879); Jond Villaami y Castro (on Spaniah chalices), Boletin de la seaciedad espaitiola de excursiomes (April, 1893); El Tesoro de la catedral de Santiogo: H. P. Mitchell. Catalogue of the Sitversmiths' Work in the Wyndham Cook Art Collection (1905): L. Williams, Arts and Crafts of Older Spain (1907); Don Enrique de Leguina Baron de la Vega de Hox, La Plata espaffola; Gestono, Deccionorio do erifices sevillanos.
American.- J. H. Buck, Old Plate (1903): Amerıcan Silow (Boston, 1906); Colonial Silverware of the 17th and 18ik centurves (1907): E. Alfred Jones, "Old American Silver Plate," Connowstewf (Deceraber, 1908).
English.-H. Shaw, Dresses and Decorations of the Middlo Ages (1843); Decorative Arts of the Middle Ages (1851); Bray, Life of Slothard (185I); Calalogue of the Antiguttres and Works of Art
exhibited at Pronmongers Hall (1861); Eatalogue of the Exhbtityon of Objects of Art Sowlh Kensingtom (1862) : W. Crippe, College and Corporation Plate (1881); Old Emglish Plate (9th ed., 1906); R. S. Ferguson, The Old Church Plate of the Dwcese of Carlasle (1882): Atkinson and Foster, Old Cambridge Plate (1883): W A. Scott Robertsont Church Plate in Kent (1886) ; R. C. Hope, Church
Plate is Rutland (1887); Dorset (1889); The Church Plate of Wills (1891); A Trollope, The Church Plate of Leicestershire (1890); F. G. Hilton Price, Handbook of London Bankers, with some accouni of the Early Goldsmths ($1800-$ 1891); H. D. Ellis, The Sitver Plate of the Armourers' Company (1892); The Siluer Plate of the Merchant Taydors' Compary (1892): "The Plate of Christ's Hospital." Trans. of the London and Muddlesex Arck. Soc. (1902, new series, vol. i., pt. 4) : Sir J. Watney, The Plate of the Mercers' Company (1892); Rev. T. Burns, Old Scoltzsh Communion Plate (i892); J. Starkie Gardner, English Enamels (1894); OLd Silser Work, ekiefly English, 15th to 181 h centwriks (1902), "Charles II. Silver at Wellieck," Burlinglon Maf vol. vii. noe 25 and 26; "Silver Plate of the Duke of Newcastle, Burlington Mag xill. viii. no. 32; "Silver Plate of the Duke of Rutland," Burlinglon Mag. vols., viii. and ix. nos. 36 and 37 ; C. A. Markham, The Church Plale of ihe County of Norlhamplon (1894). Handbook to Foreyg Hall marks (8898); E. H. Freshfield, The Commwwion Plate of the Chwrches in the City of London (1894); The Communion Plate of the Counly of London (1895); The Communion Plate of Middlesex (1897); The Commxnion Plate of Essex (1899); Sir W. Prideaux. Memorials of the Goldsmith's Company (i8gG): L. Jewitt and W. H. St John Hope. The Corporation Plate, Ec., of England and Wales (1895); W. Chaffers, Gildo Aurifabrorum (1896); Hall Marks on Gold and Silver Plate (r905); Cyril Davenport. The English Regalio (t907) Haslewood, Church Plate of Suffolk (i897): G. E. Hallidsy, Llo $1,1 / f$
Church Plate (1901); A. Butler, "The Old English Silver of the Innholders' Company," Connoisseur (1901), i. 236; " The Old Eigish Silver of the Skinners' Company." Connoisscur (1903), v. $201, v^{2}$, 33 ; Pcrey McQuoid, "The Plate of Winchester College.: Burlingion Mfag. (1903) ii. 149: "Evolution in English Plate," Burlington Mag: (1903) 1. 167, 359; The Histoyy of English Furniture (190f, \&c); Stanhope and Motatt, Early Christion and Byzantine A Ahtiqutices, British Muscum (1903); General Guide to the Ant Collections (Gold and Siber), Science and Art Muscum. Dublin., (1903): Montague Howard, Old London Silyer (1903): E. Radford, "The Church Plate of St Lawrence Jewry,' Connoisseur (1904), viii. $72 ; \mathrm{H} . \mathrm{F}$. N. Jourdain, History of the Mfess Plate of the S8th Regiment (igot); T. M. Fallow, "Yorkshire Plate and Goldsmiths," Jowrnal of Arck. Jnst. of Great Brilain (1904), 1xi. 74: J T. Evans, The Church
Plate of Pembrokeshire (1905): The Church Plate of Gloucestershire Plate of Pembrokeshire (1905); The Church Plate of Gloucestershire
(1006): The Church Plate of Carmarthenshire (1908) C. H. Ashdown, Nolcs on the Corporation Plate and Insignia of the Cily of St Alban (rgos): H. C. Casley, "An Ipswich Worker of Eliza. bethan Church Plate," Suffolk Inst. of Arch and Nat. Hist. (1903) vol. xii. pt. 2; F. Guy Laking. The Furnzure of Windsor Castle (190s), H. C. Moffatt, Old Oxford Plate (1006): J. W Caldicott, The Values of Od Englush Silser and Sheffeld Plate (:2006); E. Alfred Jones, ": The Old Silver Sacramental Vessels
of English Nonconformity," Mag. of Fine Arts (1906), i. 280, 371 : The Churck Plate of the Diocese of Bangor (1906): The Old Church Plate of the Iste of Man (1907); The OLd Silper Sacramental Vessels of Forergn Protestani Churches in England (1907) O OUd English Cold Plate (1go7); Illustrated Catalogue of Leqpold de Roths. child's Collection of Plate (1907); Troo Illustrated Calalogues of J. Pierpont Morgan's Collection of Plate (1907-1908); "Old Plale
 lington Mag. vol. xii. no. 57 (Der. 1907): The Old Plate at the Toreer of London (1908): "The Civic Plate, Regalia, \&e., of the Norfolk Boroughs," Memoruals of Old Norfolk (1908); The Oli English Plate of the Czar of Russia (1909); The Old Plate of the Cambridge Colleges! (1909): "Some Old Plaie in the possession of Lord Mostyn." Burlington Mag.; "The Plate of Jesus College, Oxford," Y Cymmrodor. vol. xvil: Guide to the Medieval Room. British Maseum (1907); Nelson Dawion, Goldsmilhs' and Siloersmilhs' Work (1907);
T. S. Ball, Chester Church Plate (1908) ; R. H. Cocks, Concerning some Treasures of ihe Vininers' Companyi Hope and Fallow, "English Medieval "halices and Patens," Arch. Journal, xiliii. 140; C. j. Jackson, "The Spoon and ita History," Archaeologia, vol. liii.; C. R. French, "The Plate of the Vintners' Company," Loxdon, and Muddestex Arch. Soc. Trans. vol. iii.; "The Plate of the Mercers' Company" London and Middlesex Arch. Sac. Trans. wol. iv.; J. G. Nichole, "The Plate of the Stationers' Company." Loudon and Muddlesex, Arch. Soc. Trans. vol. ii.; Article on "Drinking and other Horns," in Chester Arch. Soc. Journal, new series, vol. xi.; Somerse! Arch Soc. xlv. 2; Oxfordshire Arch. Soc. Proc. vols: iv.i Norfolk Archoeology.
ins. \&c.- J. Giardini, 100 Designs for Silversmith ${ }^{1}$ Work, Rome, 1750 ; A.W. Pugin, Designs for Gold-and Sillersmahhs, (1836); Andronct du Cerceau, Ornemens dorflorerse propres poup flunquter ef emaller: nouneaw liore d'ormemens d'orfarerie (pub. Paris, c. 1660, London, 1888); H. Bouchot, Cent modeles ind idits de lorfancrie francaise des IC $^{\circ}$ et 18° sidcles executts par les orftwas. sculpteurs royaux Nic. de Lawnay, J. J. Roelsers. T. Germasn, F: T. Germain at reproduits d'apres les dessins originaux do la bibliathene nat. (1888); Le Cabinet des astampes de la bibliothequa rusarne (1895); Reproductions of Panl Flindt's designs for gold. d'offarcris hollandaiss (1892-1900); Collection of illustrations entitled Die Schatshammer des Bayer.Konaghauses (1902). For an account of the original drawing for silversmiths' work in the museum at Basle see Jobrbucher der hgl. preuss. Kunsfammilungen (1905); Illustrated reproductions of goldsmiths designs by the Duteh silversmith, Adam Vianen; Etienne Delaune (1519-1583), Reproductions of his goldsmiths' ormaments, Paris; J. F. Forty, Oewres d'orftorerie a liusage des delises; J. C. Reiff (18 Jahrh.). © Blats sehr schone Zuerraihen für Goldschmiede, \&oc.; Giardini, Prompluarsxm artis argeniarioe (Rome. 1750): Holbein, Original Desygs for Plate, in the Print Room, British Museum, and in the Bodicran at Oxford (the South Kensington Museum also has a fine collection of original 16th-century despgs in pen and ink); Viane, Models of Silver Yases, Efc. (Utrecht, $17^{\text {th }}$ cent.); Loie, Brasurs.
 \&c. (Paris, n.d.); Maria, Livre de dessins de jowaillerie, \&ic. (Paris, n.d.); Portefeutile d"ornement (Paris, 1841).

Miscellaneous.-Hertfelder, Basilica SS. Udalrici af Afrae (Augsburg, 1627); Mascon, Newe Vorrisse pon Sacken die auf allerles Goldsmidts Arbeif. Eec. (Augsburg. 1710); Chrietyn, Deices des PaysBas (1769), vol. iti.; Frisi, Memorie della chiesa hioneese (1774-1780); Shaw, Ancient Plate from Oxford (1837); Du Sommerard, Les Arts ax moyen dge (1838 -1848); Kratx, Der Dom su Hiddesheim (1840); Richardson, Old Enclish Mansions and Meir Plate (1841-1848); Drawings and Sheiches of Elisabethan Phate (London, n.d.); Tarbe. Tresors des teglises de Reims (1843); Smith "Specimens of Colloge Plate," Cam. Ant. Soc. (1845); Cahier and Martin, Melanges d"archtologie (1847-1856); Fitimorof, Plate. Jewellery. \&c. in the Musce d'Armures at St Pelersbure (Moscow, 18,99): Shotel, La Coupe de van Nispen (1850); H. Emanuet, Catalogue of the Principal Works of Art in Gold, Stlaer and Jetoels shown at the International Exhibition (1851); King, Metal Work of the Middte Ages (1852); Becker and Henner-Alteneck, Kunstwerke und Gerdeschaften (Frankfort, 18521857). Fleury, Tresor de la calhedrale de Loon (1855); Heider, Multelallerliche Kunsidenkmale (1856-1860); Der Allaraufsats zu Klosterne uburg ($\mathbf{1 8 6 0}$) ; Aus'm Weerth, Kunstienkmaler des christlichen Mittlathers in den Rheinlanden (Leipzig, $1857-1860$); Texier, Diclionnaive d'orforrerie (1857); Bock, Das heilige Koln (1858); Dar Reliqutenschats . . su Aachen (1860); Der Kronleuchter Kaisers Barbarossa zu Aachen (1864); Die Kkinodien des het!. romischen Reiches (1864): Violler-le-Duc, Dictionnazre du mobilier (18581875): Darcel, articles in Gas des beaux-arts, "L'Orfèvrerie du moyen-age" (1859) iv. 224, "La Collection Soltykof " (1861) 11. 212."Les Tresors de Cologne " (1861) xxifi. 98, "Les Tresors de La cathedrale de Reims" (1881) xxiii. 98 : Way; "Gold Crowns from Toledo, and St Fillan's Crozier, in Arck. Journ. (1859), vol. xvi., and "Ancient Ornaments," ibid. vol. iii.; F. W. Fairholt, Jliustrated Catalogws of Lord Londesborough's Collection of Plate (1860), De Lasteyrie, Tresor de Guarrazar (Paris, 1860); Hiscoure de l'orfarerse (1875); Coussemaker, Orfevreric du XIII' sicicle (Paris. 1861); Linas, Offorrerie metrovngtenne (i864); Labarte, Hisioire des arts au moyen-dge (1864-1866): Baldus, Recueil d'ornements (Paris, 1866), Quarterly Remewo, cxli. 353: Si rada, Entuürfe filr Prochigefdsse in Silber und Gold (Vienna, 186g): Zeitschrifl des Kunst-Gruerbe- Vereins zu Muncken (1871); La Croix. Arts in the Middle Ages (1870); Keller, Autoypes of Jlalian Designs for Plate (London, 1871) ; Aubert, Tresor de Fabbaye d"Agawne (Paris, 1872); Kulmer. Dre Kunst des Cold-A rbetters, \$tc. (Weimar, 1872); Schorn, Kuns! und Geverbe (1874 , seq) ; Fabre, Tresor. -1 des ducs de Savove (1875); Jacquemart, Hesloire du mobilier (i876): Hirth, Formen-
 sckdise (1880); Luthmer, Goldschmuch der Remaissance (Berlin, 1880); Wheatley and Delamotte, Art Work in Gold and Silper (1882); A. Heyden, Das Tafedsilber und Silberarbcilen iheer kgl. Hoheiten des Prinzen u. der Prinzessin Wilhelm o. Prewsen, Festgeschent zu hocksideren Vormbhing am 27. Februar 1881 dargebrachi pon preussischen Siddrem (1883-1884) ; f. and C. Jeidels. Calalogme of Collaction
of Plote, roth-i8th Centuries (1883); Greco and Emanucl, Arts of th: Goldsmuh and Jewelltr (1883); I. F. Sick, Notice sur les outrages er or el argent des rois de Denmark (1884); Julius Lessing. "Der Silber Altar in Rügenwalde," Konig. prouss. Kunsisammlungen Johobueh (1885), vi. 58 ; Gold urd Silber (1907); C. Pulsicy, E. Radisics and E. Molinier, Chefs-d'oewtre d'orfctrerie ayant fgurt d l'expasition de Budapest (2 vols., 1886): R. von Kulmer, Handbueh fieq Gold y. Silberarbeiter \%. Juweliere (1887); E. Molinier. "Le Trésor de Saint Mare a Venise," Ges des braux-arts, 2nd serics, vols. xxxy., xxxvii., xxxviii., 3rd serics, vol. i. (1887-1889) ; Le Trésar de la cathédrale de Coire (1895); Catalogue of Baron A dolphe de Rothschild's collection of Objects of Art (tgo2): A. Darecl. "Les Collecrions Spitzer." Gaz. des beaux-arts, and scrics, xxxviii. 225 (1888); L. Gmelin, Alie Handzeichnungen nach dem terlorenen Kirchenschatz der St-Michaels-Hofkirche zu München (1888): A. Ilg, Kunsthistorisches Hofmuseum, \& © (1891) : Arbeiten der Goldschmiede- u. Steinschiffiechnik (1895): Kunslhistorische Sammlungen des allerhöchsten Kaiseria uses: Arbeilen der Goldsrhmiedeund Steinschliftechnik (1895): E. Marchal, La Sculpture el les chefsd'oevure de l'opferperie belgrs (1895); B. Czobor, Les Insignes royaun de Hongric (1896): W. Froehner, Collrctions de chaleau de Goluche forfererie (1897): R. Hausmann. Der Silberschatz der St Nickola; kiphe zu Reval (1899): Warner Silfersparres nya grafiska akirbolag (Stockholm, 1900): F. R. Martin, Schuedische konigliche Geschenke an russische Zaren, 1647-1609 (1900): Donische Silberschätse aus der Zeit Christians IV. aufbewahrl in der kaiserlichen Schat=kammer zu Moskan (1900): J. Starkie Gardner, Catalogue of the Collection of Silversmiths work of European. Origin (Burlington Fine Arts Club, 1goi): A. Pit, Het goud en vilverwerk in hel Nederlandsch Misseum, \&r. (1gol): Kaiserliche Ermiloge, S! Pelersburg, Fuhrer durch dse Peter-Gallevie (1901): Ihustrated Catalopne of the W'addesdon Bequest, Brifish Museum (1902); H. L. Tilly, The Silver Work of Buema (1902): P. Eudel, LOrferverie algecienne ef iunisiente (tgoz); II. Barth, Das Geschmiede (1903); H. Wilson, Silverwork and Jrwellery (1903); H. P. Mitchell, "A Medicval Silver Chalice from Iceland," Burlington Mag. (1903) iz. 70, 357; E. Ducharne and P. Vialettes, Manuel de lorfevre: la garantie du titre des ourzages d'or et d'argent (1904); W. Stengel, Formalikonegraphie (Detcilaufnahmen) der Grfasse auf den Bildern der Anbelung der Konige (1904): "Le Musec WilletHolthuysen: l'orfevreric ct l'argenteric," Ars jlamand er hollandais (1905), iv. 29; O. M. Dalton, Treasure of the Oxus (1905): H. IH. Cunynghame, Europect Enamels (Ig06); Rosenberg. Grsehichte der Goldschnsedekunst auf technischer Grundlage, Abtrilung: Nuclo (1907): ibid. Abteilung: Aushangebogen (1908): Nelson Dawson. Goldsmiths' and Sitecrsmiths' Work (1907): "Ecclesiastical Goldsmiths" Work in the Coast Towns of Istria and Dalmatia," The Builder. xciii. nos. 3384 and 3385 : L. Forrer, Dictionery of Medallists, \&c. (in progress), 8 vols. ; T. Olrik; Drikkehorn (wassail horns), in progress: Thicme and Becker, Allgemeines Lexikon der bildenden Kunstler von der Antike bis aur Gegentian.
(E. A. J.)

PLATEAU, JOSEPH ANTOINE FEBDINAND ($1801-1883$), Belgian physicist, was born at Brussels on the 14 th of October 18o1, and died on the 5 th of September 1883 at Ghent, where he had been professor of physics from 1835 . He was a pupil and friend of L. A. J. Quetelet, who had much influence on the early part of his career. The more original investigations of Plateau refer chiefly to portions of one or olher of two branches of science-physiological optics and molecular forces. We owe to him the "stroboscopic" method of studying the motion of a vibrating body, by looking at it through equidistant radial slits in a revolving disk. In 1820 he imprudently gazed at the midday sun for 20 seconds, with the view of studying the aficr effects. The result was blindness for some days, succeeded by a temporary recovery, but for the next fourteen years his sight gradually deteriorated, and in 1843 he became permanently blind. This calamity did not interrupt his scientific activity. Aided by his wife and son, and afterwards by his son-in-lan G. L. van der Mensbrugghe, he continued to the end of his life his researches on vision-directing the course of the experiments which they made for him, and interpreting the bearing of the results. He also published a valuable analytical catalogue of all the more important memoirs which had been written, from the earliest times to the end of the 1 sth cent ury, on his favourite theme of subjective visual phenomena. But even more extraordinary were this blind mant's investigations about molecular forces, embracing hundreds of novel experiments whose results he saw only with others' eyes. These form the subject of his great work Slaligue experimentale at berorique des liquides soumis asux seules forces molec ulaires (2 vols., 1873) , a valuable contribution to our knowledge of capillary phenomena. II is son, Filix Auguste Joseph Platcau (b. 18\&1), became professor of zoology and comparative anatomy at Ghent in 1870 .

PLATEAD (a French term, older plate, for a fiat piece of wood, metal, \&e., from plaf, flat), in physical geography, an elevated region of level or gently undulating land-surface, the term being synonymous with " table-land." The most clearly defined plateaus bave steep flanks in contrast with their level summits, but the term does not necessarily connote a steep ascent from the surrounding country. Indeed, it is applied to such diverse forms as the high-lying plains encircled by the higher elevations of the Andes, and to those of the west of North America, which rise almost imperceptibly from the low central plains. A plateau may have its origin either in the upheaval of strata which preserve their original horizontal position during the process, or in the prolonged denudation of an originally broken surface. The two forms arc dist inguished respectively as Plateaus of Deposition and Platcaus of Erosion.

PIATBD WARE, articles chiefly intended for table use consisting of an inferior metal or alloy covered by one of the precious metals, with the object of giving them the appearance of gold or silver. Before the introduction of electro-plating the method employed for silver-plating (the invention of which in 1742 is associated with the name of Thomas Bolsover, of Sheffield) was to fuse or burn together. hy a flux of borax. a thin sheet of silver on each side of an ingot of base metal, generally copper, or German silver, which is an alloy of copper. The silver plates were firmly wired to the ingot, which was then placed in a heated furnace and brought nearly to the fusingpoint of the silver. The artisan knew the exact moment to withdraw the ingot. When cold it was rolled down to a sheet, and from such sheets " silver-plated " articles were made Articles like dish-covers were originally only silver-plated on one side, and after being worked into sbape were tinned inside with pure tin. In Birmingham bar-copper was the base metal used; when bare of silver this showed blood-red. The Sheffield manufacturers, on the other hand, used shot-copper mixed with brass (an alloy of copper and zinc) in the proportion of 4 or 6 to I . In this way they got rid of the redtress of the copper and rendered it harder, and their producl is the " old Sheffield plate" (g.2.) that has become famous all over the world. This method of plating rapidly declined with the introduction of the newer process of electro-plating ($g . v$.), by which it has been superseded. Plating with nickel is extensively used for bedsteads and otber articles of upholstery, and for various parts of blcycles, steamships, railway carriages, \&c. Steel sheets-are also plated with nickel for cooking purposes, and iron is plated with brass.

PLATEN-HALLERMUND, AUGUST, GRAF vON (27961835). German poet and dramatist, was born on the 24 lh of October 1796 at Ansbach, the son of the Oberforsfmeisler in the little principality of that name. The latter, together with other Franconian principalities, having shortly after his birth become incorporated with Bavaria, he entered the school of cadets (Kodcllenhous) in Munich, where he showed early promise of poetical talent. In 1810 he passed into the royal school of pages (konigliche Pagerie), and in 1814 was appointed lieutenant in the regiment of Bavarian life-guards. With it he took part in the short campaign in France of $\mathbf{1 8 1 5}$, being in bivouac for several months near Mannheim and in the department of the Yonne. He saw no fighting, however, and returned home with his regiment towards the close of the same year. Possessed of an int ense desire for study, and finding garrison life distasteful and irksome, he obtained a long leave of absence, and after a tour in Switzerland and the Bavarian Alps, entered the university of Würzburg in 1818 as a student of philosophy and philology. In the following year he migrated to that of Erlangen, where he sat at the fcet of F. W. J. von Schelling, and became one of his most enthusiastic admirers. As a result of his Oriental studies he published a little volume of poems-Gharelen (182i), each consisting of ten to twenty verses, in which he imitates the style of Ruckert; Lyrische Blatter (1821); Spicgel der Hasis (1822); Vermischle Schriflen (1822); and Newe Ghaselen (1823). These productions attracted the attention of eminent men of letters, among them Goethe, both by reason of their contents, which breathe the spirit of the East, and also of the purity and elepance
of their form and diction. Though he was at first infuenced by the achool of Romanticism, and particularly by Spanish models, yet the plays written during his university life at Erlangen, Der gldserne Panloffd, Der Schak des Rhampsinit, Berengar, Trewe nm Trewe, Der Tarm mit sieben Pforken, show a clearness of plot and expression forcign to the Romantic atyle. His antagonism to the literature of his day became more and more pronouncel, and he vented his indignation at the want of art shown by the later Romanticists, the inanity of the lyricists, and the bad taste of the so-called fate tragediea (Schicksalstragdien), in the witty "Aristophanic " comedies Die rerhängnisrolle Gabel (1826) and Def romantische Oedipus (1828).

The want of interest, amounting even to hosility, with which Platen's enthusiasm for the purity and dignity of poctry was received in many litetary circles in Germany increased the poet's indignation and disgust. In 1826 he visited Italy, which he benceforth made his home, living at Florence, Rome and Naples. His means were slender, but, though frequently neccasitous, he felt happy in the iffe he had chosen, that of a "wandering rhapsodist." Der romawtische Oedipus earned for him the bitter enmity of Kan! Immermann and Heinrich Heine, and in the literary feud which ensued Heine launched the most bascless calumnies at the poet, which had the efiect of prejudicing public opinion against him. But be retained many stanch admirers, who delighted in the purity of the subject matter of his productions and their beauty of form and diction. In Naples, where he formed the friendship of August Kopisch, the poct and painter, were written his last drama Die Lige non Cambrai (1833) and the delightful epic fairy-tale Die Abbassiden (5830 ; 1834), besides numerous lyrical poems, odes and ballads. He also essayed historical work in a fragment, Gaschichles des K万migreichs Ncapel (1838), without, bowever, achieving any marked success. In 1832 his father died, and after an abeence of eight years Platen returned to Germany for a white, and in the winter of $1832-1833$ lived at Munich, where he revised the first complete edition of his poems, Gedichte (8833). In the summer of 1834 he returned to Italy, and, after living in Florence and Naples, proceeded in 8835 to Sicily. Dread of the cholera, which was at that time very prevalent, induced him to move from piace to place, and in November of that year he was taken ill at Syracuse, where he died on the sth of December 2835. Like licine bimself, Platen failed in the drama, but his odes and sonnets, to which must be added his Polenlieder (1831), in which he gives vent to his warm sympathy for the Poles in their rising against the rule of the Tsar, are in language and metre so artisticaily finished as to rank among the best classical poems of modern times.

Platen's Gesammelle Werke were first published in one volume in 1839, and have been frequenlly reprinted: a convenient edition is that edited by K. Goedeke in Cotla's Bibliothek der Wellliterotuy (4 vols., 1882). His Tagebuch (1796-1825), was published in its enlircty by G. von Laubrann and l. von Scheffler (2 vols. $1806-$ 1900). See J. Minckwitz, Graf Platen als Monsch wnd Dichter (1838); P. Bemoon, Plaken, Axde biographiquc el littraire (1894); O. Greulich, Platens Literahurkowodice (1901); A. Fries. PlatenForschunfen (1903); and R. Uager, Platen in seinem Verhaftmis 2 z Goethe (1903).

PLATERSPIEL. Blaterpferte, a medicval simplified bagpipe, consisting of an insuffation tube, a bladder and a chaunter; the dcuble reed in its socket at the top of the chaunter being concealed within the bladder. In the platerspicl we recognize the early medieval chorus, a word which in medieval Latin was Irequently used also for the bagpipe. In the earlier forms of pleterspiels of which we possess illustrations, such as the well-known example of the 3 th century reproduced by Martin Gerbert from a MS. at St Blasius, the bladder is unusually large, and the chinunter bas, instcad of a bell, the grotesque head of an animal with gaping jaws. At first the chaunter was a straight conical tube terminating in n bell, as in the bagpipe. The later instruments have a pipe of larger calibre more or less curved and bent back ns in the cromorne. One of these appears in the $13^{\text {th }}$-century Spanish MS., known as the

Candigas de Santa Marial In the Escurial, together with a platerspiel having two pipes, a chaunter and a drone side by side. Another is figured by Virdung (1511).
There was practically no technical difference between the bent platerapiel and the cromorne, the only distinction being the form and wise of the air-chamber in which the reed was set in vibration by the compresed air forced into it through the insufflation tube or the raised dit rexpectively of the two instrumenta. The earlier form of platerspiel is found at the end of the isth century, in the magnlificent Book of Hours, known as the Sforan Book' (Brit. Mus). An intereating ailuaion to the platerapiel oceurs in an old English ballad. Eipht shepherds were playing on various instruments; "the lyrst hed ane drone bagpipe, the next hed ane pipe maid of ane bleddir and of ane reid, the thrid playit on ane trump, \&e.." from which it is evident that the phaterapiel retalned its individuality and did mot become merged in the bagpipe.
(K. S.)

PLATTORI (Fr. plateforme, i.e. ground plan), word now generally confined to a raised fiat structure or stage, temporary or permanent, erected in a building or in the open alr, from which speeches, addresses, lectures, \& ac., can be delivered at a public or other meeting. Similar structures of wood, brick or stone, are used in railway stations at such a ievei above the rails as to cnable passengers to bave ensy access to the carriages; and in fortification the word is used of the raised level surface on which guns are mounted. The earlier uses of the word, such as for a plane geometrical figure, the ground plan of a building, and figuratively, for a plan, design, scheme, \&c., sre now obsolete. In a figurative sense the term is applied to a common basis on which members of a political party may agree, and especialiy in the United States to the declaration made by a party at a national or state convention.
PLATINOI [symboi PL, atomic weight $1950(0=16)$], a metallic chemical clement. The name, derived from platina, the diminutive of Span. plata (silver), was first given to a mineral, platinum ore or native platinum, originally discovered in South America, from the resemblance to silver. Russia furnishes about 95% of the worid's annual supply of platinum.

Native platinum occurs usually in small metallic scales or flat grains, sometimes in the form of irregular nuggets, and occasionally, though rarely, in small crystals belonging to the cubic system. Grains of platinum have been found embedded, with chromite, in scrpentine derived from an olivine-rock, the metal having probahly separated oul from an original basic magma. It is said to occur also in veins in syenitic and other rocks. Usually, however, platinum is found in detrital deposits, especially in auriferous sands, where it is associated with osmitidium (known also as iridosmine), chromite, magnetite, corundum, zircon, \&c. The platinum has a steel grey or silver-white colour and a metalic lustre; is often magnetic, somet imes with polarity; has a bardness of about 4.5 and a specific gravity varying with its composition from 14 to 19. Native platinum usually contains more or less iron and copper, often gold, and invariahly a small proportion of some of the allied metals-iridium, osmium, ruthenium, rhodium and palladium. From the associated metals it was named by J. F. L. Hausmann polyxene (Gr. modis, many, and (tyos, a guest), whilst from its occurrence as a white metal in auriferous alluvia it is sometimes known to miners as " white gold."

Platina del Pinto was the name by which native platinum was first introduced into Europe from South America about the middle of the 3 8th century. Although it appears to have been known locally much carlier, the at lention of scientific men in Europe was first directed to it by Antonio de Ulloa y Garcia de La Torre, a Spaniard who joined a French scientific expedition to Peru in 1735, and published in 1748 an account of his journey, in which he relers to platinum, though not under that name, as occurring with gold in New Granada (now Colombia). Sir William Watson, an English physicist, had, however, in 1741 received some grains of the mineral, probably from the
${ }^{1}$ Reproduced by J. F. Riafio, in Siwdies of Early Spanish Music (London, 1887).
${ }^{2}$ See facsimile edited by Dr Gcorge Warner, pl. xxviii. (ol. 51.
: Sec F. J. Furnivall, Caplain Cox, his ballads and Books, or Roberl Laneham's Leller A.D. 1575 (London, 187 1), clx. 86.
anme locality, though brought by way of Jamaice; and it was he who first described it in 1750 as a new metal.

Native platinum was discovered in 18 Ig in the gold washings of Verkhniy-Iselsk, in the Urals, but it was not until 1823 that its true nature was recognized. The chief Russian localities are in the districts of Nizhne Tagilsk and Goroblagodatsk, where it is found in shallow drift deposits, containing pebbles of scrpentine, which represent the original matrix. The Iset district has acquired importance in recent years. Although the platinum-bearing gravels usually contain a very small proportion of the metal, the average in 1895 being only 1 idwt. to the ton, rich discoveries have occasionally been made in the history of the workings, and nuggets of exceptional size have been unearthed. The largest recorded specimens are one of 31000 . from Nizhne Tagilsk, and another of 72! oz. from the Goroblagodatsk district.
In 183 s phatinum ore was recognized in the gold-bearing deposits of Borneo, where it had previously been regarded as worthless, being known to the natives as mas kodok (frog gold). Although recorded from various parts of the island, its occurrence scems to be definitely known only in Tanah-Laut, in the south-east of Bornco. In Australia platinum ore has been found near Fifield (ncar Condobelin), New South Wales; whilst in New Zealand it occurs in sands and gravels in the Thames gold-field, the Takaka River and the Gorge River flowing into Awarua Bay. Many localities in North America have yielded platinum, generally in beach sands or in auriferous alluvia, and in some cases the deposits are of commercial importance. The metal is found in Alaska, British Columbia, Oregon (Douglas county) and Californiz (Butte county, Trinity county, Del Norte county). It has been recorded also from the states of New York and North Carolina. In a nickeliferous sulphide ore worked at Sudbury, in Ontario, platinum has been discovered in the form of an arsenide (Pt As ${ }_{2}$), which has been called sperrylite by H. L. Wells, who analysed it in 1889, and named it after F. L. Sperry, of Sudbury. It belongs to the pyrites group, and is interesting as being the only known mineral in which platinum occurs in combination except as alloy.

Native platinum seems to be a mineral of rather wide distribution, but in very sparse quantity. The sands of the Khine, derived from Alpine rocks, have been found to contain platinum in the proportion of 0.0004%. It has also been found in the sands of the Ivalo River in Lapland; it is recorded from Robros in Norway; and it was detected by W. Mallet in some of the gold-sands of the streams in Co. Wicklow, Ireland.

The table shows the official amount (in ounces Troy) of platinumproduced in Russia for certain ycars, the actual amounts are much larger:-

Year.	Amount.	Year.	Amount.
1890	116,640	1904	161,950
1895	141,757	1905	167.950
1900	163.060	1906	185.492
1901	203.257	1907	172.758
1902	197.024	1908	157.005
1903	192.976		

(Rothwell's Mineral Industry, 1908.)
Platinum is largely used for the manufacture of chemical apparatus, incandescent lamps, thermo-couples; in the manufacture of sulphuric acid by the contact process, in photography, and in jewelry. The price of the metal has risen considerahly, not so much on account of the restricted supply, hut chiefly because the sources of suppiy have passed into the hands of a few individuals. The following data show the fluctuations in the average price of piatinum ingot per once Troy:-

$$
\begin{array}{rccccccc}
& f & 8 & d . & f & 8 . & d . \\
1874-1898: & 1 & 5 & 2 & \text { to } & 2 & 2 & 0 \\
1899-1905: & 3 & 13 & 6 & \prime \prime & 4 & 10 & 4 \\
1906: & 4 & 15 & 2 & " & 7 & 19 & 8 \\
1907: & 7 & 0 & 0 & 18 & 6 & 18 & 8 \\
1908: & 5 & 2 & 6 \text { (average) } & \text { price. }
\end{array}
$$

Platinum may be extracted from its ore by both wet and dry processes. In the latter method, due to H. Sainte-Claire-Devilie and H. J. Debray, the ore is smelted in a furnace constructed of two blocks of fime, and the metaflic button so obtained is
re-melted in a reverberntory furnmoe with galem or iftharg the lead platinum alloy being then cupeled, and the platioum fused into an ingot by re-smelting in a lime furnace fee Dingler's Polylech. Jowrm. 1859, 153, p. 38: 1859, 154, p. 383; 1862, 165; P. 205). The platinum so obtained is not pure In Wollaston's wet method the ore is diseplved in aqua regia, the osmiridium, nthenium and rhodium being lelt unaltacked, and the platinum precipitated as ammonium platinochloride by adding ammonium chloride in the presence of an excess of aen. The double chloride is chen washod, dried and igmited, leacing a residue of metal. G. Mat they (Chem. News, 1879, 39, p. 175) obtains pure platinum from the eommercial metal by lusing the later with a large excess of lead. The iend alloy is then treated with a dilute nitric acid and the Insoluble portion taken up in dilute aqua regia. From the solution to obtained lead is precipitated as sulphate, and platinum and rhodium as double ammonium chlorides. The rhodium ammonium chloride is converted by lusing with polassium and ammonium bisulphates into rhodium sulphate. which is then removed by extraction with water, when a residue of finely divided platinum nemains. The German firm of Herlus (in Hanover) heat the raw ore with squa regia and water under presture, evaporate the solution to dryness, and heat the reqidue to $125^{\circ} \mathrm{C}$. A clear aqueous extract of the residoe is then acidified with hydrochlorie acid and precipitated with ammonium churide. The double chloride is ignited and the finely divided platimum so obtained is fused in the axyhydrogen blowpipe.

Platinum is a greyish white metal which is exceedingly malleable and ductilc; the addition of a small quantity of iridium hardens it and diminishes its ductility very considerably. Its specific gravity is 20.85 to 21.71 , and its mean specific beat from o to $100^{\circ} \mathrm{C}$. is 0.0323 (J. Violle, Comples rendus, 1877,85 , p. 543); W. P. White (A mer. Jowrn. Sei., 1909, iv. 28, p. 334) gives the general formula $S_{t}=0.03198+3.4 \times 10^{-4}$. S_{1} being the specific heat at P C. Its temperature of fusion is in the neighbourhood of 1700 to $2800^{\circ} \mathrm{C}$., various intermediate values having been oblained by different investigators (see J. A. Harker, Chem. News, 1005, 91, p. 263; C. Féry and C. Cbeneveau, Comples rendws, rgog, r48, p. 401; also C. W. Waidner and G. H. Burgess, ibid., 1909 , 148, p. 1177). Its latent heat of (usion is 27-18 calories (Violle, loc. cii). The metal has been obtained in the crystalline condition by distillation in the electric furnace, or by decomposing its fluoride at a red heat (H. Moissin). Platinum, like palladium, absorbs large quantities of hydrogen and other gases, the occluded gas then becoming more "active", for this reason platinum is used largely as a catalytic agent. Several forms of platinum, other than the massive form, may be obtained. Spongy plutinum is produced when ammonium platinochioride is ignited; platinum black on the reduction of acid solutions of platinum salts; and colloidal platinum by passing an eloctric sre between two platinum wires under the surface of pure water (G. Bredig, Zeit. phys. Chem., 1901, 37 , pp. 1, 323). Platinum is practically unoxidizahle; it combines directly with phosphons, arsenic, antimony, silicon, boron, and fluorine, and with almost all other metals. It is practically unattacked by all acids, dissolving only in aqua regia or in mixtures which generate chlorine. When fused with alkaline hydroxides in the presence of air it forms platinates. It is readily attacked by fused nitrates, and by potassium cyanide and ferrocyanide. All the platinum compounds when heated strongly decompose, and leave a residue of the metal. Of platinum salts, in the true sense of the word, none exist; there is no carbonate, nitrate, sulphate, \&c; halide salts, however, are known, but are obtained in an indirect manner.

Platinum monoxide, PtO, obtained by heating the corresponding hydrate, is a dark-coloured powder which is easily reduced to the metal (L. Wbhler, Ber; 1903, 36, p. 3475). The hydrated form. $\mathrm{P} O-2 \mathrm{H}_{3} \mathrm{O}$, is obtained impure by precipitating the dichloride with caustic soda, or by adding caustic soda to a boiling solution of potassium platinous chloride, $\mathrm{K}_{\mathrm{r}} \mathrm{PtCl}_{6}$, the precipitate being rapidly washed and dried in vacmo (L . Wöhler, Zeih anorg. Chem., 1904, 40, p. 423). It is a black powder; when (reshly prepared it is soluble in concentrated acids, but when dried it is insoluble. It is an acidic oxide, the dioxide being both acidic and basic. It behaves as a strong oxidizing and reducing agent. C. Engler and L. Wobler (Zeit. anorg. Chem., 1901, 29, p. 1) have shown that platinum black, continining occluded oxygen, is soluble in. dilute bydro chloric acid and also liberates iodine from potassium iodide, and that the ratio between the amount of platinura dissolved and the amount of oxygen oceluded agrees with the lormation of a compound correaponding to the formuta PiO. Plotinam diaxide (platinic
oxide), $\mathrm{PtO}_{4} \cdot 4 \mathrm{H}_{\mathrm{P}} \mathrm{O}$, is obtained by adding an excess of caustic soda solution to a bolling solution of chlorplatinic acid, the hot solution being diluted and neutralized with acetic acid. It loses its water of hydration when heated, finally decomponing Into platinum and oxygen. When irestry prepared it is coluble in dilute acids. Other hydrated forms of composition, $\mathrm{PtO}_{2} \cdot 3 \mathrm{H}_{4} \mathrm{O}$ and $\mathrm{PtO} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, have been described (E. Prost, Bull. soc. chim., 1886, 46, p. 156; H. Topsoe, Bef. ${ }^{18} 7_{0},{ }^{3}$ p. 4^{62}). The tetrahydrate may be considered as an acid, $\mathrm{H}_{2} \mathrm{Pt}\left(\mathrm{OH} \mathrm{O}_{\mathrm{e}}\right.$ for males are known (namely the platinetes) cortesponding to it, those of the alkali metals being aojuble in water, and ponepaing an alkaline reaction (M. Blondel, Ann. Chim. phys., 1905 [viii.], 6, p. 81) A similar set of chlorine holding compounds is also known, the chlorine replacing one or more hydroxyl groups and giving rive to complexes of componition, $\left.\mathrm{H}, \mathrm{PtCl}_{3}(\mathrm{OH})\right]$.
 salts (derived from PtO) are yellow or brown solids, which are readily reduced to the metallic condition. They give with sulphuretted hydrogen a dark brown precipitate, soluble in excess of ammonium sulphide. Potansium iodide gives a brown solution with gradual formation of a precipitate. They form characteristic precipitates with potansium and ammonium chlorides. The platinous salts are brown or colourless solide which with sulphuretted hydrogen, give a dark brown precipitate of platinum sulphide, und with porassium iodide a gradual precipitation of platinic lodide, PtI. Platimum Lrioxide, Pto ${ }_{3}$, is obtained as $\mathrm{K}_{4} 0.3 \mathrm{PtO}_{1}$, hy electrolysing a solution of piatinic hydroxide in potash, this compound with acetic acid giving the oxide as a brown, easily decomposable powder (L. Wöhler and F. Martin, Ber., 1909, 42, p. 3326).

Plativnm bichloride, PrCl_{2}, is oblained by heating chlorplatinic acid to $300-350^{\circ}$ C. (J. J. Berzelius), or, mixed with more or less platinic chloride, by passing chlorine over spongy platinum at a temperature of $250^{\circ} \mathrm{C}$. (P. Schutzenberger, Comples rendus, 1870, 70, pp. 1134, 1287). It may also be obtained by the decomposition of the compound $\mathrm{HCl} \cdot \mathrm{PtCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (see beiow) at $100^{\circ} \mathrm{C}$., this met hod giving a very pure product (L. F. Nilson, Journ. prak. Chem., 1877 (2), 15, p. 260). It is a brown or greyish green coloured solid, which is soluble in hydrochloric acid. It decomposesinto its constituent elements when heated. It combines with many chlorides to lorm characteristic double salta. Platinum bichloride combines with carbon monoxide, yielding compounds of composition, $\mathrm{PtCl} . \mathrm{CO}$, $\mathrm{PtCl}_{2} \cdot 2 \mathrm{CO}, 2 \mathrm{PtCh} \cdot 3 \mathrm{CO}$ (P . Schutzenberger, Anm. chim. phys., 1870 (4) ${ }^{21}, \mathrm{P}$; 350). Hydrogen platinochloride or chlorplatinous acid, $\mathrm{H}_{3} \mathrm{PtCl}_{1}$ is only known in solution, and as sach is obtained when platinum biehloride is dissolved in hydrochloric acid, or by decomposing the barium malt with sulphurte acid, or the silver salt with hydrochloric acid. Its saits the platinochlorides or chlorplatinitcs, are obtained by reducing the chlorplatinates or directly from the acid itself. They are mostly soluble in water giving red solutions. They are readily oxidized, and nascent hydrogen reduces them to metallic platinum. Polassium platinochloride or chlorplubinite, $\mathrm{K}_{1} \mathrm{PrCl}$.. is prepared by reducing hydrogen platinichloride with sulphur dioxide, or potassium platinichloride with porassium oxalate in the preseace of iridium (Klason, Ber., 1904, 37, p. 1360); or by adding potassium chloride to a solution of platinum bichlaride in hydrochloric acid. It cryatallizes in dark red prisms, is readily soluble in water, but insoluble in alcohol. The solution of the free acid when concentrated in pacuo leaves a residue of $\mathrm{HCl}, \mathrm{PICl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$. When the free acid is reduced by alcohol, or when ethylene is passed into a eolution of platinum bicbloride in hydrochloric acid, $\mathrm{PtCl}_{3} \cdot \mathrm{C}_{2} \mathrm{H}_{4}$ is obtained as a brown amorphoua mass which decomposes when heated. When the bichloride is heated in a current of carbon monoxide, a sublimate of platinomonocarbonyldichloride, $\mathrm{PrCl}_{2} \mathrm{CO}$. dicarbony! dichloride, $\mathrm{PtCl}(\mathrm{CO})_{1}$ and tricarbonyl tetrachloride, $\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{1}$ is olitained. The first forms bright yellow needles and the second white acicular crystals. The bichloride also combines with phoegene to lorm $\mathrm{PtCl}_{2} .2 \mathrm{COCl}_{3}$.
Platinic chluride, PICl_{1} is obtained when chloxplatinic acid is heated in a current of dry hydrochloric acid gas to $865^{\circ} \mathrm{C}$. (W. Pullinger, Journ. Ckem. Soc., 1892, 61, p. 422) or in a current of dry chlorine at $275^{\circ} \mathrm{C}$. (A. Rosenheim and W. Lowenstamm, Zeil. azorg. Chem., 2903, 37, p. 394). It forms a reddish brown crystalline mass which is very hygroscopic. Numerous hydrates are known. The chloride is characterized by the readiness with which it forms double salts with the metallie chlorides and with the hydrochlorides of most organic bases. Chlorplatinic acid, $\mathrm{H}_{2} \mathrm{PtCl}-6 \mathrm{H}_{2} \mathrm{O}$, is obtsined by dissolving platinum in aqua regia containing an excess of hydrochloric acid, or by the action of chlorine (dissolved in hydrochloric acid) on platinum sponge. It crystallizes in needles, which are very deliquescent and dissolve easily in water. It melts in its own water of crystallization at $70^{\circ} \mathrm{C}$., and when heated in wacwo to $100^{\circ} \mathrm{C}$. it leaves a residue of composition $\mathrm{HCl}, \mathrm{PtCl}_{4}, 2 \mathrm{H}_{3} \mathrm{O}$. The potassium and ammonium salts and the salts it forms with organic bases are characterized by their excredingly small solubility in water. The aqueous solution of the acid reddens litmus and decomposes the metallic carbonates. Its ealts may be prepared by the dinect action of the acid on the metallic hydroxides or carbonates, and are usually of an orange or yellow colour and are mostly coluble in water. Potassium chlorplatinate, $\mathrm{K}_{4} \mathrm{PtCl}$, is obtained. in the form of a yellow eryptalline precipitate, when a concentrated solution of a potassumen salt
is added to a solution of chlorplatinic acid. It crystallizes in actahedra which are scarcely soluble in water, and practically insoluble in absolute alcohol. It decomposes at a red heat into platinum, chlorine and potassium chloride. The corresponding sodium salt, $\mathrm{Na}_{3} \mathrm{PtCl}_{4} 6 \mathrm{H}_{2} \mathrm{O}$, is much more soluble in water and in alcohol. The ammonium salt, (NH$)_{2} \mathrm{PtCl}_{6}$, resembles the potatsium salt in its solubility in water and in alcohol, Corresponding bromo- and iodo- compounds are known. Plalinum bifluoride and ketrafuorile, PtF_{1} and PtF_{4} were obtained simultaneously by H Moissan (Ann. chim. phys., 1894 (6), 24, p. 282) by the ection of fluorine on platinum at $500-600^{\circ}$ C. They may be meparated by taking advantage of their different colubilities in water.
Platimum monosulphide, PtS, is obtained by the direct union of platinum and sulphur; by heating ammonium chlorplatinete with sul phur; or by the action of sulphuretted hydrogen on the chlorplatiniten. It is a dark coloured powder which is almost insoluble in aqua regis. it decompoges when heated strongly leaving a residuc of metalic platinum, the same reduction talang place at comparatively low temperatures when it is heated in a currens of bydrogen. Platinic sulghido. PLS, is formed when the chlorplatinstes are heated with sulphuretted hydrogen to $60^{\circ} \mathrm{C}$. The precipitate must be rapidly washed and dried im tacwo. simce it oxidizen rapidly on expowne to air. It is a black powder, which when heated strongly in air decomposes and lackes a residue of platinum, but if heated in absence of air leaves a residue of the monosulphide. It is ecarcely affected by acids and is little soluble in solutions of the alkaline sulphides. Sulphides of composition $\mathrm{Pt}_{2} \mathrm{~S}_{2}$ and $\mathrm{Pt}_{\mathrm{S}_{1}}$ have been described (R. Schneider, Pogs. Ann., 1869. 138, p. 604; 1873, 148, p. 633; 1873, 149, p. 381). A salk of composition, Pl (OH), $\mathrm{H}, \mathrm{SO}_{\mathrm{L}} \mathrm{H}$, O , han been prepared by M . Blondel (Ann. chim. phys., rgos, (8), 6, p. 81) by the solution of the hydrate $\mathrm{H}_{3} \mathrm{Pr}(\mathrm{OH})_{0}$ i.e. $\mathrm{PtO}_{2} \cdot 4 \mathrm{H}_{3}$, , in dilute sulphuric acid ($\mathrm{I}: 1$) 2 af $0^{\circ} \mathrm{C}$. On the addition of cold concentrated sulphuric acid to the solution wo obtained, the above salt is precipitated in the Iorm of minute ncedles, which readily decompose in the presence of water. A platinkm sulphate, $\mathrm{Pt}\left(\mathrm{SO}_{4}\right)_{1} \cdot 2 \mathrm{H}_{3} \mathrm{O}$, has been ohtsined by L. Stuchlik (Bef., 1904, 37, p. 2913) by the action of sulphuric acid (s.g. 1-84) on platinum under the influence of an alternating current. A cryatalline precipitate is obtained, which is soluble in water and is very hygromeople.
The platinomitriles of composition $\mathrm{M}_{2} \mathrm{Pt}\left(\mathrm{NO}_{2}\right)$, are mostly obtained by double decomposition from the potassium salt, which is formed by adding a warm aqueous solution of potassium nitrite to one of potassium chlorplatinate. They are mostly colourless or pale yellow solids which are more or less soluble in water (L. F. Nilson, Ber., 1876, 9, p. 1722). The corresponding platino-oxalates $\mathrm{M}_{3} \mathrm{Pl}\left(\mathrm{C}_{3} \mathrm{O}_{4}\right)$: were firit obtained by J. W. Debereiber (Poge. Awn., 1833, 104, p . 180) and their constitution was determined by H. C. Sbderbaum (Ber. 1888, 2r, p. 567 R; Zeih. anorg. Chem., 1894,6 , p. 45). The sodium salt, from which the others are obtained by double decomposition, is formed by adding a warm oolution of oxalic acid to sodium platinate. On recrystallization from alkaline solutions the salts are obtained in yellow or orange crystals (see M. Vezes, Bull. soc. chim., 1898 (3), 19, p. 875). These salts are scarcely soluble in water and decompose explosively when suddenly heated. The free acid is obtained by decomposing the silver malt with hydrochloric acid, the indigo blue solution so obtained on concentration in sacuo yielding a red crystalline mass, which dirsolves in water with an indigo blue colour, changing to yellow on dilution.
Platinum cyazide, $\mathrm{Pt}(\mathrm{CN})$, is formed by the addition of mercuric cyanide to a solution of a chlorplatinite, or by the decomposition of mercury or ammonium platinocyanide by heat. It is an amorphous powder which ts insoluble in water, acids or alkalis, but is soluble in a solution of hydrocyanic acid. It burns when heaced. The platinocyanides are derived from the acid $\mathrm{H}_{3} \mathrm{Pt}(\mathrm{CN})_{0}$ which is lormed by the decomposition of the mercury or coppersalt with sulphuretted hydrogen, or of the barium salt with sulphuric acid. It crystalifzes lrom water in cinnabar-red prisms which contain five molecules of water of erystallization; in the anhydrous condition it is of a yellowish green colour. It decomposes carbonates. Its salts, which are characterized by the property of polychroism, may be prepared by the usual methods, or by the solution of metallic platinum in the alkaline cyanides or alkaline earth cyanides under the influence of an alternating current (A. Brochet and J. Petit, Ams. chim. phys., 1904 (8), 3. p. 460 ; M. Berthelot. Comples remdus, 1904, 138, p. 1130). Thove of the alkali and alkaline earth metals are soluble in water. Many combine with the halogen clements to form complex salts of the type $\mathrm{M}_{2} \mathrm{Pt}(\mathrm{CN})_{4} \mathrm{Cl}_{2-} x \mathrm{H} \mathrm{H}_{2}$. By the decomposition of the barium salts of this type, addition products of the lree acid, of composition $\mathrm{H}_{2} \mathrm{Pt}(\mathrm{CN})_{4} \mathrm{Cl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{Pt}(\mathrm{CN})_{+} \mathrm{Br}_{5}$, have been obtained (C, Blomstrand, Ber. 1869, 2, p. 202). They are deliquescent solids which are exceedingly soluble in water. Polassium platinocyamide, $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4} 3 \mathrm{H}_{3} \mathrm{O}$, is obtained by disoolving platinum bichloride in potassium cyanide; by heating potassium ferrocyanide with apongy platinum; or by heating ammonium chlonplatinate with potassium cyanide. It crystailizes in needies which effloresce readily. The dry ante is exceedingly hygroscopic and is very soluble in water. When boiled with aqua regia it forms the chlorine addition
product, $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN}), \mathrm{Cl}_{2} \mathrm{OH}_{2} \mathrm{O}$. It combines directly with iodine. Barixm platinocyawide, BaP! (CN) $4.4 \mathrm{H}_{7} \mathrm{O}$, is prepared by the action of baryta water on the copper salt; by distolving platinum in barium cyanide under the influence of an alternating current; by the addition of barium cyanide to platinum bichloride: or by the simultaneous action of hydrocyanic and sulphurous acids on a mixture of baryta and chlorplatinic acid (P . Bergsoe, Zeil. anorg. Chew., 1809, 19, p. 318). It cryatallives in yellow monuclinic primis and is soluble in hot water. It is employed for the manufacture of fluorement screens used for the detection of X-rays.
The platinum salts combine with ammonia to form numerous derivatives which can be considered as talts of characteristic bases. The first compound of this type was isolated in 1828 by Magnus. who obtained a green salt by the action of ammonia on platinum bichloride. Two series of these salte are known, one in which the metal corresponds to bivalent platinum, the other in which it corresponds to tetravalent platinum. The general formulae of the groupe in each series are shown below, the method of clamaification being that Jue to Werner.

Divalent (platinous) Salts.	Tetravalent (platiaic) Salte.
	Hexammine saltast Pt (N
Tetrammine altat $\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{IX}_{\mathbf{1}}$	Tetrammine " $\mathrm{Pt}\left(\mathrm{NH}_{2}\right) \cdot \mathrm{X}_{2} \mathrm{X}_{1}$

In the above table X represents a monovalent acid radical and R a monovalent besic redical. For methods of preparation of salts of these series see P. T. Cleve, Bsill. soc. chim. 1867 et seq; S. M. Jorgeneen, Journ. prak. Chem. I877 en seq.i C.W. Blometrand, Ber. 1871 et seq. a and A. Werner, Zeut anorg. Chem. 1893 et seq^{2}. A very complete account of the method of clasification and the general theory of the metal ammonia compounds is given by A. Werner, Ber. 1907,40, p. 15.
Platinum also forms a series of complex phosphorus compounds. At 250° finely divided platinum and phoaphorus pentachloride combine to form PrCl_{5}. PCl_{2}, as dark claret-coloured crystals. With chlorine this substance gives $\mathrm{PtCl}_{3} . \mathrm{PCl}_{4}$ as a yellow powder, and with water it yields phosphoplatinic acid, $\mathrm{PtCl}_{2} . \mathrm{P}(\mathrm{OH})_{2}$ which may be obtained as orange-red deliquescent prisms
The atomic weight of platinum was determined by K. Seubert (Anm. 1888, 207, p. 1; Ber. 1888, 21, P. 2179) by analyses of ammonium and potaquium platinochlorides, the value $194 \cdot 86$ being obtaijned.

PLATO, the great Athenian philosopher, was born in 427 B.c., and lived to the age of eighty. His literary activity may be roughly said to have extended over the first half of the 4 th century b.c. His father's name was Ariston, said to have been a descendant of Codrus; and his mother's family, which claimed descent from Solon, included Critias, one of the thirty tyrants, and other well-known Athenians of the early 4 th century b.c. That throughout his eariy manhood he was the devoted friend of Socrates, that in middle life he taught those who remorted to him in the grove named Academus, near the Cephisus, and there founded the first great philosophical school, that (with alleged interruptions) he continued to preside over the Academy until his death, are matters of established fact. It is said hy Aristotle that he was at one time intimate with Cratylus the Heraclitean. Beyond this we have no authentic record of his outward life. That his name was at first Aristocles, and was changed to Plato because of the breadth of his shoulders or of his style or of his forehead, that he wrestled well,' that he wrote poetry ${ }^{2}$ which he burnt on hearing Socrates, fought in three great hattles," that he had a thin voice, that (as is told of other Greek philosophers) he travelled to Cyrene and conversed with priests in Egypt, are statements of Diogenes Lalttius, which rest on more or less uncertain tradition. The express assertion-which this author attributes to Hermodorus-that after the death of Socrates Plato and other Socratics took refuge with Euclides in Megara, has a somewhat stronger claim to authenticity. But the fact cannot be regarded as certain, still less the elaborate inferences which have been drawn from it. The romantic legend of Plato's journeys to Sicily, and of his relations there with the younger Dionysius and the princely but unfortunate Dion, had ohtained some degree

[^70]of consistency before the age of Cicero, and at an unknown but probably early time was worked up into the so-called Epistles of Piato, now all but universally discredited. Nor is there sufficient ground for supposing, as some have done, that an authentic tradition is perceptible behind the myth.

The later years of the Peloponnesian War witnessed much mental disturbance and reslessness at Athens. More than at any time since the age of Cleisthenes, the city was divided, and a man's foes were often men apoovornt of his own tribe or deme. Contention in the liw-
courts and rivalrics in the assembly had for many men a more ahsorbing interest than questions of peace and war. Hereditary traditions had relaxed their hold, and political principles were not yet formulated. Yet there was not less scope on this account for personal ambition, while the progrese of democracy, the necessity of conciliating the peopie, and the apportionment of puhlic offices by lot had a discracting and, to reflecting persons, often a discouraging effect. For those amongst whom Plato was brought up this effect was aggravated by the sequel of the oligarchical revolution, while, on the other hand, for some years after the restoration of the democracy, a new stimulus had been imparted, which, though of short duration, was universally felt.
These events appear in two ways to have encouraged the diffusion of ideas. The ambitious seem to have welcomed them as a means of influence, while those who turned from public Jife were the more stimulated to speculative disputation. However this may have been, it is manifest that before the beginning of the 4 th century B.c. the intellectual atmosphere was already charged with a new force, which although essentially one may be differently described, according to the mode of its development, as (1) rhetorical and (2) theoretical and "sophistical." This last word indicates the channel through which the current influemess were mostly derived. A new want, in the shape both of interested and of disinterested curiosity, had insensibly created a new proicssion. Men of various fatherlands, some native Alhenians, but more from other parts of Hellas, had set themselves to supplement the deficiencies of ordinary education, and to train men for the requirements of civic life. More or less consciously they based their teachings on the philosophical dogmas of an earlier time, when the speculations of Xenophanes, Heraclitus or Permenides had interested only a few "wise men." Those great thoughts were now to be expounded, so that "even cobblers might understand." The self-appointed teachers found a rich field and abundant harvest among the wealthier youth, to the chagrin of the old-fashioned Athenian, who sighed with Aristophanes for the good oid days when men knew iess and listened to their clders and obeyed the customs of their fathers And such distrust was not wholly unfounded. For, amidst much that was graceful and improving, these novel questionings had an influence that, besides being unsetting, was aimless and unreal. A later criticism may discern in them the two great tendencies of naturalism and humanism. But it may be doubted If the sophist was himself aware of the direction of his own thoughts. For, although Prodicus or Hippias could debate a thesis and moratize with effect, they do not appear to have been capable of speculative reasoning. What passed for such was often either verbal quibbling or the pushing to an extreme of some isolated abstract notion. That prudens guaestio which is dimidium scientiae had not yet been put. And yet the hour for putting it concerring human life was fully come. For the sea on which men were drifting was profoundly troubled, and would not sink hack into its former calm. Conservative reaction was not less hopeless than the dreams of theorists were mischievously wild. In random talk, with gay, irresponsible energy, the youth were debating problems which have exercised great minds in Europe through all after time.
Men's thoughis had begun to he thus disturbed and eager when Socrates (q.v.) arose. To understand him is the most necessary preliminary to the study of Plato. There is no reason to doubt

[^71]the general truth of the assertion, which Plato attributes to him in the Apologia, that he felt a divine vocation to examine himself by questioning other men. He was really doing for Athenians, whether they would or no, what the sophist professed to do for his adherents, and what such men as Protagoras and Prodicus had actually done in part. One obvious difference was that he would take no fee. But there was another and more deep-lying difference, which distinguished him not only from the contemporary sophists but from the thinkers of the previous age. This was the Socratic attitude of inquiry. The sceptical movement had confused men's potions as to the value of ethical ideas. If "right is one thing in Athens and another in Sparta, why strive to follow right rat her than expediency? The laws put restraint on nature, which is prior to them. Then why submit to law? " And the ingenuities of rhetoric had stirred much unmeaning disputation. Every case seemed capable of being argued in opposite ways. Even on the great question of the ultimate constitution of things, the conficting theories of absolute immutability and eternal change appeared to be equally irrefragable and equally untepable. Men's minds had been confused by contradictory voices-one crying "All is motion," another "All is rest"; one "The absolute is unattainable," another "The relative alone is real "; some upholding a vague sentiment of traditional right, while some declared for arbitrary convention and some for the law "of nature." Some hetd that virtue was spontaneous, some that it was due to training, and some paradoxically denied that either vice or falsehood had any meaning. The faith of Socrates, whether instinctive or inspired, remained untroubled by these jarring tones. He did not ask "Is virtue a reality?" or "Is goodness a delusion?" But, with perfect confidence that there was an answer, he asked himself and others "What is it?" (ri korl); or, more particulariy, as Xenophon testifies, "What is a state? What is a statesman? What is just? What is unjust? What is government? What is it to be a ruler of men?" In this form of question, however simple, the originality of Socrates is typified; and by means of it he laid the first stone, not only of the fabric of ethical philosophy, but of scientific method, at least in ethics, logic and paychology. Socrates never doubted that if men once knew what was best, they would also do it. They erred, he thought, from not seeing the good, and not because they would not follow it if seen. This is expressed in the Socratic dichs: "Vice is ignorance," "Virtue is knowledge." This lifelong work of Socrates, in which the germs of ethics, psychology and logic were contained, was idealized, developed, dramatized-first embodied and then extended beyond its original scope-in the writings of Plato, which may be described as the literary outcome of the profound impression made by Socrates upon his greatest follower. These writings (in pursuance of the importance given by Socrates to conversation) are all cast in the form of imaginary dialogue. But in those which are presumably the latest in onder of composition this imaginative form interferes but litule with tbe direct expression of the philosopher's own thoughts. The manycoloured veil at first inseparable from the features is gradually worn thinner, and at last becomes almost imperceptible.

Plato's philosophy, as embodied in his dialogues, has at once an intellectual and a mystical aspect; and both are dominated plotots by a pervading ethical motive. In obeying the Dintagwes Socratic impulse, his speculative genius absorbed and harmonized the various conceptions which were present in contemporary thought, bringing them out of theirdogmatic isolation into living correlation with one another, and with the life and experience of mankind. His poetical feeling and imagination, caking advantage of Pythagorean and Orphic suggeations, surrounded his abstract reasonings with a halo of mythology which made them more fascinating, but also more difficult for the prosaic intellect to comprehend. Convinced through the conversations of Socrates that truth and good exist and that they are inseparable, persuaded of the unity of virtue and of its dependence upon knowledge, he set forth upon a course of inquiry, ${ }^{1}$ See Caird, Hegel, p. 168.
in which he could not rest until the discrepancies of ordinary thinking were not oaly exposed but accounted for, and resolved in relation to a comprehensive theory. In this "pathway towards reality," from the consideration of particular virtues he passed to the contemplation of virtue in general, and thence to the nature of universals, and to the unity of knowledge and being. Rising still kigher on the road of generalization, be discussed the problem of unity and diversity, the one and the many. But in these lofty speculations the facts of human experience were not loot to view. The one, the good, the true, is otherwise regarded by him as the moral ideal, and this is examined as realized both in the individual and In the state. Thus ethical and political speculations are combined. And as the method of inquiry is developed, the leading principles both of logic and of psychology become progressively more distinct and clear. Notwithstanding his high extimate of mathematical principles, to him the type of exactness and certitude, Plato contributed little directly to physical science. Though he speaks with sympathy and respect of Hippocrates, he had no vocation for the patient inductive observation of natural processes, through which the Coan physicians, though they obtained few lasting reaults, yet founded a brancb of science that was destined to be beneficently fruitful. And he turned scornfully aside from the Atomists, Leucippus and Democritus, whose first principle, the basis of so much in modern physics, appeared to him to be tainted with materialism. Yet his discursive thought, as in later years he held high intercourse with Archytas and other contemporary minds, could not fail, unlike his master's, to include a theory of the Cosmor in its purview. In this regard, however, the poet-philosopher hrought imagination to the aid of reason, thus creating a new mythology, of which the Timacus is the most conspicuous example.
Amidst great diversity, both of subject and of treatment, Plato's dialogues are pervaded by two dominant motives, a passion for human improvement and a persistent faith in the power and supremacy of mind. What is commonly known as his doctrine of Ideas is only one phase in a continuous progress towards the realization of a system of philosophy in which the supreme factor is reason guiding will. But the objectivity, which from the first was characteristic of all Greek thinking, and his own power of poecic presentation, obscured for a time, even for Plato himself, the essential spirituality of his conceptions, and at one time even threatened to arrest them at a stage in which the universal was divorced from the particular, the permanent from the transient, being from beooming, and in which the first principles of reality were isolated from one another as well as from the actual world. Gradually the veil was lifted, and the relation between the senses and the intellect, phenomena and general laws, the active and the contemplative powers, came to be more clearly conceived. The true nature of abstraction and generalization, and of prodication and inference, began to be discerned, and speculation was verified through experience. The ideas were seen as categories, or forms of thought, under which the infinite variety of natural processes might be comprised. And thus the dialogues present, as in a series of dissolving views, a sort of model or compendium of the history of philosophy. Plato's system is nowhere distinctly formulated, nor are the views put forward in his dialogues always consistent with each other, but much especially of his later thought is systematized, and as it were crystallized in the treatises of Aristotle; by whom the point of view which Plato had approached, hut not finally attained, was made the startiny-point for more precise metaphysical determinationa and carried into concrete theories having the stamp of a more rigid logical method. The depart ments bf ethics and politics, of dialectic and of psychology, of physics and metaphysics, thus came to be more clearly distinguished, but something was lost of the unity and intensity of spiritual insight which had vitalized these various elements, and fused them in a dynamic harmony.
The student of philosophy, whatever may be the moders system to which be is most inclined, sensational, intuitional, conceptional. transcendental. will find hia account in returning
to this well-spring of European thought, in which all previous movements are absorbed, and from which all subsequent lines of reflection may be said to diverge. As was observed by Jowett (St Pawl, r_{55}), " the germs of all ideas, even of most Christian ones, are to be found in Plato."

Two great forces are persistent in Plato: the love of truth and zeal for human improvement. In the period culminating with Hntortal the Republic, these two motives, the speculative and Aafowase the practical, are combined in one harmonious effore. working. In the succeeding period, without excluding one another, they operate with alternate intensity. In the varied outcome of his long literary career, the motaphysical "doctrine of ideas" which has been associated wilh Plato's name underwent many important changes. But pervading all these there is the same constant belief in the supremacy of reason and the identity of truth and good. From that abiding root spring forth a multitude of thoughts conceming the mind and human things-turning chicfly on the principles of psychology, education and political reform-thoughts which, although unverified, and often needing correction from experience, still constitute Plato the most fruitful of philosophical writers. While gencral ideas are powerful for good or ill, while abstractions are necessary to science, while mankind are apt to crave after perfection, and ideals, either in art or life, have an acknowledged value, so long the renown of Plato will continue. "All philosophic truth is Plato rightly divined; all philosophic error is Plato misunderstood "-is the verdict of one of the keenest of modern metaphysicians. ${ }^{1}$

Plato's followers, tiowever, have seldom kept the proportions of his teaching. The diverse elements of his doctrine have survived the spirit that informed them. The pythagorizing mysticism of the Timoeus has been more prized than the sobtle and clear thinking of the Theaceetus. Logical inquiries have been hardened into a barren ontology. Semi-mythical statements have been construed literally and mystic fancies perpetuated without the genuine thought which underlay them. A part (and not tho essential part) of his philosophy has been treated as the whole. But the influence of Plato has extended far beyond the limits of the Platonic schools. The debt of Aristotle to his master has never yet been fully estimated. Zeno, Chrysippus, Epicurus borrowed from Plato more than they knew. The moral ideal of Plutarch and that of the Roman Stoics, which have both so deeply affected the modern world, could not have existed without him. Neopythagoreanism was really a crude Neoplatonism. And the Sceptics availed themselves of weapons either forged by Plato or borrowed by him from the Sophists. A wholly distinct line of infiltration is suggested by the mention of Philo and the Alexandrian school (cf. section in Arabian Philosophy, ii. 26bc, gth edition), and of Clement and Origen, while Gnostic heresies and even Talmudic mysticism betray perversions of the same influence. The effect of Hellenic thought on Christian theology and on the life of Christendom is a subject for a volume, and has been pointed out in part by E. Zeller and others (cf. Neopiatonism). Yet when Plotinus in the 3rd century (after hearing Ammonius), amidst the revival of religious paganism, founded a new spiritualistic philosophy upon the study of Plato and Aristotle combined, this return to the fountain head had all the effect of novelty. And for more than two centuries, from Piotinus to Proclus, the great effort to base life anew on the Piatonic wisdom was continued. But it was rather the ghost than the spirit of Plato that was so "unsphered." Instead of striving to reform the world, the Neoplatonist sought after a retired and cioistcred virtue. Instead of vitalizing science with fresh thought, he lost bold of all reality in the contemplation of infinite unity. He had skill in dealing with abstractions, but laid a feeble hold upon the actual world.
"Hermes Trismegistus" and "Dionysius Areopagita " are names that mark the continuation of this influence into the middle ages. The pseudo-Dionysius was translated by Erigena in the gih century.

Two more "Platonic" revivals have to be recorded-at
${ }^{1}$ Ferrier, Instilutes of Melaphysics, p. 169 (8 i. prop. vi. 812).

Florence in the r5th and at Cambridge in the 17th century. Both were enthusiastic and both uncritical. The translation of the dialogues into Latin by Marsilio Ficino was the most lasting effect of the former movement, which was tinged with the unscientific ardour of the Renaissance. The preference still accorded to the Timaews is a fair indication of the tendency to bring fumum ex fulgors which probably marred the discussions of the Florentine Academy conceming the "chiel good." The new humanhm had also a sentimental cast, which was alien from Plato. Yet the effect of this spirit on art and literature was very great, and may be clearly traced not only in Italian but in English poetry.
The "Cambridge Platonists " have been deseribed by Principal Tulloch in his important work on Rational Theology in England in the ryth century, and again by Profeseor J. A. Stewart in the concluding chapter of his volume on the \mathbf{M} yths of Pleto. Their views were mainly due to a reaction from the philosophy of Hobbes, and were at first suggeated as much by Plotinus as by Plato. It is curious to find that, just as Socrates and Ammonius (the teacher of Plotinus) left no writings, so Whichcote, the founder of this school, worked chiefly through conversation and preaching. His pupils exerched a considerable influence for good, especially on English theology; and in aspiration if not in thought they derived something from Plato, but they seem to have been incapable of separating his meaning from that of his interpreters, and Cudworth, their most consittent writer, was at once more systematic and less scientific than the Athenian philosopher. The cranslations of Sydenham and Taylor in the r8th century and the beginning of the 19th are proofs of the contInued influence of Platonism in England.
The critical study of Plato begins fross Schiciermacher, who did good work as an interpreter, and tried to arrange the dialogues in the order of composition. His attempt, which,. cotiks like many efforts of constructive criticism, went far tarimy. beyond possibility, was whiated hy the ground-fallacy of supposing that Plato had from the first a complete system in his mind which he partially and gradually revealed in writiss. At a considerably later time Karl Friedrich Hermann, to whom all students of Plato are indebted, renewed the same endeavour on the far more plausible assumption that the dislogues faithfially reflect the growth of Plato's mind. But he also was too sanguinc, and exnggerated the possibility of tracing a connexion between the outward events of Plato's life and the progress of his thougbts. This great question of the order of the dialogues, which has been debated by numberless writers, is one which only admits of an approximate solution. Much confusion, however, has been obviated by the hypothesis (first hinted at hy Ueberweg, and since supported by Lewis Campbell and others) that the Soptistes and Politicus, whose genuineness had been called in question by Joseph Socher, are really internediate between the Republic and the Laws. The allocation of these dialogues, not only on grounds of metaphysical criticism, but also on philological and other evidence of a more tangible kind, supplies a point of view from which it becomes possible to trace with confidence the general outlines of Plato's literary and philosophical development. Reflecting at first in various aspects the impressions received from Socrates, he is gradually touched with an inspiration which becomes his own, and which secks utterance in half-poetical forms. Then first the ethical and by and by the metaphysical interest becomes predominant. And for a while this last is all absorbing, as he confronts the central prohiems which his own thoughts have raised. But, again, the hard-won acquisitions of this dialectical movement must be fused anew with imanination and applied to life. And in a final effort to use his intellectual wealth for the subvention of human need the great spirit passed away.
It may not be amiss to recspitulate the steps through which the above position respecting the order of the dialogues has become estabished. Lovers of Hegel had observed that the point reached in the Sophistes in defining "not being" was dialectically in advance of the Republic. But Kantian interpreters might obviously have said
the same of the Parmenides: and Grote as a consiment ntilitarian looked upon the Prolagores as the most mature production of Plato's genius. It seemed desirable to find some criterion that was not bound up with philosophical points of view. Dr Thompson, the Master of Trinity College, Cambridge, had vindicated the genuineness of the Sophistes against the objections of Sacher, but had not accounted for the peculiaritics of language, which that acute critic had perceived. By comparing those peculiarities with the style of the Lows, Plato's latest work, and with that of the Timaeus and Crilias, which presupposed the Republic, Lewis Campbell argued in 1867 that the Sophistes and Politicus, with the Philebws, were in chronological sequence intermediate between the Republic and the Laws. Thus a further defence of their authenticity was at the same time a long step towards the solution of the problem which Schleiermacher had proposed. Many years afterwards the more detailed stylistic investigations of W. Dittenberger, Constantin Ritter and others arrived independently at the same conclusion. It was vehemently supported hy W. Lutoslawski in his work on Plato's Lagic, and has been frankly accepted with ample acknowledgments by the high authority of Dr Theodor Gomperz (see especially the Notes to his Creek Thinkers, iii. 310, 315 of English translation).

The Worys or Plato

The Platonic dialogues are not merely the embodiment of the mind of Socrates and of the zeflections of Plato. They are the portraiture of the highest intellectual life of Hellas in the time of Plato-a life but distantly related to military and political events, and scarcely interrupted by them. Athens appears as the centre of the excitable Hellenic mind. profoundly stirred by the arrival of great sophists, and keenly alive to the qucstions of Socrates, although in the pages of Plato, eyen more than in reality, he only "whispers with a few striplings in a corner." For, in the Platonic grouping, the agora, which was the chicf scene of action for the real Socrates, retires into the background, and he is principally seen consorting with his chosen companions, who are also friends of Plato, and with the acquainances whom he makes through them. The scene is narsowed (for the Academy was remote from the bustle of resort, and Plato judged the Hellenic worid securely from the vantage-ground of partial retirement)but the figures are distinct and full of life. In reading the dialogues we not only breathe the most refined intellectual atmosphere, but are also present witnesses of the urbanity, the freedom, the playfulatss, the generous warmth of the "best society" in Athens. For Plato has a numerous repertory of dramalis personae, who stand in various relations to his cbief chatacterthe impetuous Chaerephon, Apolladorus the inseparable weak brother, old Crito the true-hearted, Phaedo the beloved disciple, Simmias and Cebes, who have been with Philolaus, the graceful and ingenuous Phaedrus, the petulant Philcbus, Theactetus of the philosophic nature, who is cut off in his prime, and the incorrigible Alcibiades; then Plato's own kinsmen-Glaucon the irrepressible in politics. in quarrel and in love; Adeimantus, solid and grave; Critias in his phase of amateur philosopher, and not as what he afterwards became; Charmides, not in fiery manhood, but in his first blopm of diffident youth; and many others who appear as mere acquaintances, but have an interest of their own -the accomplished Agathon, the gay Aristophanes, Eryximachus the all-worthy physician; Meno, light of spirit; Callias, entertainer of sophists; Callicles the wilful man of the world; Cephalus the aged father ol Lysias; and Nicias the honoured soidier. All these appear, not as some of them do on the page of history, in sanguinary contention or fierce rivalry, but as peaceful Athenians, in momentary contact with Socrates, whose electric touch now benumbs and now exhilarates, and sometimes goads to frenzy of love or anger. Still more distantiy related to him, as it were standing in an outer circle, are the imposing forms of Gorgias and Protagoras, surrounded with the lesser lights of Hippias, Prodicus and Polus. Thrasymachus. Euthydemus, Dionysodorus hang round like comic masks, adding piquancy to the deaign. The adversaries Anytus and Meletus are allowed
to appear for a moment, but soon vanish. The older philosophers, though Socrates turned away from them, also make their entrance on the Platonic stage. Parmenides with his magnificent depth is made to converse with the imaginary Socrates, who is still quite young. A stranger from Elea plays an important part in some later dialogues, and Timacus the Pythagorean is introduced discoursing of the creation of the world. In these dialogues Socrates is mostly silent; in the Phicebus he has lost himself in Plato; and in the twelve books of the Laws, where an unnamed Athenian is the chief speaker, even the Platonic Socrates finally disappcars.
Now, in evolving his philosophy from the Socratic basis, Plato works along three main lines-the ethical and political, the metapbysical or scientific, and the mystical. All three are often intimately blended, as in the elose of Rcp., bz. vi., andeven where one element is uppermost the otbers are not wholly suppressed. But this distinction, like that sometimes made in modern philosophy between the good, the true and the beautiful, is one which, if not unduly pressed, may be usefully borne in mind.

Having noted this once for all, we pass to the more detailed consideration of the several dialogues.
I. Laches, Charmides, Lysis.-In this first group Socrates is dealing tentatively with single ethical notions. The result in each case is a confession of ignorance, but the subject has been so handled as to point the way to more frulfful discussions in the [uture. And suggestions are casually thrown out which anticipate some of the most far-reaching of Plato's subsequent contemplations.
The Laches is a vigoreus stetch, in which the characters of the soldier, the aged citizen, and the prudent general are well preserved; and Socrates is seen conversing with his elders, although witb reference to the treatment of the young. The question raised is the definition of courage; and the humour of the piece consists in showing that three men, all of whom are unquestionably brave, are unable to give an account of bravery, or to decide whelber courage is an animai instinct or a mental accomplishment.
Similarly, in the dialogue which bears bis name, the temperate Charmides, of whom all testify that (as Aristophanes has it), ${ }^{1}$ be " fills up the gracious mould of modesty," is hopelessly emharrassed when challenged by tbe Socratic method Charmbots. to put in words his conception of the modesty or temperance which he possesses, and which, as Socrates assures him, is a priceless gift. The Charmidar contains some hints of Platonic notions, such as that of knowledge as self-consciousness, and of virtue as "doing one's own husiness."
The graceful little dialogue which hears the name of Lysis ends, like the two former, with a confession of failure. Socrates, Lysis and Mencxenus are all friends, and think highly of [riendship, yet after many efforts they

Lyshts are unable to tell "what friendship is." Yet some of the suggestions which are here laid aside are afterwards allowed to reappear. The notion that "what is neither good nor evil loves the good because of the presence of cvil" is expanded and emphasized in the Symposium. And the conception of an ideal object of friendship, an aird \$inoy (though rejected as in the criticism of Aristotle by the characteristic reductio ad infinitum), is destined to have a wider scope in the history of Platonism.
II. Prolagoras, Io, Meno.-The previous dialogues bave marked the distinction between unconscious and conscious morality, and have also brought out the Socratic tendency to identify virtue with the knowledge of good. Now, the more strongly it is felt that knowledge is inseparable from virtuc the more strange and doubtful appears such unconscious excellence as that of Laches, Charmides or Lysis. Hence arises the further paradox of Socrates: "Virtue is not taught, and that which is commonly regarded as virtue springs up spontaneously or is received unconsciously by a kind of inspiration."
Protagoras, in the dialogue named after him, is the professor of popular, unscientific, self-complacent excellence; while

Socrates appears in his life-long search after the ideal knowiedge of the best. The two men are naturally at cross purposes.

Protarerter Protagoras contends that virtue is taught by himself and others more or less successfully, and is not one but many. Socrates disputes the possibility of teaching virtue (since all men equally profess it, and even statesmen fail to give it to their sons), but affirms that, if it can be taught, virtue is not many, but one. The discussion, as in the former dialogues, ends inconclusively. But in the course of it Plato vividly sets forth the natural opposition between the empiric and scientife points of view, between $\&$ conventional and an intellectual standard. He does full justice to the thesis of Protagoras, and it is not to be supposed that he was contented to remain in the attitude which he has bere attributed to Socrates. In his ideal state, where the earlicr training of the best citizens is a refinement on the actual Hellenic education, he has to some extent reconciied the conceptions which are bere dramatically opposed.

The preparations for the cncounter and the description of it include many life-like touches-such as the eagerness of the young Athenian gentleman to hear the sophist, though he would be ashamed to be thought a sophist himsclf; the confusion into which the bouse of Callius has been thrown by the crowd of strangers and by the self-importance of rival professors; the graceful dignity of the man who has been forty years a teacher, the graphic description of the whole scene, the characteristic speeches of Prodicus and Hippins (from which some critics have elicited a theory of their doctrines), and the continued irony with which Socrates bears them all in hand and soothes the great man after disconcerting him.

In the argument there are two points which chiefly deserve notice. (1) Protagoras, in accordance with his relative view of lhinge (which Plato aftcrwards criticized in the Theoctetus), claims not to teach men principles but to improve them in those virtues which Providence has given in some measure to all civilized men. (2) Socrates in postulating a scientific principle, which be expressly reserves for future consideration, would have it tested by the power of calculating the amount of pleasurc. Grote dwells with some complacency on the "utilitarianism " of Socrates in the Prolagoras. And it is truc that a principle of utility is here opposed to conventional sentiment. But this opposition is intended to prepare the way for the wider and decper contrast between an arbitrary and a scientific standard, or between impressions and conceptions or ideas. And when Plato (in the Gorgias and Philebus) endeavours to define the art of measurement, which is here anticipated, it is not wonderful that differences here unthought of should come into view, or that the pleasant should be again contradistinguished from the good. In all three dialogues he is equally asserting the supremacy of reason.
On the first vision of that transcendental knowledge ${ }^{1}$ which is to be the key at once to truth and good, philosophy is apt to lose her balance, and to look with scom upon "the trivial round. the common task," and the respectable commonplaces of "ordinary thinking," Yet. as Socrates is reminded by Protagoras, this unconscious wisdom also has a value. And Plato, who, when most ideal, ever atrives to keep touch with experience. is fully convinced of the reality of this lower truth, of this unphilosophic virtue. But he is long puzzled how to conceive of it. For, if knowledge is all in all, what are we to make of wisdom and goodness in those who do not know? Protagoras had bollly spoken of honour and right as a direct gift from Zeus, and Socrates, in the Io and lfeno, is represented as adopting an hypothesis of inspiration in order to account for these unaccredited graces of the soul.

Socrates bas observed that rhapsodists and even poets have no definite knowledge of the things which they so powerfully represent (cf. Apol. 23; Phoed., 245 A.: Rcp. iti. 328 A). He brings the rhapsode Io to admit this, and to conclude that he is the inspired medium of a magnetic influence. The Afuse is the chief magnet, and the poct is the first of a series of magnetic rings. Then follow the rhapsode and the actor, who are rings of inferior power, and the last ring is the bearer or spectator.

The Mcno raises again the more serious question, Can virtue be taught? Socrates here states explicity the maradox with which Aloge the Protagoras ended. "Virtue is knowledge; therefore virtue can be taught. But virtue is not taught. Therefore (in the highest sense) tbere can be no virtue." And be repents several of his former reasons-that Athenian
${ }^{1}$ Phaed. 82 B: Rep. x. 619 C.
statesmen failed to teach their sons, and that the education given by sophists is unsatisfying. (The sophists are here denounced by Anytus, who is angered by Socrates's ironical praise of them.) But the parador is softened in two ways: (i) the absence of knowledge does not preclude inquiry, and (2) though virtue cannot be taught, yet there is a sense in which virtue exists.
t. Meno begins in gaicty of heart to define virtue, but is soon "benumbed "by the "torpedo" shock of Socratics and asks " How can one inquire about that which he does not know?' Socrates meets this " eristic" difficulty with the docttine of reminiscence
 and through kindred (or association of) ideas much may be recovered, if only a beginning is made. Pindar and other poets have said that the soul is inmortal and that she has paseed through many previous states. ${ }^{2}$ Rnd Socrates now gives a practical illustration of the trush that knowledge is cvolved from ignorance. He elicits, from a Greek slave of Neno's, the demonstration of a geometrical theorem. ${ }^{*}$ About the middle of the process he turns to Nicno and olmerres that the slave (who has made a false slart) is now becoming conscious of ignorance. IIc then gradually draws from the man, liy leacling questions, the positive proot.
2. Though virtue is not yet definel, it may be affirmed " bypothetically" that, if virtue is knowledge, virtue can be laught. And exprerience leads us to adinit two phases of virtue-ithe one a mode of life based on scientific principle, which hitherto is an ideal only; the other sporadic, springing of itaclf, yet of divine origin. relying upon true opinion. which it is, huwever, unable to make last through demonsimalinn of the cause or reason. But if there were a viriuous man who muld tcarh virtue he would stand amongst his fellows like Tcircsias amongst the shades. ${ }^{4}$

This mystical account of ordinary moraliry is in keeping with the semi-mythiral defence of the process of inquiry-that all knowledge is implicit la the mind from birth.
III. Euthyphro, A pologia, Crito. Phacdo.-There is no ground for supposing that these four dialogues were written conserutively, or that they belong strictly to the same period of Plato's industry. But they are linked together for the reader by their common reference to the trial and death of Socrates; no one of them has been proved to be in the author's carliest or latest manner; and they may therefore filly end the series of dialogues in which the personal traits of the historic Socrates are most apparent, and Plato's own peculiar doctrines are as yet but partially disclosed.

The little dialogue known by the name of Euthyphro might have been classed with the Laches, Charmides and Lysis, as dealing inconclusively with a single notion. But,
although slight and tentative in form, it has an under. Emethobera tone of decper significance, in kecping with the gravity of the occasion. Plato implics that Socrates had thought more deeply on the nature of piety than his accusers had, and also that his picty was of a higher mood than that of ordinary religions men.

Euthyphro is a soothsayer, well-disposed to Socrates, but not one of his particular friends. They mect at the door of the king Arthon. whither Socrates has been summoned for the " precesnition" (duaspioss) preliminary to his rial. Both men are intercsted in rases of alleged impicty. For Euthyphro's busimess is to impeach his fathe: who has inaxlvertently caused the death of a criminal labourcr. Te prophet feels the duty of purging the slain of blood to be more imperative the nearer home. Socrates is struct by the sirong opinion thus evinced respecting the nature of pacty and detains Euthyphro at the entrance of the court, that he may learn froms 50 clear an authority "what piciy is." and so be fortified against Melctus. He leads his respondent from point to puint, until the doube is raised whether Ciod loves holiness because it is holy, or it is holy because loved by God. Does Cood will what is righteous, or is that righteous which is willed by God? Here they find themsclves wandicring round and round. Socraces proves himself an involuntary Dacdalus who makes opinions move, while he sceies for one which he can "bind fast with reason."
"The holy is a portion of the just." llut what portion? "Due service of the gods by prayer and sacrifice." But how does this affect the gods? "It plepses them." Again we are found to be ressoning in a circle.
"Thus far has Socrates proccered in placing religion on a moral foundation. Ile is secking to realize the harmony of religion and

[^72]4 Hom. Odyss, X. 495, Otp wermiotar, ral it axal tiocomats.
morality, which the great poets Acechylue, Sophocles and Pindar had unconsciously anticipated, and which is the universal want of all men. To this the woothsayer adds the ceremonial element, 'attending upon the gods:' When further interrogated by Socrates as to the nature of this 'attention to the gods.' he replies that piety is an affair of business, a science of giving and asking and the like. Socrates points out the anthropomorphism of these notions. But when we expect him to go on and show that the true service of the sods is the service of the spirit and co-operation with them in all things true and good, he stops short; this was a lesson which the soothayer could not have been made to understand, and which everyone must learn for himself." ${ }^{2}$

In Plato's A pology the fate of Socrates is no longer the subject of mere allusions, such as the rage of Anytus at the end of the Meno, and the scene and occasion of the Euthyphro. He is now seen face to face with his accusers, and with Apatare. his countrymen who are condemning him to death.

What most aggravated his danger (after life-long impunity) is thus stated by James Riddell, in the introduction to his edition of the dialogue: "The drieikela" (clernency) "of the restored people did not last long, and was naturally succeeded by a sensitive and fanatical zeal for their revived political institutions. Inquiry into the foundations of civil society was obviously rather perilous for the inquirer at such a time Socrates knew the full extent of his danger. But, according to Xenophon ($\mathrm{Mcm} . \mathrm{iv} . \mathrm{c} .8,514$), he prepared no defence, alleging that his whole life had been a preparation for that hour"

The tone of the Platonic A pology is in full accordance with that saying; but it is too elaborste a work of art to betakenliterally as a report of what was actually said. Jowett well compares it to "those speeches of Thucydides in which be has embodied his conception of the lofty character and policy of the great Pericles" Yet "it is significant tbat Plato is said to have been present at the defence, as he is also said to bave been absent at the last scene of the Phaedo. Some of the topics may have been actually used by Socrates, and the recollection of his very words may have rung in the ears of his disciple."
The Piatonic Apology is in three parts: (1) before conviction, (2) after conviction and before sentence, (3) alter the sentence.

1. Socrates cares not for acquittal. But he does care to explain his life. And he seleets those aspects of it which there is hope of making his audience understsnd. That he partly succeeded in this is shown by the large number of those (220 out of 500) who voted for his acquittal.
a. His answer to Mcletus, as least important, is reserved for the middle of his speech. He addresses himself first to "other accusers" -comic poets and the rest. who have prejudiced his reputation by falsely identifying him with the physical philosophers and the sophists. But what then is the strange pursuit which has given to Socrates the name of wise? ft is the practice of cross-examining, to which he was first impelled by the oracle at Delphi, and which he has followed ever since as a religious mission. The god said "Socrates is wise." when he was conscious of no wisdom great or small. So he went in search of some one wiscr than himsclf, but could find none, though he found many who had conceit of wisdom. And he inferred that the god must mean "He is wiate who, like Socrates, is most aware of his own ignorance." This coscueving quest has left him in great poverty, and has made him enemies, who are represented by Anytus, Meletus and Lycon. And their enmity is further embittered by the pleasure which young men take in seeing pretence unmasked, and in imitating the process of refutation. Hence has arisen the false charge that Socrates is a corrupter of youth.
b. Here he turne to Meletus. "If I corrupt the youth, who does them good?" Mel." "The laws, the judges, the audience, the Athenians generally" (cf. Prolagoras and Meno). "Strange, that here only should be one to corrupt and many to improve; or that any one should be so infatuated as to wish to have bad neighbours." Mrel. "Socrates is an atheist. He believes the san to be a stone." "You are accusing Anaxagoras, I have said that I knew nothing of such theories. And you accuse me of introducing novel notions about divine things. How can I believe in divine things (Jathbona) and not in divine beings (Jaluopers)? and how in divine beings, if not in gods who are their authors?'"
c. That is a sufficient answer for his present accuser. He returns to the general long-standing defamation, which may well be turns death, as slander has often been and again will be the death of many a man.

Yet if spared he will continue the same course of life, in spite of the danger. As at Potidaca and Delium he faced death where the Athenians posted him, so now he will remain at the post where he
is stationed by the god. For to fear death is to assume pretended knowledge.
One thing is certain. A worse man cannot harm a better But if the Athenians kill Socrates they will harm themsclves. For they will lose the stimulus of his exhortations-and his poverty is a sufficient witness that he was sincere. Not that he would engage in politics. If he had done that he would have perished long belore: as he nearly did for his independent vote after the batte of Arginusae, and for disobeying the murderous command of the Thirty Tyrants.

But have not Socrates's disciples, Alcibiades, Critias, Charmides, proved bad citizens? He has no disciples. Any one, bad or good, may come and hear him. and the talk which is his life-work is not unamusing. But why are no witnesses brought to substantiate this charge? There are elder friends of his companions, who would be angry if he had used his influence for harm. But these men's confidence in Socrates is unshaken.
He will not appeal ad mesericordiom. That would be a disgrace for one who (rightly or not) has been reputed wisc, and to admit such an appeal in any case is a violation of the juror's oath.

Socrates has told the Athenians the whole truth, so far as a mixed audience of them could receive it. Elaboration and subtlety could have no place in addressing the Heliastic court, nor could that universal truth towards which he was leading men be made intelligible to a new audience while the clepsydra was ruaning. But his tone and attitude must have made a strong appeal to the better nature of his hearers. With Meletus he "played rather than fought," but he has shown clearly that he has no fear of dealh, that he choosea to obey God rather than man, and that for very love of the Athenians he will not be swayed by their desires.
2. One convicted on a capital charge had the right of pleading before sentence in mitigation of the penalty proposed by his accuser. Socrates was convicted by fewer votes than he himsell anticipated. The indictment of Meletua was ineffectual, and if it had not been for the speeches of Anytus and Lycon the defendant would have been triumphantly acquitted. Could he but have conversed with his judges more than once, he might have removed their prejudices. In no spirit of bravado, thercfore. but in simple justice to himsell. he meets the claim of Meletus that he shall be punished with death by the counterclaim that he shall be main. tained in the prytaneum as a public benefactor. He cannot ask that death, which may be a good, shall be cominuted for imprisonment or exile, which are cerainly evils. A fine would be no evil: but he has no money-he can officr a mina. Here Plato and others interpose, and with their friendly help he offers thirty minae.
3. He is sentenced to death, and the public business of the court is conded. But while the record is being entered and the magistrates are thus occupied, Socrates is imagined as addressing (a) the majority, and (b) the minority in the court.
a. To thore who have condemned him he speaks in a prophetic tone. "For the sake of depriving an old man of the last dregs of life they have given Athens a bad name. He would not run away, and so death has overtaken him. But his accusers are overtaken by unrightcousness, and must reap the fruits of it.
"Nor will the Athenians find the desired relief. Other reprovers, whom Socrates has hitherto restrained, will now arise, not in a friendly but in a hostive apirit. The only way for the citizens to escape reproof is to reform their lives."
b. To the minority, who would have acquitted him, he speaks with gente solemnity. "Let them know to thir comfort that the divine voice has not once cheeked him throughout that day. This indicates that death is not an evil. And reason shows that death is either a long untroubled sleep, or removal to a better world, where there are no unjust judges.
"No evil can happen to a good man either in life or after death. Wherefore Socrates will not be angry with his condemners, who have done him no harm, although they meant him anything but good. He will only ask of them to do to the mons of Socrates as Socrates has done to them."
Is the love of truth consistent with civic duties? Is the philosopher a good citizen? are questions which are sure to arise where the truth involves practical improvement.
In the Apology Socrates appears as an intrepid Ctta. reformer; the Crito gives an impressive picture of him as a loyal and law-abiding Athenian.

Execution had been delayed during the annual mission to Delos (during which no one could be put to death). But the returning vessel had just been reported as descried from Sunium. At early dawn Crito, the oldest friend of Socrates, ohtained access to his cell. and found him sieeping peacefully. Presently he awoke، and Crito told him of the approach of the fatal ship. Socrates replies by telling his dream. A fair form stood over him and said.
"The third day hence to Phthia shalt thou come "
And it would seem that the day after to-morrow will really be the day for going home.
${ }^{2}$ Cf. Gorg. 353 : Rep. vi. 496.

Crito then reveals his plan for an escape And Socratea argues the question in the old lamiliar way. "Crito's zeal is excellent. and most men would think his object right. But the few who think soundly my that it is wrong to rexurn evil for evil. The laws of Athens (through the fault of men) are doing Socrates harm. But ought he therefore to infringe the law? Might not the laws of his country plead with hirs and say: 'You owe to us your birth and breeding; and when grown up you voluntarily submitted to us. For you might have gone elgewhere. But you preferred us to all other lawa, and have been the most constant resident in Athens. Even at the last you accepted death rather than exile. If you now break your covenant you, will ruin your friends and will be rejected by ali well-ordered citien. You might be received in Thessaly, but could only live there by cringing to foreigners for food. Where in that case will be your talk about virtue? You would not take your sons thither. And your triends would be equally kind to them if you were dead. Think not of ifie and child ren first and of justice afterwards, but think of justice first, that you may be justified in the world below.' '

Crito admits these arguments to be unanswerable.
The Meno referred to the immortality and pre-existence of the soul as a traditional doctrine, and it was there associated with phoedo the possihility of inquiry. In the Phoedo Plato undertakes to substantiate this belief and base it anew by narrating the last hours of Socrates, who is represenled as calmly discussing the question with his Iriends when his own death was immediately at hand. The argument lurns chiefly on the eternity of knowledge, and is far from satisfying. For, granting that etemity of knowledge involves eternity of mind, does the cternity of mind assure continued being to the individual? ${ }^{1}$ Yet no unprejudiced reader of the Phaedo can doubt that Plato, at the time of writing it, sincerely believed in a conscious personal existeoce after death. The words of Socrates, wheo he declares his hope of going to be with othcr friends, are ahsolutely unamhiguous, and his reply to Crito's question, "How shall we bury you ?" has a convincing force beyood all dialectic: "I canoot persuade Crito that I here am SocratesI who am now reasoning and ordering discourse. He imagines Socrates to he that other, whom he will see by and by, a cotpse." This and similar touches not only stamp the Phoedo as a marvel of art, but are indisputable evidence of the writer's profound helief. They may be inventions, but they have nothing "mythical " about them, any more than the charge of Socrates to his friends, thet they would best fulfil his wishes by attending to their own lives.

The narrative, to be appreciated, must be read in full. But a short abstract of the argument may be given here.

1. Death la merely the separation of soul and body. And this is the very consummation at which philosophy aims. The body hinders thought. The mind attains to truth by retiring into hereelf. Through no bodily sense docs she perceive justice, beauty, goodness and other ideas. The philosopher has a fife-long quarrel with bodily desires, and he should welcume the release of his soul. Thus he alone can have true courage, even as temperance and all the virtues are real in him alone.
But does the soul exist after death?
a. An old tradition tells of many successive hirths, the soul departing to Hades and returning again, so that the living are born from the dead. And if the dead had no existence, this could not be, since from nothing nothing can arise. Moreover, experience shows that opposite states come from their opposites, and that such a process is always reciprocal. Death certainly succeeds to life. Then life must succeed to death. And that which undergoes these changes must exist through all. If the dead came from the living, and not the living from the dead, the universe wouid ultimately be consumed in death.

This presumption is confirmed by the doctrine (here attributed to Socrates, of. Meno) that knowledge comes from recollection. What is recollected must be previously known. Now we have never since birth had intuition of the absolute equality of which (through association) we are reminded by the sight of things approximately equal. And we cannot have seen it at the moment of birth, for at what other moment can we have forgotten it? Therefore, if ideals be not vain, our souls must have existed before birth, and, according to the doctrine of opposites above stated, will have continued existence after death.
b. To cnarm away the fears of the "child within," Socrates adds, as further considerations:-

In the Timocus immortality is made to rest on the goodwill of God, because "only an evil being would wish to dissolve that which is harmonious and happy " (Tim. 41 A).
l. The soul is uncompounded, incorporeal, invisible, and therefore indissoluble and immutable.
ii. The soul commands, the body serves; therefore the soul in akin to the divine.
iii. Yet even the body holds together long after death, asd the bones are all but indestructible.
The soul, if pure, departs to the invisible world, but, if eainted by communion with the body, she lingerts hovering near the earth, and is afterwards born into the likeness of sone lower form. Thas which true philosophy haw purified alone rises ultimately to the cods. The lesson is impressively applied.
2. A pause ensucs; and Simmias and Cebce are invited to express their doubts. For, as the swan dies singing, Socrates would die discoursing.
a. Simmias dexires not to rest short of demonstration, thouph he is willing to make the highest attainable probability the guide of life.
If the soul is the harmony of the body, what becomes of her "when the lute is broken"?
b. Cebes compares the body to a garment which the soul keeps weaving at. The garment in which the weaver dies outlasts him. So the soul may have woven and worn many bodies in one lifetime, yet may perish and leave a body behind. Or even supposing her to have many lives, does even this hypothesis exempt her from ultimate decay?

Socrates warns his friends against losing falth in inquiry. Theorics, like men, are disappointing; yet we ghould be neither misanthropists nor misologists. Then he answers his two friends.
a-i. The soul is acknowledged to be prior to the body. But no harmony is prior to the elements which are harmonized.
i. The soul has virtue and vice, i.e. harmony and discord. Is there harmony of harmony? Cf. Rep. x. 609.
lil. All soul is equally soul, but all harmony is not equally harmonious.
iv. If the soul were the harmony of the body they wurid be agreed: but, as has been already shown, they are perpetually quarrelling.
v. The soul is not conditioned by the bodily elements, but has the power of controlling them.
b. Cebes has raiced the wide question whether the soul is independent of generation and corruption. Socrates owns that he himseif (i.e. Plato ?) had once been fascinated by natural phibosophy. and had sought to give a physical account of everything. Then, hearing out of Anaxagoras that mind was the disposer of all, he had hoped to learn not only how things were, but also why. But he fuund Anaxagoras formaking his own first principle and jumbling causes with conditions. ("The casue why Socrates sits here is not a certain disposition of joints and sinews, but that he has thought beat to undergo his senterce-else the joints and sinews would have been ere this, by Crito's advice, on the wray to Thessaly:") Phyaical seience never thinks of a power which orders everyrhine for good, but expects to find another Atlas to sustain the world more strong and lasting than the reasoa of the best.

Socrates had turned from esch philosophere and found for himself a way, not to gaze directly on the universal reason, but to seek an image of it in the world of mind, wherein are reflected the ideas, as, for emample, the iden of beauty, through partaking of which beautiful things are beautiful. Assuming the existence of the ideas, he felt his way from hypothesis to hypothesis
Now the participation of objects in ideas is in some casesesential and inseparable. Snow is essentially cold, fire hot, threc odd, two even. And things thus essentially opposite are inclusive of each other's attributes. (When it was raid above that opposites come from opposites. not opposite things were meant, but opposite states or conditions of one thing). Snow cannot admit heat, nor fire cold: for they are inseparable vehicles of heat and cold respectively. The soul is the inseparable vehicle of life, and thereforc, by parity of reasoning, the soul cannot admit of death, but is immortal and imperishable.
3. What follows is in the true sense mythological, and is admitted by Socrates to be uncertain: "Howbeit, since the soul is proyed to be immortal. men ought to charm their spirits with such tales."

The earth, a globe self-balanced in the midst of space, has many mansions for the soul, ${ }^{2}$ some higher and brighter, some lower and darier than our present habitation. We who dwell about the Medizerranean Sea are like frogs at the bottom of a pool. In sorne higher place, under the true heaven, our souls may dwell herealter, and see not only colours and forms in their ideal purity but trath and justice as they are.

In the Phaedo, more than elsewhere, Plato preaches withdrawal from the world. The Delian solemnity is to Socrates

- Cf. Milton, Il Penseroso, 88-92-
"To unsphere
The spirit of Plato, to unfold
What worlds or what vast regions hold
The immortal mind that hath forsook
Her mansion in this fleshly nook."
and his friends a period of "retreat," in which their eyes are turned from earthly things to dwell on the eternal. The theory of ideas here assumes its most transcendental aspect, and it is from portions of this dialogue and of the Phoedrus and Timacess that the popular conception of Platonism has been principally derived. But to understand Plato rightly it is not enough to study isolated passages which happen to charm the imagination; nor should single expressions be interpreted without regard to the manaer in which he presents the truth elsewhere.

It has already been shown (r) that Socratic inquiry implied a standard of truth and good, undiscovered but endlessly discoverable, and to be approached inductively; and (2) that in Plato this implicit assumption becomes explicit, in the identification of virtue with knowledge (Lach., Charm.) as an ant of measurement (Prolag.), and in the vision (towards the end of the Lysis) of an absolute object of desire. The Socratic "selfknowledge " has been developed (Charm.) into a science of mind or consciousness, apart from which no physical studies can be fruitful. (3) Co-ordinate with these theoretical tendencies there hes appeared in Plato the determination not to break with experience. In the Phaedo, a long step is made in the direction of pure idealism. The ordinary virtue, which in the Protagoras and Meno was questioned hut not condemned, is here rejected as unreal, and the task proposed to the philosopher is less to under. stand the world than to escape from it. The universal has assumed the form of the ideal, which is supposed, as elsewhere in Plato, to include mathematical as well as moral notions. The only function of perception is to a waken in us some reminiscence of this Ideal. By following the clue thus given, and by searching for clearer images of truth in the world of mind, we may hope to be emancipated from sensation, and to lay hold upon the sole object of pure reason.
It is obvious that when he wrote the Phoedo Plato conceived of universals as objective entities rather than as forms of thought The notion of "ideal colours " (though occurring in the myth) is an indication of his ontological mood. Yet even here the eif η are not consistently hypostatized. The notion of "what is best" has a distinctly practical side, and the "knowledge through reminiscence " is in one aspect a process of reficction on experience, turning on the laws of association. ${ }^{1}$ It is also said that objects " partake "of the ideas, and some concrete natures are regarded as embodiments or vehicles of some of them. Still if regarded as a whole, notwithstanding the scientific attitude of Socrates, the Phacdo is rather a meditation than an inquiry-a study of the soul as self-existent, and of the mind and truth as cocternal.
IV. Symposium, Phoedrus, Cradylus.-Socrates is again imagined as in the fullness of life. But the real Socrates is becoming more and more inextricably blended with Platonic thought and fancy. In the Apology there is a distinct echo of the voice of Socrates; the Phoedo gives many personal traits of him; but the dialogues which are now to follow are replete with original invention, based in part, no doubt, on personal recollections.

The Symposium admits both of comparison and of contrast with the Phaedo. Both dialogue are mystical, both are syappokiont, spiritual, but the spirituality in either is of a different order. That is here immanent which was there transcendent; the beautiful takes the place of the good. The world is not now to be annihilated, but rather transfigured, until particular objects are lost in universal light. Instead of flying from the region of growth and decay, the mind, through intercourse with beauty, is now the active cause of production. Yet the life of contemplation is still the highest life, and philosophy the truest μ ouauri.

The leading conception of the Symposiwm has been anticipated In the Lysis, where lt was said that "the indifferent loves the good, because of the presence of evil.:

The banqueters (including Socrates), who are met 10 celebrate the tragic victory of Agathon, happen not to be disposed for hard drinking. They send away the flute-girl and entertain each ot her with the praise of Love. Phaedrus tells how Love inspires to
honourable deede, and how Alecstis and Achilles died for Love. Pauanias rhetorically dintinguishes the earthly from the heavenly Love. The phytician Eryamachus, admitting the distinction yet holds that Love pervades all nature, and that ert consiste in following the higher Love in each particular sphere. So Empedocles had apoken of Love as overcoming previous discord. For opposites cannot, as Heraclitua fancied, coczist. Aristophanes, in a comic myth, describes the origin of Loye as an imperfect creature's longing for completion. The origioal double human beinge were growing impious, and Zeus split them in twain, ever since which act the bereaved halves wander in search of one another. Agathon apeales, or rather singe, of hove and his works. He is the youngest, not the eldent of gode, living and moving delicately wherever hloom is and in the hearts of men-the author of all virtue and of all good works, obeyed by gods, fair and causing all thinge fair, making men to be of one mind at feast--pilot, defender, caviour, in whon footateps all should follow, chanting strains of love.
Socrates will not attempt to rival the poet, and begins by stipulating that he may tell the truth. He accepts the distinction between Love and his works, hut points out that, since desire implies want, and the desire of Love in toward beauty, Love, at wanting beauty, is not beautiful. So much being establisbed in the Socratic manner, he proceeds to unfold the mystery once revealed to him by Diotima, the Mantincan wise woman. Love is neither beautiful nor ugly, neither wise nor foolish, neither god nor mortal. Bet ween gods and mortals is the world of mediating apirita (rdgaumbor). And Love is a great spirit, child of Resource (the con of Prudence) and Poverty the beggar maid, who conceived him at the birthday feast of Aphrodite. He is far from living "delicately", but is ragged and shoeless, always in difficultien, yet always brimming with invention, a mighty hunter after wisdom and all things fair; wometimes "all, full with feasting" on therm, the next moment "clean starved " for lack; never absolutely knowing nor quite ignorant. That is to say, he is a "philosopher." For knowledge is the most beautiful thing, and love is of the beautiful.
But what does love desire of the beautiful? The possession is enough. But there is one kind of love-called "being in love"which desires beauty for a peculiar end. The lover is seeking, not his "other half," but posscssion of the beautiful and birth in beauly. For there is a season of puberty both in body and mind, whea human nature longe to create, and it cannot, save in presence of beauty. This yearning is the earnest of immortality. Even ia the bird's devotion to 1 ts mate and to its young there is a craving after continued being. In individual lives there is a flux, not only of the body, but in the mind. Nay the sciences themselves also come and go (bere the contrast to the Phaedo is at its height). But in mortal things the shadow of continuity is succession.

The love of fame is a somewhat brighter image of immortality than the love of offspring. Creative souls would bring into being not ehildren of their body, but good deeds. And much a one io readiest to fall in love with a fair mind in a fair body, and then ls Giled with enthusiamm and begets noble thoughts. Homer, Hesiod, Lycursus, Solon, were such genial minds. But they siopped at the threshold (cf. Prot, Meso), and saw not the hlgher mysterics, which are reserved for those who rise from noble actions, institutions, laws, to universal beauty. The true order is to advance from one to all fair forms, then to fair practices, fair thoughts, and lastly to the single thought of absolute beauty. In that com. munion only, beholding beauty with the eye of the mind, one shail bring forth realities and become the friend of God and be immortal, if mortal man may.
Alcibiades here breaks in and is vociferously welcomed. He is crowning Agahon, when, on perceiving Socrates, he declares that he will crown him too. Then he announces himself king of the feast, and insists upon hard drinking (though this will make no difference to Socrates). Eryximachus demands from the newcomer a speech in praise of love. But Alcibiades will praise no one else when Socrates is near. And with the freedom of one who is deep in wine he proceeds with his strange encomium of "this Marsyas." "In face and outward bearing he is like a Satyr or Silenus, and by his voice he charms more powerfully than they do by their pipinga. The cloguence of Pericles has no effect in comparison with his His words alone move Alcibiades to shame, a nd fascinatc him until he stops his ears and runs from him."-" 1 often wish him dead. Yet that would break my heart. He brings me to my wit's end." -ib And, as carved Sileni are made to encase images of gods, co this Silenus-mask entreasures things divine. He affects ignorance and suscepribility to beauty. Thus he mocks mankind. But he cares nothing for outward shows. and his temperance (oudpooing) is wonderful." To prove this Alcibiades reveals his own heart-secret (He is not ashamed to speak it amongat others who have felt the pang which Socrates inflicts). And he makes it abundantly manifest that in their widely rumoured intercourse (cf. Protag. init.) Socrates had never cared for anything but what was best for his younger friend. Alcibiades then relates as an eyewitness the endurance shown by Socrates at Potidaea, his strange persistence in solisary meditation-standing absorbed in thought lor a day and a night toget her-and his intrepid conduct in the retreat from Delium (cf. Laches). "The talk of Socrates is of peck-asees and
cobblers, and he is ever saying the mame thinge in the game worda; but one who lifts the makk and looks within will find that no other words have meaning." Akcibiades ende by warning his companiona ugainst the wiles of Socrates.
Some railery follows, and they are invaded by another band of revellers, who compel them to drink still more deeply. The soberly inclined (led by Eryximachus) slink off, and Aristodemus, the reporter of the scene, only remembers further that when he awoke at cock-crow Socretes was still conversing with Agathon and Aristophanes, and showing them that tragedy and comedy were ementially one. He talked them both asleep, and at daybreak went about his usual business.
The philosopher of the Symposium is in the world and yet not of it, apparentiy yielding but really overcoming. In the Phaedo the soul was exhorted to " live upon her servant's loss," as in Shakespeare's most religious sonnet; this diaiogue tells of a "soul within sense" in the spirit of some more recent poetry. By force of imagination rather than of reason, the reconciliation of becoming (riveats) with being (oiria), of the temporal with the eternal, is anticipated. But through the bright haze of fancy and behind the mask of irony, Socrates still appears the same strong, pure, upright and beneficent human being as in the Apology, Crito and Phaedo.
The impassioned contemplation of the beautiful is again imagined as the beginning of philosophy. But the "limitiess peachers. occan of beauty" is replaced by a worid of supramundane forms, beheid by unembodied souls, and remembered here on earth through enthusiasm, proceeding by dialectic from multiform impressions to one rational conception. and distinguishing the " lines and veins "of truth. The Phacdrus records Plato's highest "hour of insight," when he willed the various tasks hereafter to be fulfilled. In it he soars to a pitch of contemplation from whence he takes a comprehensive and keen-eyed survey of the country to be expiored, marking off the blind alleys and paths that lead astray, laying down the main roads and chief hranches, and taking note of the erroneous wanderings of others. Reversing the vulgar adage, he flies that he may walk.

The transcendent aspiration of the Phaedo and the mystic glow of the Symposium are here combined with the notion of a scientific process. No longer asking, as in the Protagoras, is virtue one or many? Plato rises to the conception of a scientific one and many, to be contemplaled through diaiectic-no barren abstraction, but a method of classification according to nature. This method is to be applied especialiy to psychoiogy, not merely with a speculative, but also with a practical aim. For the " birth in beauty" of the Symposium is here developed into an art of education, of which the true rhetoric is but the means, and true statesmanship an accidental outcome.
Like all imaginative critics, Plato falls to some extent under the influence of that which he criticizes. The art of rhetoric which be so often travestied had a lasting effect upon his style. Readers of his latest works are often reminded of the mock grandiloquence of the Phoedrus. But in this dialogue the poetical side of his genius is at the height. Not only can he express or Imitate anything, and produce any effect at will, but he is standing behind his creation and disposing it with the most perlect mastery, prescrving unity amidst profuse variety, and giving harmony to a wildness bordering on the grotesque.

The person of Socrates is here deliberately modified. He no longer (as in the Symposium) teaches positive wisdom under the pretence of repeating what he has heard, but is himself caught by an exceptional inspiration, which is accounted for by the unusual circumstance of his finding himself in the country and alone with Phaedrus. He has been hitherto a stranger to the woods and ficlds, which would tempt him away from studying himself through intercourse with men. But by the promise of discourse-especially of talk with Phaedrus-he may be drawn anywhit her.
Phaedrus has been charmed by a discourse of Lysias, which after som.e coy excuses he consents to read.
It is a frigid erotic dialribe. in which one not in love pleads for preference over the lover. Socrates hints at criticism, and is challenged to produce something better on the same theme.

1. Distinguishiag desire lrom true opinion, he defines love as
deaire prevailing againat truth, and then expatiates on the harofut tendencies of love as so defined. But he becomes alarmed at his own unwonted eloquence, and is about to remove, when the " divine token" warns him that be must first recite a "palinode "in praise of love. For no divine power can be the cause of evil.
2. Love is madnese; but there is a noble madnew, as in shown by eoothey yers (called μ ifrest from mainopa). And of the higher madness there are four kinds.

To explain this it is necessary to understand poychology. The soul is self-existent and self-moving, and therefore eternal. And her form is like a pair of winged steeds with their ebarioteer. In diwine souls both steeds are good. lat in human souls one of them is ba l. Now before entering the botl; the soul lost her wings, which in her unembodied state were nouriil 1 by beauty, wisdom, goodness, an lall that is divine. For at the fatival of mouls, in which they visit the heaven that is above the heavens, the unruly steed caumed the charioteer to sce imperfectly. So the woul cast her feathers and fell down and passed into the human form. And, according to the comparative clearness or dimness of that first vision, her earthly lot is varied from that of a philooopher or artist dowa throush nine grades (including woman) to that of a tyrant. On her conduct in this state of probation depends her condition when again born into the world. And only in ten thousand years can she seturn to her pristine state, except through a life of philosophy (cl. Phacdo) or of pure and noble live (c. Symposium).

The mind of the philosopher alone has wings. He is ever beine initiated into perfect mysterics, and his soul alone becomes complete. But the vulgar deem him mad and rebuke him; they do not see that he is inspired.

This divine madness (the fourth kind of those above mentioned) is kindled through the renewed vision of beauty. For wisdom is not seen; her loveliness would have been transporting if she had a visible form. The struggle of the higher passion with the lower is then described with cxtraordinary yividness, under the image of the two steeds. When the hister impulse triumphs the issue is a philosophic friendship, at once pasmionate and abolutely pare 3. From his "palinode" Socrates returns to Lysias, who is advised to leave speech-writing for philosophy.
a. Phaedrus remarks that the speech-writer is despised by the politician. Socrates replies that apeech-writing and politics are one concern. The real difference is between thote who base their teaching on philoeophy and those who are content with rules of art. For example, if the first speech of Socrates is compared with that of Lysias, the one is found to distinguish and define, the other not; the one observes order in discourse, the other "begins where he should end," and his utterance is like a disordered chain. A speech should be an organic whole, a "creature having hands and feet." So in the "palinode " there was a classification of the kinds of marness, which jed the way to "a possibly true though partly erring myth." This approximation to truth in the midst of much that was playful was due to the observance of two principles, generalization and division (owaywht, becipnoss). Whoever sees the one and many in nature, him Socrates follows and walks in his footsteps, as if he were a god. In romparison of dialectic. as thus conceived, the frigid rules of Lysias, Thrasymachus, Theodorus Evenus. Tisias, Gorgias. Potus and Protagoras are futile and absurd.
b. Another condilion of teaching (or true rhetoric) is the science of mind. Whether the soul be one or many, complex or multiform. and if multiform what are its parts and kinds, are questions which the teacber must have already soived. And he must likewise have classified all arguments and know them in their various applicability to divers couis. An art of speaking that should fulfil this condition is non-existent. Yet how can even verisimilitude be attained without knowledge of truth?
c. The art of writing is kindred to the art of speech. But Socrates maintains that oral teaching through the iiving contact of mind with mind has many advantages over written composition, which is, comparatively speaking, a dead thing. Men may write for amusement or to record the iniercourse that has been. But the serious oocupation of the true thinker and teacher is the communication of truth through vital converse with others like-minded \rightarrow the creatioa of "thoughts that breathe" in spirits conscious of their value.

In conclusion, a friendly hint is given to fsocrates that he may do better than Lysias if he will but turn his attention to philosophy.

The Phoedrus anticipates much that Plato afterwards slowly claborated, and retains some things which he at last eliminsted. (1) The presence of movement or impulse in the highest region is an aspect of truth which reappears in the Sophistes and other later dialogues. It has been thought strange that it should be found so eariy as in the Phaedrits. But does not this remark imply an unwarrantable assumption, viz. that Plato's idealism took its departure from the being of Parmenides? Is it not rather the fact that his own tbeory was formulated before the Megarian ascendancy led him to examine the Eleatic doctrine. and that it was by a tendency from the first inherent in Platonism that that doctrine was modified in his final teaching? (2) The
ontlises of method which are thrown out at white beat in the Phoedrus are a preparation for the more sober treatment of the ideas in the dialectical dialoguce. In these, however, the conception of classtication is somewhat altered through coptact with Eleaticism, (3) The Phoedrks aims, not merely at reahzing universals, hut at graspong them in and through particulars. This is an ideal of knowledge which was "lost as soon as seen," but one which in some of his latest dialogues, such as the Polificus and Philcors, Plato again endeavoured to work out. (4) The Phadras contains the eiements of that true paycbology into which the ontological theory of the ideas is gradually transmuted in Plato's more advanced writings, when the difficulties of hus Ideal doctrine in its cruder forms have been clearly felt and understood. (s) Plato here appears as a professor of education preferring oral intercourse to authorship. In this paradox he at once exalts the work of Socrates and avows his own vocation as a teacher. The passage throws an interesting light upon the form of dinloguc in which bis works are cast But it is not to be supposed that be remained long unconscious of the influence be was destined to wield by writing. In executing a great task like the Ropublic, he practically diverged from the untenable vicw asserted here; and in the Lawes he recommends his longest and least dramatuc work as a suitable basis for the education of the future. (6) It must always appear strange, even to those most familiar with the conditions of Hellentc life, that in portraying the idealizing power of passionate love Plato should heve taken bis departure from unnatural feeling.
On this subject he has sung his own "palinode " in the Laws, which be intended as his final legacy to mankind.' Not that he ceabed to ezalt genius and originality above mere talent, or to demand for phiiosophy the service of the heart as well es the head. nor yet that friendship was lens valued by him in later yeurs. All this remained unchanged. And in the Republic the passion of love is still distantly referred to as the symbol of ideal aspiration. But a time came when he had learned to frown on the aberration of feeling which in the Sympasiune and Phawdrus he appears to regard as the legitimate stimulus of intellectual enthesiasm. And already in the Theartetus not love but wonder is described as the oniy beginning of philosophy.

While calling attention to this ctange of contiment, it is right to add that Platonic love in the "erotic "dialogues of Plato is very difierent from what has often been so named, and that nothing even in the noble passage of the Lazos above referred to casts the slighteat shadow of blame on the Socrates of the Sympasimm. Such changes are, amongst other things, a ground for caution in comparing the two steeds of the Phaedrus with the spirit ((0upbs) and desire (inforyla) of the Republic and Timecess. The Phaedres, in common with these dialogues, alserts the existence of higher and lower impulses in human nature, but there is no sufficient ground for supposing that when Plato wrote the Phoedrus he would have defined them precisely as they are defined in the Repablic.

The Crotylus is full of curious interest as marking the highest point reached by the "science of language " in antiquity, but, Cratyles. as this dialogue "hardly derives any light from Plato's other writings,"' so neither does it refkea much light on them. It deals slightly with the contrast between Heracliteanism and Eleaticism, the importance of dialectic, the difficulty about the existence of falschood, and ends with a brief allusion to the doctrine of ideas-but these topics are all more fuily discussed elsewhere.

Ihree persons maintain difierent views respecting the nature and origin of Language.
fermogenes affirms that language is conventional. Cratylus (ihe Herarlitean) that it is natural Socrates, mediating between these cophistical extremes, declares that language, lite other instrtutions. is rational, and therefore (1) is based on nature, but (2) modified by convention.
In his dialectical treatment of the subject. Socrates displays a tissue of wild etymologies in reliance on the "inspiramon" of Euihyphro. Prethently a distinction appears between primary and

[^73]mecondary worda Many primary words convey the notion of movement and change. It follows that the legislator or word-maker held Heraclitean views. Socrates thus far presses on Hermogenem the view of Craylus. Then turning to Cratylus he asks if there art no false names. "False language," Cratylus argues, "is impossible." Socrates abows that a true image may be inadequate, so that we have a right to criticize the work of the word-maker. And the facts indicate an element of meaningless convention. Nor was the origunal word-maker consistently Heraclitean. For some mportient words poins not to motion but to rest.
But the queation returne-Are we sure that the theory of nalure which the word-maker beld was true? This difficulty cannot be touched by verbal arguments. In seeking to resolve it we must conswder, not words, but things. If there is a true beauty and a true good, which are immutable, and if thene are accessible to knowiedge. that world of truth can have nothing to do with flux and change.
V Corgias, Republic.-In the Symposium and Phaedras Plato largely redeems the promise implied In the Phacto, where Socrates tells his friends to look among themselves for a charmer who may soothe away the fear of death. But he was pledged also to a sterner duty by the warning of Socrates to the Athenians, in the Apmogy, that after he was gone there would arise others for their reproof more harsh than he had been. To this graver task, which he had but partially fuifilled with the light satire upon Lysuas or the gentle message to Isocrates, the philosopher now directa his powers, by holding up the mirror of what ought to be against what is, the principics of truth and right against the practice of men. For the good has more than one aspect. The beautiful or noble when realized in action becomes the just. And to the question, What is just? are clowely ahied those ot her quexions of Socrates-What is a state? What is it to be a stateaman?
In the Gorgias Plato ascerts the absolute supremacy of justice through the dramatic portraiture of Socrates in his opposition to the worid: in the Republic he strives at greater lemgth to define the nature of justice through the imaginary creation of an ideal community.
In the Gorgias the Platonic Socrates appears in direct antagonism with the Athenian worid. The shadow of his fate is impending. Chaerephon (who is still alive) understands him, but to the other interlocutors, Gorgias, Polus,

Corglets. Callicles, he appears perversely paradoxical. Yet he effectlvely dominates them ell. And to the reader of the dialogue this troage of "Socrates contra mundum '" is hardiy less imperasive than that other frage of Socrates confronting death.
2. Gorgias ameerts that rhetoric is an art concerned with justice. and that prrsuasion is the sernet of power.
a. Socrates after cuggesting mome ironical doubts, declanes his opinon that thetoric is no art, hut a knack of pleasing, or in ol her words "the counteffeit of a subsection of statesmanship." This oracular definition rouset the interest of Gorgias. and Socrate proceeds with the following " generalization and division ":-

Flattery influences men through pleasure without knowlede. And the rbetor is a kind of confectioner, who can with difficuliy be distinguished from the sophist.
o Rhetoric. then, is not an art. And persuasion is not the oeret of power Here Socrates maintains against Polus the ihree paradoxes:-

The tyrant does what he chooses hut not what he wishet;
It is less cvil to suffer wrong than to do wrong;
It is belter for the wrongdoer to be punishicd thand to encape punishment.
The only use of rhetorir, therefore, is for self-accuastion, and (if is is ever permissible to do harrn) to prevent the punishment of one's enemy.
2. Callicles here loses patience and breaks in. He propounde his theory, which is based on the opposition of enture and custom.
"There is no natural right but the right of the stronger. And natural mobility is to have turong pesaions and power to gratify them. The lawiul
is a word that cowards use,
Devied at first to keep the strong in awe."
Socrates entangles him in an argument in which it is proved thet pleasure is different from good, and that there art good and bad pleasures.

Now the question is whether the life of philosophy, or the life which Callicles defends, is conducive to good. And it has been shown that rhetoric is one of a clase of purtuits which minister to pleasure without discriminating what is good.

Callicles again becomes impatient. Did not Themistocles, Cimon. Pericles labour for their country's good? Socrates then renews his demonstration, proving that if the just man is wronged the evil lies with the wrongdoer, not with him, and that it is worst for the wrongdoer if he escape. And for avoidance of this greatest evil not rhetoric avails anything, mor any of the arts which save iffe (seeing that life may be used well or ill), nor even such an art of politics as Themistocles, Cimon, or Pericles knew, but another seience of politics which Socrates alone of the Athenians practiess. The puruuit of It may wrell endanger him; but his strength lies in having done no wrong. For is the world to corme he can present his soul faulless before her judge. Not the show of justice but the reaiity will avail him there.
this truth is enforced by an impressive myth. And Callictes to invited to leave the life which relies on rhetoric and to follow Socrates in practising the life of philonoghic virtue.

The value of justice has been shown. But what is justicie? Is the life upheld hy Socrates aufficiently definite for practical gepobit. guidance? The vicws of Callicles have been overborne; but have they been thoroughly examined? Socrates claims to be the only politician. But how can that deserve the name, of policy which results in doing nothing? These and cognate questions may well have haunted Plato when he planned the Repullic, the greatest of hir works. Fot that which lay deepest in him was not mere speculative fiterest or poetic fervour, but the practical enthusiasm of seformer. The example of Socrates had fired him with an ideal of wisdon. courage, temperance and righteousncss, which under various guises, both abstract and concrete, has appeared and reappeared in the preceding dialogues. But the more vividiy he conceived of this ideal life, the more keenly he feit its inolation in the present world-i hat of the restored Athenian demoeracy. For to \mathbf{t} Greek mind above all others life was nothing without the social environment, and justice, of all virtucs, could least be reallized apart from a comorunity. Hence it became necesary to Imagine a form of society in which the ideal man might find himself at home, a state to which the philosopher might atend in harmonious relationship, no longer as an alien sojourner, but at ative citizen, not standing aloof in lonely contemplation, but acting with the full consent of other men and ruling in the right of wisdom. Plato did oot segard his own republic as a barren dream. He believed that sooner or later in the course of time a state essentially resembling his ideal commonwealth would come into being. Still more firmly was he convinced that until then mankind would not attain their highest possible development. To ignore this real aspect of his most serious work is to lose much of the author's meaning. Yet it is hardly less erroneous to interpret a great imaginative creation am pied de lo lellre, as if examining a piece of actual legislation. Even in his Laws, a far more prosaic writing, Plato himself repeatedly protests against such criticism. In his most aspiring flights he is well aware of the difference between the imaginary and actual embodiment of an Ideal, alt hough as a literary artist he gives to his creations, whether in anticipation or rel rospect, an air of sober reality and matter-offact. He is more in earnest about principies than about details, and if questioned would probably be found more confident with regard to moral than to political truth. He may have been wholly unconscious of the inconsistencies of his scheme, but it would not have greatly disconcerted him to have discovered them, or to have been told that this or that arrangement would not "work." He would have trusted the correction of his own rough draft to the philosopher-kings of the future.

The Repulic falls naturally into five portions. (t) Bk. i. is preliminary, raising the main question about justice. (2) Bks. ii..

[^74]ifi, iv. coatsin the outlines of the perfect etate. inclodia象 the education of the "guardians." and leading up to the definition of juatice (a) in the state, and (b) in the individual. (3) Bles. v, vi., vii. (which to some critics present the appearance of an altcrthougtt or excrescence on the original design) contain the cardinal peryiaions (t) of communism (for the guardians only), (2) that philosophers shall be kings, (3) of higher education for the rukes (vis. the philosopher-kings). This third provision occupies blss. vi. and vil. (which have again, as some think, the appearance of an oulgrowth from ble, v). (4) Bks. viil. and ix., reauming the eneneral subject from ble. iv, present the meverse of the medal by Bhowing the declemaion of the state and individual through four stages, until in the fife of tyranny is found the image of ideal Injustice, as that of justice was found in the life of the perfect state. (5) Bk. x. forms a conctuding chapter, in which several of the foregoing entetmente are reviewed, and the work ends, like the Garijus, with a vision of judgment.
Thus the main outlines of the echeme are coatained in bles, uin, $_{\text {, }}$ iii., iv., viil., ix. And yet bks. v., vi., vii. form the central portion, - eort of inner leemel, and are of the highest significance.

In speculating about the composition of the Republic (as is the fashion of some interpreters) it is important to bear in mind the general character of Plato's writings.
"The conception of unity," says Jowett:" "really applics in wery diferent degrees to diferent kinds of ert-to statue, lor example, far more than to any kind of literary competition, and to some species of literature far more than to others. Nor does the dialogue appear to be a style of composition in which the requirement of unity is most stringent; nor should the idez of unity derived from one eort of art be hastily transferred to another. ... Plato mubjecte himself to no mule of this eort. Like every great artist he gives unity of form to the different and apparealy distracting topics which he brings together. He works freely, and is not 10 be supposed to have nrranged every part of the dialogue befors he begins to write. He fastens or weaves together the irame of his diacounte loosely and imperiectly, and which is the wap and which the woof cannot always be determiaede"

It should be added, that as Dialectic was still a " world not realized," and he was continually conscious of using impericet methods, he was not solicitous to bind himself to any one method, or to watch carefully over the logical coherence of his work. "Sailing with the wind of his ergument," he aften tacks and veers, changing his metbod with his subject-matter, much as a peet might adopt a change of rhythm. Absorbed as he is in each nev phase of his subject, sll that precedes is cancelled for the time. And much of what is to come is dediberately kept out of view, because ideas of high importance are reserved for the place where their introduction will have most effect. Another cause of apparent inconsequence in Plato is whal be himself would call the use of hypothesis. He works less deductively and more from masses of generalized experience than Platonists have been ready to admit. And in the Reprolic he Is as much engaged with the criticism of an actual as with the projection of an ideal condition of gociety. If we know more of the working of Attic institutions as he observed them, we should often understand him better.

These gencral considerations should be weighed against the inequalities which have led some critics to suppose that the " first sketch of the st ate" in bks. it.-iv. is much earlier than the more exalted views of bks. $v .-v i i^{3}$ If in these bater books mew conditions for choosing the future rulers are allowed to erperge, if in discussing the higher intellectual virtues the simple psychotogy of bk. iv, is lost sight of (it reappears in the Timarus), it the "knowledge of the expedient" at first required falls far short of the conception of knowledge afterwards attained, all this is quite in keeping with Plato's manner elsewherc, and may be sufficiently accounted for by artistic and dialectical reserve. It can hardly be an altogether fortuitous circumstance that the culminating crisis, the third and highest "wave " of difficultythe declaration that philosophers must be kings and kings philosophers-comes in precisely at the central point of the whole long work.

The great principle of the political supremacy of mind, though Ihus held back through half the dialoguc, really dominates the whole. It may be read between the lines all through, even in the institution of gymnastic and the appralsement of the cardinal

[^75]vitues It is a genuine development of Socratic thoughe. And it is this more than any other single feature which gives the Rspubic a prophetic tigifictisce as "an atermpl tomands anticipating the work of future generations," I
Other aspects of the great dialogue, the Dorian framework ∞ inevitable in the reaction from lonian life, the traces of Pythagorean infuesce, the extimate of oligarchy and demacracy, the characters of the interfocutors in their beariog on the exporiaion, have been fully treated by necens writern, and for brevity'c anke are here passed over.
There are other points, however, which muse not be ountted, because they are more intimately retated to the general development of Plato's ihoughts.
1 The question debated by Proclus has been raised before and since, whether the proper subject of the Repulic is justice or the state. The doubt would be more suggestive if put in a soroewhat different form: Is Ptato more interesked in the state or the individual? That he is in earnea about both, and that ia his view of them they are inseparable, is an obvious answer. And it is almost a truism to say that political relations were prior to ethical in the mind of a Greck. Yet if in some passages the political analogy reacts on moral notions (as in the definition of temperance), in others the state is apoken of in language borrowed from individual life. And it remains quessionable whetfier the ethics or the politice of the Repubiuc are less connplete. On the whole Plato himself seems to be conscious that the ideal derived (rom the lifo-work of Socrates could be more readily stamped on individual lives than on communitics of men (see espocially Rep. vii. $\mathbf{5 2 8} A$, ix. 592).
2. The amalogy of the individual is often used to enforce the requirement of political umity and aimplicity (sec espocially $\mathbf{v} 462 \mathrm{C}$). This is also to be referred, however, to Plato's gencral tendency to strain after abatractions. He had not yet reached a point of view Iroun which he could book steadily on particulars in the light of nafyersal principles. He recurs often to expericnee, but is soon carried of again into the abstract region which to hims seemed higher and purer. "i it has beed said that Plato fies as well as walka, but this hardly expretaes the whole truth, for he fices and welks at the spme time and is in the air and on firm ground in successive instants. (Jowett). Plato's scheme of communism had becn suggested to hire partiy by Dorian institutions and partly by the Pythayorean rule. But it was Iurther commended by the gencral consideration that the state is a hither and more abstract unity than the family. The lower obligation must give way to unity figher, the universal must overrule the partisular bond.
3. Similarly it may be argued that, while the subordination of music to state discipline. and the importance attached to rhythm and harmony in education, had likewise a connexion with Sparta and the Pythagoreans severally, Plato's deliberate attit ude towards poctry and art could hardly be other than it is. Phitosophy, while still engaged in generalization, could not assign to the imagination its proper function. "Aesthetik" could not enter into ber purvicw. For a moment. in the Symposium, the ancient quarrel of poerty and philosophy had seemed to be mehed in a dominant tonc. but this was only a load anticipation. Plaso, if man ever did so, had ielk the siren charm, but he is now embarked on a more severe endeavour, and. until the supreme unity of truth and good is grasped, vagrant lancy must be subdued and silent.
4 In the carty education of the guardians a place is found for the unconscious virtue aequired through habit, which the Proteo. goras and Meno sturabled aver and the Phaedo treated with disdain. In the ideal state, however. this lower excellence is no longer a wild plant. springing of itself through some uncovenanted grace of inspiration: but cuttivated through an education which hat been purified by phrilosophy was 10 be in harmoay with reagon. But if Plato were cross-questioned as to the iatrinsic value of habite so induced as a preservative for his pupils against temptation, he would have replied. "I do not pretend to have removed alt difficultics from their peth. Enough of evil still sutrounds them to test their moral strength. I have but cleased the well.-springs of the noxious weeds that have been fatal to to many, in order that they may have litule, to unlearn, and be exposed only to such dangers as are ine vitable."
5. It is a singular lact, and worth the attention of those who look for system in Plato, that the defintion of justice here so laboriously wrought out, vis. the right divition of habour betwoen the three chascs in the mate and between the three corresponding facultics in the individual soul, is nowhere else reperted or applied. although the tripartite division of the coul recurs in the Iimecus. and the notion of justice is of great Importance to the argumenta of the Politicms and the Laves.
6. Before leaving the Repribic. it is important to mark the sage which has now been reached by Plato's doctrine of ideas. The staiements of the Republic on this subject are by no means everywhere consistent.

[^76]a. Towands the end of bk. v. philocophers are defined as lovera of the whole, who recognize the unity of justice, goodness, beauly, each in itself, as distinguished from the many just or good or beautiful things. The former are atid to be objects of knowledge, the latter of opinion, which is intermediase between knowledge and ignorance. Knowledge is of being ignorance of the non-exitlent, opinion of that which is and is not.
b. In bk. vi. there is a more elaborate statement. implying a more advanced point of view. The "contemplation of all time and all existence " is a riper conception than "the love of each thing as a whole:" I gnorance and nomantity have now disappeared. and the seale is graduated from the most evanescent impression of rense to the highest reach of absolute knowledge. And in the highest region there is again a gradation, rising to the form of good, and descending from it to the true forms of all things. In the application of this scheme to the theory of education in bk. vii. there are still lurther refinements. The psychological analysis becomes more suhtle, and more stress is laid on the connexion of idcas.
c. The doctrine reverts to a cruder aspect in bk. x., where owe are told of an ideal bed, which is ope only and the pattern of all the many actual beds
d. A yet different phase of idealism presents itself in bk. ix. (sub fin.), in the mention of a "p pattern of the perfect state laid up in heaven which the philosopher is to make his rule of lifc.
What is said above concerning Plato's mode of composition bas sorne bearing on these inconsistencies of expression. And that Bks vi., vii., as being the most important, were finished hast is a not untenable hypothesis. But that Plato, in preparing the way for what be had in contemplation, should content himself with provisional expreseions which he had himselu outgrown, or that in a casual illustration (as in bk. x.) he should go back to a crude or cven childish form of his own theory, is equally conceivable and in accordance with his manner elsewhere. Socrates in the Parme. nides confersediy wavers on this very point. And there are "idcas " of the four elements in the Timocess.
VI. Eulhydemus, Parmenides, Theocelelus, Sophist, SLalesman, Philebus (the dialectical dialogues).-Even in the most advanced metaphysics of the Republic there is a byperbplical, transcendental teadency, from which Plato ultimately to some extent worked himself frec. But it was not in conversation with "dear Gtaucon," or "between the lines " of an ethico-political writing. that this partial emancipation could be effectually altained. We have now to consider a series of dialogues, probably intended for a narrower circle of readers, in which Plato grapples directly with the central difficultics of his own theory of knowing and beine. It is not necessary to assume that all of these are later than the Republic. The position of the Euthydewus and Parmenides in the order of composition is very uncertaln. The Theaetens has points of affinity with the Republic. The Sophisf, Politicus and Philebus are in a later styic. But, on account of their cognate subject-matter, these six dialogues may be conveniently clased together in a group by ibemselves. And the right place for such a group is intermediate bet ween the Republic and the Laws.
The unity of the object of definition, the identity of virtue and knowledge, the existence of an absolute good, which would be univerafily followed if oniversally known, and of a standard of truth which is implied in the confession of ignorance, were postuhates underlying the Socratic process, which in so far made mo claim to be a "philotophy without assumptions." These postulates, when once apprebended, drew Plato on to speculate concerning the nature, the object and the method of knowledge. Now, so far as we have hitherto followed him, his speculation has either been associated with ethical inquiry, or has been projected in a poetical and semi-mythical form. In the Phacdrus however, the vision of ideas was expressly conjoined with an outline of peychology and a foreshadowing of scientific met hod. And, while the opposition of ideas to phenomena and of knowledge to opinion has been repeatedly assumed, it has also been tmplied that there is a way between them, and that the truth can only he approached by man through interrogation of experience. For it is nowhere supposed that the human inquirer is from the first in a position to deduce facts from idens. Much rather, the lighe of the ideas is one which fitfulty breaks in upon experience as men struggle towards the universal.

But it is not less true that the metaphysical aspirations from which Socrates had seemed to recall men's thoughts had been reawakened in consequence of the impulse which Socrates
himself had given. From asking, Is virtue one? Can virtue be taught? Piato passes on to ask, What is unity? What are knowiedge and being? From criticizing imperiect modes of teaching virtue, he has begun to speculate about the right and wrong uses of the intellect, and from dramatic portraits of the individual Protagoras or Gorgias goes on to the ideal delineation of the sophist. He has entered upon the " longer way," and is no longer contented with mere "hypotheses." With this demand for scientific precision his conception of the ideas themselves is modified, and he strives anew to conceive of them in relation to one another, to the mind, and to the world. As the balance of ethical truth was restored by admitting an unconscious (or inspired) conformity to reason, so now a fresh attempt is made on the intellectual side to bridge the gull between sense and knowledge.
This endeavour involves, not only an expansion of the method of Socrates, but an examination of the earlier philosophics from which Socrates had turned away. Their influence on Plato has been traceabic in the preceding dialogues, though, except in the case of Pythagoreanism (Gorg., Phaed., Rep.) it bas been mostly indirect and casual. But in these dialectical dialogues he manifests his serious conviction that the contemporary fallecies which formed the chiel hindrance to inquiry were deeply rooted in forms of thought created by carlier thinkers, above all by Heraciltus and Parmenides. To the exclusiveness of their first principles as beld by their collowers Plato attributed the barrennesss and impracticable unreality of many discussions, which put shadow-fighting and contzoversy in the place of real investigation, and led men to think that truth was unattainable. He therefore enters into conversation, as it were, with the great minds of former times, and in the spirit of Socrates compeis each of them to yield up his secret, and to acknowledge a supplemental truth. To this effort he may very probably have been stimulated by the dialectical activity of his Socratic friends at Megara, whose logical tastes had drawn them towards Eleaticism. But, unlike them, while strengthening his metaphysical theory, he was also led to give to his political speculations a more practical lurn.
The Euthydemus is a treatise "De Sophisticis Elenchis" in the form of a farce, and may serve to introduce the five orher

Euthydemane

 dialogues, th the encounter with Thrasymachus introduces the serious part of the Republic. Under the mask of mockery there is more of concentrated thought, and also more of bitterness, in this dialogue than in the Protagoras or the Gorgias.A sample of educational dialectic-in which Socrates draws oul of young Cleinias the admissions (1) that a philosophy is needed, (2) that the highest philosophy is a science of kingeraft, which remains for the present undefined-is contrasted with 2 serics of ridiculous sophisms, propounded by Dionysodorus and his brother Euthydemus, in which absolute and relative notions. whether affirmative or negative, object and subjeet, universal and particular, substance and ettribute, action and modality, are capriciousiy confused. Crito, to whom Socrates narrates the scene, is moved to contempt. But Socrates warns him not on this account to despair of phiiosophy. In conclusion, Isocrates, or some one else, who prematurely mixes up philosophy with practical politics, is cautioned against spoiling two good things.
Such puzzles as-How can I learn either what I know or what I do not know? ${ }^{1}$ How can things become what they are not? How is falsehood or denial possible?-although treated joculariy here, will be found returning afterwards to "trouble the mind's eye."
Plato appears in the same act to have become aware of his affinity wlith Parmenides, and to have been led to reconsider the Parmealdes. foundations of his own doctrine. The one being of Parmenides was a more absiract notion than justice, beauty or the good. And the Zenonian method had more pretension to exactness than the Socratic. But it remained harren, because contented to repeat its own first essays in the destructive analysis of experience, without rising to the

[^77]extmination of its own firs principless. For this highet criticism, of which he himself aiso stood in need, Riato looks up from the discipless to the master Parmenides. The appeal to him is put into the mouth of Socraten, as a very young man, who hat framed for himself a theory of ideas, and would gladiy see the Zenonian process applied to the notions of sameness, difference, likeness, unlikeness, unity and being.

Parmenides, whom Plate treats with tender reverence not unmixed with irony, proposes to the youth a series of questions which reveal the crudity of the doctrine of elim. (1) Are there idess of trivial thingst? (2) How do things "partake" of them? (3) Must not idealism proceed in infinifume? (4) If ideas are thoughts, do they and their participants think? (5) If they are patterns, and things resemble them, must there not be a pattern of the resemblance, and so on in infinilum? (6) II absolute, are they thinkable hy man ?

These difficulties are real, and yet to deny ideas is to destroy philosophy. (As the paradoxical doubts in the Prolagoras do not shake the faith of Socrates in the existence of good, so neither does Plato here intend for a moment to derogate from the belief in the existence of the One and the True.)

Parmenides advises Socrates to arm himsif for the further pursuit of (ruth (1) by the higher applicallon and (a) by the extension or completion of (he Zenonian method. (i) The method is to be applied to abstractions. (2) it is not enough to show the inferences which may be drawn from the admladom of an hypothesis, but account must also be taken of the inferences which follow from its rejection.
Parmenides exemplifies his wuggestion by examining his own first principle in conversation with a youth who while a contemporary of Socrates, Is a namesake of Prato's pupil Aristotle. ${ }^{\text {a }}$ Nos conteni with the affirmative and negative' hypothescs, he pursues either along \&wo lines, according at cither term of the proposition is emphasized, and this not only as regards the hypothesia of unity. but also at applied to the alzernative hypothesis of plurality. The result, as in the Protagoras, is purcly dewructive, and the dinague ends abruptly without a word of reply from Socrates.

The second part of the Parmenides may be regarded as an experiment in which Plato "assays to go " in Eleatic samour. Yet the strange web is "shot" with colours of original thought The mode of conceiving time and becoming, and the vision of nothingness towards the end, may be noted as especially Platonic. These passages may be regarded in the same light as the wise words of Protagoras or the sober truths which occur amidst the wild fancles of the Crolylus. They should not mislead the interpreter into a search for recondite meanings.

The Zenonian method has been carried out to the utmost in appaication to the highest suhject, and has led the mind into a maze of contradiction. It remains to call in question the method itself, and the notion of absolute identity Themenere. and differance on which it hinges, and so to lay anew the foun-dation-stone of thought. Before this can be attemptod, however, another set of difficulties have to be met, and another set of philosophers examined. For the current scepticism had undermined the conception of knowiedge as well as that of being. and the fame of Heraclitus was hardly second to that of Parmenides. Protagoras appeared in a former dialogue as the champion of ordinary morality; he is now made the exponent of ordinary thinking. His saying "Man the measure" is shown to rest on the unstable basis of the Heraclitean flux. By an ciaborate criticism of both theories knowledge is at hast separated from the relatlvity of sense; but the subsequent attempt to distinguish on abstract grounds betwcen truc and false opinion, and to define knowledge as true opinion with a reason (ci. Meno), proves ineffectual. Plato still shows traces of Megarian influence. But the disjunctive method of the Parmerides is not resumed. The indirect proofs are so arranged as to exhibit the skill of Socrates in "bringing to the birth" the germs of thought in a richly endowed and "pregnant" young mind. Theactetus is the embodiment of the philosophic nature describcd in Rcp. bk. vi., and has aiready been trained by Theodorus of Cyrene in geometry and the other preparatory sciences of
${ }^{2} \mathrm{Cf}$. Rep. x. 597.
${ }^{1}$ Cf. the younger Socrates of the Politicus. It would be precarious to draw any inference from this minute fact.

Rap. bk. vii. It is in conversation with Theodoris that Socrutes impressively contrasts the lives of the lawyer and the philosopher. The Theoclatur marks a great advance in cloarness of metaphysical and paychological expression. See for example the pasarge (t84-i86) in which the independent function of the mind is asserted, and ideas are shown to be the truth of experience There is also a distinct approach towards a critical and hastorical method in philonophy, while the perfection of style continues unimpaired, and the person of Socrates is as vividly sepresented as in any dialogue.

Notwithatanding the persistence of an indirect and negative method, the spirit of this dialogue also is the reverse of aceptical, "Socrates must assume the reality of knowledse or deny himself " (197 A). Perbapm in no metaphysical writing is the belance more firmly held between experience, imagination and refection. Plato would seem to have made a compact with himself to abstain rigidly from snatching at the golden fruit that has so often cluded his grasp, and to content himself with laboriously "cutting steps " towards the summit that was still unscaled.

With Plato, as with other inventive wrtters, a time seems to have arrived when be desired to connect successive works in a sephbes. series. Thus in planning the Sophistes he linked it to the Theceleling (which had been written without any such intention), and projected a whole tetralosy of dislectical dialogues, Theactefus, Sophisfes, Politicus, Philosophos, of which the lact piece seems never to have been written.

After an interval, of which our only measure in a change of style, the philosopher returns to the great central question of knowledge and being. The obstacte in his path, on which he has often played with light atire, dramatic portraiture and indirect allusion, is now to be made the object of a meriously planned altack. He has made his approaches, and the enemy's fortreas \& to be fort hwith sapped and overthrown. This hoatile poaition is not merely the "Sophistik" which, as some tell ut, is an invention of the Germans, and as Plato himself declares is only the reflection of embodiment of the average mind,' but the fallacy of fallacies, the prime latsehood (mpitoy yation) of all contemporary thought. This is nothing elee than the crude abeoluteness of affirmation and negation which was ridiculed in the Euliydemus, and has been eleewhere mentioned as the first priaciple of the art of controversy.? For dramatic purposes this general error is pernonified. And the word "sophist," which had somehow become the bele noire of the Platonic school, thus for the first time fixedly acquires the significunce which has since clung to the name. That Phato himself would not adhere pedantically to the connotation here implied is shown by the admission, at the opening of the dialogue, that amongat other disguises under which the philosopher walks the earth the sophist is one.

In the Sophistes, as in the Parmcnides, a new method is introduced, and again by an Eleatic teacher. This method is repeeled with improvements in the Politicus, and once more referred to in the Philebus. It bears a strong resemblance to the "synaeoge" and "diacresis" of the Phoedrus, but is applied by the "friend from Elea" with a degree of pedantry which Socrates nowhere betrays. And the two methods, although kindred, have probably come through different channels-the classifications of the Phoedrus being Plato's own generalization of the Socratic process, while the dichotomies of the Sophistes and Pofiticws are a caricature of Socrates cast in the Megarian moald. Plato seems to have regarded this method as an implement which might be used with advantage only when the cardinal principles on which it turned had been fully criticized.

1. After various attempts to "caich the sophist," he is defined as the maker of an unreal tikeness of truth. Here the difficulty begins-lor the definition implies the existence of the unreal, s.e. of not-being. In our extremity it is necessary to "lay hands on our father Parmenides."
2. The contradictions attendant on the notion of "being," whether as held by Parmenides or his opponents or by the " leas exact" thinkers who came after them, are then examined, and in an extremely subtle and suggestive passage (246-249) an attempt
is made to mediate between idealion and materialiom. The reule is that while conmamate being is exempt from change it cannot be devoid of life and motion "Like children, ' Give us both;" by we.
3. This keads up to the main question. (a) are different notions incommunicable, or (b) are all ideas indigcrinunately communcable, or (c) is there communion of aome kinds and not of others? The last view is alone tenable, and is confirmed by experience. And of the trate combiamation and eeparntion of kinds the philosopher in juciere.

4 Then lt is acked (in order to "bind the tophist ") whether being is predicable of not-being.

Five chicf kinds (or eatepories) are now examined, vis, being, rest, motion, sameneas, difference. Rest and motion are mutually incommunicahie, but difereace is no leat universal than being itself. For everything is "other "than the rest, ie. is not. Thus positive and negative not only coexist but are coextensive
s. And, in spite of Parmenides, we have diacovered the existence, and also the nature, of not-being. It followe that the mere purmuit of contradictions is childich and useleas and whotly incompatible with a philosophic spirit.

Negation, Ialsity, contradictlon, are three notions which Plate from his height of abstraction does not hold apart. His position is the converse of the Spinozistic saying, "Omnis determinatio est negatio." According to him, every negative implies an affirmalive. And his main point is that true pegation is correlative to true affirmation, much as he has sad in the Phoedrus that the dialectician separates kinds according to the " lines and veins of nature." The Sophistes is a standing protest against the error of marring the finely-graduated lineaments of truth, and so destroying the vitality of thoughe.

The idealists whom the Eleatic atranger treats so gently have been identified with the Megarians. But may not Plato be reflecting on a Megarian influence operating within the Academy?

Here, as partly already in the Parmemides and Theacletws, the idens assume the nature of categories, and being is the sum of positive attributes, whife negation, as the shadow of affirmation, is likewise finally comprehended in the totality of being.

The remark made incidentally, but with intense emphasis, that the universe lives and moves "according to Cod,"t is an indication of the religions tone which reappears tncreasingly in the Politicus, Philebus, Timacus and Laws.

In passing on to comsider the statesman, true and false, the Eleatic stranger does not forget the lesson which has just been learned. While continuing his method of dichotomica, he is careful to look on both aldes of each primpose. alternative, and be no longer insists on dividing (statase between this and not-this when another mode of dassification is more natural. A rule not hitherto applied is now brought forward, the rule of proportion or right measure (rd μ ípeov), as distingusshed from arbltrary limitations. Nor is lormal logical treatment any longer felt to be adequate to the subject in hand, but an claborate myth is introduced On the ethicopolitical side also a change has come over Plato. As he has stripped his ideas of transcendental imagery, so in reconsidering his philosopher-king he turns away from the smiling optimism of the Repubric and looks for a scientific statesmanship that akall lay a strong grasp upon the actual world. He also feels more bitteriy towards the demagogues and other rulers of Hellas. The author of the Politicus must have had some great quarred with mankind. But so far as they will receive it he is still intent on doing them good.
2. The king is first defined as a herdsman of men. who as "slow bipeds "are distinguished from the pig and the ape. But the king us not all in all to his charges, at the herdsman is. The above definition confuses human oith divine rule.
2 Now the universe is like a sop, which God firat winds in one direction and then ieaves to spin the other way. In the former or divine cycle all was spontaneous, and mankind who had all things in common, were under the immediare care of gods. They were happy, if they used ther lezsure in interrogating nature. But on this reign of Zeus it is far otherwise Men have to urden their own ways and try to imitate in sonk far-off manner the all-but forgot ten divine rule.
3. Therefore in our present definition the term " supcrintendent " must be substituted for" herdsman "
What special kind of superintendence is true salcsmanship?
4. By way of an exampie, the art of weaving is defined. The example shows that kingerait has first to be separated from other kindred arts, both causal and co-operative. Nine categorien are adduced which exhaust social functions. Eight are eliminated, and the ninth, the clas of ministers, remains. Of these (a) slaves, (b) hirelings, (c) traders, (d) offictals, (e) priests are again parted off, although the last are only with dificulty separated from the king, when (J) a strange medley of monstrous creaturea come into view. Some arc fierce like lions, some crafty like the fox, and some have mixed natures like centaurs and satyrs. These are the actual ruler: of mankind, more sophistical and jugging than the sophist himself, And they too must be separated from the true king.
5. The lamiliar tripartite distinction of monarchy, oligarchy, democracy, is doubled by introducing into eacli the distinction involved in the presence or absence of wealth, and in the observance or non-observance of law. But no one of the six carries in itsclf a - cientific principle.

The true government is the rule, not of many, but of one or of e few. "And they may govern, whether poor or tich, by free-will or compulsion, and einher with or without law, 0 long as they govern scientificaily."
6. The respondent, a youthful namesake of Socrates, is ahocked at the remark that the true ruler may govern without law.

This leads to a discussion of the nature of law, which is compared to the prescription left by a physician. If present, he might dispense with his own rule. So the presence of a competent ruler is better than the soverelgnty of law, which makes no allowance for nature or circumstance, but tyrannically forces its own way. Imagine medicine, navigntion, \&c., similarty conducted by timehonoured preacription, with penaltics for innovation:-what would become of civilization? Yet if law is disregarded by rulers who are unscientific and warped by self-interest, this leads to far worse ovila. For the laws are based on some experience and wisdom. Hence, in the continued absence of the true ruler, the best cource, though oaly second beat, is the strict observance of law. And he who so rules in humble imitation of the scientific governor may be truly called a king, although if the divine lawgiver were to appear his living will would supersede the law.
7. As it is, though citios aurvive many evils, yet many are anipwrecked because of the ignorance of those at the helm. The order of badness in the actual states is-

8. It remoins to eparate from the true ruler those who co-operate with him as subordinates, the general, the judge, the orator. His own peculiar function is an art of weaving strength (the warp) with geatleness (the wool), when education has prepared them-and thin (1) by adminiotration, (2) by marriage.

The four preceding dialogues have shown (i) the gradual transformation of the Platonic ideas (while still objective) into forms of thought, (2) the tendency to group them into scries of catcgories, (3) a corresponding advance in psychological classification, (4) an increasing importance given to method, (5) the inclination to inquire into processes (revedecs) as well as into the nature of being.
Meanwhile Plato's approach to the Eleatics, though in the way of criticism, has brought into promiaence the notions of pambers. unity, being, sameness, difference, and has left somewhat in abeyance the idea of good. To this " highest of all studies " Plato now returns, equipped with his improved instruments, and ready to forge new ones in the same laboratory, or in some olher, should occasion serve. His converse with Parmenides ended in his assertion of an clement of difference pervading all things-in other words, of an indeterminate element underlying alt determinations. This brings him again into relation with the Pythagoreans, who had similarty asserted the combination of finite and infinite in the universe. Taking advantage of their help, he gains a more advanced (but still ideal) conception of the concrete harmony of things, and approaches the definition of that which in the Republic be but shadowed lorth. With this most scrious inquiry there is comhined (as in the Sophistes and Polificus) an ironical and controversial use of dialectic, by which the juggler and false pretender (who is in this case the goddess of pleasure), aiter claiming the highest dlace, is thrust down to the lowest.
It must be admitted that the style of the Philebws is far from brilliant, or even clear. In the effort of connecting ahstractions

Plato's movement is more laboured than in his first glad realiza. tion of them.
Instead of attempting here to follow the windings of the dialogue, it must suffice to state the main result. Neither pleasure nor knowiedge is the highest good, and the good elades definition; but the shrine, or habitation, of the good is a complex life of which the elements are, in order of merit: (x) measure, the cause of all right mixture; (2) (a) beauty, the effect, and (b) reallty, the inseparable condition; (3) intellect; (4) science, ut and right opinion; (5) purc pleasure unaccompanied with pain. "Not all' the animal kingdom shall induce us to put pleasure first."
The Philebss introduces us to the interior of the Academy in the lifetime of the master. More than any other of the dialogus it recalls Aristotle's description of Piato's teaching. But, while his followers seem early to have fallen under the dominance of the latest phase of his doctrine, Plato himselr, even in the Philebus, is still detached from any servitude to the creations of his own mind. He manipulates them as the medium for expressing his fresh thoughts, but they are not yet crystallized into a system.
"I will remind you," Socrates, " of what has been omitted," says Protarchus at the conclusion of this diajogue. The lart (presumably) of Pisto's metaphysical writiags thus fitly ents with a confession of incompleteness. But II, as Renan sayx "the most fatal error is to believe that one serves one's country by calumniating those who founded f ," neither is it for tht interest of science to ignore these imperfect anticipations. By methods elaborated in the course of centuries, and far more sure than any which Plato had at his command, mankind have gainel an extent of knowledge which he dreant not of. ${ }^{1}$ But the Gret metaphysician is none the less a pioneer of knowledge,' while the special sciences of ethici and psychology had been carriod from infancy to adolescence in a single lifetime.

VIL Timacus, Crilias [Hermocrales].-As the Sophities and Politicus were writton in continuation of the Theaetetus, so, at some uncertain time, Plato conceived the design of writing a great trilogy, for which the idenl state depicted in the Requalic should be the point of departure. The grand outline there sketched by Socrates was now to be filled up by Critias and Hermocrates. The form set up by reasoning should be made alive, the "airy burghers" should be seen "making history." As a prelude to this magnificent celebration, Timaeus, the Pythagorean philosopher, who is present at the Panathenate, is invited to discourse of the origin of all things, and to bring down the glorious theme to the creation of man. What shoald have followed this, but is only commenced in the fragment of the Critias, would bave been the story, not of a fall, but of the eriumph of reason in humanity.

In the Philebus (59 A, cf. 62 D) Plato speaks with a touch of contempt of the life-long investigation of nature, as beipg concerned only with this visible universe, and immersed in the study of phenomena, whether past, present or to come, which admit of no stability and therefore of no certainty. "These things have no absolute first principle, and can never be the objects of reason and true science."

Yet even this lower knowledge is there admitted as an clement of that lifo which is the habitation of the good. And there are not wanting signs in his later dialogues that Plato's imagination had again been strongly drawn towards those physical studies which, as the Phoedo shows, had fascinated him in youth. That nature and the world proceed "according to God and not according to chance" is the belief of the Eleatic stranger, to which he perceives that Theaetetus will be irresistibly drame as he grows older (Sopt. 265 D). In the midst of dialectical abstractions, the processes of actual production (rendots) have been increasingly borne in mind. And the myth in the Palitiess turns on cospoological conceptions which, although differiss from those in the Timacew, and more accordant with Plato's bitterest mood, yet throw a new light on the deeper current of
'See, however, Polit. 272 C, D.
${ }^{-}$See Jowatt, Introd. to the Timasws.
his thoughts. In the same patage (iy2 C) thers ocedrs the fint clear anticipation of an interrogatio maluerce.

The impulse in this new direction, if not ociginated, was manifestly reinforced, through closer intercourse with the Pythagorean school. And the choice of 'Timaets the Pythogorean as chief speaker is an acknowledgment of this obvious tendency. If in the course of the dialogue there occur ideas apparently borrowed from the Atomists, whom Plato persistently ignored, this fact ought probably to be referred to some early reaction of Atomic on Pythagorean doctrine. It is important to observe, however, that nok only tho Timaews, but the anfinished whole of which it forms the introduction, is prolexsedly an imaginative creation. For the legend of prehistoric Athens and of Atlantis, whereof Critiss was to relate what belonged to internal policy and Hermocrates the conduct of the war, would have heen no other than a prose poem, a "mythological lie." conceived in the spirit of the Republic, and in the form of a fictitious narrative. And, therefore, when Timneus proleiees to give only a probable account of shadowy truths, he must be taken at his word, and not crillcized in too exactins a spirit. His descriptions have much the same relation to the matural philosophy of Plato's time that Milton's coamology has to the serious investigations of Galileo or Copernicus-exeept that all physical speculation hitberto partook in some measure of this halr-mythological character, and that Plato'a mind, although working in an unfamiliar region, is still that of a speculative philosopher.

As Parmenides, after demonstrating the nonentity of gromth and decay, was set impelled to give some account of thia nongroneent existent and unintelligible phenomenal world, so Plato, alihough wamed off by Socrates, must neede attempt to give a prohahle and comprehensive description of the visible universe and its creation. In doing to he acknowledges an imperfect truth in theories which his dialectic had previously set aside. In exsmining the carlier philosophers he has already transgressed the limits prescribed by Socrates, and the effort to connect ideas bas made him more and more conscious of the gap between the ideal and the actual. He cannot reat until he bas done his utmost to fill up the chatimcalling in the help of imagination where reason fails him. His dominant thought is still that of a deduction from the "reason of the best," as in the Phoedo, or "the ides of good," as in the Reprobic. But boih his abstract idealism and bis absolute optimism were by this time considerably modified, and, although not coniounding "causes with conditions," as he once accused Anaragoras of doing, he yet assigns more scope to "second causes" than he would then have been willing to attribute to them. This partly comes of ripening experience and a deepening sense of the persistency of evil, and partly from the feclingwhich setms to have grown upon him in later life-of the distance between God and man.

Timacus begins by assuming (1) that the universe being corporeal is caused and had a beginning, and (a) that its mysterious author made it after an everlasting pattern. Yet, being bodily and visible, it cao only he made the subject, humanly speaking, of probable discourse. Thus much being premised, he proceeds to unfold(a) the work of mind in creation, (b) the effects of necessity, inciuding the general and specific attributes of bodien, (c) the principles of physiology, and (d) an outline of pathology and medicinc.
To give a (ull account of such a comprehensive treatise is beyond our acope, a and the Timacus, however great and interesting. has been well described as an out-building of the great fabric of original Platonism. A very few scattered observations are all that there is apace for here.
a. 1. In the mythology of the Timacus some of the conceptions which attained logical clearness in the Sophiss and Philebus resume an ontological form. Thus, in compounding the woul-otuft of the universe, the father of all takes of the continuous and discrete and luses them into an essence (the conmposite being of the Philebus). Agaia be takes of the same and other (cl. the Sophivt). overcoming their inherent repugnapce by his sovereign act.
2. The notion of an economy or rewervation in Plato has been often exaggerated and misapplied. But it is difficult to acquit him of intentional obscurity in opeaking of the creation of the Earth. It is clear, though Plato does not say so, that she is meant to have been created together with the Heaven and together with Time. and so before the other "gods within the heaven." i.e. the sua and
moon and five plonots, and if ia a plaucible supposition that she is the "artificer of day and night," by interposing her bulk' to the sun's rays. If the word aluopisy in p. 40 implies motion (as Aristotle thought ') it cannot be, as Grote mupposed, a motion consentanoous with that of the outer ephere, but either some far slower motion, perbapp assumed in order to account for the shifting of the geasons, or an equal retrograde motion which is supposed to neutralize in her casc the " motion of the same." She clings to the centre. as het patural abode. And the diarnal motion of the heavena is due not to any mechanical force but to the soul of the world extending from the centre to the poles and comprehending all.
3. Immortality is in the Timacus dependent on the will of the Eternal. And the sublime idea of eternity is here first formulated.
4. The phenomena of vision and hearing are included among the worke of reasol, becauso the final canme of these bigher senses is to give men perception of number, through contemplation of the measures of time.
b. 1. It has been commonly said that the four elements of the Timacous are geometrical figures, without content. This is not true. Por what purpore does Plato introduce, "benides the archetype and the created form, a third kind, dim and hard to conceive, a wort of limbec or matrix of creation,' if not to fill up the triangles which are elements of elements, and to be the vehicle of the forans compounded of them? It has been supposed that this "nurse of generation " is identical with "space." and it cannot be atid that they are clearly kept apart by Plato. But be had a distinct nomenclature for either, and although gravity is explained away (so that his molecules, unilike Clerk Maxwell's, may be called imponderable). yet extension, or the property of filling space, is sufficiently implied. 2. The difference of sise in the triangles and varying sharpnese of their outlines are ingenious though inadequate expediente, adopted in order to account for qualitative difference and physical change.
3. In criticizing the illusory notion of "up and down," Plato, apparently for the first time, broachet the conception of antipodes. 4. More dintinctly than in the Pinlobus. bodily pleasure is ex. plained by "A sudden and sentible veturn to nature" (cr. Ar. Rhat i. 13. (1; N.E., vij. 10).
5. Natural philosophers are warned against experimenting on the mixture of colours, which is a divine process and forbidden to man (Tim. G8D). (Ancloat cience was at a lows for a theory of colours.)
c. 1. Plato teade more amd more in him later writings to account for moral evil by phytical conditions, thus arriving at the Socratic principle of the involuntarincss of vice by a diferent road.

Hence in the Timarws not the body only la made by the inferior gods, bet they aloo crease the lower and mortal purts of the haman ood: the principle of anger which is planted in the breast, within heariug of reamon, and that of appetite which is lodged below the diaphragm like an animal tied in a stall, with the stomach for a crib and the liver for a " soothsaying " kooking.glasa to soothe or terrify it when tempted to break leose.
2. The brain-pan wan left bese of protecting flesh " becaume the sana of Cod who framed ua deliberately chote for us a precarious life with capability of rcacon, in preference to a long secure existence with obstruction of thought."
3. The nails are a fudimentary provision for the lower animata into phich degenerace souls wore aftervards to be transformed.
4. Vegetabies have canmation but ant motion.
5. By way of illustrating the very curious account here given of respiratioo, it is asserted that what is cemmonly thought to be the attraction of the magnet in really due to rotatory motion and displacement a remarkable anticipmation (7 im. 80 c).
6. Whea the original particles wear out, and the bonds of coul and tody in the marrow give way, the soul escapes delightedly and flies away. This is the painless death of natural decay.
d. I. The dependence of mental discase on bodily conditions is more fully recognized in the Timacews than elsewhese in Plate (contrast the Charmides, for example).
2. He has also changed his mind about the treatment of disease, and shows more respect for regimen and diet than in the Repwblic. Diseases are a kind of second nature, and should be treated accordingly.
3. It is aiso a momark in contrast with the Republic, that over. study leade to head complications, which physicians ascribe to chill and find intractable.
Lastly, it is one of the strange irregularities in the compotition of the Timocus that the creation of woman and the relation of the sexes ${ }^{2}$ to each other are wubjects reserved to the end, because this is the place given to the lower animals, and woman (cf. the Phaedrus) is the first transmigration (rom the form of man. This order is probably not to be altrihuted to Phato's own thought, but to come peculiarity of Pythagorean or Orphic tradition.
VIII. The Lewos.-The two series of dialogues, the dialectical and the imaginative-Sophistes, Politicus, PhilosophusTimaeus, Critias, Hermocrdes-were left incomplete. For Plato had concentrated his declining powers, in the evening of

1 Arintotler however uess aldomphan a different word

Thero is an anticipation of microscopic observation in the worde

his life, ${ }^{\mathrm{I}}$ upon a different task. He was resoived to leave behind him, if he could so far overcome the infirmities of age, a code of laws, conceived in a spirit of concession, and such as he still hoped that some Hellenic state might sanction. The motive for this great work may be gathered from the Politicus. The physician in departing is to give a written prescription, adapted as far as possible to the condition of those from whom he goen 2way. This is the second-best course, in the absence of the philosopher-king. And, as the Hellenic world will not listen to Plato's heroic remedy, he accommodates his counsel to their Lembe preconceptions. He returns once more from abstract discussions to study the application of ideas to life, and though, by the conditions of the problem, his course is "nearer earth and less in light," this long writing, which is said to have been posthumous, ${ }^{2}$ has a peculiar interest. The ripeness of accumulated experience and the mellowness of wise contemplation make up for the loss of prophetic insight and poetic charm.

The form of dialogue is still retained, and an aged Athenian is imagined as diacoursing of legislation with the Lacedaemonian Megillus and the Cretan Cicinias, who has in view the foundation of a new colony, and is on his way with his two companions from Cnossus to the temple and oracie of Zeus.

Plato now aims at moderating between Dorian and Ionian law, freely criticizing both, and refining on them from a higher point of view. "The praise of obedience, the authority assigned to elders, the prohibition of dowries, the enforcement of marriage, the common meals, the distribution and inalienability of land, the institution of the Crypteis, the freedom of bequest to a favourite son, the dislike of city walls-all reflect the custom of Sparta." " The use of the lot, the scrutiny of magistrates, the monthly courres of the council, the pardon of the forgiven homicide, most of the regulations about testaments and the guardianship of orphans, the degrees of consanguinity recognized by law, correspond to Athenian laws and customs " Jowett).

The philosopher's own thoughts come out most atrongly in the "preludes" to the laws," and in the regulations concerning education, marriage and the punishment of impiety (i.e. sst, theism; and, denial of providence; 3rd and worst, immoral superstition). The difficulty which is met in the Politicus by the abandonment of the world for a time, and in the Timacus by the lieutenancy of lower gods, here leads to the bypothesis of an evil soul. The priority of mind (often before asserted) and the increased importance attached to numbers are the chief indications of Phato's ligtest thoughts about the intelligible world, But it must be remembered that the higher education (answering to Rep. vi., vii.) is expressly reserved. Had Plato written his own Epinomis, the proportions of the whole work (not then "acephalous ") might have been vastly changed.

The severity of the penalties attached to the three forms of heresy, especially to the third and worst of them, has led to the remark that Plato, after asserting " liberty of prophesying," bad become intolerant and bigoted in his old age (Grote). But the idea of toleration in the modern sense was never distinctly present to the mind of any ancient philosopher. And, if in the Lows the lines of thought have in one way hardened, there are other ways in which experience has softened them. Plato's "second-best" constitution contains a provision, which was not admissible in the "periect state," for possibic changes and readaptations in the future. The power of self-reformation is hedged round indeed with extreme precautions; and no young or middle-aged citizen is ever to hear a word said in depreciation of any jot or tittle of the existing iaw. But that it should be provided, however guardedly, that select commissioners, after

[^78]travelling far and wide, should being back of the froft of their observations for the consideration of the nocturnal council, and that a power of constitutionally amending the laws should thus be admitted into the state, is sufficiently remarkable, when the would-be finality of ancient legislation is considered. Plato even comes near to the reflecion that "constitutions are not made, but grow " (iv. 709 A).

Plato in the Laws desists finally from impersonating Socrates. But he is in some ways nearer to bis master in spirit than when he composed the Pheedrus. The sympathy with common life, the acceptance of Greek religion, the doepening humanity, are no less essentially Socratic than the love of truth which breathes in every page. And some particular aspects of Socratism reappear, such as the question about courage ${ }^{4}$ and that concerning the unity of virtue.?

Doublful and Spurions Works.-Of the dialogues forming part of the "Platonic canon," and not inchuded in the preceding survey, the Lesser Hippias, First Alcibiader and Memexemus are the most Platonic, though probably not Plato's. The Greater Hippias and the Clitophon are also admitted to have some plausibility. The Second-Alcibiades (on Prayer), the Fipparchus (touching on Peisistratus and Homer), Minos (" de lege'), Epinomis, Erastac, Theages, are generally condemned, though most of them are very early forgeries or academic exercises. And the Axiochus (though sometimes prized for its subject, "the contempt of death"), the De justo, De viritute, Demedocms, Sisyphes, Eryxias (a not-uninteresting treatise on the use of money), together with the so-called Definilions, were rejected in ancient times, and are marked as spurious in the MSS.

Editions-(1) Complete: Adine, Ven., 2513: H. Stephanus 3 vols. (1578), with Latin version by Serranua (ie. De Serre, the real editor), (the paging of this edition is preserved for convenience of reference on the margins of most subsequent editions); \mathbf{G}. Stallbaum, (12 vols., $1821-1825$); G. Stallbaum, the text in 1 vol. (1850) : C. F.
 the Zurich edition by Baiter, Orelli and Winkelmann (1832-1842); Hirschig and Schneider, in Didot's series (I856-1873); M. voo Schanz, with critical notes (1875-1887): J. Burnet (Oxford, Igo2). (2) Pertial: L. F. Heindorf, Lysis, Charmides, Hippias Major. Phaedrus, Gorgias, Theaettus, Cratylus, Parmewider. Exthydemus, Phacde, Sophist, Protagoras; Philebus, C. Badham, E. Powe (1861). R. G. Bury; A pologia, J. Riddell (with Digest of Platonic Idioms) (I861): Prolagoras, Wayte (1854) ${ }^{1871}$; Theactetus, L. Campbell (1861) 1883. B. Kennedy; Sophist and Politicks, L. Campbell (1867): Phordo. W. Geddes, Archer Hind: Timaens, Archer Hind (I888); Parmenides, Waddell (1894); Meno, J. Adann, Seymer Thompeon ; Apoleqie, Crita, Mcno, St G. Sock; Euthydicmus Gifford; Phoedrus, Gorgias, W. H. Thompson; Symposium, Euthydemus, Laches, C. Badham: Pcrmenides, Stallbaum. Maguire, Waddell; Leges, F. Ast (18i4), C. Ritter (Commentary) (1896); Republic, Jowett and Campbell (I (994), J. Adam (1902).

Trapslations.-Latin: A Latin version of the Timeens by Chalcidius existed in the middle ages and was known to Dante. It was printed at Paris in 1520 (Teubner, 1876). The complete rendering by Martiglio Ficino (1496) formed the basis of other Litin translations, such as that of Serranus (swpra), which accompanied the edision of Stephanus. It was printed in the Basel edition of \$534- Engtish: (1) Complete: Sydenham and Taylor (1804): Jowett (1871-1892). (2) Partial: Republic, Davies and Vaughan, lowett (in a separate volume; 3rd ed., 2 vols., 1908): Philebus, E. Poste; Georgias. Cope; Timacus, Archer Hind (ín hin edition); A pology, Crilo, Phaedo, Church, Jowett (reprinted from the complete translation with preface by E. Caird); Theaetelms, Paley, Kennedy; German: Schleiermacher (1817-1828), J. H. M6̈ler (isjo-1866): French: V. Cousin (13 vols., 1822-1840). Italian: Bonghi.

Dissertations.-English: F. Scheiermacher's Introdections, translated by W. Dobson (1836); Ed. Zeller's Plato and the Odder Academy, translated by F. Alleyne, \&c. (1876); B. Jowett's Iutro ductions, in hls complete translation, final edition (1892): G. Grote, Plato and the other Companions of Socrates (1865): F. C. Conybeare on an Armenian version (189 r); W. Pater, Plato and Platosism (1893); R. L. Nettleship, Lectures on the Repmilic, \&c. (1898) (cf. also his easay in Hellexica، 1880); Th. Gomperz, Greal Thinkers, vols. ii. and iii. in Eng. trans. (1gos); W. Lutoslawski, Place's Lequi, \&c.; L. Campbell on Plato's Republic in Murray's Home and Sctiool Series " (1902); L. Campbell. Relifion in Greek Literadure (London. 1898): J. A. Stewart. The M yihs of Plate (t905): A. E Taylor, Plofo (1908): J. A. Stewart, Plato's Doctrine of Ideet (1909). German:

[^79]C. F. Hermann, Geschichle und Syslem, \&c. (1339); A. Boeckh, Unkersuchungen (1852); Ed. Velles, Geschichle der fr. Philosophie: Fr. Oberweg; Untersuchungen (186!); S. Ribbing, Genctische Darstellurg (1863); Fr. Susemihl, Genelische Entwicklung (1855-1898) ; E. Alberti, Geist und Ordmung (1864); C. Schasrschmidt. Die Sammlung der platonischens Schriften (1866); M. Vermehren, Plaf, Sudien (1870) D. Peipers. Untersuchungen über das System Plalons. Teil i. "Die Erkenntnisst heorie "' (Leeipzig, 1874) ; O. Apelt, Bcilrdge sur Geschichto der eriechischen Philosophien; L. Spengel, Isocrates wnd Platon (1863): A. Krohn, Die platonische Frage (1878): E. Teichmuller Literarische Fehter (1881); H. Bonitz, Plasonische Sludien (especially valuable) (1886); E. Pheiderer, Socrates ind Platon (1896): H. Windenband, Platon (1900): C. Ritter, Untersichwnetw;Th. Gomperz. Platonische A ufsulal : Griechische Denker, vel. ii. ; P. Natorp, PI. Ideen Lehre (1903): C: Litter, Platon: Sin Leicn, seime Schriften, stime Lehre (1909), vol. i. ; and News Unterswanumge (1910). Other references will be found in the volume named. French: V. Cousin T. H. Martin, Eludes sur la Timbe (184t). Itahian: Felice Tocco.

Dictionamies and Indices.-Mitchell's Inder to Plato; F. Aet Lexicon platonicum; E. Abbott, Irdex to Plato (English, 1875).

On this MSS.-See eapecially Bekker's edition; Gaislord's Lectiones platonicae (1820); M. Schanz's edition with eritical notes Jowett and Campbell's Repullic, vol. ii.; J. Burnett's Oxford edition. The important Codex Clarkianws in the Bodleian library has been reproduced in facsimile, with a preface by T. W. Alen (1898-1899).
(L. C.)

PLATO, Athenian comic poel of the Old Comedy, flourished between 428-389 日.c. According to Suldas, he was the author of thirty comedies. Some of these deal with political matters. Such were the Cleoption and Hyperbolus, directed against the well-known demagogues, and the Symmachis, referring to a coalition formed by Nicias, Alcibiades and Phaeax to get rid of Hyperbolus by ostracism. His later plays treat the vices and failings of mankind in the spirit of hurlesque and parody. Such were the Sophistae, akin to the Clouds of Aristophanes; the Cinesias, an attack on a contemporary poet; the Festivals, satirizing the useless expenditure and extravagance common on such occasions; mythological subjects-Adowis, Europe, Io, the Ants (on the Aeginetan legend of the change of ants into men); Phoon, the story of the Leshian ferryman, who was presented by Aphrodite with a marvellous ointment, the use of which made women madly in love with him.
See T. Kock, Comicorsm alticorum fragmenta, 1. (r880); A. Meineke, Poelarum comicorum graecorwm fragmenta (1855).
PLATON, LEVSHIN ($\mathrm{r}_{737-1812 \text {), Russian divine, was born at }}$ Chashnikovo near Moscow, and educated in the academy of that city. In 1763 the empress Catherine 11. invited him to instruct her son Paul in theology, and he became one of the court chaplains. Three years afterwards Platon was appointed archimandrite of the monastery of the Trinity (Troitskaya Lavra) near Moscow, in 177° archbishop of Tver, and in 1787 archbishop of Moscow and metropolitan. He died in 1812 , one of his last acts having been to write an encouraging letter to the emperor Alexander I. in view of the French invasion. Platon was a brilliant and learned man, and the author of several works which enjoyed a high reputation in their time, including A Short History of the Russian Church, which has been translated into English.
PLATONIC LOVE, a term commonly applied to an affectionate relation between a man and a woman into which the serual element does not enter. The term in English goes back as far as Sir William Davenani's Platonic Lovers (1636). It is derived from the conception, in Plato's Symposium, of the love of the idea of good which lies at the root of all virtue and truth. A mor platonicus was used, e.g. by Marsilio Ficino (1 sth century), as a synonym for amor socralicus, referring to the affection which subsisted between Socrates and his pupils.

PLATOON (Fr. pololon, from Fr. pelote, a ball or pellet; cf. Ger. Haufe, heap), a small group of soldiers. In the early 17th century it was a definite tactical unit of infantry, corresponding to the modern section or half company. In the $\mathbf{1 8 t h}$ centery the battalion, irrespective of its organization into companies, was told off on parade into six, eight or ten platoons of equal strength. "Platoon fire" was the systematic and regulated fire of platoon volleys, the platoons firing one after the other. Hence " platoon" sometimes means a volley.

The fire of a long line of infantry was as a rule conducted on the ame principles, each battalion of the front line employing platoon fire, which is often picturesquely described as a "rolling platoon fire," or "rolling volleys." The word is cbsolete in the British army, but is used in the United States, and, in various forms, in the armies of France and other Latin nations.

PLATT, THOXAS COLLER ($1833-1910$), American politician, ${ }^{\text { }}$ was born in Owego, Tioga county, New York, on the 1 gth of July 1833. He studied in 1849-1852 at Yale, from which he received the honorary degree of A.M. in 1876. He made money in lumbering out West, and returning to Owego became a banker and railway director. He helped to organize its Republican party in Tioga county, and in 1873-1877 was a repretenlalive in Congresa. In 1877 he was chairman of the state Republican Convention at Rochester. On the 18th of January 188i he was elected United States senator, but resigned, with his colleague, Roscoe Conkling, on the a6th of May following, chiefly because President Garfield, in spite of their protest, had appointed as collector of the port of New York, Judge William H. Robertson, a political apponent. Within ten yeam he became the acknowledged Republican "boss" of the state, and he again served in the United States Senate from $\mathbf{5 8 9 7}$ to 1909 . But his power waned steadily alter about 1903. He died in New Yort City on the 6th of March 1910.

PLATTE (so named, from the French, because of its shallow: ness), or Nebrasxa, a river system of Colorado, Wyoming and Nebraska, tributary to the Missouri river, which it entem immediately north of Plattsmouth, Nebraska, 18 m . below. Omahs, in about $41^{\circ} 3^{\prime} \mathrm{N}$. lat. Including the North Platle it is about 900 m . long from its headwaters, with a drainage basin for the entire system of $90,000 \mathrm{sq} . \mathrm{m}$. The Piatte proper is formed by the junction of the North Platte and the South Platte, sometimes called the North and South Forks of the Platte, immediately below the city of North Platte in Lincoln county, Nehraska. The North Platte and South Platte rise respectively in North Park and South Park in Colorado. The tributaries of the main stream all flow in from the north; the most important being the Loup, which emplies immediately east of Columhus ia Platte county, and the Elkhorn, which joins the Platte in Pouglas county, due west of Omaha

See J. C. Stevens, Surface Waler Supply of Nebrasha (Washington, 1909).

PLATTNER, KARL FRIEDBICR ($5800-1858$), German metallurgical chemist, was born at Kleinwaltersdori, near Freiberg in Sazony, on the and of January, 1800 . His father, though only a poor working miner, found the means to havo him educated first at the Bergschule and then at the Bergakademie of Freiberg, and after he had completed his courses there in 1820 he chtained employment, chiefly as assayer, in connexion with the royal mines and metal works. Having taken up the idea of quan'itative mouth-blowpipe assaying, which was then almost unknown-except that E. Harkort (1797-1835) in 1827, while a student in Freiberg Academy, had worked out a hlowpipe assay for silver-he succeeded in devising trust worthy methods for all the ordinary useful metals; in particular his modes of assaying for nickel and cobalt quickly found favour with metallurgists. He also devated himself to the improvement of qualitative blowpipe analysis, and summed up his experience in a treatise Die Probierkusst mit dem Lothrohr (1835), which became a standard authority. In 1840 he was made chief of the royal department of assaying. Two years later he was deputed to complete a course of lectures on metallurgy at the Bergaiademie in place of W. A. Lampadius (1772-1842), whom he subsequently succeeded as professor. He died at Freiberg on the 2and of January 1858.
In addition to many memoirs on metallurgical subjects he also published Die metallwrgischen Rostprocesse thearetisch belrachtel (1856), and porthumously Vorleswngen zbe: allsemnine Hilleniunde (1860).

PLATTSBURG, a city, port of entry and the county-seat of Clinton county, New York, U.S.A., situated on the west shore of Lake Champlain, at the mouth of the Saranac river, 168 m .
(by rail) N.N.E. of Alhany. Pop. (1890), 70ro; (1900), 8434, of whom 1053 were foreign-born; (toro, census), 11,138 . It is served by the Delaware \& Hudson railway, and hes steamer connexions with lake ports. Its situation in the region of lakes and mountains and its delightful climate have made it a summer resort. Among its institutions are the Samuel F. Vilas Home (for aged and infirm women); the Home for the Friendless of Northern New York (1874), for the care of homeless children; the Plattsburg State Normal and Training School, the D'Youville Academy for girls (founded in 1860, chartered in 1875), under the direction of the Grey Nuns; the Collige St Pierre (Roman Catholic, 2903), and the Champlaln Valley Hospital. The barracks, about a mile away, is an important military post. Cliff Haven, 2 m . south, is the seat of the Catholic summer school. Plattshurg has a fine harbour and is the port of entry of the Champlain customs district; in 1909 its exports were valued at $\$ 15,169,502$ and its imports at $\$ 8,267,527$. Among the city's manufactures are lumber, wood pulp, paper, shirts, sewing-machines and automobiles. The total value of the fectory products in 1905 was $\$ 1,056,702$.

Plattsburg was incorporated as a village in 1795, and derived its name from Zephaniah Platt (1740-1807), who had led a colony of settlers to this place from Long Island; it became a city in 1go2. About Valcour Island (5 m . south-east of Plattshurg), on the rith of October 1776, a British fleet under Captain Thomas Pringle and an American flotilla under Benedict Arnold engaged in the first conflict between American and British fleets, the British being victorious. On the outhreak of the War of 1812 the village became the beadquarters of the American army on the northern frontier. On the with of September 1814, in Platisburg (or Cumberland) Bay, Captain Gcorge Downic, commanding a Brtish flotille, was defeated by an American flotilla commanded by Commodore-Thomas Macdonough, losing his life in the engagement (see Cbamplain, Lake).
PLATTBMOUTH, a city and the county-seat of Cass county, Nebraska, U.S.A., situated in the valley and on the bluffe of the Missouri river near the mouth of the Platte. Pop. (1900), 4964 (979 (oreign-born); (1910) 4287. It is served by the Chicago, Burlington \& Quincy, and the Missour Pacific railway systems. There are railway car-shops, and a considerable trade is done in grain and cattle. A trading-post licensed by the United Stales government was opened here in 1853 , and a town platted in 1854. Plattsmouth was first incorporated as a city in 1855 , being one of the oldest settlements and citics of the state.
PLATYELDIA, a phylum of the animal kingdom which comprises three classes, the Planarians, Trematodes (q.v.) and Cestodes. It is the group of animals in which the act of creeping has first become habitual. In association with this movement in a definite direction the body has become vermilorm and bilaterally symmetrical. One end of the body, through contact, during locomotion, with fresh tracts of medium and other forms of stimuli, has become more specialized than the rest, and here the nervous system and sense-organs are more densely aggregated than elsewhere, forming a means of controlling locomotion and of correlating the activities of the inner organs with the varying stimuli that impinge upon the body. The form and habits of the group vary widely. The Planarians are free-living animals, the Trematodes are parasitic upon and within animals, and the Cestodes are wholly endoparasitic.

Structure, - Thechief features which Platyelmia poseess in common are the following. The body is not metamerically segmented and is composed of a muscular tunic covered externally by a more or less modified cellular layer. Within this muscular tube lies a parenchymatous tissue which may be uniform (Cestodes) or differentiated into a central or digestive, and a peripheral portion (eome Turbellaria), or Gially the eentral portion becomes qubular and forms the digestive sac (Trematodes), while the peripheral portion is separated from it by a space lined in some forms hy a flattened cpithelium (most Planarians). It is characteristic of the group that the mouth should be the only means of ingress to and egress from the digestive sac and that no true perivisceral space or coclom exists in the sense in which these termas are used in higher lnvertebrates. The peripheral paren-
chyma gives rise to protonophridia, that is to coiled tubes commencing in pyriform cells containing a flame-like bundie of cilia and provided with branched outgrowths, and communicating with the exterior by long convoluted canals which open at the surface of the body. These protonephridia are the excretory organs. The nervous system, though centralized at oos end of the body, contains diffused nerve-cells in the course of its tracts, which are disposed in two or more longitudinal bundles interconnected hy transverse bands. The Platyelmia are hermaphrodite and the reproductive organs are complex. The male organs consist of paired testee communicating by delicate canals with a protrusihle penis. This organ is generally single hut sometimes paired and occasionally multiple. It is frequently armed with spines, hooks or stylets, and is further complicated by the addition of a nutritive secretion (the prostate gland) which may open at its base or pass eeparately by a special duct to the exterior. There is some resson to believe that this complicated and variable apparatus is used for stabbing the body of another animal and that beginning as a weapon for catching prey it has become modified for hypodermic impregnation and only gradually adapted for insertion into the burea copulatrix. The female orqans are no leas complex. They consint of solid or tubular ovaries which may be single, double or multiple In the majority of Platyelmia the primitive ovary becomes divided into fertile and sterike portions, i.e. into distinct ovarian and vitellarian regions. The yolk prepared by the latter is conducted by one or more specialized ducts to the oviduct and the point of union is distinguished by the opening of a "shell-gland" which secretes a membrane around the conjoined mase of ovum and yolk. From this junction there proceeds an oviduct of "uterus " (paired or single) which before opening to the exterior expands to form a muscular protrusible pouch-the bursa copulatrix. Frequently also from this junction of the ovaria and the vitellaria a median tube is given of which either opens to the exterior or into the intertine, in the latter case it appears to serve as means of conveying superfisous yolk to the gut, where it may serve as food.
Inter-relationships. - The Inter-relationships of the three members of the Platyclmia are of a more doubtful nature than is the unity of the phylum. The Turbellaria undoubtediy form the most primitive division, as is shown by their free-living babits, ciliation and sense-organs. The Trematodes are somewhat modificd in accordance with their ecto- or endoparasitic life, but they exhibit such a close similarity of structure with the Turbellaria that their origin from Planarians can hardly be doubted, and indeed the Temnocepha. joidea (see Plananians) form an almost ideal annectant group linking the ecloparasitic Trematodes and Rhabdocoel Planarians. The Cestodes, however, are connected hy no such intermediate forms with the other Platyelmia. Their adaptations to parasitic life in vertebrate animals appear to have involved auch modifications of structure and development that their affinities are quite problematical. The entire absence of any trace of a distinct alimentary tract. the low of true regenerative power. the peculiar gametic segmentation of the body. into hundreds of "proglottides'. budded off frors

Fig. 1.-Free-swimming Larva (Myller's Larva) of a Polyciad Plamarian to illustrate the trochosphere-hypothesis of the origin of Platyelmia. The larva is seen in optical section, and its dis tinguishing feature ls the ciliated lobed band ($\alpha_{1} w_{1}, d$). which corresponds to the pre-oral ciliated band of a trochosphere-larva. It is here drawn out into eight processes, of which six are harma, their continuity being expresed by the dotted line.
br, Brain.
dr, Glands
ep, Epidermis
ne, Mouth.
mg, Stomach.
m, Nerves.
ph, Pharyax.
par, Parenchyma,
one extremity, and the absence of any morphologically distinct anterior extremity, are adaptations to the wholly parasitic life of this class. Their structure is similar to that of Trematodes, from which in the opinion of most zoologists they have been derived.

Affnilies.-As the Turbellaria (Planarians) are the most primitive division of the Platyelmia, the problem of the altinit ies of this phylum resolves itself into that of the relationships of the Turbellaria. With regard to the origin ol this class two divergent views are still held. On the one hand the Turbellaria are considered to be an offshot of the early Coclomate stock, on the other they are hold to be descendants of a simpler two-layered stock. The former hypothesis with it variants may be called the Trochospherc-hypothesis, the latter the Gastraea-hypothesis. The Ttrhosuhere-liyputhesis (2). (3) is based chiefly on the occurrence in cc: isin Pulyclad Turbctaria, of a larval form (Malter's larva) whicb is comparable to a certain sage (pro-trochuia) in the development of the Trochosphere-larva. This Trochosphere is the chameteristic larva of Mollusca, Annclida

Fig. 2.-Dorsal view of Coeloplang to illustrate the similarity bet ween Ctenophora and Turbellaria

The branched intestine (G) is drawn on one side of the animal only, it opens to the exterior by means of a pharynx (not shown). The mouth is shown by the line surrounding the otolith $(O T)$ in the centre. The mouth is ventral, the otolith dorsal. The two branched enenacles (TB) are seen partially extruded from their sheaths (TS): when fully extended they excced the diameter of the animal five or six times. The short tentacies (T) are drawn on one side onlf. Coeloplana has been lound in shallow water in the Red Sea and on the coast of Japan. Ctenophora possess two similar long branched tentacles, a ventral mouth and dorsal otolith.
and some Gephyrea; and the Rotifera appear to remain throughout life as modified Trochospheres. It is a top-shaped, free-swimming organism provided with a preoral band of eilia, an apical senseorgan. a simple gut. protonephridia and schizococle. The importance of this resemblance between the Polyelad larva and the Trocho-sphere-larva of higher invertcbrates is increased if the widely adopted

FiG. 3.-Trichoplax odhoerews, an organism considered, on the Gastraea-hypothesis, to be closely allied to the progenitors of the Platyelmia. (The recent work by Krumbach lZoolog. Anzeiger 1907, xxxi. 450|, serves to show that Trichoplax is the planulalarva of a Hydromedusa.)
A. a small specimen drawn from life. The spherical granules (G) are probably gland-secretions: the dark bodies (Z) are probably canthellac, i.e. algal cella living in association with the animal. the animal.
B, a specimen undergoing fission.
C. part of a vertical section.
D.EP. The dornal epidermis.

PC, Parenchymatous colls.
V.Ep, Ventral epidermis, The hair-like processes are cilia.
view (held on other grounds) that the Polyclads are the most primitive of the Turbellaria, is soundly based. The grounds for this view are the radial symmetry.of several l'olyclads and the supposed origin of gonads and excretory flame-cells from the walls of gut, the occurfence of nematocysts in Anomymus, one of the most radially constructed Polyclads, and lastly the presence of two peculiar animals Cteroplana and Coeloplana, which suggests a transition from Ctenophora to Polyclads. At the present time, however, none of these grounds can be said to possess so much force as they did some yoars ago (4). The argument has come to rest on the agreement betwecn the cell-lineage of Polyclads and that of certain Molluaca and Annelids. This resemblance is considered by Hubrecht (5) to-give reason for concluding that the Polyclads are an offishoot, and possibly a degenerate offishoot, from the early Coelcmate stock.

The Gastraea-hypot hesis is founded on quite othet considerations. In effect (6) it traces the Turbellaria to small two-layered organisms consisting of an outer ciliated epidermis and a central syncytial tissue. Such an organism is found in the peculiar Trichoplox. Lohmanriella, \&ce. The early stages of most animals pass through such a stage, which is known as a "planula." From such beginnings the evolution of the Turbellaria leads first through the Acoelous forms in which the central syncytium is pertly differentiated into digestive, muscular and skeletotrophic tissue, then to the more specialized Rhabdocoela, and so through the Allococoela to the Triclads and finally to the Polyclads. The careful study of the development of one Acoelous form and of certain Rhabdocoela has strengthened this hypothesis by showing that no definite enteron or gut is at first laid down, but that certain embryonic syncytial tracts become digestive tracts, others excretory, ot hers again muscular. The study of Rhabdocoels (7) has ted to the important discovery that the cudiment of the gonads and that of the pharynx are the first organs to appear, and that the alimentary sac ariscs independently of them. This segregation of the germ cells and their independence of the intestinal she is an indication that the origin of these cells is not coelomic nor enteric, and until we possess furt her information as to the evolution of the complex genitalia of the higher Turbellaria we cannot hope to understand the prewence of such highly modified structures in animals of an otherwise low grade or organization.
Lifegature, -Recent discussions of the affinities of the Platycimia will be found in (1) A. Sedguick, Texlbook of Zoology (1898), 212; (2) Hatschek, Lehibuch der Zoologie (1891), pp. 316-326; (3) A. Lang, Die Trophocool-Theorie (Vena. 1903): (4) E. Ray Lankester, Treatese on Zoolopy (3900). pt. ii. Introduction and ch. vii. pp. is19: (5) A. A. W. Hubrecht. Jenaische Zeilschriff fïr Natwrwissehschaft (1905), pp. 151-176; (6) Von Graff, Die Accela, p. 519 (Leipzig, 1891). For the development of Rhabdococlida sec (7) Bresslau, Zcilschrıft für wissenschafiliche Zoologic (1904), vol. $\mathbf{j 6}$.
(F. W. Ga.)

PLATYPUS. The duck-billed platypus" (Platypus analinus) was the name assigned to one of the most remarkable of known animals by George Shaw ($1751-1813$), who had the good fortune to introduce it to the notice of the scientific worid tn the Noluralist's Miscellany (vol. x., t799). In the following year it was independently described by Blumenbach (Voigis Magazin, ii. 205) under the name of Ornithorhymehts paradoxus. Shaw's gencric name, although having priority to that of Blumenbach, could not he retained, as it had been used at a still earlier time (1793) by Herbst for a genus of Colcoptera. Ornithorhynchus (Gr. ofpls, $\delta \rho \nu \operatorname{los}$, bird, and piryoor, bill) is therelore now universally adopted as the scientific designation, although duck-billed platypus (Gr. miarts, flat, and nols, foot) may be convenienty retained as a vernacular appellation. By the colonists it is called "water-mole," but its affinitics with the true moies are of the slightest and most superficial description.

The anatomical differences by which the platypus, and its only allies the echidnas, are separated from all other mammals, so as to form a distinct sub-class, are described in the article Monotremata, where also will be found the main distinctive characters of the two existing representatives of the group. It is there stated that the carly stages of the development of the young are not yet fully known. Sir R. Owen, and later E. B. Poulton, showed that the ovum of the platypus was large compared with that of other mammals, whilst W. H. Caldwell showed that it was filled with yolk, and finally established the fact that Plotypus as well as Echidna is oviparous. Two eggs are produced at a time, each measuring about three-fourths of an inch in its long and hall an inch in its short axis, and enclosed in a strong, flexible, white shell.

The platypus is pretiy generally distributed in situations suitable to its aquatic habits throughout the island of Tasmania and the southern and eastern portions of Australin.

The length of the animal when full grown is from 18 to 20 in . from the extremity of the beak to the end of the tail, the male being slightly larger than the femaif. The fur is short, dense and rather soft to the touch, and composed of an extremely fine and close under-fur, and of longer hairs which project beyond this, each of which is very slender at the base, and expanded, flattened and glossy towards the frce end. The general colour is deep brown, but paler on the under parts. The tail is short, broad and depressed, and covered with coarse hairs, which in old animals generally become worn off from the under

(From Coulds Marmels of A mstratia,
Platypus.
surface. There are no true tecth in the adult, although the young possess a set which are shed after being worn down by friction with lood and sand, their purposes beling afterward served by horny prominences, two on each side of each jawthose in the front narrow, longitudinal, sharp-edged ridges, and those behind broad, flattened and molariform. The upper surface of the lateral edges of the mandible has also a number of parallel fine transverse ridges, like those on the bill of a duck. In the checks are tolerably capacious pouches, which appear to be used as receptacles for food.

The limbs are strong and short, each with five well-developed toes provided with strong claws. In the fore feet the web not only fills the interspaces between the toes, but extends considerably beyond the ends of the long, broad and somewhat flattened nails, giving great expanse to the foot when used for swimming, though capable of being folded back on the palm when the animal is burrowing or walking on the land. On the hind foot the nails are long, curved and pointed, and the web extends only to their base. On the heel of tbe male is a strong, curved sharply pointed, movable horny spur, directed upwards and backwards, attached by its expanded basce to the accessory bone of the tarsus. This spur, wbich attains the length of nearly an inch, is traversed by a minute canal, terminating in a fine longitudinal slit near the point, and connected at its hase with the duct of a large gland situated at the back part of the thigh. The whole apparatus is so exactly analogous in structure to the poison-gland and tooth of a venomous snake as to suggest a similar function, and there is now evidence that it employs this organ as an offensive weapon.
The platypus is aquatic in its habits, passing most of its time in the water or close to the margin of lakes and streams, swimming and diving with the greatest ease, and forming for the purpose of sleeping and breeding deep burrows in the banks, which generally have two orifices, one just above the water level, concealed among long grass and leaves, and the other below the surface. The passage at first runs obliquely upwards in the bank, somelimes to a distance of as much as 50 fi, and
expands at its termination into a cavity, the floor of which is lined with dried grass and leaves, and in which, it is said, the eggs are laid ' and the young brought up. Their food consists of aquatic insects, small crustaceans and worms, which are caught under water, the sand and small stones at the bottom being turned over with their bills to find them. They appear at first to deposit what they have thus collected in their cheek pouches, and when these are filled they rise to the surface and quietly triturate their meal with the horny teeth before swallowing it. Swimming is effected chiefly by the action of the broad forepaws, the hind feet and tail taking litule share in locomotion in the water. When asleep they roll themselves into a ball, as shown in the figure. In their native haunts they are extremely timid and wary, and very difficult to approach, being rarely seen out of their burrows in the daytime. Mr A. B. Crowther, who supplemented the often quoted observations of Dr George Bennett upon the habits of these animals in confincment, states:" They scon become very tame in captivity; in a few days the young ones appeared to recognize a call, swimming rapidly to the hand paddling the water; and it is curious to see their attempts to procure a worm enclosed in the hand, which they greedily take when offered to them. I have noticed that they appear to be able to smell whether or not a worm is contained in the closed hand to which they swim, for they desisted from their eflorts if an empty fist was offered." (W. H. F.; H. Sc.)

PLAUEN, a town of Germany, in the kingdom of Saxony, on the Weisse Elster, 60 m . south of Leipzig, on the railway to Hol and Munich and at the junction of lines to Eger and Gera. Pop. (1890), 47,007; (1900), 73,891 ; (1905), 105,383. It was formerly the capital of Vogiland, or Voigtland, a territory governed by the imperial vogt, or baililt, and this name still clings in popular speech to the hilly district in which the town lies. Of its three Evangelical churches the most prominent is the fine Gothic church of St John, with twin spires, which was restored in 1886. Other buildings of note are the town hall, dating from about 1550; and the old castle of Hradschin, now used as a law court. Plauen is now the chief place in Germany for the manufacture of embroidered white goods of all kinds, for the finishing of woven cotton fabrics, known as Plauen goods, and for the making of lace.

Plauen was probably founded by the Slavs. First mentioned in 1122, it passed under the authority of Bohemia in 1327 and came to Saxony in 1466 , remaining permanently united with the electorate since 1569. The manufacture of white goods was introduced by Swabian, or Swiss, immigrants about 5570 . The advance in its material prosperity has been especially rapid since the incorporation of Saxony in the German Zollverein.

See Fiedler, Die Stod! Plauen im Vogtland (Plauen. 1874); and Beilritge zur Geschichte dep Stadt Plauen (Plauen, 1876); Metzner. Führer durch Plaken (1903); and the publications of the Allertumswerein su Plauen (1875 seq.).

PLAUTUS, TITUS MaccIUS (originally perhaps Maccus; cf. Asin. Prol. 1I), the great comic dramatist of ancient Rome. was born at Sarsina in Umbria according to the testimony of Festus, who calls him Umber Sarsinas, and Jerome. The date of his death was 184 b.c. (Cicero, Brutus, xv. 60). The date of his birtb depends upon an inference hased on the statement of Cicero (De senectute, xiv. 50) that he was an old man when he wrote his Truculentus and Pseudolus. The latter play was
${ }^{1}$ Some doubt has been expressed as to whether the eggs are extruded or hatched within the body. At a scientific meeting of the Zoological Society of London, on the 17th of December 1901, Mr Oldfeld Thomas read a letter from Mr G. Metcalfe, who had lived many years in a region inhabited by these animals. He had made special inquiries of the authorities of the Sydney, M elbourne. Brisbene and Hobart museums, and published questions is the newspapers, but no evidence has reached him that the eggs of Ornithorhyncus have ever been obtained except by the dissection of the mother. Mr Thomas laid stress on what had been advanced on the other side by Mr Caldwell (Philosophical Trassactions. cixxvili. 463). Professor Spencer (Nolure, $x \times x \mathrm{xi}$. 132) and Mr 1 . Douglas Ogilby (Catalocua of A ustralian Mammals, P. 1, Sydney: 1902). but exprabed the hopre it to further inquities might be made by naturaises in Austat this mont inectual finding of such eges inally settled."
-ing point might
produced in 191 B.C.; hence we get 254-251 b.c. as the approximate date of his birth. The only record that we possess as to his life is that contained in Aulus Gellius iii. 3, 14 (based on Varro), the historical character of which is doubted by Leo (Plautinische Forschungen, p. 60, sqq.). According to this statement he left his native town at an early age and settled at Rome, where he got empioyment in a theatre, though it is not clear in what capacity. The words of Gellius in operis anlificmm scaenicorum, are interpreted by F. Marx as indicating that Plautus was a member of the theatrical staff of Livius Andro. nicus. At Rome he saved a little money, and embarked on some mercantile enterprise, probably abrodd. Having lost his money he returned to Rome penniless, and was driven to support bimself by manual labour in a mill (cum ... ad curcuzagendas molas quace trusatiles appellontur operam pistori locasset), and in this pistrinum be wrote three of his plays (the Saturio, the Addicius and another). The main body of his works belongs, so far as can be ascertzined from the scanty evidence which we have, to the latter half of his life; 206 B.c. is the approximate date of the Miles gloriosus; cf. line 211 seq., quoi bini castodes . . occubant (present tense), which alludes to the imprisonment of Naevius, an event which cannot be proved to be earlier than 206 a.c. The defects of construction and the absence of "cantica" in the Miles also point to this as one of his early plays. On the other hand it is hardly likely that all his comedies (which greatly exceeded in number the extant twenty) were produced during the last twenty years of his life. Radermacher assigns the Asinaria to a date as early as 212 b.c. Of the extant plays the Cistellaria and the Stichus musl be associated with the M iles as comparatively early works; for the former was clearly produced before (though not long before) the conclusion of the Second Punic War, see l. zot seq.; and the Stichus is proved by its didascalia to have been produced in 200 8.c. The Pseudolus and the Truculentus fall within the last seven years of his life. The dates of the rest of the extant plays, here given in alphabetical order, are quite uncertain, namely, Amphitruo, Aululorio, Bacchides, Captivi, Casina, Curculio, Epidicus, Menacckmi, Mercator (probably later than the Rudens, as shown by F. Marx), Mostellayia, Persa, Pocnulus, Rudens, Trinummes (later than 194 в.C.; cf. novi cediles in l. 990). Of the Vidularia we possess only the fragments contained in the Codex Ambrosianus.

The plays of Plautus are all based on Greck originals. To what extent he is dependent on these originals, and how far he departed from them, we shall perhaps never know exactly. But such evidence as we have points to a prelty close imitation on the part of the Roman poet: there are passages in which he does not hesitate to take over from his originals allusions which can hardly bave been intelligible to a Roman audience, e.5. the reference to Stratonicus, a musician of the time of Alexander the Great (Rudens, 933); and in the delineation of character we have no reason to suppose that he improved on his models (cf. Aul. Gell. ii. 23). Even the prologues, which later researches have shown to be in the main by the hand of Plautus himself, though certain passages were clearly added at a later date, e.g. Cos. prol. 5-20, may in most cases have formed pert of the Greek original. Plautus must therefore be regarded as primarily a translator or adapter, so far as our present knowledge goes. Where he varies his plot on lines of his own hy amalgamating the plots of two distinct Greek comedies (e.g. in the Mites and the Poenulus) the result is generally not happy; and the romanization of the plays by way of allusions to towns in Italy, to the streets, gates and markels of Rome, to Roman magistrates and their duties, to Roman laws and the husiness of Roman law-courts, banks, comitia and senate, \&ce., involves the poet in all the difficulties of attempling to blend two different civilizations. The inconsistency of his altitude is shown hy his use, side by side, of the contemptuous expressions barbarus (applied to the Romans) and pergraccari (applied to the Greeks). In some passages the poet scems to take delight in casting dramatic illusion to the winds (e.g. Pseudolus, 720; Poenulus, 550).
'See further P. E. Legrand, Deas: tabieaw de la combdic arecque pondand la petriode dife nouvelle (1920).

But as a translator Plautus is nothing less than masterly. His command of the art is such that his plays read like original works, and it may be at least said that some of his characters stand out so vividly from his canvas that they have ever since served as representatives of certain types of humanity, c.s. Euclio in the Aulularia, the model of Molière's miser. Alliteration, assonance, plays upon words and happy coinages of new terms, give his plays a charm of their own. "To read Plautus is to be once for all disabused of the impression that Latin is a dry and uninteresting language" (Skutsch, in Die Cultur der Gegenwart; 1905). It is a mistake to regard the Latin of Plautus as "vulgar" Latin. It is essentially a literary idiom, based in the main upon the language of intercourse of the cultivated Roman society of the day (cf. Cic. De oratore, iii. 12, 45); though from the lips of slaves and other low persons in the plays we no doubt hear expressions which, while they are quite in keeping with the characters to whom they are allotied, would have shocked the ears of polite society in the and century s.c.
The characters in his plays are the stock characters of the new comedy of Athens, and they remind us also of the standing figures of the Fabmae atellanae (Maccus, Bucco, Dossennus, \&c.). We may miss the finer insight into human nature and the delicate touch in drawing character which Terence presents to us in his reproductions of Menander, but there is wonderful life and vigour and considerable variety in the Pleutine embodiments of these different types. And the careful reader will take note of occasional touches of serious thought, as in the enumeration of the ten deadly political sins (Persa, 555 seq.) and allusions to ethical philosophy (Pseud. 972 seq.; Stich. 124; Trin. 305 sqq., 320 sq9., 363 seq.، 447; Rud. 767, 1235-1248, \&c.). Virtue is often held up for admiration, and vice painted in revolting colours or derided. The plots of Plautus also are more varied than those of Terence. We have from bim one mythological burlesque, the Amphitruo, and several plays dealing with domestic suhjects like the Captivi, Cistellaria, Rudens, Stichus and Trinummus; but most of his plays depend for their main interest on intrigue, such as the Pseudolus, Bacchides, Mostellaria. In the Menaechmi and, as a subordinate incident, in the Amphitruo we have a "comedy of errors."

In one respect Plautus must be regarded as distinctly original, viz. in his development of the lyrical element in his plays. The new comedy of Greece was probably Umited for the most part to scenes written in the metres of dialogue; it remalned for Plautus, as Leo has shown, to enliven his plays with contica modelled on the contemporary lyric verse of Greece or Magna Graecia, which was in its turn a development of the dramatic lyrics of Euripides. A new light has been thrown on the rapaxhavaltupoy of the Curculio (147^{-155}) by the discovery of the Alexandrian erotic fragment published by Grenfell and Hunt (Oxford, 1896). The lyrical metres of Plautus are wonderfully varied, and the textual critic does well not to attempl to limit the possibilities of original metrical combinations and developments in the Roman comedian. Recent investigation has considerably extended the list of his nwmeri innumeri.

Plautus was a general favourite in the days' of repuhlican Rome Cicero, though he found fault with the iambics of the Latin comedians generally as abiecti, "prosaic" (Orator, Iv. 184), admired Plautus as elegans, wbanus, ingeniosus, facctus (De offic. i. 29, 104). To the fastidious critics of the Augustan age, such as Horace, he seemed rude (cf. Ars Poetice, 270-274), just as Addison declared Spenser to be no longer fitted to please "I a cultivated age." In another passage (Epist. ii. 1, 170-176) Horace accuses him of clumsiness in the construction of his plays and the drawing of his characters, and indifference to everything excepting immediate success: gestif enim nummum in loculos demillere, post hoc secwrus cadot an recto stet fabula talo. That there are many inconsistencies and signs of carelessness in his work bas been proved in detail by Langen. But that he found many admirers, even in the Augustan age, Horace himself bears witness (ibid. L. 58), where he saye that Plautus was regarded as a second Epicharmus: Plaulus ad excmplar Siculi properare Epicharmi-a passage which is important as suggesting that

Plautus was under some obligation to the Sicilian representatives of the old Dorian comedy; cf. Varro's statement (in Priscian ix. 32), deinde ad Siculos se applicurit. It is possible that Plautus may have been werking on the lines of the old coniedy in the tell-tale names which he is so fand of inventing for his characters, such as Polymachaeroplagides (Pscud. 988), Pyrgopolinices (Mil. 56), Thensaurochrysonicochrysides (Capt. 285) -names which stand in remarkable contrast to the more commonplace Greek names employed by Terence.

In the middle ages Plautus was little regarded, and twelve of his plays (Bacchides-Truculentus) disappeared from view until they were discovered (in the MS. called D) by Nicholas of Trèves in the year 1429. Apparently some early archetype had been divided into two volumes, of which only the first (containing cight plays, Amphitruo-Epidicus) had escaped oblivion or destruction. Alter the revival of learning Plautus was reinstated, and took rank as one of the great dramatists of antiquity; cf. Shakespeare, Hamlet. 1, ii. 420, where Polanius says, "The best actors in the world . . . Seneca cannot be too heavy nor Plautus too light."

Manuscripts.-The chief MSS. of Plautus belons to two families, which are proved by the errors which they have in common to be descended from a single source (Sicker, "Novae quacstiones plautinac," in Philologus suppl, xi. 2; 1908): (i.) that represented by the fragmentary palimpest of the Ambrosian Library at Milan (A, 4 th century A.D.), discovered in 1815 by Cardinal Ma and now accessible in the A pograph of Studemund, edited by Seylfert (1889); (ii.) that represented by the Palatine MSS, (P, Ioth-12th century), viz. B, now in the Vatican, containing all the ewent: playa preceded by the spurious Querous; C. now at Heidelberg, containing the last twelve plays, i.e. Bacchides-Trucnlentus; D, now in the Vatican. containing the Amphitruo, Asimaria, Aulularia, hall of the Captioi and the last twelve plays: to the ssme family belong the following less important MSS: E (at Milan), V (at Leiden). J (in the British Museum), O (in tre Vatican).
EDitions. - The aditio princeps, based mainly on a transeript of D. was printed at Venice, 1472: the first ecientific text, based on B, C and D, was that of Camerarius, completed 1552, in whose steps followed Lambinus (with a commentary which is still useful), 1576; Taubmann, 1605-1621; Pareus (a meritorious edition), 1619 and 1623: Guyet, edited by Marolies, 1658; Gronovius (the "Vulgate "), $1664-1684$; then, after the lapec of more than a cent ury, came the editions of Bothe, $1809-1811$; Naudet, 1830 ; and Weise, 1837-1848. A new era began with the great critical edition of certain plays by Ritschl, $1848-1854$, in which a collation of A was used; a revised and completed form of this work was commenced by Ritsch! himself and continued by his disciples Goetz, Loewe and Schoell, 1871-1894: and of this an entircly rewritten edilio minor by Goetz and Schocll appeared in $1893-1896$ (continued by a 2 nd ed. of Fasciculus ii. in 1904). which is still the most useful of modern editions for a critical study of the text, exhibiting, as it does, the MS. tradition with only such emendations as are securely established by the results of modern investigation. The other modern editions of the text are those of Fleckcisen (containing ten plays, excellent (or his time), 1859; Ussing (with a commentary), 1875-1887, and ed. of vol: iii. 2888 ; Leo (a very important work), $1895-1896$; Lindsay, 1904-1905. Among modern editions of separate plays with commentaries the following are probably the most useful: Amphilruo ty Palmer, 1890, and Havet., 1895; A sinaria by Gra, 1894 ; A sulularia by Wagner, 1866 and 1876 ; Captiei by Brix, oth ed. revised by Niemeyer. igio: an English edition of this work by Sonnenschein (with introduction on provody), 1880: same play by Lindsay (with metrical introduction), 1900; Epidicus by Cray, 1893: Menaechmi by Brix, 4 th ed., revised by Niemeyer, 1891 ; Miles gloriosus by Lorenz, 2nd ed., 1886; by Brix 3rd ed., revised by Niemeyer, 1901; by Tyrrell, 3 rd ed., 1894 ; Moskellaria by Lorenx, 2nd ed., 1883; by Sonnenschein, and ed., 1907 ; Pseudolus by Lorenz, 1876; Rudens by Sonnenscheia, 189 , editio minor (with a metrical appendix). 1901: Trinummus (with a metrical introduction) by Brix, sth ed. revined by Niemeyer, 1907; by Gray. 1897; Trwiculentus by Spengel and Studemund, 1898.

Curficism. -Good characterizations of Plautus, from the literary point of view, are given by Sellar in his Roman Poets of the Republic. and Wight Duff, in his Literary History of Rome (1909). A summary of recent critical works bearing on the text and interpretation is given by Seyffert in his admirable reports (in Bursian's Jahresberichte wher die Forischritte der klassisthen Altertmmanissenschafi), 1883-1885, 1886-1889, 1890-1894, continued by Lindsay, 18951906. Important contributions to textual criticism are contained in Ritschi Parerga (1845). Neve plautinische Excurse (1869), and his collected Opuscula philologica; Studemund, Studia in priscos scriplores lativer (vol. i. 1873, vol. ii. 1891); Langen, Beiskage (1877) and Plautinische Studicn (1886): Lea, Plaulinische Forshwngen (1895); Lindsay, Cadex Turnebi (1898). Bentley"s Plaufime Emendations were published by Sonnerschein partly in his edition
of the Captivi (1880), partly in the Anecdote moniensis merien (1883).

METRE AND Prosody. - The most important treatises (apart from those mentioned under "Editions") are Maller, Plautsmische Prosodic (1869); Sinengel. Reformborschlage sur Metrik der lyrischen Versarlen(1882): Klotz, Grundzuge altrdmischer Metreth(1890), Skutsch. Forschungen zur lalrimischen Grammatik und Metrik (1892), Iamberkifanig and Synazese (Salura Viadrina) (1896), continued by the author in a work called Mipas (1903): Leo, Du plamientschen Centues und die hellemistasche Lyyrik (1897); Maurenbrecher, Heatms and \boldsymbol{V} erschleifung im alten Latern (1899); Ahlberg, De procelemsmaticis (1900), De correptiome rambice plawina (190i); Jacobsohn, Quacsif. oxes plautinae (1904); Radford, on the "Recession of the Latin Accent " (in Amer. Journ. Phil., 1904), "Studies in Latin Accent and Metric" (in Trams. Amer. Phil Assoc., 1904). "Plautine synizesis" (ibid., 1905 , continued in Amer. Jourw. Phil. 1906). (a work on cognate subjects is promised by Exon): Sudhaus, Der Aufbau der plautinischen Cantica (1909).

SYNTAX.-The moat recent works bearing on Old Latin symax, arc Sjogren, Zkm Gebrauch des Fulwrums in Alflatetwischem (1906): Lindsay, Symfax of Plaufus (1907); Sonnenschein. The Unuy of the Latin Subjuntive (19to). A work by H. Thomas, entitled A calalogue rarsonne of the Subjuwelive in Plautus, in support of the theory of the untily of ortgtn of the Latio Smbjumctive, is announced as in preparation.

Lexica. - The only completed lexicon fapart from the Irdices of Naudet, 1832, and Weive, 1838) is that of Pareus (2nd ed., 1634). New lexica have been begun by Waltzing (1900; apparently not to be continued) and Lodge (igol; in progress). The latter wort, when completed, will be indispensable.

Translations and Adaptations-A comprehersive view of the influence of Plautus on modem literatures is given by Reinhardstoettner, Spatere Bearbeitungen ploutiniseher Lusispiele (1886). Many adaptations for the Italisn stage were produced between the years 1486and 1550, the earliest (the Ifenochmi) under the direction of Ercole I., duke if Ferrara. From Italy the practice sprest to France, Spain, England and other countries

Of English plays, the interlude called Jach Jugzler (between 1547 and 1553) was bascd on the Amphitrwo, and the lont play called the Hislorie of Error (acted in 1577) was probably based on the Menoe-chmi; Nicholas Udall's Ralph Roysler Doysler, the first English comedy (acted before 1551, first printed 1566), is founded on the Miles gloriosur; Shakespeare's Comedy of Errors (about 1591) is an adaptation of the Mirnaechmi; and his Falataff may be regarded as an idealized reproduction or development of the braggart soldier of Plautus and Terence-a type of character which reappearn in other forms not only in English literature (e.g. in Shakespeare's Yarniles and Ben Jonson's Captain Bobadil) but also in most of the litenitires of modern Europe. Shakespeare's Taming of the Shew has been influenced in several respects (including the names Tranio and Crumo) by the Mostellaria. Ben Jonson produced a akitful amalgarnation of the Aulularia and the Caplim in his early play The Case is Albered (written before 1599). Thomas Heywood adapted the Amphatruo in his Sidver Age (1613), the Rudens in his Coptives (licensed 1624), and the Mostelloria in bis English Tranaller (1633). Dryden's A mphitryon or the two Sosias ($\mathbf{I} 690$) is based partly on the Amphitruo, partly on Moliere's adaptation thereof; Fielding's Miser (acted 1732) on Molière's L'Avare rather than on the Awlularta. and his Intriguing Chombermaid (acted 1733) on Regnaed's Le Retowr indpreve rather than on the Mostellaria. There was no English translation, strictly so called, of any play of Plautus in the 16th or I $7^{\text {th }}$ century, except that of the Menaechmi ly W. W. (probably Whitain Warner), first prinied in 1595. Which Shakespeare may possibly have used (in MS.) for his Comedy of Errors. A translation of the whole of Plautus in " familiar blank verse "by Bonnell Thorr" ton and others appeared in 1767 (2nd ed., 1769-1774). Five playe have been translated in the metres of the original by Sugden (1893).
(E. A. So.)

PLAY, a word of which the primary meaning is that of free or active movement or exercise. The O. Eng- plegan or plegian. Irom which comes the substantive plega, play, is apparenily cognate with Ger. pficgen, to take care or charge of, and Pfege, care, and the comexinn in sense is to be found in the primary meaning, that of exercise or active movement. In its primary meaning "play" is used of the rapid changing movement of light and colour, and also figuratively of thought or fancy, and specifically of the free movement of parts of a mechanism on cach other, of a joint or limb, \&c. To play a musical instrument is to move the fingers upon it, and until the 18 th century the verb was intransitive, and "on" or "upon" was always used with the name of the instrument. The very general use of the word for sport, game or amusement, is an early and easy development from the meaning of active movement or exercise as a recreation after work; that of a dramalic performance (see Drama) is very early; the New English Dictionary quotes from King Alfred's Orosims (c. 893).

The primitive play insinct or play impolne in man hat been mueh dincomed in recent years by prychologists in connexion with childtudy (see CBLLD), and with the expreesion of the emotions (ace I. Sully, Ow Lamgiter, 190e, \&c.: also Aesthetics). See generally Caft Groos, The Play of Animals (18g8) and The Play of Yan (rgot): and Baldwin's Dict. of Philosophy, E.s.

PLAYA (a Spanish word meaning " shore' ${ }^{\prime \prime}$, the name applied in America to a level plain formed of the deposits of a river which has $\mathbf{~ o ~ o u t l e t ~ t o ~ t h e ~ s e a ~ o r ~ a ~ l a k e . ~ I f ~ a t ~ s e a s o n s ~ o f ~ h i g h ~}$ water a river floods any area and temporarily converts it into a lake, which subsequently dries up in hot weather, the tract thus left dry is called a playz. The barren Black Rock Desert in north-western Nevadis, about 100 m . in length by 15 in breadth, is typical.
PLAYFAIR, JOHN ($1748-1819$), Scottish mathematicien and physicist, was born at Benvie, Forfarshire, where his father was parish minister, on the toth of March 1748. He was educated at home until the age of fourteen, when he entered the university of St Andrews. In 1766 , when only cighteen, he was candidate for the chair of mathematics in Marischal College, Aberdeen, and, although he was unsuccessful, his claims were admitted to be high. Six years later be made application for the chair of natural philosophy in his own university, but again without success, and in 1773 he was offered and accepted the living of the united parishes of Liff and Benvie, vacant by the death of his father. He continued, however, to carry on his mathematical and physical studies, and in $\mathbf{1 7 8 2}$ he resigned his charge in order to become the tutor of Ferguson of Raitb. By this arrangement he was able to he frequently in Edinburgh, and to cultivate the literary and scientific society for which it was at that time specially distinguished; and through Maskelyne, whose acquaintance he had first made in the couse of the celebrated Schiehallion experiments in 1774, he also gained access to the scientific circles of London. In 1785 when Dugald Stewart succeeded Ferguson in the Edinburgh chair of moral philosophy, Playfair succeeded the former in that of mathematics. In 1802 he published his celebrated volume entitled Tlustrations of the Hulionian Theory of the Earth. To its publication the influence exerted by James Hutton on the progress of geological knowledge is largely due. In 1805 he exchanged the chair of mathematics for that of matural philosophy in succession to Dr John Robison, whom also he succeeded as general secretary to the Royal Society of Edinburgh. He took a prominent part, on the Liberal side, in the ecclesiastical controversy which arose in connexion with Lestie's appointment to the post he had vacated, and published 2 satirical Letier (1806) which was greatly admired by his friends. He was elected F.R.S. in 1807. He died in Edinburgh on the 2oth of July 1819.

A collected edition of Playfair's works, with a memoir by James G. Playfair. appeared at Edinburgh in 4 vols. 8vo. His writings include a number of essays coniributed to the Edinburgh Revier from 1804 onwards, various papers in the Phil. Trans. (including his earliest publication, "On the Arithmetic of Impossible Quantities,", 1779, and an "Account of the Lithological Survey of Schehallion." 181i) and in the Transoctions of the Royal Society of Edinburgh (${ }^{4}$ On the Causes which affect the Accuracy of Barometrical Measurements," dc.), also the articles "Aepinus" and "Phytical Astronomy," and a "Dissertation on the Progress of Mathemanical and Physical Science since the Revival of Learning in Europe," in the Encyclopaedia Britannica (Supptement to fourth, fifth and sixth editions). His Elements of Geometry first appeared in 1795 and have passed through many editions; his Oullimes of Notscral Philosophy (2 vols., 1812-1816) consist of the propositions and formulae which were the basis of his class lectures, Playfair's contributions to pure mathematics were not considerable, his paper "On the Arithmetic of Impossible Quantities," that "On the Causes which affect the Accuracy of Barometrical Measurements." and his Elements of Geomelry, all already referred to, being the most important. His lives of Matthew Stewart, Hutton, Robison, many of his reviews, and above all his "Dissertation' are of the utmost value.

PLAYFAIR, IYON PLATFAIR, ist BARON (1818-1898), was born at Chunar, Bengal province, on the arst of May 1818. He was sent to Earope by his father at an carly age, and received his first education at St Andrews. Subsequently ho studied medicine at Glasgow and Edinburgh. A short visit to India (in 1837-1838) was followed by his return to Europe to study
chemistry, which had always attracted him. "This he did at University. College, London, and afterwards under Liebig at Giessen, where he took his doctor's degree. At Liebig's request, Playfair translated into English the former's work on the Chemisfry of Agriculfure, and represented Liebig at a meeting of the British Association at Glasgow. The outcome of lis studies was his engagement in 184 I as chemical manager of the Primrose print-works at Clitheroe, a post which he held for rather more than a year. In 1843 he was elected honorary professot of chemistry, to the Royal Institution of Mancbester, and soon afterwards wes appointed a member of the Royal Commission on the Health of Towns, body whose investigations may be said to have laid the foundations of modern sanitation. In 1846 he was appointed chemist to the geological survey, and thenceforward was, constantly employed by the public departments in matters of sanitary and chemical inspection. The opportunity of his life came with the 1851 Exhibition, of which he was one of the special commissioners. For his services in this connexion he was made C.B., and his work had the additional advantage of bringing him into close personal relations with the Prince Consort, who appointed him geatleman usber in his household. From 1856 to 1869 he was professor of chemistry at Edinburgh University. In 1868 he was elected to represent the univerticies of Edinburgh and St Andrews in parliament, and retained his seat till 1885 , from which date until 1892 he sat as member for Leeds. In 1873 he was made postmastergeneral, and in the following year, after the dissolution of parliament, was applied to by the incoming Tory government to preside over a commission to inquire into the working of the civil service. Its report established a completely new system, which has ever since been officially known as the "Playfair scheme." The ret urn of Mr Cladstone 10 power in 1880 afforded opportunity for Playfuir to resume his interrupted parliamentary career, and from that time until 1883 he acted as chairman of committees during a period when the obstructive tactics of the Irish party were at their height. On his retirement from the post he was made K.C.B. In 1892 he was created Baron Playfair of St Andrews, and a little later was appointed lord-in-waiting to the queen. In 1895 he was given the C.C.B. In spite of failing health the last years of his life were full of activity, one of his latest public acts being his'suggestion tbat Queen Victorin's Diamond Jubilee of 1897 should be commemorated by the completion of the South Kensington Museum. He died in London, after a short illness, on the 29th of May 1898 , and was buried at St Andrewts. He mas three times married. He was the author of a number of papers on scientific and social topics, a selection from which be published in 1889 under the title of Subjects of Social Welfare.

A memoir by Sir Wemyss Reid was published in 1899 . ;
PLEADING (Fr. plaider, ploidoyer), the term applied in English law to the preparation of the statement of the facts on which either party to a criminal prosecution or a civil action founds his claim to a decision in his favour on tbe questions involved in the proceeding; and also to the document in which these statements are embodied. The term "pleadings " is used for the collected whole of the atatements of both partics; the term "pleading" for each separate part of the pleadings. The term "plea " (placium, plaid)' is now applied in England oftenest to the defence made by an accused person. To "plend" is to make a pleading or plea."

All systems of law agree in making it necessary to bring the grounds of a claim or defence before the court in a more or less definite and technical form.

Romas System.-In Roman law the action passed through three stages (sec Action), and the manner of pleading changed with the action. In the carliest historical period, that of the legis actiones. the pleadings were verbal, and made in court by the parties themselves, the proceedings imitating as far as possihle the natural
${ }^{1}$ In Scots and ecclesiastical law the word "plea " is used as to the statements of both partics to a cause.
${ }^{2}$ In French law plaider and plasdoyer are still applied to the oral arguments of counsel, and in English popular speech "to plead " has much the same sense.
conduct of pernone who had been disputing, but who suffered their quarrel to be appeased (Maine, Anciest Law, ch. x.). The use of technical languaze in pleading at an early date came to be regarded as to importint that, at Gijus tells us, the party who mode even the mont trifing mistake woukd lose bis suit. This exoemese reverence for formality is a univernal characteristic of archaic law. In the econd period, that of the procedure by formulae, the issue which the juders decided was made up by the proelor in writing from the satements of the parties before him. The formaia wese a chort summary of the facts in dispute in technical language, with inctructions to the judex, and correspanded to what would now be called the submission or terms of reference to an arbitrator choeen by the partien. The part of the formula which contained the plaintifi's claim wats called tbe tindentio. Any equitable defence included in the formula was set up by means of an eaceptio, which was either peremptory, denying the right of the plaintifi to recover at all, or dilatory, denying only that the action could be brought at the time or by the particular plaintif. The plaintif might meet the exceptio by arepicatio, the defendant on his dide might eet up a duplicatio, and the plaintif might traverse the duplicatio by a triplicatio. The partics might proceed even further, but beyond this point the pleadings had no special names. Actions bonee fidei implied every exceptio that could be eet up; in other actions the excepio must be epecially, pleaded. From the formale the judex derived his whole authority, and he way liable to an action for exceeding it. He could not amend the formula: that could only be done by the praetor. In the third period the formula did not exist, the plaintiff's claim appeared in the summons (libellws comerationis), and the defendant might take any defence that he pleased, all actions beint placed on the footing of actions bonoe fider. The issue to be tried was determined by the judge from the oral statements of the parties.

English System.-The English system of pleading seems to have drawn largely from, if it was not directly based upon, the Roman. Bracton (lemp. Heary II.) usea many of the Roman technical terms. Pleading was oral as late as the reign of Henry VIII., but in the reign of Edward III. pleadings began to be drawn up in writing, perhaps at first more for the purpose of entry on the court records than for the instruction of the court (see 2 Recves, Fistory of English Law, p. 398). The French ianguage was used until 1362 , after which English was used for oral pieading, but Latin for encolment, except for a short period during the Commonwealth. Latin was the language of written pleadings at common lave until 173 I . The period of the Roman formula has its analogue in the period of the original writ in England. 1 The writ was at first a formal commiasjon from the Crown to a judicial officer to do justice between the parties, the claim being made hy a count (conk, marrative). The issue of the writ was part of the prerogative of the Crown, unilmited until the Provisions of Oxford (1258) forbade the issue of fresh writs except " writs of course " (de cursus) without the consent of the council. Gradually the writ came to absorh the count and included the plaintifi's claim and sometimes the pature of his evideace. The defendant pleaded to the writ. The writ hecame the universal form of instituting proceedings in the king's court, irrespective of the method of trial which followed, and probably grew fixed in form about the reign of Henry II. (scc Bigclow, History of Procedure, ch. iv.). At a later date the writ again tended to approach its carlier form and to split into two parts-the writ of summons and the declaration or plaintifis claim. The writ of summons was addressed to the defendant, and not, as the origizal writ, to a judicial officer. The pleadings became the act of the party, differing in this from Roman law, in which they were a judicial act. The writs became precedents for the forms of action, which, like the writs, were limited in number. The plaintiff's declaration was a substantial repetition of the writ. In the writ, as in the formula, the slightest failure in form was as a rule fatal. "The assigoing of a writ of a particular frame and scope to each particular cause of action, the appropriating process of one kind to one action and of a different kind to another, these and the fike distinctions rendered proceedings very nice and complex, and made the conduct of an action a matter of considerable difficulty " (i Reeves, H ist. of English Lano, p. 147). Fines were levied for mistakes in pleading, non-liability to which was sometimes granted by charter as
${ }^{1}$ The original writ was so called to distinguish it from the judicial writ, which was a part of the process of the court. The judiciai writs still exist, e.s. writs of cerliorari or fieri facios.
special privilege to favoured towns, In both Roman and English lav fictions, equity and legislation came to mitigete the rigow of the law. In Englend this result was largely atiained by the framing of the action of trespass on the case under the powers of the Statute of Westminster the Second (1283), and hy the extension of the action of assumpsil to non-feasance. The difficulties and technicalities of the common law system were met by elaboration of what is known as "t special pleading, ${ }^{47}$ which became an art of the utmost nicety, depending on numerous rules, some of thern highly technical (see Coke upon Littleton, p. 303). Those who made it their business to frame pleadings were called special pleaders. They were not necessarily members of the bar, but might be Ilcensed to practise under the bar. At one time it was usual to practise for a lime as a special pleader before call to the bar. Such Licences are now ravely sought, and the laty Lisf of $\mathbf{y} 906$ contained only one name of a special pleader who wist not a barrister. The an became necessary because of the absolute particularity with which claims must be framed, and the narrowness of the powers of amendment possessed by the courts. The result was that substantive law was smothered in procedure, and the practical questions at issue were of less moment than the phraseology in which they were to be stated. As an extreme instance, a learned judge in the qith century challenged a pleading for putting the year withoat adding A.D., on the ground that "non conskat that A.C. might not be intended."

Some of the difficulties as to amendment were removed by the statutes of Jeofails ($j^{+} a i$ failli) beginning in $\mathbf{1 3 4 0}$. But until the rith century the courts of common law and equity worked side by side in Westminster Hall, administering each their own system without due regard to the other; and even in 50 simple a mistter as the right of a defendant to set off against a claim on him a debt due to him from the plaintifi requited statutory provision. Many of the defects and technicallties of the common law system were removed by the Common Law Procedure Acts and the general rules of practice made thereunder. Wide powers of amendment were given, and the parties were allowed to raise and try claims which theretofore could have been dealt with only in courts of equity. In the court of chancery the pleadings used were bill (or in certain public matters an information by the attorney-general), answer and replication." Demurrers were used, or "exceptions" could be taken to the bill or answer. They differed from the common law forms by being much more diffuse, by pleading matters of evidence, and in that the ans wer was on osth. Beyond the replication chancery proceedings did not 80 , the place of further pleadings being supplied by amendment. Exceptions might betaken to the bill or answer on various grounds. Equity pleadings were signed by counsel. On the creation of the divorce court the pleadings authorized were (and still are) as follows: petition (which must be verified by oath), answer (which is so verified if it goes beyond a mere denial) and reply; and a special pleading called "act on petition" (derived from the ecclesiastical courts) with answer tbereto, generally used for the determination of some preliminary question in the surit, e.g. the domicile of the husbond. In the court of admiralty the pleadings used were petition, answer, reply and conclusion. In the prohate court the common law terms were used (declaration, plea and replication), but the procedure was not the same as in the common law courts.

Under the old common law system as modified in the rgth century the pleadings in use were as follows:-

1. Deciaration, made up of one or more counts (contes), or modes of framing the plaintifi's claim so as to state his Erievances in fact in a form suggesting the appropriate remedy ot law, and concluding by demand for a plea. The counts were spoken of as commonor special according as the facts of the case allowed the use of common

[^80]forme or required apecial retatement. The declaration correapoeds to the Roman formula and inemtio.
2. Plea by the defendant to the counts of the declaration. The plea corresponds to the Roman expepptio.
3. Replication by the plaintiff to the plea. In this pleading the piaintif usually took issue upon the statements in the defence; but he might do what was termed "new assign," e.s. complain of acts in excens of a justification alleged in the plea.
4. Rejoinder by the defendant to the replication, answering to the Rovand duplicatio.
5. Sursejoinder by the plainitif to the rejoinder, answering to the Roman trificalio.
6. Rebutter by the defendant to the surrejoinder.
2. Surrebutter by the plaintif to the rebutter.

Nos. 44, 6 and 7 were rarely neocemary, as the parties usually came to a definite isue on the facts in the replication, and the lant of them is only kept in lezal memory because Lord Wensleydale (the last and beat vensed of the old common haw pleaders) was nicknamed Chief Baron Surrebutter. At any stage of the pleadings after (1), the party might instead of pleading to the preceding document demur, i.e. admis the facts as therein stated and contend that assuming the truth of those facts the document was insufficient in lav to found a clam or a defence as the case might be. Dezpurrers (9.s.) were geperal or special according as they tent to the subatance of the claim or plen or to a mere defect in the mode of statement. When the pleadings had reached a stage at which the parties were in flat contradiction on matters of fact, they concluded by joinder of issue, upon which the record was made up and the action was ripe for trial.

Pleas fell iato the lollowing clamen:-

1. In abatement, also described as temporary or dilatory (terms of Roman law), directed either to the furisdiction of the court or to the abatement or defeat of the action for defects of form.
2. In bar, abo described as perempery, which answered the alleged cause of action by denying facts stated in the declaration which were material, or by confessing their truth, but stating new matter of fact which destroyed their legal effect.

Some of theme were by way of justification or excuse, e-g. by setting up the truth of matter nileged to be defamatory, or legal warrant for an arrest complained of as illegat; othen were by way of discharge, e.g. of an alleged debt by payment.

Plens io denial were known (a) as peneral traveryes or general zsaues, when they denied in a general and appropriate form no or more of the facts alleged (e.g. "never indebted "to a claim in essumprit or "not guilty" to a claim for tort): (b) as upecific treverwa of separate and material allerfations in the declaration, setting out with particularity the facts relied oa.
It was permisoibie to plead alternatively, ie. to set up a number of different answers to the facts on which the claim was based. An a gencral rule a ples murt be "isuable." i.e. must put the merits of the cause in itsue on the facts or the law. so that the decision of judge and jury thereon would put an end to the action upon the merits.

All the above forms of pleading, except in matrimonial causes, were abolished by the Judicature Acts, and a new system was set up by these acts and the rules of the Supreme Court. Under this system the pleadings proper are "statement of claim," "defence," " reply," and, ii need be, " rejoinder."

When pleadings are allowed they must contain, and contain only, a statement in a summary form of the material facts on which the party pleading relies for his claim or defence, as the case may be, but not the evidence by which they are to be proved; and must, when necessary, be divided into paragraphs, numbered consecutively. Dates, sums and numbers are expressed in figures and not in words. Signature of counsel is not necessary; but where pieadings have been settied by counsel or a special pleader they are to be signed by him, and if not so settled they are to be signed hy the solicitor or by the party if he sues or defends in person (O. 19, r. 4).1 There has been a growing disposition to dispense with formal pleadings in the simpler kinds of action. A plaintiff is allowed to proceed to trial without pleadings if the writ of summons is endorsed in a manner sufficient to indicate the nature of his claim and the relief or remody which be secks (0.18 s), and contains a notice of his intention. In no case is a statement of claim other than that endorsed on the writ necessary unless the defendant on appearance asks for one, and his right to insist has lezen cut down by the provisions presently to be stated. In commercial cases a statement by the parties to the points of law and fact which they propose ta raise is subatituted for ordinary pleadings. In cases where
${ }^{1}$ Before the Judicature Acts equity pleadings were signed by counsel, but common haw pleadinge were not.
the demand is for a liquidated sum certain, or to recover land from a teasat on expiration of his term or its forfeiture for noapayment of rent, the statement of claim must be endorsed on the writ; and is all other cases no statement of claim beyond that on the writ may be delivered except under order of the master or judge at chambers (Ords. 18a and 30). A statement of defence may not be delivered except under order made on the summons for drections (whlch must be taken out immediately after the appearance of the defendant in answer to the wril), nor a reply without special leave. The result of the present practice is to substitute "particulars," i.e. specific statement of the-details which the parties intend to prove, for the more general terms in which pleadings were formerly framed.

Besides the rules applicable to all pleadings, there are certain rules specially relating to statements of claim, with reference to the aature of the causer of action which may be included and the relief which may be ciaimed (0,20). As to the defence proper, there are also special rules inteaded to prevent evasive, inadequate or unnecessary contradiction of the plaintift's statements ($0,19,20$). The defendant is allowed to "pet of " against the claim" sums due to him Irom the plaintiff or to raite by way of counter claim any right or claim against the plaintiff or a third party, whether "sounding" as damages or not. The counter-claim is in subetance a conjoined action in which the defendant is plaintiff and the plaintif or third party affected may pus in a delence to lt. Except in such a cave the reply and subaequent pleadings are now seldom permitted. Both the parties and the court or a judge have laqge powers of amending the pleadings both before and at the trial. pawes are in certain cases settled by the court or a judge. Demurrera are abolished, and a party is now entitled to raise by his pleading any point of law. Where declision of a point of haw would put an end to the action etepe may be taken for obtaining wouch decisiona so as to obviate the necessity of trying the insucs of fact raised on the pleadings. Forms of pleading are given in Appendices C D and E to the Smpreme Courl Rales. In all actions such ground of defence or reply as if not ralied would be likely to talke the opposite party by surprise, or would mime imsues of fact not arising out of the preceding pleadinge must be specially plended. Such are compulsory pilotage, fraud, the Statute of Limitations, the Statute of Frauds and the Garning Act. The Supreme Connt Rules do pot apply so proceedinge in Crown sults or in the Crown vide of the king's bench division. In actions for darnages by colition between shipe each party must as a general rule file a eealed document called a prefiminary act containing details as to the time and place of collision, the speed, tide, Hights, Kc. The cave may be tried on the prellminary act without pleadinge, but if there are pleadings the act may not be unsealed until they are completed and certain consents given. The docurnont was peculiar to the court of admiralty, but may now be used in all divisions of the High Court (0. 19, r. 28). The High Court system of pleadinge has bieen adopted in the chancery courts of the counties palakine of Lancaster and Durham. The place of the " record" "ia supplied by copies of the pleadinge delivered for the use of the judge and of the officer entering the juagment $\{0.36$, r. $30 ; 0.41, r .1$).
In the county courts proceedings are commenced by a plaint. followed by an ordinary or defaull summons. No "pleadings "are necessary, but the defendant is precluded from setting up certain special defences such as set-off or infancy, Cousty or statutory defences, without the consent of the courth plaintiff, unless he has given timely notice in writing of his intention to set up the special defence. This system is made workabie by insisting on the insertlon of adequate details or particulars of the nature of the claim in the plaint. But in cases where a apecial defence is not required considerable incorvenience is caused by uncertainty as to the line of defence.
In some of the local civil courts of record which have survived the creation of the county courts the pleadings are etill in the form recognized hy the Common Law Procedure Acts. This is the case in the Mayor's Court of London. In others. (e.g. the Liverpool Court of Passage and the Salford Hundred Court) the system of the Judicature Acts has been adopted with or without official sanction. The has been adopted with or without onicial sanction. Reavd. The policy of the lord chancellor and the treasury has been to refuse reform of procedure to ali but the most used of these local courts so as to extinguish them in favour of the county courts.
In the ecclesiastical courts the statements of the partien are called generally pleas. The statement of the plaintifí in civil cuits is called on libel; of the promoter in criminal suits articles. Every subsequent plea is called an allegation. To the responsive allegation of the defendant the proTo the responsive allegation of the defiendant the pro andion moter may plead a counter-allegation. The cause is concluded When the parties renounce any Yurther allegation. There exists in addition a more short and summary mode of pleading called en act on petition.

In Roman criminal procedure the indictment (insoripio or
libailus accusalionis) was usually in writing, and contained a formal statement of the offence. In some cases oral accu-

Crimisel

 sations were allowed. The ploading of the accused seems to have been informal. In English criminal cases the expression "pleadings" is limated to those tried on indictment or information before a jury. In matters dealt with by justices of the peace there are informations sometimes in writing, but they are never regarded as "pleadingan." English criminal pleading has been less affected by legislation than civil pleading, and retains more of what is called the common law system. Cases in which the Crown was a party early became known as "pleas of the Crown" (placita coromae), as distinguished from "common pieas" (compmunic placita), or pleas between aubject and subject-that is to say, ordinary civil actions. Pleas of the Crown originally included all matters in which the Crown was concerned, such as exchequet.cases, franchises and liberties, but gradually became confined to criminal matters, atrictly th the greater crimes triable only In the king's courts. In criminal pleading the Crown states the case in an indictment or information. The answer of the accused is a plea, which must be pleaded by the accused in person, except in certain cases of misdemeanour tried in the High Court (Crown Office Rules, 1906). The plea, according to Blackstone, is either to the jurisdiction, a demurrer, in abatement, speciai in bar, or the general tasue. The last is the only plea that often occurs in practice; it consists in the answer (usually oral) of "guilty" or "not guilty" to the charge. A demurrer is strictly not a plea at all, but an objection on legal grounds. Pleas to the jurisdiction or in abatement do not go to the merits of the case, but allege thal the court has no jurisdiction to try the particular offence, or that there is a misnomer or some other technical ground for stay of proceedings, The powers of amendment given in 185t (14 \& 25 Vict. c. 100) and the procedure by motion in arrest of judgment have rendered these pleas of no practical importance. The special picas in bar are autrefois convich or autrefois acquit (alleging a previous conviction or aquittal for the same crime) and pardon (sce Pardon). The plea of autrofois attaint has fallen out of use since the abolitlon of attainder by the Forfcitures Act 1870. There are also special pleas of justification to indictmente for delamatory libei under the Libel Act 1843; and to indictments for non-repair of hlghways and bridges the accused may plead that the llability to repair falls upon another person. These special pleas are usually, and in some cascs must bo, in writing. When there is a special plee in writing the Crown puts in a replication is writing.Ireland.-The practice as to civil and criminal pleading in Ircland is substantiatly the same as in England, though to some extent based on dififerent stalutes and rulct of court.
Scottand.-In Scotland an action in the Court of Seasion begins by a summons on the part of the pursucr, to which is annexed a comdetcendence, containing the allegations in fact on which the action is founded. The pleas in law, or statement of the legal rule or rules relied upon (introduced by the Court of Scssion Act 1895), are subjoined to the condescendence. The term libel is also used (as in Roman law) as a general term to express the clain α the pursuer or the accusation of the prosecutor. The statement of the defender, including his pleas in law, is called his defences. They are either dilatory or peremptory. There is no cormal joinder of issue, as in England, but the same end is attained by adjustment of the pleadings and the closing of the record. Large powers of amendment and revisal are given by the Court of Scesion Act 1868. In the sherif court pleadings are very similar to those in the Court of Session. They are commenced by a petition, which inchudes a condescendence and a note of the pursuer's pleas in law. The defender may upon notice lodge defences. The procedure is now governed by the Sheriff Courts Scotland Act 1876. The term pleas of the Crown "is confined in Scotland to four offencesmurder rape, robbery and Gre-raising. The criminal procedure of Scotland was simplified and amended in 1887. The old procedure by criminal letters has been abolished, and prosecutions for the public interest whether in the high court of jusiciary or before the sheriff with a jury are by indictment in the name of His Majesty's adyocate. The Scots indictment differs from the English in not being found by a grand jury, except in cases of high treason, and resembles rather the ex officio information of Euplish law. Until 1887 It was in the form of a syllogism, the major proposition stating the nature of the crime, the minor the actual offence committed and that it conmitutces the crione named in the majoc, the
comelusion that on conviction of tho panel he ought to merter punksment. Under the present practice it is in the second person addreseed to the accused, and followe the forms actieduled to the act of 1887, which also maked specific provisions for eimplification, and if need be for amendment (s. 70). A copy of the indictment with a lise of the witnesmes and the productions nuss be served on the accused. There are two sittings (dicts) 20 deal with the indictment. At the firat, held before the sheriff, the aceused (termed the parel) may plead guilty or raise preliminary objections to the relevancy of the indictment, \&c., or otherwise (auch as want of juriediction or res judicate); or dehout taking such objections, or after they are. overruled, may plead not guilty. The second diet is the diet of trial. If the trial is before the sherif his rulings at the first dict are final, if before the court of justiciary his rulings may be roviewed. At the mecond diet, besloses hip ples of not suilty, the panel may rely on certain spocial defences, e-g. insenity or alibi, but only if his special and written plea was tendered and recorded at the finst diet or the delay explaited, and he cannot call evidence in support of thexe pleas except oa written sotice specily ing the names of the witnesses and the documeats not included ia the prosecutor's lists (s. 36). (Ses Macdonald, Criminal Law of Scolland.)
British Dominions Beyond Seas.-In mon of the Australian ctates, and in Ontario and Now Zealand, civil pleadlpge are governed by rules adopted from the Enclish Judicature Acts. In New South Wales a system based on the Common Law Procedure Acts is retained. Civil pleadings in India are regolated by the Civil Procedure Coda Indictments, emeept in India, are baned on the English system as modified by the criminal codes or other lestisla. tion of the colony. Indictmente in India are regulated by the Criminal Proeedure Code of 1898.

Unitod Sloter...In the United States two syatems of pleading in civil procedure exist side by side. Up to 1848 the pleading did not materialiy differ from that in use in England at she mame date. But in 1848 the New York legislature made a radical change in the zystera, and the example of New York has been followed by many statea. The New York Civil Code of 1848 established a uniform procedure called the civil action, applicalie indifferently to common law and equity. The pleadings are called complaini, axinoep (which includes cownterclaim) and reply. The demurro also is still used. In some states which follow this procedure the complaint bears the amme of petition. In inferior courte, such as courts of justices of the peace, the pleadings are more simple, and in many caves oral. In states which do not adopt the ampoded procedure the pleading is much the same as it was ln the days of Blackstone, and the old double jurisdiction of common law and equity still remains. Criminal pleading is on the lincs of the common law Bytern of England.
(W. F. C.)

PLeasURE (through Fr. plaisir from Lat. placere, to please; Gr. ఫुowh), a term used ioosely in ordinary language as practically synonymous with "enjoyment." As such it is applicd equally to what are known as the "higher "or "intellectuai" pleasures, and to parely "semsinl," "minal" or "lower" pleasures The conditions under which a man is pleased are the subject both or psychologieal and of ethical investigation. In geperal it may be said that pleasure and pain follow respectively upon the success of the failure of some effort, mental or physical (see Psyciology); they may also attend upon purcly passive sensations, e.g. a warm sun, a heavy shower, or upon associations with previous states of mind (i.e. a man may onjoy a sensation which is intrinsically painful, if it has pleasant associations). Recognition of the fact that mankind secks pleasure and avoids pain has led some moralists to the conclusioo that all human conduct is actuated by hedonic considerations: this is the direct antithesis to ethical theories which maintain an absolute criterion of right and wrong (see Henonism; Etirics). Aristotle took a middle view, holding that pleasure, though not the end of virtuous action yet necessarily follows upon it (intyedparby it rithos).
PLEBISCITE (Lat. plebrisoikum, a decree of the piebs), a terra borrowed from the French for a vote of all the electors in a country taken on some specific question (sce also Referenocia). The most familiar example of the use of the plebiscite in French history was in 1852, when the conp d'Cal of 1851 was confirmed and the title of emperor was given to Napoleon III. In Roman constitutional lav the plebiscitum was a decree enacted in the assembly of the Mehs, the comitia tribula, presided over by a plebeian magistrate.
PLEBS (from the root seen in Lat. plenws, full; ci. Gr. wiapos), the "multitude." or-unprivileged chass in the early Roman state For the origin and history of this order see Pataicians and Nomity. Its disqualificqions were. originntly based on
descent; but after the political equalization of the two orders the name was applied to the lower classes of the population without reference to their descent. Under the empire the word is regularly used of the city proletariate, or of the commons as distinct from knights and senators.
PLEDGE, ${ }^{1}$ or PAWN, in law "a bailment of personal property es a security for some debt or engagement " (Story on Bailmends, f 286). The term is also used to denote the property which constitutes the security. Pledge is the pignus of Roman law, from which most of the modern law on the subject is derived. It difiers from hypothec and from the more usual kind of mortgage in that the pledge is in the possession of the pledgee; it also differs from mortgage in being confined to persomal property. A mortgage of personal property in most cases takes the name and form of a bill of sale. The chief difference between Roman and English law is that certain things, e.g. wearing appral, furniture and instruments of tillage, could not be pledged in Roman law, while there is no such restriction in English law. In the case of a pledge, a special property passes to the pledgee, sufficient to enable him to maintain an action against a wrongdoer, hut the general property, that is the property subject to the pledge, remains in the pledgor. As the pledge is for the benefit of both parties, the pledgee is bound to exercise only ordinary care over the pledge. The pledgee has the right of selling the pledge if the pledgor make default in payment at the stipulated time. No right is acquired by the wrongful sale of a pledge except in the case of property passing by delivery, such as money or negotiable securities. In the case of a wrongful sale by a pledgec, the pledgor cannot recover the value of the pledge without a tender of the amount due.

The law of Scotland as to pledge generally agrees with that of England, as does also that of the United States. The main difference is that in Scothond and in Louissimna a pledge cannot be wold unless with judicial aulhority. In some of the American states the common law as it existed 2 part from the Factors' Acts is still followed; in others the factor has more or lesi restricted power to give a title by pledge.

See also Factor and Pawnbrormg.

PLEBVE, VIATSCHELLAF EDNSTANTINOVICI (1846-5904), Russian statesman, was born of Lithunnian stock in 1846. He was educated at Warsaw and studied law at the university in Se Petersburg before he entered the bureaucracy in the department of justice, in which he rose rapidly to be assistant solicitorgeneral in Warsaw, then solicitor-general in St Petersburg, and in 188 I director of the state police. As assistant to the minister of the interior he attracted the attention of Alexander III. by the skill he showed in investigating the circumstances of the assassination of Alexander II. He received the title of secretary of seate in 1894, became a member of the council of the empire, and in 1902 succeeded Sipiaguine as minister of the interior. Plehve carried out the "russification" of the aHen provinces within the Russian Empire, and earned hitter hatred in Poland, in Jithuania and especially in Finland. He despoiled the Armenian Cburch, and was credited with being accessory to the Kishinev massacres. His logical mind and determined support of the autocratic principle gained the tsar's entire confidence. He opposed commercial development on ordinary European lines on the ground that it involved the exirtence both of a dangerous proletariat and of a prosperous middle class equally inimical to autocracy. He was thus a determined opponent of M. de Witte's policy. An attempt was made on his life carly in 1904, and he was assassinated on the a8th of July of the same year by a bomb thrown under his carriage. as he was on his way to Peterbof to make his report to the farar; the aceascin, Sasonov, was a memher of the fighting organization of the socialist revolntionary party.

PLEAAD (Gr. Mhesis), in Greek Fiterature, the name given (by analogy from Plinides, below) by the Alerandrian critice to seven tragic poets who fiourished during the reigo of Ptolemy
${ }^{2}$ The word "pledge" is adapoed from the O. Fr. plege, mod. pleige, eecurity, hostage, Med. Lat. plivium. This is a formation form Med. Lat. platire or plabire, to undertake or engage for someone, d. "replevis" if is now considered to be a word of Teutonic origin and connected with Ger. pfegen and "plight."

Phindelphas (8 5-247 玉.c.). In Fresch liberature, in addition to the Pleiad of Charlenagoe, these were two famons groupe of the kind. The first, during the reign of Heari III. $(\mathbf{x} 574-2589)$, the chief member of which was Pierre do Ronserd, sought to improve the French language and literature by enthuslantic imitation of the classics; the second, under Louis XIIL. (a6no1643), consisted of authon who excelled in the composition of Latin verse.

PLRIADE罗, in Greek mythology, the seven daughters of Athas and Plelone, and sisters of the Hyades. Owing to their grief at the death of their sistens or at the sufferings of their fathery they were changed into stars. In another acoount, the Pleisdes and their mother met the hunter Orion in Bococia, and the sight of them inflamed his pasion. For five years he pursued them through the woods, until Zeus translated them all-Plelone and her daughters, Orion, and his dog-to the sky. The Pleiades rose in the middle of May and set at the end of October, and their connexion with spring and autumn explains the legend. As bringers of the fertilizing rains of spring, which have their origin in the west, they are the daughters of Alas; as the forerunners of the storms of autumn, they are represented as heing driven onward by Orion in pursuit. The word is probably connected with ridiwy, either in the sense of "many in number," since the stars formed a close group, resembling a hunch of grapes (hence sometimes called β brous), or as " more in number " han their sisters. Others derive the name from rideiy (to sail), because navigation began at the time of their rising. They are probably alluded to in Homer (Odyssey, xii. 62) as the doves (reNelades) who hrought ambrosia from the west to Zeus. One of these doves was always lost during the passage of the Planctae (wandering rocks), referring to the fact that one of the seven Pleiades was always invisible. This was Merope, who hid her light from shame at having had intercourse with a mortal, Sisyphus. All the Pleiades became the ancestresses of divine or heroic tamilics. They were called Vergiliae (probahly connected with ser, spring) by the Romans.
See Hesiod, Works and Days, 383; Apollodorus iii. 10; Diod. Sic. iii. 60: Theocritus xiti. 25; Hytinus, Astromom. it. 21; Ovid, Fenti, iv. 169, v. 599.
PLBiADES, Atlantides or Vergitiae, in astronomy, a group of stars situated in the constellation Taurus. They are supposed to he referred to in the Old Testament (Job. ix. 9, xxxviii. 31). -This group is particularly rich in hright stars, and is full of nebulosity, but there are fewer faint stars than in equal areas of the surrounding sky; the central star is Alcyone (3rd magnitude); Pleione and Atlas are also of the 3rd magnitude.
PLEISTOCENE, in geology, the epoch which succeeded the Pliocene; it is the last of the Tertiary periods, and hence the lower subdivision of the quaternary or modern era. The name was introduced by Sir C. Lyell in 1839 (from Gr. т $\boldsymbol{\text { Reiotor, }}$ most, and кurbs, recent), the rocks of this period containing a higher percentage of living forms than the youngest of the Tertiary formations. By many writers "Pleistocene" has been regarded as synonymous with "Glacial Period" or the "Diluvium " of some geologists. In the northern hemisphere the protracted period of glaciation, with its predominating influence upon modern topography and fannal distribution, was undoubtedly the outstanding feature of the time. The phenomena of the Glacial period (g.v.), which was by no means strictly limited to the northern latitudes, are dealt with under that head, but there are certain other characteristics of the Pleistocene period which hear no direct relationship to giaciation, and these will be dealt with here.
The gradual inception of colder conditions in the northern hemisphere which lead up to the more extreme conditions of glaciation clearly began in the latter part of the Pliocene period, and the effects of this cooling are seen not only in northern Europe and America hut as far south as the Mediterranean. The result of this is that there is a certain indefiniteness as to the exact base line to be adopted for the Pleistocene formations; thus the Forest Bed of Cromer and certain-beds in Sicily and Italy are by some authors placed in this period and by others
in the Pliocene (g.o.). Again it is clear that in parts of northern Europe, Siberia and North America, the conditions characteristic of a glacinal period are still existent; even in Scothand and Norway the last traces of glacial action are remarkably fresh, and the last remnanta of great glacial centreas still linger in the Alpeand other lofty southern mountains. Many of the formations of this period can be shown by their koseil contents to belong to carly quaternary time, but since so many-of these deposits are atrictly local in character, and since the launa and flora present in any one spot have been determined by local geographical conditions which have assisted or retarded the migration of certain forms, it is a matter of extreme difficulyone may say imposibibity-to reduce the Pleistocene formations to any generally applicable chronological order. For similar reasons it is impossible to define strictly the upper limit of the formations of this period, and to say where che Pleistocene ends and where the Recent or Holocene period begins.
The compoition and distribution of the Pleistocene fauna and fora preent many points of exireme interent. The fcature of greatest importance is that man existed somewhere and in some condition before and in this period; but no really matisfactory proof has so far been forthcoming which will ret back his first appcarance before the beginning of the glacial period (Pifhecaxithopus erectus found by E. Dubois in Java is regarded as of Ptiocene age). The presence of the remains of man or of his works might reasonebly be taken as a criterion α the Pleistocene age of $\&$ depositW we omit the remaine of historical time. But here again it has to be borne in mind that historical time is continualiy being eet back by archzeological rescarch, and further. the difficulty of employing artefocs of stone as chronological indicators is shown by the fact that even at the prevent day implements of stone are still in usc. and that different local races of eariy men must have been in diverse stages of development in Pleistocene as in later ageth. It is. therefore, only with the utmost caution that chronological subdivisions' of the period, such as thoee mentioned below, based upon the lorm and degree of finish of atone implements, can be used in anything but local correlations unlest the evidence is eupported by setisfactory lonecile.
Next to the appearance of man the moot atriking characteristic of the land fauna was the existence of numerous large-bodied mammals; Elephas antiquus, for instance, attained a more excessive buik than any other proboocidean either before or wince. the woully thinoceros, the great hippopotamus, the cave bear, cave lion and piant deer were all Larger than their living representativen. No less striking is the disappearance of these large forms together with highly specialized creatures such as Machaerodus within the some period, through the action of the smeme causes which had removed the bulky and specialized reptiles of an earlier grological period. The Pleistocene mammalia of Europe Include Elephas antiquus. E. primogenius (mammoth), R. anilquilatis (lichorhinus) (the woolly rhinoceros), R. mercki (especially in Silcsia). R. leptiominus (Courb-east Europe), Elasmolherium (Sitesia and south Rusia), Hippopotamus major. Bos primicewius (aurochs extinct in historical time). Bisom. prscus., Bison europocus (still living in the Caucaaus and Lithuania), Bos (Bubalus) pallasi (north Europe). camels in south Russia and Rumania, Equus fossitis and varieties:
 and ita varieties): Corous slaphus, C. allecs. Rancijer laraudus and R. grosmlandicas (reindeer). Capreolus caprea. Capra ibex, Saisa salarica. Ooibos moschatus, Feliss spelaeus, Hyoena spelaca. Ursus speloows, badger, weasel, glutton, hare. lemming (Myodes Lorquatus and M. Lemmus), Spermophilus. Alaciaga, Arctomys, Castor fiber. Lagomys, Trogoniherium. In North America there were numerous mammalis common to Europe and North Asia, including the muskox, mammoth and horse; the mastodon held on into this period in America but not in Europe: there were also lamas, tapirs, camels (Camelus auchenia), Machacrodus, Mylodon, Procyon, Aices. In south America there was at firt a very characicristic endemic fauna including Megatherium, Mylodon, Grypolkerium, Leslodon, Toxodon, Typotherixm. Glyptodon, Hacrauchenia, Capybara, Rhea, to which were added later. LI astodon, Machoerodus. Lama and other North American forma. In Australia a very distinet assembiage of hrge marsupiato and monotremes lived in tbe Pleistocene period; including. Phascolus, Diprotodon, Thylacoleo, Nototherixm and a large extinct Echidna; placental mammals were not then known in this refion. In Madagascar the Aepiornis, Megaladapis, and certain extinct lemuroid creatures have kelt their remains.
The advance and retrest of glaciel conditions in northern latitudes had a marked infuence upon animal and plant life, and was the means of determining the present distribution of many of the living mammalia and plants: some were driven permanently southward, come northern forms still live irolated on the higher mountain regions, others like the reindeer and musk-ox returned northward as eoon as the conditions perrnitted. The apparently curious admixture of what are now of ten regarded as tropical or sub-tropical
forms (lion, hyena, rhinoceroe and elephants) with cold-temperate or arctic genera, presents no real dififulty, since their distrifution was doubtiess mercly a matter of food supply; and nome of these. like the woolly rhinoceros and mammoth, were provided with a thick hairy pelt.

Although in the main the arrangement of land and eea was littie different from that which obtains at the present time, one or two features existed in the Pleistocene period which had a considernble influence on faunal migration. For instance, the absence of the Bering Straits permitted free communication between Europe and North America, and the absence of the Straits of Dover allowed a milar interchange bet ween Great Britain and France; while an extemsion of the sea in the Caspian region and of the Arctic Sea in northern Russia acted as a bar to iree parnige between Europe and Asia in those regions
The formations of Pleistocene age, other than those of direct glacial origin, include deposits on the floors of caves in limestone and dolomitic rocks, calcareous sinter (travertine or tufia) Cormed by spriaga, ancient river and lake alluvial and lacustrine terraces elevated marine beaches, aubmerged forests, ancient lake deposits and peat beds, laterite, loess and mand dunes.

Some of the prevalent styles of clastifying the deposits of the glacial formations of this period are mentioned in the article Glacial Period. The lollowing mbdivisioneareof en employed by European geologists: a younger divition, Rcindeer time-MagdaÚnicn ${ }^{1}$ stage; a middle division, Mammoth time $=$ Salutricta atage; and an older division, Elephos anliquus time $=$ Chelkén stage. While come authors include all the above in the "glacial period," others would place the Magdalénien in a pont-ghacial division. The terma Magdalenien, Acc, are realiy archacological. based upon the characters of the implements found in the deposits. and like the similar terms "eolithic" and "palaeolithic "they are of little value in geological chronology unless they are supported by palaeontological evidence.

See E. Geinitz, Das Qwarldr mon nond Europa (Stuttgart, 1904). with very (ull references; T. C. Chamberlin and R. D. Salisbury. Geology, vol. iii. (New York, 1906), (or references to Ameticai authoritiea.
(1. A. H.)
 he superfluous, $\pi \lambda i=0$, comparative of mohis, many, great, large), redundancy or superfluity in speaking or writing, hence an unnecessary work or phrase. The word, more usually in the Latin form "pieonasmus," is used in pathology of an abnormal growth or formation.

PLEsiosaUnUe, an extinct marine reptile belonging to the Order Sauropterygiz, which characterized the Mesozoic period and had an almoet world-wide distribution (eee Reptius). The animal is best known by nearly complete skeletons from the Lias of England and Germany. It was named Plesiosawriss (Gr. more-lizard) by W. D. Conybeare in 1821, to indicate that it was much more nearly a normal reptile than the strangc

Plesiosaurus gwilelmi-imperaloris, restored.
Ichichyosasurus, which had been found in the same Liassic formation a few years previously. It has a small head, a long and slender neck, a round body, a very short tail, and two pairs of large, etongated paddles. The snout is short. but the gape of the mouth is wide, and the jaws are provided with a seriea of conical teeth in sockets, much like those of the living gevial

[^81]of Indian rivers. The neck, though long and slender, must have been rather stiff, because the bodies of the vertebrae are nearly flat-ended, while they bear short ribs: it could not have been bent in the swan-fashion represented in many restorations. The other vertebrae are similarly almost flat-ended and Girmly united, but there, is no sacrum. The ribs are single-headed, and in the middle of the trunk, between the supports of the paired limbs, they meet a dense plastron of abdominal ribs. The short tail is straight and rapidly tapering, but one specimen in Berlin suggests that it was provided with a rhomboidal flap of skin in a vertical plane. The bones in the ventral wall of the body which support the paired limbs are remarkably expanded, and those of the pectoral arch have often been compared with the corresponding bones of turties. The limbs are elongated paddies, with five complete digits, of which the constituent bones (phalanges) are unusually numerous. The only traces of skin hitherto discovered suggest that it was smooth. The reptile must have been almost exclusively aquatic, feeding on cuttcfishes, 6 shes and other animal prey. It propelied itself chiefly by the paddics, scarcely by the tail.

The typical species is Plesiosawres dolichodeirus, from the Lower Lias of Lyme Regis, which attains a length of about three metres. Other species from the same formation scem to bave measured five to six metres in length, and there are speries of allied genera from the Upper Lias which are probably still larger. A fine large skeleton from the Upper Lias of Worttemberg, now in the Berlin Museum, is named Plesiosaurus guildmiimperatoris (see figure above). Cryplodidus, known by complete skeletons from the Oxford Clay of Peterborough, differs very Litile from Plesiosawrus. The Cretaceous Cimoliosaurus, found in North and South America, Europe and New Zealand, is also very similar. The fossilized contents of the stomach in some of the later Plesiosaurs show that these reptiles swallowed stones for digestive purposes like the existing crocodiles.
References.-R. Owen, Fossil Repilic of the Liassic Formations, pt. iif. (Monogr. Palacont. Soc., 1865); W. Dames, paper in Abhandr. h. preuss, Akad. Wiss. (1895), p. 1.
(A. S. Wo.)

PLEURISY, or Pleuritis (Gr. ж λ cipa $=$ ribs), inflammation of the pleura, caused by invasion hy certain specific microorganisms. (See Respiratory Svster: Pathology.) Secondary pleurisies may occur from extension of inflammation from neighbouring organs.

The morbid changes which the pleura undergoes when inflamed consist of three chict conditions or stages of progress. (1) Inflammatory congestion and infiltration of the pleura, which may spread to the tissues of the lung on the one hand, and to those of the cicest wall on the other. (2) Exudation of lymph on the pleural surfaces. This lymph is of variable consistence, sometimes composed of thin and easily separated pellicles, or of extensive thick masses or strata, or again showing itself in the form of a tough membrane. It is of greyish-yellow colour, and microscopically consists mainly of coagulated fibrin along with epithelial cells and red and white blood corpuscles. Its presence causes roughening of the two pleural surfaces, which, slightly separated in health, may now be brought into ccntact by bands of lymph extending between them. These bands may hreak up or may beconte organized by the development of new blood vessels, and adhering permanently may obliterate throughout a greater or less space the plcural sac, and interfere to some extent with the free play of the lungs. (3) Effusion of fluid into the pleural cavity. This fluid may vary in its characters

The chief varieties of pleurisy are classified according to the variety of the effusion, should effusion take place. (1) Some pleurisies do not reach the stage of effusion, the inflammation terminating in the exudation of lymph. This is termed dry Newrisy. (2) Fibrinous or plastic pleurisy. In this varicty the pleura is covered by a thick layer of granular, fibrinous material. Fibrinous pleurisy is usually secondary to acute diseases of the lung such as pneumonia, cancer, abscess or tuberculosis. (3) Sero-Gbrinous pleurisy. This is the most common variety, and produces the condition commonly known as pleurisy with effusion. The amount may vary from an
almost inappreciable quantity to a gallon or more. When large in quantity it may fill to distension the pleural sac, bulge out the thoracic wall externally, and compress the lung, which may in such cases have all its air displaced and be reduced to a mere fraction of its natural bulk. Other organs, such as the heart and liver, may in consequence of the presence of the fluid be shifted away from their normal position. In favourable cases the fluid is absorbed more or less completely and the pleural surfaces again may unite by adhesions; or, all traces of infiammatory products having disappeared, the pleura may be restored to its normal condition. When the fluid is not speedily absorbed it may remain long in the cavity and compress the lung to such a degree as to render it incapable of re-expansion as the effusion passes slowly away. The consequence is that the chest wall falls in, the ribs become approximated, the shoulder is lowered, the spine becomes curved and internal organs permanently displaced, while the affected side scarceiy moves in respiration. Sometimes the unabsorbed fluid becomes purulent, and an empyeme is the result.
The symptoms of pleurisy very; the onset is sometimes obscure but usually well marked. It may be ushered in by rigors, fever and a sharp pain in the side, especially on breathing. Pain is felt in the side or breast, of a severe cutting character, referred usually to the neighbourhood of the nipple, but it may be aiso at some distance from the affected part, such as through the middle of the body or in the abdominal or iliac regions. On auscultation the physician recognizes sooner or later "friction," a superficial rough rubbing sound, occurring only with the respiratory acts and ceasing when the breath is held. It is due to the coming together during respiration of the two pleural surfaces which are roughened by the exuded lymph. The 'pain is greatest at the outset, and tends to abate as the eflusion takes place. A dry cough is almost always present, which is particularly distressing owing to the increased pain the effort excites. At the outset thére may be dyspnoea, due to fever and pain; later it may result from compression of the lung.

On physical examination of the chest the following are among the chief points observed: (1) On inspection there is more or less bulging of the side affected, should effusion be present, obliteration of the intercostal spaces, and sometimes elevation of the shoulder. (2) On palpation with the hand applied to the side there is diminished expansion of one-half of the thorax, and the normal vocal fremitus is abolished. Should the effusion be on the right side and copious, the fiver may be feit to have been pushed downwards, and the heart somewhat displaced to the left; while if the effusion be on the left side the heart is displaced to the right. (3) On percussion there is absolute dulliness over the seat of the effusion. If the fluid does not fill the pleural sac the floating lung may yield a hyper-resonant note. (4) On auscultation the natural breath sound is inaudible over the effusion. Should the latter be only partial the breathing is clear and somewhat harsh, with or without friction, and the voice sound is aegophonic. Posteriorly there may be heard tubular breathing with aegophony. These various physical signs render it impossible to mistake the disease for other maladies the symptoms of which may bear a resemblance to it, such as pleurodynia.

The absorption or removal of the fluid is marked by the disappearance or diminution of the above-mentioned physical signs, except that of percussion dullness, which may last a long tine, and is probably due in part to the thickened pleura. Friction may again be heard as the fluid passes away and the two pieural surfaces come together. The displaced organs are restored to their position, and the compressed lung re-expanded. Frequently this expansion is only partial.
In most instances the termination is favourable, the acute symptoms subsiding and the fluid (if not drawn off) becoming absorbed, sometimes after reaccumulation. On the nther hand it may remain long without undergoing much change, and thus a condition of chronic pleurisy becomes established.

Pleurisy may exist in a latent form, the patient going about for wecks with a large accumulation of fluid in his thorax, the
ordiary acule symptoms never having been present in any marked degree Cases of this sort are often protracted, and therr resulis unsatisfactory as regards complete recovery.
In the treatment of early pleurisy, paun may be relieved by a hypodermic of morphua or the application of leeches. A purgative is essential. Fixation of the aflected side of the thorax by strapping wih adhessue plaster gives great relef. The icebag is useful in the early stages, as un pneumonia. The open-aur treatment of cases is recommended, as the majority of the cases are of tuberculous origin. When effusion has taken place, counter arrtation and the exhhhition of odide of potassium are useful Dry diet and saline purgatives have been well spoken of The most satisfactory method of treatment is early and if necessary repeated aspiration of the fluid The operation (lhoracentesis) was prattised by ancient physicians, but was revived in modern times by Armand Trousseau ($\mathbf{1 8 0 1 - 1 8 5 7 \text {) }}$ in France and Henry I. Bowditch (1808-1892) in America, by the latter an excellent instrument was devised for emptying the chest, which, however, has been displaced in practice by the uill more convenient aspirator. The chest is punctured in the lateral or posterior regions, and in most cases the greater portion or all of the fluid may be safely drawn of. In many instances not only is the removal of distressing symptoms speedy and complete, but the lung is relieved from pressure in time to enable it to resume its normal function.
In cases of chronic pleurisy after the failure of repeated aspirations, Samuel West reports well of free incision and drainage. He has reported cases of recovery of effusion, fifteen or eighteen months standing. Sir James Barr has advocated the treatment of tbese cases by the withdrawal of the fluid and the substitution of sterilized air and solution of supra-renal extract; others have introduced physiological salt solution or formalin solution into the cavity, after the removal of the fluid. Vaquez injects nitrogen into the cavity and reports a number of cases in which it prevented recurrence.
PLEURO-PNBUMONIA, or LUNG-PLAGUE, a contagious disease peculiar to cattle, generally affecting the lungs and the lining membrane of the chest, producing a particular form of lobar or lobular pleuro-pneumonia, and, in the majority of cases, transmitted by the living diseased animal, or, exceptionally, by mediate contagion. It cannot be communicated to animals other than those of the bovine race. Inoculation of healthy cattle with the fluid from the diseased lungs produces, after a certain interval, characteristic changes af the seat of inoculation, and tbough it does not develop the lung lesions always observed in natural infection, yet there is a local anatomical similarity or identity. Though numerous investigations have been made, the nature of the infective agent remains doubtful. In 1888 Arloing, of Lyons, described various bacilli obtained from the lesions, but the pathogenic organism of lung-plague has not been discovered.
The earliest notices of this disease testify that it first prevailed In central Europe, and in the $88 t h$ century it was present in certain parts of southeru Germany, Switzerland and France, and bad also appeared in upper Italy. Though Valentine described an epizooty occurring among cattle in 1693 in Hesse, doubts have been entertained as to whether it was this malady. It was not until 1769 that it was definitely described as prevailing in Franche-Comite by the name of "murie." From that date down to 1789 it appears to have remained more or less limited to the Swiss mountains, the Jura, Dauphiné and Vosges, Pied. mont and upper Silesia; it showed itsel! in Champagne and Bourbonnais about the time of the Revolution, when its spread was greatly accelerated by the wars that followed. In the igth century its difusion was accurately determined. It invaded Prussia in 1802, and soon spread over north Germany. It was first described as existing in Russia in 1824 ; it reached Belgium in 1827, Holland in 1833, the United Kingdom in 1841, Sweden In 1847, Denmark in 1848 , Finland in 1850, South Africa in 1854, the United States-Brooklyn in 1843, New Jersey in 1847. Brooklyn again in 1850 and Boston in 1850 ; it was also carricd

Zealand and Tasmania received it in r864, but tt was eradicated in both countries by the sanitary measures adopted It was carried to Asia Munor, and made its presence fels at DamascusIt prevails in varous parts of Chica, Lndin, Africa and Australia. and untl quute recenlly it existed in every country in Europe. except Scandinavia, Holland, Spain and Portugal. Ln Great Bntan cases occurred in 1897.
Symploms - The malady lests from two to three weeks to as many months, the chuef symptoms being fever, dumaushed appetite, a short cough of a peculiar and par hognomonic character, with quckened breat hing and puise, and phywcal indications of luag and chest disease. Towards the end there is great dobility and emactation, death generally ensuing aftet hectic fever has set in Complete recovery is rare.

The pathological changes are generally limuted to the chest and its contents, and consist in a peculiar marbled-like appearance of the lungs on section, and 6 brinous deposits on the pleurat membrane, with oftenumes great effusion into the cavity of the thorax.

Willems of Hasselt (Beigium) in 1852 introduced and rractised inoculation as a protective measure for this scourge, employing for this purpose the lymph obtained from a diseased lung Since that time inoculation has been extensively resorted ta, not only in Europe, but also in Australia and South Africa, and its protective value has been generally recognized. When properly performed, and when certain precautions are adopted, it would appear to confer temporary immunity from the disease. The usual seat of inoculation is the extremity of the tail, the virus being introduced beneath the skin by means of a syringe or a worsted thread impregnated with the lymph. Protection against Infection can also be secured by suhcutaneous or intravenous injection of a culture of Arloing's paeumo-bacillus on Martin's bouillon, and hy intravenous injection of the lymph from a diseased lung, or from a subcutaneous lesion produced in a calf by previous inoculation.

PLEVNA (Bulgarian Pleven), the cbief town of the depart ment of Plevna, Bulgaria; 85 m . N.E. of Sofia, on the Tuichinitza, an alfluent of Vid, whicb flows north into the Danube and on the Sofia-Varna railway (opened in 1899). Pop. (1906), $21,208$. A branch line, 25 m . Jong, connects Plevna with Samovit on the Danube, where a port has been formed. After the events of 1877 , it was almost entirely forsaken by the Turks, and most of the mosques have gone to ruin; but, peopled now mainly by Bulgarians, it has quite recovered its prosperity, and has a large commerce in cattle and wine.

Balles of 1877.-Plevna, prior to the Russo-Turkish War of 1877 (see Russo-Turkisk Wars) a small and unknown town without fortifications became celebrated throughout the world as the scene of Osman Pasha's victories and his five months' defence of the entrenched camp which he constructed around the town, a defence which upset the Russians' plans and induced them to devote their whole energies to its capture. Osman Pasha left Widin on the 13 th of July with a column consisting of 19 battalions, 6 squadrons and 9 batteries, a total of 12,000 men and 54 guns. Hearing that he was too late to relieve Nikopol, he pushed on to Plevna, where there was a garrison of 3 battalions and 4 guns, under Atouf Pasha.

Passing tbrough Plenna on the afternoon of the igth of July he at once took up a position, previously selected by Atouf Pasha, on the hills covering the town to the north and east. The column had been joined en route by 3 battations from the banks of the Danube, so that Osman's command now consisted of 25 battalions. He was none too soon. General SchilderSchuldner, commanding the $5^{\text {th }}$ division of the roo Frue IX. corps. which had just captured Nikopol, had bettio of been ordered to occupy Plevna, and his guns were powee already in action. The Turkish batteries came into action as soon as they arrived and returned the fire. A desultory artillery duel was carried on till nightfall, but no attack was made by the Russians on the 19th. Osman distributed his troops in three sections: on the Janik Bair, facing north, were 13 battalions and 4 batteries, with advanced posts of a battalions
and I Battery each, at Opanetz and Bakova, facing east and north-east, 5 battalions and 10 gans were posted on the eastern end of the Janik Bair; to the hills south of the Bulgareai road 4 battalions and 2 batteries were allotted, and on either stda of the road, under cover, in rear of them, most of the cavalry was placed The remaining troops formed a general reserve, which was posted on the hill just east of the town. The hill to the north and east of Pievna were perfectly bare. The Turks had covered the 115 m . from Widin in seven days, in trying heat, and were exhausted, but a few trenches were thrown up. On the zoth of July at $5 \mathrm{a} . \mathrm{m}$, having rade no prelininary reconnaissance, the Russian commander brought his guns into action, and, after a short bombardment, advanced his infantry
arnt a force of 6 battalions and 1 battery umder Rifant Pasha to occupy Lovcha (Lovetz), where they entresched themselves.

The Flevna garrison now numbered 20000 (35 battalions, 8 squadrons, 57 guns and 400 mounted irregulars), who were arganized in two winge with a general reserve. Adil Pasha commanded the left wing consisting of is battalions, 3 batteries and 2 squadrons, and held the ground from the Vid bridga to Grivicta, Hassan Sabri Pasha comamanded tho right wing, of equal strength, covering frow Grivitus to the south. The remainder, as general reserve, was posted oa the crest and slopes of the hill east of the town, with one battalion in Plevna itself. The west front was not forthied till October. Trenches were

in four separate columis. On the north fiant they preseed into Bukova, and also succeeded in driving back the Turkish right wingi bet is both cases Turtish reinforcements ardived and with vigorous counter-atiacks pressed back the Russians, with the result that by noon they woro in foll retreat, having lost 2800 men out of a total of 8000 . The Turks lost 2000 . Osman made no attempt to reap the fruits of his victory by pursuit. He at once drew up plans for the fortification of the position, and the troops were employed night and day constructing redoubts and entrenchments. A plentiful supply of tools and daily convoys of stores reached Plevan from Orchanie, and on the 24th of July Osman's strength was increased by 14 battalions and a battery from Sofia. In order to secure his line of communications, on the agth of July, be

4 ft . deep and the redoubts had a command of 10 to 16 ft ., with parapets bbot $\% 4 \mathrm{fe}$. thick. In addition to the trenches to the fanks, there were in some cases two lines of tuench to the front, thus giving three tiers of fire.
In accordance with orders from the Russian headquarters ot Tirnova, a fresh attack was made by General Kridener on the zoth of July. He had been reinforced by three brigades of infantry and one of cavalry under General Shakovakoi, and his force numbered over 30.000 with 176 guns. After 3 preliminary cannonade the infantry advanced at 3 p.mp., as before in widely spread columns. The columns saped attacking from the north and noth-enst were Betion repulsed with hesvy loss. Shakovskoi advancing Pives from. Radischeva, bit left, flank stafguarded by Shohelev from
the neighboarhood of Xrihhin, temporarily cceupled two redoabts, but a heavy counter-stroke by the Turkish reserves forced him back with severe loss. The Ruscians retreated, the northern column to Tristenik and Karagakh, the southern to Poradim. Their losses amounted to 7300 , while the Turkish losses exceeded 2000. Had the Turkish garrison of Loveha been called in, the result would have been still more disestrous to the Russians.
The victory was decinive, but Orman ageln falied to parsuc. His troops were elated by success, the moral of the enemy severely shaken, the undefended Russina bridge over the Danube wes within 40 m . of him, but he lost his opportunity, and contented himself with strengthening his defensive works. It is said that he was tied down to Plevna by orders from Constantinople.

The Russians now concentrated all their available forces against Plevna and called in the aid of the Rumanians. By the end of August they had assembled a force of 74,000 infantry, 10,000 cavalry and 440 guns, including 24 siege guns, about r00,000 men in all. On the joth of August Osman mooved out of Plevan with all his cavalry, 3 batteries of artillery and 19 battalions of infantry, and on the 3 rist attacked the Russians bbout Pelishat. He returned to Plevna the same evening. The Turks lost $x 300$ and the Russians 1000 men. The Russians determined to occupy Lovchs, and so cut Osman's communi. cations before again attacking Plevna. After three days' Gighting this was accomplished by Skobelev, acting under Imeratinski, with a force of 20,000 men, on the 3rd of September. Osman moved out to the relief of the garrison that day with a strong column, but, finding he was too late, returned to Plevna on the 6th. The survivors from Lovcha were re-formed into 3 battalioas, including which Osman had been reinforced by 13 battalions, 21 batteries of artillery and 11 squadrons of cavalry. His strength was now 30,000, with 72 guns, 46 battalions, 19 squadrons and 12 batteries. This force was organized in 4 approximately equal commands, the northern, south-eatern and southern, and a generai reserve.

The Russians moved to their preliminary positions on the night of September 6th-7th. Their plan was for the Rumanians, Trin the IX. and IV. corps and Imeretinski's column to Bathe of attack the north-east, south-east and south fronts provna simultaneously. An artillery bombardment began at $6 \mathrm{a} . \mathrm{m}$. on the $7^{\text {th }}$ of Septeniber, was carried on till 3 p.m. on the irth, when the infantry advanced. The Rumanians took one Grivitza redoubl; Skobelev occupied two redoubls on the south front, but the centre attack on the Radisbevo front failed. On the 12th the Turks recaptured the southern redoubts, the Rumanians remained in possession of the Grivitza redoubt. but the Russian losses already amounted to 18,000 and they withdrew, and entrenched themselves on a line Verbitza. Radishevo, with cavalry on either flank to the Vid. The Turkish losses totalled 5000 , of which only a few hundred were caused by the artillery fire of the first few days. There was no question of pursuit. The Russians were greatly superior in numbers and the Turks were completely exhausted.

Several causes contribnted to the Russian defeat. The Russian bombardment, at ranges beyond the powers of their guns and lacking the co-operation of the infantry to give them a target, had been useless. No reconnaissance had been made of the position. The infantry attacks were not simultaneous, and were beaten in detail, besides which, they were spread over the whole of a strongly fortified front in equal strength, instead of being pressed bome at definite points. The lack of unity of command, in that the commander-in-chief interfered with the dispositions and conduct of the operations as arranged by the commander of the Plevna forces also militated against the Russian success.
This was the last open-force attack on Osman's lines. Havestment General Todlehen, the defender of Sevastopol, was now eov forl entrusted with the conduct of the siege, and be deof Ploven tormined to complete the investment, which. was accomplished by the 24 th of October, Osman's request to retire

From Plevna having been refused by Contantinople. Supplies eventually gave out and a sortie on the nicht of the gith-roeh of December failed, with the resule that be and his army capitulated:

Plevna is a etriting ecamplo of the futiity of the purcly passive defence, which is doomed to failure however tensciounly carried out. Osman Pusba repelled three Ruspian attacks and practically beid the whole Rumian army. It remained for the other Turkish forces in the field to take the offensive and by a vigorous counterstroke to reap the fruits of his succestes. Victories which are not followed up are usclese. War without strategy is mere hutchery. The podtion of Plevnt, threatening the Russian bridge and communications, was strategiclly important, but there was no nocessity for the Russians to attack the position. On the eastern flank was an army stronger than Osman's and the fortreas of Rustchuk was ncarer the baldere than Plenna, but they did not consider it necesary to attack them. They might have contained Oaman's force as they did the army under Mehemet Ali, and either awaited his attack or attacked when he evacuated the pouition. They failed to realise the resisting force of improvised fortifications and the strength conferred by extensive and well-placed entrenchments, and despising their adversary mada direct frontal attacks on a wellfortified position, instead of aiming at a flank or the rear. The part played by Plevna in the war was due in the firme place to the imaginary importance set by the Ruscians on its capture, and later to their faulty procedure in attack on the one hand, and to the skill evinced by the Turks in fortifying and defending the position on the other.
(J. H. V. C.)

See W. V. Herbert, The Defence of Plema, 1877 (London, 1895): F. V. Greene. The Russiant Army and its Campaign is Twitey (London, 1880) : Geopral Kuropmukin (Ger. trans by Krahmer), Kritische Rachbiche ouf Len rassisch-tiphtiscion Kries; Mouzafier Pacha and Talaat Bey, Difense de Plowna; Krahmer's German tranalation of the Ruseian Official History; General H. Langlois Lessons of Two Recent Wars (Eng. trans., War Office, 1910); Th. von Trotha, Kamof wni Plownc (Berlin, 1878): Vacareico (Ger. trans.), Rumdniens Antheil am Kriege, 1877-1876 (Leipxig, 1888).

PLEYES, IGXAR JOAEPR (1757-1831), Austrian mwaician, Wha born at Ruppersthal, near Vienna, on the ist of June 1757 , the twenty-fourth son of a poor village echoolmaster. He gludied the piapoforte under Van Hal (known in England as Vanhall), and in 1772 learned composition from Hzydn, who became his dearest friend. He was appointed temporary maltore de chapelle at Strasburg in 1783, receiving a permapaat appointment to the office in 1789 . In 1791 he paid a successful viait to London. He narrowly escaped the guillotise on returning to Strasburg, and was only saved by the existence of a cantala which he had written, and in which the inspiration could fairly be claimed to be on the side of liberty; so that he was permitted to remain until 1795, when he migrated to Paris. Here he opened a large music shop, published the first complete edition of Haydn's quartets, and founded, in 1807, the pianoforte manufactory which still bears his name. The latter years of his life were spent in agricultural pursuits. The July revolution of 1830 inflicted upon him a severe shock, and on the 14th of November 1831 be died in Paris.
Maria Pleyel, ne Moke (1811 -1875), the wife of his eldest son, Camille, was one of the most accomplished pianists of her time.
PLIGETT, an homonymouls word now used chiefly with iwo meanings, (1) pledge, and (a) condition or state. The first appears more generally in the verbal form, "to plight one's troth," \&c., and the second with a direct or implied sense of misfortune. The derivations of the two words show they are quite distinct in origin. The O. Eng. plik meant danger or risk, hence risk of obligation (ci. Ger. Pficht, Du. plicht, care, duty). The root pleh-or pleg- is probably also to be seen in the much disputed word "pledge." The M. Eng. plil or plyt, on the ocher band, is an adaptation of O. Fr. ploit, fold, and therefore a doublet of "plait," hut appears in the 14th century. with the mentral sense of condition or state in geperal.

PLIMER, A.--PLINY, THE ELDER

 painter, was the son of a clock-maker at Wellington. Disiiking his father's business, he and his brother Nathaniel joined a party of gypsies and wandered about with them, eventually reaching London, where he presented himself to Mrs Cosway in 1781 and was engaged by her as studio boy. His skill in painting was quickly detected by Cosway, who seat him to a friend to fearn drawing, and then received him into his own studio, where he remained until $\mathbf{1 7 8 5}$, when he set up for himself in Great Maddox Street. It was of this artist that Cosway said "Andrew will be my Elisha," adding with characteristic vanity, "if I am not constrained to carry my mancle up to Paradise with me." Plimer married Joanns Loulsa Knight, whose sister, Mary Ann, was his pupli and a well-known artist. He had five children, only one of whom, Loulss, married. He exhibited many times in the Royal Academy, resided for a while in Exeter, travelied a good deal through England, and died at Brighton and was buried at Hove. His mialatures are of great brilliance and in considerable demand among collectors. They are to be distinguished by the peculiar wiry treatment of the hair and by the large full expressive eyes Plimer invariably gave to his female sitters, eyes resembling those of his own wife and daughters.
See Aadrow and Nathanial Plimer, by G. C. Williemenn (London, 1903).
(G. C. W.)

PLIERE, MATKANIEK (1757-C. 2822), English miniature painter, was the brother of Andrew Plimer (g.v.). He worked for a while with Henry Bone the enameller, eventually entering Cossay's studio. He exhibited at the Royal Academy from 1787 until 1815 , when he is lost sight of, although he is said to have lived until 1822. He had four daughters, one of whom married the painter, Andrew Geddes, and left children. He exhibited twenty-six works, and many of his smaller portraits are of extreme beauty.
See Andrew and Nathaniel Plimar, by G. C. Williamson (London, 1903).
(G. C. W.)

FLIMSOLS, BAYUEX (1824-1898), British politician and social reformer, was born at Bristol on the zoth of February 1824. Leaving school at an early age, he became a clerk, and rose to be manager of a brewery in Yorkshire. In 1853 he endeavoured to set up a business of his own in London as a coal merchant. The venture proved a failure, and Plimsoll was reduced to descitution. He has hinself related how for a time he lived in a common lodging-house on 7s. 91 d. areek. Through this experience he learnt to sympathize with the struggles of the poor; and when the success of his enterprise placed him in possession of a competence, he resolved to devote his leisure to the amelioration of their lot. His efforts were directed more especially against what were known as "coffin-ships"-unseaworthy and overloaded vessels, often heavily insured, in which unscrupulous owners were allowed by the law to risk the lives of their crews. Plimsoll entered parliament as Liberal member for Derby in 1868, and endeavoured in vain to pass a bill dealing with the subject. In 1872 he publisbed a work entitled Our Scamen, whlch made a great impression throughout the country. Accordingly, on Plimsoll's motion in 1873, a royal commission was appointed, and in 1875 a government bill was introduced, which Plimsoll, though regarding it as inadequate, resolved to accept. On the and of July, the premier, Disracli, announced that the bill would be dropped. Plimsoll lost his self-control, applied the term "villains" to members of the house, and shook his fist in the Speaker's lace. Disraeli moved that he be reprimanded, but on the suggestion of Lord Hartington agreed to adjourn the matter for a week to allow Plimsoll time for reflection. Eventually Plimsoll made an apology. The country, however, shared his view that the bill had been stified by the pressure of the shipowners, and the popular agitation forced the government to pass a bill, which in the following year was amended into the Merchant Shipping Act. This gave stringent powers of inspection to the Board of Trade. The mark that indicates the limit to which a ship may be loaded is generally known as Plimsoll's mark. Plimsoll was re-elected Cor Derby at the general election of 1880 by a great majority, but
gave up his matit to Sir W. Fiapoourt, in the beliff that the latter, as home secretary, could advance the sailors' interests more effectively than any private member. Though ofiered a seal by some thirty constituencien, he did not reventer the house, and subeequently became estranged from the Liberal leaders by what he regarded as their breach of frith in neglecting the question of shipping reform. He beld for some years the presidency of the Sailors' and Firemen's Union, rained a further agitation, marred by obvious exageration, about the horrors of the cattle-ships. Later he visited the United Scates with the object, in which he did good service, of securing the adoption of a less bituer tone towards England in the bistorical tertbooks used in American schools. He died at Folkentone on the 3rd of June 1808.

PLINLIM MOA (Plynlimmon, Pumplumar, Pumblumon, Pendumon: Pumalumon is the name used locally: pump means five: hamon, chimney, flag or bescon; pen, head), a mountain of Wales of the height of 2463 ft ., equidistant (about 10 m.) from Machynalleth and Llanidioes. Much inferior in-elevation to Snowdon or Cader Idris, Plindimmon is certainly the most dangerous of the Welsh hills because of its quaking bogs. The scenery is comparatively poor, consisting chiefly of sheep-downs (in Montgomeryshifre) and barren torbaries (in Cardiganshire). If the name means "fiver beacons," only three of these are high, with a carmedd (stone-pile, probably a military or other landmaty, rather than the legendary barrow or tomb) on each of the three. Plinlimmon is notable as the source of five streams-three small; the Rheidol, the Llyfinant and the Clywedog; and two lerger and famous: the Wye (Gwy) and the Severn (Hafren).
The morasses of Plinlimmon saw many a struggie, notably the war to the knife between Owen Cyieilog (A. c. goo), prince of Powys, and Hywel ab Cadogan. Here also Owen Clendower unfurled the banner of Welah independence; Irom here, in 140I, he harassed the country, sacking Montgomery, burningWelshpool, and destroying Cwm Hir (long "combe," or valley) abbey, of which some columps are said to be now in Levaldloes old church. On the eide of Plintimmon, some a m. from the Stoddfagurig inn, is Blaen Gwy (the point of the Wye), the course of the streamlet being traceable up to Pont-rhyd-galed (the hard ford bridge), some 4 m . distant from the inn. Near this bridge are numerous barrows and cairns, on the right from Aberystwyth. There are slate quaries, wht lead and copper mines. Machynileth (pero hapa M (aglome in Roman times) has Owen Glendower's "senate house " (1402), and is known as the scene of Glendower's attempted aseassination by Dafydd Gam. Llyn pen rhaiadr (the waterfall-head pool), or Pistyll y Hya (pool spout), is some 6 m . mouth of Mechynileth. Llenidioes has a trade in Plinlimmon slates and minerals beides fannel and wool manufactures.
PLDNTII (Gr. TiNvoos, a square tile), the term in architecture given to the lower mouldings of a podium, pedestal or skirting also to any rectangular block on which a statue or vase is placed and in the Classic Orders to the square block of moderate height under the base mouldings of the column or pedestal.

PLINY, THE ELDER. Galus Plinius Secundus (c. A.d. 23-79), the author of the Namuralis historia, was the son of a Roman eques by the daughter of the senator Gaius Caecilius of Novum Comum. He was born at Comum, not (as is sometimes supposed) at Verons: it is only as a native of Gallia Transpadane that he calls Catullus of Verona his conderranews, or fellow-countryman, not his municeps, or fellow-townsman (Praf. \& I). Before A.D. 35 (N. H. davii. 81) his father took him to Rome, where he was educated under his father's friend, the poet and military commander, P. Pomponfus Secundus, who inspired him with a lifelong love of learning. Two centuries after the death of the Graceh Pliny saw some of their autograph writings in his preceptor's library ($\mathbf{i l i j} .83$), and be afterwards wrote that preceptor's Life. He makes mention of the grammarians and rhetoricians, Remmius Palaemon and Arellius Fuscus (riv. 49) xxxiii. 152), and he may have been instructed by them. In Rome he studied botany in the garden of the aged Antonius Castor (xxv. 9), and saw the fine old lotus-trees in the grounds that had once belonged to Crassus (xvii. 5). He also viewed the
vest structure raised by Caliguls (cravi. 11is), and probably vitnessed the triumph of Claudius over Brituin (iii. 119; a.D. 44). Under the influence of Seneca he became a keen student of philosophy and thetorie, and began practising as an advocate. He saw military service under Corbulo in Lower Germany (a.D. 47), taking part in the Roman conquest of the Chauci and the construction of the canal between the Maas and the Rhine (xvi. 2 and 5). As a young commander of cavalry (proefectus clac) he wrote in his winter-quarters a work on the use of missiles on horseback (de jaculatione equestri), with some account of the points of a good horse (viii. 162). In Gaul and Spaln he learnt the meaninges of a number of Celtic words ($\mathbf{x} \mathbf{x} .4$ 40). He took note of sites associated with the Roman invasion of Germany, and, amid the scenes of the victories of Drusus, he had a dream tn which the victor cnjoined him to transmit his exploits to posterity (Plin. Epp. iil. 5, 4). The dream prompted Pliny to begin forthwith a history of all the wars between the Romans and the Germans He probably accompanied his father's friend, Pomponlus, on an expedition against the Chatti (a.D. 50), and visted Germany for a third time (57) as a comrade of the future emperor, Titus (Proef. \$3). Under Nero he lived mainly in Rome. He mentions the map of Armenia and the neighbourhood of the Caspian Sea, which was sent to Rome by the staff of Corbulo in A.D. 58 (vi. 40). He also savw the building of Nero's "golden house" after the fire of 64 (xxxyi. 111). Meanwhile he wis completing the twenty books of his History of the Garman Wars, the only authority expressly quated in the first six books of the Annals of Tacitus (i. 69), and probably one of the principal authoritics for the Germania. It was superseded by the writings of Tacitus, and, early in thio sth century, Symmachus had litule hope of finding a copy (Epp. xiv. 8). He also devoted much of his time to writing on the comparatively safe subjects of grammar and rhetoric. A detailed work on rhetoric, entitled Studiosus, wis followed by elght books, Dubii sermonis (a.D. 67). Under his friend Vespasian he returned to the service of the state, serving as procurator in Callia Narbonensis (70) and Hispania Tarraconensis (73), and also visiting the Provincia Belgica (74). During his stay in Spain he, became familiar with the agriculture and the mines of the country, besides paying a visit to Africa (vii. 37). On his return to Italy be accepted office under Vespasian, whom he used to visit before dsybreak for instructions before proceeding to his official duties, after the discharge of which he dovoted all the rest of his time to stady (Plin. Epp. iii. 5, 9). He completed a History of his Times in thirty-ane books, possibly extending from the reign of Nero to that of Vespasian, and deliherately reserved it for publication after his decease (N. H., Praef. 20). It is quoted by Tacitus (Ann. xiii. 20, xv. 53; Hi ist. iii. 29), and is one of the authorities followed by Suctonius and Plutarch. He also virtually completed his great work, the Naturalis historia. The work had been planned under the rule of Nero. The materials collected for this purpose filled rather less than 160 volumes in a.d. 23, when Larcius Licinus, the practorian legate of Hispania Tarraconensis, vainly offered to purchase them for a sum equivalent
 Soon afterwards he received from Vespasian the appointment of preefect of the Roman fleet at Misenum. On tha 24 th of August A.D. 79 he wes stationed at Misenum, at the time of the great eruption of Vesuvius, which overwhelmed Pompeii and Herculaneum. A desire to ohserve the phenomenon from a nearer point of view, and also to rescue some of his friends, from their perilous position on the shore of the Bay of Naples, led to his paunching his galleys and crossing the bay to Stabiae (Castellamare), where he perished, in the fifty-sixth year of his age. The story of his last bours is told in an interesting letter addressed twenty-seven years afterwards to Tacitus hy the Elder Pliny's nephew and beir, the Younger Pliny (Epp. vi. 16), who also sends to another correspondent an account of his uncle's writings and his manner of life (iii. 5).-
'" He began to work long before daybreak. . . . He read nothing without making extracts: he used even to say that there was no book so bad as not to contain something of value. . In the country.
it was only the time when he tras actanlly in fis beth that man excmpted from study. When traveling, as though freed from every other care, he devoted himacif to study alone.... In short, he deemed all time wasted that was not employed in study."

The only fruit of all this unwearied industry that has survived to our own times is the Nalkralis historia, a work which in its present form consists of thirty-seven books, the first book including a characteristic preface and tables of contents, as well as lists of authoritics, which were originally prefixed to each of the books separatcly. The contents of the remaining books are as follows: ii., mathematical and physical description of the world; iii.-vi., gcography and ethnography; vii., anthropology and human physiology; viii.-xi., zooldgy; xii.-xxvi., botany, including agriculture, horticulture and materia medica; xxviii.-xxxii., medical zoology; xxxiii.-xxxvii., mineralogy, especially in its application to life and art, including chasing in silver ($x \times x i i i .{ }^{154^{-1}} 57$), statuary in bronze (xxxiv.), painting (xxxv. 15-149), modelling (251-158), and sculpture in marble (xxxvl.).

He apparently published the first ten books himsclf in A.D. 77, and was engaged on revising and enlarging the rest during the two remaining years of his life. The work was probably published with litte, if any, revision by the author's nephew, who, when telling the story of a tame dolphin, and describing the floating islands of the Vadimonian Lake, thirty years later (viil. 20, ix. 33), has apparencly forgoten that both are to be found in his uncle's work (ii. 209, ix. 26). He describes the Nuturalis kistoria, as a Naluras historia, and characterizes it as a "work that is loamed and full of matter, and as varied as nature hermelf." The atsence of the author's final reviaion may partly tccount for maxy repetitions, and for some contraticLions, for mistakes in passages borrowed from Greek authors, and for the insertion of manginal additions at wrong phoes in the text.

In the preface the author claims to have etated 20,000 facts gathered from some 2000 books and from 100 select authors. The extant lists of his authoritics amount to many more than 400 including 146 of Roman and 327 of Greek and other mources of information. The lists, as a general rule, follow the order of ibe subject matter of each book. This has been clearly shown in Heinrich Brunn's Disptlalio (Bonn, 1856).

Pliny's principal authority is Varro. In the geographical books Varro is mpplemented by the topographical commentarien of Agrippe which were completed by the emperor Augustus: for his zoology he relics largely on Aristotie and on Juba, the scholarly Mauretanian king, sludiorum claritate memorabilior geamergho (v. 16). Juba is also his principal guide In botany. Theophrastus is also named in his Ifdices. In the History of Art the originat Greek authoritics are Duris of Samos (born c. 340 B.c.), Xenocrates of Sicyon (f. 280), and Antigonous of Caryst us (Born c, 295 B.c.). The anecdotic element has been acribed to Duris (zaiv. 6r, Lysippum Sicyonixm Duris negal wllius fuisse discipolum, \&c.): the notiots of the succussive developments of art, and the list of workers in bronze and painters, to Xenocrates; and a large amount of miscellancous information to Antigonus. The last two aurboritics are named in connexion with Parrhasius (xxxv, 68, Lane a gloriam concessere Antigowns at Xewocrales, qui de pictura scripsert). while Antigonus is mamed in the Indices of xxxiii.-xxxiv. as a writer on the "toreutic" art. Greek epigrams contribute their share in Pliny's descriptions of pictures and statucs. One of the mivor euthoritics for books xoxiv.-xxxy. is Heliodorus (ff. 150 B.C.), the author of a work on the monuments of Athens. In the Indices to xxxiij.-xocyi. an important place is assigned to Pasiteles of Naptss (ft. $88 \mathrm{~B}, \mathrm{C}$.), the author of a work in five volumes on famous works d art xxxvi, 40), probably incorporating the substance of the earlicx Greek treatises; but Pliny's indebtedness to Pasitcles is denicd by Kalkmann, who holds that Pliny used the chronotogical work of Apollodorus, as well as a current catalogue of artista. Pliny's knowledge of the Grock aushorities was probably mainly due to Varro, whom he often quotes (e.g. xxxiv. 56, xxxv. 113. 156, xxxvi. 87, 39. 41). Varro probably dealt with the history of art in connexion in architecture, which was included in his Disciplisac. For a number of items relating to works of art near the coast of Asia Minor, and in the adjacent islands, Pliny was indebted to the general, atates man, orator and historian, Gaius Licinius Mucianus, who died before A.D. 77. Pliny mentions the works of art collected by Vespasian in the Temple of Peace and in tiv other galleries (wouv. 84). but much of his information as to the position of such works in Rame is due to books, and not to personal observation. The main merix of his account of encient art, the only classical work of its kirt is that it is a compilation ultimately founded on the last textbooks of Xenocrates and on the biographies of Duris and Antigonas

He ahows no special aptitude for art criticism; in meveral pamages, however, he gives proof of independent observation (xixiv. 38, 46, 63. xoxv. 17, 20, 116 seq.). He prefers the marble Laocoon in the palace of Titus to all the pictures and bronzes in the world (xxsvi. 37): in the temple near the Flamiaian Circus he admires the Ares and the Aphrodite of Scopas, "which would suffice to give renown to any other spot." "At Rome indeed (he adds) the works of art are legion; besides, one effaces another from the memory apd, however beautiful they may be, we are distracted by the overpowering claims of duty and business; for to admire art we reed leisure and profound stillness " (ibid. 26-27).

Like many of the finest spirits under the early empire, Pliny was an adherent to the Stoics. He was acquainted with their noblest representative, Thrasea Paetus, and he also came under the influence of Seneca. The Stoics were given to the study of nature, while their moral teaching was agreeable to one who, in his literary work, was unselfishly eager to benefit and to insiruct his contemporaries (Praef. 16, mxiii. 2, mix. 1). He was also influenced by the Epicurean and the Academic and the revived Pythagorean schooks. But his view of nature and of God is essentially Stoic. It was only (he declares) the weakness of humanity that had embodied the Being of God in many human forms endued with human faults and vices (ii. 148). The Godhead was really one; it was the soul of the eternal worid, displaying its beneficence on the earth, as well as in the sun and stars (ii.11 seq., 154 seq.). The existence of a divine Providence was uncertain (ii. 19), but the belief in its existence and in the punishment of wrong-doing was salutary (ii. 26); and the reward of virtue consisted in the elevation to Godhead of those who resembled God in doing good to man (ii. 18, Dews ess mortali jwiare mortalem, a haec ad ceternam storiam via). It was wrops to inquire into the future and do violence to nature by resorting to magical arts (ii. I14, $80 x .3$); but the significance of prodigies and portents is not denied (ii. 92, 199, 233). Pliny's view of life is gloomy; he regards the human race as plunged in ruia and in misery (ii. 24, vii. 130). Against luxury and moral corruption he indulges in declamations, which are so frequent that (fike those of Seneca) they at last pall upon the reader; and his rhetorical flourishes against practically useful inventions (such as the art of navigation) are wanting in good sense and good taste (xix. 6).
With the proud national spirit of a Roman he combines an ndmiration of the virtues by which the republic had attained its greatness (xvi. 14, zxvii. 3, xxxvii. 201). He does not suppress historical facts unfavourable to Rome (xriv. r39), and while he homours eminent members of distinguished Roman houses, he is free from Livy's undue partiality for the aristocracy. The agricultural classes and the old landlords of the equestrian order (Cincinnatus, Curius Dentatus, Serranus and the Elder Cato) are to him the pillars of the statel and he bitteriy laments the decline of agriculture in Italy (xviil. 21 and 35, latifundic pordidere Itoliam). Accordingly, for the early history of Rome, he prefers following the prae-Augustan writers; but he regards the imperial power as indispensable for the government of the empire, and he hails the salularis exertus Vespasiani (xxxiii. 51). At the conclusion of his literary labours, as the only Roman who had ever taken for his theme the whole realm of nature, be prays for the blessing of the universal mother on his completed work.

In literature he assigns the highest place to Homer and to Cicero (xvii. 37 seq.); and the next to Virgil. He takes a keen interest in nature, and in the natural sciences, studying them in a way that was then new in Rome, while the small esteem in which studies of this kind were held does not deter him from endeavoaring to be of service to his fellow countrymen (xxil. 15). The scheme of his great work it vast and comprehensive, being nothing short of an cncyclopaedia of learning and of art 50 far as they are connected with nature or draw their materials from it. With a view to this work be studied the original authorities on each subject and was most assiduous in making excerpta from their pages. His indices auctarum are, in some cases, the authorities which be has actually consulted (though In this respect they are not exhaustive); in other cases, they represent the principal writers on the subject, whose names are borrowed second-hand
for his immediate anthorities. He frankly acknowledges his obligations to all his predecescors in a phrase that deserves to be proverbial (Preef. 21, plenum ingenui pudoris fateri per quas profeceris). He had neither the temperament for original investigation, nor the leisore necessary for the purpose. It is obvious that one who spent all his time in reading and in writing, and in making excerpts from his predecessors, had none left for mature and independent thought, or for patient experimental obervation of tho phenomena of nature. But it must not be forgoten that it was his scientific curiosity as to the phenomena of the eruption of Vesuvius that brought his life of unwearied study to a premature end; and any criticism of his faults of omission is disarmed by the candour of the confession in his preface; nec dubilamos mulla esse quae at nos praederierint; homines enim sxmuss af occupali officiis.

His style betrays the unbealthy influence of Seneca. It aims less at clearness and vividness than at epigrammatic point. It abounds not only in antitheses, but also in questions and exclamations, tropes and metaphors, and other mannerisms of the silver age. The rhythmical and artistic form of the sentence is sacrificed to a passion for emphasis that delights in deferring the point to the close of the period. The structure of the sentence is also apt to be loose and stragging. There is an excessive use of the ablative absolate, and ablative phrases are often appended in a kind of vague "apposition" to express the author's own opinion of an immediately previous statement, e.g. xxy. 8 a dixit (Apelles) . . . wino se praestare, quod manum de labula scirel tollare, momorabili prescepto socere saepe nimiam diligention.

About the middle of the 3 rd century an abstract of the geographical portions of Pliny's work was produced by Sotinus; and, early in the the the medical passages were collected in the Medicina Plinii Early in the 8th we find Bede in posacession of an excellent MS. of the whole work. In the gth Alcuin mends to Charles the Great for a copy of the earlier books (Epp. 103. Jaft 6); and Dicuil gathers extracts from the pages of Pliny for his own Menswre orbis setrae (c. 825). Pliny's work was held in high esteem in the middle ages. The number of extañt MSS. is about 200; hut the best of the more ancient MSS, that at Bamberg, contains only books xxxii--xxxyii. Robert of Cricklade, prior of St Frideswide at Oxford, dedicated to Henry II. a Deftoratio consisting of nine books of selections taken from one of the MSS. of this class, which has been recently recognized as comenetimes supplying us with the only evidence for the true text. Among the later MSS. the codex Vesondinus, formeriy at Besangon (1 ith century), has been divided into three portions, now in Rome, Paris and Leiden respectively, while there is also a transcript of the whole of this MS. at Leiden.
In modern times the work has been the theme of a generous appreciation in several pages of Humboldt's Cosmos (ii. 195-199. E. T., ${ }^{1848}$). Jacob Grimm, in the first paragraph of c. 37 of his Dentsche Myholagie, writing with his own fellow-countrymen in view, has commended Piiny for condescending, in the midst of his survey of the sciences of botany and roology, to tell of the folklore of plants and animals, and has even praised him for the pains that he bestowed on his style. It may be added that a special interest attaches to his account of the manufacture of the papyrus (xiit. 68-83), aud of the different kinds of purple dye (ix. 130), while his description of the notes of the nightingale is an ciaborate example of his occasional felicity of phrase (xxix. 81 scq.). Most of the reecnt research on Pliny has been concentrated on the investigation of his authorities, especially those which he followed in his chapters on the history of art-the only ancient account of that subject which has survived.
A carnelian inscribed with the letters C. Plin. has been reproduced by Cades (v, 2II) from the original in the Vannutelli collection. It represents an ancient Roman with an aimost completely bald foreliead and a double chin; and is almost certainly a portrait, not of Pliny the Elder, but of Pompey the Great. Seated statues of both the Plinies, clad in the garb of scholars of the year 1500 , may be seen in the niches on either side of the main enirance to the cathedral church of Como. The elder Pliny's aneedotes of Greek artists supplied Vasari with the subjects of the freseoes which still adorn the interior of his former home at Arezzo.

Bibliography.-Editions by Hermolaus Barbarus (Rome, 1492); Dalcampius (Lyons, 1587); Gronovius (Lciden, 1669); Hardouin (Paris, 1685); Franz (Leipzig, 1778-1791): Sillig, with index by 0 . Schneider (Gotha, 1853-1855); L. von Jan (Leipzig, 1854-1865): D. Detiefsen (Bertin, 1866-1873). and critical edicion of the geographical books (Berln, 1905): Mayhoff (Leipzig, $1906-$ Littré (1855): Chrestomathia Pliniana, L. Urichs, with excellent

PLINY, THE YOUNGER

of Arl, trans. by K. Jex Blake, with commentary, and himorical introduction by E. Scllers (Lertor, 1896). Ot Ptinys supposed portrait, see Burnoulli, Ruan. Kkunogy. i. 288; on the Deforadn Pliniana of Robert of Cricklade, K. Rück, in S. Ber. of Munich Acad., May 3, 1902, Pp. 195-285 (1903). On Pliny's Authorilies, see especially F. Münzer, Beitroge sur Quellenkritik (Berlin, 1897) and Detlefsen. Quelicn wnd Forschungen 2ur alten Gesch. und Gcog. (1904 and 1908); on his Religion, Vorhauser (Innsbruck, $18(x)$; his Cosmology, Friese (Breslau, 186z) ; his Bofany, Brosig (Caurles: 1883): Sprengel (Marburg, 1890, and in Rhein. Míus., 1891); Renjes (Rostock, 1893); Abert (Burghausen, 1896); and Stadler (Munich, 1891); his Mineralogy, Nies (Mainz, 1884); his History of Art, O, Jahn, in Sächsische Berichte (Leipzig, 1850); A. Brieger (Greifswald, 1857); Wustmann, Rhein, Mus. (1867); H. Brunn (Bonn, 1856. and Munich, 1875); Th. Schreiber (Leiptig, 1872, and in Rhein. Mus.,1876): Furtwangler, in Fleckeisen's Johrb., Suppl. (1877) vol. ix.; Blumner, in Rhein. Mus. (1877); L. Urlichs (Wiqriburg, 1878): Oebmichen (Erlangen, 1880); Dalstein (Metz, 1885); II. Voigt (Halle, 1887): II. L. Urlichs (W'ürzburg, 1887); Holwerda, in Mnemos. (1889); F. Munzer, in Hermes (1895 , and Berlin, 1897); Kalkmann (Berlin, (8q8).

The fragments of the cight books, Dubii sermonis, have been collected by I. W. Beck (Leipzig, 1894). For further bibliographical defails, see Mayor, Lat. Lit. (1875), 136-138; and Schanz, Rom. Liff. (Munich. 1901), 14 490-494.
(J.E.S. ${ }^{*}$)

PLIMY, THE YOUNGRA. Publius Caecilius Secundus, later known as Gajus Plinius Caecilius Secundus (and. C. $61-c$. 113), Latin author of the Letters and the Pamegyric on Trajan, was the second son of Lucius Caecilius Cilo, hy Plinia, the sister of the Elder Pliny. He was born at Novum Comum, the modern Como, the date of his hirth being approximately determined by the fact that he was in his 18th year at the death of his uncle in August A.d. 79 (Epp. vi. 20, 5). Having lost his father at an early age, he owed much to his mother and to his guardian, Verginius Rufus, who had iwice filled the office of consul and had twlee refused the purple (ii. 1, 8). He owed still more to his uncle. When the Elder Pliny was summoned to Rome ty Vespasian in A.D. 72, he was probably accompanied by his nephew, who there went through the usual course of education in Roman literature and in Greek, and at the age of fourteen composed a "Greek tragedy" (vii. 4, 2), He afterwards studied phllosophy and rhetoric under Nicetes Sacerdos and Quintilian (vi. 6, 3, ii. 14, 9), and modelled his own oratorical style on that of Demosthenes, Cicero and Calvus (i. 2) The Elder Pliny inspired his nephew with something of his own indomitable industry; and in August 79, when the author of the Historia nofuralis lost his life in the famous eruption of Vesuvius, it was the sister of the Elder and the mother of the Younger Pliny who first descried the signs of the approaching visitation, and, some twenty-seven years later, it was the Younger Pliny who wrote a graphic account of the last hours of his uncle, in a letter addressed to the historian Tacitus (vi. 16). By his will the Elder Pliny had made his nephew his adopted son, and the latter now assumed the nomen and praenomen of his adoptive father.

A year later he made his first public appearance as an advocate (v. 8, 8), and soon afterwards became a member of the board of decemviri sllitibus judicandis, which was associated.with the practor in the presidency of the centumviral court. Early in the reign of Domitian he served as a military tribune in Syria (A.D. 81 or 82), devoting part of his leisure to the study of philosophy under the Stoic Euphrates (i. 10, 2). On returning to Rome he was nominated to the honorary office of seoir equi/mm romanorum, and was actively engaged as a pleader before the centumviri, the chancery court of Rome (vi. 12, 2).

His official carcer began in A.D. 89, when he was nominated by Domitian as one of the twenty quaestors. He thus became a member of the senate for the rest of his life. In December 91 he was made tribune, and, during his tenure of that office, withdrew from practice at the bar (i. 23). Early in 93 he was appointed praetor (iii. $1 \mathbf{1}, 2$), and, in his year of office, was one of the counsel for the impeachment of Bachius Massa, the procurator of Hispania Bactica (iii. 4, vi. 29, vii. 33). During the latest and darkest years of Domitian he deemed it prudent to withdraw from public afiairs, but his financial abilities were recognized by his nomination in 94 or 95 to the praefecture acrarii militaris (ix. 13,11).
On the death of Domitian and the accession of Nerva he
delivered a speech (subsequently published) in prosecution of Publicius Certus, who had been foremost in the attack on Helvidius Priscus (ix. 13). Early in 98 he was promoted to the position of praclect of the public treasury in the temple of Saturn. After the accession of Trajan in the same year, Pliny was associated with Tacitus in the impeachment of Marius Priscus for his maladministration of the province of Alrica (ii. ii). The trial was held under the presidency of the emperor. who had already nominated him consul suffectus for part of the year A.D. 100 . The formal oration of thanks for this nomination, described by Pliny himself as his gratiarmm actio (iii. 13, 1 and 18, 1), is called in the MSS. the Panegyricus Trajans dictus.

The following year was marked by the death of Silius Italicus and Martial, who are gracefully commemorated in two of his Leticrs (iii. 7 and 21). It is probable that in 103-104 be was promoted to a-place in the college of Augurs, vacated by his friend Frontinus (iv. 8), and that in 105 he was appointed curator of the river Tiber (v. 14, 2). In the same ycar be employed part of his leisure in producing a volume of henderasyllabic verse (iv. 14, v. 10). He usually spent the winter at his scaside villa on the Latian coast near Laurentum, and the summer at one of his country houres, either among the Tuscan hilis, near Tifernum, or on the lake of Como, or at Tusculum, Tibur or Praeneste.

It was probabiy in 104, and again in 106, that he was retained for the defence of a governor of Bithynia, thus becoming familiar with the affairs of a province which nceded a iborough reorganization. Accordingly, about 111, he was selected by Trajan as governor of Bithynia, under the special title of " Jegate propraetor with consular power." He reached Bithymia in September, held office for fifteen months or more, and probably died in 113 .

His health was far from rohust. He speaks of his delicate frame (gracilitas mea); and he was apt to auffer from weakness of the cycs (vii. 21) and of the throat or chest (il. 11, 15). Frugal and abstemious in his diet (i. 15; iii. 1 and 12), studious and methodical in his habits (i. 6, v. 18, ix. 36 and 40), be took a quiet delight in some of the gentler forms of outdoor recreation. We are startied to find him teiling Tacitus of his interest in hunting the wild boar, hut he is careful to add that, while the beaters were at work, he sat beside the ne1s and was busily taking notes, thus combining the cult of Minerva with that of Dians (i. 6). He also tells the historian that, when his uncle left Misenum to take a nearer view of the eruprion of Vesuvius, he preferred to stay behind, making an abstract of a book of Livy (vi. 20, 5).

Among his friends were Tacitus and Suetonjus, as well as Frontinus, Martial and Silius Italicus; and the Stoics, Musonius and Helvidius Priscus. He was thrice married; on the death of his second wife without issue, Trajan conlerred on him the jus trium liberormm (a.D. 98), and, before ros, he found a third wife in the accomplished and amiable Calpurnia (iv. rg). He was generous in his private and his public benefactions (i. 19, 2 . ii. 4, 2, vi. 32). At his Tuscan villa near Tifernum Tiberinum (iv. 1, 4), the modern Citti di Castello, be set up a temple at his own expense and adorned it with statues of Nerva and Trajan ($x .8$). In his lifetime he founded and endowed a library at his native place (i. 8, v. 7), and, besides pramoting local education (iv. 13), established an institute for the maintenance and instruction of the sons and daughters of free-born parents (vii. 18). By his will he left a large sum for the buiding and the perpetual repair of public baths, and the interest of a still larger sum for the benefit of one hundred freedmen of the testator and, ultimately, for an annual banquet.

On a marble slab that once adorned the public baths at Comum, his distinctions were recorded in a long inscription, which was afterwards removed to Milan. It was there broken into six square pieces, four of which were built into a tomb within the great church of Sant' Ambrogio. Of these four fragments only one survives, but with the aid of transcripts of the other three made by Cyriacus of Ancona in 1442, the whole was
restored by Mommsen [C.I.L. v. 5262]. It is to the following effect:-
Gaius Plinius Caecilius <Secunduss, son of Lucius, of the Ufentine tribe; «consul;> augur; legate-propractor of the province of Pontus and Bithynia, with consular power, by decree of the senate sent into the said province by the emperor Nerva Trajan <Augustus, Germanicus, Dacicus, paler patrices; curator of the bed and banks of the Tiber and of the ssewcrs of the city; praefect of the Treasury of Saturn; praefect of the Treasury of War: «practon, tribune of the plebsi emperor's quacstor, sevir of the <Roman> knights: military tribune of the ethird> Gallic legion; «decemvin for the adjudication of esuitss; provided by will for the erection of baths at 3 cost of adding for the furnishing of the same 300,000 sesterces ($(2400$) and furthermore. for maintenance, 200,000 scsterces ($f 1600$): likewise, for the support of one hundred of his own freedmen she bequeathed, to the township $1,866,666$ sesterces (c. $(15,000$), the eventual accretions <whereols, he devised to the towns!olk for a public entertainment: ... elikewise, in his lifetime> he gave for the support of sons and daughters of the townsfolk $<500,000$ s sesterces (4000), klikewise a library, and), for the maintenance of the library, 100,000 sesterces (8800).
With the exception of two mediocre sets of verses, quoted by himself (vii. 4 and 9), his poems have perished. His speeches were apt to be prolix, and he defended their prolixity on principle (i. 20). He was apparently the first to make a practice of reciting his speeches before gathering of his friends before finally publishing them (iii. 18). The only speech that has survived is the Pancegric on Trajan, first delivered by Pliny in the emperor's presence, next recited to the orator's friends for the space of tbree days, and ultimately published in an expanded form (Epp. iii. 18). It is unduly florid and redundant in style, but it supplies us with the fullest account of the emperor's antecedents, and of his policy during the first two years and a half of his rule.
It describes his entering Rome on foot, amid the rejoicings of the citizens: his liberality towards his soldiers and to the citizens of Rome, a liberality that was extended even to persons under eleven years of age; his charities for the maintenance of the children of the poor; his remission of succession-duties in cases where the property was small or the heirs members of the testator's family; his establishment of free trade in corn between the various parts of the empire; his abandonment of vexatious and petty prosecutions for "high treason" : his punishment of informers: his abolition of pantomlmes; his repairs of public buildings and his extension and embellishnent of the Circus Maximus. The speech was discovered hy Aurispa at Mainz in 1432, as part of a collection of Pomegyricr: and wae first printed by Fr. Puteolenus at Milan aboul fifty years later.
Besides the Panegyric, we possess the nine books of Pliny's Lelters, and a separate book containing his Correspordence wilh Trajan.

In the first letter of the first book Pliny states that he has collected certain of his letters without regard to chronological order (non sermato lemporis ordine). Plinys learned biographer, the Dutch seholar. Jean Masson (1709), wrongly assumed that this statement referred to the whole of the collection. He inferred that all the nine books were published simultaneously; and he also held that Pliny was governor of Bithynia in A.D. 103-105. It was afterwards maintained by Mommsen (I868) that the bo hs were in strictly chronological order, that the letlers in each linok were in general ananged in order of date, that all of them were later than the death of Domitian (September 96), that the sercral books were probably published in the following order; in (7); ii. (I00); iti. (101-102): iv. (105); $v_{\text {. }}$ and vi. (106); vii. ((107): ifi. (IO8); and ix. (not later than 102): and, lastly, that Pliay was governor of Bithynia from A.D. $111-112$ to 113 . The letter which is probably the earliest (ii. 20) has since been assigned to the last part of the reign of Domitian, and it hasbeen suggested hy Prolessor part of the reign of Domitian, and it hasbeen uggesred groups: j .-ii. (97 or 98); iii.-vi.(106); vii.-ix. (108 or 109).

In his Letters Pliny presents us with a picture of the varied interests of a cultivated Roman gentleman. The etiquette of the imperial circle, scenes from the law-courts and tbe recitationroom, the reunions of dilettanti and philosophers, the busy life of the capital or of the municipal town, the recreations of the seaside and of the country-all these he brings vividly before our eyes. He claborately describes his Laurentine and his Tuscan villa, and frankly tells us how he spends the day at each (ii. 17, v. 6, ix. 36 and 40); expatiates on his verses and his speeches, his holiday-tasks in Umbria (vii. 9, ix. ro), and bis happy memories of the Lake of Como (i. 6). He gives an enthusiastic account of a statuette of Corinthian bronze he has recently purchased (iii. 6). He is interested in providing a teacher of
rhetoric for the place of his birth (iv. 13); he exults in the devotion of his wife, Calpurnia (vi. 19); towards his servants he is an indulgent master (viii. 16); he intercedes on behalf of the freedman of a friend (ix. 21), and, when a freedman of his own is in delicate health, sends him first to Egypt and afterwards to the Riviera (v. 19). He consults Suetonius on the interpretation of dreams (i. 18); he presents another of his correspondents with a batch of ghost-storics (vii. 27) or a marvellous tale about a tame dolphin on the north coast of Africa (ix. 33). He discourses on the beauties of the Clitumnus (viii. 8) and the floating islands of the Vadimonian lake (viii. 20). He describes an eruption of Vesuvius in connexion with the last days of the Elder Pliny (vi. 16 and 20), giving elsewhere an account of his manner of life and a list of his writings (iii. 5). He laments the death of Silius Italicus (iii. 7), of Martial (iii. 21), and of Verginius Rulus (ii. 1), and of others less known to fame. He takes as his models Cicero and Tacitus (vii. 20), whose name is so often (to his delight) associated with his own (ix, 23). He rejoices to learn that his writings are read at Lyons (ix. 11). He complains of the inanity of circus-races (ix. 6), of the decay of interest in public recitations (i. 13), of bad taste in matters of hospitality (ii. 6), and of the way in which time is frittered away in the social duties of Rome (i. 9). He lays down the principles that should guide a Roman governor in Greece (viii. 24); he maintains the cause of the oppressed provinces of Spain and Africa; and he exposes the iniquities of the informer Regulus, the only living man whom he attacks in his Letters, going so far as to denounce him as omnium bipedum nequissimus (i. 5,14). \cdot

The Letters are models of graceful thought and refined expression, each of them dealing with a single topic and generally ending with an epigrammatic point. They were imitated by Symmachus (Macrobius v. 1, 7) and by Apollinaris Sidonius (Epp. ix. 1, 1). In the middle ages they were known to Ratherius of Verona (roth century), who quotes a passage from i. 5, 16 (Migne, cxxxvi. p. 391). Selections were included in a volume of Flores compiled at Verona in 1329; and a MS. of bks. i.-vii. and ix. was discovered by Guarino at Venice in 1419. These books were printed in the edilio princeps (Venice, 147t). Part of bk. viii. appeared for the first time at the end of the nextedition (Rome, c. 1474). The whole of bk. viii. was first publisbed in its proper place by Aldus Manutius (Venice, 1508).

Pliny's Correspondence with Trajan supplies us with many interesting details as to the government of Bithynia, and as to the relations between the governor and the central authority. It reflects the greatest credit on the strict and almost punctilious conscientiousness of tbe governor, and on the assiduity and the high principle which animated the emperor.
On reaching the province, Pliny celebrates the emperor's birthday, and proceeds to examine the finances of Prusa. His reguest for a surveyor to check the outlay on the puhbic works is refused on the ground that the emperor has hardly enough surveyors for the works he is carrying on in Rome. He asks the emperor to sanction the repair of the ancient baths at Prusa, the building of an aqueduct at Nicomedia and a theatre at Nicaea, and the covering in of a stream that has become a public nuisance at Amastris. When he consults the emperor as to the baths at Claudiopolis, the emperor sensibly, replies: "You, who are on the spot, will be best able to decide"' (40). When Pliny hesitates about a small affair relating to Dio Chrysostom (the Bithynian friend of Nerya and Trajan), the emperor betrays a not unnatural impatience in his response: potuisti mon hoerere, mi Secunde carissime (82). Pliny also asks for a decision on the status and maintenance of deserted children (65), and on the custom of distributing public doles on the occasion of interesting events in the life of a private citizen. The emperor agrees that the custom might lead to "political factions," and should therefore be strictly controlled (117). Owing to a destructive fire at Nicomedia, Pliny suggesta the formation of a volunteer fire-brigade, limited to 150 members. The emperor is afraid that the fire-brigade might become a "political club," and cautiously contents himself with approving the provision of a fire-engine (34).
Trajan's fesr of factions and clubs in theme two last cases has sometimes been connected with the question of his attitude towards the Christians in Blthynis. Pliny (Epp. 96) states that he had never taken part in formal trials of Chriatians, and was therefore unfamiliar with precedents as to the extent of the investigation, and as to the degree of punishment. He felt that a distinction might be drawn between adults and thowe of tender years; and that
allowance might be made for any one who recanted. There wes also the question whether any one should be punished simply for bearing the name of Christian or only if he was found guilty of ${ }^{4}$ crimes associated with that name. Hitherto. in the case of those who were brought before him, he had asked them three distinct times whether they were Christians, and, if they persisted in the admission, had ordered them to be taken to execution. Whatever might be the real character of their profession, he held that such obstinate persistence ought to be punished. There were others no less "deniented," who, beiag Roman citizens, would be sent to Rome for trial. Soon, as the natural consequence of these procecdings, a variety of cases had come under his notice. He had received an a nonymous statement giving a list of accused persons. Some of them, who denied that they had ever been Christians, had consented to pray to the gods, to adore the image of the emperor, and to blaspheme Christ ; these he had dismissed. Others admitted that they were Christians, but presently denied it, adding that they had ceased to be Christians for some years. All of these worshipped images of the gods and of the emperor, and blasphemed Christ. They averred that the sum and substance of their "fault" was that they had been accustomed to meet on a fixed day before daylight to sing in turns a hymn to Christ as God, and to bind themselves by a solemn oath (sacramento) to abstain from theft or robbery. and from adultery, perjury and dishonesty; after which they were wont to ecparate and to meet again for a common meal. This, bowever, they had ceased to do as soon ss Pliny had published a decree against collegic, in accordance with the emperor's edict. To ascertain the truth, he had also put to the torture two maid-servants described as deaconesses, but had discovered nothing beyond a perverse and extravapant guperstition. He had accordingly put of the formal trial with a view to consulting the emperor. The question appeared to be worthy of such a consultation, especially in view of the number of persons of all ages and ranke, and of both sexes, who were imperilled. The contagion had spread through towns and villages and the open country, but it might still be stayed. Temples that had been wellnigh deserted were already beginning to be irequented, rites long intermited were being renewed, and the trade in fodder for sacrificial victims was reviving. It might be inferred from this how large a number mizht be reclaimed, if only room were granted for repentance.

Trajan in his reply (Epp. 97) expreuses approval of Ping's course of action in the case of the Christians brought before him. It was Impossible (he adds) to lay down any uniform or definite rule. The persons in question were not to be hunted out, but if they were reported and wefe found guilty, they were to be punished. If, however, any one denied that he was a Christian, and ratified his denial by worshipping the gods of Rome, he was to receive pardon. But no attention was to be paid to anomymous charges. It would be a bad precedent and unworthy of the spirit of the age.

The view that the Christians were punished for being members of a collegium or sodalitos (once held by E. G. Hardy, and still maintained by Proicssor Merrill) is hard to reconcile with Pliny's own statement that the Christians had promptly oheyed the emperor's decree agninst collegia (8 7). Further reasons against this view have been urged by Ramsay, who sums up his main results as follows: (1) There was no express law or formal cdict against the Christians. (2) They were not prosecuted or punished for contravening any formal law of a wider character. (3) They were judged and condemned by Pliny (with Trajan's full approval) by virtue of the imperium delegated to him, and in eccordance with the instructions issued to governors of provinces to search out and punish Sacrilegious persons. (4) They had already been classed as outlaws, and tbe name of Cbristian in itself entailed condemnation. (5) This treatment was a settled principle of imperial policy, not established by the capricious action of a single emperor. (6) While Trajan felt bound to carry out the establisbed principle his personal view was to some extent opposed to it. (7) A definite form of procedure had been established. (8) This procedure was followed by Pliny (W. M. Ramsay, The Church in the Roman Empire, p. 223).

It has been well observed by E. G. Hardy that the "double aspect of Trajan'- rescript, which, while it theoretically condemned the Christians, practically gave them a certain security," explains "the different views which have since been taken of it; but by most of the church writers, and perhaps on the whole with justice, it has been regarded as favourable and as rather discouraging persecution than legalizing it" (Pliny's Correspondence with Trajon, 63, 210-217).

Autionites.-The correspondence with Trajan was apparently preserved in a single Paris MS: Epp. 41-121 were first printed by Avantius of Verona (5502): and EPP. $1-40$ by Aldus Manutius (1508). The original MS. has vanished; but the "copy "eupplied
to the printers of the Aldine text mes dincoverad by Mr. E. C. Hardy in the Bodleian in 1888. The two letters on the Chriatians were known to Tertullian (Apol. c. 2). The attaclos on the genuineness of the whole or part of the collectioa have been refuted by Wilde (Lciden, 1889).

For a critical edition of text, see H. Keil (Leipaig, 1870), with full index of names by Mommsen; for plain text, Keil (1853), \&e, C. F. W. Muller (igo3); the best annotated editions are those of Gesner and Schacier (1805) and C. E. Gierig (1796-1806); of the Lellers alone, $\mathbf{G}^{\text {. Kortte (1734), and the lese trustworthy edition }}$ of M. Doring (1843); of bks. i and ii. Cowan (1889); of iii., Msyor (is9n, with Life by G. H. Rendall); of vi., Duff (190_{3} : of the P'ancivicus, C. G. Schwarz (1846); of the Correspondence woith Trujan, E. G. Hardy (1889); of Selected Letlers, E. T. Merrill (1903) ; best Eng. trans. by J. D. Lewis (1879).

On Pliny's life, sce the works by J. Masson (Amsterdam, 1709): H. Schontag (Hof, 1876); and Giceen (Bonn, 1885). On the chronology of the letters, \&c., Mommsen, in Hermes, iii. 31-114 (1868; trans. into l'rench by Morel, 1873): criticived by Stobbe (Philologus, 1870); Cemoll (Halle, 1872); C. Peter (Phitologns. 1873): Asbach (Rhein. Mus., 1881): and Schultz (Berlin. I899). For style, the works of H. Holstein (1862-1869); K. Kraut (1872): J. P. Lagergren (1372); and Morillot (Grenoble, 1888). On the villas, Burn's Rome and the Campagnt (1871), 411-415; Aitchison, in the Builder (Feb. 8, 18go): Winnefeld, in Jakrb. des arch. Insh. (1891), pp. 201-217; and Magoun, in Trons. Amef. Philol. Assoc. (1895).

Gue also bibliocrephy in Fubner and Mayor's Lab Lí. (1875). pp. 147-149; and in Schank, Rסm. Lis. 8 . 444-449.

For recent literature on Pliny and the Christians, see C.F. Arnold, Studien (Königsberg, 1887); Lightfoot. Apostolic Fathers. ii. 7 (ed. 1889); Neumann, Der tomische Staat und die allgencine Kirihe (1890) vol. i.; Mommsen, in FIisf. Zeilschrift (18q0); W. M. Ramsay, The Charch in the Roman. Empire (ed. 1893), ch. 10, Pp. 196-225: and E. G. Hardy, Chrillionity and the Roman Gomertwent (1894). reprinted in Studfes in Roman Hifslory (1go6), pp. I-162; with the litcrature quoted in these works and in Schanz, Rom. Lit. $6.6{ }^{4}$ t.
(J.E.S.)

PLIOCENE (from the Gr. mheow, more, and mends, recent), in geology, the name given by Sir C. Lyell to the formations above the Miocene and below the Pleistocene (Newer Pliocenc) st rata. During this period the great land masses of the earth were rapidly approaching to the configuration which they exhibit at the present day. The marine Pliocene deposits are limited to comparatively few areas; in Europe, in the beginning of the period, the sed washed the shores of East Anglia and parts of the south cast of England; it extended well into Belgium and Holland and just touched bere and there on the northern and north-western coasts of France; it sent an arm some distance up the valley of the

Guadalquivir and cormed small bays on several points of the southern coast of France; and up the Rhone basin a considerable gulf reached as far as Lyons. Early in the period the sea covered much of Italy and Sicily; but the eastward extension of the ancient Mediterranean in south-east Europe, through the Danuhe basin, the Aral, north Caucasian and Caspian regions, continued to suffer the process of conversion to lagoons and largo lakes which had begun in the Miocene.

Cenerally all over the world the maforty of Pliocenc formations are non-marine, and the bimited and local nature of the elevations since the inception of the period has exposed to view only the shallow marginal marine deposits. The principal exception to the last statement is to be found in the Pliocene of Italy and Sicily, where a continuous crustal depreswion permitted the accumulation of great thicknesses of material, which later on, towards the close of the period, were elevated sorne thousands of feet. With these deformatory movemeats are associated the Italian volcanoes; Eina cortainly began its career beneath the sea, for its older tuffis are found interstralified with marine bods, and possibly some of the others had a similar origin. At the same time voicanic outbursts, some apparently comparable to that of Martinique in recent times, were taking place in central France, while far away in southern Sumatra thousands of feet of submarine tuffs were being thrown out and deposited, and great lava flows were being erupted in Atstralasia.

Considerable differences of opinion are exhibited among geologists as to the lower limits of the Pliocene formations; this is partly to he accounted for by the absence of widely-spread marise deposits, and pertly by the comparatively short timedifferences between one deposit and another, and bence the similarity of the faunas of contiguous strata-groups in local vertical series of beds. Following A. de Lapperent (Troild de gdologic, 5 th ed., 1906), we shall regard the plocene as divisible into three stages: an upper Sicilian stage, a middle Astian stage, and a lowet Plaisancian stage. Other writers, bowever, have selected a different nomenclature, which often involves a different grouping of the formations; thus E. Kayser in his Formationskunde (3rd ed., 1908) distinguishes three stages under the names Amian (upper), Astian (middle) and Messinian (lower) $=$ Zanclean. The lower atage, however, includes the Pontian, Epplesheim, Pikermi and other formations which are here placed in the Miocene. This stage has been referred to a so-called Mio-Pliocene inter-period.

- The Pliocene rocks of Britain now occupy but a amall area in Norfolk, Suffolk and part of Essex; but from the presence of amall outlying patches in Cornwall (St Erth and St Agncs), Dorsetshire (Dewlish) and Keat (Lenham), it is evident that the Pliocene Sca covered a considerable part of southern England. Moreover, these patches show by their present altitude above the sea that the Downs of Kent must have been elevated more than 850 ft ., and the west coast of Cornwall 400 ft . since Pliocene times. The Pliocene rocks rest with strong unconformity upon the older strata in Britain. In the castem counties the shelly, sandy beds are called "Crag"; this name has come into very general use for all the members of the series, and it is frequently employed as a synonym for Plioccne.

The English Pliocene strata are classified by the Geological Survey of England and Wales as follows:-

Yoldia (Leda) myalis bed (provisionally placed here).
Forest-bed group and Dewlish gravels with Elephes meridionalis.
Newrer
Pliocene
Weybourne crag (and Chillesiord clay?).
Chillesford crag.
Norwich crag and Scrobicularia crag.
Red crag of Butley.
Red crag of Walton, Newbourn and Oakiey.
St Erth and St Agres beds.
Oider
Pliocene
Leaham beds (Diestian).
Box-stones and phosphatic beds with derived early Pliocene and other fossils.
The box-stones are rounded picces of brown carthy sandstone containing castes of fossila; the phosphatic beds contain the phosphatized bones of whale, deer, mastodon, pis, tapir, shinoceros, \&c., and have been worked as a source of manure. These basal conglomerate deposita underlie the red crag and sometimes the corailine crag. The last-named formation, known also as the "white " or "Suffolk crag," or at the "Bryozoan crag" (it was the presence of Bryozoe which led to the name coralline), is easentially a sbell bank. which was accumulated at a depth of from 20 to 40 lathoms. It is best exposed near Aldeburgh and Gedgrave in Suffolk. The Red Crags are sandy, marine, shallow-water deposils. with an abundant fauna; they vary rapidly from point to point, and in general the more southern localities are richer in southern (older) forms than those larther north. The Norwich crag (fuvio-marine or mammaliferous

Crag) is not alwaya very clearty tharked off from the Red Crags. Marine fresh-water and land phells are found in theme beds, together with many mammalian remains, including Elephas antigwas, lifastodon aroermensis, Equas stomonis, Cervas cernulormm, and dolphins, cod and other fish. The Foreat-Bed group or Cromer foreat-bed is exposed beneath the boulder clay cliffs of the Norfolk coast; it contains transported stumps of trees and many plants still familiar in Britain, many living fresh-water and estuarine mollusce and a large nuniber of mammals, many of which are extlinct (Machnerodus, Canis lwpus, Ursws spelaens, Hyoena crocula, Hippopotamus amphibius, Rhinoceros earuscus, Elephas antiquss and E, merdionalis, Bisom bomasus, Onibos maschatus, numerous mpecien of deer, Equus caballus and E. stenomis, Costor fiber, Talpa ewropaea and many others). The only record of Pliocene remaine ia the northern part of England consints of a few teeth of Elephas meridiomalis fornd in a fissure in the limestone at Dove Holes, Derbyahire.
The Pliocene deposite of Belgium a ad Holland and the northern extremity of France are closely relared with those of Britain, though as a whole they are very much thicker. The older marine beds may be traced from Lenham across the Channel at Calais and through Cassel to Dican. The newer marine Pliocene ruma in a parellel belt to the north of the older beds through Antwerp. Belgian geologitts have divided the local Pliocene into the fillowing groups (from above downwards): Poederlian, Scaldisian, Casterlian, Dicstiaa. F. W. Harmer (Quert. Journ, Geol. Soc., 1898 and 1goo) proposed the lollawing scheme for the Pliocene of Britain and the Low Countrics:-
Cramerian $=$ Forest-bed of Cromer,
(Iceno-Cromerian - Chillesford beds and Weybourne crag.
Icenian = matine cras of Narwich.
Amstelian $=$ Red Crag, comprising the Newhournian and But-' leyan sub-stages.
Walionian = Walton crag and Poederlian and Scaldisian.
Godgravian - Coralline crag and Casterlian.
Lenhamian = Diestian.
In addition to the deposits just mentioned in French Flanders, the early Pliocene sea has left oumerous smail patches of maris and sands in Bristany and Narmandy. In southern France marine sands, gravels and maris of Plalsancian and Astian ages occur in the depression of Roussillon, Iallowed by Sicilian marls and gravela, In Languedoc (Montpellier, Nlmes, Bexiers) marine marls and mands are lollowed by calcareous conglomerate (40 metred) or by maris and lignite; gravels and loams constitute the uppermont beds. In the Rhone basin the earliest deposits are the Congeria beds of Bollene (Vaucluse); this brackiah formation dificrs from the beda of the same name in Vienna, but resemblea thome of Italy and Rumania. Then followed a marine invasion (grompe do Sainl-Aries); these beds are now found at considerable elevations increasing northward and westward. The later formations in this area are fuviasile or lacustrine in origin, with remarkable torrential gravel deposite at several horizoos. The marine Pliocene of the maritime Alpa, consiatiag of blue and yellow clays and limestoas, are now elevated 17° metres above the mea, and even up to 350 m . in the nelghbourbood of Nice. In central France no marine beds are found, but many interesting and in mome cates blghly fossiliferous deposite occur in asteciation with volcanic rocks, such as the lower conglomerate and upper trachytic brescia of Pestier (I ssoire), the fine tuffe (cinentes) with plants of Cantal, the lignitiferous asadstones bencath the basalt of Cezallier, the diatomite of Ceyssac, \&c. In Italy, Pliocene rocks form the low ranges of hills on both sides of the Apennines, hence the term " sub-Apennine " given to these rocks by A. d'Orbigny. They are marine marls and sands; the blue marls which crop out near Rome at the base of Mt Mario and Mt Vatican with the succeeding sands and gravels; the conglomerate followed by deep-sea marls of Calabria, and the marls, sands, limestones and blue clay of Sicily, all belong to the Plaisancian stage. To the next stage belong the yellow aands full of massive fossils, including the conglomerate of Castrovillari in Calabria and the white maris of the Val d'Arno. In the final (Sicilian) stage fluvio-lacustrine sands and gravels are found in Italy, except in Calabria and in Sicily where thick marine beds were formed. In Swituerland some of the deposits of Naselfuh and Deckenschotter, glacia! platcau graveis, belong to the Sicilian stage. In south-castern Europe a great series of sands and marls with lignites, termed the Paludina beds, rests directly upon the Pontian formation. From their great development in the Levant, they have been given the rank of a "Levantine stage" by F. von Hochstetter ; they are found in Dalmatia, Croatia, Slavonia, Bosnia, Rumania. Bulgaria, southern Russia, the Cyclades, aad the Caspian region. Oa the north coast of Africa marine and brackish sands and marls occur in Morocco, Algeria and Egypt; and the "rifts" of the Red Sea and Suez have been assigned to this period.

In North America marine Pliocene is found fringing the coasts of California and the Gulf of Mexico. In the latter region marino marls, clays and limestones are best developed in Florida and can be traced into the Carolinas and Virginia : they have been clasted as the Lafayette group (with lignites), the Florida group, and the Calooshatchis stage. On the Pacific coast the marine beds have attained great thicknesses, notably in the Merced serics of San Francisco. In the San Luis Obispo region the non-marine Paso Robles beds, sald to be 1000 ft . thick, belong to this period. Other local formations of
marine orisin In Callformil ere thooe of San Diego and Wild Cat. In the Rocky Mountains are large lacustrine formations of consider able thickness, and certain conglomerates in Wyoming and Bishop Mountain are aseigned to this age. The eande and clays with yypum of Entre Rios in South America contain foasils of the Atlantic type.

Lignitiferous shale with petroleum and great thicikneas of volicanic tuffis have been lound in pouthern Sumatra. In New South Wales Pliocene river terraces and alluvial deposits are covered by MidPliocene lavas and from these "deep leads" or buried river beds much gold has been obtained. In Victoria great beantic and doletitic flows have filled up the Pliccene river valieyt, and marine beds have been found at elevations of 1000 ft . above present sear-level. Very similar deposits and volcanic rock, belonging to the Wanganui system of F. W. Hutton, are found in New Zealand.

See C. Reid, "The Pliceene Depocits of Brtain " (Hhen, Gen. Surney 18go); E. T. Newton "The Vertebrates of the Pliocene Deponits of Britain " (Mem. Geol. Surocy 1891) (both contain a bibliography): C. Reid, Origin of the British FLore (1899): and "Ceological Literature" (Geol. Soc London Amwnal, since 1893).
(J. A. H.)

PLOCK or Plotst, a government of Russian Poland, on the right bank of the Vistula, having the Prussinn provinces of Weat and East Prussia on the N. and the Polish governments of Lomza on the E. and Warsaw on the S . Its area is $4160 \mathrm{sq} . \mathrm{m}$ Its that surfuce, 350 to 500 ft . above the sea-level, rises gently towards the north, where it merges into the Baltic coast-ridge of the Prusian lake district. Only a few hilk reach 600 ft . above

TABLE OF PLIOCENE FORMATIONS.

Stages.	England.	Belgium and Holland.	Rhone Basin.	$\begin{aligned} & \text { Languedoe } \\ & \text { and } \\ & \text { Rousaillan. } \end{aligned}$	Italy.	Eastern Europe.	Other Countries.
Sicilian.	Cromer Forest Bed. Fluvio-marine Normich crag. Red crag of Suffolk.	Clays of Campine. Amstelian.	Maris of St Cosme. Gravels of Chagny. Conglomerates	Durfort beds with Elephas meridiomalis.	Sands of Val d'Arno. Limestones of Paler mo and claye with northern mollusca.	Upper Paludina (Vivipara) beds.	Marixe beds of Entre Rios Volcanic tuffs of S. Sumatra.
Astian	Base of Red crag.	Poederlian. Scaldisian sands with Trophon antiqusm.	Chambaran. Sands of Tre- voux and Mollon. Travertine of Meximieux.	Conglomerates of Nont pellicr and Fourres. Sands of Roussillos with Masbadog arcernensis.	Maris of Val d'Amo with Mastodon aroernensis. Yellow sands of Asti, Plaisantin. Monte Maria and Tumany. Conglomerntes of Castrovillari.	Middie Paludina bods.	Petroleum-bearing beds of Sumara. Marine sands of Moghare and Moteatth.
Plaisancian.	Coralline crag. Lenham beds.	Sands with Isocardia caf: Diestian sandstones.	```Marine marls of Bresse, Hauteriven. Congeria beds of Bollene.```	Yellow sands of Montpellier. Blue marls of Millas.	Blue marls of Pia. cenza, Bologna, and Vatican.	Lomer Paludina beds.	Marine beds of Florida. Lacustrine beds of Rocky Moun- talns.

Life of the Pliocens Period.-Sir C. Lyell defined the Pliocene strata as those which contained Irom $36-95 \%$ of living marine mollusca. This rule can no longer be strictly applied to the widely acattered marine deposits, and it is of course inapplicable to the very numeroue formatione of lacustrine and fluviatile origin. On the whole the marina organisms are very fike their living representativen, and there is olten practically no specific difference; Nassa, Voluca, Chenopus, Donlalium, Fusus, Arca, Pecter, Pectunculus, Parropoes, Cyprima and Mactra may be mentioned among the marine genera: Coneria (Dreyssensia), Auricula، Paludina, Molanopsis and Helix are found in the lacustrine deposits. One of the most intereating facts exposed by the atudy of the mollusce is the gradual lowering of the temperature of Europe during the period. In Britain the early Pliocene was, if anything, warmer than at present, but the percentage of northern forms ascends steadily through the higher beds, and Ginally arctic forms, such as Buccinum grocnlandicum, Trichopteris borealis, Myo truncata, Cyprino islamdica, \&c., appear on the coasts of Norfolk and Suffolk, and some of the northern species even reached the Mediterrancan (Sicily) at the close of the period. The fora exhibits the same gradual change, the large palms and camphor trees disappeared from Europe, the sabal palm lingered in Languedoc, and Chamerops humilis lived about Marseilles until the end; the sequoias and bamboos held on for some time, and the aspect of the vegetation in mid-Pliocene times was not unlike that of Portugal, Algeria and Japan of to-day. Not a few species that dwelt in Pliocene Europe are lound in the forests of America. The flora of the Cromer forest beds is very like that of the same district at the present time. The mammals of the Brltish Pliocene show a curious blending of northern and southern forms; they include Machaerodus (the sabre-toothed lion), hyenas, dogs, fox, woll, glutton, marten, bears, Ursus arvernensis and the grizzly and cave bear, seals، whales, dolphins, bisons, musk ox, gazelle, the red deer and many others now extinct, the roebuck, pigs and wild boar, hippopotamus, hipparion and horse (Equus caballus and E. stenomis). several species of rhinoceros, tapir hyrax, elephants (Elephas meridionalis and E. antiguus)، several mastodons, squirrel, beaver, bare, mice, voles, \&c. The mastodon disappeared from Europe belore the elose of the period, but lived much longer in America. No generally accepted fossil man has been found in the Pliocene; Pithecanthropus epectus, found by E. Dubois in Java, is the nearest to the human type. Monkeys, Macacus and Semxopithecus, occur in the Pliocene of Europe. At this time the Pliocene mammals of North America were able to migrate into South America, and a few of the mouthern forms travelied northwards.
the sea, while the broad valley of the Vistula has an elevation of only 130 to 150 ft . In the west (district of Lipno) brand terraces, covered with forests, small lakes and ponds, and very poor in vegetation, descend from the Baltic lake-district towards the plains of Plock; and in the central district of Mlawa extensive marshes fill the upper basin of the Wkra. The Vistula borders the government on the south, almost all the way from Warsaw to Thorn, receiving the Skrwa and Wkra. The Drweca, or Drewenz, flows along the north-west boundary, while several small tributanies of the Narew drain the north-eastern district of Ciechanow. Peat-bogs, used for fucl, and marshes containing bog-iron, fill many depressions in the north, while the more elevated parts of the plains are covered with fertile clays, or a kind of "black earch." Lacustrine post Glacial deposits fill all the depressions of the thick sheet of boulder clay, with Scandinavian erratic boulders, which extends everywhere over the Tertiary sands and marls-these last containing masses of silicated wood and lignite. Layers of gypsum are found in the hills beside the Vistula.
The estimated population in 1906 was 619,000 . About onethird are Jews and 36,000 Germans. The government is divided into seven districts, of which the chief towns are Plock, Ciechanow, Lipno, Mlawa, Prasnysz, Rypin and Sierpc. Agriculture is the chief industry. The principal crops are rye, oats, barley, wheat and potatoes; beetroot is cultivated for sugar, especially on the large estates of the west, where modern machinery is used Gardening and bee-keeping are extensively practised. In the north the property is much divided, and the landholders, very numerous in Ciechanow, are far from prosperous. The forests have been lavishly cut, hut Plock is still one of the best wooded governments (20%) in Poland. Other occupations are provided hy shipping on the Vistule, mining and various domestic industries, such as the fabrication of wooden cars, sledges and wheets, and textile industry. The manufactures iaclude flour-milk, saw-mills, sugar factories, distilleries, tanneries, breweries,
agricultural impleunent works, mintch'factories and irouworks There in some export trade, especially in the Lipno district; but its development in hampered by lack of communications, the best beling those offered by the Vistula. The rilwiy from Warsaw to Danzig, vis Ciechanow and Mlawa, serves the eastern part of the government.

After the second dismemberment of Poland in 1793, what is now the government of Plock became part of Prusuin It fell under Russian dominion after the treaty of Vienna (1815), and, in the division of that time into five provinces, extended over the westemp part of tho present government of Lomana, which was created in 1864 from the Catrolenke and Pultusk districts of Plock, together with parts of the province of Augustowo.
PLOCK, or Plotsx, a town of Russia, capital of the government of the same name, on the right bank of the Vistula, 67 m . hy the Vistula W.N.W. of Warsaw. Pop. 27,073. It has a cathedral, dating from the zath century, but restored in 1903, which contains tombs of Polish dukes and of Kings Ladislaus and Boleslav (of the inth and isth centuries). There is considerable navigation on the Vistula, grain, flour, wool and beetroot being exported, while coal, petroleum, salt and fish are imported.

PLorpa, a town of Germany, in Schleswig-Holstein, benutifully situated between two lakes, the large and the small Ploener-See, 20 m . S. from Kiel by the railway to Eutin and Labeck. Pop. (1905), 3735. It has a palace built about 1630 and now converted into a cadet school، a gymnasium and a biological station. Tobacco, soap, soda, beer and furniture are manufactured, and there is a considerable trade in timber and grain. The lakes afford good fishing, and are navigated in summer by steamboats.

Ploen is mentioned as early as the irth century as a Wendish settiement, and a fortified place. It passed in 1559 to Duke John the Younger, founder of the line of Holstein-Sonderburg, on the extinction of which, in 1761, it fell to Denmark, and in 1867, with Schleswig-Holstein, to Prussia. The sons of the emperor William IL received their early education here.

See H. Eggers, Schloss and Stadh Ploen (Kiel, 1877), and J. C. Kinder, Urkundenbuch akr Chronik der Stadt Ploem (P1on, 1890).

PLOENMIES, LUISB VOR ($180 j-1872$), German poet, was born at IIanau on the 7th of November 1803, the daughter of the naturalist Philipp Achilles Leisler. In 1824 she married the physician August von Ploennies in Darmstadt. After his death in 1847 she resided for some years in Belgium, then at Jugenheim on the Bergstrasse, but finally at Darmstadt, where she died on the 22 nd of January 1872 . Between 1844 and 1870 she published several volumes of verse, being particularly happy in eclectic love songs, patriotic poems and descriptions of scenery. She also wrote two biblical dramas, Maria Magdalena (1870) and David (1873).

As a translator from the English, Luise von Ploennies published two collections of poems. Brtanmia (1843) and Englische Lyriker des splen Jakrhwnderts (1863. 3rd ed., 1867).

PLOKRMEL, a town of western France, capital of an arrondissement in the department of Morbihan, 36 m . N.N.E. of Vannes by rail. Pop. (1906), town, 2492; commune, 5424 . The Renaissance church of St Armel (16th century) is remarkable for the delicate carving of the north fagade and for fine stained glass. It also possesses statues of John II. and John III., dukes of Brittany, which were transferred to the church from their tomb in an ancient Carmelite monastery founded in 1273 and destroyed by the Protestants in $\mathbf{5} 592$ and again at the Revolution. The lower ecclesiastical seminary has an apartment in which the Estates of Brittany held several meetings. Remains of ramparts of the $15^{\text {th }}$ century and some houses of the i6th century are also of interest. Farm-implements are manufactured, slate quarries are worked in the neighboushood, and there is trade in cattle, wool, hemp, cloth, \&e. Plozrmel' (Plou Armel, people of Armel) owes its name to Armel, a hermit who tived in the district in the 6 th ceatury.

PLOESCI (Ploescii), the capital of the department of Prahova, Rumania; at the southern entrance of a valley among the Carpathian foothills, through which flows the river Prahova; and at the junction of railways to Bureu. Bucharest and Hermannstadt in

Transylvenia. Pop. (1900), 49,687. As the name Ploesci (Nraicua, rainy) implies, the climate is moist. The surrounding hills are rich in petroleum, alt and tignite. There are cardboand factories, roperies, eanneries and oil mills. Ploesci possesses schools of commerce and of arts and crafts, several banks, and many synagogues and churches, including the Orthodox church of St Mary buitt in 1740 by Matchew Bassarab.
plownimas, a town of eastern France, in the department of Voges, on a branch line of the Eastern railway, 17 m . S. of Epinal by coad. Pop. (1906), 1882. The town is situated at a height of 1410 ft . in a pleturesque valley watered by the Augronse. It is well known for its mineral springs, containing sodium sulphate and silicic acid, varying from 66° to $166^{\circ} \mathrm{F}$. Plombières has a handsome modern church and a statue of the painter Louis Frangais, born in the lown in 1814 . The waters were utilized hy the Romans and during the middle ages. In later times Montaigne, Richelien, Stanislas, duke of Lorraine and Voltaire were among the distinguished people who visited the place. Napoleon III. built the most important of the baching establishments and made other improvements.
PLOT, ROBERT ($1640-1696$), English naturalist and antiquary, was born at Borden in Kent in $\mathbf{1 6 4 0}$. He was educated at Wye, and at Magdalen Hall, Oxford, where he graduated B.A. in 1661 , and proceeded to M.A. (1664) and D.C.L. (1671). He was distingulshed for his follo work The Natural History of Oxfordshive (1677), in which various fossils, as well as other objects of interest, were figured and described. It was regarded as a model for many subsequent works. In 1677 Plot was elected F.R.S., and he was secretary for the Royal Society from 1682 to 1684 - He was appointed in 1683 the first keeper of the Ashmolean Museum at Oxford, and in the same year he became professor of chemistry. In 1686 he wrote The Nafural History of Slaffordshire. Two years later he became historiographerroyal. He died on the 30th of April 1696.

PLOT, a term originally meaning a space of ground used for a specific purpose, especially as a building site, formerly in frequent usage in the sense of a plan, a surveyed space of ground; hence the literary sense of a plan or design. The word is of doubtful origin; there is a collateral form "plat," which appears in the 16th century, according to the New English Diclionary, under the influence of "plat," flat place, surface (Fr. plat, Late Lat. plathws, probably from Gr. Iharis, hroad). Skeat (Elym. Dict.) reftrs "plot," in the sense of a space of ground, to the O. Eng. plaec, Mid. Eng. pleck, later platek, patch. "Plot," in the sense of plan, scheme, would then be identical with "plot," a conspiracy, which may be a shortened form of "complot," a French word, also of doubtful origin, meaning in the 12th century " a compact body of men "; in the 14 th century "conspiracy."

PLOTINUS (A.D. 204-270), the most important representative of Neoplatonism, was born of Roman parents at Lycopolis in Egypt. At Alerandria he attended the lectures of Ammonius Saccas ($q . v$.), the founder of the system, until 242, when he joined the Persian expedition of Gordian 111., with the ohject of studying Persian and Indian philosophy on the spot. After the assassination of Gordian in 244, Plotinus was obliged to take reluge in Antioch, whence he made his way to Rome and set up as a teacher there. He soon attracted a large number of pupils, the most distinguished of whom were Amelius, Eustochius and Porphyry. The emperor Gallienus and his wifo Salonina were also his enthusiaslic admirers, and favoured his iden of founding a Platonic Commonwealth (Platonopolis) in Campania (ef. Bishop Berkeley's scheme for the Bermuda islands), but the opposition of Gallienus's counsellors and the death of Plotinus prevented the plan from being carried out. Plotinus's wide popularity was due partly to the lucidity of his teaching, but perhaps even more to his strong personality. Assent developed into vencration; he was considered to he divinely inspired, and generally credited with miraculous powers. In spite of ill-health, he continued to teach and write until his death, which took place on the estate of one of his Iriends near Minturnac in Campania.

Under Ammonius Plotinus became imbued with the eclectic spirit of the Alexandrian school. Having accepted the Platonic metaphysical doctrine, he applied to it the Neo-Pythagorean principles and the Oriental doctrine of Emanation (q.v.). The results of this introspectiva mysticison were collected by him in a scries of fifty-four (originally forty-eight) treatises, arranged in six "Enneads," which constitute the most authoritative exposition of Neoplatonism. This arrangement is probably due to Porphyry, to whose editorial care they were consigned. There was also another ancient edition by Eustochius, but all the existing MSS. are hased on Porphyry's edition.
The Enneades of Plotinus were first made known in the Latin translation of Marsilio Ficino (Florence, 1492) which was reprinıed at Baacl in 1580, with the Greek text of Petrus Perna. Later editions by Creuzer and Moser (" Didot Series," 1855), A. Kirchhoff (i856), H. F. Mutler (1878-I880), R. Volkmann (i883-1884). There is an English translation of selected portions by Thomas Taylor, re-edited in Bohn's Philosophical Library (1895 , with introduction and bibliography by G. R.S. Mead).
On Plotinus gencrally see article in Suidaș Eunopius vitae sophistarum; and above all the Vita Plotini by his pupil Porphyry. Among modern works, see the treatises on the school of Alexandria by J.F.Simon, i. (1845), and E. Vacherot (1846); A. Richter. Uetur Leben wnd Geistesentwicklung des Photine (Halle, 1864-1867); T. Whittaker, The Neoblatomists (1goi): A. Drews, Plotin und der Unkegang der antiken Weltanschounng (1907): E. Caird. Evotution of Theotogy in the Greek Philosopiners (1907), ii. 210-257; Rufus M. Jones, Studies in Mystical Religion (igog). A detailed account of Plotinus's philosophical system and an estimate of its importance will be found in the article Neoplatontsm, the works above referred to, and the: histories of philosophy. For his list of categorics, sce Categorin:s; aleo Logos; Mysticism; Magic.

PLOUGH AND PLOUGHING. To enable the soil to grow good crops the upper layer must be pulverized and weathered. This operation, performed in the garden by means of the spade, is carried on in the feld on a larger scale by the plough, ${ }^{1}$ which breaks the soil and by inverting the furrow-slice, exposes fresh surfaces to the disintegrating influence of air, rain and frost.

The first recorded form of plough is found on the monuments of Egypt, where it consists simply of a wooden wedge tipped with iron and fastened to a handle projecting backwards and a beam, pulled by men or oxea, projecting forwards. Many references to the plough are found in the Old Testament, notably that in ISam. xiii. 20: "All the Israelites went down to the Philistines to sharpen every man his share and his coulter." Descriptions of ploughs found in Hesiod's Works and Days and in Virgil's Georgics i. $169-175$, show little development in the implement. The same may be said of the Anglo-Saxon ploughs. These are shown with coulter and share and also witb wheels, which had in earlier times been fitted to ploughs hy the Greeks and also by the natives of Cis-Alpine Gaul (Pliny, Hist. nat. 18, 18). A mattock with which to break the clods is often found represented in Anglo-Saxon drawings as subsidiary to the plough. All these types of plough are virtually hoes pulled through the ground, breaking but not inverting the soil. In the first half of the 18 th century a plough with a short convex mould-board of wood was introduced from the Netherlands into England and, as improved at Rotherham in Yorkshire, became known as the Rotherham plough and enjoyed considerable vogue. At this period ploughs were made almost wholly of wood, the mouldboard heing cased with plates of iron. Small, of Berwickshire, brought out a plough in which beam and handle were of wrought
${ }^{1}$ The O. Eng. form is ploh, which is usually found in the sense of "plough land," a unit for the assessment of land (see HiDE), the regular O. Eng, word for the implement lage sulh, still fond in some dialects in the form sull. It appear, in many Tcub ic languages, cf. Du. ploeg, Ger. Pflxg. Swed. plog. Dan. plos. The Stavonic lorms, such as Russ. or Pol. plug, arc bonrowed from the German. ft does not appear in Gothic, wh the word used is hoha. The ultimate origin of "plough" is untonwn. Max-Muller (Science of Language, i. 296) connects the word with the IndoEuropean root meaning "to foat," seen in the Gir. жोотov, a boat or ahip; the same word would be applied to the ship "ploughing" through the waves, and to the implement "phoughing" ilirugh the carth. A Celtic origin has been suggested, tornecting the word with Gael. phoe, stump of a tree, as forming the original prough. The form "plow" was common in English until the beginning of the i8th century, and is usual in Anerica.
iron, lbe mould-boand of cast iron. The shares, when made of the same material, required constant sharpening; this necessiry was removed by the device, patented by Robert Ransome in 1803, of chilling and so hardening the under-suriace of the share; the upper surface, which is soff, then wears away more quickly than the chilled part, whereby a sharp edge is always assured. Nowadays the mould-board is of steel with a chilled and polished surface to give greater wearing qualities and to reduce friction. In the latter part of the 19th century there were numerous improvements but no fundamental alterations in the construction of the ordinary plough.

The working parts of the plough are the coulter, the share, and the breast or mould-board. These are carried on the beams, to which are attached the handles or dills at the back, and the hake or clevis and draught-chain at the front. The bake is notched so that, by moving the draught-chain higher or lower thereon, the plough is caused to go more or less deeply into the ground. It may also be adjusted to suit the height of the horscs used. The hake moves laterally on a quadrant and it is thus possible to give the plough a tendency to left or right by moving the hake in the reverse direction. A frame is bolted to the beam and this carries the breast or mould-board to the fore-end of which the share is fitted. The side-cap, a plate of

Newcatile Plough.
iron fixed to the land-side of the frame, is intended to keep the edge of the unploughed soil vertical and prevent it from falling into the furrow. A piece of iron called the slade is bolted to the botom of the frame, and this, running along the sole of the furrow, acts as a base to the whole implement. The coulter (either k nife or disk) and sometimes a skim-coulter (or. jointer) are attached adjustably to the beam, so as to act in the front of the share.

The coulter is a knife or revolving disk which is fixed so that its point clears the point of the share. The skim-coulter is shaped like a miniature plough, substituted for or fixed in front of the coulter; it is used chiefly on lea land, to pare off tbe surface of the soil together with the veget ation thereon, and turn it into the previous furrow, where it is immediately huried by tbe furrow slite. Two wheeis of unequal height are commoniy fitted to the front of the beam. By means of them the depth and width of the furrow are regulated, whereas in the case of "swing" or reheclless ploughs these points depend chiefly on the skill of the ploughman. In the whecled plough some of the weight and downward pull due to its action on the ground is taken by the wheels; the sliding friction is thus to some extent converted into a rolling friction, and the draught is correspondingly diminished.
In operation the coulter makes a perpendicular cut separating the furrow-slice which is divided from the "sole " of the furrow

Crested Furrow.

Rectangular Furrow.
by the share and then inverted by the curve of the breast as the plough moves forward. The process is indicated in the illustration of different types of furrow. The form of a furrow is
regulated by the shape and width of the shart, working in combination with a proper shaped breast. A "crested" furrow is obtained by the use of a share, the wing of which is set at a higher altitude than the point, but this type of furrow

Wide Broken Furrow.
is less generally found than the "rectangular" form obtained by a level-edged share, which leaves a flat bottom.

During the greater part of the 1 th century the ideal of ploughing was to preserve the furrow-slice unbroken, and this object was attained by the use of long mould-boards which turned the

> Digging Plough.
slices gently and gradually, laying them over against one another at an angle of 45°, thus providing drainage at the bottom of the furrow, and exposing the greatest possible surface to the influences of the weather. Subsequently the digging plough came into vogue; the share leing wider, a wider furrow is cut, while the slice is lnverted by a short concave mould-board with a sharp turn which at the same time breaks up and pulverizes the soil after the fashion of a spade. Except on extremely heavy soils or on shallow soils with a subsoil which it is unwise to hring upon the surface, the modern tendency is in favour of the digging plough.
A ploughed field is divided into lands or sections of equal width separated by furrows. On light easy draining land 22 yds . is the usual width; on the heavicst lands it may be as little as 5 yds., and in the latter case the furrows will act as drains into Which the water flows from the intervening ridges. ${ }^{1}$

Certain important variations of the ordinary plough demand consideration. The one-way plough lays the furrows alter-

Turnwrest Plough.
nately to its Ieft and right, so that they all slope in the same direction. This is found advantageous on hill-sides where the work is easier if all the furrows are turned downhill; or from another point of view the furrows may be all laid uphill so as to
${ }^{2}$ Methods of the "setting-out" of land to be ploughed together with a full discussion of other technical detaiis relating to ploughing will be found in ch. vii. of W. J. Maldes's Worhman's Technical Instructior (London. 1905).
counteract the tendency for the soll to wort down the slope. One-way ploughs also leave the land level and dispense with the wide open furrows between the ridgea which are left by the ordinary plough. They are made on different principles. One type comprises two separate ploughs, one right hand and one left, which revolve on the beam, one working, while the other stands vertically above it. In another the mould-board and

share are shaped so that they can be swung on a swivel under the beam when the latter is bifted. A third type is made on the "balance" principle, two plough beams with mould-boands being placed at right angles to one another, so that while the right-hand plough is at work the left-hand is elevated above the ground.

Double-furroso or mulliple ploughs are a combination of two or more ploughs arranged in echelon so as to plough two or more furrows. The weight of these implements necessitates some provision for turning them at the headlands, and this is supplied either by a bowl wheel, enabling the plough to be turned on one side, or by a pair of wheels cranked so that they can be raised by a lever when the plough is working. The double-furrow

Riding Plough.
plough was known as early as the 17 th century, but, till the introduction of the latter device by Ransore in 1873, cannot be said to have been in suecessful use.
The "sulky" or riding plough is little known in the United Kingdom, but on the larger arable tracts of other countries where quick worl is essential and the character of the surface permits, it is in general use. In this form of plough the frame is mounted on three whecls, one of which runs on the land. and the other two in the furrow. The furrow wheels are placed on inclined axles, the plough beam being carried on swing links, operated by a hand lever when it is necessary to raise the plough out of the furrow. The land wheel and the forward furrow wheel are adjustable vertically with refereuce to the frame, for the purpose of controlling the action of the plough.
In the disk plough, which is built both as a riding and a walking plough, the cssential feature is the substitution of a concavo-
convex disk, pivoted on the plough beam, for the mould-board and sbare of the ordinary plougb. This disk is carried on an axle inclined to the line of draught, and also to a vertical plane. As the machine is drawn forward the disk revolves and cuts deeply into the ground, and by reason of its inclination crowds the earth out wards and thus turns a furrow. A scraper is

Multiple Disk Plough.
provided to keep the disk clean and prevent sticking. The controlling levers and draughtarrangementsare similar to those in the "sulky" plough. The advantage of this plough over the ordinary form is in the absence of sliding friction, and in the mellow and porous condition in which it leaves the bottom of the furrow.

Disk ploughs are unsuitable for heavy sticky soils and for stony land, but may be used with effect on stubbles and on land in a dry hard state. Perhaps their most common use is in ploughing on a large scale in conjunction with steam power.

Steam is employed as motive power when it is necessary to plough large areas in a short time. In the United Kingdom steam pioughing is generally carried on on the double-engine system (introduced by Messrs John Fowler about 186 s), in whicb case two sets of ploughs are arranged on the one-way balance principle, so that while one set is at work the other is carried clear of the ground. In this arrangement, a pair of locomotive engines, each having a plain winding drum fixed underneath the boiler, are placed opposite to each other at the ends of the field to be operated upon; the rope of each of the engines is attached to the plough, or other tillage implement, which is drawn to and fro bet wixt them by each working in turn. While the engine in gear is coiling in its rope and drawing the plough towards itself, the rope of the other engine is paid out with merely so much drag on it as to kecp it from kinking or getting ravelled on the drum.

In the United States and elsewhere engines drawing behind them a number of ploughs, arranged in echelon and taking perhaps

The sub-soil plough has the beam and body hut not the mould-board of an ordinary plough. Following in the furrow of an ordinary plough it breaks tbrough the sub-soil to a depth of several inches, making it porous and penetrable hy plant roots.

Gripping and draining ploughs are employed in opening the grips and trencbes necessary both in surface and underground drainage.
See Davidson and Chase, Parm Motors and Parm Machinery; articles in 1. H. Bailey's Cyclopedia of American Agriculture (New York. 1907) and Standard Encyclopnedia (London, 1908), \&c.

PLOVER, a bird whose name (Fr. pluvier, O. Fr. ploviar) doubtless has its origin in the Latin pluvia, rain (as witness the German equivalent Regenpfeifer, rain-filer). P. Belon (1555) says that the name Pluvier is bestowed "pour ce qu'on le prend mieux en temps pluvieux qu'en nulle autre saison," which is not in accordance with modern observation, for in rainy weather plovers are wilder and harder to approach than in fine. Others have thougbt it is from the spotted (as though with rain-drops) upper plumage of two of the commonest species of plovers, to which the name especially belong-the Charadrims provialis of Linnaeus, or golden plover, and the Squatarola helselica of recent ornithologists, or grey plover. Both these birds are very similar in general appearance, but the latter is the larger and has an aborted hind-toe on each foot. ${ }^{2}$ Its axillary feathers are also black, while in the golden plover they are pure white. The grey plover is a hird of almost circumpolar range, breeding in the far north of America, Asia and castern Europe, frequenting in spring and autumn the coasts of the more temperate parts of each continent, and generally retiring farther southward in winter-examples not unfrequently reacbing Cape Colony, Ceylon, Australia and even Tasmania. Charadrius plaviafis has a mucb narrower distribution, though where it occurs it is mucb more numerous. Its breeding quarters do not extend farther than from Iceland to western Siberia, but include the more elevated tracts in the British Islands, whence in autumn it spreads itself, often in immense flocks, over the cultivated districts if the fields be sufficiently open. Here some will remain so long as the absence of frost or snow permits, but the majority make for the Mediterranean basin, or the countries beyond, in which to winter; and stragglers find their way to the southern extremity of Africa. Two other cognate forms, C. virginices and C. 'fulows, respectively represent C. plwvialis in America and castern Asia, where they are also known by the same English name. The discrimination of these two birds from one anather requires a very acute eye, but botb are easily distinguished from their European ally by their smaller size, their greyish-brown axillary feathers, and their proportionally lnnger

30 ft . at a time, are frequently seen. On smaller areas petrol motors with one pr more ploughs attached are sometimes used.
There is a large varicty of ploughs which differ in their purpose from the ordinary plough.

The ridging plowgh is an implement with a mould-board on each side, terminating in front in a flat point, and used for moulding up potatoes, and for throwing up the ridge on which to plant roots.
and more slender legs. All, however-and the same is the case with the grey plover-undergo precisely the same seasonal
${ }^{1}$ But for this really ummportant distinction both binds could doubtless have been kept by orninhologists in the same genul. for they agree in most other structural characters.
'Schlegel (Mrus. Pays-Bas. Cursores. p. 53) states that in some examples it seems impossible to determine the form to which ibcy belong; but ordinarily American sperimens are ralher larger and stouter, and have shorter toes than those from Asia.
change of colour, greatly altering their appearance and equally affecting both sexes. In spring or early sammer nearty the whole of the lower pkemage from the chin to the veat, which during winter has been neanty pure white, becomes deep black. A corresponding alteration is at the same zeason obearvable in the upper plumage.

Though the birds.just spoken of are those moat cmphatically entitied to be called plovers, the group of ringed plovers (see Kricpere and lapwing), with its allies, has, sccording to usage, hardly leas ciaim to the name, which is also extended to some other more distant forms that can here have only the brielest notice. Among them one of the most reraarkable is the " Zickzack" (so-called from its cry)-the rpoxDDos of Herodotus (ree Huganc-Bird), the Phwiasms or Hyas aegyphiws of omithologists, celebrated for the services it is said to render to the croco-dike-a amall bird whose plumage of delicate lavender and cream coloar is relieved by markings of black and white. This belongs to the small family Clarealidac, of which the nembers best known are the coursers, Cursoriss, with some eight or ten species imabiting the deserts of Airice and India, while ons; C. gallicus, occasionally strays to Europe and even to England. Allied to them are the curious pratincoles (q.g.), also peculiay to the Old World, while the genesa Thinororis and Allagis form an outlying group peculiaz to South America, that is by some systematists regarded as a separate family Thinocoridoe, near which are often placed the singular Sheathbilk (q.v.): By moat suthorities the Stone-curiews (eee Curcew), the Oyster-catchers (q.s.) and Tumstones (q.0.) are also regnarded as belonging to the family Charadriidee, and some would add the Avocets (Recuroirosira) and Stits (q.v.), among which the Cavalier, or Crab-plover, Dromes ardedo-al form that has been bandied about from one family and even order to another-should possibly. find its resting-place. It frequents the sandy shores of the Indian Ocean and Bay of Bengal from Natal to Aden, and thence to Ceylon, the Molabar coant, and the Andaman and Nicobar Islands-- white and black bird, mounted on long legs, with webbed feet, and a bill so shaped as to have made some of the best omit hologists lodge it among the Terns (q.s.).
Though the various forms here spoken of as plovers are almost certainly closely allied, they must be regayded as constitating a very indefinite group, for hardly any strang line of demarcation can be drawn bet ween them and the Sandpipens and Snipes (q.a.). United, however, with both of the latter under the name of Limicolae, after the method approved by the most recent systematists, the whole lorm an assemblage the compactness of which no observant ornithologist can hesitate to admit, even if be be uncertain of the exact kinship.

For "plovers' eggs" nee La pwinc.
PLUCK, to pull or pick off something, as flowers from a plant, feathers from a bird. The word in O. Eng. is pluccian or ploccian and is represented by numerous forms in Teutonic languages, cf. Ger. pfilicken, Du. plukken, Dan. plakke, \&c. In sense and form a plausible identification has been found with Ital piluccare, to pick grapes, hair, feathers, cf. Fr. Eplucher, pick. These romanic words are to be referred to Lat. pilus, hair, which has also given "peruke" or "periwig" and "plush." Difficulies of phonalogy, history and chronology, however, seem to show that this close similarity is only a coincidence. "Pluck," in the sense of courage, was originally a sleng word of the prize-ring, and Sir W. Scott (Journal, Sept. 4, 1827) speaks of the "want of that article blackguardly called pluck." In butcher's parlance the "pluck" of an animal is the heart, liver and lungs, probably 00 called from their being " plucked " or pulied out of the carsase immediately atter shagitering. The heart being the typical seat of courage, the transference is obvious. In university colloquial or slang use, "to pluck" is to refuse to pass a candidate on examination; the more usual colloquial word is now "to plough." At the granting of degrees at Oxford objection to a candidate could be taken for other reasons than failure at examination, and the person thus challenging drew the attention of the proctor in congregation by "plucking" a piece of black sitk astached to the back of his gown.

PLthasin, Folion (180t-1868), German methematician anid physicist, was bom at Elberisid on the 16th of June x8or. Afler beigg edocated at Dutseddorf and at the universities of Bonn, Heidelberg and Berlin he went in 1823 , to Paris, where he came under the influence of the great school of French geometers, whose founder, Caspard Mange, wat only yecently dead. In 2825 he was received as Privaldament at Boan, and after three years he was made profencor extriordinary The tiete of his "habilitationmehrift," Gemeralem analyseos applicationem ad ea quee geometrice altioris a mechamicas basis a frudamenta sunt a suric Tayloria deducil Julixs Plucker (Born, 1824), indicated the course of his future researches. The mathematical influence of Monge had two sides represented respectively by his two great works, the Cdometric descoipsive and the Applicadion de l'analyse ed la gtometria. Plicier aimed at furt nishing modern geometry with suitahle analytical methods to as to give it an independent amalytical development. In this effort be was as successful as were his great conteppor* aries Poncelet and J. Steiner in cultivating geometry in its purely syathetic form. From his lectures and rescarches at Boan sprang his finst great work, Amalytiach-geometricche Encrichelungen (vol. L., 1828 ; vol. iit, 1831).
In the first volume of this treatine Plicker introduced for the first the the method of ahridged notation which has become one of the chartucteriatic features of modern analytical geometry (ese Gronetry, Analyzical). In the first volume of the Entwickelvmgen he applied the method of abridged notation to the straight tine, circle asd conic semions, and he subsequenaly used it with great efiect in many of his researches, notably in his theory of cubic curven. In the second volume of the Embwickelungen he clearly enablished on a firm and independent besis the great principie of duality.

Another subject of importance which Plocker took up in the Rnawichedsages tase the curious parmdos noticed by L. Euler and G. Cramer, that, vhen a oertin number of the internections of iwo algebraical curves are given, the rest are thercby determined. Gergonne had shown that when a number of the frtersections of two curves of the $(p+q)$ th degree lic on a curve of the pth degree the rent He on a curve of tha gtin degree. Plickter finally (Gergonne Amn. 1828-1829) showed bow many pointa must be taken on a curve of any degree so that curves of the same degree (infinite in number) may he drawn through them, and proved that all the points, beyond the given ones, in which these curves intersect the given one are fixed by the original choice. Later, simultaneously with C. G. I. Jacobi, he extended these resulte to curves and surfaces, of unequal order. Allied to the matter just mentioned was Plucker's discovery of the six equations connecting the numbers of singularities in algebraical curves (bee CUVVE). Ptokerer cotinmunicated his formulae in the first place to Crelle's Jomernal (1834), vol. xii., and gave a further extenalon and complete account of his theory in his Theoris der algebraischen Curven (1839).

In 1833° Pliticker left Bonn for Berlin, where be occupied a post in the Friedrich Wilhelm's Gymnasinm. He was then called in 1834 as oxdinary professor of mathematics to Halle. While there he published his System der anclytischen Geometrie, enf meue Bearachburgsoeisen gegrundet, and insbesondere eine angfubriche Theorie der Curren dritter Ordmang enthaltend (Berlin, 8835). In this work he introduced the use of linear functions in place of the ordinary co-ordinates; he also made the fullest use of the principles of collineation and reciprocity. His discussion of curves of the third order turned mainly on the nature of their asymptotes, and depended on the fact that the equation to every such curve can be put into the form $p q r+\mu s=0$. He gives a complete enumeration of them, including two hundred and nineteen species. In 1836 Plucker returned to Bonn as ordinary professor of mathematics. Here he published his Theoric der algebraischen Curnes, which formed a continuation of the System der analytischen Geometrie The work falls into two parts, which treat of the asymptotes and singularities of algebraical curves respectively; and extensive use is made of the method of counting constante which plays so large a part in modern geometrical researches.

From this time Plicker's geometrical researches practically ceased, only to be resumed towards the end of his life. It is true that he publishod in 1846 his System der Geametric des
 contains merely \approx more sybtematic and polished rendering of his earlier results. In 1847 he was made profensor of physics at Bonn; and from that time his scientific activity took a new and astonishing turn.

His first physiral memoir, published in Poggenderft Ammalen (1847), vol. Lexii., contains his great discovery of magnecrystallic action. Then followed a long series of researches, mostly published in the same journal, on the properties of magnetic and diamagnetic bodies, eateblishing results which are now part and parcel of our magnetic knowledge. In 1858 (Poss. Ann. vol. citi.) he published the first of his classical researches on the action of the magnet on the electric discharge in rarefied gases.

Placker, first by himsell and afterwards in conjunction with J. W. Hitcorf, mede many important diseoveries in the spectroscopy of gases. He was the first to use the vacuum tube with the capillary part now called a Geissler's tube, by means of which the luminous intensity of feeble electric discharges was raised sufficiently to allow of spectroscopic inveatigation. He anticipated R. W. Y. Bunsen and G. Ktrchboff in announcing that the lines of the spectrum were characteristic of the chemical sabstance which emitted them, and in indicating the value of this discovery in chemical analysia. According to Hittori he was the first who saw the three lines of the hydrogen spectrum, which a few months after his death were recognized in the spectrum of the solar protuberances, and thus salved one of the myteteries of modern antronomy.

Hittorf tells us that Plucker never attained great manual dexterity as an experimenter. He had always, however, very clear conceptions as to what was wanted, and possessed in a high degree the power of putting others in ponseation of his ideas and rendering them enthusiastic in carrying them into practice. Thus he was able to secure from the Sayner Hatte in is,6 the great electromagnet which he turned to such nse in his magnetic rescarches; thus be attached to his service his former pupil the skiful mechanic Fessel; and thus he discovered and fully availed himself of the ability of the great glass-blower Geissler.
Induced by the encouragement of his mathematical friends in England, Plecker in 2865 returned to the field in which he first became famous, ind adorned it by one more great achievement -the invention of what is now called " line geometry." His first memoir on the subject was published in the Philosophical Transactions of the Royal Society of London. It became the source of a large literature in which tbe new science was developed. Plucker himsell warked out the theory of complexes of the first and second order, introducing in his inveatigation of the latter the famous complex surfaces of which he caused those models to be constructed which are now so well known to the student of the higher mathematics. He was engaged in bringing out a large work embodying the results of his researches in line geometry when he died on the a2nd of May 2868. The work wat so far advanced that his pupil and assistant Felix Klein was able to complete and publish it (see Geongerny, Love). Among the very numerous honours bestowed on Placker by the various scientific societies of Europe was the Copiey medal, awarded to him by the Royal Society two years before his death.

See R. F. A. Cleboch's obituary notice (Abh. d. honn. Ges. \& Wiss. s. Goltingen, 1871 . vol. x vi.), to which is appended an appreciation of Placker's physical researches by Hittorf, and a list of Plackerts works by F. Klein. See also C. I. Gerhardt. Geschichte dep Mathematik in Dexuchland, p. 282, and Plücker's life by A. Dronke (Boon, 1871).
PLDI, the English name both for certain kinds of tree and alno generally for their fruit. The plum tree belongs to the genus Prunss, natursl order Rosaceac. Cultivated phams are supposed to have originated from one or other of the species P. domeaticu (wild plum) or P. insititia (bullace). The young thoots of P. domestica are glabrous, and the fruit oblong; in P. institiac the young shoots are pubescent, and the fruit more or less globose. A third species, the common sloe or bleckthom, P. spfonsa, has stont spines; its flowers expand before the leaves; and Its fruit is very rough to the taste, in which particulars it differs fram the two precenings. These
distinctions, however, are not maintained with much constancy. P. domestica is a native of Anatolia and the Caucusua, and is considered to be the only species naturalized in Europe. P. insilitis is wild in southern Europe, in Armenia, and along the shorcs of the Caspiea. In the Swis lake-dwellings stoses of the P. insititio as well as of P. spimosa have been found, bat not those of P. domestica. Nevertheless, the Romans cullivated large numbers of ploms. The cultivated forms are estremely numerous, some of the groups, auch as the sreengugos, the dausons and the egg plums beins very distinct, and sometimes reproducing themselves from geed. The colour of the fruit varies from green to deep parple, the sise from that of a amall cherry to that of a hen's egg; the form is oblong acute or obtuse at both ends, or globular; the stones or kernels vary in like manner; and the flavour, sesson of ripening and duration are all subject to variation. From its hardihood the plum is ove of the most valuable fruit trees, as it is not particular as to soil, and the crop is less likely to be destroyed by spring froes.s. Pranes and Frenck plums are merely plums dried in the sun. Their preparation is carried on on a large scale in Bosaia and Servia, as well as in Spain, Portugal and southern France.

Plums are propagated chiefly by budding on stocks of the Musel, Brussels, St Julien and Pear plums. The darnson, winesour and other varieties, planted as standards, are geneirally increased by suckers. For planting agaiast walls, trees which have been trained for two years in the mursery are preferred, but maiden trees can be very succearfully introduced, and by liberal treatment may be speedily got to a fruiting state. Any good well-drained loany soil is suitable for plums, that of medium quality as to lightness being decidedly preferable. Walls with an east of west aspect are generally allowred to them. The horizontal mode of training and the fan or half-fas forms are commonly followed; where there is sufficieof height prohably the fan system is the best. The shoots should be laid in nearly or quite at full length. The fruit is produced on emati spurs on branches at least 1 wo years old, and the ame aparis continue fruifful for several yeara. Standard plum trees should be planted 25 ft . apart each way, and dwarts 15 or 20 ft . The latter are now largely grown for market purposes, being more easily supported when carrying heavy crops, fruiting earlier, and the fruit being gathered more eavily from the divari buach than from atandard trees.
The following is a selection of good varieties of plums, with their times of ripening:-

> Dessert Plums.

Early Creen-gage . . e. July Traneparent Cege . . b Sept. Early Tranmparent Cage b. Aug Denniston's Superb
 Jefferiona

Sept

Green-gage m.e.Aug. Reine Claude de Bavay $\left\{\begin{array}{l}\text { e. Sepe. } \\ \text { b. Oct }\end{array}\right.$

M'Laughlin's . . .
Angelina Burdett . e. Aug. Ickworth Imperatrice ${ }_{\text {b. Oct }}$ b. Sept. Late Rivers $\left\{\begin{array}{l}\text { e. Not. } \\ \text { b. Now. }\end{array}\right.$ Culinary Plmms.
Early Prolific e. July Victoris : . Sept.
Belle de Louvaim
Belgian Purple
Czar
Pershore.
Prince Englebert
Mitchelsons'
Diseoses.-The Pl
Discoses.-The Plum is subject to meveral diseases of fungal arigin. A widespread disease known as pocket-plums or bladderplums is due to an ancomycetous fungus, Bxouscus prome, the myoclium of which lives parasitically in the timues of the foos plame. pecses into the ovary of the fower and causes the characteristic malformation of the fruit which becomes a deformed, cometimes curved or flattened. wrinkled dry structure, with a hollow occupying the place of the stone; the bladder plums are yellow at firct. cuboequently diagy red. The reproductive apores are borne in macs (asci) Which form a dense layer on the surface, appearing like a bloom ia July: they are scatiered by the wind and propagate the disease. The only remedy is to cut of and burn the dizeased branches.
Plum-leaf blister is caused by Polystifma rabrum, a pyrenomycetous fungus which formes thick Geshy feddish patches on \mathbb{t} el lever.

The reproductive eppres are formed is embedded Aenth-haped rereptaclen (perithecia) and scartened after the leaves have falen. The spots are not often so numerous as to do much harm to the leaven, but whese the disease is sericus discheed leayse should be collected and burned. Sloes and birdcherries should be removed from the neighbourhood of plum-trees, as the various disene-producing insecte and fungi live also on thest species. Thy branches are sometumes attaced by wrevils (Rhynciles) and the barvae of various mothe, and anw-lies (chiefly Eriocampa) feed on the leares, and young branches and leaves are cometimes invaded by Aphides, Leaf-feeding beetles and larvac of moth are best got rid of by shaking the branches and collectins the insecte. Sluz-worms or inw-ity laryace require treatment by washIng with coaptuds, tobacco and limewater or hellebore solution, and Aphidea by syringing from below and removiag all surpina young twigs.

PIUIDAGO (from Lat Nambume, lead), a hame frequently applied to graphite (q.v.), in allusion to its remote resemblance to lead, whence it is popularly called "black-lead." It was formerly held in repute ep, Epidermis.

Abbey and at Montagu House, and two fino portritas in the British Museum. Thotmas Fonstor (A. 1695-1712) was one of the greatest draughtsmen in this particular form of poctraiture. His drawinge are both on vellum and or paper, as a rule on vellum. Of the details of his life very litcle is known. He engraved a fow printa, but they aro of the utmost rarity. His fipest portraita are executed with very great refinement and delicacy, the modelling of the face being quite wonderful. It is in fact one of the marvels of this type of portraiture how such exquisite lines could have been drawn with the roughly cut pieces of graphite which ware at the dippomal of the artists. In mome instances in Forster's work the lines representing the modeling of the face are so fine as to be quite indistinguishable without the aid of a glass. His work can be studied at Welbeck Abbey, in the Holburpe Museum at Bath, in the Victoris and Albert Muscum and elsenhere. Two other Englishmena aboald be referred to, Robert and Ceorge White, father and son. The former (1645-1704) was a pupil of Loggan and a prolific engraver, and most of his drawings, executed on vellum, were for the purpose of engraving. Ceorge White (c. 1684-1732) was taught by his father, and finighed some of his father's plates. His own pencil drawings are of even finer erecution than those of Robert White. These three men, Forster and the two Whites, carefully signed their drawings and dated them. By Robert White there are remarkable portraits of Bunyan and Sir Mathew Fiale in the British Museum, and his own portrait at Welbeck; and by him and his son there are other drawings in private collections, depicting Sir Godfrey Kneller, Archbishop Tennyson and others. The two Fabers (1660?-1721 and 1695?-1736) were from Holland, the elder having been born at the Hague, as he himself states on his portrait which was.in Vertue's collection. In addition to the portraits these two men usually added beautiful drawn inscriptions, often found within circles around the portraits and occasionally extending to many lines below them. The son was the greater artist and a famous mezzotinter. The portrait painter Jonathan Richardson ($1665-1745$) executed many fine drawings in pencil, examples of which can be seen in the British Museum. One of the best of these plumbago draughtsmen was a Scotsman, whose work is of the utmost rarity, David Paton, who worked in $\mathbf{3 6 7 0}$. The chicf of his drawings belong to the earl of Dysart and are at Ham House, and two examples of his portraiture are in the possession of the Dalzell family. Of Paton's history nothing is known save that he was a Catholic who worked for more than one Dominican house, a devoted adherent of the Stuart cause, and was attached to the court of Charles II., when the king was in Scotland. At that time he drew his remarkable portrait of the king now at Ham House. There are dravings of the same character as his, the work of George Glover (d. 1618) and Thomas Cecill (f. 1630), but they are of extroordinary rarity and were evidently first studies for engravings. Of Glover's work the only signed example known is in the writer's collection. A Swiss artist, Joseph Werner (b. 1637) or Waerner, drew well in pencil, adopting brown paper as the material upon which his best drawings were done, and in some cases heightening them wifh touches of white paint. The most notable of his portraits is one which is in the collection at Welbeck Abbey.
The eartier miniature painters aloo drew in thia manner, notably Hilliard in preparing deaigns for jewels and seals, and fsase and Peter Oliver in portraits. By lasac Oliver there is a fine drawing in Lord Derby's collection; and one by Peter, a marvellous likeness of Sir Bevil Grenville, in that of the writer. The later men, Hone. Grimaldi, Lens and Downran, aloo drew finely in plumbago. Other notable exponents of this delightful art were Thomas Worlidge ($1700-1766$), F. Steele (c. 1714). W Robins (c. 1730), G. A. Wolthgang (1602-1775). George vertice the engraver (1684-1756), Johann 2oftary. (I733-1810), and the Swede, Charles Bancks (c. 1748) who resided in England for some years.
(G.C.W.)

PLUMRING, properly working in lead (Lat. Numbume), now a term embracing all work not only in lead, but also in tia, sine and other metals, conpected with the installation, filting. repairing, soldering. dec., of pipes for water, ges, drainage, on cisterns, rools and the like in any building, ise. the geweral wort of a plumber. (See Butroting and Stwersez.)
 and echolar, was born \ln London on the 6ih of August 1821. A scholar of University College, Oxford, he graduated with a double-girst class in 1844, and in the same year he was clectod zellow of Brasenoes College. He wes ordained in 8847 , and shortly afterwerrds appointed chaplain, and then professor of pastoral theology, at King's College, London. In 1863 he was given a prebendal stall at St Paul's, and from 8869 to 8874 be was a member of the committee appointed by Convocation to revise the authorized version of the Old Texament. He was Boyle lecturer in 1860-1867 ("Christ and Christendom"), and Grinfield lecturer on the Septuagint at Oxford $\mathbf{1 8 7 4 - 1 8 7 4}$. After sucecessivaly holding the livings of Pluckley and Brickley in Kent, be was installed in $\mathbf{8 8 8}$ as dean of Welle. He diod on the int of February 189 g .

Plumptre was a mian of great veractlity and attalaed high repus. tation as a translator of the playe of Sophoclea (885) and Aeschylus (1868), and of the Disine commedia of Dante (1886). In veree his main achievements were Laxarus (1864), and Masler and Scholar (1866). Among his many theological works may be mentioned An Exprasition of the Epistles to the Siven Churchor of Asia (1877), The Spirils in Prison (1884). "The Book of Proverbs '" (which he annotated in the Speaker's Commentary) the "Syopptic Gospels, Acts, and II. Corinthians," in Bishon Elicott's News Testomem! Commentary, and Life of Biskop Ken (1888).
PLUNDER, to rob, to pillage, especially in war. The word came into English usage directly from Ger. plundern (derived from a substantive Plunder meaning "household stuff," bedclothes, clothing, \&c.), particularly with reference to the pillaging of the Thirty Years' War. Thomas May (History of the Long Parliament, 1647; quoted in the New English Dicionary) says: " Many Tounes and Villages he (Prince Rupett) plundered, which is to say rohb'd, for at that time first was the word plunder used in England, belng borme in Germany." The New English Dictionary's esrliest quotation is from the Swedish Inteligencer ($\mathrm{r}_{3} 2$).
PLUNKET, OLIVES (1629-1688), Irsh Roman Catholic divine, was born at Loughcrew, Co. Meath. He was educated privately and at Rome, whither be went with Father Scarampl in 1645 . From 5657 to 1669 he was professor of theology at the College of the Propaganda, enjoyed the friendship of the historian, Pallavicini, and acted as representative of Irish ecclesiastical affairs at Rome. Pope Clement IX. appointed him to the archbishopric of Armagi and primacy of Ireland in July 1660, and in November he was consecrated at Ghent, reaching Ireland in March 1670. Lord Berkeley of Stratton, the viceroy, showed him much kindness and allowed him to establish a Jesuit school in Dublin. Plunket showed amazing dillgence in furthering the cause of his Church. He was in very straitened circumstances, the revenue of his see being only 662 in good years. The repressive measures following on the Test Act bore hardly upon him, and in December r678 be was imprisoned in Dublin Castie for six weeks. Accused of a share in the Irish branch of the "Popish Plot," be was brought to London, and in June 168 z arraigned in the King's Bench, charged with conspiring to bring a French army to Carlingford. He made a good defence, but on the absurdest of evidence the jury convicted him of treason, and on the 1st of July he was hanged, drawn and quartered at Tyburn.
PLUNKET, WILLIAM CONYNGHAM PLUNKET, IST Baron (1764-8854), Irish lawyer, orstor and statesman, was born in the county of Fermenagh in July $1764 .{ }^{1}$ He was educeted first by his father, a Preshyterian minister of considerable ability and reputation, and in 1779 be became a student of Trinity College, Dublin. He was conspicuous as the acknowledged leader of the Historical Society, the debating club of Trinity College, then full of young men of temarkable promise. Having entered Lincoln's Inn in ${ }_{37} 84$, Plunket was called to the Irish bar in 1787 . He gradually obtained a considerable practice in equity; and was made a king's counsel in 1797.
'The lrish Plunkets are distinguished by the spelling of the name from the Plunketts of the families of the barons Dunsany (cr. 1439) and the earis of Fingail (cr. 1628), though the earliter members of these houses are often given the spelling of Plunket.

In 1798 he entered the lrish paritiment as member for Charkmont. He was an anti-Jacobin Whig of the achool of Burke, not ungracefully filled with a fervent Irish patriotism. But be was a sincere admiror of the conatitutional government of England as established to 3688; he even justified the ascendancy it had glven to the Established Church, although he thought that the time had arrived for extending toleration to Romsn Catholica and dissentera. To trmasier it to Ireland as thus modified, and under an independent legislature. was the only reform he sought / his country; he opposod the union because he thought it incompatible with this object.

When Plunket entered the Irish parliament, the Irieh Whig party wns almort extinct, and Pitt was feeling his way to accomplish the union. In this he wat meconded ably by Lord Castlereagh, by the panic caused by a wild insurrection, and by the wecession of Grattan from poliiics. When, bowever, the measure was brought forward, among the ablest and fiercest of its adversaries was Plunket, whose powers as a great orator were now universally recognized. His upeeches raised him immediately to the front rank of his party; and when Grattan reentered the moribund senate he took his seat next to Plunket, thus significantly recognixing the place the latter had attained.

After the union Plunket returned to the practice of his profession, and became at once a leader of the equity bar. In x803, after Emmot's rebellion, he was selcoucd as one of the Crown lawyers to prosecute the unfortunate enthusinas, and at the trial, in summing up the evidence, delivered a speech of remarkable power, which shows his characteristic dinlike of revolutionary outburats. For this speech be was exposed to much unmerited obloquy, and more espocinlly to the abuse of Cobbett, against whom he brought a zuccossful action for damages. In 2803, in Pill's second adminisiration, he became solicitor-general, and in 2805 altorney-general for Ireland; and he continued in office when Lord Grenville came into power in x806. Plunket heid a seat in the Imperial parliament duriag this period, and there made sevcral able speeches in favour of Catholic emancipation, and of continuing the war with France: but when the Grenville cabinet was dissolved be returned once more to professional life.

In 18:2, having amassed a considerable fortune, he re-entered parliament as momber for Trinity Collcge, and identifed himseff with the Grenville or anti-Gallican Whigs. He was soon acknowledged as one of the first orators, if not the first, of the House of Commons. His reverence for the English constitulion in church and state, his steady advocacy of the war with Napoteon, and his antipathy to anything like democracy made him populer with the Tory party. In 1822 Plunket was once more attorneygeneral for Ireland, with Lord Wellesley as iord-lieutensnt. One of his first official acts was to prosecute for the "bottle riot," an attempt on his part to put down the Orange faction in Ireland. He strenuously opposed the Catholic Association, which about this time, under the guidance of O'Connell, began its agitation. In 1825 he made a powerful speech against it; thus the curious spectacle was seen of the sblest champion of an oppressed church doing all in his power to check its efforts to emancipate itself.
In 1827 Plunket was made master of the rolls in England: but, owing to the professional jealousy of the bar, who regarded an Irishman as an intruder, he resigned in a few days. Soan afterwards he became chief justice of the common pleas in Ireland, and was then created a peer of the United Kingoom. Ir 1830 he was appointed lord chancellor of Ireland, and held the office, with an interval of a few months only, until 1845, when he finally retired from public life. He died on the 4 th of January $\mathrm{I}_{54} 4$, and was succeeded by his eldest son, the bishop of Tuam (1792-1866) as 2nd baron. The 4th baron ($1828-1897$) was hishop of Meath and afterwards archbishop of Dublin and primate of Ireland, and an active ecclesiastical statesman; and his younger brother David Plunket (b. 1838), solicitor-gerectal for Ireland in $1875-1877$, and first commissioner of works in the Unionist administration of $\mathbf{8 8 5} 5$ - 8892 , was in 1895 created Baron

Rethmore. Wilinm Lee Plunket, gth baron (b. 1864), was governor of Ner Zealand from 1904 to 1910 .
PLUNKETT, BIR HORACE CURTOII (1854-), Irish politicinn, third son of Edward, 16 hh baron Dunsany; was born on the 24 th of October 1854, and was educated at Eton and University College, Oxford, of which college he became honorary fellow in rgo9. He spent ten years ($1879-1889$) ranching in Montana, U.S.A., where, together with a substantial fortune, he acquired experience thatt proved invaluahle in the work of agricultural education, improvement and development, to which he devoted bimself on his return to Ireland in 1889 . At first Plunkett resolved to hold himself aloof from party politics, and he set himself to bring together men of all political views for the promotion of the material prosperity of the Irish people. In 1894 he founded the Irish Agricultural Organization Society, which accomplished a work of jincalculable importance by introducing coopperation among lishh farmers, and by proving to the latter the bencfits obtainable through more economical and efficient management. But already in 1892 he had felt compelled to abandon his non-political attitude, and he entered pariliament as Unionist member for south Dublin (county). Continuing, however, his policy of conciliation, Plunkett suggested in August 1895 that a few prominent persons of various political opinions should meet to discuss and frame a scheme of practical legislation. The outcome of this proposal was the formation of the "Recess Committee" with Plunkett as chairman, which included men of such divergent views as the earl of Mayo, Mr John Redmond, The O'Conor Don and Mr Thomas Sinclair. In July $\mathbf{1 8 9 6}$ the Recess Committec issued a report, of which Plunkett was the author, containing valuable accounts of the systems of state ald to agricutture and of tecbnical instruction in foreign countries. This report, and the growing influence of Plunkett, who became a member of the Irish Privy Council in $\mathbf{8 8 9 7}$, led to the passing of an act in $\mathbf{8} 899$ which established a department of agriculture and technical instruction in Ircland, of which the chief secretary was to be president ex afficio. Plunkett was appointed vice-president, a position which gave him control of the department's operations. It was intended that the vice-president should be responsible for the department in the House of Commons, but at the general election of 1900 Plunkett lost his seat. An extensively signed memorial, supported by the Agricultural Council, prayed that he might not be removed from office, and at the government's request he continued to direct the policy of the department without a seat in parliament. He was created K.C.V.O. in 1903.
On the aeceassion of the Liberal party to power in 1906, Sir Horace Plunkett was requested by Mr Bryce, the new chief secretary, to remain at the head of the department he had created. But, having sat in the House of Commons asa Unionist, Plunkett had incurred the hostility of the Nationalist party, whose resent ment had been further excited by the bold statement of certain unpalatable truths in his book, Ireland in the New Ceniury (1904), in which he described the economic condition and needs of the country and the nature of the agricultural improvement schemes he had inaugurated. A determined effort was therefore made by the Nationalists to drive from office the man who had probabiy done more than any one else of his generation to benefit the lrish people; and in moving a resolution in the House of Commons with this ohject in 1907, a Nationalist declared that his party "took their stand on the principle that the industrial revival could only go hand in hand with the national movement." The government gave way, and in the summer of 1907 Sir Horace Plunkett retired from office. Since the year 1000 a grant of about E4000 had been 2 made annually by the Department of Agriculture to the Irish Agricultural Organization Society; but the new vice-president, Mr T. W. Russell, who had been himself previously a member of the Unionist administration, withdrew in 1007 this modest support of an association with which Sir Horace Plunkett was so closely identified, and of which be continued to be the griding spirit. In addition to the publication mentioned, Sir Borace Plunkett published Noblasse Oblige An Irish

Rembering (1go8), and Rimal Life Prollems of the United Seatat (1910).

See Sir Horace Piunkett, Ireland in the New Centwry (London,
 and Technicat Instruction (Iredam). (Cd. 3572) (1907).

PLURALISM (Lat. Alus, piores, many, several), a term used generally in the semse of plurality (see below), end in philosophy for any theory which postulates more than one absolutely distinct being or principle of being, opposed to monism. Pluralistic systems are based on the dificulty of reconciling with the monistic principle the principles of variety and freewill. The chief difficulty which besets any such view is that if the elements are absolutely independent, the cosmos disappears and we are left with chaos: if, on the other hand, there is interrelation (ss in Lotze's system), the elements aro not ultimate in any intelligiblo sense.
PLUBAETTY (O. Fr. Muralies, Late Lat. pluralitas, plural number), in a gencral sense, a word denoting more than one; applied particularly to the holding of two or more offices by the same person (called then a pluralist). In ecclesiastical law, plurality or the holding of more than one benefice or preferment was always discountenanced, and is now prohibited in Engiand by the Pluralities Act 1838 , as amended by the Pluralities Act 1850 and the Pluralities Acts Amendment Act 1885. By the latter act a provision was made that two benefices might be hold together, by dispensation of the archbishop on the recommendation of the bishop, if the churches be within four miles of each other, and if the annual value of one does not excced faco (see Benefice). It was formerly a practioe to evade enactments agniast plurality by means of comsonewdams, ic. by committing or commending a benefice to a holder of other benefices until an incumbent ahould be provided for it. Commendams were abolished by the Ecclesiastical Commissionere Act 1836 (6 \& 7 Will. IV. C. 77, f 18). See also Coltv. Bishop of Coventery, 1613, Hob. 140 seq., where much learning on the subject will be found.

In elections, particularly where there are thyee or more candidates, and no one candidate receiven an absolute majority of votes, the excess of votes polled by the first candidate over the second is often termed plurality, especially in the Uuited States.
PLJSH (Fr. pelwche), a textile fabric having a cut nap or pilo the same as fustian or velvet. Originally the pile of plush consisted of mohair or worsted yarn, but now sill by itself or with a cotton backing is used for plush, the distinction from velvet being found in the longer and less dense pile of plush. The material is largely used for upholstery and furniture purposes, and is also much employed in dress and millinery.

PLUTARCH (Gr. IINoirapxes) (c. A.D. 46-180), Greek biographer and miscellaneous writer, was born at Chaeronea in Boeotia. After having been trained in philosophy at Athens he travelled and stayed some time at Rome, where he lectured on philosophy and undertook the education of Hadrian. ${ }^{1}$ Trajan bestowed consular rank upon him, and Hadrian appointed him procarator of Greece. He died in his native town, where he was archon and priest of the Pythian Apollo. In the Consolation to his Wife on the loes of his young daughter, he tells us (\$ 2) that they had brought up four soms besides, one of whom was called by the name of Plutarch's brother, Lamprias. We learn incidentally from this treatise (8 10) that the writer had been initiated in the secret mysteries of Dionysus, which held that the soul was imperisbable. He seems to have been an independent thinker rather than an adherent of any particular school of philosophy. His vast acquaintance with the literature of his time is everywhere apparent.

The celehrity of Plutarch, or at least his popularity, is mainly founded on his forty-six Paralled Lives. He is thought to have written this work in bis later years after his return to Cheerones. His knowledge of Latin and of Roman history he must have partly derived from some years' residence in Rome and other
${ }^{1}$ There reems no authocity for this statement carlier than the middle agen.
parta of Italy, though he ays be was too much engeged in lecturing (doubtless in Greek, on philosophy) to turn his attention much to Roman literature during that pqriod.

Plutarch's design in writing the Parallel Lives-for this is the title which he gives them in dedicating Thesems and Romulus to Sosius Senecio-appears to have been the publication, in succesaive books, of authentic biographies in pairs, taking together a Greek and a Roman. In the introduction to the Therews he speaks of having alreddy issued his Lycurgus and Numa, viewing them, no doubt, as bearing a resemblance to each other in their legislative character. Theseus and Romulus are compared as the legendary founders of states. In the opening sentence of the life of Alexander he asys that "in this book he bas writsen the lives of Alexander and Caesar " (Julius), and in his Demosthenes, where he again (§ 1) mentions his friend Sosius, he calls the life of this orator and Cicero the fifth book. ${ }^{2}$ It may therefore fairly be inferred that Plutarch's original idea was simply to set a Greck warrior, statesman, orator or legislator side by tide with some noted Roman celebrated for the same qualities, or working under similar conditions. Nearly all the lives are in pairs; hut the series concluded with single biographies of Artazerxes, Aratus (of Sicyon), Galba and Otho. In the lifo of Aratus, not Sosius Senecio, but one Polycrates, is addressed.
The Lives are worke of great learning and research, long lists of authorities are given, and they must for this very reason, as well as from their considerahle length, have taken many years in compilation. It is true that many of the lives, especially of Romans, do not show such an extent of rescarch. But Plutarch must have had access to a great store of books, and his diligence as an historian cannot be questioned, if his acturacy is in some points impeached. From the historian's point of view the weakness of the biographies is that their interest is primarily ethica. The author's sympathy with Doric characters and inatitutions is very evident; he delights to record the exploits, the maxims and virtues of Spartan kings and generals, This leeling is the key to his apparensly uniair and virulent attack on Herodotus, who, as an Ionian, seemed to hlm to have exaggerated the prowess and the foresight of the Athenian leaders.
The voluminous and varied writings of Plutarch exclusive of the Lives are known under the common term Opera moralia. These conaist of above sixty easays, some of them long and many of them rather difficult, some too of very douhtful genuineness. Their literary volue is greatly enhanced by the large number of citations from lost Greek poems, eapecially veries of the dramatists, among whom Euripides Lolds by far the first place. The principal treatises in the Operc moralia are the following:-m
On the Education of Children (regarded as spurious by some) recommends (1) good birth, and sobriety in the father; (2) good disposition and good training are alike necessary for virtue: (3) a mother ought to nurse her own offspring, on the analogy of all animats; (4) the paedopogus must be honcst and trustworthy; (5) all the advantages of fific and fortune must be held sccondary to education; (6) mere mob-oratory is no part of a good education; (7) philosophy should form the principal study, but not to the exclusion of the other sciences; (8) gymnastics are to be practised; (9) kindness and advice are better than blows; (10) over-pressure in learning is to be a voided, and plenty of relaxatioa is to be allowed; (it) self-control, and not least over the toague, is to be learned; (12) the grown-up youth should be under the eye nid advice of his lather, and all bad company avoided, flattercrs included; (II) fathers ahould not be too harsh and exacting. but remember that they were themselves once young; (14) marriage is recommended, and without disparity of raak; (15) above all, a father should be an example of virtue to a son.

How a Youxg Man ought to Hear Poetry is largely made up of quotations from Homer and the tragic poets. The points of the essay are the moral effects of poetry as combining the true with the false, the praises of virtue and heroism with a mythology depraved

'Demasth. 12 2. Plutarch's orthography of Roman words and mames is important as bearing on the question of pronuncintion. A curious example (De fortun. Rome. fo 5) is Virtulis ef honoris. Written Ohproiftr re kal - orapus.. The Volsci are obotoẅceo, ibld.
It is quite evident that the original order of the books has been altered in the series of Lipes as we now have them.

On the Rifh Woy of Howring (nued rof sumber) advocates the listening in milence to what is being said, and not giving a procipitate reply to statemente which may yet receive some addition or moditicntion from the speaker (6 4). The hearer is warned not to give too much weight so the otyle, manner or tone of the apeaker (87), not to be either too apathetic or too prone to praize, not to be impatient if he finds his faults reproved by the lecturer (\% 16). He concludes with the maxim, "to hear rightly is the beginaing of living rightly," and perhapa he has in view throughout his-own profession as a lecturer.

How of Flatterer may be Distingwished from a Frised is a rather long and uninteresting treatise. The ancient writers are full of warnings againct flatterers, who do not seem to exercise much infuence in modern tociety. The really dangerous flatterer (3 4) is not the parasite, but the pretender to a disinterested friendship -one who affects similar tastes, and so ineinuates himelf info your confidence. Your ancomplished flatterer does not always praiec, but flatters by act, as when he occupies a good seat at a public meeting for the express purpose of resigning it to his patron ($\mathbf{5}, 15$). A true friend, on the contrary, apeaki frecty on proper occations. A good part of the cmay turmis menpailes the honest expremion of opinion. The citations, which are fairly iumerous, are mostly irom Homer.

Hots one may bo Consctious of Progress in Goodmess is addressed to Sosius Senecio, who was consul in the last ycars of Nerva, and more than once (99,102 107) under Trajan. If, says Plutarch, a man could become suddenly wise instead of toolish, he could not be ignorant of the change; but it is otherwise with moral or menal processes. Gradual advance in virtue is like steady sailing over a wide sea, and can only be measured by the time taken anel the forecs applied (8 3). Zeno tested advance by dreams (8 12); if no excess or immorality presented itself to the imagination of the slecper, his mind had been purped by reason and philosophy. When we love the truly good, and adapt ourselves to their looks and manners, nad this even with the loss of worldly prosperity, then we are really getting on in goodness ouruclves (8 r5). Lastly, the evoidance of little oins is an evidence of a scrupulous conscience (\mathbf{B}_{17}).
How to get Benefi out of Enemies argues that, as primitive man had savage animals to fight against, but learnt to make use of their akins for clothing and their ficah for food, so we are bound to turn even our enemices to some good purpose. One service they to to us is to make us live warily against plota; anather is they induce us to live honestly, so as to vex our rivals not by scolding them, but by making them secretly jcalous of us ($\mathbf{1}$). Again, finding fault leads us to consider if wee are ourselves faulthens, and to be found fault with by a foe is likely to be plain truth spoending, toworto
 natural to man, are diverted from our friends by being legitimatcly expended on our enemics (8,10):
On Having Many Fricuds, On Chanco; On Virtue and Vice, are three ghort esays, the first advocating the concentration of oree's affections on a lew who are worthy (robn \&户lows thNar mimur, 14). rather than diluting them, as it werc, on the many; the sccond pleads that intelligence tpobryos, not mere luck, is the ruling principle of all success; the third showe that virtue and vice are but other names for happinean and mimery. All these are interspersed with citations from the poeth several of them unlonowa from other sources.
A longer treatise, well and clearly written, and not less valuable for its many quotations, is the Consolation addressed to Apollowius (considered spurious by some) on the early death of his "peaerally beloved and religions and dutiful son." Equality of mind both ia prosperity and in adversity is recommended ($\$ 4$), since there are "ups and downs" (byor kal rarewbrq") in life, as there are storms and calms on the sea, nnd good and bad scasons on the earth. That man is born to reverres be illuntrates by citing fifteen fine verses from Menander (5). The uelesmess of indulging in grief is pointed out, death being a debt to all and not to be regarded as an evil (\mathbf{S}_{1} 10-12). Plato's doctrine is cited ($\mathbf{1}^{13}$) that the body is a burden and an impediment to the soul. Death may be annifilation, and therefore the dead are in the same category as the unborn (${ }^{(15)}$). The lamenting a death because it is untimely or premature has comeching of selishneas in it (8 19), besides that it only means that one has arrived sooner than another at the end of a common journey. If a death is more grievous because it is untimely, a new-born infant's death would be the mout grievous of all (B_{2}). One who has died carly may have been apared many woes rather than have been deprived of many blesings; and, after all, to die is but to pay a debe due to the gods when they ask for it (828). Examples are given of fortitude and resignation under such affiction (8 33). ff, saya the author in conclusion, there is a heaven for the good hercalter, be sure that such a won will have a place in it. The author has borrowed from the Hepl ximpors of Crantor.

Precepts about Health commences as a dizlogue, and extends to some length as a lecture it is tectinical and difficult throughoar. and contains hut little that falls in with mrodern ideas Milk, he says, should be taken for food rather than for drink, and wine should not be indulged in after hard work or mental effort, for it does but tend to increase the bodily disturbance (\$ 17). Better than purges or emetics is a temperate diet, which induces the bodiay
foretions to act of themiclves (170). Another wise maying is that
 roin dovxlar Iyoryas) (821), and yet another that a man should learn by experience his bodlly capabilitics without always consulting a phyician (${ }^{26}$).
Aderice to the Married is addressed to hls newiy wedded friends Pollianus and Eurydice. It is simply and plainly written, and consists chiegy of short maxims and anecdotes, with but few citations from the poets.

The Banquel of the Siven Wise MCes (considered spurious by some) is a longer trealise, one of the several "Symposia "or imacinary coaverations that have come down to us it is supposed to be given by Periander in the public banqueting-room (loriarbpion) near the harbour of Corinth (Lechaeum) on the occasion of a sacrifice to Aphrodite. The whoie party connitited of "more than twice *even," the friende of the principal gueste being also present.: Like Plato's Symposimm this treatise takes the form of a narrative of what was maid and done, the narrator being one Diocles, a friend of Periander, who profesess to give Nicarchus a correct account ss having been preient. The dianer wes simpie, and ia contruat with the suual splendour of "tyrants" (14). The conversation turns on yarious topics; Solon is credited with the remarkable opinion that "a king or tyrant is most likely to become celebrated il he makes a democracy out of a monarchy" ($(7$). There is much playful banter throughout, but neither the wit nor the wisdom seems of a very high standard. Solon delivers a speech on food being a necessity rather than a pleasure of life (16), and one Gorgus, a brother of the host, comes in to relate how he has just shaken hands with Arion, brought across the sea on the back of a dolphin (\$18), which brings on a diacuscion about the habits of that crcature. Among the apeakers are Acsop, Anacharisis. Thalen, Chilo, Cleobulus and one Chersias, a poet.

A thort easay On Supersifion contains a good many quotatioas from the poets. It opena with the wise remark that ignorance about the gods, which makes the obstinate man an atheist, also begets credulity in meak and pliant minds. The atheist fears nothing because he believes nothing; the superstitious man believes there are gode, but that they are unfriendly to him (3) 2). A man who fears the gods is never iree from fear, whatever he may do or what; ever znay befall him. He extends his fears beyond his death, and believes in the "gates of hell," and Its fires, in the darkness, the ghoste, the Inlernal judges, and what not ($\$ 4$). The atheixt does not believe in the gods; the superatitious man wishes he did not, but fears to disbelieve (init). On the whole, this is a most interesting treatise.

On Isis and Oniris in a rather iong treatise on Egyptian oymbolism, interesting chiefly to rtudents of Egyptology. It gives an exposition of the strange myths and superstitions af this ancient solar cult, Including a fuit account of the great antagonist of Oziris, Typhon, or the Egyptian Satan. Plutarch thus lays down the Zoroastrian theory of good and bad agencies (45): It nothing can happen without cause, ani good cannot furmish cause for evil, It follown that the nature of evil, as of good, must have an origin and principle of its own."

On the Cessation of Oracles is a dialogue, discussing the reasons why divine inspination seemed to be withdrawn from the old seata of prophetic lora. The real reason of their decline in popularity is propably very simple; when the Greek cities bocame Roman provinces the fashion of consuiting aracles felf off, as unsuited to the more practical influences of Roman thought and Roman politics. The question is discussed whether there are such intermediate beings as daemons, who according to Plato communicate the will of the gods to men, and the prayers and vows of men to the gods.

The possibiiity of a plurality of worlds is entertained, and of the planets being more or less composed of the cssence of the five elements, fire, ether, earth, air and water ($\$ 37$). The whole treatise is metaphysical, but it concludes with remarks on the exhalations st Delphi baving different effecta on differeat people and at different times. The ancient notion doubtless was that the vapour was the breath of some mysterious being sent up from the under-world.

On the Pythian Responses, why no longer given in Verse, is also a dialogue, the first part of which is occupied mainly with convergition and anecdotes about the atatues and cther offerings at Delphi. It in rather au amusinp essay, and may be regarded as a kind of appendix to the last. The theory propounded $\left({ }_{(24}\right)$ is that verse was the older vehicie of philosophy, history and religion, but that plain prose has become the later fashion, and tberefore that oracles are now geperaliy delivered "in the same form as laws speak to citizens, kings reply to their subjects, and scholars hear their teachers speak." Discredit, too, was brought on the verse-oracle by the facility with which it was employed by impostors (825). Moreover, verse is better soited to ambiguity, and oracles nowadays have lest need to be ambiguous (\$88).

On the E at Dolphi is an inquiry why that letter or symbol was written on or in the Delphic temple. Some thought it represented the number five, others that it introduced the inquiry of oracleceekers, (eo-and-so was to be done; while one of the speakers, Ammoniun, decides that it means E , "thou aft," an address to Apollo containing the predication of existence ($\mathbf{3}, 17$).

On the Facs of the Moon's Disk is a long and curious if somewhat trifing specuiation, yet not without intereit from its calculations
of the sizes and the ciatance from carth of the mun and moon (8 so), and from the contrast between ancient lunar theories and modera mathematics. The cause of the moon's light, its peculiar colour, the posaibility of its being inhmbited and many kindred quetions are discussed in this dinlogue the begianing and end of which arte alike abrupt. Some of the "guesses at truth" are very near the maric, as when it ts sumpeted (15 21-22) that the moon like the earth, contains deep recemes into which the wun's light does not descend, and the appearanca of the "face" is nothing but the shadows of streams or of deep ravines.
On the Lave Vergeance of the Deily is a dialogve consequent on a supposed lecture by Epicuriaa An objection it raired to the ordinary dealingz of providence, that long-delayed punishmeat encourage the zinnor and diappoints the injured, the reply to which is ($\$ 5$) that the god sets man an example to avoid hasty and precipitate resentment, and that be is willing to give time for repentance (6). Moreover, he may wish to await the Birth of good progeny from erring parents (\$ 7). Another fine reffection is that sin has its own punifhment ia causing mivery to the simner, and thus the longer the life the greater is the share of misery ($\mathbf{I}_{\text {9 }}$). The esay concludes with a long atory about one Thespenius, and the treatment which he saw, during a trance, of the couls in the other world.

On Fate (probably spurious) discuged the law of chance asagainst the overnuling of providence This treatise ends abruptly; the point of the argument is that both fate and providence have their due induence in mundane affairs (59), and that all thinge are constituted for the best.

On the Ganixs of Socrates in a iong estay, and, like mo many of the rett, in the form of a dialogue. The experiences of one Timarchus, and him supernatural visions in the cave of Trophonius, are related at length in the Platonic style ($\$ 22$), and the true nature of the zulnons is revealed to him. They are the souls of the just, who still retain reqard for human affaire and amist the good in thetr efforts after virtue (128). The dialogue ende wist an interenting narrative of the conccalment of Pelopidas and worne of the Theban conspirators agaiast the Spartans in the house of Charon.
On Exile is a fine essay, rendered the more interesting from lto numerous quotations from the poets, including several from the Phosnisma. Man is not a plaat that grows only in one roil; he belongs to heaven rather than to earth, and wherever he goes there are the same sun, the same scasons, the same providence, the came lawa of virtue and juatice (5). There is no discredit in being driven from one's country; Apollo himself was banished from heaven end condemned to live for a time on earth (\$18).

The Consolation to insis Wife, on the early death of thelr only daughter Timoxena ($\mathbf{7}^{2}$), ta a feeling and sensible exhortation to moderate her grief.
Nine books of Symparicica extend to a great lengeh, discusaing inquiriea (rpofiquara) on a vast number of subjects. The general treatment of theme, in which great fiterary knowledge it displayed, ia not uniike the style of Athenaeus.

The A morous M an is a dialogue of mome length, dencribing a convernation on the nature of love heid at Helicon, pending a quinquennial feast of the Thesplans, who specially worshipped that deity along with the Musea. It is amply illustrated by poetical quotations. In $\{24$ mention is made of the emperor Vespasian. It la followed by a short treatise extitled Love Slories, giving a fow narratives of sensational adventures of lovers.
Short Sayings (фтopofypara), dedicated to Trajan, extend to a great length, and are divided into three parts: (I) of kings and commanders (including many Roman); (2) of Sportans; (3) of Spartan women (a short treatise on Spartan institutions being interposed between the last two). The names of the authors are added, and to some of them a large number of maxims are attributed.
A rather long treatise O_{n} ahe Virimes of Women contains a teries of narratives of nobie deeds done by the sex in times of danger and trouble, especially from "tyranta." Many of the stories are Interesting, and the style is eacy and good.
Another long and leamed work bears the rather obscure tithe Kodanalos кaraypadit. It is generally known as Qaastriones Ro manae and Graecor, in two parts. In the former, which contains one hundred and thirtecn headinges, the inquiry (on wome matter politicai, religious or antiquarian) always commences with bed \boldsymbol{I}, unually followed by morupoe, with alternative explanations. In the Greak Questions the form of inqulry is more often rls or rines, not foliowed by sorcepon. This treatime to of great interent and importance to classical archaeology, though the inquiries seem occasiomally trifing, and sometimes the answers are cicarly wrong.

Parallds (spurious) are a series of similar incldents which occurred respectively to Greeke and Romans, the Greek standing first and the Roman counterpart following. Many of che characters are mythological, though Plutarch regards them as historical.
On the Fortune of the Romans discusses whether, on the whole, good huck or valour had more influence in giving the Romans the cupremacy. This in followed by two discourses on the same queation as applicable to the career of Alexander the Great, and Whether the Abhenians were more renowmed for Was or for Wiudone? The conclusion is (\& 7) that it was not so much by the lame of thers poets as by the deeds of their heroes that Athens became renowned.

Grallus is a mont amusing dialogue; in which Circe, Odysseus and a talking pis take pert. Odysseus wishes that all the human beings that have been changed by the sorceress into bestial forms should be rentored; but the pig argucs that in moral virtucs, such as true bravery, chastity, temperance and general simplicity of life and contentment, animals are very far superior to man.

Whether Land Animals or Woter Animads are the Clemerer is a rather long dialogue on the intelligence of ants, bees, elephants, apiders, doge, Ac., on the one hand, and the crocodile, the dolphin, the tunny and many kinds of fish, on the other. This is a good emey, much in the style of Aristotic's History of Animals.

On Flesh-ealing, in two orations, discusses the origia of the practice, viz. necessity, and makes a touching appeal to man not to destroy life for mere gluttony (1 4). This is a short but very sensible and interesting argnment. Questiohs on Plato are ten in number, each heading subdivided into several speculative seplies The subjects are for the moot part metaphyical; the eseny is not long, but it concerns Platonists only. Whether Waler or Fire is mors Useful is also short; after discuasing the uses of both elements it decidea in favour of the latter, since nothing can exceed in importance the warmth of life and the light of the sun. On Primary Cold is a physical speculation on the true nature and origin of the quality antithetical to heat. Physical Reasons (Quaestiones Naturales) are replies to inquiries as to why ecrtain facts or phenomena occur, e-g. "Why is ealt the only lavour not in fruits?" "Why do fishing -nets rot in winter more than In summer?" "Why doen pouring oil on the sea produce a calm ?"On the Opinions accepted by the Philosophers (spurious), in five books, is a valuable compendium of the views of the lonic school and the Stoics on the phenomena of the universe and of life. On the III-malure of Herodotus is a well-known critique of the historian for his unfairness, not only to the Boeotians and Lacedaemonians, but to the Corinthians and other Greek atates It is easy to sony that this essay "neither requires nos merits refutation "; but Plutarch knew history, and he write like ope who thoroughly understands the charges which he brings against the historian. The Lives of the Ten Orators'from Antiphon to Dinarchus (now considered spurious) are biographies of yarious lengths, compiled, doubtless, from materials now lost.

Two rather tong easays, Should a Mran engage in Politics when he is no Jon ger Younf, and Precepss for Governing (tohutud rapayy inanra), are interspersed with valuable quotations. In favour of the Cormer view the administrations of Pericles, of Agesilaus, of Augustus, are cited ($\mathbf{8}$ 2), and the preference of older men for the pleasures of doing good over the pleasures of the senses (8) 5). In the latter, the true use of eloquence is discussed, and a contrast drawn between the brilliant and risky end the slow and sale policy ($\$ 10$). The choice of friends. and the caution against enmities, the dangers of love, of gain and of a mbition, with many topics of the like kind, are meanibly advanced and illustrated hy examples.
(F. A. P.; J. M. M.)

Bigliography.-Editio princeps, by H. Stephanus (1572): other complete editions by J. J. Reiske (1774-1782), J. G. Hutien (17911804), T. Döhner and F. Dabner (1846-1855). Of the Lives, there are editions by A. Coray ($1809-1814$) C. Stritenis ($1889-1846$; ed. min., 1874-1881), and of many separate lives by Siefert-Blass, Sinteni-Fuhr. Holden, Hardy and others There are many English translations, of which the most popular is that by John and William Langhorne; also the old French version by Jacques Amyot (1559) from which Sir Thomas North's (1579) was made, newly cdited by G. Wyndbam (L 955) : many of the Roman lives have been translaked, with notes, by Gearge Long. The Moralia has been edited by D. Wyttenbach (1795-1830), and G. N. Bernardakes (1888-18y6). The old English translation by Philemon Holland (1603) has been revised by C. W. King and A. R. Shileto in Bohn's Clossical Library (I882-1888), and a later translation by various hands (London, 1684-1694), edited by W. W. Goodwin with introduction by R. W. Emerson, has been republished at Cambridse, Massachusetts (1874${ }_{1878 \text {). Mentioa may also be made of P. Holland's Romame Cuotiong }}$ edited with introductory dissertations by F. B. Jevons (1892) : Auma Problems, with exsay on "Roman Worship and Belief," by G. C Allen (1904); De la Musique, cd. H. Weil and Th. Reinaci (opon); . Oakesmith, The Redigion of Plutarch as expoonded in his Etli; (190a); Archbishop Trench, A Popular Introduction to Pluturik 1873); O. Grsard. De la Morale de Plucerque (1866): R. V ilk mann, Leben, Schriften und Philosophie des Phtarch (1869); T e raslic literalure of Plutarch is very extensive, for which W. Engslmanri, Scriplores graeci (1881), may be consulted.

Plutarcif, of Athens (c. 350-430), Greek philosopher, head of the Neoplatonist school at Athens at the beginning of the 5 th century, was the son of Nestorius and father of Hierius and Asclepigenia, who were his colleagues in the school. The origin of Neoplatonism in Athens is not known, but Plutarch and his followers (the "Platonic Succession") claim to be the disciples of Iamblichus, and through him of Porphyry and Plotinus. Plutarch's main principle was that the study of Aristotle must precede that of Plato, and that the student should be taught to realize primarily the fundamental points of agree-
ment between them. With this object he wrote an commeatery. on the De anima which was the most important contribution to Aristotelian literature since the time of Alexander of Aphrodisias. His example was followed by Syrianus and others of the school. This critical spirt reached its greatest height in Proclus, the ablest exponent of this latter-day syncretism: Plutarch was versed in all the theurgic traditions of the school, and believed in the possibility of attaining to communion with the Deity by the modium of the theargic rites. . Unlike the Alexandrists and the early Renaissance writers, he maintained that the soul which is bound up in the body by the tics of imagination and sensation does not perish with the corporeal media of sensation. In paychology, while believing that Reason is the basis and foundation of all consciousness, he interposed between sensation and thought the faculty of Imagination, which, as distinct from both, is the activity of the soul under the stimulus of unceasing sensation. In other words, it provides the raw material for the operation of Reason. Reason is present in children as an inoperative potentiality, in adults as working upon the data of sensation and imagination, and, in its pure activity, it is the transcendental or pure intelligence of God.

See Marinus, Vita Procli, 6, 32; Zeller's History of Greak Philo sophy; Bouillet, Enneades de Plotin, ii. 667-668; Windelband, History of Philosophy (trans. J. H. Tufts, p. 225).

PLUTO (IIXoiraip), in Greek mythology, the god of the lower world. His oldest name was Hades, Aides or Aldoneus, "the Unscen." He was the son of Cronus and Rhea, and brother of Zeus and Poseidon. Having deposed Cronus, the hrothers cast lots for the kingdoms of the heaven, the sea, and the infernal regions. The last, afterwards known as Hades from their ruler, fell to Pluto. Here he ruled with his wife Perscphone over the other powers below and over the dead. He is stern and piticss, deaf to prayer or flattery, and sacrifice to him is of no avail; only the music of Orpheus prevaited upon him to restore his wife Eurydice. His helmet, given him by the Cyclopes after their release from Tartarus, rendered him invisible (like the Tarn-or Nebelkappe of German mythology). He is hated and feared by gods and men, who, afraid to utter his name, both in daily life and on solemn occasions make use of cuphemistic epithets: Polydectes (the recciver of many), Clymenus (the Illustrious), Eubulus (the giver of good counsel). Later, owing to his comexion with Persephone and under the influcnce of the Eleusinian mysteries, the idea of his character underwent a radical change. Instcad of the life-hating god of death, he became beneficent god, the bestower of grain, minerals, and other blessings produced in the depths of the earth. In this aspect he was called Pluto, the "giver of wealth " (a name that first occurs in the Attic poets of the 5th century), and at most of the centres of his cult he was so worshipped; at Elis alone be was Hades, the god of the dead. The plants sacred to him were the cypress and narcissus; black victims were sacrificed to him, not white, like those offered to the other gods. In art he was represented like Zeus and Poseidon; his features are gloomy, his hair falls over his lorehead; his attributes are a eceptre and Cerberus; he carries the key of the world below (cf. the epithet xu入dpros, "keeper of the gate'), and is frequently in company with Persephone. He is sometimes represented as an agricultural god, carrying a corne copiae and a two-pronged fort. Amongst the Romans Hades was usually called Dis pater (the "wealihy father") and Orcus, although the name Pluto is often used. Orcus, however, was rather the actual slayer, the angel of death, while Father Dis was the ruler of the dead. The Etruscan god of death was represented as a savage old man with wings and a hammer; at the gladiatorial games of Rome a man masked after this fashion removed the corpses from the arena. In Romanesque folk-lore Orcus (possihly English "ogre." g.v.) has passed into a forest-elf, a black, hairy, man-eating monster, upon whose house children lost in the woods are apt to stumble, and who sometimes shows himself kindly and belpful.
The " house of Hades" was a dreadful abode deep dowin in the earth, and the god was invoked by papping on the ground. According
to another view, the roaim of Hadea was beyond the ocen in the far west, which to the Greck was always the region of darkness and death, as the east of light and life. This is the view of Hades prosented in the Odyssey. Besides this gloomy region, we find in another passage of the Odyssey (iv. 561 seq.) a picture of Elysium, a happy land at the ends of the earth. where rain and snow fall not, but the cool west wind blows and men live at ease. After Homer this happy land, the abode of the good after dcath, was known as the Isles of the Blest (2.0.)! But in the oldest Greek mythology the " house of Hades " was simply the home of the dead, good and bad alike, who led a dim and khadowy reflection of life on earth.
Sce article " Hades," in Roscher's-Lexiken der Mrybhotogie ; Pietler. Robert, Griechische Mythalogie (t894); L. Farnell. Ciths of the Greck Slates. vol iii., who regards Hades as an evolution from Zeuy and his counterpart: according to J. E. Harrison, id Clossical Retem (Feb. 1908), Hades is the under-world sua.
PLJTOCRACY (Gr. \quad-houroxparia, from $\pi \lambda$ oiros, wealth, and apdros. power); government of power exercised by the possessors of wealth, power obtained by the mere possession of ricbes; hence a body or ruling class whose infuence is due only to their money.
PLOTO MOKKEY, a guenon, Cercopithecus (Mono) leucampyx, neariy allfed to the Mosa (q.0.), which takes its name from the black fur of the under-parts, passing into blackish grey on the head and back. The violet-coloured face, which has no beard, is fringed by large bushy whiskers and surmounted by a white band above the brows. The range of the species extends from the Congo and Angole to Nyasaland. (See Prumates.)

PLUTUS, in Greck mythology. son of Iasion and Demeter, the personification of wealth (riotros). According to Aristophanes, he was blinded by Zeus because he distributed his gifts without regard to merit. At Thebes there was a statue of Fortune holding the child Plutus in her arms; at Athens he was similarly represented in the arms of Peace; at Thespiae he was represented standing beside Athema the Workcr. Elsewhere he was represented as a boy with a cornu coptioe. He is the subject of one of the extant comedies of Aristophanes, the Plutus.

PLTMOUTH, EARLS OP, a title first borne-by Charjes (1657-1680), an illegitimate son of the English king Charles LI. by Catharine Pegge, who was created earl in 1675 . The title became extinct on his death in Oetober 1680. In 1682 Thomas Windsor Hickman-Windsor, 7th Baron Windsor de Stanwe.: (c. 1627-168y), who had fought for Charles I. at Naseby, was created earl of Plymouth. His father was Dixie Hickman of Kew, Surrey, and his mother, Elizabeth, was a sister of Thomes Windsor, 6th Baron Windsor de Stanwell ($1506-1641$); having inherited the estates of bis uncle and taken the additional name of Windsor, the abeyance of the barony of Windsor de Stanwell was terminated in his favour and he became the gth baron. From 166:-1663 he was nominally governor of Jamaica. His grandson Other ($1679-1725$) was the 2ud earl, and the earldom became extinct when Henry, the 8th earl, died in December 1843. Called again out of abeyance, the barony of Windsor came in 1855 to Harriet, a daughter of Other Archer, the Gth earl ($17059-1833$), and the wife of Robert Henry Clive ($1789-1854$). a younger son of Edward Clive, ist earl of Powis. She was succeeded in r869 by her grandson, Robert George WindsorClive, who became the 14th Baron Windsor. After scrving as paymaster-general in $18 \mathrm{gr-1892}$ and first commissioner of works from 1902-1905, Lord Windsor was crested earl of Plymouth in 1905.
${ }^{1}$ The Samoan fslanders unite the two conceptions: the entrance to their spirit-land is at the westernmost point of the westernmost island. where the ghosts descend by two holes into the under-worth. Long ago the inhabitants of the French coast of the English Channel believed that the souts of the dead were ferried across to Britain, and there are still traces of this belief in the folk-lore of Brittany (Tylor:-Primitree Culture. ii. 64: Grimm. Deulsche Mythologie. il. 604). In classical mythology the underground Hades prevailed oyer the western. It was an Etruscan custom at the foundation of a city to dig a deep hole in the carth and close it with a stone: on three days in the year this stone was removed and the ghosts were thern supposed to ascend from the lower wortd. In Asia Ninor caves filled with mephitic vapours or containing hot springs were known as Plutonia or Charonia. The most famous entrances to the under-world were at Taenarum In Laconia, Heraclea on the the under-arorid were at Tanarum in
Eund at the Lake Avernme in Italy.

PLYMODTE, a municipal county (x 888 , extended 1890) and parliamextary borongh and seatport of Devonahire, Eagland, 231 m , W.S.W. of London. Pop. (tgio), 226,266 . It lies at the head of Plymouth Sound, atmetching westward from the river Plym towards the mouth of the Tamar, from which it is separated by the township of East Stonehouse and the borough of Devonport, the two later coastituting with it the © Three Towns." The prince of Wales is lord high stevard of the borough, which is divided into 84 wards, under a mayor, 14 aldermon and 42 councillons. The parliamentary borough, returning two members, is not coextensive with the municipal borough, part of the latter being in the Tavistock (county) division of Devon. The water frontage of the Three Towns consists of Plymouth Sound, with its inlets, in order from east to west, the Catwater, Sutton Pool, Mill Bay, Stonehouse Pool and the Hamoaze. The Catwater and Hamoaze are Glanked on the east and west reapectively by high ground, on which are built farts that command the harbour and its approaches. On the western side of the cntrance to Catrater is the Citadel, founded in the reign of Henry VII. and rebuilt by Charles II. The adjacent Hoe extends along the northern edge of the Sound, and from it can be obtained a splendid view, cmbracing the rugged Staddoh Heights on the east and the wooded slopes of MIount Edgeambe on the west. To the north is seen the town of Plymouth rising up to the hills known as Mannamead. On the site of an old Tripity House obclisk handmark is Smeat on's lighthouse tower, removed from lts original position on the Eddystone Reef in 1884. It is now used as a wind-recording station in connerion with the adjoining Meteorological Observatiory. On the Hoe there stands the striking Drake statue by Sir Edgar Boehm, and the Armada Memorial, while at the north-east end is an obelisk monument to the memory of troops engaged in the South African War. A municipal bowling-green recalls a probable early use of the Hoe. Adjacent to the Citaded, at its south-west angle, is the MLarine Biological Station, and, further west, projects the Promenade Pier. In the Sound is Drake's (formerly St Nicholas's) Island, now strongly fortified, at one time the property of the corporation, and serving in Stuart times as a place of imprisonment of certain Plymouth Baptist ministers. Few revidences, however. of the antiquity of the town remain. Bciow and to the northeast of the Citadel, is the Barbican with its "Mayflower " commemoration stone, a large fish-buying trade being done on the adjacent quay, near which is the Custom House. From the Barbicun winding streets lead past the old Guildhall (rSCo) which contained the municipal library, pending its removal to more commodious quarters in the new museum. opposite the technical and art schools. situated in the most northern part of the town. At a short distance west stands the new Guildhall, with the enlarged post office, central police station, law courts and municipal buildings in close proximity. Opened in 1874. the Cuildhall is built in a bold, rather exotic. Early Pointed French style. The torer at the south-west end is 190 ft . high, and the building is ornamented with a series of coloured mindows relating to events in the history of Plymouth or commemorating men and families connected with the town. The large hall contains a fine organ. In the mayor's patlour is a contemporary portrait of Sir Francis Drake and some interesting prints of the cown of Plymouth.
Near the eastern entrance to Guildhall Square is St Andrews, the mother church of Plymouth, erected on the site of a chapel dedicated to the Virgin. The church is typical of the Devonshire Perpendicular style of $1+\$ 0-1520$, but, though large, presents few features of artistic or archacological interest. 'It underwent complete restoration in 187 - . The burying-ground on the north side has been levelled, and on it erected a stone monument. The church, furnished with one of the finest organs in the west of England, contains the tombs of a son of Admiral Vernon, of Sir John Skelton (a former governor of the Citadel), and of Charles Mfathews the comedian. as well as portions of the bodies of Erobisher and Drake. Hero Katherine of Aragon returned thanks for a safe voyage from Spain to Plymouth. In $16 \not 50$ a second parish was formed with Chartus

Church (1658) at its bead, the last-named being popularly Enown as New Church, in contradittinction to St Andrews or "Old Church." The New Church is an interesting specirsen of Stuart "debased" Gothic architecture. South of Andrews church is the site of a Franciscan Friary with some early 1 gthcentury remains. Near the church are a few old houses scaltered along the crooked liftle streets going down to the water. These houses date from Elizabethan times, but are not of any unamal interest. The Citadel (now uned warmy beadquarters and
 asylum.

Foundition, and intermediate day and evening ichool and numeroos primary departments. The philanthropic inatitutions include the enfarged South Devon and East Comwall hospital, eye infirmary, homoeopathic hoopital, blind institution and female orphan
The public recreation grounds, other than the Hoe, are feve and mall: Hartley Reservoir Grounds at the northern extremity of the town commands extensive moorland views: the Freedom Park, by its plain, unfinished monument, recalla the siege of Plymoth by the Royalists in 1646, and the Beaumont Park containa the temporary home of the nucleus for a museum and art gailery. The Victoria Park, reclaimed from a part of Sronehouse Creek, is under the joint ad Devonport.

The township of East Stonehouse, having Plymouth on the east, is ecpersted from Devonport on the west by the Stonohouse Pool Creek, which is crossed by a toll-bridge and thoroughfare known locally as the "Half-penny Gate Bridge." A manor of the Mount Edgcumbe family, East Stonehouse, is an urban district, in the administrativo county of Devon, with a council of 15 members, but is united for parliamentary purposes with Devonport, with which it returns two members. Within the boundarics of Stonehouse are the Royal Naval Hospital (1762), the Royal Marine Barracks (1795) in Durnford Street, and the Royal William Victualling Yard (8825), the last-namod having frontage on the Hamosze, which separates the Devon from the Cornish portion of the Stonehouse manor.

The Stanehus(e) of Dameaday Book ultimately passed into the bands of the Valletorts, whose hamlet of West Stonehouse stood on the Cornish side of the Tamar, for (to quote. Carew's Swrocy) "certaino old ruines yet remaining cosfirm the seighbours' report that neas the water's side, there stood ance a towne called West stone house until the French (1350 ?) by fire and sword overthrew it."

St George's (1798) is the aldest α the three parishes of Stonehouse, and an
barracks) is a fine specimen of 17 th-century military architecture. It is an irregular bastioned pentagon in trace. It possesses a fine florid classical gateway. In the centre stands a dignified Jacobean house, once the residence of the governor of Plymouth.

Plymouth is the seat of a Roman Catholic bishopric founded in 1851 , the cathedral, in Wyndham Street, being completed in 2858 through the efforts of Bishop Vaughan, who was the second occupant of the see (until 1902). The building is in the Early English style, and adjoining are the bishop's house and the convent of Notre Dame. In the immediate vicinity is the only Presbyterian church in the Three Towns. Noteworthy among lhe many Nonconformist places of worship are the Baptist chapel (George Street), with its tablet recording the imprisonment of ministers on Drake's Island; Sherwell (Congregational) on the Tavistock Road, the most ornate in its style of architecture; the Wesleyan Methodist chapel in the main thoroughlare of the residential suburb of Mutlicy, unique among Methodist edifices in the tomn in respect of its fine spire. All the principal religious bodies have places for worship or for assembly in the town, and the borough has given, in popular speech, the name of " Plymouth Brethren" to one body.
In addition to the Plymouth College (for boys), there are several educational institutions administered by the borough council, comprising a science. art and technical school, a mixed secondary adbool replacing the corporation grammar achocl of Elizabethan
the site of the present church stood the chapel of St George, in wbich, during the years 168 x -1682, worshipped, in addition to the English congregation, one composed, as at Plymouth, of Huguenots who fled from France at the Revocation of the Edict of Nantes.

Facing the Sound are Stone Fall and the Winter Villa. The former, occupied by the lords of the manor before the building of Mount Edgcumbe House, was originally a casteilated building, and the latter was huilt primarily as an alternative residence for a countess of Mount Edgcumbe. A link with the past is the Mill Bridge Causeway, over what-was the "Dead Like," now a road, which, at the head of Stonchouse Creek, is the second approach to the Stoke Damerel portion of Devonport. Built in $\mathbf{~} 525$, it possesses a toll-gate house at which payment from vehicles is still demended.
In addition to the Victualling Yard. with its naval ordnance department, repairing shops and armoury, the Barracks, accom. modating some 1500 men, and the Naval Hospital of 24 actes. abuting on the Creck, there are within the boundaries a theatrt seating over 2000 persons, the Devonport Corporation Eloerricity Works, a clothing factory and part of the Greas Hestern Railwy Docks. The stationary character of the township-which from its sifuation is incapable of expansion-is seen from the statistics of population:(1881), 15,041 ; (1901), 15,108: (1916), 15.111 .
The "Port of Plymouth" in 1311 embraced Plympton, Modbury and Newton Ferrers, and received a customs grant
from Bichard II. In 1435 sinty-ive cargoes were imported, and in the reign of Elizabeth it rose to be the foremost port in England. The r8th century saw a great development of trade with Virginia and the West Indies, resulting in the establishment of a sugar-refining industry that was maintaibed until a recent date.
In 1740 the "town's water" was carried to the Barbican to supply ahipping. The port of Plymouth, as at present constituted, embraces "t the waters of Plymouth Sound and the Hamoaze, including all bays, creeks, lakes, pools, ponds and rivers as far as the tide fows within or to the northward of a straight line drawn across the entrance of Plymouth Sound from Penlee Point on the west to the Shagstone on the cast." The chief water area within the linits of the port is the Sound with its indets, the Catwater (200 acres), Sutton Pool, Mill Bay, Stonetouse Pool and the Hamoaze. The Sound itself covers an area. of 4500 acres and is sheltered from south-west gales by the breakwater completed in 184 r at a cost of iz million sterling. It lies 24 m . south of the Hoe, and is nearly a mile long, 360 ft . wide at the base and 45 ft . at the top. Its cants bend inwards. at angles of 120°; at the western end is a lighthouse and at the eastern extremity is a pyramidal beacon with a cage capable of accomamodating several men.
The town is servod by the Great Western and the London \& South-Western ralways. The former company has a main line entering from the west through Devonport and going east to Exeter. having Dartmoor on the west; the latter company has a terminal station in the castern quarter of the cown, and its route to Exeter is by way of the Tamar valley, and the western and noorthern moorland districte.
The industries of Plymouth Include soap manufacture, preparation of artificial manure and sulphuric acid and pgoer staining. The water supply, inaugurated by Drake in 1590 , and drawn irom. the Dartmoor waterthed, is the most important municipal under. taking. The vervice of electricity both for lighting and tramway traction is in the hands of the town, but the gasworks belong to a private company.
Plymouth, the Suron of Domesday, was afterwards divided into the town of Sutton Prior, the hamlet of Sutton Valletort and the tithing of Sution Ralph, the greater part belonging to the priory of Plympton. The market, established about 1253 , became in 13 rr town property, with the mayor as clerk of the market. In $\mathbf{r} 292$ the town first returned members to parliament. In the 14th century it was frequently the port of embarcation and of disembarcation in connexion with expeditions to France, and suffered considerably at the hands of the French. In 14 r 2 the inhabitants petitioned for a charter, which, after strenuous opposition from the prions of Plympton, was granted by Henry VI. in 1439 . In the discovery of the New World it played a part of great importance. Cockeram, a native of the town, sailed with John Cabot in 1497. Sir John Hawkins and his father William were also natives, the former being port admiral and (in 1571) M.P. From Plymouth in 1577 Drake set out on his voyage round the world; in 1581 he became mayor and represented the borough in parliament during 1592-1593. Sir Humphrey Gilbett (M.P. 1571) sailed on his second colonizing expedition to America in 1583 from the port, and hither Drake brought the remnant of Raleigh's Virginian colony. Plymouth supplied seven ships against the Armada, and it was in the Sound that the English feet awaited the sighting of the Spaniards. A stone on a quay at the Barbican records the fact that this was the last port touched by the Pilgrim Fathers on their voyage to America.

During the Civil War Plymouth was closely invested by the Royalists, whose great defeat is commemorated by the monument at Freedom Park. It was the only town in the west that never fell into their hands. It early declared for Willian of Orange, in whose reign the neighbouring dockyard was begun.
Authorities-Histories of Plymouth by Jewitt and Worth; Wright's Plymouth with its Surroundings and Story of Plymouth: Whitfeld. Plymouth and Devonport. in times of War and reace; Municiol Records (Plymouth Corporation); Worth. "Notes on Early History of Stonehouse " (Plymoulk Insti. Proc.).
(H. G. DE W.)

PLYMOUTH, a township and the county-seat of Plymouth county, Massachusetts, U.S.A., in the couth-eastern part of the state, on Plymouth Bay, about 37 m . S.E. of Boston. Pop. (1905) 11, 1 19; (1910) 12,141 . It is served by the New York, New Haven \& Hartiord railway, by_inter-urban electric lines and in summer by steamers to Boston. The harbour is well sheltered. but generally shallow; it has. been considerably improved by the United States government and also by the state, which in 1909 was making a channel 18 ft . deep and 150 ft . wide from deep water to one of the township's wharves. The township has an area of $107.3 \mathrm{sq} . \mathrm{m}$., is 18 m . long on the water front and is from s to 9 m . wide. Plymouth is a popular resort for visitors, having in addition to its wealth of historic associations and a healthy summer climate, thousands of acres of hilly woodland and numerous lakes and ponds well stocked with fish. Morton Park contains aco acres of woodland bordering the shores of Billington Sea (a freshwater lake).

Few, if any; other places in America contain so many interesting landmarks as Plymouth.' The famous Plymouth Rock; 'a granite boulder on which the Pilgrims are said to have landed from the shallop of the "Mayflower," lies on the harbour shore near the site of the first houses built on Leyden Street, and is now sheltered by a granite canopy. Rising above the Rock is Cole's Hill, where during their first winter in America the Pilgrims buried half their number, levelling the graves and sowing grain over them in the spring in order to conceal their misfortunes from the Indians. Some human bones found on this hill when the town waterworks were built in 1855 have been placed in a chamber in the top of the canopy over the Rock. Burial Hill (originally called Fort Hill, as it was first used ior defensive porposes) contains the graves of several Pilgrims and of many of their descendants. The oldest stone bears the date 168 r ; many of the stones were made in England, and bear quaint inscriptions. Here also are a tablet marking the location of the old fort (1621), which was also used as a place of worship, a tablet showing the site of the watch-tower built in $2 \sigma_{43}$, and a marble obelisk crected in 1825 in memory of Governor Winiam - Bradford. Pilgrim Hall, a large stone building erected by the Pigrim Society (formed in Plymouth in 1820 as the successor of the Old Colony Club, founded in 1769) in 1824 and remodelled in 1880, is rich in relles of the Pilgrims and of early colonial times, and contains a portrait of Edward Winslow (the only extant portrait of a " Mayflower "passenger), and others of later worthies, and paintings illustrating the history of the Pilgrims; the hall library contains many old and .valuable books and manuscripts-including Governor Bradford's Bible, a copy of Eliot's Indian Bible, and the patent of 1621 from the Council for New England-and Captain Myles Standish's sword. The national monument to the Forefathers, designed by Hammatt Billings, and dedicated on the sst of August 1889, thirty ycars after its corner-stone was laid, stands in the northern part of the town. It is built entirely of granite. On a main pedestal, 45 ft . high, stands a figure, 36 ft . high, representing the Pilgrim Faith. From the main pedestal project four buttresses, on which are seated four monolith figures representing Morality, Education, Law, and Freedom. On the faces of, the buttresses below the statues are marble alto-reliefs illustrating scenes from the early history of the Pilgrims. On high panels between the buttresses are the names of the passengers of the " Mayflower." The court-house was built in 1820 , and was remodelled in 2857. From it have been transicrred to the fireproof building of the Registry of Deeds many interesting historical documents, among them the records of the Plymouth colony, the will of Myles Standish, and the original patent of the azrd of January 1630 (N.s.).
Modern Plymouth bas varied and important manufactures comprising cordage, woollens, rubber goods, \&c. In 1905 the total value of the factory products was $\$ 1 \mathrm{I}, \mathrm{II} 5,7 \mathrm{I} 3$, the worsted goods and cordage constituting about nine-tenths of the whole product. The cordage works are among the largest in the world, and consume immense quantities of sisal fibre imported from, Mexico and manila from the Philippine Islands; binder-twine
for binding wheat is one of the principal products. From 1900 to 1905 the capital invested in manufactures increased 83% and-the value of the product 108% Large quancities of cranberries are raised in the township. Plymouth is a port of entry, but its foreign commerce is unimportant; it has a considerable coasting trade, cspecially in coal and iumber. The township owns its waterworks.

Plymouth was the first permanent white settlement in New England, and dates its founding from the ianding here from the "Mayflower " shallop of an exploring party of twelve Pilgrims, including William Bradford, on the atot of December (N.s.) 1620. The Indian name of the place was Patuxet, but the colonists called it New Plymouth, because they had sailed from Plymouth, England, and possibly because they were aware that the name of Plymouth had been given to the place six years before by Captain John Smith. When and how the town and the colony of Plymouth became differentiated is not clear. Plymouth was nover incorporated as a township, but in 1633 the Genersl Court of the colony recognized it as such by ordering that " the chicfe government be tyed to the towne of Plymouth." In 1686 the colony submitted to Sir Edmund Andros, who had been commissioned governot of all New England, and chose representatives to sit in his council. Flymouth remained the sent of government of the colony until r692, when Plymouth Colony, and with it che town of Plymouth, was united to Massachusetts Bay under the charter of 169r (see Massacreuserts: Bistory). Part of Plymouch was established as Plympton in 1707, and part as Kingston in 1726.

Bibliography.-For the sources of the earity history of Plymonth consult (George) Mourt's Relation, or Journal of the Plamestion of Plymouh (Boston. 1865, and numerous other editions): William Bradford's History of the Plimaush Plantation (Boston, 1858, and reveral later editions), the most important source of Information concerning Plymouth before 1646; the Plymoulh Colony Records (12 vols., Boston, 1855-1861): the Records of the Towm of Plymouth (3. vols., Plymouth. 1889-1903); J. A. Young's Chronicles of the Pilyim Fathers (Boston, 1841) : and E. Arber's Slory of the Pilgrim Falhers (London, 1897), the two last containing excerpts from the leading sources. See also. James Thacher's history of the Town of Plymoult (Boston, 1832): W. T. Davis's Bistory of the Torpm of Plymond (Pbiladelphin, 1885): also his Ancipnt Landmarks of Plymouth (Boston, 2nd ein, 1899); and his Plymoulh Memories of an Oclogenarian (Plymauth, 1906); and John A. Coodwin, The Pidgrint Repablic (Boston, 1888). For accounts in geveral historics, see J. G. Pallrey's History of New Eagland. 1. (Boaton, 1858); the appreciative sketch by J. A. Doyle, is his English Colonies in America, II. (Xew York, 1889): and. especlally, the monograph by Franklin B. Dexter, in Justin Winsor's Narrative and Crilical History of America, vol. iii. (Boston, 1884). As to the truth of the tredition that the Pigrims landed on Plymouth Rock, consult the Proceedings of the Massachupelss. Historical Society (1003) znd ceries, vol. xvii, containing articles by E. Channing and W. W. Goodwin; the article by Herbert B. Adams in the Aragazine of American History, ix. 31 sqq., and that by S. H. Gay in the Attantic Hondhy, xlviii. 612 sqq .
PLYMOUTH, a borough of Luzerne county, Pennsylvania, U.S.A., on the north branch of the Susquchanna riven immediately rest of and across the river from Wilkes-Barre, of which it is a cuburb. Pop. (1910), 16,996 . Plymouth is served by the Dclaware, Lackawanna \& Western railroad. The borough is fincly situated in the Wyoming Valley among the rich anthracite coalficlds of eastern Pennsylvania, and its inhabitants are chiefly engaged in the coal industry; in 1906 and 1007 (when it shipped $24,08 \mathrm{r}, 49 \mathrm{x}$ tons) Luzeme county shippet more anthracite coal than any other county in Pennsylvania. In 1005 the total value of the factory products was $\$ 002,758,69.4 \%$ more than in 1900 . Before the coming of white settlers there was an Indian village called Shawnee on the site of the present borough. The township of Plymouth was setiled in 1769 by immigrants from New England-many originally from Plymouth, Litchfield county, Connecticnt, whence the name-under the auspices of the Susquehanna Company, whicb claimed this region as a part of Connecticut, and Plymouth became a centre of the contest between the "Pennamites" and the "Yankees" (representing respectively Pennsylvania and Connecticut), which grew out of the conflict of the rogal charter of Penssytvania (granted in 1681) with the
royal charter of Connecticut (granted in 2662), a matter which wes not setiled until 1790 . (See Wrompno Valley.) In its earlier history the region was agricultural. Two brothers, Abijah and John Smith, originally of Derby, Conn, settled in Plymouth in 1806 and began shipping coal thence in 1808 ; this was the beginning of the anthracite coal trade in the United States. The borough was incorporated in 1866, being then separated from the township of Plymouth, which had a popala. tion in 8890 of 8363 and in 1900 of 9655 .

See H. B. Wright's Eisterical Shekches of Plymouth (Philadelphie, 18;3).

PLYTOUTH BREIKREX, a community of Christians who received the name in 8830 when the Rev. J. N. Darby induced many of the inhabitants of Plymouth, England, to associate themselves with him for the promulgation of his opinions Although small Christian communities existed in Ireland and elsewhere calling themselves Brehhrew, and bolding similar views, the accession to the ranks of Darby so increased their numbers and Influence that he is usually rectoned the founder of Plymouthism. Darby (born in Nov. 8800 in London; graduated at Trinity College, Duhlin, in 18i9; died April 29, 1882, at Bournemouth) was a curate in Wicklow 1825-1827, when he felt himself constrained to leave the Anglican communion; going to Dublin, he became associated with several devout people who met statedly for public worship, and called themscives "Brethren." Among these were A. N. Groves and J. G. Bellett, who deserve to rank among the founders of the movement. In 1830 Darhy at Plymouth wion over many people to his way of thinking, among them James L. Harris, a Plymouth clergyman, and the well-known Biblical scholar Samuel Prideaux Tregelles. The Brethren started a periodical, The Christian Wiiness, continued from 1849 as The Present Testimony, with Harris as editor and Darby as the most important contributor. During the next eight years the progress of the sect was rapid, and communities were founded in many of the principal towns in England.

Ln $\mathrm{r}_{8} 8$ Darby went to reside in French Switzerland, and made many disciples. Congregations were formed in Geneva, at Lausanne, where most of the Methodist and other dissenters joined the Brethren, at Vevey and elsewhere in Vaud. His opinions also found their way into France, Germany, Germin Switzerland, and Italy; but French Switzerinad has alwzys remained the stronghold of Plymouthisra on the Continent. and for his followers there Darby wrote two of his most important iracts, Le Sinistere considere dans sa neture and De la Presence at de l'action du S. Esprit dans l'eglise. The revolution in the canton Vaud, brought about by Jesuit intrigue in 1845 . brought persecution to the Brethren in the canton and in other parts of French Switzerland, and Darby's life was in great jeopardy.

He returned to England, and his reappearance was followed by divisions among the Brethren at home. These divisions began at Plymouth. Benjamin Wills Newton, head of the community there, who had been a fellow of Exeter College, Oxford, was accused of departing from the testimony of the Brethren by reintroducing the spirit of clericalism. Unable to detach the congregation from the teacher, Darby began a rival assembly. The majority of the Brethren out of Plymouth supported Darhy, but a minority remained with Newton. The separation became wider in 1847 on the discovery of sapposed heretical teaching by Newton. In 1848 another division took place. The Bethesda congregation at Bristol, where Goorge Muller was the most influential member, received into communion several of Newton's followers and justified their action Out of this came the separation into Neutral Brethren, led by Müller, and Exclusive Brethren or Darbyites, who refesed to hold communion with the followers of Newton or Muller. The Exclusives, who were the more numerous, suffered further divisions. 'An Inish clergyman named Sarnuel O'Malley Cluff had adopted views similar to those of Pearsall Smith, who preacked a doctrine of sanctification called "Death to Nature" as as antidote to the supposed prevalent Laodiceanism, and when these were repudiated seceded with his followers. The woit

Important division among the Exchusives came to a crimis in 1881, when William Kelly and Darby became the recognized leaders of two sections who separated on a point of discipline. This was followed (1885) by the disruption of the strict Darbyite section, two communions being formed out of it upon points of doctrine.

There were thus six sections of Plymouthists: (1) the followers of B. W. Newton, who promulgated the prophetic views peculiar to their leader; (2) the Neutrals-open brethren, peanidg to Baptist views and to the Congregationalist idea that each assembly should judge for itself in matters of discipline, beaded by George Miller; (3) the Exclusives, the Darbyites, holding what may be described as a Pauline view of the Church, who claim to be the original Brethren, represented by J. B. Stoney and C. H. Mackintosh;. (4) the Exclusives associated in Great Britain with C. E. Stuart, in America with F. W. Grant; (5) the Exclusives who followed W. Kclly, giving a general adhesion to Darby but with a tendency to place conscience above church action, holding the Pauline view of the Church modified by Johannine elements; and (6) the Exclusives who followed Cluff. The fundamental principle of the Exclusives, "Separation from evil God's principle of unity," has led to many unimportant excommunications and separations besides those mentioned.

The theological vicus of the Brethren differ considerably from those held by evangetical protestants (for a list of divergences, see Teulon, Fistory and Doctrines of the Plymouth Brethren). They make the baptism of infants an open question and eelebrate the Lord's Supper weekjy. Their distinctive doctrincs are ecclesiastical They hold that all official ministry, whether on Episcopplian, Presbyterian or Congregationallst theories, is a denial of the epiritual priesthood of all believers, and scts aside the Holy Spirit's guidance The gradual growth of this oplnion, and perhips the reasons for holding it, may be traced in Darb's earfier writings. While a curate in Ireland he was indignant with Auchbishop Magee, who had stopped the progress of mission work among Roman Catholics by imposing on all who joined the church the oath of supremacy. This led Darby to the idea that established ctmurches are as foreign to the spirit of Christimnity as the papacy is ("Considerations addressed to the Archbishop of Dublin, acc., Coll. Works, i. 1). The parochial system, when enforced to the extent of prohibiting the preaching of the gospel within a parish where the incumbent was opposed to it, led him to consider the whole system Chindrance to the proper work of the church and cherefore antiChristian (" Thoughts on the present position of the Home Mission," Call. Works, i. 78). And the waste of power implied in the refusal to sanction lay preaching seemed to him to lead to the conclusion to sanction andical ministry was a refusal of the gilts of the Spirit to the church " On^{-}Lay Preaching." Coll. Wowks, p. 200). The movement, if it has had small resulta in the formation of a soct, has at least set churches to consider how they might makee their machinery more elastic. Perhaps one of the reasons of the comparatively mmall number of Brethren may be found in their ldea that their mission is not to the heathen but to the "awakened in the churches."

The movement has a distinct interest for students of church history: (1) as illustrating again the desire of certain Christians to pass over the parmered experience of the centuries, and by going straight to the Bible to make a fresh fart without any other authority. precedent or guidance; (2) in jts developtrent alongside the Evangelical, Tractarian and Broad Church movements of the 19th century and its affinities with them all. A certain haphazardism that has always marked the Brethren is responsible for the present lack of qualifed leaders. The earry enthusiasm bas waned, and no provision was made for proper theological study.

Authoxiries.-Darby, Collected Works (y vols., edited by Kelly, with supplementary volume, 1867-1883); A. Miller, The Brehtren, their Rise, Prograss and Testimony (i879): Rogers, Churck Systems of the Ninclecnich Centery; Teuloa, Fistory and Doctrines
 in Consemp. Rev. (Oct. 1885): W. B. Neathy A Hislory of the Plymowih Brelkren (London, sgoz, 2nd ed.).
(T. M. L.: A. J. G.)

PLYMPTON ST MARY and PLYTIPTON MAURICE (or Eare's), two small adjacent towns in the southern parliamentary division of Devonshire, England, 5 m. E.N.E. of Plymouth, on the Great Western railway. Pop. (1gor), Plympton St Mary, 35^{87}; Plympton Maurice, ir39. Plympton St hiary contains a Gine Decorated and Perpendicular church, with a lofty tower of the later period. Near it are remains of the former rich Augustinian priory of Plympton, founded by William Warelwast, bishop of Exeter (xioy-1136). They include an Early English refectory
with Norman undercroft, tho kitchen and other fragments; but there are no remains of the great priory church. At Plympton Maurice are slight ruins of the castle built by Richard de Redvers, ist earl of Devon (whence the variant of the name), in the time of Henry I. There are several picturesque old houses in the town, together with a guildhall dated 1696 , and a grammar school founded in 1658, of which Sir Joahua Reynolds's father was master.
Plympton (Plimiona) bears traces of very ancient settlement, the eart hworks on which in the 1ath century Richard de Redvers reared his Norman castle being probably of British origin, while a Saxon document dated 904 records a grant by Edward the Elder to Asser, bishop of Sherborne, of twelve manors in exchange for the monastery of "Plymentun." According to the Domesday survey "Plintona" was a royal manor assessed at $2 \frac{1}{1}$ hides, and the fact that the canons of Plympton beld two hides apart from these shows the origin of the later division into the priory parish of Plympton St Mary and the secular borough of Plympton Erle. In the 12th century Plympton appears as a mesne borough under the lordship. of the Redvers, earls of Devon, and in 1224 the burgesses claimed to have received a charter from William, the 6th earl, of which bowever nothing further is known, and the first ckarter of which a copy is extant was issued by Baldwin de Redvers in 1242, granting to the burgesses of Plympton the borough, with fairs and markets, and the liberties enjoyed by the citizens of Exeter, in consideration of a yearly payment of E24, 2s. 2d. In 1437 a charter from Edward IV. granted to the burgesses an eight-days' fair at the Feast of the Nativity of St John the Baptist, hut at this period the growing importance of Plymouth was steadily robbing Plympton of its position as head of the district. In 1602, in response to a petition of the burgesses, Elizabeth issued a charter of incorporation, instituting a common council to consist of a mayor and 8 principal burgesses; a Saturday market, and fairs at the Feasts of the Ascension and the Annunciation. A code of by-laws dated 1623 mentions an fair on St lake's Day in addition to the three above mentioned. The borough surrendered its charter to Charles II. in 1684 , and in 1685 reccived a fresh charter from James II. instituting an additional market on Wednesday and a fair on the ist of August. This charter was declared invalid in 1690 , but its provisions were reaffirmed in 1692, with the addition of an eight-days' fair to begin on the 14th of February. The borough, which had returned two members to parliament since 1205 , was disiranchised by the Reform Act of 1832 and from this date the municipal privileges gradually lapsed, and in 1859 were finally abolishod.
See Vicloria Coxnty History: Dewonshire; William Cotton, Sume Account of the Anciont Borough Town of Plymplon St Maurice (London, 1859); J. Brookang Rowe, Notes of Plympton Castle (Plymouth, 1880).

PHEUMATIC DESPATCR, the name given to a system of transport of written despatches through long narrow tubes by the agency of air pressure. It was introduced in 1853 by J . Latimer Clark, between the Central and Stock Exchange stations of the Electric and International Telegraph Company in London. The stations were connected by a tube iz in. in diameter and 220 yds. long. Carriers containing batches of telegrams, and fitting piston-wise in the tube, were sucked through it (in one direction only) by the production of a partial vacuum at one end. In 1858 C. F. Varley improved the system hy using compressed air to force the carriers in one direction, a partial vacuum being still used to draw them in the olher direction. This lmprovement enables single radiating lines of pipe to be used both for sending and for receiving telegrams between a central station supplied with pumping machinery and outlying stations not so supplied.

Redial Syslem.-In the hands of R. S. Culley and R. Sabine the redinl system of pneumatic despatch was in 1870 brought to great perfection in connexion with the telegraphic depart ment of the British post office, since that date the total beagth of tubes (Yhich are employed for telegrams only) has been rery largely increased (in $\mathbf{2 g o g}$ there was in London a total length of

40 m.), whilst in all large and also in very many smaller provincial towns there are installations; these are constantly belng added to, as it is found more economical to transmit local memage-work by tube rather than by wire, as stilled telegraphists are not required, hut only tube attendants. In some cases only a single tube is necessary, hat three or four, or even more, are in use in some towns, according to local circumstances. Short tubes, known as "house tubes" are in use in a great number of offices; such tubes, which are worked either by handpumps (when the tubes are very short and the traffic inconsiderahle) or hy power, are urually $1 \frac{1}{2} \mathrm{in}$. in diameter, and are used for the purpose of conveying messages from one part of a telegraph instrument-room toranother, or from the instrument-room to the public couniter. The underground, or "street " tubes are chiefly $2 t$ in. in diameter, but there are also a number of 3 -m. tubes in use; those in the large provincial towns (Birmingham, Bradford, Cardif, Edinburgh, Glasgow, Grimsby, Liverpool, Manchester, Newport, Leeds, Newcastle, Southampton and Swansea) are 24 in in diameter; but in Duhlin, Cloucester, Lowestoft and Milford astin. tubes are employed. There are fifty street tubes in London, varying in length from 100 to 2000 yds. (central office to the Houses of Parliament), and also seventy-five house tubes; the pumps for the whole system are worked hy four 100 horse-power steam-engines. At Cardif, Edinburgh, Gloucester, Leeds, Lowestoft, Newport, Southampton and Swansea the pumps are driven by electric motors; at Bradford and Grimsby gasengines are used, and at Milford an oil-engine.
The tubes are in all cases of lead, the $2 \frac{1}{6}$-in. tubes wrighing 8 to per foot run and being made in lengths of 28 ft.; they are enclosed in 3 -in. cast-iron pipes made in lengths of 9 ft .
Great care is exercised in making the joints in the lead pipes. Before the tube is placed in its trench a atrong chain is passed through it, and a polished steel mandrel, 6 in. long and slightly lexs in diameter than the diameter of the tube, is beated and attached to the chain, and purbed half its length into the end of the tube already haid; the new length of tubo is then forced over the projecting end of the mandrel until the tube ends (which have been previously eut liat) butt perfectly together; an ordinary piumbers joint is then made. By this means the tube is made perfectly air-tight, and the mandrel beeps the wurface of tbe tube under the joint as smooth as at any other part of its length. After the joint is completed the mandra is drawn out by the chain attached to it, the next length is drawn on, and the above process repeated. The tubes are laid about 2 ft . below the surface of the ground.

The tubea radiate from the central to the branch offices, the principal offices having two tubes, one for "inward" and Worlme the other for "outward" traffic. . At the smaller offices both the inward and the outward traffic is carried on through one tube. The "carriers " are made with guttapercha bodies, covered with felt, the front of the carrier being provided with a buffer or piston formed of several disks of felt which closely fit the tube; the messages are prevented from getting out of the carrier by the end being closed by an elastic hand, which can be stretched sufficiently to allow the message forms to be inserted. The 3 -in. carriers will hold 75 ordinary message forms, the $2 x-\mathrm{in}$. carriers 25 forms, and the 1$\}$-in. carriers 20 forms. The carriers are propelled in one direction (from the central office) hy "pressure," and drawn in the opposite direction hy "vacuum," the standard pressure and vacuum being 10 tb and $6 \frac{1}{2}$ it per sq. in. respectively, which values give approximatcly the same speed.
The time of transit of a carrier through a tube when the air pressure does not exceed 20. Ib per square inch is given very approximately by the empirical formula:-

$$
t=.00872 \sqrt{F}
$$

where $l=$ length of tube in yards, $d=$ diameter of tube in inches,
 time in seconds. For vacuum the formula is:-

$$
s=\frac{-00925}{1-.234 \sqrt{15 \cdot 5-P_{1}}} \sqrt{\frac{1}{d}}
$$

where $P_{1}=$ effective vacuum in pounds per square inch.

The hotmepower required to propel a carrier is approsimateif,

$$
\text { H.P. }=(\cdot 574+\cdots \infty 12 P) \sqrt{\frac{P^{[2}}{T}} ;
$$

for vacuum:-

$$
\text { H.P. }=(5.187-2.214 \sqrt{15.5-P 1})
$$

For a given transit time the actual horse-power required in musis lcss in the case of vacuum than in the case of presure working, owing to the density of the air column moved being much les: thus, for example, the transit time for 10 is pressure is the aame as for 6i lh vacuum, but the horse-power required in the two cases is as 1.83 to I . A tube 1 m . kons, $2 \boldsymbol{z} \mathrm{in}$. in diameter; and worked at 10 B per square inch pressure, will have a transit time of $2 t$ minutes, and will theoretically require 3.35 horse-power to be expended in working it, although actually 23% more horse-power. than this must be allowed for, owing to longee through various caugen. The transit time for a 24 in . tube in 16% more than for a 3 -in. tube of the sarme length, when both are worked at the same pressure, but the horse-power required is 50% lens; it is not advisable, therefore, to use a tube larger than is absolutely necessery to carry the volume of trafic required.

The somewhat complicated pattern of "double sluice valve" originally used at the central stations bas been superseded hy a simpler form, known as the "D" box-s0 named from the shape of its cross section. This box is of a cast iron, and is provided with a close-fitting, manotery bras-framed, allding lid with a glass panel. This Amperter, IId fits air-tight, and closes the box after a carrier hat been inserted into the mouth of the tube; the latter enters at one end of the box and is there bell-mouthed. A supply pipe, to which is connected a. "3-way" cock, is joined on to the box and allows communication at will with cither the "pressure" or " vacuum " mains, so that the apparatus becomes availa hie for either sending (by pressure) or receiving (by vacaum) a carrier. Automatic working, hy which the air supply is automatleally turned on on the introduction of the carrier into a tube and on closing of the D box, and is cut off when the carrier arrives, was introduced in rgoc.

On the long tubes (over about 1000 yds .) a modification of the " D " box in its simplest form is necessary; this modification consista in the addition of a " sluice " valve placed at a distance of ebout 9 in. (i.c. rather more than the length of a carrier) from the mouth of the tube. The sluice valve, by means of an intedocking arrangement, is so connected with the sliding lid of the box that the lid cannot be moved to the open position unless the sluice valve has closed the tube, nor can the sluice valve be opened unless the sliding lid is closed. The object of this sluice valve is to prevent the back rush of air which would take place into the tube when the sliding tid is opened to take out a carrier immediately on the arrival of the latter; for alchough the vacuum may be turned off hy the 3 -way cock, yet, owing to the great length of the tube, equilibrium does not immediately take place in the latter, and the back rush of air into the vacuum when the lid is opened to extract the carrier will cause the later to be driven back into the tube. The sluice also prevents a similar, hut reverse, action from taking place when pressure working is being carried on.
As a rule, only one carrier is despatched at a time, and no second carrier is inserted in the tube unil the arrival of the first one at the farther end is automatically signalled (by an electric apparatus) to the despatching office. On some of the long tubes a carrier, when it passes the midway point in the tube, strikes a trigger and sends back an electrical signsl indicating its passage; on the receipt of this signal a second carrier may be despatched. This arrangement has been almost entircly superseded by a signalling apparatus which by a clock movement actuates an indicating hand and moves the latter to "tube clear" a certain definite time (30 to 40 seconds) after a carrier has been inserted in the tube. By this arrangement carriers can be despatched one after the other at comparatively short intervals of time, so that several carriers (separated by distinct intervals) may be travelling through the tube simultaneously. It is necessary that the carriers be separated hy a definite interval, otherwise they tend to overtake one another and become jammed
in the tube. Although the stoppege of a carrier in a tube is of exceedingly rare occurrence, it does occasionally take place, through picks being driven into the tube by workmen executing repairs to gas or water pipes, but the locality of such a atoppago is easily determined by a simple inspection along the route of the tube. In no case is any special mens of testing for the locality from the central office found necessary.

Circuil Systcm.-Another method of working, extensively used in Paris and other continental cities, is the checuit system, in which stations are grouped on circular or loop lines, round which carriers travel in one direction only. In one form of circuit system-that of Messrs Siemens-a continuous current of air is kept up in the tube, and rocking switches are provided by which carriers can be quickly introduced or removed at any one of the stations on the line without interfering with the movement of other carriers in other parts of the circusit. More usually, however, the circuit system is worked by despatching carriers, or trains of carriers, at relatively long intervals, the preseare or vacuum which gives motive power being applied only while such trains arc on the line. On long circuits means are provided at several stations for putting on pressure or vacuum, so that the action may be limited to that section of the line on which the carriers are travelling at any time. In America, in New York, Boston and Philadelphia, tubes (Batcheller system) up to 8 in . in diameter are in use. The tubes are of cast iron made in 12 -ft. lengths and are carefully bored; they resemble ordinsty water pipe. Short bends are made in scamless brass tube carcfully bent to a uniform radius of tweive times the diameter of the tube, the tube being slightly larger in diameter than the main tube. The sending apparatus, or transmitter, is similar to the Siemens switch before described, and consists of two sections of the tube supported in a swinging frame so arranged that either section can be brought into line with the main tube, in which a current of air is constantly flowing. One of these tube sections maintains the continuity of the main tube, while the other is swung to one side to receive a carrier. In despatching, a carrier is pleced in an iron trough and then pushed into the open tube section. The frame carrying the two tube sections is then swung until the section containing the carrier is brought into line with the main tube, when the carrier is swept along with the current of air. When the frame is swinging from one position to anotber the air is prevented from escaping by plates that cover the ends of the tube, and a by-pass is provided so that the current is not interrupted. An airmotor, consisting of a cylinder and piston, furnishes the power to swing the frame, the operation requiring an instant only. When the contralling lever is pulled and latched the frame swings, and as the carrier passes out of the apparatus it trips the lever, and the frame swings back automatically into position to receive another carrier. To prevent carriers from being despatched too frequently and overtaking each other a time lock is attached to the sending apparatus; this locks the controlling valve wben a carrier is despatched, and keeps it locked for a given period of time, varying from five to fifteen or twenty seconds, according to the adjustment of the lock. The carrier is received at the farther end of the tube into an air cushion formed by closing the end of the tube with a sluice-gate, and allowing the air to flow out into a branch pipe through slots in the tube located about 4 ft in the rear of the sluice-gate. When a carrier arrives it passes over the slots, enters the air cushion and is brought to rest without injury or shock. The carriess are thin steel cylinders closed at the front end by a conver disk of the same matecial carrying a buffer of felt and
leather; the rear end is clowed by a hinged id secured by a lock. The shell of the carrier is 24 in . long and 7 in . in diamcter far the 8 -in. tube; it is secured by two bearing-rings of woven cotton fabric clasped between metal rings; the rings are renewed after about 9000 m . of trevel. The tubes are worked at a pressure of 6 tb per sq. in., and for a distance of 4500 ft . require about 30 horse-power, the transit speed being 30 m . per hour.

In addition to its use for postal and telegraphic purposes the paeumatic despatch is employed for internal communication in officed, hotels, \&c., and also in shops for the transport of money and bills between the cashier's desk and the counters.
Reprenences.-The syatem as ued in the United Kingdom is fully described in a paper by Mesars Culley and Sabine (Min. Proc. Insf. Civ. Eng. vol. xijii.). The came volume contains a description of the pneumatic telegraphs of Paris and of experiments on them by M. Bontemps, and also a discussion of the theory of pneumatic trammission by Profestor W. C. Unwin. Reference should also be made to a paper, by C. Siemens (Uim Proc. Insh Civ. Esg. 2 vol. oxdii.), describing the Siemenc circuit syrtem; and to Les Telt: graphes, by M. A. L. Ternant (Paris, 1881); General Post Office Technical Instouctions vol x.0 Pneumatic Tubes": Kempe's Engincers' Year-Book (agos edition).
(H. R. K.)

PNEUMATIC GON. AIr as a propellant has in recent years been applied to guns of large callibre, in which its comparatively gentle action has proved advantageous when high explosives contained in their shells are employed as projectiles. In 1883 Mr Mefford of Ohio utilized an air pressure of 500 lb per sq. in. in a 2 -in. gun, and suceeeded in propelling a projectile 2100 yds. The arrangement was of the simplest form-a hose with an ordinary cock by which the air was admitted into the gun behind the projectile. The question was then taken up by Capt. E. L. Zalinski (1849-1909) of the United States Artillery, who in 1888 reduced the so-called "dymamite gun" to a practical shape and obtained excellent firing results.

The principal features of his system are: (1) An extremely ingenious balanced vatve admitting the air pressure into the gun. Thls valve is opened and closed by a simple movernent of the firing lever; and in capable of adjusement so that the propeling force:

Dymanite sun, mounted at Sandy Hook, New York Harbour.
and consequently the gange, can be regulated. (2) A light eteel projective carrying the bupsting charge, and provided with a tail to which vanes are attached la order to give rotation. (3) Electric fuses of entirely original design. Each ahell carries a wet battery the current from which fres the charge on impact with any wolid object, and a dry battery which becomes active arter the shell has dived below the surface of the water, and innites the charge after delay capable of regulation. For mafety all the electric circuits are made to pase throuch a disconnector, which prevents them from being completed until the shell has been fired. The gun is a built-up smooth-bore tuhe, 15 ia . or less in diameter. The full-calibre shell welghs 2000 B, and carries a burring charge of 600 pl of blasting gelatine, cut into the form of cheesea, firting the oteel eavelope, and provided with a core of dry gun-cotton as a primer. Sub-calibre projectiles, 10 in . and 8 in ., can also be used. In their case, rotation is given by vanes or fins attached to the body of the sheli. Air at 1000 \$t pressure is nored in tubea cloce to the gun, and is supplied from primary severvois, to which is io dinectly
gumped at a promure of ebout 2060 m. There is sways, theren Gore, a considcratle remerve of power available without pumping Pneumatic guns of this description (see figure) have been mounted for the protection of New York and San Francisco. With a fullcolibre shell (1000 lb) tecye guns have a range of 2400 yds ; with a sub-calibre 8 -in. shell (250 Db) the maximum range is 6000 jd The official trials showed nemarikable accuracy. At 5600 yde 75% of the projectiles foll in an area of $360 \times 90 \mathrm{ft}$. When the gun was tried at Shorburyness the accuracy was far greater than could be obtained with howitzer shelle propelled by explosives. On account of the power of exploding the shell under water, and thus securing a torpedo action, a direct hit upon a abip is not required, and the target uffered is langely in excess of the deck plan. The gun is, in fact, capable of replacing systems of submarine mines with economy, and without the great objection of interiering with a waterway.

The only employment of the dynamite gun afloat has been in the case of the U.S. gunboat "Vesuvius," carrying three in the bows. These gums are fixed at a constant angle of elevation, and the range is regulated hy the air valve, training being given by the helm. Thus mounted on an unstable platform, the accuracy of fire obtainable must evidently be much less than on shore. The "Vesuvius" was employed during the SpanishAmerican War of $\mathbf{1 8 9 8}$, when on several nights in surceasion she approached the defences of Santiago under cover of darknesa and discharged three projectiles. Fire delivered under such conditions could not be sufficiently accurate to injure const defences; but the shells burst well, and made large craters. A small dypamite gun on a ficld-carriage was umed in the land operations above Santingo in the same war.

PNEUMATICS (Gr. meilpa, wind, air), the branch of physical science concerned with the propertics of gases and. vapours (see Gas). A pneumatic trough is simply a basin conthining water or some other liquid used for collecting gases.

PNEUMATOLYSLS (Gr. тyeifa, vapour, and 入izec, to set free), In petrology, the discharge of vapours from igneous magmas and the effects produced by them on rock masses In all volcanic eruptions the gases given off by the molten lavas aro powerful agencies. The slagsy clots of lavir thrown out from the crater are so full of gas that when they cool they resemble spongy pieces of hread. The lava streams as they flow down the slopes of the volcano are covered with white steam clouds, while over the orifice of the crater hangs a canopy of vapour which is often darkened by fine particles of ash. Most authors ascribe volcanic explosions to the liberation of steam from the magma which beld it in solution, and the enormous expansive powers which free water vapour possesses at very high temperatures.

Of these gases the principal are water and carbonic acid, but by analysis of the discharges from the amaller fumaroles. for the aclive crater is generally too bot to be approached during an eruption, it bas been ascertained that hydrogen, nitrogen, hydrochloric acid, boron, fluorine, sulphuretted bydrogen and sulphurous acid are all emitted by volcanoes. A cecent Lava fiow has been likened to a great fumarole pouring out volatile substances at every crack in its slaggy crust. Many mincrals are deposited in these fissurcs, and among the substances produced in this way are ammonium chloride, ferric chloride and orido, copper oxide (tenorite and cuprite) and sulphur; by reacting on the minerals of the rock many zeolites and other secondary products are formed. Tbese processes have been described as "juvenile" or "post eruptive," and it is believed that the amygdales which occupy the cavities of many porous lavas are not due really to weathering by surface waters percolating in from above, but to the action of the steam and ot her gases set free as the lava crystajlizes. The zeolites are the principal group of minerals which originate in this way together with chlorite, chalcedony and caldite. The larger cavities (or geodes) are often lined with, beautiful crystal groups of natrolite, scolecite, thomsonite, stilbite, and other minerals of this order.

The active gases were cvidently in solution in the magma as it rose to the surface. Some geologists believe it is of subterranean origin like the lava itself, and is an essentiai or ociginal component of the magma. They point to the exist-
ence of gaces in considerable quantity m meteorites, and, cow paring the earth to a great aerolite, insist that it should coi tain gases in solution like the smaller masses of the same ked Ohhers hold it more probable that the water has percolald in from the surface, or seeligg that many volcanoes stand sta the sea margin and by their linear disposition may be posed along fissures or lines of weakening in the crust, ita argue that the water of the sea may have filtered down ever in spite of the great octward pressure exerted by the sten gencrated by contact with the intensely heated rock. Tw abundance of chlorides and hydrochloric acid is appealed also in favour of a marine origin for the water. Against the we may place the fact that at great depths whenee active mat mas ascend the rocks are under 80 great pressures that erey fissure is closed up; In fact in some of the deepest mines the quamity of water found in the workings is often exceedintiy scmatl. Probably there is some truth in both theories, but tre balance of probability seems to incline in favour of the net that the water is an original and essential part of the magea and not an introduction from above.

Long after a lava has cooled down and become rigid te vapotrs continue to oove out through its fissures, and arontd masy voleinoes which are believed to be extiact there at orifices discharging gas in great quantities. This state of activity is said to be " solfataric," and a good example of it is the volcano called the Solfatara near Naples. The numercs "Soufrieres" of the West Indies are further instances. The prevalent gas is steam with sulphuretted bydrogen and carbonic acid. At the Grotto del Cane in the Phlegraean Field (Italy) the carbonic acid rising from fisures in the bottom of : cave covers the floor as a heavy layer, and a dog placed in the interior of the cave becomes stupefied by the narcotic gas; sait gas-springs have been called "molettes." Around ther there is often a deposit of sulphur, produced by oxidation of the sulphuretted hydrogen, and the rocks are bleached, saftened and decomposed. White crusts of slum, various sulphates and sulphides such as pyrites, also carbonates of soda and olber bases, are formed by the action of the acid vapours on the volcanic rocks. The final manifestation of volcanic activity in such a region may be the discharge of hented waters, which have ascended from the deep-seated magma far below tbe surface, and make their appearance as groups of hot springs; tbese springs persist long aftet the volcanoes which give cix to them have become quite extinct.
It is now believed by a large number of geologists and mining engineers that these ascending hot watern are of paramount im:portance in thergenesis of some of the most important types of ore deposite, Analywe have proved that the igntous rocks oftes contain distinct- shough.very small quantitics of the heavy merais; it is also established beyond doubt that vei is of gold, silver, beac, tin and mercury most cornmonily occur in t te vicinity of intrusue igneous masses. At Steamboat in Nevada, hot springs. protathy of magmatic origin, are forming deposits of cinnabar. At Crippte Creek, Colorado, and in many other places gold-bearing veins occur in and around intrusuve pluge of igneous rock. Tin ores in all parts of the world are found in association with tourmalios granites. In all cases the veins bear cvidence of having been filwfrom below by hor waters set free during the cooling of the igneous intrusions. Volcanic rocks are consequently the parent sources of many valuable mineral deposits, and the agency by which wey were brought into their present situations is the volatile products discharged as the magma crystallized. The process was no doubt a long one and it is most probable that both steam and water took part in it. Above $365^{\circ} \mathrm{C}$. water is a gas under ali pressurres and the action is strictly pnexmatolytic; below that temperature steam is changed to water by pressure and the action may be described as fydatogenetic. The distinction is unessential, and in our ignorance of the temperatures and pressures prevailing at cossiderable depthe we lack the means of classification. In what condition the metallic ores are disolved and by what reactions tbey are precipitated depends on many factors only partly understood. The tin ores are so ofien associated with minerals containing boron and fluorine that it is quite probable that they were combined with these elements in wome way, but they were deposited in nearly all cases as oxides. Other gaseous substances, such as sulphurrtied hydrogen. carbonic acid and. hydrochloric acid, probably have an important part in dissolving certain metals; and the alkaline carbonates, sulphides and chlorides have been shown by experiment to act,abo as solvents. Lo there ore deposits not culy she beary
eterits
thas： S of the E atet Ha ？ ［1．930： $\therefore=$ in 解 $=$ filtore： Fted：$:$ Lestit ad 5 a：en かった： ※ご囚：的里： ばに
 uuch as calcite，barytes，fluorspar，quartz and tourmaline which cerve as a matrix or gangue，and have been deposited by the same agencies，and often at the same time as the valuable mincrals．
in their pansage upwards and outwards through the rocks of the earth＇s eract，thepe sases and liquids not only deposit minerals in the fissures along which they ascend，but attack the surrounding nocks and alter them in many ways．The granite or other plutonic miss from which the vapours are derlved is especially linble to these ransformations，probably because it is at a higli temperature， not having yet completely cooled down Around the untbening veins in granite there is extensive replacement of felspar and biotite by quartz，tourmaline and white micas（the last－mamed of on sich in lithia）．In this way certain types of altered granite are produced． each as greisen（q．e．）and shori rock（see Schiori）．In the slates adja－ cent to the tin veins tourmalinization also goes on，convertung them into sohorlechiste．The alteration of ielspar into knolin or chund clay is also a pneumatolytic process．and is often found along with tin veins or other types of mineral deposit；probably both fuorine and carbonic acid operated in this instanee along with water． Tqually common and important is the ailicification of roclss near mineral volns which earry gold，copper，lcad and ocher metals， Granites and felsites may be converted into hard cherty masses of ailica．Limestones undergo this transformation very readily： at the same time they are resarded as rocks very favourable zo the deponition of ores．Probably the great frequency with which shey undergo silicification and other typen of metamomatic replace－ ment is one of the main causce of the abundance of valuable deposits in them．The process known as＂propylitisation，＂which has entensively affected the andesites of the Hungarian goldfields， thelieved to be also a conerquenca of the action of preumatolytic ancel．The andesites change to dull，soft．greenish mateses，and their original minerals are to a large extent replaced by quarta， epidote，chlorite，sericite and Jcaolin．Around granites Intrusive into serpentine and other rockes containing much magnesim．there is often extonaive＂stestiation，＂or the deponit of talc and stentite In place of the original minerals of the rock．Some of the apatite veine of Canteda and Norway accompany basic rocks of the gabbro sroup；it has been argued that the apatite（which contains phos－ phorus and chlorine）was laid down by vapours or colutions contain－ thg thoer wases，which may play amilar part in the bante rocks to that taleen by fuorine and boron ia the paeumatolytic veine around granitea．In the country rock around the veins scapolite （ g, v.$) ，a lime alumina silicate，containing chlorine，often is substituted$ for time－felspar．

These extensive changes attending the formation of mineral veins are by no means common phenomena，but in many plutonic masses prieumatolytic action has contributed to the formation of pegmatites（9．0．）．
（J．S．F．）
PNEUYONIA（Gr．webpuor，lung），a term used for inflam－ mation of the lung substance．Formerly the disease was divided into three varieties：（1）Acute Croupous or lobar pnoumonia；（2）Catarrhal or Broncho－pneumonia；（3）Inter－ stitial or Chronic pneumonla．

1．Acude Croupons of Lobar Pnemmonia（Pnemmonic Fever） is now classed is an acute infective disease of the lung，chas－ acterired by fever and torevenia，running a definite course and being the direct reault of a specific micro－organism or micro－ organisms．The micrococcus lanceolatus（pneumococcus，of diplococcus pneumoniae）of Fränkel and Weichselbaum is present in a large number of cascs in the bronchial secretions， in the affected lung and in the blood．This organism is also present in many other infective processes which may com－ plicate or terminate lobar preumonia，such as pericarditis， endocarditis，peritonitis and empyema．The bacillus pneu－ moniae of Friedlander is also present in a proportion of cases， but is probably not the cause of true lobar pneumonia．Various other organisms may be associated with these，but they are to be regarded as in the nature of a secondary invasion．Lobar preumonia may be considered as an acute endemic disease of temperate climatea，though epidemic forms have been de－ acribed．It has a distinct seasonal incidence，being most frequent in the winter and spring．Osler strongly supports the view that it is an infections disease，quoting the outbreaks reported by W．L．Rodman of Frankfort，Kentucky，where in a prison of 735 inhabitants there were 188 cases in one year； but direct contagion does not seem to be well proved，and it is undoubted that the pneumococcus is present in the fauces of numbers of healthy persons and seems to require a lowered power of resistance or other favouring condition for the pro－ duction of an attack．

Lobar Pueumonia begins by the setting up of an acute in． fammatory process in the alveoli．The changes which take place in the lung are chicfly three．（ t ）Congestion，or engorge－ ment，the blood－vessels being distended and the lung more voluminous and heavier than normal，and of dark red colour． Its air cells still contain air．（2）Red Hepalization，so called from its resemblance to liver tissue．In this stage there is poured into the air cells of the affected part an exudation con－ sisting of amorphous fibrin together with epithelial cells and red and white blood corpuscles，the whole forming a viscid mass which occupies not only the cells but also the finer bronchi，and which speedily coagulates，causing the iung to become firmly consolidated．In this condition the cells are entirely emptied of air，their blood－vessels are pressed upon by the exudation， and the luag substance，rendered brittle，sinks in water．The appenrance of a section of the lung in this stage has been likened to that of red granite．It is to the character of the exudation， consisting largely of coagulable fibrin，that the term croupous is due．（3）Grey EHepalizalion．In this stage the lung atill re－ tains its liver－like consistence，but its colour is now grey，nok unlike the appearance of grey granite．This is due to the cbange taking place in the exudation，which undergoes resolution by a process of falty degeneration，pus formation，liquefaction and ultimately absorption－ 30 that in a comparatively short periad the air vesicies get rid of their morbid contents and resume their normal function．During resolution the changes in the exudate take place by a process of autolysis or peptonization of the infammatory products by unorganized ferments，absorp－ tion taking place into the lymphatics and circulation．The absorbed exudate is mainly excreted by the kidneys，excess of nitrogen being found in the urine during this period．This is happily the termination of the majority of cases of lobar pnew－ monia．One of the most remarkable phenomena is the rapidity with which the lung tissue cleara up，and its freedom from alteration or from infiltration ioto the connective tissue as fre－ quentiy takes place after broncho－pneumonia．When remolution does not take place，death may occur from extension of the disease and subsequent tosaemin，from circulatory failure， from the formation of one or more abscesses or more rarely from gangrene of the lung or from the complication mentioned below． Chronic interstitial pneumonis is infrequent，following on the acute varicty．The most frequent seat of pneumonia is the base or lower lobes，but occasionally the apices are the only parts afiected．The right lung is the most often attacked．Pneu－ monia may extend to the entire lung or it may affect both lunga．The denth rate of acute iobar pneumonia in the chief London hospitals is 20% ．With an organism 20 prevalent as the pneumococcus it follows that alcoholism，diabetes and other general diseases and intoxications must render the body linble to an attack．Males are more commonly attacked than females，and a previous attack seems to give a special liability to another．The incubation period of preumonia is unknown； it is probably very short．

The symptoms are generally well marked from the beginning－ The attack is usually ushered in by a rigor（or in children a con－ vulsion），and the speedy deveiopment of the febrile condition，the temperalure rising to a considerable degree－ 101° to 804° or more－ The pulse is quickened，and there is a marked disturbance in the respirstion，which is rapid，shallow and difficult，the rate being usually accelerated to some two or three times its normal amount． The lipe are livid，and the face has a dunky flush．Pain in the side is felt．especially should any amount of pleurisy be present，as is often the case．Cough is an early symptom．It is at first frequent and hacking，and is accompenied with a little rough colourless expectoration．which soon，however，becomes more copious and of a rusty red colour，either tenacious or frothy and liquid．Micro－ scopically this consists mainly of epitheliunt，casts of the air cells and fine bronchi，together with pranular matter，blood and pus corpuscles and haematoidin crystalo．The micro－organisme utually present are the pneumocoocus，Friedlander＇s bacillus，and sometimes the influcnza bacillus．The following are the chief physical signs in the various stages of the disease．in the stage of congestion fine crackling or crepitation is heard over the affected area；some－ times there ba very little change from the natural breathing．la the stage of red hepatization the affected side of the chent is seen to expand bese freely than the opposite side；there is dulloem oas
percumion, and increase of the vocal fremitus; whise on auscultation the breath sounds are tubular or bronchial in character, with, it may be, some amount of fine crepitation in certain parts. In the stage of grey hepatization the percussion note is still dull and the breathing tubular, but crepitations of conrser quality than before are also audible. These various physical signs disappear more or less rapidly during convalescence. With the progress of the inflammation the febrile symptoms and rapid breathing continue. The patient during the greater part of the discase lica on the back or on the affected side. The pulse, which at first was lull, becomes small and soft owing to the interruption to the pulmonary circulation. Oceasionally slight jaundice is present, due probably to a similar cause. The urine is scanty, sometimes albuminous, and its chlorides are diminished. In favourable cases, however severe, there generally occurs nfter six or eight days a distinct crisis, marked by a mpid fall of the temperature accompanied with perspiration and with a copious dischargo of lithates in the urine. Although ro material change is as yot noticed in the physical migns, the patient breathes more easily, alcep returns, and convalescence advancos mapidly in the majority of instances. In unfavourable cases death may take place cither from the extent of the infiammatory action, especially if the pneumonia is double, from excessive fever, from failure of the heart's action or general strength at about the period of the crisis, or again from the disease tesuming from the frat a low adynamic form with delirium and rith meanty expectoration of greenish or "prune juice" sppearance. Such cases are seen in persons worn out in etrength, in the aged, and especially in the intemperate.

The complications of acute pneumonia are pleurisy, whieh is practically incvitably present, empyema (in which the pneumococcus is (requently present and occasionally the streptococcus), pericarditis and endocarditis, both due to septic poisoning, while perhape the most serious complication is meningitis, which is responsible for a lange percentage of the fatal cases. The pneumococcus has been tound in the exudate. Secondary preumonias chiefly follow she specific fevers, as diphtheria, enteric fever, meades and infuenza, and are the result of a direct poisoning. Bacteriologically a number of different organisms have been found, together with the apecific microbe of the primary disease: the striking features of primary lobar pneumonia are often magked in these types.

The treatment of acute preurnonia has of late undergone a marked change, and may be .divided into 3 heads: (1) General hygienic treatment; (2) the treatment of special symptoms; (3) treatment hy vaccines and sern. The same treatment of absolute rest should be carried out as in enteric fever; this shsolute rest is necessary to limit the auto-inoculation by the absorption of toxing. Fresh air in abundance and even openair treatment if porsible has been attended with good resulta. Ice poultices over the affected part are useful in the relief of pain, while tepid eponging and tepid or even cold baths may be freely given, and the patient's atrength supported by milk, ooups and other light forms of nourishment. Stimulants may be called for, and strychnine and digitalin are the most valuable; disiniection of the sputum should be systematically cartied out. Many trials have been made with antipneumococcic serum, but it has not been shown to have 2 very marked effect in cutting short the disease. The polyvalent serum of Rormer has given the best results. Much more favourble results have been obtained from the use of a vaccine. The results of vaccine treatment obtained by Boellike in 30 cases of severe pncumonia and one case of pneumococcic endocarditis are encouraging. The vaccine, to produce the best effects, should be made from the patient's own pneumococcus, as it is evident there are different strains of pneumococci, the doses (5 to 50 million dead pneumococci) being regulated by the guidance of the opsonic index. The objection to the preparation of the vaccine from the patient's own organisms is the time (several days) which is required, valuahle time being thereby fost; but the results are much more certain than with the use of a "stock" vaccine.
2. Broncho-Prexmonia (Catarrhal or Lobular-Pneumonia or Capillary Bronchitis). An acute form of lobular preumonia has been deacribed, having all the characters of acute lobar pneumonia except that the pneumonic patches are disseminated. Theterm "broncho-pneumonia" is however here used to denote a widespread caterrhal inflammation of the smaller bronchi which spreads in places to the alveoli and produces consolidation. All forms of broncho-pneumonia depend on the invasion of the lung by micro-organisms. No one organism
has however been constantly found which can be said to be specific, as in lobar pneumonia; the influenza bacillus, micrococcus catarrhalis, pneumococcus, Friedlinder's bacilus and various staphylococci having been found. John Eyre, in Allbutt's Systom of Medicine, gives 62% of mired infection in the cases investigated by him. Broncho-pnetumonia may occur as an acute primary affection in children, but is more usually secondary. It may be a sequence of infectious fevers, measles, diphtheria, whooping cough, scarlet fever and sometimes typhoid fever. In these it forms a frequent and often a fatal complication. The large majority of the fatal cases are those of early childhood. In adults it may follow influenza or' com. plicate chronic Bright's disease or various other disorders Broncho-pneumonia also may follow operations on the mouth or trachen, or the inhalation of foreign bodies into the trachea. It is a frequent complication of pulmonary tuberculosis.

The following changes take place in the lung: at first the affected patches are dense, non-crepitant, with a bluish red appearance tending to become grey or ycllow. Under the microscope the air vesicles and finer bronchi are crowded with cells, the result of the inflammatory process, but there is no fibrinous exudation sich as is present in croupous pheumonim. In favourable cases resolution takes place by fatty degeneration, liquefaction, and absorption of the cells, but on the bther hand they may undergo caseous degencrative changes, abscensea may form, or a condition of chronic Interstitial pneumonia be developed, in both of which cases the condition passes into one of pulmonary tuberculosis. Evidence of previous bronchitis is usually present in the lungs affected with catarrhal pneamonia. In the great majority of instances catarthal pneumonia occurs as an accompaniment or sequel of hronchitis, either from the inflammation passing from the finer bronchi to the pulmonary air vesicles, or from its affecting portions of lung which have undergone collapse.
The symptoms characterizing the onset of catarthal pneumonia In its more acute form are the occurrence during an attack of bronchitis or the convalescence from measles or whooping cough. of a sudden and marked elevation of temperiture, together with a quickened pulse and increased difficulty in breathing. The cough becomes short and painful, and there is little or no expectoration. The physical signs are not distinct, being mixed up with thowe of the antecedent bronchitis; bat, should the proursonia be extensive. there may be an impaired percussion note with tubular breathIng and some bronchophony. Dyspnoea may be present in a marked degree: and death frequently occurs from paralynis of the heart. Bromcho-pneumonia is a serious disease, the death-rate in childrea under five has been estimated at 30 to 50%.

The treatment of broncho-pneumonia is mainly symptomatic. At the outset a mild purgative is given, and should the eecretion accumulate in the bronchial tubes an emetic is useful. Inhalations are useful to relieve the cough, and circulatory stimulants such as strychnine are valuable, together with belladonna and oxygen. When orthopnoea and lividity are present, with distension of the right heart, venesection is necessary. The treatment of broncho-pneumonia by serum and vaccines is not so steccessful as in lobar preumonia, owing to the difficulty of ascertaining the precise becterial infection. The great danger of broncho-pneumonia is the subsequent development of pulmonary tuberculosis.
3. Chronic Interstilial Prewnonia (Cirrhosis of the Lung) is a fibroid change in the lung, chiefly affecting the fibrous stroma and may be either local or difuse. The changes produced in the lung by this disease are marked chiefly by the growth of nuclested fibroid tiseue around the walls of the bronchi and vessels, and in the intervesicular septa, which proceeds to such an extent as to invade and obliterate the air cells. The lung, which is at first enlarged, becomes shrunken, dense in texture and solid, any unaffected portions being emphysematous; the bronchi are dilated, the pleura thickened, and the lung substance often deeply pigmented, especially in the case of miners, who are apt to suffer from this discase. The other lung is always greatly enlarged and distended from emphysema; the heart becomes hypertrophied, particularly the right ventricle; and there may be marked atheromatous changes in the

Blood vessels. Later the fung becomes converted into a series of hronchiectatic cavities. This condition is usually present to a greater or less degree in almost all chronic discases of the luigg and hronchi, but it is apecially apt to arise in an extensive form from pre-existing catarshal pneumonia, and not unfrequently occurs in connexion with occupations which necessitate the habitual inhalation of particles of dust, such as those of colHers, flax-dressers, stonemasons, millers, \&c., to which the term pneumonokoniosis is now applied (including anthracosis, siderosis, chalicosis and the so-called "grinder's rot").
The symptoms are very similar to those of chronic phithisis (bee Tugerculosis), especially increasing difficulty of breathing, particularly on exertion, cough either dry or with expectoration, sometimes copious and fetid. In the case of coal-miners the sputum is black from containing carbonaceous matter. The physical signs are deficient expansion of the affected side-the disease being mostly confined to one lung-increasing dullness on percussion, tubular breathing and moist mounds is the disense progresces retraction of the side becomes manifest, and the heart and liver may be displaced. Ultimately the condition, both as regards physical signs and symptoms, takes the characters of the later stages of pulmonary phthisis with colliquative symptoms, increasing emaciation and death. Occasionally dropsy is present from the heart becoming affected in the course of the discase. The malady is usually of long duration. many cases remaining for years in a stationary condition and even undergoing temporary improvement in mild weather, but the tendency is on the whole downward.
See Allhutt and Rolleston, System of Medticine (1909); R. W. Allen, Vaccine Therapy and the Opsonic Mechod of Treatment (1908); Osler, Practice of Medicina (1909): The Pracisioncr (May 1908); Clinical Journal (Jan. 1908): Americas Journal of the Madical Sciences (lan. 1908); W. C. Bosanquet and J. Eyre, Serums, Vacctines and Toxines (1909).
PINOM-PENH, a town of French Indo-China, capital, since 1866, of the protectorate of Cambodia and seat of the residentsuperior. Pop. about 60,000 , consisting of Cambodians, Annamese, Chinese, Malays, Indians and about 600 Europeass. It is situated on the Mekong about 173 m . from its mouth at the point where it divides into two arms and is joined by the branch connecting it with the Great Lake (Tonle-Sap). Its position makes it the market for the products of Cambodia, Laos, Upper Burma and part of Siam (dried fish, rice, cotton, indigo, cardamoms, \&c.) The town is lighted by electricity. The palace of the king of Cambodia occupies a large space in the Cambodian quarter. The town gets its name from the Pndon, a central bill surmounted by an ancient pagoda.

P0 (anc. Padxs, Gr. Hádos), a niver of northern Italy, and the largest in the whole country, with a total length of about 3 ro m. direct from the source to the mouth, but, including its many windings, of some 417 m . The navigable portion from Casale Monferrato to the mouth is 337 m . ; the minimum width of this portion 6 g 6 ft ., and its minimum depth 7 ft . Owing to the provalence of shallows and sandbanks, navigation is difficult.

The Po is the dominating factor in north Italian geography, north Italy practically consisting or the Po basin, with the surrounding alopes of the Alps and Apennines. For a description of its course, and a list of its principal tributaries see Ixany. The area of its basin, which includes portions of Switzeriand and Austria, is estimat ed at $26,798 \mathrm{sq} . \mathrm{m}$.

In the first 21 m . of its course, down to Revello (wert of Saluzzo), the Po descends no less than 5250 ft ., or a fall of $47 \cdot 3: 1000$, forming a very remarkable contrast to its fall lower down. From the confluence of the Ticino its fall is about 0-3:1000; from the beginning of the delta below Ferrara, 0.08:1000. At Turin it has an average width of 400 to 415 ft ., a mean depth of 31 to 5) ft ., and a velocity of 1 to 3 (k. in the second. The mean depth from the confluence of the Ticino (altitude 217 ft .) downwards is 6 to 15 ft . The river is embanked from Pracenza. and continuously from Cremona, the total length of the embankments exceeding 600 m . Owing to its confinement between these high banks, and to the great amount of sedimentary matter which the river hrings down with it, its bed has been gradually raised, so that in its lower course it is in many places above the level of the surrounding country. A result of confining the stream between its containing banks is the rapid growth of the delta. Lombardini calculated that the annual increase in the area of the Po delta during the period 1300 to 1600 amounted to 127 , acres: but during the period 1600 to 1830 it rose to 324 acres. Marineli ' enthmated that between the years 1823
and $\mathbf{1 8 9}$ the ammal increage was the average rate of 173 to 175 acres, and the total accretion at about 20 sq . m. ; and the total area of inundated land north and south of the delta at nearly 60 mq . $\mathbf{1}$. He further ertimated that the Po deila Maestra advances 282 ft. annually, the Po delle Tolle 262 ft., the Po delta Gnoces $111 \frac{1}{2}$ ft., and the Po di Goroa59 ft. The low ground between the lower Po and the lower Adige and the gea is known as Polesine, a name the derivation of which is much discussed. It is generally applied only to the province of Rovigo, but is sometimes extended to the neighbourtood nf Adria and Ferrara. All along ite course from Chivaseo (below Turin) down to the delta the river is connected with several of its tributaries by canals, and at the same time other canals connect the tributariee and carry off their waters and the waters of the Po purely for purposes of irrigation.

The researches of Helbig (Die Itatiher io der Po-Ebeme, Leipzig, 1879) how that the jower valley of the Po was at an early period occupied by people of the Palaeolithic and Neolithic stages of civilization, who built bouses on piles along the swampy border of the streams. It is possible that even they may have begun by crude dikes the great system by which the waters are now controlled; at least it is certain that these works date their origin from pre-Roman antiquity. Pliny refers them to the Etruscans The reclaiming and protecting of the riparian lands went on rapidly under the Romans, and in several places the rectangular division: of the ground, etill remaricably distinct, show the milltary character of some of the agricultural colonies. During the time of the barbarian invasions much of the protective system was allowed to fall into decay; but the latter part of the middle ages baw the works resumed with great energy, so that the main fcatures of the present arrangement were in existence hy the close of the isth century.

The earlier Roman priters speals of the region between the northern boundaries of Etruria and Umbria and the Alps as Gallia Cisalpina. It was separate from Italy proper, the Aesis first and then the Rubicon being the boundary on the east, and the Arnus the boundary on the weat, to that, for example, Luca remained outside the boundaries of Italy proper, even in 8g z.C. Romanization had, however, progressed considerably, the foundation af colonies and the construction of roads had gone on during the and century, and the whole district as far as the Padus was given the Roman franchive in 89 E.c., while the Transpadanea received Latin rights, and were fully enfranchised forty years later. Cis alpine Gaul was appareatly formed into a province by Sulla in 81 B.C. and conatinued to be 80 until the fall of the Repubite.

The Ligurian name of the Po was Bodincus or Bodencus, i.e. the bottomicsa. The name Padus was taken from the Celts or tbe Veneti. Thus we find Bodincomagus as a town name (Industria) on the upper courve, and Inobse (Padua, Celwh. 95, 7) as a name of one of the mouths of the river. The nave 'Howsonf (Eridanus) of Greek poetry was identified with it at a comparatively late period.

POACH (probably from Fr. poche, bag, or Eing. "poke"" thrust into), to trespass on private property in pursuit of game or fish; also, generally, to catch game or fish by means or at times not permitted by the law, or in an unsportsmanlike manner (see Gauge Laws). The etymology is rather obscure, but as used in the independent sense of "poaching" an egg, i.c. cooking by breaking into bolling water, the word appears to be from the same original.

POBRDONOSTSEV, COMSTANMINE PEMROVICE (I8271907), Russian jurist, state official, and writer on philosophical and literary subjects. Born in Moscow in 1827, he studied at the School of Law in St Petershurg, and entered the public service as an official in one of the Moscow departments of the senate. From 1860 to 1865 he was professor of Russian civil law in the Moscow University, and instructed the sons of Alexander II. in the theory of law and administration. In 1868 he became a senator in St Petersburg, in 1872 a member of the council of the empire, and in 1880 chief procurator of the Holy Synod. He always showed himself an uncompromising Conservative, and never shrank from expressing boldly his opinions. Consequently, in the so-called Liberal camp he was always denounced an an "obscurantist" and an enemy of progress. In the early years of the reign of Alexander II. (1855 -1881), Pobedonostsev maintained, though keeping aloof from the Slavophils, that Occidental institutions were radically bad in themselves and totally inapplicable to Russia. Parliamentary methods of administration, modern judicial organization and procedure, trial by jury, freedom of the press, secular educationthese were among the principal objects of bis aversion. He
${ }^{1}$ See G. Marinelli. in Atti inst. wemeto sci., 8th series, vol viii. (1896-1897): and "L'Accrescimento del Detta del Po nel Seoolo XIX.," in Riv. Georg. Ital. (1898), vol.
suhjected all of them to a severe analysis in his Reflections of a Russian Statesman (English by R. C. Long, London, 1898). To these dangerous products of Occidental rationalism he found a counterpoise in popular vis inertiae, and in the respect of the masses for institutions developed slowly and automatically during the past centuries of national life. Among the practical deductions drawn from these premisses is the necessity of preserving the autocratic power, and of fostering among the people the traditional veneration for the ritual of the national Church. In the sphere of practical politics he exercised considerable influence by inspiring and encouraging the Russification policy of Alexander III. ($1881-1894$), which found expression in an administrative Nationalist propagands and led to a good deal of religious persecution. After the death of Alexander III. he lost much of his influence, for Nicholas II., while clinging to his father's Russification policy and even extending it to Finland, disliked the idea of systematic religious persecution, and was not wholly averse from the partal emancipation of the Russian Church from civil control. During the revolutionary tumult which followed the dispstrous war with Japan Pobedonostsev, being nearly 80 years of age, retired from public affairs. He died on the 23rd of March 1907.

POCHARD, Pockard, or Pokse, ${ }^{1}$ names properly belonging to the male of a species of duck (the female of which is known as the Dunbird), the Anas ferina of Linnaeus, and Nyroca ferina of later ornithologists-but names very often applied by writers in a general way to most of the group or sub-family Fudigulinae, commonly called Diving or Sca-Ducks (see Duck). The Pochard in full plumage is a very hendsome bird, with a coppery-red head, on the sides of which sparkle the ruby irides of his eyes, relieved by the greyish-blue of the basal half of his broad bill, and the deep black of his breast, while his back and flanks appear of a light grey, being really of a dull white closcly barred by fine undulating black lines. The tail-coverts both above and below are black, the quill feathers brownish-black, and the lower surface of a dull white. The Dunbird has the bead and neck reddish-brown, with ill-defined whitish patches on the cheeks and chin; the back and upper tail-coverts are dull brown, and the rest of the plumage, except the lower tail-coverts, which are brownish-grey, resembles that of the Pochard. This species is very abundant in many parts of Europe, northern Asia, and North America, generally frequenting in winter the larger open waters, and extending its migrations to Barbary and Egypt, hut in summer retiring northward and inland to breed. The American Pochard is slightly larger, has yellow eyes, and is now regarded as specifically distinct under the name of Nyroca americana; but America has a perfectly distanct though allied species in the celebrated canvas-back duck, N. pallisweria, a much larger bird, with a longer, higher and narrower bill, which has no blue at the base, and, though the plumage of both, especially in the females, is very similar, the male canvas-back has a darker head, and the black lines on the back and flanks are much broken up and farther asunder, so that the effect is to give these parts a much lighter colour, and from this has arisen the bird's common though fanciful name. Its scientific epithet is derived from the fresh-water plant, a species of Vallisneria, usually known as "wild celery," from feeding on which its flesh is believed to acquire the delicate flavour that is held in so great a repute. The Pochard and Dunbird in Europe are in much request for the table (as the German name of the species, Tafelente, testifics) when they frequent fresh-water; birds killed on the seacoasl are so rank as to be almost worthless.

Among other species nearly allied to the Pochard that frequent the northern hemisphere may be mentioned the Scaup-Duck, Fuligula marile, with its American representative F. afthis, in
:The derivation of these words, in the first of which the ch is pronounced hard (though Dr Johnson made it so[t), and the o in all of them gencrally long, is very uncertain. Cotgrave has pocheculier, (modern Freneh poche-cwiller), which he renders Shourler." nowadays the name of a kind of duck, but in his time meaning the bind we commonly call Spoonlifl (q.v.). Littré gives pochard as a popular French word signifying drunkard.
both of which the male han the hoad black, gipened with blue or green; but these are nearly always uneatable from the nature of
 or "scalps," -as the banks on which mustels and other marine molluscs grow are in many places termed. Then there tere the Tufted Duck, F: cristata-black with a crest and white fiamkeand its American equivalent F. collaris, and the White-eyed Pochard. F. nyroca, and the Red-crested Pochard, F. rufina-both peculiar to the Old World, and well known in India. In the southern hemiophere the genus is represented by three specics, F. coperasis, F. oustralis and F. momacesealandiae, whose reapective anomes indicate the country cach inhabits, and in South America exicte a somewhat divergent form which has been placed in a distinct genus as Meloprana peposaca.

Gencrally clasece with the Fuligulince is the small group Enown as the Eiders, which differ from them io several respecte: the bult at the bave of the trachea in the male, so largely developed in the members of the genus Fwisule, is here mueh smaller and whotly of bone; the males take a much longer time, two or even three years, to attain their full plumage, and some of the feathers on the hoad. when that plumage is completed, are always stiff, glistening and of a peculiar pale-green colour. This litcle group of hardly more than half a dozen species may be fairly considered to form a feparate genus under the name of Somateria. Many authors indeed baveunjustifiably, as it secms to the present writer-broken lt up into three or lour genera. The well-known Eider, S. mollustme, is the largest of this group, and, beautiful 25 it is, is excelled in beaty by the King-Duck, S. spectabilis, and the little S. stelleri A mast interesting lorm gencrally, but obviously in crror, placed among them, is the Logger-head, Racchorse or Stcamer-Duck. Murropteres (or more probably Tachyeres) cinerews of Chile, the Falkland Islands and Siraits of Magellan-nearly as large as a tame goose, and sabject to 1 he, so far as known, unique peculiarity of losing its power of flight after reaching maturity. Its habits have beea well described by C. Darwin in his Journal of Reseaz: ihes, and its anatonay is the subject of an excellent paper in the Zoological Societys Transactions (vii. 493-50I, pla lviit.-lxii.) by R.O. Cunningham.
(A.N.)

POCKBT, a small bag, particulatly a bag-like receptacle either fastened to or inserted in an article of clothing. As a measure of capacity "pocket" is now only used for hops; it equals 168 Ib . The word appears in Mid. Eng. as poket, and is taken from a Norman diminutlve of O. Fr. poke, pouque, mod. poche, cf. "pouch." The form "poke" is now only used dinlectieally, or in such proverhial sayings as a "pig in a poke," and possibly in the "proke-bonnet," the coal-scutcle bonnet fushionable during the first part of the 19th century, and now worn by the female members of the Salvation Army; more probably the name of the bonnet is connected with "poke," to thrust forward, dig. The origin of this is obseure. Duteh has poken, pook, a dagger; Swedish pd h, a stick.
POCKET-GOPHER (i.e. pouched rat), the name of a group of, chiefly North, American rat-like rodents, characterized by the possession of large cheek-pouches, the openings of which are external to the mouth; while their inner surface is lined with fur. The cheek-teeth, which comprise two pairs of premolars and three of molars in each jaw, are in the form of simple prisms of enamel, which do not develop roots. The fore and hind limbs are of approximately equal length, but the second and third front-claws are greatly enlarged, and all the claws are furnished at the base with bristles. The eyes are small, and the external ears rudimentary.

Pocket-gophers, which typify a family, the Geomyidae, apend the whole of their time underground, and are specinHy orgenized lor such a mode of existence, their powerful clawa being adapted for digging, while the bristles on the toes prevent the carth from passing belween them. The upper ineisor teeth are eraployed to loosen the ground, like a fork: and the little rodents are able to move both backwards and forwards io their runs. The checkpouches are employed solcly in carrying food, which consists largely of roots. In the typical genus Gcomys the upper incisors are grooved. but in the allied Thomomys they are smooth. The common pocketgopher, Geomys bursarius, of the Mississlppi Valley measures about 8 in . in length, with a tail of between 2 and 3 in.; its colour being rulous brown and greyish bencath. A well-known representative of the second genus is Thomomys Lalpoides, which is considerably smaller than the former. To the farmer and the gardener pocketgophers are an unmitigated source of annoyance (Sce Rodentia.)
POCKET-MOUSE, the name of a number of small jerboa-like. chicfly North. American rodents belonging to the family Gcomyidac, and constituting the genus Pcregnaltus and Heleromys. They are nearly allied to the American kangaroo-rats (ree

Eancamoo-Daty, beat difier in having rooted molar teeth. The typical pocket-mouse P. fasciofus, which is a native of Montans, Missouri, and Wyoming, is a sandy-coloured rodent marked with bleck lines above and with white bencath, and mensuring about 6 in . in length, this lenglh being equally divided between the head and body and the tail. (See Rodentia.)

FOCOCK, sIR GBORGE ($1706-1792$), British admiral, son of Thomas Pocock, chaplain in the navy, was born on the 6th of March 1706, and eatered the navy under the protection of his maternal ancle, Captain Sureynsham Master (1682-1724), in the "Superbe" in 1718. Ho became lieutenant in April 1725, commander in 1733, and post-captain in 1738. Aiter serving in the West Indies he was sent to the East Indies in 1754 as captain of the "Cumberland" (58) with Rear-Admiral Charles Watson ($1714-1757$). Watson's squadron co-operated vith Clive in the conquest of Bengal. In 1755 Pocock became rear-admiral, and was promoted vice-admiral in 1756. On the death of Watson he took the command of the naval forces in the eactern seas. In 1758 he was joined by Commodore Charles Steevens (d. 1761), but the reinforcement only raised the squadron to seven small lineof-battle ships. War being now in progrese between France and England the French sent a naval force from their islands in the Indian Ocean into the Bay of Bengal to the assistance of Pondicherry. To intercept the arrival of these reinforcements for the enemy now became the object of Pocock. The French force was indeed of less intrinsic strength than his own. Count D'Ache (1700 2-1775), Tho commanded, bad to make up his line by including several Indiamen, which were only armed merchant ships. Yet the number of the French was muperior and Pocock was required hy the practice of his time to fight by the old official fighting instructions. He had to bring his ships into action in a line with the enemy, and to preserve his formation while the engagement lasted. All Pocock's encounters with D'Ache were indecisive. The first-battle, on the 29th of April 1758, failed to prevent the Frenchmen from reaching Pondicherry. After a second and more severe engagement on the 3rd of August, the French admiral retumed to the Mauritius, and when the monsoon set in Pocock went round to Bombay. He was back early in spring, but the French admiral did not return to the Bay of Bengal till. September. Again Pocock was unable to prevent his opponent from reaching Pondicherry, and a wellcontested battle between them on the roth of September 1759 proved again indecisive. The French goverament was nearly bankrupt, and D'Aché could get no stores for his squadron. He was compelled to return to the islands, and the English were left in possession of the Coromandel and Malabar coasts. Pocock went home is 1760, and is 1761 was made Knight of the Bath and admiral. In $\$ 762$ he was appointed to the command of the naval forces in the combined expedition which took Havana. The siege, which began on the 7th of June, and lasted till the $13^{\text {th }}$ of August, was rendered deadly by the climate. The final victory was largely attributable to the vigorous and intelligent aid which Pocock gave to the troops. His share in the prize money was no less than $\{122,697$. On bis return to England Pocock is said to have been disappointed because anotber officer, Sir Charles Saunders (1713-1775), was chosen in preference to himself as a member of the admiralty board, and to have resigned in consequence. It is certain that he resigned his commission in 1766 . He died on the 3rd of April 1792. His monument is in Westminster Abbey.

POCOCKE, EDWARD (1604-1691), English Orientalist and biblical scholar, was born in 1604 , the son of a Berkshire clergyman, and received his education at the free school of Thame in Oxfordshire and at Corpus Christi College, Oxford (scholar in 1620, (ellow in 1628). The first-fruit of his studies was an edition from a Bodleian MS. of the four New Testament epistles (2 Peter, 2 and 3 John, Jude) which were not in the old Syriac canon, and were not contained in Europentit editions of the Peshito. This was published at Leiden at the instigation of G. Vossius in 1630 , and in the same year Pococke sailed for Aleppo as chaplain to the English lactory. At Aleppo he made himself a profound Arahic
scholar, and collectiod many valuable MSS. At this time Wm. Laud was bishop of London and chancellor of the university of Oxford, and Pococke became known to him as one who could belp his schemes for enriching the university. Laud founded an Arabic chair at Oxford, and invited Pococke home to fill it, and he entered on his duties on the roth of August 1636; but next summer he sailed again for Constantinople to prosecute further atudies and collect more books, and remained tbere for about three years. When be noturned to England Laud was in the Tower, but had taken the precaution to place the Arabic chair on a permanent footing. Pococke does not seem to have been an extreme churchman or to have meddled actively in politics. His rare scholarship and personal qualities raised him up influential Iriends among the opposite party, foremost among these being John Selden and John Owen. Through their offices he was even adranced in 1648 to the chair of Hehrew, though as he could not take the engagement of 2649 he lost the emoluments of the post scon after, and did not recover them till the Restoration. These cares seriously hampered Pococke in his studies, as he complains in the preface to his Eutychime; he seems to have felt most deeply the attempts to remove him from his parish of Childrey, a college living which he had accepted in 1643. In 1649 be published the Specimen historice arabsw, a short account of the orisin and manners of the Arabs, taten from Barhebraeus (Ahulfaragius), with notes from a vast number of MS. sources which are still valuable. This was followed in 1655 by the Porto Mosis, extracts from the Arabic commentary of Maimonides on the Mfishna, with translation and very learned notes; and in 1656 by the annals of Eutychius in Arabic and Latin. He also gave active assistance to Brian Walton's polyglot bible, and the preface to the various readings of the Arabic Pentateuch is from his hand. After the Restoration Pococke's political and pecuniary troubles were removed, but the reception of his Magnwom opus-a complete edition of the Arabic history of Barbebracus (Greg. Abulfaragii hisloria compendiosa dynastiarume), which he dedicated to the king in 1663 , showed that the new order of things was not very favourable to profound scholarship. After this his most important works were a Lexicon heplaglottow (1669) and English commentaries on Micah (1677), Malachl (1677), Hosea (i685) and Joel (169 x), which are still worthreading. An Arabic translation of Grotius's De verilale, which appeared in 1660, may also be mentioned as a proof of Pococke's interest in the propagation of Christianity in the East. This was an old plan, which he had talked over with Grotius at Paris on his way back from Constantinople. Pococke married in 5646 , and died in 1691. One of his sons, Edward (:548-1727), published several contributions to Arabic literature-a fragment of Abdallatir's description of Egypt and the Philosophus aulodidactus of Ibn Tufail.
The theological works of Pococke were collected, in two volumes, in 1740, with a curious account of his life and writings by L. Twells.
PODEBRAD, GEORGE OF ($1420-1471$), king of Bohemia, was the son of Victoria of Kunstat and Podëbrad, a Bohemian nobleman, who was one of the leaders of the "Orphans" or modern Taborites during the Hussite wara. Gcorge himself as a boy of fourteen took part in the great battle of Lipan, which marks the downfall of the more advanced Taborites. Early in life, as one of the leaders of the Calixtine party, he defeated the Austrian troops of the German King Albert II., son-in-law and successot of King Sigismund. He soon becaine a prominent member of the national or Calixtine party, and after the death of Ptacek of Pirkstein its leader. During the minority of Ladishas, son of Albert, who was born after his father's death, Bobemia was divided into two parties-the Romanist or Austrian one, led by Ulrich von Rosenberg (1403-1462), and the national one, led by PodZbrad. After various attempts at reconciliation, Podebrad decided to appeal to the force of arms. He gradually raised an armed force in north-eastern Bohemia, where the Calixtine cause had most adherents and where his ancestral castle was situated. With this army, consisting of about 9000 men, be marched in 1448 from Xutna Hora to Prague, and obtained possession of the capital almost without resistance. Civil war, however, broke
out, but Podabrad aucceeded in defeating the Romatist nobles. In 1451 the emperor Frederick III., as guardian of the young king Ladislas, entrusted PodEbrad with the administration of Bohemia. In the same year a diet assembled at Prague also conferred on Podzbrad the regency. The struggle of the Bohemians against Rome continued uninterruptedly, and the poaition of Podibrad became a very difficult one when the young king Ladislas, who was crowned in 1453 , expressed his sympathies for the Romen Church, though he had recognized the compacts and the ancient privileges of Bohemia. In 1457 King Ladislas died suddenly, and publle opinion from an early period accused Podébrad of having poisoned him. The Bohemian historian, Palacky, fifty years ago thoroughly disproved this accusation, and, though it has recently been revived by German historians, it must undoubtedly be considered as a calumny. On the 37 th of February 1458 the estates of Bohemia unanimously chose Podzbrad as king; even the adherents of the Austrian party voted for him, not wishing at that moment to oppose the popular feeling, which demanded the election of a national sovereign. A year after the accession of Podebrad Pius II. (Aeneas Sylvius) became pope, and his incessent hostility proved one of the most serious obstacles to PodEbrad's rule. Though he rejected the demand of the pope, who wished him to consent to the abolition of the compacts, he endeavoured to curry favour with the Roman see hy punishing severety all the more advanced opponents of papacy in Bohemia. Podébrad's persecution of the newly-founded community of the Bohemian brethren is certainly a blemish on his career. All Podebrad's endeavours to establish peace with Rome proved ineffectual, and though the death of Pius II. prevented hlm from carrying out his planned crusade against Bohemia, his successor was a scarcely less hitter enemy of the country. Though the rule of Podebrad had proved very successful and Bohemia had under it obtained a degree of prosperity which had been unknown since the time of Charles IV., the Calixtine king had many enemics a mong the Romanist members of the powerful Bohemian nobility. The malcontent nobles met at Zelena Hora (Graneherg) on the 28th of November 1465, and conduded an alliance against the king, bringing forward many-mostly untrue-accusations against him. The confederacy was from its beginning supported by the Roman see, though Podebrad after the death of his implacable enemy, Pius II., attempted to negotiate with the new pope, Paul II. These negotiations ended when the pontiff grossly insulted the envoys of the king of Bohemia. On the a3rd of December 1466 Paul II. excommunicated Podexbrad and pronounced his deposition as king of Bohemia, forbidding all Romanists to continue in his allegiance. The emperor Frederick III., and King Matthias of Hungary, Poděbrad's former ally, joined the insurgent Bohemian nobles. King Matthias conquered a large part of Moravia, and was crowned in the capital of that country, Brno(Brinn), as king of Bohemia on the 3rd of May 1469 . In the following year Podebrad was more successful in his resistance to his many enemies, but his death on the a2nd of March 1471 put a stop to the war. In spite of the misfortunes of the last years of his reign, Podebrad's memory has aiways been cherished by the Bohemians. He was the only king of Bohemia who belonged to that nation, and the only one who was not a Roman Catholic.
See H. Markgraf. Dher das Verhdliniss des Konigs Geory von Podebrad zu Papsi Pius II. (1867); Jordan, Das Komsghum Georgs won Podebrad (1861); A. Bachmann, Ein Jahr bohmischer Geschichte (1876), and Uykunden . . zur oesserreichischen Geschichts. :m Zeitaller Georgs pons Podebrad (1879): E. W. Kanter, Di'é Ermordung Komig Ladislous (zog); Novotry, Ober den Tod Kómig Lodislaws Postumus (1906). All historics of Bohemia, particularly that of F. Palacky ($1836-1867$), contain detailed accounts of the career of King George of Podebrad.

PODESTA (Lat. polestos, power); the name given during the later middle ages to a high official in many Italian cities. Podestils or rectors were first appointed by the emperor Frederick I. when about 1198 he began to assert his Imperial rights over the cities of northern Italy. Their business was to enforce these rights; from the first they were very unpopular, and their
arbitrary behaviour was a factor in bringing about the formation of the Lombard league and the rising against Fruderick in 1167.

Although the emperor's experiment whe short-hived podestas scon became general in northern Italy, making their appearance in most communes about 1200 . These officials, however, were now appointed hy the citizens or by their representatives. They exercised the supreme power in the city, both in peace and war, both in foreign and domestic matters, but they only held office for a period of a year. In order to avoid the intestine strife so common in Italian civic life, it soon became the custom to select a stranger to fill this position. Venetians were in special request for this purpose during the zath and z3th centuries, probably because at this time, at least, they were less concerned than other Italians In the affairs of the mainland. Afterwards in a few cases the term of office was extended to cover a period of years, or even a lifetime.

During the later part of the sath and the whole of the izth century most of the Italian citles were governed by podestis. Concerning Rome, Gregorovius saya that in 1205 "the pope changed the form of the civic government; the executive power lying henceforward in the hand of a single senator or podesta, Who, directly or indirectly, was appointed by the pope." In Florence soon after 1880 the chief authority was transferred from the consuls to the podesta, and Milan and other cities were also ruled by these officials. There were, moreover, podestas in some of the cities of Provence. Gradually the podestas became more despotic and more corrupt, and sometimes a special official was appointed to hear complaints against them; in the 13th century in Florence and some other cities a capitano ded popolo was chosen to look after the interests of the lower classes. In other ways also the power of the podestis was reduced; they were confined more and more to judicial functions until they disappeared early in the $16 t h$ century.

The officials who were sent by the Italian republics to administer the affairs of dependent cities were sometimes called podestas. At the present day the eities of Trent and Trieste give the name of podesta to their chief magistrate.

The example of Italy in the matter of podestis was sometimes followed by cities and republics in northern Europe in the middle ages, notahly by such as had trade relations with Italy. The officers thus elected sometimes bore the title of podesid or podestal. Thus in East Fricsland there were podestas identical in name and functions with those of the Italian republics; sometimes each 'province had one, sometimes the federal diet elected a podesta-general for the whole country, the term of office being for a limited period or for life (see J. L. Motley, Dadch Republic, 1. 44, ed. rgo3).

Lists of the ltalian podestas are given in Stokvis, Manvel dhistoire: vol. iiin. (Leiden, r889). See also W. F. Butler, The Lemberd Communes (Igo6).

PODGORITSA (Croatian, Podgorice), the largest town in Mon: tenegro; on the left bank of the river Moracha, and in a fertile valley which strikes inland for 18 m . from the shores of Lake Scutari to the mountains of central and eastern Montenegra. Pop. (1900), about 5500 . Spread out on a perfectly flat plain, Podgoritsa has two distinct parts: the picturesque Turkish quarter, with its mosques and ruined ramparts, and the Montenegrin quarter, built since 1877 , and containing a prison and an agricultural college. These quarters are separated by the river Ribnitsa, a tributary of the Moracha. A fine old Turkish bridge crosses the main stream. Podgoritsa receives from the eastern plains and the north-eastern highlands a great quantlty of tobacco, fruit, cereals, honey, silk, livestock and other commodities, which it distrihutes through Plavnitsa, its port on Lake Scutari, and through Riyeka to Cettigne and Cattaro, Alter being captured from Turkey in 1877, Podgoritsa was in 1878 recognized as Montenegrin territory hy the Treaty of Berlin.

PODIUM (Gr. Tofiov, diminutive of nois, foot), the name in architecture for a continuous pedestal, or low wall on which columns are carried, consisting of a cornice or capping, a dado or die, and a moulded plinth. In the Etruscan and Roman templea
the whole etructure was rined on a podiam, with-a ficht of ateps, on the principal front, enclosed between the prolongation of the pedium wall.

PODOLA, a government of south-western Russia, having Volhymia an the N., Kiov and Therson on the E. and S., Bessarabia on the S.W., and Galicin (Austria) on the W., from which it is eeparated by the Zbruca, or Rodvochn, a tributary of the Driester. It has an area of $16,21984 \mathrm{~m}$, extending for 200 m . from N.W. to S.E. on the laft.bank of the Dniestor. In the same difection the government is traversed by two ranges of. hilhe separated by the Bug, ramificationn of the Avretyask beights, These hills nowhere exceed an elevation of 1885 ft . Two large rivers, which numerous tributaries, drain the government-the Dniester, whick forms its boundary with Bessarabia and is navigable throughoat its leagth, and the Bug, which flows almost parallel to the former in a hifter, sometimes swampy, valley, and is interrupted at severid places by rapids. The Dniester is an important channel for tmde, corn, spirits and timber being exported from Mogilev, Kales, Zhvancts, Porog and other Podolian river-porta. The rapid amaller tribataries of the Dniester supply numerous flour-mills with motive power. The soil is almost throughont " black earth," and Podolia is one of the most fertile governments of Russia. Forests cover nearly 15% of the total area. Marshes occur only beside the Bug. The clinato is moderate, the average temperatux of the yoar at Kamewets being $4^{8} \cdot 3^{\circ}$ (24.5° in January, 69° in July).

The eatimated population in 1906 was $3,543,700$, It consests chiefly of Little Russians, Poles ($3 \frac{1}{2} \%$), and Jewn (12%). There are besides a few Armenians, some Germans, and jo,000 Moldavians There are many Nonconformists (18,000) among the Ruscians, Tulchin being the seat of their bishops and a centre of propagande. After Moscow, Podolia is the most densely inhahited government of Russia outside Poland. It is divided Into twelve districts, the chief towns of which are KamenetsPodolskiy, the capital, Balta, Bratslav, Gaisin, Lelichev, Litin, Mogilev-on-Dniester, Novaya-Ushitsh, Olgopol, Proskurov, Vinnitse and Yampol. The chief occupations of the people are agriculture and gardening. The principal crops ase wheat, rye, oats, barley, maize, hemp, flax, potatoes, beetroot and tobacco. Podolia is famous for its cherries and mulberries, its melons, gourds and cucumbers. Nearly 67,000 gallons of wire are obtained annually. Large numbers of horses, cattle and sheep are hred, the cattle being famous. Bee-keeping is an important industry. Sugar factories, distilleries, flour-mills, woollen mills, tanneries, potteries, tobatco factories, broweries, candle and soap factories, have an annual output valued at $\{4,000,000$. An active trade is carried on with Austria, especially through the Isakovets and Gusyntin custom-houses, corn, cattle, horses; skins, wool, linseed and hemp sced being exported, in exchange for wooden wares, linen, woollen stuffs, cotion, glass and agricultural implements. The trade with the interior is also carried on very briskly, especially at the twonty-six fairs, the chief of which are Balta and Yarmolintsy. Podolia is ttaversed by a railway which runs paraliel to the Dniester, from Lemberg to Odessa, and has two branch lines, to Kiev (from Zhmerinka) and to Poltava (from Balta).

Hislory. - The country has been inhabited since the beginning of the Neolithic period. Herodotes mentions it as the seat of the Gracco-Scythian Alazones and the Scythian Nount, who were followed by the Dacians and the Getae. The Romans left traces of their rule in the Wall of Trajan, which stretches through the modern districts of Kamenets, Ushitsa and Proskurov. During the great migrations many mationalities passed through this territory, or setzled within it for some time, leaving traces in numerous aschaeological remains. Nettor mentions that the Bujanes and Dulebes cccupied the Bug; while tha Tivertsi and Ugliches, apparently all four Slav tribes, were setaled on the Dniester. These peoples were conquered by the Avars in the 7th certitry. Cleg, prince of Kiev, extended his sule over this territory-ehe Ponisit, of " lowlands," which became later a part of the principalities of Volhynia, Kiev and Galicia. In the 13th centary the Ponlmie was plundered by the Monals; a: bundred
years aftermands Olejerd, primge of Lithunis, freod it from their rule, annexing it to his own eerritories under the name of Podolia, a word which has the same meaning as Ponizie. Aiter the death (1430) of the Lithuarian prince Vitovt, Podolia was annexed to Poland, with the exception of its eastern part, the province of Bratslav, which semained under Lithuania until its union (1goi) with Poland. The Poles retained Podolia until the third divisfon of their country in 1793, when it was taken by Russia.
(P.A.K.; J.T. BE.)

PODOLSK, a town of Russia, in the government of Moscow, 26 mm . S. of the city of Moscow, at the junction of the two main roade from Moscow to the Crimea and to Warsaw. Pop. (1881), 21,000; (1897), 3808. It is picturesquely built on the hilly banks of the Pakhre, hete crossed by a suspension bridge for carriages as well as by the railway bridge. Down to 1781 the wealthy village of Podol was a dependency of the Danilov monastery in Moscow. Before the opening of the southern railway the carayans of wagons and siedges to and from Moscow used to halt bere; the principal occupatiqn of the inhabitants was innkeeping and supplying the caravans with provisions and other necessaries of iravel.. The limestone quaries, at the confluence of the Desna and the Pakhra, supply the capital with good building material; and there are a cement, lime and brick factary and a paper-mill.

PODPPHYLLIT, a drug obtained from the rhizome of the American mandrake or may apple, Podophyllum pellatum, an herbaccous perennial belonging to the natural order Berberidaceac, indigenous in woods in Canada and the United States. The plant is about I ft. high, bearing two peltate, deeplydivided leaves, which are about $s \mathrm{in}$. in diameter, and bear in the axil a solitary, stalked, white flower, about the size and shape of the garden anemone, with sir or more petals and iwice as many hypogynous stamens. The fruit is ripe in IUly, and is an oval, yellowish, fleshy berry, containing twelve or more seeds, each surrounded by a pulpy outer conat or aril. The shizome, 25 met with in commerce, occurs in cylindrical pieces 2 or 3 in . long and about in . in diameter, of a chocolate or purplish-brown colour, amooth, and slighty enlarged where the juncture of the leafy stem is indicated by a circular scar on the apper and a few broken rootlets on the under side. The odour is heavy and disagreeabic, and the taste accid and bitter.

Podophyllin is a resinous 'powder obtained by precipitating an alcoholic tincture of the rhizome by means of water acidulated with hydrocthoric acid. It varics in colour from greyish to bright yellow of greenish-brown, the first-named being the purest. The powder is soluble in alcohol and strong solutions of alkalis, such as ammonia. Its composition is somewhat complex. There are certainly at least two resins in the powder (which is konown officially mat Podopinili resiva), one of them being soluble and the other insoluble in ether. Each of these contains an active substance which can be obtained in crystalline form, and is known as podophylfotoxin. It is soluble in alcohol, ether, chloroform and boiling water. Alkalis decompose it into picro-podophyllic acid and picro-podophyllin, minute traces of both of which occur in a free state an the pizome. The acid is inert, but picro-podophyllin is the active principle. It is a crystalline body, soluble only in concentrated alcohol: Hence the inutility of the phannacopeial tinctura fodophylli, which cannot be diluted before admlnistration. The propertics of podophyllin resin vary with the reaction of the tissue with which it is in contact; where this is acid the drug is inert, the picro-podophyllin being precipitated.
The resin does not affect the unbroken skin, but may be absorbed from a raw surface; and will then cause purging. When taken internally it is both a secretory and an excretory cholagogue, but eo irritant and poweriul that its use in cases of jaundice is generally undesirable. Its value, however, in certain cases of constipation of hepatic origin is undeniable. It is largely used in patent medicines, usually as in auxiliary to aloes. The best method of prescribing podophyllin is in pill form. In toxic doses podophyllin causen intense enteritis, with all its characteristic symptoma and severe depression, which may ead in death. The treatment is symptomatic, there being no specific antidote.

POR RDGAR ALLAN ($1809-1849$), American poet, writer of fiction and ctitic, was born at Boston, Mfassachusetts, on the 19th of January 8809 . The family was of English origin, but was setuled in Ireland, whence the poet's great-grandfather emigrated to Maryland. His grandfather, David Poe, served with credit as a
soldier in the War of Independence, was known to Washington, and was the friend of Lafayette. His son David Poe was bred as a lawyer, but deeply offended his family by marrying an actress of English birth, Mrs Elizabeth Hopkins, Mec Arnold, and by himsell going on the stage. In 1811 he and his wife died, leaving three children-William, Edgar, and a daughter Rosalie-wholiy des. titute. William died young, and Rosalic became mad. Edgar was adopted by John Allan, a tobacco merchant of Scottish extraction, seemingly at the request of his wife, who was childless. The boy was indulged in every way, and encouraged to believe that he would inherit Mr Allan's fortune. Mr Allan, having come to England in 1845, placed Edgar in a school at Stoke Newington, kept by a Dr Bransby. In 1820 Mr Allan returned to Richmond, Virginia, and Edgar was firt placed at school in the town and then sent to the university of Virginia at Charlottesville in 1836. Here the effects of a very unwise training on a temperament of inherited neurotic tendency were soon seen. He was fond of athletics, and was e strong and ardent swimmer; but he developed a passion for gambling and drink. His disorders made it necessary to remove him, and he was taken away by Mr Allan, who refused to pay his debts of honour. He enlisted on the 26th of May 1827 at Boston, and served for two years in the United States army. As a soldier his conduct must have been exemplary, for he was promoted sergeant-major on the ist of January s82g. It is to be noted that throughout his life, when under orders, Poe could be a diligent and capable subordinate. In May 1829 Mr Allan secured his discharge from the army, and in 8830 btained a nomination for him to the West Point military academy. As astudent he showed considerable faculty for mathematics, but his alcofness prevented him from belng popular with his comrades, and he neglected his duty. When courtmartialled he made no answer to the charges, and was expelled on the 6 th of March 183ı. Mr Allan's generosity was now exhausted. The death of his first wife in 1899 had doubtless removed an influence favourabie to Poe. A second marriage brought him children, and at his death in 1834 he left his adopted son nothing. A last meoting between the two, shortly before Mr Allan's death, led only to a scene of palnful volence.

In 1827 Poe had publlshed his first volume of poetry, Tamerlane and other Poems, at Boston. He did not publish under his name, but as "A Bostonian." In 183z be published a valume of Poems under his name at New York. His life immediately after he left West Point is very obscure, but in 1833 he was living at Baltimore with his paternal aunt, Mrs Clemm, who was throughout life his protector, and, In so far as extreme poverty permitted, his' support. In 1833 he won a prize of $\$ 100$ offered for the best story by the Baltimore Soturday Visitor. He would have won the prive for the best poem if the judges had not thought it wrong to give both rewards to one competitor. The story, MS. found in a Bollle, is one of the most mediocre of his tales, but his success gave him an introduction to cditors and publishers, who were attracted by his striking personal appearance and his fine manners, and were also touched by his manifest poverty. From 1833 till his death he was employed on different magazines at Richmond, New York and Philadelphia. His famous poem "The Raven" was published first in 1845 , and soon became extraordinarily popular; but Poe only got f_{2} for it.

The facts of his life have been the subject of very ill-judged controversy. The acrimonious tone of the biography by Rufus Griswold, prefixed to the first collected edition of his works in 1850, gave natural offence, and attempts have been made to show that the biographer was wrong as to the facts. But it is no real kindness to Poe's memory to deny the sad truth that he was subject to chronic alcoholism. He was not a boon companion, and never became callous to his vice. When it seized him he drank raw spirits, and was disordered by a very little. But when he was free from the maddening influence of alcohol be was gentle, well-bred, and a hard worker on the staff of a magamine, willing and able to write reviews, answer cortespondents, propound riddles or invent and solve cryptograms. His valize as a contributor and sub-editor secured him successive engegements
on the Sowthern Literary Masenger of Richmond, on the New York Qwarterly Revicw, and on Graham's Magasime at Philadelphia. It enabled him in 1843 to have a magazinc of his own, the Stylus. His manla sooner or later broke off all.his engagements and ruined his own veature. In 1835 be married bis cousin, Virginia Clemm, a beautuful girl of fourteen yean of age. A false atatement as to her age was made at the time of the marriage. She died after $\frac{3}{}$ long decline in 1847. Poe made two attempts to marry women of fortune-Mrs Whitman and Mra Shelion. The first of these engagements was broken off. The second was terminated by his death in hospital at Baltimore, Md., on the 7th of October 1849.

His life and death had many precedents, and will always recrur among Bohemian men of letters and artists. What was individual in Poe, and what alone renders him memorable, was his narrow but profound and original genhus (see Aycratan LaterenTURE). In the midst of much hack-work and hat a few failures in his own field he produced a small body of verse, and a handful of short stories of rare and peculiar excellence. The poems express a melancholy sensuous emotion in a penetrating melody all his own. The stories give form to horror and fear with en exquisite exactness of touch, or construct and unravel mysteries with extreme dexterity. He was a conscientious literary aribat who revised and perfected his work with care. His criticism, though often commonplace and sometimes ill-natured, as when he attacked Longfellow for plagiarism, was trenchant and sagacious at hil beas.

Bipllogra phy, The Life and Lellers of Edgar Allam Poc. by J. A Harrison (New York, 1goz) and The Life of Edgar Allan Poe (Bomen, new ed. 1909). by C. E. Woodberry, are the best biographies. The standard edition of his Works is that published in $8894-1895$ at Chicago. in ten volumes, by E. C. Stedman and G. E. Woodberry. There have been many partlal reprints. For Poe's indwence in France, which has boen great, bee C. Baudelaire. Histoires extraondinaira (Paris, 1886); S. Mallarme, Potmes d'Edear Por (Brusocls, 1888); and Les Nevosts, by Arvede Barine (Paris, 1899).
(D. H.)

POERIO, ALESSANDRO (1802-1848), Italian poet and pelriot, was descended from an old Calabrian family, his father, Baron Giuseppe Poerio, being a distinguished lawyer of Naples. In 1815 he and his brother Carlo accompanied their father, who had been identified with Murat's cause, into exile, and settled at Florence. In 1818 they were allowed to return to Naples, and an the proclamation of the cosstitution in $\mathbf{3 8 2 0}$ the Poerios were among the atoutest defenders of the newly-won freedom. Allessandro fought as a volunteer, under Gencral Gughelmo Pepe, against the Austrians in 18a1, but when the latter reoccupied Naples and the king abolished tho constitution, the family was again exiled and setuled at Gmiz. Alessandro devoted himself to study in various German universilies, and at Weimar he became the friend of Gocthe. In 1835 the Poerios returned to Naples, and Aleasandro, while practising law with his father, published a number of lyrics, In 1848 he accompanied Pepe as a volunteer to fight the Austrians in nortbern Italy, and on the recall of the Neapolitan contingent Alessandro followed Pepe to Venice and displayed great hravery, during the sicge. He was severely wounded in the fightiag round Mestre, and died on the 3rd of November r848. His poctry "reveals the idealism of a tender and delicate mind which was diligent in storing up sensations and images that for others would have been at most the transicnt impressions of 4 moment." But he could also sound the clarion note of patriotism, as in his stirring poem Il Risorgimento.

His brother Carlo ($\mathbf{1 8 0 3 - 1 8 6 7 \text {), after returning to Naples, }}$ practised as an advocate, and from 1837 to 1848 was frequently arrested and imprisoned; but when King Ferdinand, moved by the demonstration of the 27 th of January of the latter year, promulgated a constitution, he was made minister of education. Discovering, however, that the king was acting in bad faith, he resigned office in April and returned to Naples to tate his seat in parliament, where he led the constitutional opposition. The Austrian victory of Novara (March 1849) set the king free to dissolve parliament and, trample on the comstitution, and on the 19th of July 8849 Poerio whs arrested, iried, and condemaed to
sincteen years in itons. Chained in pairs, be and other political prisoners were confined in one small room in the bagno of Nisida, near the lazaretio. The eloquent exposure ($\mathbf{2 8 5 1}$) of the horrors of the Neapolitan dungeons hy Gladstone, who emphasized especially the case of Poerio, awakened the universal indignation of Europe, hut he did not obtain his liberty till $\mathbf{8 5} 5$. He and other exiles were than placed on board a ship bound for the United States, but the son of Settembrini, another of the exiles, who was on board in disguise, compelied the crew to land them at Cort, whence Poerio made his way to London. In the following year he returned to Italy, and in 1860 be was elected deputy to the parliament of Turia, of which he was chosen vice-president in 186t: He died at Florence on the 28th of April 1867.
Ser Baldachini, Della Vila e de' lempt di Carlo Poerio (1867); W. E. Gladstone, Two Letlers to the Earl of Aberdeen (1851); Carlo Poerio and the Neapolitan Police (London, 1859); Vannucci, 1 Maptiri della libertd thaliane, vol. iti. (Milan, 1880): Imbriani, Aless sendre Poerio a Veneria (Naples, 1884); Del Giudice, I Pratell's Parrio (Turin, 1899): Countess Martinengo Cesaresco, Ilalvas Characters (London, 1901).
POETRY. In modern criticism the word poetry (i.e. the art of the poet, Gr. molyris, maker, from mouety, to make) is used sometimes to denote any exprescion (artistic or other) of imaginative leeling, sometimes to designate a precise literary art, which ranks as one of the fine arts. As an expression of imaginative feeling, as the movement of an energy, as one of those great primal human forces which go to the development of the race, poetry in the wide sense has played as important a part as science. In some literatures (such as that of England) poetic energy and in others (such as that of Rome) poetic art is the dominant quality. It is the same with individual writers. In classical literature Pindar may perhaps be taken as a type of the poets of energy; Virgil of the poets of art. With all his wealth of poetic art Pindar's mastery over symmetrical methods never taught him to " sow with the hand," as Corinna deciared, while his poetic energy always impelled him to "sow with the whole sack." In English poetical literature Elizabeth Barrett Browning typifies, perhaps, the poets of energy; while Keats (notwithstanding all his unquestionable inspiration) is mostly taken as a type of the poets of art. In Freach literature Hugo, notwithstanding all his mastery over poetic methods, represents the poets of energy.

In some writers, and these the very greatest-in Homer, Aeschylus, Sophocles, Dante, Shakespeare, Milton, and perhaps Goethe-poetic energy and poetic art are seen in something like equipoise. It is of poetry as an art, however, that we have mainly to speak here; and all we have to say upon poetry as an energy is that the critic who, like Aristote, takes this wide view of poetry-the critic who, like him, recognizes the importance of poetry in its relations to man's other expressions of spiritual force, claims a place in point of true critical sagacity above that of a critic who, like Plato, fails to recognize that importance. And assuredly no philosophy of history can be other than inadequate should it ignore the fact that poetry has had as much effect upon human destiny as that other great human energy hy aid of which, from the discovery of the use of fire to that of the electric light, the useful arts have been developed.

With regard to poetry as an art, most of the great poems of the world are deall with elsewhere in this work, eit her in connexion with the names of the writers or with the various literatures to which they belong; consequently these remarks must be confined to general principles. Under Verse the detailed questions of prosody are considered; here we are concerned with the essential principles which underlie the meaning of poetry as such.

All that can be attempted is to inquire' (1) What is poetry? (2) What is the position it takes up in relation to the other arts? (3) What is its value and degree of expressional power in relation to these ? and, finally, (4) What varieties of poetic art are the outcome of the two great kinds of poetic impulse, dramatic imagination and lyric or egoistic imagination?
r: What is Poetry?-Definitions are for the most part alike unsatisfactory and treacherous; but definitions of poetry are proverhally so: Is it possible to lay down invariable principles
of poetry, such as those famors "invariable principles " of William Lisle Bowles, which in the earlier part of the century awoke the admiration of Southey and the wrath of Byron? Is it possible for a critic to say of any Defletione. metrical phrase, stanza or verse, "This is poetry," or "This is not poetry"? Can he, with anything like the authority with which the man of science pronounces upon the natural objects brought before him, pronounce upon the qualities of a poem? These are questions that have engaged the attention of critics ever since the time of Aristotle. Byron, in his rough and ready way, answered them in one of those letters to his pahlisher John Murray, which, rich as they are in nonsense, are almost as rich in sense. "So far are principles of poetry from being invariahle," says he, "that they never were nor ever will be settled. These principles mean nothing more than the predilections of a particular age, and every age has its own and a different from its predecessor. It is now Homer and now Virgit; once Dryden and since Sir Walter Scott; now Comefile and now Racine; now Crehilion and now Voltaire." This is putting the case very strongly-perhaps too strongly. But if we remember that Sophocles lost the first prize for the Oedipus tyrannus; if we remember what in Dante's time (owing partly, no doubt, to the universal ignorance of Greek) were the relative positions of Homer and Virgil, what in the tlme of Milton were the relative positions of Milton himself, of Shakespeare, and of Beaumont and Fletcher; again, if we remember Jefirey's famous classification of the poets of his day, we shall be driven to pause over Byron's words before dismissing them. Yet some definition, for the purpose of this essay, must be here attempted; and, using the phrase "absolute poetry" as the musical critics use the phrase "absolute music," we may, perhaps, without too great presumption submit the following:-

Absolute poetry is the concrete and artistic expression of the human mind in emolional and rhythmical language.
This at least will be granted, that no litetary expression can, properly speaking, be called poetry that is not in a certain deep sense emotional, whatever may be its subject-matter, concrete in its method and its diction, shythmical in movement, and artistic in form.
That the expression of all real poetry must be concrete in method and diction is ohvious, and yet this dictum would exclude from the definition much of what is called didactic poetry. With abstractions the poet has nothing to da, save to take them and turn them into concretions; for, as artist, he is simply the man who hy instinct embodies in concrete forms that "universal Idea" which Gravina speaks of-that which is essential and elemental in nature and in man; as poetic artist he is simply the man who hy instinct chooses for his concrete forms metrical language. And the questions to be asked concerning any work of art are simply these-Is that which is here embodied really permanent, universal and elemental? and, Is the concrete form embodying it really beautiful-acknowledged as beautiful by the soul of man in its highest moods? Any other question is an impertinence.
As an example of the absence of concrete form in verse take the following lines from George Eliot's Spanish Gypsy:-

> "Speech is hut broken light upon the depth of the unspoken: even your loved words Float in the larger meaning of your voice As something dimmer."

Whthout discussing the question of blank verse cadence and the weakness of a line where the main accent falls upon a positive hiatus, " of the unspoken," we would point out that this powerfil passage shows the spirit of poetry without its concrete form. The abstract method is substituted for the concrete. Such an abstract phrase as "the unspoken" belongs entirely to prose.

As to what is called ratiocinative poetry, it thight perhapa be shown that it does not exist at all. Not by syllogism, but per sallum, must the poet reach in every case his conclusions. We listen to the poet-we allow him to address us in rhythin or in thyme-we allow him to sing to us while other men are only
allowed to talk, not becuse he argues more lopically thas they, but because he feels more deeply and perhaps more traly. It is for his listeners to be knowing and ratiocinalive; it is for bim to be gnomic and divinely wise.
That poetry must be metrical or even rhythmical in movernent, however, is what some have demied. Here we touch at once the very root of the subject. The difierence between all literature and mere "word-kncading" is that, while literature is alive, word-kneading is without life. This literary life, while it is only bipartite in prose, seems to be tripartite in poetry; that is to say, while prose requires intellectual life and emotional life, poetry seems to require not only intellectual life and emotional life but rhythmic life, this last being the most important of all according to many critics, though Aristotie is not among these. Here indeed is the "fork" between the old critics and the new. Unless the rhythm of any metrical passage is 80 vigorous, so natural, and so free that it sceras as though it could live, if need were, by its rhythur alone, has that passage any right to exist? and should it not, if the substance is good, be forthwith demetricized and turned into prose? Thoretu has affirmed that prose, at its best, has high qualities of its own beyond the ken of poetry; to compensate for the sacrifice of these, should not the metrical gains of any passage be beyond all cavil?
This aryumant might be prewed farther still. It might meere bold to aseert that, in many cases, the mental value of poetry may actually depend upon form and colour, but would it not be true? The mental value of poetry must be judged by a standard not applicable to prose; but, even with regard to the different kinds of poetry, we must nor compare poetry whoee mental value consists in a distinct and logical enunciation of ideas, such as that of Lucretius and Wordsworth, and poetry whose mental value consists partly in the sugzestive richiness of passion or aymbol latent in thythm (such as that of Sappho sormetimes, Pindar often, Shelley always), or latent in colour, such as that of some of the anoweresp Persign poets, To discuse the question, Which of these of noctrant two kinds of poetry is the more precious? would be Opeschouth idie, but are we not driven to admit that certain owedouth poems whose wrength is rhythm, and ceriain other poems whone etrength is colour, while devoid of any logical metatement of thought, may be as fruitlul of thoughta and emotions too deep for worde as a shaken prism is fruitful of tinted lights ? The mental forces at work in the production of a poem tike the Excursios are of a very differcnt kind from the mental prees at work In the production of a poero tike Shelley"s "Ode to the West Wind." In the one case the poet's artistic methods, Hke those of the Creek architect, show, and are intended to show, the solid strength of the structure. In the other, the poet's artistic methods, like thoee of the Anbian archliect, contradict the idea of molid strengeh-make the atructure appear to haog over our head like the cioud pageantry of hesver But, in both cases, the solid arength is, and must be, there, at the base. Before the poer begins to write he should ask himself which of these arristic merhoda is matural to him; he should ask himeli whet her his natural impule is towards the weighty i=mbic movement whose primary function is to state, or towards those lighter movements which we still call, for want of more convenient words, anapaestic and dactylic, whose primary function is to suggest. Whenever Wordsworth and Kenta pass from the former to the latter they pass at once iaro doggerel. Nor is it difficult to see why English anapaentic and dactylic verse must suggest, and not state, as even so compara.; tively successful a tour de force as Shelley's "Sensitive Plant" shows. Concisencss is a primary virtue of all statement. The moment the English poet tries to " pack "hls ana paestic or dactylic line as he can pack his iambic line, his versification becomes rugged, harsh, pebbly-becomes so of necessity. Nor is this all: anapacstic and dactylic verse must in English be obtrusively alliterative, or the same pebbly effect begins to be fett. The a napaestic line Is so full of syllables that in a language where the consonants dominate the vowels (as in English), these gyllables grate against each other, unless their corners are artfully bevelled by one of the only two amoothing processes at the command of an English versifier \rightarrow obrrusive alliteration, or an obr rusive use of liquids. Now these demands of form may be turned by the perfect artist to good sccomnt if his appeal to the listener's soul is primarily that of suggestion by sound or symbol, but if his appeal is that of direct and logical statement the diff useness inseparable from good anapaestic and dactyfic verse is a source of weakness such as the true artist should find intolerable.

Using the word "form" in a wider sense still, a sense that includes "composition," it can be shown that poer ry, to be entitled to the name, must be artistic in form. Whether a poem be a Welsh triban or a stornello improvised by an Italian peasant gitl,
whether it be dn ode by Keats or a tragedy by Sophocias, it is equally a work of art. The artist's command over form may be shown in the peasant girl's power of spontaneonsly rendering in simple verse, in ber starmello or rispetto, ber emosions through nature's symbols; it may be shown by Keats in that perfoct Ifusion of all poetic elementa of which he was much a master, in the manipulation of language so beautiful both for form and colour that thought and wonds seem but one hleaded loveliness; or it may be ahown by Sophocles in a mastery over what in painting is called componition, in the exefcise of that wise vision of the artist which, looking before and after, aces the thing of beauty is a whole, and enables him to grap the eternal laws of cause and effect in ant and bend them to his own wizard will. In every case, indeed, form is an essential part of poetry; and, although Ceorge Sand's saying that "L'art est une forme "applies periaps more strictly to the plastic arts (where the soul is reached partly through mechanical means), its application to poetry can hardly be exaggerated.

Owing, however, to the fact that the word racirth (first esed to designate the poetic artist by Hemodotus) means maker, Aristotle seerns to have assumed that the indispensable besis of poetry is invention. He appears to have thought that a poet is a poet anore on mocount of the componition of the action than on account of the composition of his verses. Indeed he said as much as this. Of epic poetry he declared emphatically that it produces its imitations either by mere articulate words or by metre superadded. This is to widen the definition of poetry so at to ioclude all imaginative literature, and Plato seeme to have given an equally wide meaning to the word radoos. Only, while Arisiot le considered roinots to be an imilation of the facts of nature, Plato considered it to be at imitation of the dreana of man. Aristotle ignored, and Piato elighted, the importance of versification (though Plato on one oceasion admitted that he who did not know rhythm could be called neither monician nor poet).

Perhaps the first critic who tacitly revolted against the dictum that qubstance, and not form, is the indiapensable basis of poetry was Dionysius of Halicarnasus, whose treatise upon the artagement of words is really a very fine plece of literary criticism. In his acute remarks upon the arrangement of the worda in the sixteenth book of the Odyssey, as compared with ihat in tbe story of Gypes by Herodolus, was perhaps firs enuncinted clearly the doctripe that poetry is fundamentally a matier of ayle. The Aristotelian thsory as to invention, however, dominated all criticism after as well as before Dionysius. When Bacon came to discuss the subject (and afterwards) the only division between the poetical critics was perhaps between the lollowers of Aristolle and those of Plato as to what poetry should, and what it should not, imitate. It is curious to speculate as to what would have been the result had the poets followed the critics in this matter. Had not the instinct of the poet been too strong for the sebook, would peetry as an ant have been lost and merged in such imaginative prose as Plato's? Or is not the instinct for form $\mathbf{c o s}$ strong to be stified? By the poets themselves metre was always considered to be the one indispensable requisite of a poem, thourgh, as regards criticism, even in the time of the appearance of the Waverley Noocls, the Qwartaly Revicu would sometimes speak of them as "poems "; and perhaps even later the same might be said of romances so concrete in method and diction, and so full of poetic energy, as Wulhering Heighs and Jawe Eyre, where we get absolutely all that Aristotle requires for a poem. On the whale, bowever, the theory that versification is not en indispensable requisite of a poem seems to have become nearly obsolete. Perhaps, indeed, many critics would now go so far in the contrary direction as to say with Hegel (A esthetik, ii. 289) that " metre is the first and only condition absolutely demanded by poetry, yea even more necessary than a figurative picturesque diction." At all events this at least may be said, that the division between poetical critics is not now between Aristotclians and Baconians; it is of a different kind altogether. While ore group of critics may still perhaps say with Dryden that "a poet is a maker, as the name signifies," and that "be who capnot make,
that is, invent, has hif mame for nothing," another group contends that it is not the invention but the artistic trtatment, the form, which determines whether an imaginative writer is a poet or a writer of prose-contenda, in short, that emotion is the basis of all true poetic exprestion, whalever be the subjectmatter, that thoughts must be expressed in an emotional manner before they can be brought into poetry, and that this emotive expression demands even yet something else, vis. style and form.

Although many critics are now agreed that "I'art eat une forme," that without metre and without form there can be no The fapor. poetry, there are few who would contend that poetry the hapor- can exist- by virtue of any one of these alone, or thens even by virtue of all theso combined. Qufte indeAtetheith pendent of verbal melody, though mostly actormpenying it. and quite independent of "composition," there is an atmosphere floating around the poer through which he sees everything, in atmosphere which stamps his utterances as poetry; for instance, among all the versifiers contemporary with Donne there was none so rugged as he occasionally was, and yet such songs as "Sweetest love, I do not go for weariness of thee" prove how true a poet he was whenever he could master those technicalities which far inferior poets find comparatively easy. While thythm may to a very considerablo degree be acquired (though, of course, the highest rhythmical effects never can). the power of looking at the world through the atmosphere that floats before the poet's eyes is not to be leamed and not to be taught. This atmosphere is what we call poetic imaginadion. But first it seems necessary to say a word or two upon that 子igh temper of the soul which in truly great poetry gives birth to this poetic imagination.

The "mestage" of poetry must be more unequivocal, more thoroughly accentuated, than that of any of the ocher fine arts. With regard to modern poetry, indeed, it may almost be maid that if any writer's verse embodies a message, true, direct and pathetic, we cannot stay to inquire too curiously about the degree of artisic perfection with which it is dalivered, for Wordsworth's saying "That which comes from the heart goes to the heart" applies very closely indeed to modern poetry. The most truly parsionate poct in Greece was no doubt in a deep sense the most artistic poet; but in her case art and passion were one, and that is why she has been so cruelly misinderstood. The most truly passionate nature, and perhaps the greatest soul, that in recent years has expressed itself in English verse is Elizabeth Barrett Browning; at least it is certain that, with the single exception of Hood in the "Song of the Shirt," no writer of the igth century really touched English hearts with a hand so powerful as herrand this notwithstanding violations of poetic form, or defective rhymes, such as would appal some of the contemporary versifiers of England and France "who lisp in numbers for the numbers [and nothing else] come." The truth is that in order to produce poetry the soul must for the time being have reachod that state of exaltation, that state of freedom from self-consciousness, depicted in the lines:-

" I atarted once, or seemed to start, in pain,

 Resolved on noble thinge, and otrove to speak.As when a great thought itrikes mlong the brain, And fluties all the cheek."
Whatsoever may be the poet's "knowlodge of his art," into this mood he must always pass before he can write a truly poetic line. For, notwithatanding all that may be said upon poetry as a fine art, it is in the deepest eense of the word an "imspiration." No man can write a line of genuine poetry without baving been "born again" (or, as the true rendering of the text says, "born from above "); and then the mastery over those highest reaches of form which are beyond the ken of the mere versifier comes to him as a reult of the change. Hence, with all Mrs Browning's metrical blemishes, the splendour of her metrical triumphs at her best.
For what is the deep distinction between poet and proseman? A writer may be many things busides a poet; he may be a warrior live Aeachylus, a man of business lite Shakespeare, a coortior
like Chuucer, or a cosmopolitan philosopher file Goethe; but the moment the poetic mood is upon him all the trappings of the world with which for years he may perhaps have been clothing his soul-the world's knowingness, its eynicism, its self-secking, its ambition-fall away, and the man becomes an inspired child again, with ears attuned to nothing but the whispers of those splrits from the Golden Age, who, according to Hesiod, haunt and bless the degenerate earth. What such a man produces may greatly delight and astonish his readers, yet not so greatly as it delights and astonishes himself. His passages of pathos draw no tears so deep or so sweet as those that fall from his own eyes while he writes; his sublime passages overawe no soul so imperiously as his own; his humour draws no laughter so rich or so deep as that stirred within his own breast.
It might almost be said, indeed, that Sincerity and Conscience, the two angels that bring to the poet the wonders of the poetic dream, bring him also the deepest, truest delight of form. It might almost be aid that by aid of sincerity and conscience the poet is enabled to see more clearly than other men the eternal limits of bis own art-to see with Sophocles that nothing, not even poetry itself, is of any worth to man, invested as be is by the whole army of evil, unless it is in the deepest and highest sense grod, unless it comes linking us all together by closer bonds of sympathy and pity, strengthening us to fight the foes with whom fate and even Nature, the mother who bore us, sometimes seem in league to see with Milton that the high quality of man's soul which in English is expressed by the word virtue is greater than even the great poem he prized, greater than all the rhythms of all the tongues that have been spoken since Babeland to see with Shakespeare and with Shefley that the high passion which in English is called love is lovelier than all art, lovelier than all the marble Mercuries that "await the chiscl of the sculptor " in all the marble hills.
2. What Position does Poetry take up in Relalion to the other Artsp-Not withstanding the labours of Lessing and his followers, the position accorded by criticiam to poetry in pactry in relation to the other arts has never been so uncertain potedion to and anomalous as in recent years. On the one hand asedare there are critics who, judging from their perpetual arte comparison of poems to pictures, claim her as a sort of handmaid of painting and sculpture. On the other hand the disciples of Wagner, while professing to do homage to poetry, have chaimed her as the handmaid of music. With regard to the relations of poetry to painting and sculpture, it seems necessary to glance for a moment at the saying of Simonides, as recorded by Plutarch, that poetry is a speaking picture and that painting is a mute. poetry. It appears to have had upon modern criticism as much influence since the publication of Lessing's Laocoon as it had before. Perhaps it is in some measure answerable for the modern vice of excessive word-painting. Beyond this one saying, there is little or nothing in Greek literature to show that the Greeks recognized between poetry and the plastic and pictorial arts an affinity coser than that which exists betweenpoetry and music and dancing. Understanding artistic methods more profoundly than the moderns, and far too profoundly to suppose that there is any special and peculiar affinity between an art whose medium of expression is marble and an art whose medium of expression is a growth of oral symbols, the Greeks seem to have studied poetry not so much in its relation to painting and sculpture as in its relation to music and dancing. It is matter of familiar knowledge. for instance, that at the Dionysian festival it was to the poet as "teacher of the chorus" (xoposidioralos) that the prize was awarded, even though the "teacher of the chorus" were Aeschylus himself or Sophocies. And this reoognition of the relation of poetry to massic is perhaps one of the many causes of the superionity of Greek to all other poetry in adapting artistic means to artistic ends. In Greek poetry, even in Homer's description of the shield of Achilies, even in the famous description by Sophocles of his native woods in the Oedipus colomews, such word-painting as occurs seems, if not inevitable and unconscious, so alive with imaginative fecling as to become part and parcel of the
dramatic or lyric movement itself. And whonever description is so introduced the reader of Greek poetry need not be told that the scenery itself rises before the listener's imagination with a clearness of outline and a vigour of colour such as no amount of detailed word painting in the modern fashion can achieve. The picture even in the glorious verses at the end of the eighth book of the lliad rises before our eyea-seems actually to act upon our bodily senses-ximply because the poet's eagerness to use the picture for merely illustrating the solemnity and importance of his story lends to the picture that very authenticity which the work of the modern word-painter lacks

That the true place of poetry lies between music on the one hand and prose, or loosened speech, on the other, was, we say, taken for granted by the one people in whom the artistic instinct was fully developed. No doubt they used the word music in a very wide sense, in a sense that might include several arts. But it is a suggestive fact that, in the Greek language, long before poetic art was called "making" it was called "singing." The poet was not rompris but dowbs. And as regards the Romans it is curious to see how every now and then the old idea that poetry is singing rather than making will disclose itself. It will be remembered for instance how Terence, in the prologue of Phormio, alludes to poets as musicians. That the ancients were right in this could well be shown by a history of poetry: music and the lyrical function of the poet began together, but here, as in other things, the progress of art from the implicit to tbe explicit has separated the two. Every art has its special function, has a certain work which it can do better than any one of its sister arts. Hence its right of existence. For instance, before the "sea of emotion" within the soul has become "curdled into thoughts," it can be expressed in inarticulate tone. Hence, among the fine arts, music is specially adapted for zendering it. It was perhaps a perception of this fact which made the Syzian Gnostics define life to be "moving music." When this sea of emolion has "curdied into thoughts," articulate language rhythmically arranged-words steeped in music and colour, but at the same time embodying ideas-can do what no mere wordless music is able to achieve in giving it expression, just as unrhythmical language, language mortised in a foundation of logic, that is to say prose, can best express these ideas as soon as they have cooled and settled and cleared themselves of emotion altogether. Yet every art can in some degree invade the domain of her sisters, and the nearer these sisters stand to each ocher the more easily and completely can this invasion be accomplished. Prose, for instance, can sometimes, as in the case of Plato, do tome of the work of poetry (however imperfectly, and bowever trammelled by heavy conditions); and sometimes poetry, as in Pindar's odes and the waves of the Greek chorus, can do, though in the same imperfect way, the work of music.
The poems of Sappho, however, are a good case in point. Here the poet's passion is expressed so completely by the mere sound of her verses that a good recitation of them to a person ignorant of Greek would convey something of that passion to the listener; and similar examples almost as felicitous might be culled from Homer, from Aeschylus and from Sophocles. Nor is this power confined to the Greek poets. The students of Virgil have often and with justice commented on such lines as Aen. v. 481 (where the sudden sinking of a stricken ox is rendered by means of rhythm), and such lines as Georg. ii. 441, where, by means of verbal sounds, the gusts of wind about a tree are rendered as completely as though the voice were that of the wind inseif. In the case of Sappho the effect is produced by the intensity of her passion, in the case of Homer by the intensity of the dramatic vision, in the case of Virgil by a supreme poetic art. But it can also be produced by the mere ingenuily of the artist, as in Edgar Poe's "Ulalume." The poet's object in that remarkable tour de force was to express dull and hopeless gloom in the same way that the mere musician would have expressed it-that is to say, by monotonous reiterations. by holiow and dreadful reverberations of gloony sounds-though as an artist whose vehicle was articulate speech he was obliged to add gloomy ideas, in order to give to his work the inteilec. tual coference recessary for its existence as a poem. He evidently set out to do this, and he did it, and "Ulalume" properly imtoned would produce something like the same effect upon a listener knowing no word of English that it produces upon us.

On the other hand, music can trench very far upon the
domain of articulete speech, as we perceive in the wonderin instrumentation of Wagner. Yet, while it can be shown that the place of poetry is scarcely so close to sculpture and paincing as to music on the one side and loosened speech on the other, the affinity of poetry to music must not be exaggerated. We must be cautious how we follow the canons of Wagner and the more enthusiastic of his discipies, who almost seem to think that inarticulate tone can not only suggest idens bul exprese themcan give voice to the Verstond, in short, as well as to the Vermunf of man. Even the Greeks drew a fundemental distinction between melic poetry (poetry written to be sung) and poetry that was writter to be recited. It is a pity that, while modern critics of poetry have understood, or at least have given attention to painting and sculpture, so few have pomesed any knowledge of music-a fact which makes Dante's treatse De oulgari eloguto so important. Dante was a musician, and seems to have had a considerable knowledge of the relations between musical and metrical laws. But he did not, we think, assume that these laws are identical.

If it is indeed possible to establish the identity of musical and metrical laws, it can only be done by a purely scientific investigation; it can only be done by a most searching inquiry into the subule relations that we know must exist throughout the universe between all the laws of undulation. And it is curious to remember that some of the greatest masters of verbal melody have had no knowledge of music, while some have not even shown any love of it. All Greck boys were taught music, but whether Pindar's unusual musical skill was boen of natural instinct and inevitable passion, or came from the accidental circumstance that Lis father was, as has been alleged, a musician, and that he was as a boy elaborately taught musical science by Lasus of Hermione, we have no means of knowing. Nor can we now learn how mach of Milton's musical knowledge resulted from a like exceptional "environment," or from the fact that his father was a musician. But when we find that Shelley geems to have been without the real passion for music, that Rossetti disliked it, and that Coleridge's apprehension of musical effects was of the ordinary nebulous kind, we must hesitate before accepting the theory of Wagner.
The question cannot be pursued bere; but if it should on inquiry be found that, alchough poetry is more closely related to music than to any of the other arts, yet the power over verbal melody at its very highest is so all-sufficing to its possessor, as in the case of Shelley and Coleridge, that absolute music becomes a superfluity, this would only be another illustration of that intense egoism and concentration of force-the impulse of all high artislic energy-which is required in order to achieve the rarest miracles of art.
With regard to the relation of poetry to prose, Coleridge onct asserted in conversation that the real antithesis of poetry was not prose but science. If he was right the difference in kind lies, not between the poet and the prose writer, but between the literary artist (the man. whose instinct is to manipulate language) and the man of facts and of action whose instinct impels him to act, or, if not to act, to inquire. One thing is at least certain, that prose, however fervid and emotional it may become, must always be directed, or seem to be directed, by the reins of logic. Or, to vary the metaphor, like a captive balloon it can never really leave the earth.
Indeed, with the literature of knowledge as opposed to the literature of power poetry has nothing to do. Facts have no place in poetry until they are brought into relation with the buman soul. But a mere catalogue of ships may become poetical if it tends to show the strength and pride and glory of the warriors who invested Troy; a detailed description of the designs upon a shield, however beautiful and poetical in itself, becomes still more so if it tends to show the skill of the divine artificer and the invincible splendour of a hero like Achilles. But mere dry exactitude of imitation is not for poetry but for loosened speech. Hence, most of the so-called poetry of Hesiod is not poetry at all. The Muses who spoke to him about "truth" on Mit Helicon made the common mistake of confounding fact with
truth. And here we touch upon a very important matter. The reasou why in prose speech is loosened is that, untrammetied by the laws of metre, language is able with more eractitude to imitate natare, though of course speech, even when "loosened," cennot, when actual sensible objects are to be depicted, compete in any real degree with the plastic arts in accuracy of imitation, for the simple reason that its media are not colours nor solids but symbols-arbitrary symbols which can be made to indicate, but never to reproduce, colours and solids. Accuracy of imitation is the first requisite of prose. But the moment language has to be governed hy the laws of metre-the moment the conflict begins between the claims of verbal music and the claims of colour and form-then-prosaic accuracy has to yield; sharpness of outline, mere fidelity of imitation, such as is whithin the compass of prose, have in some degree to be sacrificed. But, just as with regard to the relations between poetry and music the greatest master is he who borrows the most that can be borrowed from music, and loses the least that can be lost from metre, so with regard to the relations between poetry and prose the greatest master is he who borrows the most that can be borrowed from prose and loses the least that can be lost from verse. No doubt this is what every poet tries to do hy instinct; hut some sacrifice on either side there must be, and, with regard to poetry and prose, modern poets at least might be divided into those who make picturesqueness yield to verbal melody, and those who make verbal melody yield to picturesqueness.
With one class of poets, tine as is perhaps the melody, it is made subservient to outline or to colour; with the otber chss colour and outline both yield to metre. The chief aim of the firat class is to paint a picture; the chief aim ol the second is to sing a cong. Weber, in driving through a beautiful country, could only enjoy its beauty by translating it into music. The tame may be said of some pocta with regard to verbal melody. The supreme artist. however, is he whote pictorial and musical power are so interfused that each seems born of the other, as is the case with Sappho, Homer, Aeschylus, Sophocles, and indeed most of the great Greek poets. Among English goets (leaving the two supreme mastern undiscussed) Keata and Coleridge have certainly done this The colour seems born of the music and the music born of the colour. Ia French poetry the same triumph has been achieved in Victor Hugo's magnificent poem "En marchant la nuit dans un bois," which, as a rendering through verbal music of the witchery of nature, stands alone in the poetry of France. For there the poet conquers that crowning difficulty we have been alluding to, the difficulty of stealing from prose as much distinctnest of colour and clearness of outline as can be imported into verse with as little acrifice as possible of melody.
If poetry can in some degree invade the domain of prose, so on the other hand prose can at times invade the domain of poetry, and no douht the prose of Plato-what is called poetical proseis a legitimate form of art. Poetry, the earliest form of literature, is also the final and ideal form of all pure literature; and. when Landor insists that poetry and poetical prose are antagonistic, we must remember that Landor's judgrients are mostly based on feeling, and that his hatred of Plato would be quite sufficient basis with him for an entire system of eriticism upon poelical prose. As with Carlyle, there was a time in his life when Plato had serious thoughts of becoming a poet. And perhaps, like Carlyle, having the good sense to see his true function, he himself desisted from writing, and strictly forbade other men to write ${ }_{4}$ in verse. If we consider this, and if we consider that certain of the great English masters of poetic prose of the 17 th century were as incapable of writing in metre as their followers Richter and Carlyic, we shall hardly escape the conclusion on the one hand that the faculty of writing poetry is quite another faculty than that of producing work in the arts most closcly allied to it, music and prose, but that on the other hand there is nothing antagonistic between these facultics.
3. Comparatite Value in Expressional Pomer.-There is one great point of superiority that musical art exhihits over metrica! art. This consists, not in the capacity for melody, but in the capacity for harmony in the musician's sense. The finest music of Aeschylus, of Pindar, of Shakespeare, of Mitton, is after all only a succestion of melodious notes, and, in endeavouring to catch the harmonic intent of strophe, antistrophe and epode in the Greek chorus and in the true ode (that
of Pindar), we can only rucceed by pressing memory into oar service. We have to recall by memory the waves that have gone before, and then to imagine their harmonic power in relation to the waves at present occupying the ear. Counterpoint, therefore, is not to be achieved by the metricist, even though he be Pindar himself; but in music this perfect ideal harmony was forechadowed perhaps in the earliest writing. We know at least that as early as the 12th century counterpoint began to show a vigorous life, and the study of it is now a familiar branch of musical science. Now, inasmesch as "nature's own bymn" is andr must be the harmonic blending of apparently independent and apparently discordant notes, among

Ruythas. the arts whose appeal is through the ear that which can achieve counterpoint must perhaps rank as a pure art above one which cannot achieve it. We are of course speaking here of metre only. We have not space to inquire whether the counterpoint of absolute poetry is the harmony underlying apparently discordant emotions -the emotion produced by a word being more persistent than the emotion produced by an inarticulate sound. But if poetry falls behind music in rhythmic scope, it is capable of rendering emotion after emotion bas become disintegrated into thoughts, and here, as we have seen, it enters into direct competition with the art of prose. It can use the emphasis of sound, not for its own sake merely, but to strengthen the emphasis of sense, and can thus give a fuller and more adequate expression to the soul of man than music at its highest can give. With regard to prose, no doubt such writing as Plato's description of the chariot of the soul, his description of the island of Atlantis, or of Er's visit to the place of departed souls, comes but a short way behind poetry in imaginative and even rhythmic appeal. It isimpossihle, however, here to do more than touch upon the suhject of tbe rhythm of prose in its relation to the rhythm of poetry; for in this matter the genius of each individual language has to be taken into account.
Perhaps it may be said that deeper than all the rhythm of art is that rhythm which art would fain catch, the rhythm of nature; for the mythm of nature is the rhythm of life itself. This rhythm can be caught hy prose as well as by poetry, such prose, for instance, ss that of the English Bible. Certainly the rhythm of verse at its highest, such, for instance, as that of Shakespeare's greatest writings, is nothing more and nothing less than tbe metre of that energy of the spirit which surges within the bosom of him who speaks, whether he speak in verse or in impassioned prose. Being rhythm, It is of course govemed by law, but it is a law which transcends in subtlety the conscious aft of the metricist and is only caught by the poet in his most inspired moods, a law which, being part of nalure's own sanctions, can of course never be formulated but only expressed, as it is expressed in the melody of the hird, in the inscrutabie harmony of the entire bird-chorus of 2 thicket, in the whisper of the leaves of the tree, and in the song or wail of wind and sca. Now is not this rhythm of nature represented by that "sense rhythm" which prose can catch as well as poetry, that sense chythm whose finest expressions are to be found in the Bible, Hebrew and English, and in the hiblical movements of the English Prayer Book, and in the dramatic prose of Shakespeare at its best? Whether it is caught by prose or by verse, one of the virtues of the rhythm of nature is that it is translatable. Hamiet's peroration about man and Raleigh's apostrophe to death are as translatabic into other languages as are the Hebrew psalms, or as is Manu's magnificent passage about the singleness of man:-
"Single is each man born into the world; single he dies; mingle he receives the reward of his good deeds, and single the punishment of his evil deeds. When he dies his body lies libe a fallen tree upon the earth, but his virtue accompanies his soul. Wherefore let man harvest and garner virtue, so that he may have an inseparable companion in traversing that gloom which is so hard to be traversed."
Here the rhythm, being the inevitable movement of emotion and "scnse," can be caught and translated hy every literature under the sun. While, however, the great goal before the poet is to compel the listener to expect his caesuric effects, the great goal before the writer of poetic prose is in the very opposite direction; it is to make use of the concrete figures and impassioned
diction of the poet, but at the same time to avoid the recognized and expected metrical bars upon which the poet depends. The moment the prose poet passes from the rhythm of prose to the rhythm of metre the apparent sincerity of his writing is destroyed.
As compared with sculpture and painting the great infirmity of poctry, as an "imitation" of nature, is of course that the

Ploutic. trametion. medium is always and of necessity words-even when no words could, in the dramatic situation, have been spoken. It is not only Homer who is ohliged sometimes to forget that passion when at white beat is never voluble, is scarcely even articulate; the dramatists also are obliged to forget that in love and in hate, at their tensent, words seem weak and foulish when compared with the silent and satisfying triumph and flory of deeds, such as the plastic arts can render. This becomes manifest enough when we compare the Niobe group or the Laocoon group, or the great dramatic paintings of the modern world, with even the finest efiorts of dramatic poetry, such as the speech of Andromache to Hector, or the speech of Priam to Achilles, nay such as even the cries of Cassandra in the Agamemmon, or the wailings of Lear over the dead Cordelia. Even wher writing the words uttered by Oedipus, as the terrible truth breaks in upon his soul, Sophocles must have felt that in the holiest chambers of sorrow and in the highest agonies of suffering reigns that awful silence which not poetry, but painting sometimes, and sculpture always, can render. What human sounds could render the agony of Niobe, or the agony of Laocoon, as we see them in the sculptor's rendering? Not articulate speech at all; not words but wails. It is the same with hate; it is the same with love. We are not speaking merely of the unpacking of the heart in which the angry warriors of the Iliad indulge. Even such subtle writing as that of Aeschylus and Sophocles falls below the work of the painter. Hate, though voluble perhaps, as Clytaemnestra's when hate is at that red-heat glow which the poct can render, changes in a moment whenever that redness has been fanned to hatred's own last complexion-whteness as of iron at the melting-point-when the heart has grown far too big to be "unpacked" at all, and even the hitter epigrams of hate's own rhetoric, though brief as the terrier's snap before he fleshes his teeth, or as the short snarl of the tigress as she springs before her cubs in danger, are all too slow and sluggish for a soul to which language at its tensest has become idle play. But this is just what cannot be rendered by an art whose medium consists solely of words.
It is in giving voice, not to emotion at its tensest, but to the variations of emotion, it is in expresing the countless shifting moverments of the soul from passion to passion, that poetry shows in spite of all her infirmities her superiority to the plastic arts. Homlet and the Agamemnon, the Iliad and the Oedipus Tyrannus, are adequate to the entire breadth and depth of man's soul.

Varielies of Poelic Arl.-We have now reached the inquiry: What varieties of poetic art are the outcome of the two kinds of poetic impulse, dramatic imagination and lyric or egoistic imagination? It would be impossible here to examine fully the subject of poetic imagination. In order to do so we should have to enter upon the vast question of the effect of artistic environment upon the development of man's poetic imagination; we should have to inquire bow the instinctive methods of each poet and of each group of poets have been modified and often governed by the methods characteristic of their own time and country. We should have to inquire, for instance, how far such landscape as that of Sophocles in the Oedipus Coloncus and such landscape as that of Wordsworth depends upon difference of individual temperament, and how far upon difference of artistic environment. That, in any thorough and exhaustive discussion of poetic imagination, the question of artistic environment must be taken into account, the case of the Iliad is alone sufficient to show. Ages before Phrynichus, ages before an acted drama was dreamed of, a dramatic poet of the first order arose, and, though he was ohliged to express his splendid dramatic imagination through epic forms, he expressed it almost as fully as if he had inherited the method and the stage of Sophocles. And if

Homer never lived at all, then an catire group of drabatic poets arome in remote times whose method was epic instead of drematic simply because there was then no stage. This, contrasted with the fact that in a single half-century the tragic art of Greece arowe with Aeschylus, culminated with Sophocles, and decayed with Euripides, and contrasted aloo with the fact that in England at one time, and in Spain at one time, almost the entire poetic imagination of the country found expression in the acted drama alone, is sufficient to show that a poet's artistic methods are very largely influenced by the artistic environments of his country and time. So vast a subject as this, however, is beyond our scope, and we can only point to the familiar instance of the troubadours and the trouveres and then pass on.

With the trouverre (the poct of the langue d'out), the story or situation is always the end of which the musical language is the means; with the troubadour (the poet of the langue d'oc), the form is so beloved, the musical language so enthralling, that, however beautiful may be the story or situation, it is felt to be no more than the means to a more beloved and beautiful end. But then nature makes her own troubadours and her own trouverres irrespective of fashion and of time-irrespective of langue d'oc and langue d'oll. And, in comparing the troubadours with the trouvères, this is what strikes us at once-there are certain troubadours who by temperament, by original endowment of nature, ought to have been trouvères, and there are certain trouveres who by temperament ought to have been troubadours. Surrounding conditions alone have made them what they are. There are those whose impulse (though writing in obedience to contemporary fashions lyrics in the langue d'or) is manifestly to narrate, and there are those whose impulse (though writing in cbedience to conternporary fashions fabliamx in the langue d'oll) is simply to sing. In other words, there are those who, though writing after the fashion of their brothestroubadours, are more impressed with the romance and wonderfulness of the buman life outside them than with the romance and wonderfulness of their own passions, and who delight in depicting the external world in any form that may be the popular form of their time; and there are those who, though writing after the fashion of their brother-trouvères, are far more occupied with the life within them than with that outer life which the taste of their time and country calls upon them to paint-born rhythmists who must sing, who translate everything external as well as internal into verbal melody. Of the former class Pierre Vidal, of the latter class the author of Le Lay de l'pisede, may be taken as the respective types.
That the same forces are seen at work in all literatures few students of poetry will deny-though in some poetical group these forces are no doubt more potent than in others, as, for instance, with the great parable pocts of Persia, in some of whom there is perpetually apparent a conflict bet ween the dominance of the Oriental taste for allegory and subtle suggestion, as expressed in the Zoroastrian definition of poetry-" apparent pictures of unapparent realities" -and the opposite yearning to represent human life with the freshness and natural freedom characteristic of Westem poctry.
Allowing, however, for all the potency of external influences, we shall not be wrong in saying that of poetic imagination there aret wo distinct kinds-(I) the kind of poetic imagina- amone tion seen at its highest in Aeschylus, Sophocles, Aratere Shakespeare and Homer, and (2) the kind of poetic imagination seen at its highest in Pindar, Dante and Milton, or else in Sappho, Heine and Shelley. The former, being in its highest dramatic exercise unconditioned hy the personal or lyrical impulse of the poet, might perhaps be called absolute dramatic vision; the latter, being more or less condifioned by the personal or lyrical impulse of the poet, might be called relative dramatic vision. It seems impossible to classify poets, or to classify the different varieties of poetry, without drawing some such distinction as this, whatever words of definition we may choose to adopt.
For the achievement of all pure lyric poetry, such as the ode. the song, the elegy, the idyll, the sonnet, the stomello. it is
evident thaf the imeginative force we have called relative vision will suffice. And if we conslder the matter thoroughly, in many other forms of poetic art-forms which at first sight might seem to require absolute vision-we sball find nothing bat relative vision at work.

Even in Dante, and even in Milton and Virgh, it might be difficult to trace the working of any other than relative vision. And as to the entire body of Asjatic poets it might perhaps be found (oven in view of the Indian drama) that relative vision suffices to do all their work. Indeed tbe temper which produces true drama is, it might almost be said, a growth of the Western mind. For, unless it be Semitic, as seen in the dramatic natratives of the Bibie, or Chinese, as seen in that remarkable prose story, The Two Fair Cousins, translated by Remusat, absoluto vision seems to have but small place in the literatures of Asia. The wonderfulness of the worid and the romanilc possibnities of fate, or circumstance, or chance-not the wonderfulness of the character to whom these possibilitles belall-are ever present to the mind of the Asistic poet. Even in so late a writer as the poet of the Shal Ndmeh, the hero Irij, the hero Zal and the hero Zohreb are in character the same person, the virtuous young man who combines the courage of youkh with the wisdom and forbearance of age. And, as regards the earlier poets of Asia, it was not till the shadowy demigods and beroes of the Asiatic races crossed the Caucasus, and breathed a more bracing air, that they became really individual characters. But among the many qualities of man's mind that were invigorated and rejuvenated by that great exodus from the dreamy piains of Asia is to be counted, sbove all others, his poetic imagination. The mere sense of wonder; which had formerly been an all-sufficing source of pleasure to him, was all-sufficing no longer. The wonderful adventure must now be comected with a real and intercsting individual character. It was left for the poets of Europe to show that, given the interesting character, given the Achilles, the Odysseus, the Helen, the Priam, any adventure happening to such a character becomes interesting.

What then is this absolute vision, this true dramatic imagina tion which can hardly be found in Asia-which even in Europe cannot be found except in rare cases? Between relative and absolute vision the difference seems to be this, that the former only enables the poet, even in its very highest exercise, to make his own individuality, or else humanity as represented by his own individuality, live in the imagined situation; the latter enables him in its highest exercise to make special individual characters other than the poet's own live in the imagined situation.
" That which exists in nature," says Hegel, " is a something purely individual and particular. Art, on the contrary, is essencially destined to manifest the general." And no doubt this ls true as regards the plastic arts, and true also as regards literary art, save in the very highest reaches of pure drama and pure lyric, wben it seems to become art no longer-when it seems to become the very voice of Nature herseli. The cry of Priam when he puts to his lips the hand that slew his son is not merely the cry of a bercaved and aged parent; it is the cry of the individual king of Troy, and expresses above everything else that most naive, pathetic and winsome character. Put the words into the mouth of the irascible and passionate Lear and they would be ehtirely out of keeping.

It may be said then that, while tbe poet of relative vision, even in its very highest exercise, can only, when depicting the

Lyrk, Apple
and
Dramutc
Stagerne external world, deal With the general, the poet of absofute vision can compcte with Nature hersell and deal with both general and particular. If tbis is really so we may perbaps find a basis for a classification of poetry and of poets. That all poets must be singers has already been maintained. But singers seem to be divisible into tbree classes: first the pure lyrists, each of whom can with his one voice sing only one tune; secondly the epic poets, save Homer, the bulk of the narrative poets, and the quasi-dramatists, each of whom can with his one voice sing several tunes; and thirdly the true dramatists, who, having. like the nightingale of Gongora, many tongues, can sing all tuncs.

It is to the firat-named of these classes that most poets belong. With regard to the second class, there are not of course many poets left for it: the first absorbs so many. But, when we come to consider that among those who, witb each his one vaice, can sing many tunes, sre Pindar, Firdausi, Jami, Virgil, Dante, Milton, Spenser, Goethe, Byron, Coleridge, Shelley, Keats, Schillef, Victor Hugo, the second class is so various that no generalization save such a broad one as ours coukd embrace its members. And now we come to class three, and must pause. The third class is necessarily very small. In it can only be placed such names as Shakespeare, Aeschylus, Sophocles, Homer and (hardly) Chaucer.

These three kinds of poets represent three totally different kinds of poctic activity.

With regard to the first, the pure lyrists, the impulae is pure egolim. Many of them have less of even relative vision at its highest than the mass of mankind. They are often too much engaged with the cmollons within to have any deep sympathy with the life around them. Of every poet of this class it may be said that his mind to him "a kingdom is," and that the smaller the poet the bigger to him is that kingdom. To make use of.a bomely image-like the chaffinch whose eycs have been pricked by the bird-fancier, the purelyrist is sometimes a warbler hecause be is blind. Still he feels that the Muse loves him exceedingly. She takes away his eyesight, but she gives him sweet song. And his song is very sweet, very sad, and very beautiful; but it is all about the world within his own soul-its sorrows, joys, tears and aspfrations.
With regard to the second class the impulse here is no doubt a kind of egoism too; yet tbe poets of this ciass are all of a different temper from the pure lyrists. They bave a wide imagination; but it is still relative, still egoistic. They bave splendid eyes, hut eyes that never get beyond seeing general, universal humanity (typified by themselves) in the imagined situation. Not even to these is it given to break through that law of centrality by which every " me" feels itself to be the central " me"-the only" me" of the universe, round which all other spurious "me's" revolve. This "me" of theirs they can transmute into many shapes, but they cannot create other "me's" -nay, tor egoism, some of them scarcely would, perhaps, if they could.

The third class, the true dramatists, whose impulse is the simple yearning to create akin to that which made "the greal Vishnu yearn to create a world," are "of imagination all compact "-so much so that when at work " the divinity" which Iamblicbus speaks of "seizes for the time the soul and guides it as he will."

The distinction between the pure lyrists and the other two classes of poets is ohvious enough. But the distinction bet ween the quasi-dramatists and the pure dramathts Examphes of requires a word of explanation before we proceed Retativeand to touch upon the various kinds of poetry that spring Absolvto from the exercise of relative and absolute vision.
Sometimes, to be surc, the vision of the true dramatiststbe greatest dramatists-will suddenly become narrowed and obscured, as in that part of the Oedipus syrannus where Sophocles makes Oedipus ignorant of what every one in Thebes must have known, the murder of Laius. And again, finely as Sophocles has conceived the character of Electra, he makes her, in her dispute with Chrysothemis, give expression to sentiments tbat, in another play of his own, come far more appropriately from the lofty character of Antigone in \& paralled dispute with Ismene. And, on the other hand, examples of relative vision in its furthest reaches can be found in abundance everywhere, cspecially in Virgil, Dante, Calderon and Milton. Some of the most remarkable eramples of that high kind of relative vision which may easily be mistaken for absolute vision may be found in those great prose epics of the North which Aristotie would have called poems. Here is one from the Volsunga Saga. While the brothers of Gudrun are about their treacherous husiness of murdering Sigurd, her husband, as he lies asleep in her arms, Brynhild, Sigurd's former love, who in the frenzy. of
" love turmed to hate" has instigated the murderers to the deed, hovers outside the chamber with Gunnar, her husband, and listens to the wail of her rival who is weltering in Sigurd's blood. At the sound of that wail Brynhild laugha:-
"'Then said Gunnar to her, Thou laughcat not because thy heart roots are gladded, or alse why dolt shy visage vose so mam ?"i
This is of courne very fine; but, as any two characters in that dramatic situation might have done that dramatic business, fine as it in-as the sagaman gives us the general and not the perticular-the vision at work is not aboolute but relacive at its very highest exercise But our examples will be more interesting if taken from English poets. In Coleridge's "Ancient Mariner " we find an immense amount of relative vision of so high a kind that at first it seems ebsolute vision. When the ancient mariner, in his namrative to the wedding guest, reaches the slaying of the alhatross, he stops, he can proceed ne farther, and the wedding guest exclaims:-
"Cod save thes, Ancient Mariner, From the Giends that plague thee thus ! Why look'st thou no ?" "With my cross-bow I shot the albatrose."
But there are instances of relative vision-especially in the great master of absolute vision, Shakespeare-which are higher still-so high indeed that not to relcgate them to absolute vision seems at first sight pedantic. Such an example is the famous speech of Lady Macbeth in the second act, where she says:-

"Had he not resembled My father as he slept, I had done ' t."

Marvellously subtle as is this speech, it will he found, if analysed, that it expresses the general human soul rather than any one special human soul. Indeed Leigh Hunt records the case of a bargeman who, charged with robbing a slceping traveller in his barge, used in his confession almost identical words-" Had he not looked like my father as he slept, I should have killed as well as robbed him." Again, the thoussand and one cases (to be found in every literature) where a character, overwhelmed by some sudden surprise or terror, asks whether the action going on is that of a dream or of real ulfe, must all, on severe analysis, be classed under relative rather than under absolute vision-even such a fine speech, for instance, as that where Pericles, on discovering Marina, exclaims:-
"This is the rarest dream that e'er dull sleep
Did mock sad fools withal";
or as that in the third act of Titus Andromicus, where Titus, beholding his mutilated and ruined daughter, asks:-
"When will this fearful slumber have an end?"
even here, we say, the humanity rendered is general and not particular, the vision at work is relative and nol absolute. The poet, as representing the whole human race, throwing himself into the imagined situation, gives us what general humanity would have thought, felt, said or done in that situation, not what one particular individual and be alone would bave thought, felt, said or done.

Now what we have called absolute vision operates in a very different way. So vividly is the poet's mere creative instinct at work that the ego sinks into passivity-becomes insensitive to all impressions other than those dictated by the vision-by the "divinity" which has "seized the soul." Shakespeare is full of examples. Take the scene in the first act of Hamlal where Hamlet hears for the first time, from Horatio, that his father's ghost haunts the castle. Having by short sharp questions elicited the salient facts attending the apparition, Hamlet says, "I would I had been there." To this Horatio makes the very commonplace reply, "It would have much amazed you." Note the marvellously dramatic reply of Hamict
"Very like, very likel Stayed it long ?" Suppose that this dialogue had been attempted by any other poet than a true dramatist; or by a true dramatist in any other mood than his vory highest, Hamlet, on hearing Horatio's commonplace remarks upon phenomena which to Hamlet were more subversive
$\cdot \rightarrow$ Translation of Morris and Magnusson.
of the very order of the universe than If a daen stan had fallen from their courses, would have burst ort with: "Amaged me!" and then would have followed an eloqueat declamation about the "amazing" nature of the phasomena and their effect upon him. But so entirely has the poet become Hamlet, so completely has "che divinity seized his soul," that all language seems equally weak for expressing the turbuleace within the soul of the character, and Hamlet exclaims in a sort of meditative irony, "Very like, very like 1" It is exectly this one man Hamlet, and no other man, who in this situation would have so expressed himself. Charles Knight has mome pertinent remarks upon this specch of Hamiet; yet he misses its true value, and treats it from the general rather than from the particular side. Instances of absolute vision in Shakespeare crowd upon us; but we can find room for only one other. In the pathetic speech of Othello, juse before he kills himself, he declares himself to he:-

"One not easily jealous, but, being tyrought, Perplexed in the extreme.:

Consider the marvellous fimbre of the word "wrought," as coming from a character like Othello. When writing this passage, especially when writing this word, the poet had become entirely the simple English soldier-bero, as the Moor really is-he had become Othello, looking upon himself "as not easily jealous," whereas he was "wrought "and "perplexed in the extreme" by tricks which Hamiet would have seen through in a moment.

While all other forms of poeticart can be vltalized by relative vision, there are two forms (and these the greatest) in which absolute vision is demanded, viz. the drama, and in a lesser degree the Greek epic, especially the Iliad. This will be seen more plainly perhaps if we now
 vary our definitions and call relative vision egoistic imagination; absolute vision dramatic imogination.
Very much of the dramatist's work can he, and in fact is, effected by egoistic imagination, while true dramatic imagination is only called into play on comparatively rare occasions. Not only fine but sublime dsamatic poems have been written, however, where the vitalizing power has been entirely that of lyrical imagination. We need ouly instance the Promethews Bcund of Acschylus, the most aublime poem in the world. The dramas of Shelley too, like those of Victor Hugo and Calderon, are informed entirely by egoistic imagination. In all these splendid pocms the dramatist places himself in the imagined situation, or at most he places there some typical conception of universal humanity. There is not in all Calderon any such display of dramatic Imagination as we get in that wonderful speech of Priam's in the last book of the lliad, to which we have before alluded. There is not in the Cenci sucb a display of dramatic imagination as we get in the sudden burst of anger from the spoilt child of gods and men, Achilles (anger which alarms the hero himself as much as it alarms Priam), when the prattle of the old man bas carried him too far. It may seem bold to say that the drama of Goethe is informed by egoistic imagination only-assuredly the prison-scene in Faust is unsurpassed in the literatures of the world. Yet, perhaps, it could be shown of the passion and the pathos of Gretchen throughout the entire play that it betruys a female character general and typical rather than individual and particular.
The nature of this absolute vision or true dramatic imagination is easily seen if we compare the dramatic work of writers without absolute vision, such as Calderon, Goethe, Ben Jonson, Fletcher and others, with the dramatic work of Aeschylus and of Shakespeare. While of the former group it may be said that each poet skiffully works his imagination, of Aeschylus and Shakespeare it must be said that each in his highest dramatic mood does not work, but is worked by his imagination. Note, for instance, how the character of Clytaemnestra grows and glows under the hand of Acschylus. The poet of the Odysscy had distinctly said that Acgisthus, her paramour, had struck the blow, but the dramatist, having imagined the greatest tragic female in all poetry, finds it impossible to let a man like Aegisthus assist such a woman in a homicide so daring and 50 momentous. Aad
when in that terrible epeech of hers she justifies her criane (ostensibly to the outer world, but really to her own conscience), the way in which, by the sheer magnetism of irresistible personality, she draws our sympathy to herself and her crime is unrivalled out of Shakespeare and not surpassed even there. In the Great Drama, in the Agamemnon, in Othello, in Hamele, in Macbeth, there is an imagination at work whose laws are inexorable, are inevitable, as the laws hy the operation of which the planets move around the sun. But in this essay our busiocss with drama is confined entirely to its relations to epic.
Considering how large and on the whole how good is the body of modern criticism upon drama, it is surprising how poor is epked the modern criticism upon epic. Aristotle, comparDrame Cpangerval ing tragedy with epic, gives the palm to tragedy as being the more perfect art, and nothing can be more ingenious than the way in which he has marshailed his reasons. He tells us that tragedy at weil as epic is capsble of producing its efiect even without action; we can judge of it perfectly, says he, by reading. He goes so far as to say that, even in reading as well as in representation, tragedy has an advantage over the epic, the advantage of greater cloamess and distinctness of impression. And in some measure this was perhaps true of Greek tragedy, lor as Muller in his Dissertations on the Eumenides has well said, the ancients always remained and wished to remain conscious that the whole was a Dionysian entertainment; the quest of a commonplace dxdm came afterwards. And even of Romantic Drama it may be said that in the time of Shakespeare, and indeed down through the $\mathbf{1 8 1 \mathrm { h }}$ century, it never lost entirely its characier of a recitation as well as a drama. It was not till melodrama began to be recognized as a legitimate form of dramatic art that the dialogue had to be struck from the dramatic action "at full speed "-struck like sparks from the roadster's shoes. The truth is, however, that it was idie for Aristolle to inquire which is the more importamt branch of poetry, epic or tragedy. Equally idfe would it be for the modern critic to inquire how much romantic drama gained and how much it lost by ahandoning the chorus.

Much has been said as to the scope and the limits of epic and dramatic poetry. If in epic the poet has the power to take the imagination of his audience away Irom the dramatic centre and show what is going on at the other end of the great web of the wortd, he can do the same thing in drama hy the chorus, and also by the introduction into the dramatic circle of messengers and others from the outside worid. But, as regards epic poetry, is it right that we should hear, as we sometimes do hear, the voice of the poet himself as chorus bidding us contrast the present picture with other pictures alar off, in onder to enforce its tezching and illustrate its pathos? This is a favourite method with modern poets and a still more favourite one with prose namratons. Does it not give an air of self-consciousness to poetry? Does it not disturb the intensity of the poetic vision? Yet it hias the sanction of Homer; and who shall dare to challenge the methods of the great father of epic? An instance occurs in Iliad v. :58, where, in the midst of all the stress of fight, the poet leaves the dramatic action to tell us what became of the inheritance of Phaenops, after his two sons had been slain by Diomedes. Another instanco occurs in iij. 243-244, where the poet, after Helen's pathetic mention of her brothers, comments on the causes of their sbsence, "erficizes Iffe" In the approved modern way, generalizes upon the impotence of human intelli. gence-the impotence even of human love-to picree the darkness in which the web of human fate is woven. Thus she spoke (the poet tells us); but the Bife-siving earth already possessed them, there in Lacedaemon, in their dear native land:-

This, of course, is "besutiful exceedingly." but, inasmuch as the imagination at work is ogoistic or jyrical, not dramatic; inasmuch as the vision is relative, not absolute, it docs not represent that epic strength at its very hishest which we call specially "Homeric" unless indeed we remember that with Homer the

Muses are omniscient: this certamby may sive the paasage a deep dramatic value it otherwise seems to lack.

The deepest of all the distinctions between dramatic and epic methods has relation, however, to the nature of the dialogua Aristotle failed to point it out, and this is remarkable until we remember that his work is but a fragment of a great system of ctiticism. In epic poetry, and in all poetry that narrates, whether the poet be Homer, Chaucer, Thomas the Rhymer, Gottfried von Strashurg, or Turoldus, the action, of course, moved by aid partly of narrative and partly hy aid of dialoguef but in drama the dialogue has a quality of suggestiveness and suble inference which we do not expect to find in any other poetic form gave perhaps that of the purely dramatic ballad In ancient drama this quality of suggestivencss and subtle inference is seen not only in the dialoguc, but in the choral odes. The third ode of the Agamemnon is an extreme case in point, where, by a kind of double entendre, the relations of Clytacmneatra and Acgisthos are darkly alluded to under cover of allusions to Patis and Helen. Of this dramatic subtlety Sophocles is perhaps the greatest master; and certain critics have been led to speak as though irony were heart-thought of Sophoclean drama. But the suggestivencere of Sophocles is pathetic (as Professor Lewis Campbell has well pointed out), not fronical. This is one reason why drama more than epic seems to satisly the mere intellect of the reader, though this may be counterbalanced hy the hardness of mectanical strueture which sometimes disturbs the reader's imagination in tragedy.

When, for Instance, a dramatist pays 50 much attention to the evolution of the plat as Sophocles does, it is inevitable that his characters should be more or less plot-ridden; they have to say and do mow and then certain things which they would not say and do hut for the exigencies of the plot. Indeed one of the advantages which epic certainly has over dramis is that the story can be made to move as rapidly as the poet may desire without these mechanical modifications of character.

The only kind of epic for Aristotle to consider was Greek epic, between which and all olher epic the difference is one of kind if the Ifiad alone is taken to represent Greek epic. The armat In speaking of the cffect that surrounding conditions \qquad scem to have upon the form in which the poctic energy Apte of any time or country should express itself, we instanced the Iliad as a typical case. The imagination vivilying it is mainly dramatic. The characters represent much more than the mere varicty of mood of the delincator. Not withstanding all the spiendid works of Calderon, Marlowe, Webster and Cocthe, it is doubtlul whether as a born dramatist the poct of the Iliad does not come nearer to Aeschylus and Shakespeare than does any other poet. His passion for making the heroes spenk for themselves is almost a fault in the lliad considered as pure epic, and the unconscious way in which each actor is made to depict hin own character is to the highest spirit of drama. it is owing to this speciality of the Hide that it st ands apart from al! other epic save that of the Odyssey, where, however, the dramatic vision is less vivid. It is owing to the dramatic imagination displayed in the lligd that it is impossible to say, from internal evidence, whether the poem is to be elassified with the epics of growth or with the epics of art. All epics are clearly divisible into two classes, first those which are a mere accretion of poems or traditionary ballads, and second. those whicth, though based indeed on tradition or history, have become so fused in the mind of one great poet, so stained, therefore, with the colour and temper of that mind, as to become new crystalliza-tiont-inventions, in short, as we understand that word. Each kind of ephe has excellericies peculiar to fitself, accompanied by peculiar and indeed nerescary defects. In the one we get the freedom-apparently schemeless and motiveless-of nature, but, as a consequerce, miss that "hard acorn of thought" (to use the picturesque definition in the Vatames Sags of the heart of a man) which the mind asks for as the core of ewery work of ert. In the other this great requisite of an adequate central thought is found, but accompanied by a constriction, a lack of freedom, a cold artificiatity, the obtrusion of a pedantic scheme, which would be intolerable to the natural mind unsophisticated by literary study. The flow of the one is as that of a river, the flow of the other as that of a canal. Yet, as has been already hinted, though the great charm of Nature herself is that she never teases us with any obtrusive exhibitions of scheme, she doubtless has a scheme somewhere, she does somewhere hide a "hard acom of thought "of which the poem of the universe is the expanded expreasion. And, this being so, ert dhould have a acteme too; bat in such a dilemma is she placed in this matter that the epic poet, unless be is evidenuly telling the

atory for its own seke, scornful of purpowes ethic or mesthetic, must sacrifice illusion.

Among the former clast of epics are to be placed the great epics of growth, such as the Makabharata, the Nibelung story, \&e.; among the latter the Odyssey, the Acmeid, Panedise Lost, the Cerusalemme ibberela, the Lusiadas.
But where in this clanification are we to find a place for the tliod? The heart-thought of the greatest epic in all literature is simply that Achilles was vexed and that the fortunes of the world depended upon the whim or a sulky hero. Yet, notwithstanding alt the acute criticismas of Wolfi, it semains difficult for us to find a place for the Iliad among the epics of growth. And why? Because throughout the Iliad the dramatic imagination ahown is of the first order: and, if we are to suppose a multiplicity of authors for the poem, we must also suppose that ages before the time of Pericles there existed a group of dramatists more nearly akin to the masters of the Great Drama, Aexcbylus, Sophocles and Shakespeare, than any group that has ever existod since. Yet it is equally difficult to find a place for it amongst the epicp of art. In the matter of crtistic motive the Odyssey stands alone among the epict of art of the world, as we are going to me.
it is manifext that, as the pleasure derived from the epic of art is that of recognizing a conscious scheme, if the epic of art fails peope through confusion of scheme it fails altogether. What ANL is demanded of the epic of art (as some kind of compensa. Arh tion for that natural freedom of evointion which it can never achieve, that sweet abamdon, which belongs to maturn and to the epic of growth alike) is unity of imprestion, hammonious and symmetrica! development of a conscious heart-thought or motive. This being so, where are we to place the Aeneid, and where are we to place the Shah Nameh? Starting with the intention. as it meems, of fusing into one harmonioun whole the myths and legends upon which the Roman story is based, Virgil, by the timo he reaches the middle of his epic, forgets all about this primary intent, and gives us bis own thoughts and reflections on thlngs in enera!. Fine as is the apeech of Anchises to Aencas in Elysium (Aam, vi. 724-755), its incorgruity with the gemeral mcheme of the poem as developed in the previous bookn shows how entrely Virgil lacked that artistic power shown in the Odyusey of making a story become the natural and inevitabic outcome of an artintic idea.
In the Shih Nameh there is the artistic redaction of Virgil, but with even lese attention to a central thoughe thas Vistii exhibits Firdausi relies for his effects upon the very qualicies which characterize not the epic of art but the epic of growth-a naturai and not an artificial flow of the story; so much indeed that, if the Shah Namek were studied in connexion with the Rliad on the one hand and with the Kaletala on the other, It might throw a light upon the way in which an epic may be at one and the same time an aggregation of the national ballad poems and the work of a aingle artificer. That Firdausi was capable of working from a centre not only artistic but philosophic his Yissuf and Zuleikha shows; and if we consider what was the artistic temper of the Persians in Firdausi's time, what indeed has been that temper during the whoie of the Mahommeden period, the suhtie temper of the parable poet-the Shah Nameh, with its direct appeal to popular synupathies, is a atanding wonder in poetic literature.
With regard, however, to Virgil's defective power of working from an artistic motive, as compared with the poet of the Odyssey, this is an infirmity he chares with all the poets of the Wentern world. Certainly he shares It with the writer of Paredise Lost, who, sotting out to "justify the ways of God to man." forgets occasionally the original worker of the evil, as where, for instance, he substitutes chance as coon as he comes (at the end of the second book) to the point upon which the entire epic movement turns, the escape of Satan from hell and his journey to earth for the ruin of man:-
' At last his sail-brond vans
He spreads for flight, and, ia the surging smoke Uplifted, spurns the ground; thence many a league, As in a cloudy chair, ascending rides
Audacious; but, that seat soon failing, meets A vast vacuity: all unawares,
Fluttering bis pinions vain, plumb down he dropa Ten thousand fathoms deep, and to this hour Down had been failing, had not, by ILL CHANCE, The strong rebuff of some tumultuous cloud, Instinct with fire and nitre, burried him As many miles aloft."
In Milton's case, however, the truth is that he made the mistake of trying to disturb the motive of the story for artistic purposeg. a fatal mistake, as we shall see when we come to speak of the Nibelungenlied in relation to the old Norse epic cycle.

Though Vondel's mystery play of Lucifar is, in its execution, thetorical more than poetical, it did, beyond ali' question, influence Milton when he came to write Paradise Lost. The famous line which is generally quoted as the keynote of Satan's character-
"Better to reign in hell than eerve in heaven "-
seems to have been taken bodily from Vondef's play, and Milton's entire epic thowe a atudy of it. While Marlowe's majestic move-
ments alone are traceible in Siatan's apeech (writtea some yeara belore the reat of Parodise Lash, when the dramatic and not tha epic lorm had been selected). Milton's Sacan became afterwards a splendid amalgam not of the Mephistopheles but of the Faustus of Marlowe and the Lacifer of Vondel. Vondel's play must have posscesed a peculiar attraction for a poet of Miltocits views of human progress. Defective as the play is in execution, it is far otherwise in motive. This motive, if we consider it aright, is nothing ress than an explanation of man's anomalous condition on the carth spirit incamate in matter, created by God, a little lower than the angela-in order that bo may advance by means of these very manacles which inuprison him, in order that be may ascend by the staircase of the world, the ladder of ferchly conditions, above those cherubim and seraphim who, facking the education of sense, have not the knowledge wide and deep which brings man clone 10 God.

Here Milton found bis own favourike docerine of human development and self-education in a concrete and vividly artistic form. Much, however, as such a motive must have struck a man of Milion's Instincts, his intellect was too much ehained by Calvinism to permin of his treating the subject witb Vondel's philosophic breadth. The cause of laveifer's wrath had to be changed (rom jealowsy of human progress to jealousy of the Son's proclaimed upetiority. And the history of poetry shows that once begin to tamper with the central thought around which any group of incidents has crywallized and the entire story becomes thereby rewritten, as te have seen tn the case of the Agamemnan of Aeschyluas. Of the motive of his own epic, after he had abandoned the motive of yondel, Milton had as little permanent grasp as Virgil had of his. As regards the Odyssey, however, we need scarcely say that lis motive is merely artistic, not philosophic. And now we come to phllosophic motive.

The artist's power of thought is properly shown not in the direct enunciation of ideas but in mastery over motive. Here Aeschylus is by far the greatest figure in Western poetry-a prool perhapa among many proofs of the Oriental metriln of his genius. (As regards pore drampa, bowever, important as in motive, freedown organic vitulity in every part, is of more importance than evea motive, and in this freedom and easy abandonment the concluding part of the Oresteia is deficient as compared with such a play as Othello or Lear.) Notwithstanding the aplendid exception of Acechylus, the truth memis to be that the facuity of developing a poeticat narrative froph a philoeophic thought in Oriental, and on the whole foreign to the genius of the Western mind. Neither in Western drama nor in Western epic do we find, save in such rare cases as that of Vondel, anything like that power of developing a story from an idea which not only Jami but all the parable poots of Persia show.

In modern English poetry the motive of Shelley's dramatic poem Promelheus Unbound is a notable lliustration of what is here contended. Starting with the full intent of develaping a drama from a motive-starting with a univernalism, a befief that good shail be the fina! fool of ill--Sheltey cannot Anish his finat thece hundred lines without shifting (in the curse of Prometbeme into a Manichaeism as pure as that of Manes bimself.-
" Heap on thy soul, by virtue of this curse,
Ill deeds, then be thou damned, beholding good; Both infinite as is the universe."
According to the central thought of the poem human nature through the heroic protest and struggle of the human mind typified by Prometheus, can at last dethrone that eupernatural terror and tyranny (upiter) which the human mind had itseif iostalled. But, after its dethronement (when human nature becomes infinitely perfectible), how can the supernaturai tyranny exist apart from the human mind that imagined it? How can it be as "infinite as the universe "?
The motive of Paradise Lost is assaibod with much vipour by Victor Hugo in his poem Religions et Religion. But when Hugo, in the after parts of the poem. having destroyed Milton's "God," sets up an entirely French "- Dieu " of his own and tries " to justify" him. we perceive how pardonible was Mikon's lailure after all. Compare such defect of mentai krip and auch nebuinaity of thourht as is displayed by Milton, Shelley and Hugo with the strength of hand shown in the "Stamman "and "Absal" of Jami, and indeed by the Suff poets generally.

There is, however, one exception to this rule that Wetern poetry is nebulous as to motive. There is, besides the Iliad, one epic that refuses to be classified, though for entirely different reagons This is the Nibelang story, where we find unity of purpose and also entire freedom of movement We find combined here beauties which are nowhere else combined-which are, in fact, at war with eacb other everywhere else. We find a scheme, a real "scorn of thought" io an epic which is not the self-conscious work of 2 gionde poetic artificer, but is as much the slow growth of various times and various minds as is the Mahabhdrata, in which the heert-thought is merely that the Kammas defeated their relatives at dice and refused to disgorge their wianings.

This Northern epic-tree, as we find it in the Icelandic sagas, the Norns themselves must have watered; for it combines the virtues
of the epic of growth with thooe. of the epic of art. Though not writen in metre, it may uselully be compared with the epics of Grece and of India and Persia. Free in movement as the wind. which "bloweth where it listeth," it listeth to move by law. Its action is that of free will, but free will at play within a ring of necessity. Within this ring there throbs all the warm and passionate life of the world outside, and all the freedom apparently. Yet from that word it is enisled by a cordon of curses-by a zone of defiant flames more impregnable than that which girdled the beautiful Brynhild at Hindfell. Natural laws, familiar emotions; are at work everywhere in the story; yet the "Ring of Andvari," whose circumference is but that of a woman's finger, encircles the whole mimic world of the sagaman as the Midgard snake encircles the earth. For this artistic perfection in an epic of growth there are, of course, many causes, some of them traceable and some of them beyond all discovery-causes no doubt akin to those which gave birth to many of the beauties of other epics of growth. Originally Sinfiotli and Sigurd were the same person, and note how vast has been the astistic effect of the separation of the two Again, there were several different versions of the story of Brynhild. The sagamen, finding all these versions too interesting and too much beloved to be discarded, adopted them all-worked them up into one legend, so that, in the Voblsugga Saga we have a heroine possessing all the charms of goddess, demi-goddess, earthly princess and amazon-a heroine surpassing perhapa in fascination all other heroines that have ever figured in poetry.

It is when we come to consider such imaginative work as this that we are compelled to pause before challenging the Aristotelian doctrine that metrical structure is but an accidental quality of epic.
In speaking of the Nibelung story we do not, of course, speak of the German version, the Nibeluntenlied, a fine epic atill, though a degradation of the clder form. Between the two the differences are fundamental in the artistic sense, and form an excellent illustration of what has just been said upon the disturbance of motive in epic, and indeed in all poetic art. It is not merely that the endingas of the three principal characters, Sigurd (Sireqiricd), Gudrun (Kriemhilt), and Brynhild are entirely different; it is not merely that the Icelandic version, by missing the blood-bath at Fafnir. lair, loses the pathetic situation of Gudrun's becoming afterwarda an unwilling instrument of her husband's death: it is not merely that, on the other hand, the German version, by omitting the early love passages between Brynhild and Sigurd at Hindecil, missecs entirely the tragic meaning of her story and the terrible hate that is love resulting from the breaking of the troth; but the conclusion of each version is so exactly the opposite of that of the other that, while the German story is called (and very properly) "Krierahilt': Revenge," the story of the Votsunga Sage might, with equal propriety, be called Gudrun's Forgiveness.

If it be said that. in both cascs, the motive shows the same Titanic temper, that is because the Titanic temper is the special Tamper of characteristic of the North-Westem mind. The temper Eans a ad of revolt against authority secms indeed to belong Wash to that energy which succeeds in the modern developno epic, Eastern or Western, can exist without a struggle bet ween good and evib-and a struggle upon apparently equal terms-it must not be supposed that the warring of conflicting forces which is the motive of Eastern epic has much real rclation to the warring of conflicting forces which is the motive of Western epic.

And, as regands the machinery of epic, there is, we suspect, a decper significance than is commonly apprebended in the fact that the Satan or Shaitan of the Eastern world becomes in Vondel and Milton a sublime Titan who attracts to himself the admiration which in Eastern poetry belongs entirely to the authority of heaven. In Asio, eave perhaps among the pure Arabs of the descrt, underlying all religione forma, there is apparent a tompor of resignation to the irresiatible authority of heaven. And as refards the Aryans it is probable that the Titanic temper-the temper of revolt against authority-did not begin to show itvelf till they had moved across the Caucasul. But what concerns us here to the fact that the farther they moved to the north-went the more vigorously this temper asserted itself, the prouder grew man in bis attitude towards the gade, till at last in the Scandinavian cycle he became their equal and struggled alongaide them, shoulder to shoulder, in the defence of heaven against the asmults of hell. Therefore, as we say. the student of epic poetry must not euppose that there is any real parallel between the attitude of Vishnu (as Rama) towards Kavana and the attitude of Prometheus towards Zeus, or the attiqude of the human heroes towands Odin in Scandinavian poetry. Had Ravana been cloched with a properry constituted authority, had he been a legitimate god insead of a dermon, the Eastern doctrine of recognition of autbority would most likefy have contre in and the world would have been apared one at least of its enommous epics. Indeed, the Ravana of the Rdmayems answers somewhat to the Fafnir of the Volsunga Sega; and to plot agalnat demons is not to rebel against autbority. The vast field of Indian epic, however, is quite beyond us bere.

Nor can we do more than glance at the Relesola. From one point of view that group of ballads might be taken, no doubt, as a simple record of how the men of Kelevalis were akiful in capturing the
sisters of the Pojohla men. But from another point of view the universal struggle of the male for the female seems typified in this so-called epic of the Finns by the picture of the TLidy of the Rainbow" sitting upon her glowing arc and weaving her golden threads, while the bero is doing batde with the malevolent lorces of nature.
But it is in the Nibelung story that the temper of Western epic is at its best-the temper of the simple fighter whose business it is to fright. The ideal Western fighter was not known in Greece till ages witer Homser, when in the pase of Thermopylae the companions of Leonidas combed their long hair is the sun. The bersinese of the fighter in Scandinayian epic is to yield to no power whatioever, whether of earth or heaven or hell-to take a buffet from the Alfather himself, and to return it; to look Destiny herself in the face, crying out for quarter neicher to gode nor demons nor Norns. This is the trae temper of pure " heroic poetry" an it has hitherto flourished on this side the Caucasus-the temper of the Gghter who is Invincible because he feels that Fate herself falters when the-hero of the true strain defit-the fighter who feels that the very Norm thepmelves mume criage at list before the mimple courage of man standing naked and bare of hope against all aspalits, wbether of heaven or hell or doom. The proud heroes of the Yolsunga Saga utter no moans and shed no Homeric tears, knowing as they know that the day prophcsied is sure when, shoulder to aboulder, gods and men chall stand up to fight the entire brood of night. and venl, storming the very gates of Aprand.

That this temper is not the highest from the ethical point of view is no doubt true. Against the beautiful resignation of Buddhism it may secm barbaric, and if moral suasion could supplant physical force in eple-il Siddartha could take the place of Achilles or Sigurd- it might be better for the human race.

But we must now give undivided attention to pure egoistic or lyric imagination. This, as has been said, is sufficient to vitalize an forms of poetic art save drams and the The Lyrnte Greck epic. It would be impossible to discuss imatere adequately here the Hebrew poets, who have pro- wom duced a lyric so different in kind from all other lyrics as to stand in a class by itself. As it is equal in importance to the Great Drama of Shakespeare, Aeschylus and Sophocles, we may perhaps be allowed to call it the "Great Lyric." The Great Lyric must be religious-it must, it would seem, be an outpouring of the soul, not towards man but towards God, like that of the God-intoxicated prophets and psalmists of Scripture. Even the lyric fire of Pindar owes mucb to the fact that he had a childlike belief in the myths to which so many of his contemporaries had begun to give a languid assent. But there is nothing in Pindar, or indeed elsewhere in Greek poetry, like the rapturous song, combining unconscious power with unconscious grace, which we have called the Great Lyric. It might perhaps be said indeed that the Great Lyric is purely Hebrew. But, although we could hardly expect to find it among those whose language, compiex of syntax and alive with selfconscious inflexions, bespeaks the scientific knowingness of the Western mind, to call the temper of the Greal Lyric broadly "Asiatic" would be rash. It seems to belong as a birthright to those descendants of Shem who, yearning aiways to look straight into the face of God and live, could (when the Great Lyric was sung) see not much else.

Though two of the artistic elements of the Great Lyric, unconsciousness and power, are no doubt plentiful enough in India, the element of grace is lacking for the most part. The Vedic hymns are both nebulous and unemotional, as compared with Semitic hymns. And as to the Persians, they, it would seem, have the grace always, the power often, hut the unconsciousness almost never. This is incvitable if we consider for a moment the chief characteristic of the Persian imagination-an imagination whose wings are not so much " bright with beauty" as heavy with it-heavy as the wings of a golden pheasantstecped in beauty like the "tiger-moth's deep damasked wings." Now beauty of this kind does not go to the making of the Great Lyric.

Then there comes that poetry which, being ethnologically Semitic, might be supposed to exhibit something at least of the Hebrew temper-the Arabian. But, whatever may be said of the oldest Arabic poetry, with its deep sense of fate and pain, it would seem that nothing can be more unlike than the Hebrew temper and the Arabian temper as seen in later poets. It is not with Hebrew but with Persian poetry that Arabian poetry can
be usefully compared. If the wings of the Persian imagination are heavy with beauty, those of the later Arabian imagination are bright with beauty-hrilliant as an Eastern butterfly, quick and agile as a dragon-fy or a humming-hird. To the eye of the Persian poet the hues of earth are (as Firdausi says of the garden of Afrasiab) " like tbe tapestry of the kings of Ormuz, the alr is perfumed with musk, and the waters of the brooks are the essence of rosen." And to the later Arabian no less than to the Persian the earth is beautiful; but it is the clear and sparkling heauty of the eartb as she "wakes up to life, greeting the Sabacan morning "; we feel the light more than the colour. But it is neither the Persian's instinct for beauty nor the Arabian's quenchless wit and exhaustess animal spirits that so to the making of the Great Lyyic; far from it. In a word, the Great Lyric, as we have sald, cannot be assigned to the Asiatic temper generally any more than it can be ascigned to the European temper.

In the poetry of Europe, if we cannot say of Pindar, devout as he is, that he produced the Great Lyric, what can we say of Twe ote any other European poet? The truth is that, like the Great Drama, no stralght and so warm does it scem to come from the heart of man in its highest moods that we scarcely feel it to be litcrature at all. Passing, however, from this supreme expression of lyrical imagination, we come to the artistic ode, upon which subject the present writer can only reiterate here what he has more fully seid upon a former occasion. Whatever may have been said to the contrary, enthusiasm is, in the nature of thingt, the very basis of the ode; for the ode is a mono-drama, tbe actor in which is the poet himsell; and, as Marmontel has well pointed out, if the actor in the mono-drama is not afiected by the sentiments he expresses, the ode must be cold and lifecess. But, although the ode is a natural poetic method of the poet considered as prophetalthough it is the voice of poetry as a fine frency-it must not be supposed that there is anything lawiess in its structure. "Pindar," says the Italian critic Cravina," launches his vernes upon the bosom of the aca; be spreads out all his sails; he confronts the tempest and the rocks; the waves arise and are ready to engulf him; already he has disappeared from the spectator's view; when suddenly he aprings up in the midst of the waters, and reaches happily the shore." Now it is this Pindaric discursiveness, this Pindaric unrestraint as to the matter, which has led poets to attempt to imitate him by adopting an unrestraint as to form. Although no two odes of Pindar exhibit the same metrical structure (the Acolian and Lydian rhythms being mingled with the Doric in different proportions), yet each ode is in itself obedient, severcly obedient, to structural law. This we feel; but what the law is no metricist has perhaps ever yet been able to explain.

It was a strange misconception that led people for centuries to use the word "Pindaric" and irregular as synonymous terms; whereas the very essence of the odes of Pindar (of the few, alas! which survive to us) is their regularity. There is no more difficult form of poetry than this, and for this reason: when in any poetical composition the metres are varied, there must, as the present writer has before pointed out, be a reason for such freedom, and tbat reason is properly subjective-the varying form must embody and express the varying emotions of the singer. But when these metrical variations are governed by no subjective law at all, but by arbitrary rules supposed to be evolved from the practice of Pindar, then that very variety which should aid the poet in expressing his emotion crystallizes it and makes the ode the most frigid of all compositions. Great as Pindar undoubtedly is, it is deeply to be regretted that no other poet survives to represent the triumphal ode of Greecethe digressions of his subject matter are so wide, and his volubility is so great.

In modern literature the ode has been rained by theories and experiments. A poet like La Mothe, for instance, writes execrable odes, and then writes a treatise to prove that all odes ghould be written on the same modei. There is much confusion of mind prevalent among poets as to what is and what is not
an ode. All odes are, no doubt, divisible into two great chmes: those which, following an arrangement in slantas, are commonly called regular, and those which, following no such arrangement, are commonly called irregulat.
We do not agree with those who asert that irregular metres are of necessity Inimical to poetic art On the contrary, we believe that in modern prosody the arrangement of the thymes and the length of the lines in any rhymed metrical pasage may be detesmined ciither by a fixed sunzaic law or by a law inanitely desper-by the law which impels the soul, to a state of poetic exaltation, to scize hold of every kind of metrical aid, such as thyme, ceesura, ac. for the purpose of aceentuating and marking of each whade of emotion as it arises, regardless of any demands of stapza. But betwen the irregularity of makeshifl. such as, we find it in Cowiey and his imitaton, and the irreqularity of the "Ge freny " of wech a pocm, lor instance, as Coleridge's Kubla Khan, there in a difference in kind. Strange chat it is not io an ode at all but in this unique yric Rubla Rhax, descriptive of imaginative landscape, that an Engliihb poet has at tast conquered the crowning difficulty of writion in irregular metres. Having broken away from all restraints α couplet and stanza-having caused his rhymes and peunes to tall junt where and just when the emotion demands that they alould fall, scorning the exigencies of makeshitt no less than the exigcocies of stanza-he has found what every writer of trregular Eng isth odes has sought in vain, a music as entrancings. as natural. and at the asme time as inscrutable, as the music of the winds or of the sea.
The prearranged effects of tharp contrasts and antiphonal mowements, auch as some poets have been able to compase, do not of course come under the present definition of irresular metres at an. If a metrical passage does not gain law, it loses immenscly; and for this reason, perhaps, that the great charmo of the music of all verse, as distinquished trom the music of prose, ls incevitablernese of cadence. rom the music of prose, is inevitablonese of cadence. io regular metres we enjoy the pleasure of fecling that the rhymes riul inevitably fall under a recognized law of couplet or stanzat But it the passage flows independently of these. it must still dow incviabily-it must, in short, show that it is governed by anothes and a y yet deeper force, the inevitableness of emotional expressioa. The linces must be lons or short, the shymes must be arranged alter this or after that interval, not because it is convenient so to a arrange them, but because the emotion of the poet inexorably demands these and no other arrangements. When, however. Coleridge came to try his hand at irregular odes, such as the odes "To the Departing Year' 'and "To the Duchess of Devonshire," he certainly did not succeed.
As to Wordsworth's magnificent "Ode on Intimationa of Immortality." the sole impeachment of it, but it is a grave one, is that the length of the lines and the arrangement of the rhymes are not always incvilable; they are, except on rare occasions. governed neither by stanzaic nor by emotional law. For instance, what emotional neccasity was there for the following shyme-arrangement?
" My heart ts at your (estival,
My head hath its coronal,
The furness of your bliss I feel-I feel it all
Oh, evil day! if I were sullen
While carth hersell is adorning,
This sweet May morning;
And the children are culling, On every side.
In a thousand vallicys far and wide,
Fresh flowers."
Beautiful as is the aubstance of this entire passage, so far from paining, it loses by rhyme-loees, not in perspicuity, for Wordsworth like all his contemporaries (except Shelley) is mostly perspicuous, but in that metrical emphasis the quest.of which is one of the impulses that leads a poet to write in riyme. In spite, however, of its metrical defects, this famous ode of Wordsworth's is the fincst irregular ode in the language; for. although Coleridge's "Ode to the Departing Ycar " excels it in Pindaric fire, it is below Wordsworth's masterpiece in almost every otber quality save riythm. Ansong the writers of English irregular odes, next to Wordsworth, stands Dryden. The second stanza of tbe "Ode for St Cecilia's Day" is a great triumph.

Leaving the irregular and turning to the refular ode, it is nateral to divide these into two classes: (1) those which are really Pindaric in so lar as they consist of strophes, amistrophes and epodes, variously arranged and contrasted; and (2) those which consist of a regular succession of regular stanzas. Perhaps all Pindaric odes tend to show that this Corm of art is in English a mistake. It is casy enough to write one stanza and call it a strophe, anotber in adiferent movement and call it an ant istrophe, a third in a different movement still and call it an epode. But in modern prosody, disconnected as it is from musical and from terpsichorean aciesoce, what are there? No port and no critic can say.

What is requifite is that the car of she reader should catch a great metrical scheme, of which these thrce varieties of movement
are necesmery parts-should catch, in stort, that inevitableness of atructure upon which we have already touched. In order to justily a poet in writing a poem in three differsant kinda of movement. governed by no musical and no terpsichorean neceasity, a necessity of another kind should make itself apparent; that is, the metrical wave moving in the strophe should be metrically answered by the counter-wave moving in the antixtrophe, while the spode-which, as originally conccived by Stcxichorvs, was menely standing still aiter the balanced movements of the strophe and antistrophe-should clearty, in a language like onrs, be a blended echo of these two. A mere matrical contrast such as some poets labour to efiect is not a metrical answer. And if the reply to this eriticism be that in Pindar himself no such metrical scheme is epparent, that is the strongest possible argument in support of our position. If indeed the metrical cheme of Pindar is not a pparent, shat is because, having been written for chanting, it wate subordinate to the lost musical scheme of the musician. It has been contended, and is likely enough, that this mueical scheme was simple-as simple, perhaps, as the scheme of a cathedral chant; but to It, whatever it was, the metrical wheme of the poet was subordinated. It need tearcely be said that the phrase " metrical echerse " is used here not in the narrow sense as indicating the position and movement of strophe and antistrophe by way of cimple contrat, but in the deep metrical sense as indicating the value of each of these component parts of the ode, si a counter-w/ve balancing and explalning the other waves in the harmony of the entire composition. We touch upon this matter in order to thow that the moment odes ceased to be chanted, the words strophe, antistrophe, and cpode lost the musical value they had among the Greeks, and pretended to a complex metrical value which their ectual metrical stnueture doce nor appear to jusilly. it does not follow from this that odes should not be so arranged, but it does foilow that the poet's arrangement should justify itself by disclosing an entire metrical scheme in place of the musical scheme to which the Greek choral lyric was evidently subordinated. But even If the poet were a afficiontly skilled metricit to compass a acheme embracing a wave, an answering wave, and an echo gathering up the tones of each, i.c. the strophe, the antistrophe and the epode, the car of the reader, unaided by the musical emphasis Which supported the rhythms of the old choral fyric, is, it chould seem, incapable of gathering up and semembering the mounds further than the strophe and the antistrophe alter which it demanda not an epode but a reiurn to the strophe. That is to say, an epode, as alternating in the body of the modern ode, is a mistake; a aingle epode at the end of a group of strophes and antistrophes (as in mome of the Griek odes) has, of course, a different function altogether.

The great difficulty of the English ode is that of proventing the apparent epontaneity of the impulse irum being marred by the apparent artifice of the form; for, assuredly, no writer subtequent to Coleridge and to Keats would dream of writing an ode on the cold Horatian principles adopted by Warton, and even by Collans, in his beautliful P Ode to Evening."

Of the mecond kind of regular odes, those consisting of a regular suecession of regular stanzas, the so-called odes of Sappho are, of course, to transcendent that no other ammiory lyrics can be compared with them. Never before these eongy were butg and never aince did the human soul, in the grip of a fiery pasion, utter a cry like hers: and from the executive point of view, in directnese, in lucidity, In fhat high imperious verbal economy which only mature herself can teach the artist, she has no equal, and none worthy to take the place of second-not even in Heine, nor even in Burns. Turaing. however, to modern poetry; there are some raynificent examples Of this simple form of ode in English poetry-Spenser's immortal "Epithalamion" leading the way in point of time, and probably also in point of excellence.

Fervour being absolutcly essemial, we think, to a great English ode, fluidity of metrical movement can never be dispensed with. The more billowy the metrical waves the better suited are they to render the emotions expressed by the ode, as the reader will sec by referring to Coleridge's "Ode to France" (the finest ode in the English language, according to Shelley), and giving epecial attention to the first stana-to the way in which the first metrical wave, after it bad gently fallen at the end of the first quatrain, deaps up again on the double rhymes (which are expressly introduced for this effect), and goes bounding on, billow after billow, to the end of the stanza. Not that this fine ode is quite free lrom the great vice of the English ode, rhetoric. If we except Spenaer and, in one inetance. Collins, it can hardly be said that any English writer before Shelley and Keats produced odes independent of thetoric and supported by pure poetry alone. But fervid as are Shelley" "Ode to the Wett Wind" and Keats's odes "To a Nightingmle" and "On s Grecian Urn," they are entirely lree from rhetorical flavocir. Notwithtanding that in the "Ode on a Grecian Urn" the Grst stanza does not match in rhyme arrangement with the others, while the second stanza of the "Ode to a Nightingale" varies from the rest by running on four thyme-mounds instead of five, vexing the ear at first by dirappeinted expectation, these two odet are. after Coleridge's "France," the figest regular odes perhape in the English language.

With regard to the French ode, Maiherte gat the fint writer $x \times 2$ t5
who brought it $t o$ perfection. Malherbe showed also more variety of mood than it is the fashion just now to credit him with. This may be especially noted in his "Ode to Louis XIli." His disciple Racan is nof of much account. There is certalnly much vigour in the odes of Rouseeau, but it is nor till we reach Victor Hugo that we realize what French poetry can achieve in this line; and contemporary poetry can hardly be examined here. We may say, however, that come of Hugo's odes are pruly magnificent. As a pure lyrist his place among the greatcst poets of the world la vety high. Here, though writlng in an infeflor language, he ranka with the greatest mamers of Greece, of England, and of Germany. Had the attempted no other kind of poctry than lyrical, bis would stif have been the firat name in French poctry. Whatever is defectlve in his work arises, as in the case of Euripides, from the importation of tyrical force where drematic force is malnly needed.

The main varietics of iytical poetry, such as the idyll, the settie, tho ballad, the sonnet, \&xc, are treated in separate anticles; but a word on two must be acid here about the song and the elegy. To write a good song requires that cimplicity of grammatical structure which is foreign to many natures-that mastery over direct and simple speech which ondy true passion and feeling can give, and which "coming frow the heart goes to the heart." Without going so far as to any that no man is a poet who cannot write a dood song, it may certainly be said that no man can-write a good eong who is not - good poet. In modem times we have, of course, nothint in any way representing those choral dancesongs of the Greeks, which, originating in the primitive Cretan wardances, became, In Pindar's time, a eplendid blending of sang and ballet. Ner have we anything exactly repreacating the Greek acolis, thote short drinking eotges of which Terpander is aid to have been the inventor. That these scolis were written, not only by perets like Alcaeus, Anserean, Praxilla, Simonides, but also by Sappho and by Pindar, shaws in what high esteem they were held by the Greeks. These songs seem to have been as brief as the stomelli of the Italian pessant. They were accompanied by the lyre, which was handed from singer to singer as the time for each scollon came round.

With regard to the stornello, many critics seem to confound it with the rispetio, a very different kind of song. The Italith rispello consists of a stanza of inter-rhyming lines ranging from six to ten in number, but often not exceeding cight. The Tuscan and Umbrian sforrello is much shorter, consisting, Indeed, of a hemistich naming some naturai object which suggests the motive of the little poem. The nearest approach to the Italian stomello appears to be, not the rispetto, but the Welsh triban.

Perhaps the mere dificulty of rhyming in Engish and the facility of thyming in Italian must be taken Into account when we inquire why there is nothing in Scotland-of course there could be nothing in England-answering to the nature-poetry of the Italian peasant. Most of the Italian rispetti and stomelif seem to be improvisations; and to jmprovise in English is as dificult as to improvise is easy in Italian. Nothing indeed is more Interesting than the improvisatorial poetry of the Italian peasants, such as the canzonie. If the peasantry discover who is the composet of a canzone, they will not sing it. The speciality of Italian peasant poetry is that the symbol which is mostly erotic is of tho purest and most tender kind. A peasant girl ซill improvise a song as impassioned as "Come into the Garden, Maud," and as Irce from unwholesome taint.

With regard to English songs, the critic cannot but askWherein lies the lost ring and charm of the Elizabethan song. writers? Since the Jacobean period at least. few have succeeded in the art of writing real songs as distinguished from mere book lyrics. Between songs to be sung and songs to be read there is in our time a difference as wide as that which exists between plays for the clowet and plays for the boerds.

Heartiness and melody-the two requisites of ang which can never be dispensed with-can rarely be compassed, it seems, by one and the same individual. In both these qualities the Elizabethan poets stand pre-aninent, though even with them the melody is not so singable as it might be made. Since their time heartiness has, perhaps, been a Scottish rather than an English endowment of the song-writer. It is difficult to imagine an Englishman writing a song lize "Tullochgorum" or a song
like "Maggic Lauder," where the heartiness and impuice of the poet's mood conquer all impediments of close vowels and rugged consonantal combinations. Of Scoltish song-writers Burns is, of course, the head; for the songs of John Skinner, the heartiest song-writer that has appeared in Great Britain (not excluding Herrick), are too few in number to entitle him to be placed beside a poet so prolific in heartiness and melody as Burns. With regend to Campbeli's heartiness, this is quite a different quality from the heartinem of Burns and Skinner, and is in quality Engtish rather than Scottish, though, no doubt, it is of a fine and rare strain, especially in "The Battle of the Balic." His songs illustrate an infirmity which even the Scottish song-writers share with the Engliah-a defective sense of that true song.warble which we get in the stomelli and rispetti of the Italian peatants. A poet may have heartiness in plenty, but if he has that love of consonantal effects which Donne displays be will never write a first-rate zong. Here, indeed, is the crowning difficulty of song-writing. An extreme simplicity of atructure and of diction must be accompanied by an instinctive apprehension of the melodic capahilities of verbal sounds, and of what Samued Lover, the Irish song-writer, called "singing" words, which is rate in this country, and seems to belong to the Celtic rather than to the Sason ear. "The song-writer," says Lover, " must frame his song of open vowels with as few guttural or hisaing sounds as possible, and he must be content sometimes to sactifice grandeur and vigour to the necesxity of selocting singing words and not reading words." And he exemplifies the distinction between singing words and reading words by a line from one of Shelley's cong-

" ' The fresh earth in new leaves drest.:

"where nearly every word shuts up the mouth instead of opening it." But closeness of vowel sounds is by no means the only thing to be avoided in song-writing. A phrase may be absolutely unsingable, though the vowels be open enough, if it is loaded with consonants. The truth is that in song-writing it is quite as important, in a consonantal language like ours, to at tend to the consonants as to the vowels: and perhaps the first thing to avoid in writing English songs is the frequent recurrence of the sibilant. But this applies to all the hrief and quintessential forms of poetry, such as the sonnet, the elegy, \&c.

As to the elegy-a form of poetic art which has more relation to the objects of the external world than the song; but less relation to these than the stornello-its scope seems The every to be wide indeed, as practised by such various writers as Tyrtacus, Theognis, Catullus, Tibullus, and our own Gray. It may almost be said that perfection of form is more necessary here and in the sonnet than in the song, inasmuch as the artistic pretensions are more pronounced. Hence even such apparent minutize as those we have hinted at above must not be neglected here.

We bave quoted Dionyaius of Halicarnassus in relation to the arrangement of words in poetry. His remarks on sibilants are pmepect equally deserving of attention. He goea so far 25 to proction tay that is entirely disagreeable, and, when it often recurs, insupportable. The hiss seems to him to be more appropriate to the beast than to man. Hence certain writers, he says, often avoid it. and employ it with regret. Some, he tells us, have composed entire odes without it. But if sibilation is a defect in Greek odes, where the softening effect of the vowel sounds is $s 0$ potent. it is much more so in English poeiry. where the consonants dominate, though it will be only aperially noticeable in the brief and quintessential forma such as the song. the sonnet, the elegy. Many poets only attend to their sibilants when these clog the rhythm. To write even the briefest song without a sibilant would be a tour de force; to write a good one would no doube be next to impossible. It is singular that the only metricist who ever. aftempted it was John Thelwall, the famous "Citizen John;" friend of Lamb and Coleridge, and editor of the famous Champion newspaper. where many of Lamb's epigrams appeared. Thelwall gave much attention to metrical questions, and tried his hand at various. metres. Though "Citizen Johs's" sapphics might certainly have been better, he had a very remarkable critical insight inta the rationale of metrical effects, and his "Song without a Sibilant" is extremely neat and ingenious. Of course, however. it would be mere pedantry to exaggerate this objection to silitants even in these brief forms of poetry.
(T. W.-D.)
 physicist; was born in Hamburg on the 2gh of December 1796. His father, a wealthy manufacturer, having been all but ruined by the French siege, be bad, when only sixieen, to apprentice himself to an apothecary in Hamburg, and when twenty-two began to earn his living as an apothecary's asistant at Itreboe. Ambition and a strong inclination towards a acientific carear led him to throw up his business and remove to Berlin, where he entered the university in $\mathbf{1 8 2 0}$. Here his abilities wre speedily recognized, and in 1823 he wai appointed meteorological observer to the Academy of Sciences. Even at this early period he had conceived the idea of founding a physical and chemical ecienufic journal, and the realiration of this plan was hastened by the sudden death of L. W. Gilbert, the editor of Cilberts Annalew der Physih, in 1824. Poggendorfi immediately put himself in communication with the puhlisher, Barth of Leiprig, with the result that he was installed as editor of a scientific journal, Annalen der Physih and Chemic, which was to be a continuation of Gilberts Anralen on a somewhat extended plan. Poggendorf was admirably qualified for the post. He had an extraordinary memory, well stored with scientific knowledge, both modern and historical, a cool and impartial judgment, and a strong preference for facts as against theory of the speculative kind. He was thus able to throw himsclf into the spirit of modera experimental science. He possessed in ahuadant measure the German virtue of orderliness in the arrangement of hnowledge and in the conduct of husiness. Further be had an engaging geniality of manner and much tact in dealing with men. These qualities soon made Poggendorffs A naden the foremost scientific journal in Europe.

In the course of his fifty-two years' editorship of the Asmalen Poggendorff could not fail to acquire an unustal acquaintance with the labours of modern men of science. This knowledge, joined to what he had gathered by historical reading of equally unusual extent, he carefully digested and gave to the mordd in his Biographisch-literarisches Handwörterbuch sur Geschichte der exacten Wissenschaften, containing notices of the lives and labours of mathematicians, astronomers, physicists, and chemists, of all peoples and all ages. This work contains an astounding collection of facts invaluable to the scientific hiographer and historian. The first two volumes were published in 1863; after his death a third volume appeared in 1893, covering the period 1858-1883, and a fourth in 1904, coming down to the beginning of the 20th century.

Poggendorf was a physicist of high although not of the very highest rank. He was wanting in mathematicai ability, and never displayed in any remarkable degree the still more important power of scientific generalization, which, whether accornpanied by mathematical skill or not, never fails to mart the highest genius in physical science. He was, however, an abic and conscientious experimenter, and was very fertile and Ingenious in devising physical apparatus. By far the greater and more important part of his work related to electricily and magnetism. His literary and scientific reputation speedily hrought him honourable recognition. In 18 jo he was made royal professor, in 1834 Hon. Ph.D. and extraordinery professor in the university of Berlin, and in $\mathbf{1} 839$ member of the Berlin Academy of Sciences. Many offers of ordinary professorships were made to him, but he dectined them all, devoting himself to his duties as editor of the Annalen, and to the pursuit of his scientific reseaiches. He died at Berlin on the 24 h of January 1877 .
pocaio ($1380-1459$). Gian Francesco Pogio Bracciotini, Italian scholar of the Renaissance, was born in 1380 at Terrasnuova, a village in the territory of Florence. He studied Latin under John of Ravenna, and Greek under Manuel Chrysoloras His distinguished abilities and his dexterity as a copyist of MSS. hrought him into early notice with the chicf scholars of Florence. Coluccio Salutati and Niccolo de' Niccoli befriended him, and in the year 1402 or 1403 he was received into the service of the Roman curia. His functions were those of a secretary; and, though he profited by benefices conferred on him in lieu of salary, he remaiped a layman to the end of his life. It is noticetalie
that, while he held his office in the curia through that momentotas period of fifty years which witnessed the Councils of Constance and of Basel, and the final restoration of the papacy under Nicholas V., his sympathies were dever attracted to ecclesiastical affairs. Nothing marks the secular attitude of the Italians at an epoch which decided the future course of both Renaisance and Reformation more atrongly than the mundane proclivities of this apostolic secretary, heart and soul devoted to the resuscitation of classical studies amid conflicts of popes and antipopes, cardinals and councils, In all of which he bore an official part. Thus, when his duties called him to Constance in 1414, he employed his leisure in exploring the libraries of Swiss and Swabian convents. The treasures he brought to light at Reichenau, Weingarten, and above all St Gall, restored many lost masterpieces of Latin literature, and supplied students with the teits of authors whose works had hitherto been accessible only in mutilated copies. In one of his epistles he describes how he recovered Quintilian, part of Valerius Flaceus, and the commentaries of Asconius Pedianus at St Gall. MSS. of Lucretlus, Columella, Silius Italicus, Manilius and Vitruvius were unearthed, copied by his hand, and communicated to the learned. Wherever Poggio went he carried on the same industry of research. At Langres he discovered Cleero's Oration for Caccina, at Monte Cassino a MS. of Frontinus. He also could boast of having recovered Ammianus Marcellinus, Nonius Marcellus, Probus, Flavius Caper and Eutyches. If a codex could not be obtained by fair means, he was ready to use fraud, as when he bribed a monk to abstract a Livy and an Ammianus from the convent library of Hersfield. Resolute in recognizing erudition as the chief concern of man, he sighed over the folly of popes and princes, who spent their time in wars and ecelesiastical disputes when they might have been more profitably employed in reviving the lost learning of antiquity. This point of view is eminently characteristic of the carlier Italian Renaissance. The men of that nation and of that epoch were bent on creating a new intellectual atmosphere for Europe by meana of vital contact with antiquity. Poggio, tike Aeneas Sylvius Piccolomini (Pius II.), was a great traveller, and wherever he went he brought enlightened powers of observation trained in Hiberal studles to bear upon the manners of the countries he visited. We owe to his pen curious remarks on English and Swiss customs, valuable notes on the remains of antique art in Rome, and a singularly striking portrait of Jerome of Prague as he appeared before the judges who condemned him to the stake. It is necessary to dwell at length upon Poggio's devotion to the task of recovering the classics, and upon his disengagement from all but humanistic interests; because these were the most marked feature of his character and career. In literature he embraced the whole sphere of contemporary studies, and distinguished himself as an orator, a writer of rhetorical treatises, a panegyrist of the dead, a violent impugner of the living, a translator from the Greek, an epistologrepher and grave historian and a facetious compiler of fabliaux in Latin. On his moral esays it may suffice to notice the dissertations On_{n} Nobilify, On Vicissitudes of Fortime, On the Misery of Hwman Lije, On the Infelicity of Princes and On Marriage in Old Age. These compositions belonged to a species which, since Petrarch set the fashion, were very popular among Italian acholans They have lost their value, except for the lew matters of fact embedded in a mass of commonplace meditation, and for some occasionally brilliant illustrations. Poggio's Hislory of Florence, written in avowed Imitation of Livy's manner, requires separate mention, since it exemplifies by fte defects the weakness of that merely stylistic treatment which deprived so much of Broni's, Carlo Aretino's and Bembo's work of historical weight. A somewhat different criticism must be passed on the Faceliae, a collection of humorous and indecent tales expressed in tuch Latinity as Poggio could command. This book is chiefly remarkable for its unsparing satires on the monastic orders and the secular clergy. It is also noticeable as illustrating the latinizing tendency of an age which gave classic form to the lightest easays of the fancy. Pogefo; it may be observed, was a flatat and
copious writer in the Latin tongue, bot not an, elcgant scholhr. His knowledge of the ancient authors was wide, but his taste was not select, and his erudition was supeticial. His translation of Xenophon's Cyropeedia into Latiin cannot be praised. los sccuracy. Among contemporaries the passed for one of the most lormidable polemical or gladiatorial rhetoricians; and a considerable section of his extant works are invectives. One of these, the Dialague agoinu Hypocritas, was aimed in a epirit of vindictive hatred at the vices of ecclesiastics; another, written at the request of Nicholas V., covered the antl-pope Felix with scurribous ebuse. But his most famoss compositions in this kind are the personal invectives which he discharged againse Filefo and Valla. All the resources of a copious and unclean Latln vocabulary were employed to degrade the objecte of his atire; and every erime of which bumanity is capable was ascribed to them without diectimltation. In Faleifo and Valla Poggio found his match; and Italy was amused for yenrs with the spectacle of their indecent combats. To dwell upon such literary infamles would be below the dignity of the historian, were it not that thase habits of the early Itation humanists imposed a fashion upon Europe which extended to the later age of Scaliger's contentions with Scioppius and Milton's with Salmasius. The greater part of Pogrio's long life was spent in attendance to his duties in the papal ouria at Rome and chewhere. But about the year 1492 he finally retised to Florence; where he was admitted to the burghership, and on the death of Carlo Aretino in 1453 was eppointed chancetior and historior grapher to the republic. He had aleeady huilt himself a vills in Valdamo, which he edorned with a collection of antique sculpture, coins and inscriptions. In 1435 he had mierried a girl of eighteen named Vaggia, of the famoms Buondelmonte blood. His declining daye were spent in the diecharge of his honourable Florentine office and in the composition of his history. He died in 1459, and was buriod in the church of Santa Croce. A statue by Donatelio and a picture by Antonio del Pollajuolo remained to commemorate a citizen wha chiefly for his services to humanistic literature deserved the notice of posterity.
Poggio's works were printed at Basel in 1538, " ex aedibus Henrici Petri". Dr Shepherd's Life of Pugfo Braccidini (1803) is a good authority on his biography. For his poition in the history of the revival, see Voigt's Wiederbelebung des classischen Allerthmms, and Symonds's Remaissance in Ilaly.
J.A.S.)

TOALIzzA (Serbo-Croatlan, Polfica), a' trict of mountainoua land in Dalmatia, Austria; formerty the seat of an independent republic. The territories of Poglizes lay chiefly within the south-easterly curve made by the river Cetina before It enters the Adriatic at Amises (Omil). They also comprised the fastneases of the Mossor range (4500 ft .) and the fertile strip of coast from Amiste to Stobrex, to m. W.N.W. The inhabitants lived in scattered villages, each ruled by its count, and all loget her ruled by the supreme count. These officers, with the three judges, were always of noble hirth, though elected by the whole body of citizens. There were two orders of nobles; the higher, iscluding about zo familics, claimed Hungarian deacent; the lower, claiming kinship with the Bosnian aristocracy. Belown these ranked the commonens and the serfa. At a very early date the warlike highlanders of Poglizisa became the friends and allies of the Almissan corsairs, who were thus enabled to harass the seaborne trade of their neighbours without fear of a sudden attack by land. Alralsse recelved a charter from Andrew 11. of Hungary in 1207, and remalned under the nominal protection of Hungary until s444, when both Amnissa and Poglizze accepted the suzerainty of Venice, while retaining their internal freedom. The population of Poglizza numbered 6566 in 1806. In the following year, however, the republic incurred the enmity of Napoleon by rendering aid to the Rusaians and Montenegrina In Dalmatia; and it was invaded by French troops, who plundered its villages, massacred its inhabitants, and finally deprived it of independence.
See the Answario Dalmatico for 1885 (published at Zers); and A. Fortini Fravils into Dalimatia (London, 1778).

POHCABE, RATHOND (1860-), Fresch stateman, was born at Barde-duc on the zoth of August $\mathbf{8 6 0}$, the son of Nicolas Ancoinjn Helene Poincare, a distinguished civil servant and metconologist. Educated at the university of Paris, Raymond was called to the Paris bar, and was for some time law editor of the Vollaine. He had served for over a year in the department of agriculture when in $\mathbf{x 8 8} 7$ he was elected deputy for the Meuse, He made a great reputation in the Chamber as an economist, and atit on the budget commissions of $\mathbf{1 8 9 0 - 1 8 9 1}$ and 1892. He was minister of education, fine arts and religion in the firs cabinet (April-Nov. 2893) of Charles Dupuy, and minister of fanance in the second and third (May 1894-Jan. 1895). In the succeeding Ribot cabinet Poincare became minister of public instruction. Although he was encluded from the Radical cabinet which tollowed, the revised echeme of death duties proposed by the new ministry was based upon his proposals of the previous year. He became vice-president of the chamber in the autumb of 2805 , and in spite of the bitter hostility of the Redicals retained his position in 1896 and 1897 . In 1906 he seturned to the ministry of finance in the short-lived Sarrien miaistry. Poincart had retained his practive at the bar during his political career, and be published several volumes of eseays on litetary and political subjects.

His brother, Lucien Poincart (b. 1862), famous as a physicist, beceme inspector-general of public instruction in 1902. He is the author of La Physique mederne (1906) and L'Electricill (1907). Julas Henri Poincare (b. 1854), also a distinguished phyaiciat, betonga to another branch of the same family.

POinsirilh. The Poinselfia palcherrime of gardens (Euphorhia pulcherrime of botanists), mative of Mexico and Central America, with its brilliant scarket bracts, stands uprivalled amongst decorative plants. The white-bracted sort, var. afbc, is not so effective, but the double-flowered, var. plenissima, in which the brilliant inflocescence is branched, is as brilliant as the type, and keeps long in flower. They are increased by cuttings in apring, which when taken off with a heel strike freely m brisk heat. They require good turly loam, with an addition of one-sixth of teaf-mould and a little sand, and should be kept in a heat of from 65° to 70° at might, with a cise of 10° by day. To prevent their growing lanky, they should be kept with their beads almost touching the glass; and as the pots get filled with roots they must be shifted into others, 7008 in . in diameter. About August they may be inured to a heat of 50° at night, and thoukd be brought to bear air night and day whilst the weather th mana, or they:may be placed out of doors for a month under a south wall in the full sun. This treatment matures and prepares them for flowering. In sutumn they must be removed to a house where the temperature is 50° at night, and by the end of September some of them may be put in the stove, where they will come into flower, the remainder being placed under heat later for succession. When in bloom they may be kept at about 55° by night, and se placed will last longer than if kept in a higher temperature.

FOLEDOR. LOEIS (1777-1859), French mathematician, was born at Paris on the 3rd of January 1777. In 1794 he became a scholar at the Ecole Polytectusique, which he left in 3796 to act as a civil enginetr. In r8at he was appointed professor of mathematics at the Lycte, in 1809 professot of analyais and mechanics, and in 1816 examiner at the Ecole Polytechnique. On the death of J. L. Lagrange, in 1883, Poinsot was elected to his place in the Académic des Sciences; and in 1840 he berame a member of the superior council of public instruction. In $1 \xi_{4} 6$ he was made an officer of the Legion of Honour; and on the formation of the senate in $2 \mathrm{~K}_{52}$ he wha chosen a member of that body. He died at Paris on the sth of December 1859
Poinsot's earliest work was his Elemens de shatique (1803; 9th edition, 1848), in which he introduces the idea of statical couples and investigates their properties. In the Theorie mownille da la rolalfox des corps (1834) he treats the motion of a rigid body geometrically, and shows that the most general motion of such a body can be represented at any instant by a rotation about an axis combined witha transhation paralled to this axis,
and that any motion of a body of which one point is fixed may be produced by the rolling of a cone fixed in the body on a cone fixed in space. The previous treatment of the motion of a rigid body had in every case been purely analytical, and so gave no aid to the formation of a mental picture of the body's motion; and the great value of this work lies in the fact that, as Poinsot bimself says in the introduction, it enables us to represent to ourselves the motion of a rigid body as clearly as that of a moving point. In addition to publishing a number of works on geometrical and mechanical subjects, Poinsot also contributed a number of papers on pure and applied mathematics to Lion. rille's Jowrnal and other scientific periodicals.

See J. I. F. Bertrand, Discours ant fumbrailles de Poinset (Paris, 1860).

POINT PLPASANT, a lown and the county-seat of Mason county, West Virginia, U.S.A., on the Ohio river, at the mouth of the Kanawha siver, and about midway between Pitsburg and Cincinnati. Pop. (1900) 1934; (1910) 2045. It is served directly by the Baltimore \& Ohio and the Kanawha \& Michigan (controlled by the Hocking Valley) railways, and by the Hocking Valley sailway on the oppoaite side of the Ohio river. The Kanawha river is navigable (by the use of locks and dams) for 90 ma . above that town, and Point Pleasant is a re-shipping point for Kanawha coal. Coal and salt are mined in the vicinity, but the surrounding country is principally agriculturat.

The battle of Point Pleasadt, the only important engagement in "Lord Dunmore's War," was lought here on the toth of October 1774 between about 1100 Virginia militiamen, under Gencral Asdrew Lewis (c. 1720-1781),' and about 1000 Shawnees and their allies, under their chief, Cornstalk (c. 1720-1773)? Lewis had been ordored to meet Lord Dunmore here with a body of militiamen (recruited from Botetourt, Weat Augusta and Fincastle counties), but when he reached the mouth of the Kanawha, after marching 160 m . from. Fort Union (bow Lewisburg, W. Va.), Dunmore's farce, which wat to have gone over the Braddock trail to Fort Pitt, and theace down the Ohio river, had not arrived. Early on the morning of the roth the Indians suddenly attacked, and the battle continued fiercety throughout the day. At night the Indians crossed the Ohio river, leaving behind many of their dead. The whites lost about i44 in killed and wounded, Colonel Chades Lewis (1733-17i4), a brother of the commanding offiver, being among the former. In Deoember Lord Dumore concluded a treaty with the Indians, by which they surrondered their claim to lands south of the Ohio and agreed not to molest whites travelling to the westers country. The battle, which overawed the Ladians, and the treaty, which was not seriously broken for three years, made possible the rapid settlement of the western country, especially of Kentucky, during the cady years of the War of Independence. Four years before the battle the Virginia House of Burgerses had awarded to General Lewis, for his earlier services in the Freach and Indian War, 9876 acres of had, including the

${ }^{2}$ General Lewis was born in Donegal. Ireland; served with Washington of Fort Necemity and at Braddoct's defeat; was commiscioncr

 from Virgioia to coaclude the treaty with the Six Nations at Fort Stamwix (1768); was a menber of the Virginia House of Burgesses for several years: served as a brigadier-general in the War of Independence: and in 1776 forced Lord Dunmore to retire frome Gwynn's lsland, in Chesapcake Bay, where he had takep refoée.${ }^{2}$ Cormatalk and his gon were kulled withing the fort at Point Plica cast in November 1777 by Virginian soldiers (contrary to the protests of their commandisg officers), who thus avenged the death of a comrane. He wai at the time warning the garrisoty of his irabinty to hold the Shawnees to the terms of the treaty of 1774 - There is a granita monumeat (exteted in 1899) over his grave in the yard of the court-bpuse:
:Varinus American writers have asserted that Lord Dunmerr: Incited the Indians to attack the frontier in order to divert the colonists from their opposition to Great Britain, and that be purposely refraized from effecting a junction with Lewing so thas Lewis might be defeated and Virginia thus be greatly crippled on the eve of the threatened war with the mother country; and i:e batte itself has accordingly frequently been referred to as the first battle of the War of Independence. The assertions with regard to Lord Dunmore, however, rest on circumetantial evini-act alpee, and have anver been conclusively proved.
premant site of Point Plement; the survey of this grant was made by George Washington. After the battle General Lewis sent a detachment to build a fort (called Fort Blair) here; in 1776 Fort Randolph (abandoned in 1779) was erected on the same site, and in 178 s (from which year the permanent settlement of the town may be dated) a third fort was built here. Daniel Boone lived here from 1788 until about 1799. In 1794 the village of Point Pleasant was platted; it was incorporated as a town in 1833. A granite monument (86 ft . high) commemorating the batule was unveiled on the roth of Octobier 1909.
See J. T. McAllister's article. "The Battle of Poiat Pleamant,"" in the Virginis Mogasine of History and Biogrophy (1gol-1goo), nol. x, and Virgil A. Lewis, History of the Balle of. Point Pleasand (Charlenton W, Ve, 1909).
porson. An exact definition of the word "poison" (derived through Fir. from Lat. polio, potionem, a drint; i.e. a deadly draught) is by no means easy. There is no legal definition of what constitutes a poison, and the definitions usually proposed are apt to include either too much or too little. Generally, a poison may be defined to be a substance having an inherent deleterious property, rendering it capable of destroying life by whatever avenue it is taken into the system; or it is a substance which when introduced into the system, or applied externally, iajures bealth or destroys life irrespective of mechanical means or direct thermal changes. In pepular language a poison is a substance capable of destroying life when taken in small quantity; but a substance which destroys life by mechanical means as, e.g. powdered glass, is not, strictly speaking, a poison.

The subject of toxicology forms one of the most important branches of medical jurisprudence (q.v.). The medical jurist should be familiar with the nature and actions of poisons, the symptoms which they produce, the circumstances which modify their working, the pathological results of their action, and the met hods of combating these.

Action of Poisons.-Poisons may exert a twofold action. This may be either local, or remote, or both local and remote. The local action of a poison is usually one of corrosion, inflammation, or a direct effect upon the sensory or motor nerves. The remote actions of poisons are usually of a specific character, though some writers group the remote effects of poisons under two heads, and speak of the common and the specific remote effects of a poison. The local action of a poison of the corrosive class is usually so well marked and obvious that the fact of tho administration of a poison of this class is generally unmistakable. The same may be said, in a less degree, of the irritant poisons, especially the mineral irritants; but here the symptoms sometimes so closely simulate those of natural disense as to render the recognition of the administration of poison a matter of difficulty. Hence an accurate acquaintance with the remote specific effects of the various poisons is indispensable to the medical jurist. The class of poisons which has been administered or taken will thus be suggested to his mind by the observation of the symptoms; and not unfrequently the specific poison taken will be suspected. It is almost universally admitted that absorption of a poison is necessary for the production of its specific remote effects, and the old notion that a poison may kill, hy its action through the nervous system, without absorption, is abandoned.

Modifying Circumstances.-The ordinary action of a poison may be greatly modified by the largeness of the dose, by the state of aggregation, admixture, or of chemical combination of the poison, by the part or membrane to which it is applied, and by the condition of the patlent. Thus, for example, opium may be a medicine or a poison, according to the dose in which it is given; and a dose of the drug which may be beneficial ta an adult in certain states of the system may be fatal to a child, or to an adult when suffering from some forms of discase. All barium salts, again, are poisonous, except the quite insoluble sulphate. The simple cyanides, and many double cyanides, are highly poisotous; but yellow prussiate of potash, which is a double cyande of iron and potassium, is almost without action upon the system. The part or tissue to which a poison is applied
greatly affects the ectivity of a poizorsoving to the varrugs rapidity with which absorption takes place through the cuta neous, mucous and serous surfaces, and by the other tissues of the body. Curare, an arrow poison, may be swallowed in cossiderable quantity without appreciable result, whilst a minute quantity of the same substance introduced into 2 wound is speodily fatal. Idionyncrasy has an important bearing in toxicology. Pork, muttoa, certain kinds of fish, more especially shell-fish so-called, and mushrooms have each produced all the symptoms of violent irritant poisoning, whilst other persons who have partaken of the same food at the same time have experienced no ill effects. Some persons are stated, on good authority, to be capable of taking with impunity such poisons as oplum, corrosive sublimate, or arsenic, in enormous dosesand this irrespective of habit, which is known to have such an influence in modifying the effects of some poisons, notahly the matcotics. A tolerance of poisons is sometimes engendered by disease, so that a poison may fail to produce its customary effect. Thus, opium is tolerated in large quantities in teptanum and in delicium tremens; and mercurial compounds may in some febrile affections fail to produce the usual constitutional effects of the metal. On the other hand, diseases which impede the elimination of a poison may intensify its effects.
The evidence that a poison has been administered is besed upon the symptoms produced, on the appearances met whth ln the body after death, on the analysis of articles of food and drink, of excreta and cjecta, and of the organs of the body after death, and on physiological experiments mede with substances extracted from the same articles. There physiological experimenta are usually made upon animals, but in some cases, is for instance when aconite has to be scarched for, the physiological experi: ments must be made also upon the human subject. The evidence obtained from one or more of these souroes, as compared with the properties or effects of various known poisons, will enable the medical jurist to form an opinion as to the administration or non-administration of a poison.
The symplomes exhibited by the patient during life rarely fall to afford some clue to the poison taken. Persons may, however, be found dead of whose hitstory nothing can be learned. Here post mortem appearances, chemical enalysis, and, it may be, physiological experiments, are all-important for'the clucidation of the nature of the case.
Poisoning may be acute or chronic. The general conditions which should arouse a suspicion of acute poisoning are the sudden onset of scrious and increasingly alarming symptoons in a person previously in good healt h, eapecially if there be pain in the region of the stomach, or, where there is complete prostration of the vital powers, a cadaveric aspect, and speedy death. In all such cases the aid of the analytical chemist must be callod in either to confirm well-founded or to rebut ill-formded suspicions.

The mode of treatasent to be adopted in the case of poisoned persons varies greatly according to the nature of the poison. The first indication, when the poison has been swallowed, is to evacuate the stomach; and this may usually be done by means of the stomach-pump when tbe poison is not of the corrosive class; or the stomach may be gently washed out by means of a funnel and flexible siphon-tube. In many cases emetics are valuable. Antidotes and counter-poisons may then be given. The former are such substances as chalk to neutralize the mineral acids and oxalic acid; the latter have a physiological counteraction, and are such as atropine, which is a counter-poison to morphia. These may usually be administered most effectively by hypodermic injection. The stomach may to a certain degree be protected from the injurious effects of irritants by the administration of mucilaginous drinks; alkaloids may be rendered sparingly soluble by means of astringent substances containing tannin; and pain may be relieved by means of opium, unless contra-indicated by the nature of the poison. The effects of the convulsant poisons, wuch as strychnine, may be combated by means of the inhalation of chloroform.

The classificalion of poisons is a matter of difficulty. Various
attempts have been made to classify them acientifically, but with no signal succets; and perhapa the best system is that which groups the various poisons according to the more obvious symptoms which they produce. Our knowledge of the more intimate action of poisons is still too imperfect to admit of any useful classification according to the manner in which they specifically affect the vital organs. Poisons may in the manner indicated be clastified as (1) Corrosises, (2) Irrilambs, (3) New rotica, and (4) Gaseoms Poisons.

1. Corrosines.

The typical member of this clase is corrosive mablimate, the oolubie chloride of mencury. In it are included ates the concentrated mineral acide (culphuric, nitric and hydrochloric); oxalic acid; the alkalies (potash, woda, and ammonia) and their carbonates; acid, alkaline, and corronive saltes of the metals (such as bisulphate of potach, alum, butter of antimony and nitrate of silver); also cartolic acid.

The aymptoms produced by the mineral acid and the alkalien are almost altogether referable to local action; but come corrovive poisons, such as carbolic acid, produce, besides a local action. remote and specific constitutional efiects. The symptoms of corrowive poisoning are marked and unmistalable, except in infanta Immediately on swallowing the corrosive substance, an acid, caustic or metallic burning sensation is experienoed in the mouth, fances, gullet and region of the stomach, and this speedily extends over the whole belly; as a rule vomiting speedily followa. In the case of the mioeral acide, and in oxalic acid poisoning, the vomit is \$o ecid that if it falls upon a marble or concrete foor effervencepce ensuca No relief follows the evacuation of the stomach. Tho ejected matters contain blood, and even fragments of the corroded walls of the alimentary canal. The belly becomes distended with gas and horribly tender. High fever prevaile. The mouth is lound to be corroded. Death usually ensues, withis a lew hours; or, if the patieat survives, he or she may perish miserably, months after the poison was taken, through starvation consequent upon the gradual contraction of the gullet, brought about by ite corrosion and subsequent henling.

The treatment of cocrosive poisoning coosists in very gently emptyige and washing out the stomach by means of a soft siphontube. The stomach-pump cannot be used with salety in consequence of the weakening of the walls of the stomach by corrosion. Demulcents and opiates may be subsequently administered. After death from corrogive poisoning the walle of the stomach are found corroded and even perforated.

1. Corrosie Sublimate.-Here all the signs and symptoms of corronive poisoning are produced in their severest form. A grain or two of this poison may prove latal. Fortunately there is an efficient antidote in white of egg, the albumen of which, if administered at once, rendera the salt insoluble. The egge should be divested of their yolks, beaten up with water, and given promptly, repeatedly, and abundantly, followed by emetics. Poisoning by corrosive suhlimate may be followed by the specific toxic effectsof mercury. moch an malivation and tremor.
Workers in mercury, such as water-gildcrs, looking-qlase makers, and the makers of barometers and thermometers, are apt to suffer from a peculiar form of shaking palsy, known as "the trembles," or mercurial tremor. This disease affects most frequently those who are exposed to mercurial fumes. The victim is affocted with tremors when an endeavour is made to exert the muscles, so that he is unable, for instance, to convey a glass of water to the lipa steadily, and when he walks he breaks into a dancing trot. The treatment consists in vemoval from the mercurial atmoophere, baths, fresh air, and the administration of iron and other tonica
2. Mincrol Acids.-These are oil of vitriol or sulphuric acid, equa (ortis or nitric acid, and spirit of sale or hydrochloric (muriatic) acid. These, when taken in a concentrated form, produce wellpuarted symptome of corrosion. When they are diluted, the symptoms are those of an irritant poison. Nitric acid stains the mouth and skin of a yellow colour. The treatment consists in the administration of the alkalies or other carbonates, chalk, whiting, or even uncoloured plaster scraped of the walle or ceiling, with the view of geutralizing the acid.
3. Oxalic acid is a resetable acid. When taken in the state of concentrated solution it acts as a corrosive, but when diluted as an irritant. But it also exerts a epecific effect, killing the patient by cardiac syncope not unfrequently within a cew minutes. When a pervon afeer taking a crystallipe wubstance tasting strongly acid, diea within 15 or 30 minutes, after the manifestation of great weak, nesa small pulse and failure of the heart's power, poisoning by oxalic acid is almost certain. The treatment consists in prompely administering an emetic, followed by chalk, whiting, or any substance containing cartonite of calcium. The allcaline carbonates are valucleas, for the allaline oxalates are almont as poiconous as axalic pcid itself.
4. The Alkolis.-Caustic potash and caustic soda produce symptoms revembling those of the mineral acids, except that purging is
 acta as a corrosive, causing whitenitry and ahrinking of ath the anisual membranes with which it comes in contsct. The patient. however, becomes speedily comatose, the poison acting proloundly upon the great pervous centree A curious phenomenon-bhack or dark green urioe-is commonly obverved alter the adminiartion of this poinon. Seccherated lime-water, diluted and druak freedy and a colution of sulphate of moda are perhaps the mont umeful remedien.
5. Imitomit Poisons.

Irritant poisons are of two ctasee-mecallic irritants and weptable and animal irritanta, these latter beices for convenience grouped together. Perhaps none of the irritsits act purcly as mich, the irftant symptoms being usually socompanied by well-marbed effects upon the pervous cystem. An irritant is a subotance which cause infammation of the part to which it is applied-usualy, the alimentary canal. Arsenic is by far the mast tmportant of the metallic irritants Other irritante are the moderately diluted acids, many metallic salts, wuch as those of antimony, head, copper. zinc and chromium. Eleterium, gamboge, alota, colocynth and croton oil are good examples of vegetable urritents: and cantharides of animal irritanta. Animal and vegetable food when decomposed, or infested with certain organisms known as bacteria, may produce violent irritant symptoms The symptoms produced by irritant poisons are unally more chow is their developunent than where a corrovive bas been administered. Usually, after an interval. greater or less according to the cpecific nature of the irritant swallowed, a burning pain is felt in the mouth, throat and guilet, with a sense of conscriction of the parts, and followed by burning pain In the region of the exomach. This is fincreased, and not alleviated, by presuare a mark which serves to distinguish the attack from one of ordinary colic. Nausea, vomiting and thirxa ensue, speedily followed by dintension of the whole abdomen. which is exceedingly tender to the touch. Ordinarily the vomiting in followed by profuse diarrtoea. Should the poison sot be apeedily climinated in the vomited and faccal mattern inflamumatory lever cetsin. followed by collapse ; and death may eneue in a few hours.

There is danger of conlounding irritant poiconing with some forms of natural discase, such as gastritle and gastric uloer, colic, perito. nitis, cholera and rupture of the inteative.

1. Arseric is a spocific irritant poisoa. Almout all the compounds of this metal are poisonous. The term "arsenic "is hovever, most commonly applied, not to the metal itself, but to its lower oxide, arscnious oxide, which is also known as whis arsemic. By whatever channel arrenic is introduced into the oyrtem, it invanably affects specifically the stomach and interaines, causing congestion or inflammation. The common nources of arnenical poiconing are the taking of white arsenic, which causes acute poisoning, and the inhalation of dust from arsenical wall-papers and textile fabrica whereby a chronic form of poisoning is induced

The symptoms and treatment of areanical poisoaing are deacribed under Arsenic (g.v.).
Arsenic-cating. or the ability of some persons to take relatively large doses of aruenic habitually. is a well-established fact. The cause of thls singular immunity frop the ordinary retole of arsenic is unknown.
2. Lead.-The salts of lead, more especially the acetate (mugar of lead), are irritant poisons of no very great activity; and. though occasionally death ensues, recovery is the rule. Chrome yeliow. or lead chromate, is a powerful irritant poison. All chromates are. indeed, irritant poisons (See Lxad Ponsonima)
3. Copper.-The soluble salts of copper, such as blue virriol (che sulphate) and verdigris (subcarbonate and subacetate), are emperic and irritant salts. Their emetic effects usually, but not invariably. secure their prompt rejection by the stomach. Oocasionally Iatai effects have resulited from their adocinistration. Copper becomes accidentally mixed with acticlas of dietary in a variety of moodes
It is also used for improving the colour of preserved fruits and It is also used for improving the colour of preserved fruits and
vegetables. Its deleterious propeities when thus used in truaute quantities bave been both asperted and denied. There is, mowever. a mage body of evidence in favour of the at all events occacional poisonous effects of minute quantitien of copper.
4. Zime solle and barium salss, except the quite ineoluble barium eulphate, are irritant poisons; and barium compounds act also upon the central nervous syatem.
5. Chromeles, e.f. bichromate of pocesh, are violent irritancs. Chrome yelfow, or land chromace, bat already been mentioned.
6. Phosphorus.-Of the two chief forms of the clements the yellow or ordinary and the red or amorphour-the former only is poisonous. Rarety there is met with a chronic form of poisoning among moricers in the matorial, arinine from the inhalation of phosphorus vapourn ita special characyeristic is a peculiar necrosic or deach of the bony etructure of the lower jaw. Acute phosphorus poisoning is more common. Phosphorms is used for tipping matches, and is also the basia of neveral vermin dentroyers. (Sce Phos phozus and Matce.)
7. Verelable Irritamb-These produce drastic purgative effects Frequently the nature of the illncss may be ascertained by zhe discovery of portions of the vegetable substance-recognizable by the microucope-in the matters ejected by the patieat.
8. Conelheridest-The cirministration of cambarider (6.s.) is Collowed by vomiting, purging, strangury, or even entire inability to pasa the uride. In the ejecta portioas of the shining elytra or wing-cases of the fly may often be recognized. There is often great excitement of the exual proclivities. The active principle of the dy, cantharidin, may be exiracted from muspected matters by meens of chloroform, and the residue left after the evaporation of this blisters the lip or any tender mucous eurface to which it is applied. Demuicent remedies, with ophate enemata and ipjections, afford the best relief by way of treatment.
3. Newrotics:
t. Prustic or Hydrocyanic Acid.-Hydrocyanic actd is one of the beat known polsons, and a very dendly one. In the pare state it is anid to laill with lightning-like rapidity. It in met with in comprence only in a dilute etate. In Great Brituin two kinds of acid are commonly sold the pharmacopoeial acid, containing 2% of anhydroue prussic acid, and Scheele's acid, containing 4 to 5% Less than a teaspoonfal of the 2% acid has caused death. Given in latal doves, the symptons of prusic-acid poisomizs set in with great rapidity; and, in conequuence of the readimene with which the poiton to absorbed from the stamach and diffused through the circulation, the onset of symptoms is reckoned by seconds rather than by minutes. Occasionally the victim may be able to perform a few voluntary actions before alarming symptoms ane developed. There is firse a very brief otage of diftricult breathing and alow action of the heart, wit he tendency for the organ to stop in the state of dilatation. With widely-difated pupils of the eye, the patient is then seized with violent irregular convulsive movements. The rhythm of the respiratory movements is disturbed, and the coantenance becomes of a bluich cas. The patient now winke to the ground with complete loen of muscular power; and the third or apphyxial stage is reached, in which there are slow gasping respirations, loss of pulse, and paralysis of motion. Death is frequently preceded by muscular spasms. The foudroyont character of the iliness, and the apeedy death of the paticnt, coupled with the pecuiiar odour of the acid in the breath and atmosphere around the body, seldom leave any doubt as to the nature of the case. The treatment consists in inhalation of fumes of strong ammonia, drinks of warm and cold water alternately, friction of the limbs, and artificial respiration. The subcutaneous injection of atropine, which acts as a cardiac stimulant, may prove serviceable.
Other soluble cyanides, more especially cyanide of potassium, a ealt largely used in photography and in the arts, are equally poisonous with hydrocyanic acid. (Sce Paussic AciD.)
2. Opiwm.-In consequence of the extent to which opium, its preparations, and its active alkalnid morphia are used for the relief of pain, poisoning by opium is of frequent oceurrence. It is largely used by suicides; and children, being very susceptible to its infliuence, frequently die from misadventure after administration of an overdose of the drug. The ordinary preparations of opium are the drug iteelf, which is the inapissated juice of the oriental poppy, and the tincture, commonly known as laudanum. Opium contains a variety of more or less active principles, the chief of which is the alkalod morphia, which is present in good opium to the extent of about 10% in combination with meconic acid, which is physiologically inactive. Opium is largely used by. Eastern mations for amoloing, and there is great discrepancy of opinion as to the extent to which opium smoking is deleterious. The preponderance of opinion is in favour of the view that opium smoking is a demoralizing, deqrading, and pernicious habit, and that its victime are sufferers both in body and mind from its use. (See OMum and Morphines)
3. Styrchnime and Strychaine-yielding Plants.-The alkaloids trychnine and brucine, as well as all the plants in which they are found, all act in the same manner, being highly poisonous, and causing death after spasms of a severe character. Many verminlillers contain strychnine as their active ingredient.

Strychnine, and all substances containing that alkaloid, produce their effects within a very few minutes-usually within ten or fifteen minutes. The patient complains of stiffiess about the neck, and his aspect exhibits terror. There is an impression of impending calamity or death. Very speedily the head is jerked back, the Jimbs extended, the back arched (opisthotonos), so that the body may rest on the head and heels only. In a few moments these symptoms pass of, and there is complete relaxation of the-apasm. The spasmodic condition speedily returns, and is brought about by the sightest touch or movement of the patient. hocessions and remistons of the tetanic state ensue rapidly tili the paticnt succumbs, usually within baif an hour of the administration of the poison. The best treatment is to put, and keep, the patient under the jnfluence of chloroform till time is given for the extretion of the alkaloid, having previousty given a full dove of chloral hydrate. (See Staychning.)
4. Aconile Poisoning.-The ordinary blue rocket, wolfsbane or monkshood, Acontimm Nopelless. and an alkaloid extracted from it, aconitine, are perhape the moet deadty of known poisons. Onesixteenth of a grain of aconitine has proved fatal to a man. All the preparations of aconite produce a peculiar burning tingling, and prepabations of the parts to which they are applied. When given in
large dones they pooduce violent voaniting, as a rule, more or kese paralyas of motion and sensation, and great depression of the heart, usually ending in death from syncope. Intelligence remain's unaffected till almost the lagt. The treatment conciste in the hypodermes injection of digitalin, which ie a counter-poison in its action upoa the heart, The root of aconite has been catem in mistale for that of horne-radish.
s. Belladosna.-The belledoana or deadly aightshade, Atropa Belladonnc, contains an alkaloid, atropine, which is largely used by oculistt to procure dilatation of the pupils of the eye. The bright meariet berries of the plant have been eaten by children, who are attracted by their tempting appearance. Belladonna produces diatation of the pupila, rapid pulse, bot dry flushed skin, with an cruption not unlike that of scarlatina, soreness of the throat, with difficulty of swallowing, intence thirat, and gay, mirthful delirium. The treaturent consints in evacuation of the poison by means of the stomach-purmp, and the hypodermic injection of morphia as a counter-poison.

4. Gaceoms Poisomes

The effecte of these are varied-some of them sacting as inritants, while others have a specific effect, apparently in consequence of their forming chemical compounds with the red pigment of the blood, and thus destroying its capability of acting as a carrier of oxysen.

1. CWlorint and bromine act as powerful irritants. They provoke spasm of the glottis when inhaled, and subsequently induce inflammation of the respiratory mucous membrane. which may prove speedily fatal. Inhalation of diluted ammonia vapour in the best remedy.
2. Aydrochloric or mariatic acid ass and hydroftmeric or facoris acid gas are irritating and deatructive to life. The former is more destructive to vegetable life than even chlorine. They are emitted in many processes of manufacture, and eapecially in the manufacture of carbonate of soda from compon salt by Le Blanc'e procese, in the salt-glazing of carthenware, and in the manufacture of artificial manures.
3. Sulphurous Acid Gat.-The gas given off by burning sulphur is most muffocating and irritating. Its inhalation, even in a highly diluted state, may cause epeedy death from opasmotic closure of the glottio.
4. Nitrous vepours, or gaseous oxides of nitrogen (except nitrous oxide), are given of from galvanic batteries excled by nitric acid; also in the process of etching on copper. They produce, when diluted, ilttle immediate irritation, but gre exceedingly daggerous, rexting up extensive and fatal inflamation of the lunge
5. Ammonin gas is highly irritant, hut does not often prove fatal 6. Carbon dioxide gas is heavier than atmospheric alr, is totally irresplrable when pure, and is fatal when present in large quantitios in reapired alr. It is given of from burning fuel, eccumulates is pits and well as choke-danp, and conatitutes the deadly afterdamp of coal-mines It is also formed during aicoholic fermentation, and hence accumulates in partially filled vats in which fer. mented liquors are stored. When it is breathed in a concentrated state, death is almost instantaneous. Permons descending into wells foul with this gas sink dowe poweriens, and are usually dond before they can be removed from the vitiated atmosphere. In these casce there is true asphyxia; but carbonic acid is also a narcotic gas. Persons exposed to an atmosphere partially composed of this gas, bot not long enough to produce fatal remulth, are affected with stertorous breathings, oppresico, flushed face, prominent eyter awollen tongue and leedle pulse. The proper treatment is removal from the foul atmosphere, alternate cold and tepid douches to the chest. friction of the limbe and trunk, and artificial respiration. When animation is restored the patient should be put to bed and kept quiet, but should be carefully watched in care of relapee.
6. Caybox monoxide gas is given ofl by burning charcoal and other forms of fuel, mixed with carbonic acid. The poisonous effects of charcoal fumes are perhaps due rather to the more poisonous carbonic oxide than to the less poisonous carbonic acid. An atamo: sphere containing less than 1% of carbonic oxide would doubtiens be fatal if breathed for many minutes. Carbonic oxide forms with haemoglobin, the red pigment of the blood, a bright scarlet compound. The compound is very stable, and the oxide cannot be displaced by atmospheric oxygen. Hence the blood after death from the inhalation of carbonic ocoide is of a bright arterial hue, which it retains on exposure to air.
7. Coal-eas acte as an asphyxiant and narcotic. The appearances met with aiter death-more especially the fluid state of the blood-are similir to those observed after death from cartomie oxide gas, which is a conmituent of cool-gat, aod to which the chicf effect of coal-gnas may be due.
8. Sulphuretted hydrogas pas is highly poisonous by whiatever channel it gains access to the body. In a concentrated form it produces almost instant death from asphyxia. Even in a diluted state it produces colic, nausea, vomiting and drowsinem. This may pase into iasensibility with lividity and feeble respiration. The stin is cold and clammy, or bathed in perupiration. The red blood corpusclem are disintegrated. The treatment consists. in removal from the contaminated atmonphere, friction to the murface
of the body, warmth, and the administration of ctitrulatate The inhalation of chlorime gas has been recommended on chemical grounds; but it must be remembered that cblorine is itwelf poisonous.
to. Amoesthetics.-Nitrous oxide, or laughing gas, and the pase or vapours of other anaesthetic oubtances, such ta chlorovorm, may, if improperly administered, produce death by asphyxia, and perhaps otherwise. Obviously, as a rule, medical asaistance is at hand. The treatment consiste in artificial respiration, and the use of gaivanic current.
9. Vapours of Hydrocorbens.-The volatile vapouts of the natural hydrocarbons known as bensoline, petrokeam, Acc., are poitonous when inhaied for lengthened periods.
(T. S. ${ }^{\circ}$)

POISSOM, SIM ${ }^{\text {SON }}$ DENIS (178 i -1840), French mathematician, was born at Pithiviers in the department of Loiret, on the 21st of June 1781. His father, Simeon Poisson, served as a common soldier in the Hanoverian wars; but, disgusted by the ill-treatment he received from his patrician officers, he deserted. About the time of the birth of his son, Simeon Denis, he occupied a small administrative post at Pithiviers, and seems to have been at the head of the local government of the place during the revolutionary period. Poisson was-first sent to an uncle, a surgeon at Fontainebleau, and began to take lessons in bleeding and blistering, but made little progress. Having given promise of mathematical talent he was sent to the Ecolc Centrale of Fontainebleau, and was fortunate in having a kind and sympathetic teacher, M. Billy, who, when he speedily found that bis pupil was becoming his master, devoted himself to the study of higher mathematics in order to follow and appreciate him, and predicted his future fame by the punning quotation from Lafontaine ${ }^{1}$:-

> "Petir Poisson deviendra grand
> Pourvu que Dicu lui pretce vie."

In 1798 he entered the Ecole Polytechnique at Paris as first In his year, and immediately began to attract the notice of the professors of the school, who left him free to follow the studies of his predilection. In 1800, less than two years after his entry, he published two memoirs, one on E. Bezoul's method of elimination, the other on the number of integrals of an equation of finite differences. The latter of these memoirs was examined by S. F. Lacroix and A. M. Legendre, who recommended that it should be published in the Recueil des savants drangers, an unparalleled honour for a youth of eightecn. This success at once procured for Poisson an entry into scientific circles. J. L. Lagrange, whose lectures on the theory of functions he attended at the Ecole Polytechnique, early recognized his talent, and became his friend; while P. S. Laplace, in whose footsteps Poisson followed, regarded him almost as his son. The rest of his career, till his death on the 25th of April 1840, was almost entircly occupied in the composition and publication of his many works, and in discharging the duties of the numerous educational offices to which he was successively appointed. Immediately after finishing his course at the Fcole Polytechnique be was appointed repeliceur there, an office which he had discharged as an amateur while still a pupil in the school; for it had been the custom of his comrades often to resort to his room alter an unusually difficult lecture to hear him repeat and explain it. He was made professcur suppleant in 1802, and full prolessor in uuccession to J. Fourier in 1806 . In 1808 he became astronomer to the Bureau des Longitudes; and when the Faculte des Sciences was instituted in 1809 he was appointed professeur de la mecormique rationclle. He further became member of the Institute in 1852, examiner at the military school at St Cyr in 1815 , Icaving examiner at the Ecole Polytechnique in 1816, councillor of the university in 1820, and geometer to the Bureau des Longitudes in succession to P. S. Laplace in 1827. His father, whose early experiences led him to hate aristocrats, bred him in the stern creed of the first repuhlic. Throughout the empire Poisson faithfully adhered to the family principles, and refosed to worship Napoleon.- When the Bourbons were restored, his hatred against Napoleon led him to become a Legitimist-a conclusion which says more for the simplicity of his character than for the strength or logic of his political creed. He was falthful to the Bourbons during the Hundred Days; in fact, was

[^82]with dificulty dingusded from volunteering to fight in theip cause. After the second restoration his §delity was recognized by his clevation to the dignity of baron in 8825 ; hut he never either took out his diploma or used the citle. The revolution of July 1830 threatened him with the lons of all his honours; but this disgrace to the government of Louis Pbilippe was adroitly averted hy F. Arago, who, while his "revocation" was being plotted hy the council of ministers, procured him an invitation to dine at the Palais Royale, where be was openly and effusively received by the citiven king, who "remembered" him. After this, of course, his degradation was impossible, and seven years later be was made a peer of France, not for political reasons, but as a representative of French science.

As a teacher of mathematics Poisson is said to have been more than ordinarily successful, as might have been expected from his early promise as a reperilew at the Ecole Polytechnique. As a scientific worker his ectivity has rarely if ever been equalled. Notwithstanding his many official duties, be found time to publish more than three hundred works, several of them extersive treatises, and many of them memoirs dealing with the most abstruse hranches of pure and applied mathematics. There are two remarks of his, or perhaps two versions of the same remark, that explain how be accomplished so much: one, "La vie n'est bonne qu'ג deux choses-- faire des mathémaliques et à les professeur; "the other, "La vie c'est le travail."

A list of Poisson's works, drawn up by himself, is given at the end of Arapo's hiography. A lengthened analysis of them woild be out of place here, and all that is possible is a brief mention of the more important. There are few branches of mathematics to which he did not contribute comething, but it was in the application of mathematica to physical subjects that his greatest servico to acience were performed. Perhaps the most original. and certainly the most permanent in their influence, were his memoirs on the theory of clectricity and magnetism, which virtually created a new branch of mathematical physics. Next (perhape in the opinion of come first) in importance stand the memoirs on criestial mechanics in which be proved himsell a worthy successor to P. S. Laplace. The most important of these are his memoirs". Sur les in ¿́galités séculaires des moyens mouvements des planètes," "Sur la variation des constantes arbitrajes dans les questions de meeanique." both published in the Journal of the Ecole Polytechnigue (1809); "Sur la libration de la lune," in Connaiss. d. temps (1821). ace.: and "Sur ha mouvement de la terre autour de son centre de gravite." in Mem. d. lacad (1827), \&c. In the first of thesc memoirs Poisson discusses the famous question of the atability of the planetary orbita, which had already been settled by Lagrange to the firs degree of approximation for the disturbing forces. Poisson showed that the result could be extended to a sccond approximation, and thus made an important advance in the planetary theory. The memoir is remarkable inasmuch as it roused Lagrange, after an interval of inactivity, to compose in his old age one of the greatest of his memoirs, vir that Sur la theorie des voriotions des thementes les planides, et ex particulier des pariations des grands axes de Lexrs orbiles. So highly did he think of Poisson's memoir that the made a copy of it with his own hand. which was found among his papers nfter his death. Poisson made important contribulions to the theory of attraction, His well-known correction of Laplace's partial differential equation for the potential was first published in the Bulletis de la sociefle philomatique (1813). His two most important memoirs on the subject are "Sur flattraction des sphéroides " (Connaiss. d temps, 1829), and "Sur lattraction d'un cllipenide homogene " (Mfem. d.' lacad., 1835). In concluding our selection from his physical memoirs we may mention his memoir on the theory of waves (MEm. d. Iacad., 8825).

In pure mathematics, his most important works were his series of memoirs on definite integrals, and his discussion of Fourier's series, which paved the way for the classical researches of L. Dirichict and B. Riemang on the same subject; these are to be found in the Jourral of the Ecole Polytechnique from 1813 to 1823 . and in the Memoirs de lacademic for 1823 . In addition we may also mention his essay on the calculus of variations (Mem. d. raced.. 1833). and his memoirs on the probability of the mean results of observations (Connaiss. d. 2 cmps, 1827. *2.).

Besides his many memoirs Poisson published a number of treatises most of which were intended to form part of a great work on mathematical physics, which he did not live to complete. Amoog these may be mentioned his Trait de mecanique (2 vols. $8 v 0$. 1811 an3 1833). which was long a standand work: Theorie mompelle de Fecteen coppillaire (4to. 1831): Theorie mathemafique de la chalase (4to. 1835): Smppliment to the same (4to, 1837): Recterches sur la prababitiak drs jupemenis ex motières criminelles. \&e. (4to, 1837) all published at Paris Sce F. Arago, Biographie de Poisson, read before the Acadtunie des Sciences on the 16 th of December 1850.

POrsex, a town of northern France, in the department of Seine-et-Oise, 17 m . W.N.W. of Paris, on the railway from Paris to Rouen. Pop. (1906), 6043. The church, supposed to have been built in the first half of the rath ceatury, and eventually. restared upder the direction of Viollet le Duc, is of special architectural interest, as afording one of the aurliest and best examples of transition from the Romanesque to the Pointed style. The bridge of Poissy, a very ancient foundation, has been widened and modernixed; of the mills which formerly bordered it one was known as Queen Blanche's. A statue of the painter J. L. E. Meissonier was erected in 1894, close to his house. Poissy supplied butchers' ment to Paris during six centuries, but in 1867 the market was removed to the metropolis. A handsome fountain stands in the old market-place. Distilling and the manufacture of chairs and flour-milling equipment are carried on and ragstone is quarried.

Poissy, the ancient Pinciacwus, was the capital of the country of the Carnutes. In the time of Charlemagne it had a royal palace, where during the gth century four national assemblies were held. Later it became a favourite residence of Blanche of Castille, and her son, afterwards St Lonis, is supposed to have been born there. Philip the Fair gave the castle to the Dominicans, by whom it was completely transformed, and it was in the refectury of the abbey that the famous conference (see below) betwoen the Roman Catholics and Protestants took place in $\mathbf{2 5 6 x}$.
POISSY, COLLOQUY OF, a conierence held in 156r with the object of effecting a reconciliation between the Catholics and Protestants of France. It was initiater by Queen Catherine de: Medici, regent during the minority of her son Chartes IX. In the policy of which it was the outcome she enjoyed the support of the Chancellor Michel de PHOpital and the lieutenant-general of the kingdom, Anthopy of Navarre; while on the other hand the heads of the Catholic party had attempted to frustrate any form of negotiation. Theodore Beza from Geneva and Peter Martyr Vermigli from Zurich appeared at the colloquy; the German theologians to whom invitations had been despatched only arrived in Paris after the discussion was broken off. The conference was opened on the gth of September in the refectory of the convent of Poissy, the king himsell being present. The apokesman of the Reformed Church was Beas, who, in the first esssion, gave a lengthy exposition of its tencts, but-excited such repugnance by his pronouncements on the Communion that he was interrupted by Cardinal Tournon. In the second session (Sept. 16) he was answered hy the cardinal of Lorraine, who discharged his task with skill and moderation. On the motion, however, of Ippolito d'Este, the papal legate, exception was taken to the further conduct of the negotiations in full conclave; and a commitiee of twenty-four representatives, t welve from each party, wis appointed-ostensibly to facilitate a satisfactory decision. On the Catholic side, as was speedily demonstrated, there existed no sort of tendency to conciliation. On the contrary, the cardinal of Lorraine, by his question whether the Calvinists were prepared to sign the Contession of Augsburg, attempted to sow dissension between them and the Lutheran Protestants of Germany, on whose continued support they calculated. The Catholic delegates, moreover, discovered a powerful auxiliary when Lainez, the general of the Jesuit order, which had been admitted into France a short time previously, entered the debate; and the acrimony with which he opposed the Protestants was of material servioe in clarifying the situation. Still a further reduction was made in the number of members, and a small residunm consisting of five Catholics and five Protestants undertook the task of devising a formuls on which the two charthes might unite with regard to the question of the Communion. Their difficult labours even seemed on the point of auccess when the assemhlage of prelates refused assent, and the conferencebroke up on thegth of October-a result which harred the way to a pacific understanding with the Huguenots.
See H. Kupffel, Le Colloque ds Poissy (Paris, 1868): E. Lacheinmann in Hersog-Hauck, Realencyilopadic f. proterf. Ticologs (grd ed., 1904), xy. 497.
(C.M.)

POITIEss, a town of western France, formerly the capital of Poitou, and now the chief sown of the department of Vienne, 6I m. S.S.W. of Tours on the railway to Bordeanc. Pop. (rgo6), town, 31,532; commune, 39,302. Poitiers is situated al the junction of the Boivre with the Chin (a tributary of the Loite by the Vienne), and occupies the slopes and summit of a plateau which rises 130 ft . above the level of the atreams by which it is surrounded on three sides. The town is picturesque; and its atreets are interesting for thetr remains of ancient architecture, especially of the Romanoeque period, and the memories of great historical events. Blosace park, named after the intendant of the "generality" of Poitiens ($1755-5786$), and situated on.tho south side of the town, and the botanical ganden on the north-enst, are the two principal promenades Til 1857 Poitiexs contained the ruing of a Roman amphitheatre more extensive than that of Nimes: remains of Roman baths, constructed in the ant and demolished in the 3rd centery, vere: laid bsre in 1877; and in 8879 a burial-place and the tombs of a number of Ctristien martyns were discovened on the beights to the eouth-east-the names of some of the Christians beiag preserved in paintings and inscriptionst Not far from these tombe is a hage dolmen (the "Pierre Levte "), 22 ft . long, 16 ft . broad and 6 or 7 ft . high, around which used to be beld the great fair of St Luke.

The cathedral of St Peter, begun in 116a hy Heary II. of England and Eleanor of Guicmoe on the ruins of a Roman basilica, and well advanced by the end of the rath century, is a building in the Romanesque and Early Gothic style, the latter predominating. It consists of three naves almost equal in height and width, both of which decrease towards the west. thus enhancing the perspective. Its length is 308 ft ., and the keystone of the central vaulted noof is 8 g ft . above the parement. There is no apoc, and the exterior gonerally has a heavy appearance. The principal front, the width of whichisextessive in proportion to its beight, has uafinished side-towers ros and 150 ft . in beight, began in the 13 th century. Most of the vindout of the choir and the transepts preserve their stained glass of the rath and 13 th centuries; the end window, which in certainly. the first in the order of time, containg the figures of Henry 11. and Eleanor. The choir stalls, carved between 1235 and 1257. are among the oldest bo France. The church of St Jean near the cathedral is the most ancient Christian monument in the country. Built as a baptistery in the first half of the 4 th century, it was enlarged in the 7 th century, siace when it has suffered littio structural alteration. It cantains freacoes of the $\mathrm{zsh} / \mathrm{h}$ century and a collection of tombs of the Merovingian periodi The church of St Hilaire was erected at the clote of the ath centruy over the tomb of the celebrated bishop. At fint ars oratory, it was rebuik on a larger scale by Clovis; and afterwards became, in the roth, irth and rath centuries, a sumptacos coliogiate church, of which the nave was flanked by triple eisles and surmounted by six cupolas. Great damage was done to it in the Wars of Religien and the French Revolution, and the fagende was entirely rebuilt in the. 19th century. The confessional or oratory under the choir contains the relics of St Hilary. and a Christian sarcophagus of the ath century. The church of St Radegonde, a great resort of pilgrims, commemorates tho consort of Clotaire (d. 587), and preserves in its crypt the tomb of Radegonde, who founded at Poitiers the abbey of the Holy Crces, and two others reputed to be those of St Agnes and St Disciola. The choir and tower above the entrance are of the 11th century, while the nave (late 1 ath century) is in the Angevis style. In a recess in the nave known as the Chapelle du Pas de Dieu, there is a footprint which tradition asserts to be that of Christ, who appeared in a vision to St Radegonde. Notro-Dame la Grande, which dates from tbe close of the inth century, and represents a collegiate church of one or two hundred years older, has a sculptured Romanesque facade rivalled in richness only by that of St Pierre of Angouleme. The first stone of the church of Montierneuf (Monasterium Novmm) was laid in 1077 by William VI., duke of Aquitaine and count of Poitiers, who is buried within its walls; and the choir (in the ryth century
modified by the erection of a "lentern ") was solemnly consecrated by Urban 11. in rog6. Mutilated about $\mathbf{z 6 4 0}$ and during the Revolution, the building was pertly restored between 1850 and 1860 . The tower of St Porchaire, a precious remnant of in th-century architecture, was restored in the rigth century under the auspices of the well-known Socitle des antiquaires do l'owest.

Among the secular buildings the first place belongs to the law courts, formerly the palace of the dukes of Aquitaine and counts of Poitiers, and rebuilt between the 12th and the 1sth century. The Salle des Pas Perdus forms a fine nave 160 ft . long by 56 ft . wide, with a vaulted wooden roof. The southern wall is the work of duke Jean de Berry (d. 1416), brother of Charies V.; above its three vast fireplaces are mullioned windows filled with stained gless. The Maubergeon tower attached to the palace by the same duke represented the feudal centre of all the lordships of the countship of Poitiers. The bouse known as the preate or provost's mansion, built about 1500 , bas a fine fagade flanked by turrets, and there are other houses of the 1 5th, 16 th and 17th centuries. In the HBtel de Ville, erected between 1869 and 1876 , are museums of natural history and painting. The museum of the Antiquaires de lowest occupies the chapel and the great hall of the old university, adjoining the old Hotel de Ville; it is a valuable collection comprising Roman antiquities, Merovingian sculptures, medals, a fine Renaissance fireplace, tec. The building devoted to the faculties also contains the library. The municipal records are very rich in charters of Eleanor of Guienne, Philip Augustus, Alphonse of Poitiers, \&c.

Poitiers is the seat of a bishop, a prefect, a court of appeal and a court of assizes, and centre of an educational division (ecedtmic), and has tribunals of first instance and of commeroe, a board of trade arbitration, a chamber of commerce and a branch of the Bank of France. Its educational institutions comprise a university with faculties of law, science and ietters, and a preparatory school of medicine and pharmacy, a school of theology, training colleges for both sexes, a lycte for boys and a school of fine art. Trade is in farm produce, wine, cattle, wrol, honey, goose-quills and leather. The industries include the preparation of goose-skins, printing, tanning, and the manufacture of brushes, paint and candles.
Poitiers, called Limownse at the time of the Roman Conquest, afterwards took the name of its Gallic founders, the Pictones or Plctavi. Christianity was introduced in the 3rd century, and the first bishop of Poitiers, from 350 to 367, was St Hilarius. Pifty years later the city had fallen into the hands of the Arian Visigoths, and bocame one of the principal residences of their kings. Alaric II., one of their number, was defeated by Clovis at Voaille, not far from Poitiers, in 507, and the town became a part of the Frankish dominion. This was the first occasion on Wich the peoples of northern and southern Gaul met in conflict in the neighbourhood of the town which was destined to see them so frequently join battle. By his victory in 732 over the Mahommedans at Moussais-la-Bataille in this region, Charles Martel proved the saviour of Christendom. Eleanor of Guicnne frequently resided in the city, which ahe embellished and fortified, and in rig9 entrusted with communal rights. Alphonse of Poitiers, at'a plenary court held in 1241 in the great hall of the Palais de Justice, received the homage of his numerous vassals. After the battle of Poitiers in 1356 (see below), Poitou was recognized as an Engish possession by the treaty of Bretigny (1360); hut by 1373 it was recovered by Bertrand Du Guesclin. It was at Poitiers that Charles VII. was proclaimed king (1432); and he removed thither the parlement and university of Pars, which remnined in exile till the English withdrew from the capital in 1436. During this interval (1429) Joan of Arc was subjected to a formal inquest in the town. The university was foumded in 1432. Calvin had numerous converts at Poitiers. Of the violent proceedings which attended the Wars of Religion the 'city had its share. In 1569 it was defended by Gui de Daillon, comate du Lude, against Gaspard de Coligny, who after an unsaccesatul bombardment retired from the siege at the exd of

Cownds of Poilicrs.-In the time of Charlemagne the countship of Poitiers, which was then a part of the kingdom of Aquitaine, was represented by a certain Abbon. Renoul (Ranulph), who was created count of Poitiers by the emperor Louis the Piocs in 839, was the anceator of a family which was distinguished in the gth and roth centaries for its attachment to the Carolingias dynasty. One of his successors, Ebles the Bastand (d. 935), took the title of duke of Aquitaine; and his descendants, who bore the hereditary name of William, retained the same title. William IV., Fièrebrace, joined Hugh Capet, his brother-in-law. in 987 . William V. the Great ($993-2030$) was a patron of ietters, and recelved from the Italian lands the offer of the imperial crown after the death of the emperor Henry II. in 1024. William IX. (1086 -1127) went on crusade in rioo, and had violent quarrels with the Papacy. His son William X (1127-1137) sided with the anti-pope Anacletus against Innocent II. In accordance with the dying wishes of Willian X. his daughter Eleanor was married in II37 to Louis, the son of Louris VI. of France. Sole heiress of her father, she brought her husband a large dowry, comprising Poitor, Seintonge, Aunis, a part of Touraine and Berry, Marche, Angoumois, Perigord, Auvergne, Limousin, Bordelais, Agenois and Gascony. After the dissensions between Louis VII. and Eleanor had resulted in a divorce in 1i52, Eleanor married the count of Anjon, Henry Plantagenet, who became king of England as Henry II. The west of France thus passed into the hands of Engiand, a transfer which gave rise to long wars between the two kingdoms Philip Augustus reconquered Poitou in 1204, and the provisce became in succession an apanage of Alphonse, som of Louris VIII., in 1241; of Philip the Tall, son of Philip the Fair, in 1311; of John, son of Philip of Valois, in 1344; and of John, dac de Berry, son of John the Good, in 1356; and passed to the druphins John (1416) and Charles (1417), sons of Charles VI. When Charles VII. ascended the throne he finally united the countship of Poitiers to the Crown.
See P. Guerin, Recucil des documicuts concermant Le Poiton (Paris 1880-1906); and A. Richards, Histoire des comutes de Poitom (Paris, 1903).

Batlle of Poiliers.-This battic, fought on the igth of Septem ber 1356 between the armies of King John of France and Edward the "Black Prince," was the second of the three great English victories of the Hundred Years' War. From Bordeaui the prince had led an army of his father's Guienne vassals, with which there was a force of English archers and men-at-arms, into central France and had amaseed an enormous booty. King John, hitherto engeged against the army of John of Gaubt duke of Lancaster, in Normandy, hurried south to intercept the raiding army and to bar its homeward roed. The Black Prince, by forced marching, was able to slip past the Freach, but reaching Maupertuis, 7 m . south-east of Poitiers, with the king's army in chase, he found himself compelled to choose between fighting and' abandoning his apoil. He chose the former course, in spite of the enemy's great euperiarity in numbers (16,000 to 6500), end in order to give his trains time to draw off took up a defensive position on the 18th of Seplember. with 'a alight hollow in front and a wood behind, between the Poitiers-Hordeaux main road and the River Maussion. ${ }^{1}$ Johe, instead of manceuvring to envelop the English, allowed the Cardinal Talleyrand de Perigard to attempt to negotiate a peace. This proving vain, the French army attacked wilhout any attempt at mancuuve or reconnaissance, and on a front so parrow that the advantage of superior numbers was forfeited Moreover, King John ordered all but the leading line to dismount and to attack on foot (tactics suggested by the success on the defewsive of the dismounted English men-at-arms at Crecy and the Scots at Bannockburn), and thus condernned the best part of his army to a fatiguing advance on foot across dificult counery in full armour.
The French arblasters, who might have crushed the relatively
${ }^{1}$ The view adopted is that of Profemer Oman, Art of Wer. 1 Middle Ages, p. 63L.

Sew English archers present, were mingled with the 300 picked mounted men in firt line, bot, as the letter churged, their advance masked the fire of the arblantens in the firat few secomds, bendes lesviag the other, dibmounced, lines iar in rear. Thus the first atteck on the Black Princo's line, which was groetly strengthened by trees and hedges in front of th, was promptly brought to a standaxill by the arrows of the archers lining a bedge which overlooked the hollow in truat; and the earl of Oxford hatilly drawing out a body of archers beyond the defenders' left, into the low-lying ground of the Maussion valicy, completed theix roat by firing up the bollow into their flank. But it was not so ensy to deal with the second line of dibmounted men-at-arms, bed by the deuphin, which was the neat to arrive on the French side. The hedge indeed was beld, and the aseatiante, unable to advance beyond the bollow, gave way, but to achieve this the prince had to wee all but 400 of hh men. Hed the third body of the French advasioed with equal spirit the battle would probably have anded there and then, but the duke of Orieans, who commanded it, was so demoralized by the retirement of the duuphin's division that he led his whole lonce of the feld without strikling is blow. Thereupon the king himself advanced furlously with the fourth and lant lize, and as it came on the situation of the Rnglish weemed so deaperate that the prince was advised to retreat. But his determined cournge was unchaken; seeing that this was the last attack he put his reserve into line, and rallying around this nuclours all men who could atill fight, he prepared not only to repule but to counter-etteck the French. He despatcied a amall force under the Captel de Buch to ride round the flank of the enemy and to appear in their rear at the crisls of the fight. Though a medieval knight, be knew as well as Napoleon at Arcola that when the moral force of both sides has passod its culminating point oven a mitberinlly insignificant threat serves to turn the belance. And 50 it fell out. When both lines were fighting hand-to-hand, the fifty borsemen of the Captal de Buch appeared in rear of the French. The front ranks fought on, hut the rear of the French melted a way rapidly, and at last only a group of the bravest, with King Jobn and his son Philip, a boy of fourteen, in their midst, were left. This band continued their hopeless resistance for a time, but in the end they were killed or captured to a man. The rest of the French army, totally dispersed, was pursued by the vietors until nightiall. Two thousand five hundred of the French, 3000 of them knights and men-at-arms, were killed, including the constable, one of the marsbals, the standardbearer and six other great lords. The prisoners tincluded the king and his son Philip, the other marshal and 25 great lords, and. 1933 knights and men-at-arms as well ass 500 others.

POINOU, one of the old provinces of France, which also formed one of the great military governments of the kingdom, was bounded on the N. hy Brittany, Anjou and Touraine; on the S. by Angoumois and Aunim; on the E. by Tooraine, Berri and Marche; and on the W. by the octan. It was divided into Lower Poitou, which corresponded to the modern department of La Vendee, and Upper Poiton, now split into the departments of Deur-Sivres and Vienne. The principal towns in Upper Poitou were Poitiers the capital, Mirebean, Chatellerault, Richelieu, Loudun, Thooars, Mauleon, Parthenay, Niort, \&ec.; and in Lower Poitou Fontenay-le-Comte, Maillezali, Lucon and Rochesur-Yon. He d'Yeu or tle-Dieu and Noirmoutier belonged to the province. Ecclesinstically, Poitou was a diocese which was broken up in 1317 to form two new dioceses of Lugon and Maillezais; the seat of the latter was transferred in the ryth century to Le Rochelle. For the admindatration of juatice, Poitou was attached to the parlement of Piris. After 778 it formed part of the domain of the coumts of Poltiers (q.v.). Pottou (P.olctou, Pictevia) takes its name from the Pictones or Pictavi, a Gallic nation mentioned by Caesar, Strabo and Ptolemy, and described by Strabo as separated from the Namnetes on the north by the Loire. It formed part of the territory known as Aquitaine (q.).

For the history see the Mimoires of the Societe des Antiquaires de l'Owent ($\mathrm{IB}_{35} \mathrm{mqq}$.) and the documents publiabed by the Archives
hislorigues dx Poilou (i87a eq9)) also the Dictionnaire Lopographigue de la Dienne, by L. Redet (188i).
POKBBEREY, POKBWBED (from the Americaor-Indian procem, applied to any plant yielding a red or yellow dye), in botany, the popular mame of Phylolacca lecomdra, a strongamelling pereanial herb, a native of North Americs, with ovatelanceolnte sharp-pointed leaves, racemes of small greenish-white flowars and fisttigh berdes nearly $\frac{1}{4}$ in in diameter, which contain a crimson joice. The young asparagus-like shoots are sometimes used as a pot-herb, but the roots are.poimonous. The plant is often cultivated in Europe, and has become maturalised in the Mediterranean region.

POIRA, a game at carda. By mont writens its origin has been uscribed to II Frusse, an Italian game of the 1 gth century, from which the game of Primiero, called in Spain Primere, and Le Prime in France, in which country it was claborated into L'Ambige or Lo Meals. In England the game whe played under the name of Post and Poir, of which the modern Brag is only a variation. But Mr R. F. Foster proves that, though poker is probably a descendant of Primero, and perhaps of a much more ancient Perriza game called As ras, it is not a development of the English Bras, but was introduced from France into the colony of Louisiana, the name being merely an English mispronunciation of Poque, a game described as early as 1718 in the Acodemie mavinarsells des juas, and still played in Germany under the name Pochom. The earliest mention of the game in America is in G. B. Zieber's Exposure' of the Arts and Miseries of Gambling ($\mathrm{I}_{4} 3$), and it is probable that poker was generally played on the Mimissippi steamboats as early as 1830, twenty cands being used, "full-dock poker" with 5^{2} cards being invented later. "Draw-poker" was introduced about 1860.

Pober is played for money atakes, markens or "chips" of different value being used. These are either divided equally among the players, or, more usually, one player acta as banker and rells chipe to the other players, redeeming them at the end of the game. There are several varieties of the game, but Dre Poker, played by from 2 ta 6 or even 7 persons with a paci of 52 cards, is the moat popular. The player who wins the cut for deal chuffles the pack, which is then cut by the player at his right. He then deals five cands, one by one, to each player. If a card is faced during the deal the player must accept it;il two are exposed a new deal must ensue. Before the deal is complete the player at the dealer's left, who is said to hold the age, and is called "the age," places (or puds wip) on the table in front of him half the stake for which he wishes to play. This is ealled blind. The player at the tige's left then looka at his hand and announcess whether he will play. If his hand seems too weak be throws his cards away face-down and "-drops ont" of the game. If he elocts to play he puts up his eute, which is twice the araoant of the bind. The other players, including the dealer, thei either come in, i.e. elect to play, each putting up his axke, or, deeming their hands worthless, drop dut. The age, who has the last my, may then himself drop out, fodfelting his half-atake already put up, or he may come in and mabe good his ante, ie. put up his unpaid half of the blind. Each player in his turn has the privilege of increasing the stake to any amont not excoeding the limit, ${ }^{1}$ which is always agreed upon before the game begins. Thus, if the limit is \mathbb{E}, and the age has put up 6d. as his bisud, any player may, when his turn comes to declare whether be will play, say, "I play and make it 103. (or a soverciga) more to draw carda," at the same time placing the ande plus ros. (or a sovereign) in the middle of the table. Thertupon all the other players, each in turn, must see the raice, i.e. pay in the additional sum, or drop ont of the game, forfeiting what they have already paid into the pool. The "age" being the last to complete, is in the best position to raise, as a player who has slrendy completed is less likely to sacrifice his stake and withdraw from the game. On the other hand eaxh player

[^83]has the right, in his turn, after paying the extre stake called for, of raising it further on his own account, and this goes on until the players who have not dropped out have paid an equal sum into the pool and no one cares to raise further. Each pleyer then throw awzy as many of his five cards as he chooses and receives from the dealer new ones in their place. In this arpplementary deal mo player may accept a faced card, but receives one in its place after all the other pleyers have been served. The number of nem cards taken by each one should be carefully noted by the other players, as it gives a valuable chue to the probahie value of his hard. The following list shows the value of hands, beginning with the lowest.
I. One Pair (accompanied by three cards of difierent denominations). If two players each hold a pair, the higher wins, if similar pairs (e.g. a pair of kings each) then the next highest card wins
2. T700 Pairs.
3. Triplets or Threst of a Kind lag. three kings, accompanied by two other cards pot forming a pair).
4 Strageht, a sequence of inve cards, not all of the same suit. Sometimes, but very rarely, these straights are not admitted. An ace may either begin or end a straight. For example: ace, ling , queen, knave and 10 is the higheat straight ; $5,4,3$. 2, apd ace is the lowest. An ace cannot be in the middle. For example, 3, 2, ace, king, queen is not a straight.
5. Flush, Give cards of the same suit, not in eequence. If two Alushes are beld. that containing the highest card wins; if the highest cards are similar, the next highest wins occ.
6. Full, or Full Howse, meaning threc cards of the same denomiantion together with a pair; e.g three sixes and a pair of fours. If more than one player holds a full, the highest triplet wins.
7. Pours, or four cards of the same denomination; e.s. four queens, which beat foor knaves and under.
8. Sbaight Flush, a sequence of five carda all of the eame suit; e.s. knave, $10,9,8,7$, of hearts.
9. Royal Fiush, the highest possible straight fiush; e.g. ace, king, queen, krave and 30 of spades.
If po player holds at least one pair, then the hand containing the highest card wins.
Each player having received the new cards called for, the betting is opened by the ptayer sitting at the age's left, should he consider his hand worth it; otherwise he throws down his carde and is out of the game, and the next player (whom we will cell C) makes the first bet, which may be of any amount up to the limit, but is usually a small one, with a view to later developments. The next player, D, either drops out, troils, i.e. puts up the amount bet by C (also called secing and calling), or raises C's bet; in other words puts in the amount bet by C plus as much more (vithin the limit) as he cares to risk. This raise on D's part means either that he thinks he bolds a better hand than C, or that he is trying to frighten C out. The lest manceuvre illustrates the primciple of the bluff, the most salient characteristic of the game of Poker. If C, with two amall pairs in the hand, bets half a crown, and D, with a hand of no value whatever, covers, or sees C's bet and raises it to a sovereign, it is very lizely that C will throw down his cards rather than risk a sovereign on his own hy no means strong hand. In this case C has been bluffed by D, who, without even having to show his cards, wins the pool, although intrinsically his hand was far inferior to C's. The ahility to bluf successfully depends mpon self-command, keen observation, judgment and knowiedge of character, so as to attempt the bluff when the bluffer is sure that there are no very strong hands out against him. Other wise he will surely be called in his turn, and, having nothing of value, will kose the pool, besides suffering the ignominy of throwing away his money for nothing.

Two players with strong hands will often rase each other's bets repeatedly, until one of them calls the other, upon which the hands are shown and the stronger wins. The complete hands of the caller and the called must be shown. The common practice of throwing away unshown, for parposes of concealment, 2 losing hand that has called is illegal. No player who is not called is obliged to show his hand, so that the companyis often in doubt whether or not the winner has bluffed. When two hands are of exactly equal value the pool is divided.
The game is often varied by a player going bliad, i.e. raising the ante before the deal. Anouher variation is sfredding the

Hind. This is done by the player siting mext the age, who prats up twice the amount of the blind with the words "I straddle" This has the effect of doubling the stake, as every player must then pay twioe the amount of the straddle (instead of the tlived) in order to play. The straddle may be straddied agin in its turn if the aggregate amount does not pass the thimit. The straddle does not carry with it the privilege of betting lest, but merely nises the monat of the stake.

The regular Draw-Poker game is usoally varied by occasional Jock-Pots, which are played once in 80 many deals, or when all have refused to play. or when the player deals who bolds the buch, a marker placed in the pool with every jack-pot. In a jact-pot each player puts up as equal stake and recrives a haod. The pot musa then be opened by a player holding a band of the value of a pair of knaves (iacks) or better. If mo player boids so valuable a hand the deal pesecs and each player adis a smali sum to the pot or pool. When the pot is opened the opener does so by putting up any sum he choomes, within the limit, and his companions must pay in the same amount or "drop." They also posess the right to raice the opener. The new cards called for are then dealt and the opener starts the betting the play proceeding as in the regular game. If Pragrespite Jack-Pods are played, the minimum value of the opening haod is raised one degree every deal in which the pot is not opened. Thus the opening hand must in the first deal be at least a pair of knaves; but if the pot is not opened the minimum for the second deal is a pair of queens, for the thind a pair of kingt, tce. Jack-Pots were introduced about 1890.

Straigit Poher, or Bluff. is played without drawing exta cards. It was the only variety of the game played, althoagh 52 cards are now used instead of 20 , as formerty. The first dealer is provided with a marker called a buck, and having, before dealing, put up the antes of all the players, pasees the buck to the next dealer, who must in his turn ante for all when he deals. The rules for betting, raising, \&oc, are the game as at DrawPoker. The hands, of course, average smaller.

Stud-Poker is played like Draw-Poker, except that there is no draw and, in dealing, the first card anly is dealt face down, the rest being exposed. Each player in turn looks at his turaed card and makes his bet or raise. A common variation of StodPoker consists in stopping the deal after two cards, ane face ep and the other face down, have been dealt, and betting oa those two cands. A third card is then dealt and betting again takes place, the process being repeated after the fourth and fifth cands have been dealt, the value of the different hands changing with each added card. A player failing to "atand" any raise amot retire from that pot.

Whiskey-Poker is also played without a draw. An extra hand called the widow, is dealt to the table face down. The frit bettor then examines his hand and has the option of taking up the widow and placing his own hand on the table face up in its place, or of passing and allowing the following players in zum the choice. After an exposed hand has been laid on the table in place of the widow the next player may either tahe up one card from the new widow replacigg it with one from his own hand, or he may exchange his entire hand for the widow, or he may knock on the table. If be knocks every other player in turn may exchange one card or his whole hand, and the betting then begins, or there may be an agreement that the best hand wins from all the rest, or that the poorest hand pays a chip to the pool.

Techaical Terins.
Big Dog.-Ace high and nine low; not usurily played. If played it beats a Litlle Dog.
Blase.-Five court cards; not usually played If played it beats any two pairs
Boblad.-Four cards of a llush or arright, the firih card aot filling-

Bone.-The smallest counter or chip.
Buck.-A marker, to show when a jack-pot is to be played, win when it is the holder's deal.
Burnt Card.-Card on the bottom of the pack turned up to prevens being seen.
Chigso--Counters.

Cold Fect-Any excuso of a wianet for leaviog the tame before the time agreed upan.
Deadwod.-The discard pile.
Deck.-Pack.
Fouten.-Adding chips and a jack-pot after a failure to open.
Frecte Owt.-A game in which a player having lost a certain agreed capital must stop playing.
Inside Straight.-Intermediate straight, e.g. 2, 3, 5, 6
Kilter.-Hand with no pair and no card above the nine; scldons played.
Killy,-A fund, to pay for cards or sefreshenents, made by taking a chip trom each jack-pot, or paid by a wianer holding a valuable hand.
Lille Dog.-Deuce low and seven high; not usually played. When played it beats a straight.
Milhing.-Shufling by caking a card Irom the top and one from the hottom of the pack with the same movernent.
Mistigris.-Poker with the joker added: the joker may be called any card the holder ehooses.
Monkry Fzuslh.-Three cards of a flush.
Nafural Jocks--Jack-pots played because there has been no ante in the provious deal.
Openers.-A hand on which z jack-pot may be opened.
Pat Hand.-A hand to which no card is drawn.
Pool.-The chips in the middle of the table.
Shoz-dores,-Laying the bands face-up on the teble after a call.
Show.-Part of a pool to which a player is entitlod who bas bet as long as bis capital lasted but is not able to stand further raises. If his hand is the best he wilns whatever was in the pool at the time when he put into it the last of his capital.
Shy.-Not having put up the jack-pot ante.
Splilling.-Having opened a jack-pot with one pair, and holding four other cards of one suit, to throw away one of the pair on the charce of making a Bush.
Sweeten.-Chipping to a jack-pot after a failure to open.
Triplcts. - Three of a kind.
Under the Gun.--The first player to bet.
Whanzdoodle.-Compulsory round of jack-pots, usually agreed upon to follow a very large hand.
Widow.-An extra hand dealt to the table, as in Whiskey-Poker:
See Precticut-Poher, by R. F. Fonter (1904), the mot authoritstive work.
A very important attribute of a suecesoful poker player is sound judgment in discarding, and this is principally based on tha following mathematical cable of approximate chances.

To improve any hand in the drave the chamees are:-

Having in Haad	To make the Hasd below.	The Chance is
1 pair	To get two pairs (3-cerd draw)	1 in 41
1 pair	To get three of a kind (3-card draw) . .	1 in 9
1 pair .	To improve either way average value	1 in 3
1 pair and 1 odd card	To improve either way by drawing two cards	1 in 7
2 pairs	To get a full hand drawing one eard	1 in 12
3	To get a full hand drawing two casda	1 in 151
3	To get four of kind drawing two cards : :	$1 \ln 231$
3	To improve either way drawing two eards .	8 in 91
3 's and I odd card	To get a full hand by drawing one card	1 in ist
3's and I odd card .	To lmprove either way by drawing one card .	P in 17?
4 straight . . .	To fill when open at one end only or in middle as 3467 , or A 334	1 in 184
4 straight . . .	To fill when open at both ends as 3456 . ${ }^{\text {c }}$	$t \ln 6$
4 fursh	To fill the flush drawing one casti . . .	1 LR 5
4-straight fush .	To flll the sttright flush drawing one card	1 in 231
3-card fush	To make a fush drawing two cards . .	1 In 24

Of course these ehances are somewhat improved by the fact that, in actual play, pairs and threes are, on account of careles ahuffing, apt to Hic together move or lems.

POLA (Gr. IIbia or IIbncu; Slovene, $P_{u l j}$), a seaport of Austria, in Imeria, 86 m . S, of Trieste by rull. Pop. (1900), 45,052 . It is the principal naval harbour and argenal of the Austro-

Hungarian monarchy, and is situated near the southern cxiremily of the penfinalis of Letria: It lies at the. head of the Bayol Pola, and poseesses 2 crico and cornmodious harbour admont completely landjocked.' An extensive system of fortification, constructed on the hills, which enclose the harbour, defends its entrunce, while it also posesstes a good roadatcad in the large chanacl of Fasuma. This channel separates the manland from the Brionian lalands, which dominate the entrance to the-bay. The hartour has ma area of $\mathbf{3 . 3 z} \mathbf{3 9} . \mathrm{m}$., and is divided Into awo basins by a chain of three small islisnds. The inner batin is subi divided by the large Oife laland into the naval harhour, lying te the south, and the commercial harbour, lying to the north.' The Olive Island is connected with the coast by a chain-bridge, and is provided with wharis and dry and floating docks. The town proper lies opposite the Olive Keland, round the bese of a hill formorly crowned by the Roman capitol and now by a castle from the ryth century Besides the castle the chief building are the cathedral, dating from the 15 th century; the new garrison churth, completed in 1898 ln . the Besilica ityle, with a fine marble fagude; the Franciscan convent dating from the 13th century, and now used as a militery magaxine; the huge infantry harracks; and the town-halt, dating from the beginning of the 14th century. To the south-wos, along the const, extends the marine arsenal, a vast and well-planned establishment poosensing all the requifites for the equipment of a large fieel. It contains an lateresiing inaval museum, and is supplemented by the docks and wharves of the Seoglio Ollvi. The artillery laboratory and the powder magaxine are on the north bank of the harbour. Behind the arsenal lies the suburb of San Policarpo, almost exclusively oocupied by the navel popula. lion and contalning large naval barracks and hoapitals. In the middle of it is a pleasant perk, whin a handsome momument to the emperor Muximillan of Merico, who hied been a rebe-admiral in the Austrian havy. To the north, between San Policarpo and the town proper, rises the Monte Zaro, surmounted by an observatory and a statue of Admiral Tegitthoff. Pola has no manufactures outside of its noval stores, but its shifpping trade is now conslderable, the exports consinting of fish, timber and quarts sand used in making Venetian glay, and the imports of manufactuked and colonial wares. To many people, however, the chief tutterent of Pola centres in its fine Roman remalns. The most extensive of these is the amphitheatre built if A.D. 198-811, in horoar of the emperors Septip minus Severus and Caracalla, which is 79 ft. high, 400 ft . long and 300 ft . wide, and could eccommodete 90,000 spectators. It is remarkable as the only Roman amphtheatre of which the outer walis have been preserved intact; the interior, however, is now completely bare-though the arrangements for the naumachine, or naval contests, can sim be traced. Tho oldest Roman relic is the fine triumphat arch of the Sergii, in the Corinthian style, erected soon after the battle of Actium; and of not thuch tater date is the elegant and wellpreserved temple of Augustus and Rams erected in the year 19 B.c. Amons the other antiquities are three of the old town gates and a fragment of a temple of Diana.

The foundation of Pola is usually carried back to the mythic period, and ascribed to the Colchian pursuers of Jason aad the Argonatuts. In all probability il was a Thracian colony, but its verifiable history begins with its capture by the Romans in 178 s.c. It was deslroyed hy Augustus on account of its espotasal of the caose of Pompey, but was rebuilt on the fintercession of his daughter Julia, and recelved (according to Pliny) the name of Pietas Julia. It became a Roman colony dibitr
under the triumviri or under Octavith, and wes mainly imporunt as a harbour it seems to heve attained its greatest prosperity about the time of the emperor Seplimius Severus (193-21I A.D.), when it was an important war harbour and contained 35,000 to 50,000 inhabitants. At a later period Pola became the capital of the margraves of Istria, and was captured by the Venetians in 1148. It was several times captured and plundered by the Genoese, and recaptured by the Venstians. In 1370 the Genoesc, after defeating the Venetians in a great naval battle off the coast, took and destroyed Pola, which disappears from history for the next four hundred and fifty years. It remained under Venetian supremacy down to 1797, and has been permanently united with Austria since 1815 In 1848 a new era began for Pola in its being selected as the principal naval harbour of Austria.
See Th. Mommsen in Corp, imscr. Latim. v. 3 sqq. (Berlin, 1883). T. G. Jackson, Dalmatia, the Qmarnero and Istria, vol. Iit. (Oxford, 1887).

POLABS ($P o=0 \mathrm{D}$, Laba=Elbe), the Slavs (q.v.) who dwelt upon the Elbe and eastwards to the Oder Their chict tribes were the Vagri in Kolstein, the Bodriti or Obotritac in Mecklenburg, the Ljutid or Wiltai in western Pomerania, the Sprevane on the Spree and the Glomaki or Dalemintsi in Saxony. Except the Lithuanians they were the last Europeans to be christianized; their chief sanctuary was at Arcona on the Isle of Ragen. They were converted and conquered by the rath century and systematically germanized. By the ifth century Slevonic survived ouly in a tiny patch in the east of Hamover about Lachow, where a lew words wert still understood at the beginning of the rgth century. The population of the district etill goes by the name of Wends (q.v.). The chief remains of the language are a paternoster, a few phrases and a short vocabulary written down by Pastor Cbr. Heaning (e. 1700), and the diary of J. Paruns Schultze (d. 1734). These were edited by A. Hilferding (St Petersburg, 2856), and a grammar was published there by A. Schleicher (1871). M. Porzezinski and Fr. Lorentz are the chief later authorities. Polabian agrees mostly with Poligh and Kasube with its nasalized vowels and highly palatalized consonants. It had, however, long vowels and a free accent. The remains of it are most corrupt, having been written down when the language was full of Low German by people who did not know Slavonic.

POLACCA, the Italian name for a throe-masted merchant vessel, formerly common in the eastern waters of the Meditermanean. The masts were of one piece and the sails were square or lateen-shaped. The name appsars in various forms in other lenguages, e.s. Fr. palaque or palacre, Sp. polacra, Du. polack or Ger. Polack, and certalnly means Polish, although there is no explanation to be found tor any connexion hetween Poland and such a Mediterraneap veasel.
FOLAND (Polish Polika, Get. Polen), (see Poland, Russun, below), a country of Europe which till the end of the 18 th century was a kingdom extending (with Lithuania) over the basins of the Warta, Vistula, Dwins, Dnicper and upper Dniester, and had under its dominion, besides the Poles proper and the Baltic Slavs, the Lithuanians, the White Russians and the Little Russians or Ruthenians.
We possess no certain historical data relating to Poland till the end of the roth century. It would seem, from a somewhat

Orting of

Pament obscure parsage in the chronicle compiled from older sources by Nestor, a monk af Kiev (d. c. 1115), that the progenitors of the Poles, originally etablished on the 'Danube, were driven from thence hy the Romans to the still wilder widderness of central Europe, gettling finally among the virgin forests and impenctrable morasses of the basin of the upper waters of the Oder and the Vistula. Here the Lechici, at they called themselves (a name derived from the mythical patriarch, Lech), seemed to havo lived for centuries, in loosely connected communities, the simple lives of buntamen, bendsmen and tillers of the soil, till the pressure of rapacious sefghbours compelled them to combine for mutual defence. Of this infant state, the so-called kingdom of the Piasts (from

Fiast its supposed founder), we know next to nothing. Its origin, its territory, its institutions are 90 many insoluble nddles. The earliest Polish chroniclers, from Gallus in the early isth centuzy to Janko of Czarnkow ${ }^{1}$ in the 14 th, are of litue help to us. The only facts of importance to be gleaned from them are that Prince Zicmovit, the great-grandfather of Mieszio (Mieczyslaw) I. ($962-092$), wrested from the vast but tottering Moravian Empire the province of Chrobacyja (extending Erom the Carpathians to the Bus), and that Chriatianity was first preached on the Vistula by Greek Orthodox missionary monks. Miescko himself was converted by Jordan, the chaplain of his Bohemian consort, Dobrawa or Bona, and when Jordan became the first bishop of Posen, the people seem to have followed the example of their prince But the whole movement was apparently the outcome not of religious conviction, but of political necessity The Slavonic peoples, whose territories then extended to the Elbe, and embraced the whole southern ahore of the Baltic, were beginaing to recoil before the vigorous impetus of the Germans in the West, who regarded their pagan neighbours in much the same way as the Spanish Conquistadores regarded the Aztecs and the Incas. To accept Christianity, at least formally, was therefore a prudential safeguard on the part of the Slavonisas This was thoroughly understood by Mieszko's son Boleslaus I (992-1025), who went a considerable step farther than his father. Mieszko had been content to be received on almost any terms into the Christian community, Boleslaus aimed at securing the independence of the Polish Church as an additional converte guarantee of the independence of the Polish nation. © Chrmet It was Boleslaus who made the church at Gnesen terlor.
in Great Poland a national shrine by translating thither the relics of the martyred missionary, St Adalbert of Prague. Subsequently he elevated Gnesen into the metropolitan see of Poland, with jurisdiction over the bishoprics of Cracow, Breshan and Kolherg, all three of these new sees, it is important to rotice. being in territory conquered by Boleshaus; for hitherto both Cracow and Breslau had been Bohemian cities, while Kolberg was founded to curb the lately subjugated Pomeranians. Boleslaus was also the first Polish prince to bear the royal ticle, which seems to have been conferred upon him by Otto III. in 1000, though as Boleslaus crowned Eatmenti. himself king a second time in roas, it is evident that he regarded the validity of his first coronation as somewhat doubtful. He was primarily a warrior, whose reign, an almost uninterrupted wariare, resulted in the formation of a vast kis. dom exteading from the Baltic to the Carpathians, and from the Elbe to the Bug. But this imposing superstructure rested on the flimsiest of foundations. In less than twenty years after the death of its founder, it collapsed before a combined attack of all Poland's enemies, and simultaneously a terrible pagan reaction swapt away the poor remnants of Christianity and civilization. For a tlme Poland proper became a smol:-s wilderness, and wild beasts made their lairs in the rained and desecrated churches. Under Boleslaus II. (rogs-10;5) and Boleslaus III. (1102-1139) some of the lost provinces. notably Silesia and Pomerania, were recovered and Polari was at least able to maintain her independence against the Germans. Boleslaus III., morcover, with the aid of St Otio. bishop of Bamberg, succeeded in converting the healbea Pomeranians (1124-1128), and making head against maganisa generally.

The last act of Boleslaus III. was to divide his territories among his sons, whereby Poland was partitioned into no fewer than four, and altimately into as many as eight, purter principalities, many of which (Silesis and Great Purtel Poland, for instance) in process of time split exse-sint up into still smadler fractions all of them more or less bitterly hostile to each other. This partitional period, as Polish historians generally call it, lacted from 1 rys to ysor during which Poland lost all political aignificance, and became an easy prey to her neighbours. The duke of Inittie Podend

[^84] c. 1387:

Who generally styled himell duke of Polund, or due cotius Poloriace, elaimed a sort of supremacy among these Nitle statos, a cladm matarially strengthened by the walth and growing importance of his capital, Cracow, especinlly after Little Poland had annexed the central principality of Sieradia (Sieradz). But Masovia to the north, and Great Poland to the north-west, refued to recognize the supromacy of Little Poland, whin Silesia soon became cormpletely germenimed. It was at the beginning of this period too, between 1216 and 1224, that Pomerania, under an energetic native dynasty, freed hemelf Tmar from the Rolish buverainty. Nearly a generation taversom later (1241) the Tatar hordes, under Batu, appeared for the first time on the confines of Poland. The Polish princes opposed a valiant hut theffectual resifatance; the towns of Sandomir and Cracow were reduced to ashes, and all who were able fied to the mountains of Hungary or the forests of Moravia. Pursuing his way to Silesin, Batu overthrew the confederated Silesian princes at Leegoitz (April 9), and, after burning all the Silesian towns, invaded Hungary, where he routed King Bels IV. on the banks of the Sajo. But this marked the limit of his triuraph. Exhaussted and diminishod by the stout and successfiul opposition of the Moravians at Olmutz, the Tatars vanished as suddenly at they had appeared, leaving a smoking wilderness behind them.
Batu's lnvasion had an important influence upon the social and political development of Poland. The oniy way of filling Fores. ap the gaps in the population of the raveged hand ymint raters Rho Clthe whe to invite fareign immigrants of a superior class, chapmen and hendicraftsmen, not only given to peaceful purnuith and accustomed to law and order, but capable of bullding and defending strong cities, Such immigrants could naturally be obtained only from the civilized west, and on their own terms. Thus it came abourt that the middle class element was introdscod into Polish society for the first time. Immediately dependent upon the prince, from whiom they obtained their provileges, the most important of which were self-government and freedom from taxation, these traders soon became un important factor in the date, counterpoising, to zome extent. the influence of the gentry, enriching the lend by developing itn resourcen, and promoting eivilization by riaing the standard ol comlort.

Most of these German citizens in process of time were absorbed by the Polinh population, and became devoted, heart and soul, rmokntime to thedr adopted country; hat these were not the SHise only Germans with whom the young Polish state Swore. had now to deal. In the first year of the 13 th century, the Kinights of the Sword, one of the numerous orders of crusading military monks, had been founded in Livonia to "convert" the pagan Letts, and, in 1208 , the still more powerful Teutonic order was invited by Duke Conrad of Masovia to settle in the district of Kulm (roughly corresponding to modern East Prumsin) to protect his territories against the incursions of the savage Prussians, a race closely ak in to the Lil huanians. Conrad has been loudly blemed by Polish historians for introcucing this foreign, and as it ultimately proved, dangerous element Into Poland. But the unfortunate prince had to choose between dependence and extermination, for his unaided resources were powerless against the persistent attacky of the unconquerable 74 Tumaen oreve. Prussians. The Toutonic Order, which had just been expelied from Hungary by Androw II., joyfully accepted this new domicile, and ite position in the north was definitely established by the compact oi Kruschwitz in 1230, whereby it obrained aboolute poseseasion of the maritime district between Pomerania and Courtand, and southwards as far as Thorn. So jar were the Poles from antlcipating any danger from the Teutonic Order, that, from $\mathbf{1 2 4 3}$ to 1255, they sctually assisted it to overthrow the independent Pomeranian princes, the most formidahle opponents of the Knights in the earlier yeurs of their existe.ice. A second Tatar raid in 1259, less dangerous, perhaps, but certalnly more ruinous, than the first invasion-for the principalities of Little Poland and Sandomir were systomaticaliy, ravaged for three months-still funher
doptoned the had, and, at bus very time, asother enemy uppeared in the cast-the Lithuanians.

This intarteting people, whoee origic is to this day the mont baftiing of ethnographical pusules, originally dwelt amidst the foreste and marries of the Upper Niemen. Thanks to the impenetrability of thoir fantnemen, they preserved their original savagery loager than any of thair seighbouss, and this savagery was coupled with a valour so tenacions and enterprising as to make them formidable to ett who dwalt petir them. The Ruagians fed at the sight of them, " like hares before hunters." The Live and Letts were as much the prey of the Líthunaians "as sheep are the prey of wolves." The German chroniciers describe them to the most terrible of all the barbarians. The Lithunaians first emerge into the light of history at the time of the settiement of the Teutomic Order in the North. Rumours of the war of extermination conducted against their kinamen, the wild Prusaians, by the Knights, first woke the Lithuanians to a semse of their own danger, and induced them to abandon their loose comamunal syasem in favour of a monarchical form of government, which concentrated the whole power of the state in a single hand. Foctunately, too, at this crinis of their history, the Lithraniana were hlested with an altogether exceptional series of great rulers, who showed themselves fully capeble of taking care of themseives. There was, for instance, Mendovg (1240r263), who subraitted to baptian for purely political reasoms, check mated the Teutonk Knights hy adroilly meeking the protection of the Holy See, and annexed the princlipelity of Plock to his ever-widening grand duchy, which already included Blaok Rusia, and formed a huge wedge ertendiag southwards from Courtand, thus separating Polard from Rusis. A still greeter prince was Gedymin ($1315-1342$) who did his utmont to civilive Litheanas by hulling towns, intsoducing. foreigners, and colemating ali retigions, though he hlmgelf remained in pagan for political reasons. Gedymin still further extended the limits of Lithuania by annexing Kiav, Chernigov and other' old Rumian principulities.

At the very time when Lithuanis was thus becoming a contpact, united, powerful state, Poland meemed literally to be dropping to pieces. Not eves the exhortations of the popes could make ber score of prifices unite for musual defence against the batbarians who enm vironed them. Por a time It soemed highly probable that Poland would be completely germanised, like Silesia, or become a part of the new' Bohemien Empise which Wenceanus II. (crowned king of Poland in 1300) hadinherited from his father, Ottaker II. From this fate sho wes saved by the valour of Whadislaus Lokietek, duke of Great Poland (1306-1333), who reunited Great and Iftele Poland, revived the royal dignity in 1320 and saved the Kingdom from annihlation by his great victory over the Teutonic Knights at Plowce in 1332. The whole reign of Wladislaus I. was indeed an unceasing struggle against all the forces of anarchy and disintegration; but the fruits of his labours were richly reaped hy his son Casimir 111; the Great ($333-1370$), Poland's first great statesman in the modern sense of the word, who, hy a most skilful system of matrimonial alliances, reintroduced isolated Poland Cushmen into the European system, and gave the exhausted the ormen, country an inestimably beneficial breathing space am-470. of thirly-seven years. A born suler, Casimir introduced a whole serics of administrative and economical reiorms. Fle was the eapecial protector of the cities and the peasants, and, though averse from violent measures, punished aristocratic tyranny with an iron hand. Casimir's iew wars were waged entirely for profit, not glory. It in to him thet Poland owod the important acquisition of the greater part of Red Russia, or Galicia, which enabled her to secure her fair shase of the northern and eastern trade. In default of male issue, Casimir leit the Polish throne to his nephew, Louis of Hungary, who ruled the country ($1370-1382$) through his mother, Queen Elizabeth, Wladislaus Lokietek's daughter. Louis well deserved the epithet of " great " beatowed upon him hy his contemporaries;
but Polnend formed but a small poition of his vast domains, and Poland's interests were subortinated to the larger demands of an imperial policy which embenced half Europe within its orbit
On the death of Lonis there ensued an interregnum of two years marked by ficree civil Fars, instigaled by duke Ziemovit

Wroato
Anef R
Sactobe
Unvea
Polised ane
Pmberala
the daughter of Louis the Great and the granddaughter of Whadisteus Lokietek, had an equal right, by inheritance, to the thrones of Hungary and Poland. By an agreentent with the queen mother of Hungary at Kasea in 1383, the Poles finally accepted Jadwiga as their queen, and, on the 18 th of February 1386, greatly against her will, the young princesa, already betrothed to William of Austria, was wedded to Jagiello, grand duke of Lithuania, who had been crowned king of Poland at Cracow, three days previously, under the titie of Wladislaus IL.

The union of Poland and Lithuania as separate states under one king had been brought about by their common fear of the Teutonic Order. Five years after the death of Gedymin, Oigierd, the most capable of his seven sons. had been placed upon the throne of Lithuanin by his devoted brotber Kiejstut, and for the next two-and-thirty gears (1345-1377) the two princes still further extended the sway of Lithuania, principally at the expense of Muscovy and the Tatars. Kiejstut ruled the western portion of the land where the Teutonic Knights were a constant mennce, while Olgierd drova the Tatar hordes out of the southeatern steppes, and compelled them to seek a refuge in the Crimes. Duriag Oigierd's reign the southern boundariea of Lithuania touched the Black Sea, including the whoie tract of land between the mouth of the Bug and the mouth of the Drieper. Olgierd was succeoded by hia son Jagiello as grand duke in 1377, white Kicjstut was left in possession of Samogitia, Troki and Grodno; but the Teutonic Order, alarmed at the growth of Lithuania, succeeded in estranging uncle and nephew, and Kiejstut was treacherously aseassinated hy Jagiello's orders, at Krewo, on the 1 gth of August 1382. Three weeks later Jagiello was compelled to cede Samogitia, as far as the Dubissa, to the Knights, and, in the following year they set up against him Kiejstut's son Witowt. The eyes of Jagicto were now opened to the fact that the marhiavellian policy of the Krights aimed at subjugating Lithuania by dividing it. He at once made peace with his cousin; restored him his patrimony; and, to secure Lithuania against the future vengeance of the Knights, Jagiello made overtures to Poland for the hand of Jadwiga, and received the Polish crown along with it, as alrcady mentioned

Before proceeding to describe the Jagiellonic period of Polish history, it is nocessary to cast a rapid glance at the social and political condition of the country in the preceding Piast period.

The paucisy and taciturnity of our sources make it impossible to give anything like an adequate picture of Old Poland during sithety the first four centuries of its existence. A glimpse offurpant bere and there of the political devclopmant of the Concilion. tome. country is the utmost that the most diligent scrutiny can glean from the scanty record of the early chronicles. Enternal pressure, here as elsewhere. created a patriotic military caste, and the subsequent partitional period, when every little prince had his own separate court, still further established the growing influence of the salachia, or gentry, who were not backward in cthiming and obtaining special privileges In return for their services. The first authentic pacto combenta made between the Polish nobility and the Crown dates from the compact of Kassa (September 17, 1374), when Louis of Hungary ingreed to exempt the stiachla from all taxation. except two Polish groschets per hide of land, and to compensate them for the expenses of all military service rendered beyond the confines of the realm. The clergy received their chief
privileges much earliet. It was at the syaod of Lecryce, nearly a century before the compact of Kassa, that the property of the Church was first safeguarded against the encroachments of the.state. The beneficial influence of the Church of Poland in these early times was incalculable. To say nothing of the fabours of the Cistercians as colonists, pioneers and churchbuilders, or of the missions of the Dominicans and Franciscans (the former of whorn were introduced into Poland by Ivo, bishop of Cracow, ${ }^{1}$ the personal friend of Dominic), the Church was the one stable and unifying element in an ago of centrifugal particularism. The frequent synods represented the whole of Poland, and kept alive, as nothing else could, the idca of netional solidarity. The Holy See had also a considerable share in promoting the political development of the land. In the 13 th century alone no fewer than forty-nine papal legates visited Poland, and thirty provincial synods were held by them to regulate church affairs and promote good government Moreover the clergy, to their eternal honour, consistently protected the lower from the tyranny of the upper classes.
The growth of the towns was slower. During the heroic Boleslawic period there had been a premature outcrop of civil life. As early as the inth century Kruschwits, Great the old Polish capltal, and Goesen, the metropolitan of ite see, were of considerable importance, and played a Towes leading part in public life. But in the ensuing amarchic period both cities were utterly ruined, and the centre of political gravity was transferred from Great Poland to Little Poland, where Cracow, singularly favoured by her position, soon became the capital of the monarchy, and one of the wealithiest citics in Europe. At the end of the 14th century we find all the great trade gilds established there, and the cloth manufactured at Cracow was eagerly sought after, from Prague to Great Novgorod. So wealthy did Crecow become at last that Casimir the Great fit it necessary to restraln the luxury of her citizens by sumptuary ordinances. Towards the end of the $14^{\text {th }}$ century the Polish towns even attained some degree of political influence, and their delegates sat with the nobles and clergy in the king's conncils, a right formally conceded to them at Radom in March 1384 Even the peasants, who had suffered severely from the wholesale establishment of prisoners of war ass serfs on the estates of the nobles, still preserved the rights of personal liberty and free transit from place to place, whence their name of lasigi The only portion of the community which had no privileges were the Jews, first introduced into Poland by Boleslaus the Pions duke of Great Poland, in 1264, when bitter persecutions had driven them nort hwards from the shores of the Adrialic. Casimir the Great extended their liberty of domicile over the whote kingdom (1334). From the first they were better treated in Poland than elsevhert, though frequenty exposed $t 0$ outbreaka of popular fanaticism.
The transformation of the pagan Lithuanian chieftain Jagiello into the catholic king of Poland, Wladislaus II., was an event of capital importance in the history of eastern Europe. Its immediate and inevitable consequence was the formal reception of the Lithuanian nations into the fold of the Church. What the Teutonic Order had vainly endeavoured to bring about by fire and sword, wher Eode Trateme Orter. for two centuries, was peacefully accomplished hy Jagicllo with:in a single generation, the Lithuanians, for the most part. willieg'y yielding to the arguments of a prince of their own blood, who promptly rewarded his converts with peculiar and exclasive privilcges. The conversion of Lithuania menaced the very existence of the Teutonic Knights Originally planted on the Baltic shore for the express purpose of christianizing their savage neighbours, these crusading monks had freely exploited the wealth and the valour of the West, ostensitity in the causs of religion, really for the purpose of founding a dominion of their own which, as time went on, lost more and more of its religious character, and was now. Iittle more than a German military forepost, extending from Pomeranla to the Niemen which deliberately excluded the Slavs from the sea and thrived

IArchbilhop of Caceen 1219-128a. Died at Modern s329
at their expense. The mere inetinct of sell-preservation hed, at last, trawn the Poles and Lithuaniant together against these suthleas and masterfal intruders, and the coronation of Jagiello at. Cracow on the 15 th of February 1386, was both a warning and a challenge to the Knights. But if the Order had now become a supecfuous anachronism, it had still to be disposed of, and this was no easy task. For if it had failed utterly as a minsion in partibus, it had succeeded in establishing on the Baltic one of the strongest military organizations in Europe. In the art of war the Kaights were immeasursbly supetior to all their peighbours. The pick of the feadal chivalry composed their ranks; with all Europe to dimw upon, their resouroes seemed inerhanstible, and centuries of political experience made them as formidable in diplomity as they were valiant in warfare. And indeed, for the next twenty years, the Teutonic Order more than held its own. Skiffully taking advantage of the jealousies of Poland and Lithuania, as they were accentuated by the permanal antagonism of Jagiello and Witowt (g.s), with the latter of whom the Knights more than once contracted profitable alliances, they even contrived (Treaty of Salin, 1378) to extend their teritary by getting posesssion of the province of Samogitia, the original seat of the Lithuanians, whare paganism atill persisted, and where their inhuman croelties finally excited the horror and indignation of Christian Europe. By this time, however, tha prudent Jagiello had become cenvinced that Lithuania was too strong to be ruled by or from Poland, and yet not strong enough to stand alone, and by the compect of Vilna (January 18, 1401, confirmed by the compact of Radowo, March 10) he surrendered the whole grand duchy to Witowt, on the understanding that the two states ahould have a common policy, and that neither of them should elect a new prince without the consent of the other. The wistom of this arrangement was mado manifest in 1410, wben Jagiello and Witowt combined their forecs for the purpose of delivering Samogitia from the intolerable tyranny of the Kinights. The issue was fought out on the field of Tannenbers, or Grtinewidd (July IS, 14ro), when the Knights sustained a crughing defent, which shook their political organization to its very foundations. A few weeks after the victory the towns of Thom, Elhing, Braunsberg and Danzig submitted to the Polish hing, and all the Prussian bishops voluntarily offered too render him bomage. But the excessive caution of Jagiello gave the Knights time to recover from the blow; the Polish levies proved unruly and incompetent; Witowt was saddenly recalled to Lithuania by a Tatar invasion, and thus it came about that, vhen peace was concluded at Thom, on the rat of February 141 I, Samogitia (which was to revert to the Order on the death of Jagiello and Witowt), Dobriyn, and a war indernint y of ro0000 marks payable in four instalments, were the bent terms Poland could obtain from the Knights, whose territory practically zemanimed intact. Jagiello's signal for the attack at the battle of Grunewald, "Cracow and Vima" (the respective capitals of Poland and Lithusaia) had eloquently demonstrated the solidarity of the two states. This solidarity was still further etrenglhened by the Union of Horodlo (October 2, 1413) which enacted that henceforth Litbuania was to have the same order of dignitaries ${ }^{1}$ as Poland, as well as a council of state, or senate, similar to the Polish senate. The power of the grand-duke was also greatly increased. He was now declared to he the equal of the Polish King, and his successor could be elected only by the senates of Poland and Lithnania in conjunction. The Union of Honodio also established absolute parity between the nohility of Poland and Litbuania, but the privileges of the latter were made conditional upon their profession of the Roman Catholic faith, experience having shown that difference of religion in Litbuanin meant difference of politics, and a tendency lfoscow-wards, the majority of the Lithuanian boyars belog of the Greek Orthodox Confession.

Anl the chief offices of state were conmequentily duplicated, e.e. the hetman uridki korayny, i.e. "grand hetman of the crown," as the Polish commander-in-chief was called, had his counterpart in Lithuania, who bore the title of qoielki hetman litewshi, i.e. "grand metman of Lithumita;" aded so on.

During the remainder at the reigo of Whadinams II. the Teutonic Order gave Poland mach trouble, but no serious anciety. The trouble was due mainly to the repeated efforts of the Knights to evade the fulfilment of the obligations of the Treaty of Thorn. In these endeavours they were materially assisted by the emperor Sigismund, who was also king of Hungary. Sigismumd, in 1422, even went so far as to propose a partition of Poland between Hungary, the empire and the Silesian princes, a scheme which foundered upon Sigismund's impecuniouity and the reloctance of the Magyars to injure the Poles. More than once Whadislams II. was even obliged to renew the war againat the Knights, and, in 1422, he compelled them to renounce all chaims upon Samogitia; but the long strugsle, still umdecided at his death, was fought mainly writh diplomatic weapons at Rome, where the popes, gencrally speaking, listened rather to the victorious monarch who had added an ecclesiastical province to the Church than to the discomfited and turbulent Knights.
Had Whadislaus II. been as great a warrior as Witowt he might, perhaps, have uubdued the Knights altogether. But by miture he was pre-minencly a diplomatist, and it most in fatrness be admitted that his diplomacy in every direction was distinculy beneficial to Poland. He succensiully thwarted all the schemes of the emperor Sigiemund, by adtroitly supporting the revolutionary party in Bobemiz (q.v.). In return Husaite mercenaries fought on the Polish side at Tannerrburg, and Czech patriots repeatedly offered the crown of Bohemis to Whalislaus. The Poltsh king wes always ready enough to support the Crechs agrinst Sigismand; but the necestity of justifying his own orthodoxy (which the Knights were for ever impurgatig) at Rome and in the face of Europe prevented him from accepting the crown of St Wenceslaus from the hands of heretics.

Wladislaus II. died at Lemberg in 1434, at the age of eightythree. Daring his long. refge of fort y-nine years Poland had gradually risen to the rank of a great power, a result due in no small measure to the insight and atagecity of the first Jagiello, who sacrificed every other consideration to the vital necessity of welding the celtral Slavz into a complect and bomogeneous state. The next ten years severely tested the stability of his great work, but it slood the text triumphaplly. Neither a turbaleat mfnority, nor the neglect of an absentee king; neither the revival of eeparacist tendencies in Litbannia, nor the ontbreaks of aristocratic Iawiempess in Poland, could do more than shake the supecstructure of the imposing edifice. After the deat bat Varna, in 1444, of Jagiello's eldest son and successor, Wladialaue III. (whose history belonges rather to Humgary than to Poland), another great statesman, in no wise inferior to Whadislans II., completed and consolidated his work. This was Whadislans's second son, already grandduke of Lithuania, who ascended the Poliah throne as Casimir IV. in 1447, thus reuniting Poland and Lthosnia under one monarch.
Enormous were the difficulites of Casimir IV. He instinotively recognized not only the vital necessily of the maintenance of the union between the two states, but also the fact that the chief source of danger to the nuion lay Conimir $N_{\text {os }}$ In Lithuanin, in chooe dajs a macistrom of conflicting political currents. To begin wih, Lithumia was a far less composite state than Poland. Two-thirds of the grandduchy consisted of old Russian lands inhabited by men who spole the Ruthenian language and professed the Orthodox Greck religion, white in the north were the Lit buanians proper, semisavage and semi-catholic, justly proud of their hereic forefat hers of the house of Gedymin, and very sensitive of the preteasions of Poland to the provinces of Volhymia and Podolis, the fruite of Lithuanian valour. A Lithuanian himself, Casdmir strenuously resisted the attempts of Poland to wrest these provinces from the grandduchy. Moreover, during the earlier years of his reign, he was obliged to reside for the most part in Lfthuania, where bis tranquilizing influence was needed. His supposed preference for Lithuania was tbe real cause of his unpopularity in Poland, where, to the very end of his reign, he was regarded
with sumpicion, and where every effort wes made to thwart his far-secing and patriotic political combinations, which were beyond the comprebension of his self-secking and narrowminded contemporeries This was notably the case as regards his dealings with the old enemy of his race, the Teutonic Order, whose destruction was the chief aim of his ambition.
The Teutonic Order had long since failed as a religious institution; it was now to show its inadequecy as a political organization. In the domain of the Enights the gentry, parochial clergy and townamen, who, beneath its protection, had attained to a high degree of wealth and civilization, for long remained without the slightest political influence, though they bore nearly the whole burden of tazation. In 1414, however, intimidated by the growing discontent, which frequently took the form of armed rebellion, the Knights consented to the establinhment of a diet, which was re-formed on a more aristocratic basis in 1430. But the old abuses continuing to multiply, the Prussian towns and gentry at last took their affairs into their own hande, and formed a socalled Prussian League, which demanded an equal share in the government of the country. This league was excommunicated by the pope, and placed under the ban of the empire almost simultaneously in 1453, whereupon it placed Itself beneath the protection of its nearest powerful neighbour, the king of Poland, who (March 6, 1454) issued a manifento incorporating all the Pruscian provinces witb Poland, but, at the same time, granting them local autonomy and free trade.
But paovnces are not conquered by manifestoes, and Cacimir's scoeptanct of the homage of the Prussion League at once involved him in a war with the desperate Teutonic Knights, which lasted twelve years, but might easily have been concluded in a twelvemonth had he only been loyally supported by his own subjects, for whoec benefit he had embarked upon this great enterprise. But instead of support, Casimir encountered obstinate obstruction at every point. No patriotic Pole, we imagine, can read the history of this miserable war without feeling heartily ashamed of his countrymen. The acquisition of the Prussian hands was vital to the existence of Poland. It moant the excision of an alien element which fed like a cancer on the body politic; it meant the recovery, at comparatively little cost, of the command of the principal rivers of Poland, the Vistula and the Niemen; it meant the obtaining of a seaboard with the corollaries of sea-power and woold-wide commerce. Yet, except in the horder province of Great Poland, which was interested commercially, the whole enterprive was regarded with such indifference that the ling, in the very crisis of the struggle, could only with the atmost difficulty obtain contributions for war expenses from the half-doven local diets of Polsad, which extorted from the helplessness of their distracted and impecunious sovereign fresh privileges for every subsidy they grudgingly granted. Moreover Casimin's difficulties were materially increased by the necessity of paying for Cuech mercenaries, the pospotite rusuenie, or Polish militia, proving utteriy useless at the very beginaing of the war. Indeed, from first to last, the Polish grentry as a body took good care to pay and fight as little as possible, and Casimir depended for the most part upon the liborality of the Church and the Prussian towns, and the valour of the Hussite infantry, 170000 of whom, Gighting on hoth sides, are sald to have perished. Not till the victory of Puck (September 17, 1462), one of the, very few pitched battles in a war of raids, skirmishes and aleges, did fortune incline decisively to the side of the Poles, who maintained and improved their advantage till absolute exhasustion compelled the Kaights to tocept the mediation of a papal legate, and the second peace of Thorn (October 14, 1466) concluded a struggle which had reduced the Prussian provinces to a wilderness. ${ }^{1}$ By the second peace of Thorn, Poland necovered the provinces of Pomerelis, Kulm and Michalow, with the bishopric of Ermeland, numerous cities and fortresses, including Marien-

[^85]burg, Elbing, Danaig and Thom. The territory of the Enights was now reduced to Prussia proper, embracing; roughly spesking, the district between the Baltic, the lower Vistula and the lower Niemen, with Konigsberg as its capital. For this territory the grand-masters, within nine months of their election, were in future to zender homage to the Polish king; but, on the other band, the king undertook not to make wrr or engage in any important enterprise without the consent of the Prussinn province, and vice verse. Thus Prussin was now confederated with Poland, but she occupied a subordinate pocition as compared with Lithuania, inasmuch as the grand-master, though filling the first place in the royal courcil, was still a subject of the Polish crown. Thus the high bopes entertabed by Cacimir at the beginning of the war had not been realized. The final settlement with the Poles was of the nature of a compromise. Still the Knighta had been driven beyond the Vistuln, and Poland had secured a seaboand; and it was due entirely to the infinite patience and tenacity of the king that even as much as this was won at last.
The whole forcign policy of Cusimir IV. was more or les conditioned by the Pruscian queation, and here also his superior diplomacy triumphantly asserted itself. At the beginning af the war both the empire and the pope were against him, but he ncutralized their hoetility by allying himself with Geonge af Podvebrad, whom the Husaites had placed. on the throne of Bohemin. On the death of George, Casimir's eldest soan Whadislaus was elected king of Bobemia by the Utraquist party, despite the determined opposition of Matthias Corvinus, ling af Hungary, whose ability and audacity benceforth made him Casimir's most dangerous rival. Sure of the support of the pope, Matthias (g.o.) deliberately set about traversing all the plans of Casimir. He encouraged the Teutomic Order to rebel against Poland; he entertained at his court antiPolish embassies from Moscom; he encouraged the Tatars to ravage Lithuania; he thwarted Casimir's policy in Moldavia The death of the brilliant adventurer at Viemme in 1490 carae therefore as a distinct relief to Poland, and all danger frose the side of Hungary was removed in 1490 when Casimir's soo Wladislans, already king of Bohemia, was elected king of Hungary also.

It was in the reign of Cesimir IV. that Polqnd first came into direct collision with the Turks. The Reppoflic was never, indeed, the "Buckitr of Christendom" That glorious epithet belonged of right to Hungary, which pheneat had already borne the brunt of the struggle with the Ottoman power for more than a century. It is true that Wladialaus II. of Poland had failen on the field of Varme, bat it was as a Magyar king at the bead of a Magyar army that the young monarch met his fate. Poland, indeed, was far less able to cope with the Turks than compact, wealthy Humgery, which throughout the rgth century was ane of the mote efficient military monarchies in Europe. The Jagiellos, as a male, prudently avoided committing themelves to any political system which might irritate the still distant but moach-dreadod Turk, but when their dominions artended 90 far montheande as to embrace Moldavia, the observance of a strict nextrailicy became exccedingly difficult. Polind had eatablished a sort of suserainty over Moldsvis as eany as the end of the meth century; but at best it was a boose and vague overiondsinip which the Hospodars repudiated whenever thoy were stroms enough to do so. The Turks themselves were too muck occupiad elsewhere to pay much attention to the Danuhian principatities till the middle of the 15th century. In 1478 Mahomet II. had indeed attempted their anbjugation, with bet indifierext success; but it was not till 1484 that the Ottomans becme inconvenient neighbours to Poland. In that year a Torkish fleet captured the strongholds of Xilis and Akkerman, commenting respectively the mouths of the Danube and Dnienter. This agaression seriously threatened the trade of Poland, and induced Casimir IV. to accede to a general league ggainst the Porte In 1485, after driving the Turks out of Moldavis, the Polish king at the head of 20,000 minen, proceaded to Kolomea ain the

Pruth, where Bayazid II, theas exobarrased by the Egoptian. war, offered peace, but as no agreement concerning the captured fortreases could be arrived at, hostilities were suspended by a truce. During the remainder of his reign the Turks gave no trouble.
It was a fortunate thing for Poland that, during the first century of her ascension to the mak of a great power, political exigencies compelled her to appropriate almost more tecritory than her primitive and centrifugal government could properly assimilate; it was fortunate that throughout this period of expansion ber destinies should, with one brief interval, have been controlled hy a couple of superior statesmen, each of whom ruled for nearly fifty years. During the fourteen years (14921506) which separate the reigns of Casimir IV. and Sigismund L. she was not so lucky. The controlling hand of Casimir IV. was no sooner withdrawn than the unruly elements, ever present in the Republic, and ultimately the casue of its ruin, at once burst forth. The first symptom of this lawlessness wiss the separation of Poland and Litmunia, the Lithuanians proceeding to elect Nexander, Casinsir's fourth son, as their grand-duke, without even consulting the Polish sente, in flagrant violation of the union of Horodlo. The breach, happily, was of po very long duration. A disastrous war with Ivan III, the first Muscovite tsar, speedily convinced the Lithuanians that they were not strong enough to stand alone, and in 1499 they voluntarily renewed the union. Much more dangesous, was the political revolution proceeding simultaneously in Polind, taner. Where John Albert, the third son of Casimir, had Absert. sces-1501. been elected king on the death of his father. Tho when we pature of this revolution will be considered in detail constitution come to speak of the growth of the Polish monarchical and anti-democratic, tending, as it did, to place all political authority in the hands of the salachta, or gentry. The impecunious monarch submitted to the dictation of the dict in the hope of obtaining sufficient money to prosecute his ambitious designs. With his elder brother Whadishus reigning over Bohemia and Hungary the credit of the Jagiellos in Europe had never been so great as it was now, and John Albert, bent upon military glory, eagerly placed himself at the head of what was to have been a great anti-Turkish league, but ultimately dwindled down to 2 raid upon Moldavia which ended in disaster. The sole advantage which John Albert reaped from his championship of the Christian cause was the favour of the Curia, and the ascendancy which that favour gave him over the Teutonic Knights, whose new grand-master, Albert of Saxony, was reluctantly compelled to render due homage to the Polish king Under Alexander ($q . v$.), who succeeded his brother

Alsmagdors

 in 1 gor, matters went from bad to worse. Alexander's clection cemented, indced, once for all, the anion between Poland and Lithuania, inasmuch as, on the eve of it (Oct. 3, x 501) the senates of both countries agreed that, in future, the king of Poland should always be grand-duke of Lithuania; but this was the sole benefit which the Republic derived from the reign of Alexander, under whom the Polish sovernment has been well described as a rudderless ship in a stormy sea, with nothing hut the grace of God between it and destruction. In Lithuania the increasing pressure of the Muscovite was the chief danger. Till the accession of Ivan III. Rumetarat In 1462 Muscovy had been a negligible factor in CHMrenter Polish politics. Duting the earlier part of the $15^{\text {th }}$ century, the Lithuanian princes had succeasfully cont ested Muscovite influenco even in Pskov and Great Novgorod. Many Russian historians even maintain that, hut for the fact that Witowt had simultaneously to cope with the Teutonic Onder and the Tatars, that energetic prince would certainly have extinguished struggling Muscovy altogether. But since the death of Witowt (1430) the military efficiency of Lithuania had sensibly declined; single-handed sho was no longer a match for her ancient rival. This was owing partly to the evils of an oligarchic government; partly to the weakness zesulting from the matural attraction of the Orthodox-Greek element in Iithu-ania tomards Muncory, especially after the fall of Cpoatantinople; but chiefly to the administrative superiority of the highly centralized Muscovite sovernment. During the reign of Alcraader, who was too poor to maintain any adequate standing army in Lithuania, the Muscovites and Tatars raviged the whole country at will, and were prevented from conquering it altogether only by their inahility to capture the chief fortresses. In Poland, meanwhile, something very like anarchy prevailed. Alexander had. practically surrendered his authority to an incapable aristocracy, whose sole idea of ruling was systematically to oppress and humiliate the bower classes. In foreign affairs a policy of drift prevailed which encouraged all the enemies of the Republic to raise their heads, while the dependent states of Prussia in the north and Moldavia in the south made strenuous efforts to break away from Poland. Fortunately for the integrity of the Polish state the premature death of Alexander in 1506 brought upon the throne his capahle brother Sigismund, the fifth son of Casimir IV, whose long reign of
 altogether recuperative, had his statesmanship only
been loyally supported by his suhjects Eminently practical Sigismund recognized that the first need of Poland was a standing army. The miserable collapse of the Polish chivalry during the Bukovinian campaign of 1497 had convinced every one that the russenie pospolite was usdess for serious military purposes, and that Poland, in order to hold her own, must in luture follow the example of the West, and wage her warfare with trained mercenaries. But professional soldiers could not be hired without money, and the difficulty was to persuade the diet to loose its purse-atrings. All that the gentry contributed at present was two pence (groschen) per hide of land, and this only for defensive service at home. If the ling led the ruscenic pospolice abroad he was obliged to pay so much per pike out of his own pocket, potwithstanding the fact that the heavily mortgaged crown lands were practically valueless. At the diet of 1510 the chancellor and primate, Adam Laski, proposed an income-tax of 50% at once, and 5% for subsequent years, payable by hoth the lay and clerical estates. In view of the fact that Poland was the most defenceless country in Europe, with no natural boundarics, and constently exposed to attacks from every quarter, it was not unreasonable to expect even this patriotic sacrifice from the privileged classes, who held at least two-thirds of the land by militery tenure. Nevertheless, the diet refused to considar the scheme. In the following year a more modest proposal was made by the Crown in the ahape of a capitation of six gulden, to be levied on every nobleman at the beginning of a campaign, for the hiring of mercetaries. This also was rejected. In 1 sI2 the king came forward with 2 thind scheme. He proposed to divide the country into five circles, corresponding to the five provinces, each of which was to undertake to defend the realm in turn should occasion arise. Moreover, every one who so desired it might pay a commutation in lieu of personal service, and the amount so realized was to be re-used to levy troops. To this the dietines, or local diets, of Great Poland, and Lítte Poland, agreed, but at the Iast moment the whole project foundered on the question who was the proper custodian of the new assessment rolls, and the king had to be content with the renewal of former subsidies, varying from twelve to fifteen groats per hide of land for three years. Well might the disappointed monarch exclaim: "It is vain to labour for the welfare of those who do not care a jot about it themselves.". Matters improved somewhat in 2527 , when the szlachta, by a special act, placed the mightiest magnates on the same level as the humblest squire as regands military service, and proposed at the same time a more general assessment for the purpose, the control of the money so realized to be placed in the hands of the king. In consequence of this tav the great lords were compelled to put forces in the field proportioned to their enormous fortupes, and Sigismund was able in 1529 to raise 300 foot and 3200 horse from the province of Podolia alone. But though the treassery was thus temporarily zeplenished and the army increased, the gentry who had been so generous at
the expense of their richer netghbours would hear of no additional burdens being laid on themselves, and the king only obtaned what be wanted by sacrificing hus principles to his necessuties, and helpang the silachila to pull down the magnates. This fatal parsimony had the most serious poltical consequences, for it crippled the kang at every step. Surive and acheme as be mught, his needs were $s 0$ urgent, has enemies $s 0$ dumerous, that, though generally saccessfut in the end, he had alrays to he content with compromises, adjustments and semp-victories. Thus he was ohilged, in 1525 , to grant local autonomy to the province of Prussia instead of annexing it, be was unable to succour his unfortunate nephew, Louis of Fiongary, against the Turkish peril, be was compelled to submit to the occupation of one Lithuanian province after the Other by the Muscovites, and look on helplessly while myriads of Tatars penetrated to the very beart of his domains, wasting with fire and sword everything they could not carry away with them

Agein, it should have been the first duty of the Republic adequately to fortify the diitic pola, or "eavage steppe," as the vast plain was called which ertended from Kiev to the Black Sea, and some feeble attempts to do so were at last made. Thus, in the reign of Alerander, cerencte the fugitive seris whom tyranny or idieness had driven into
this wilderness (they were subsequently known as Kazaki, or Cossacks, a Tatar word meaning freebooters) were formed into companies (c. 1504) and placed at the disposal of the frontier slarosios, or lord marchers, of Kaniev, Kamenets, Czerkask on the Don and other places. But these measures proved inadequate, and in 1533 the lord marcher, Ostaf Dasskiewicz, the hero of Raniev, which he had successfully defended against a countless host of Turks and Tatars, was consulted by the diet as to the best way of defending the Ukraine permanently against such inroads. The veteran expert advised the populating and fortifying of tbe islands of the Dnieper Two thousand men would suffice, be said, and the Cossacks supplied excellent military material ready to hand. The diet unanimously approved of this simple and inexpensive plan; a special commission examined and approved of its details, and it was submitted to the next dict, which rejected it. So nothing at all was done officially, and the defence of the eastern Ukraine was left to providence. Oddly enough the selfish prudence of Sigismund's rapacious consort, Queen Bona, did more for the national defence than the Polish state could do. Thus, to defend her immense possessions in Volhynia and Podolia, she converted the castles of Bar and Krzemieniec into first-class fortresses, and placed the former in the hands of her Silesian steward, who acquitted himself so manfully of his charge' that "the Tatars fell away from the frontier all the days of Pan Pretficz," and a large population settled securely heneath the walls of Bar, benceforth known us "the bastion of Podolia." Nothing, perhaps, illustrates so forcibly the casual character of the Polish government in the most vital matters as this single incident.

The most important political event during the reign of Sigismund was the collapse of the ancient Eungarian monarchy at Mohacs in 1526. Poland, as the next neighbour of Hungary, was more seriously affected than any other European power by this catastrophe, but her politicians differed as to the best way of facing it. Immediately after the deatb of King Louis, who fell on the field of batte, the emperor Ferdinand and John Zapolya, voivode of Transylvania, competed for the vacant crown, and hoth were ciected almost simultaneously. In Poland Zapolya's was the popular cause, and he also found powerful support in the influential and highly gifted Laski family, as represented by the Polish chancellor and his nephews John and Hieronymus. Sigismund, on the other hand, favoured Ferdinand of Austria. Though bound by famlly ties witb both competitors, be regarded the situntion from a purely political point of view. He argued that the best way to keep the Turk from Poland was for Austria to incorporate Hungary, in which case the Austrian dominion world be a strong and permanent barrier against a Mussulman invasion of Europe. Eistory has
I Pretice won no fewer than 70 engeqements bver the Tatarn
more than fustified him, and the iong duel which ensued betvero Ferdinend and Zapolya (see Huscaity. Hastery) earabled the Polish monarch to mantan to the end a cautious but observast neutrality More than once, modeed, Sigismund was merionsly compromised by the diplomatuc vagaries of Hieronymus Lacki, who entered the service of Zapolya (ance 1599 the protige of the sultan), and greatly alarmed both the emperor and the pope by his disturbuay phulo-Turt procivilies. It was oring to Lastu's intngues that the new hospodar of Moldavia, Petrylo, after doing bomage to the Porte, intervened in the strugge as the foe of both Ferdinand and Sugismund, and besieged tbe Grand Ketman of the Crown, Jan Tarnowsis, in Obertyn, where. however, the Moldavians (August 22, I53i) sastamed a croshing defeat, and Petrylo was shain. Nevertheless, 80 anrious wis Sigismund to avord a collision with the Turks, that he forbade the victorious Tarnowski to eross the Moldavian frontrer, and sent a letter of explanation to Constantmople. On the death of John Zapolya, the Austro-Polish allance was still furtber cemented by the marriage of Sigismand's son and heir, Sigimund Augustus, witb the archduchess Elizabetb. In the reign of Sigismund was effected the incorporation of the duchy of Masovis with the Polish crown, after an independent existence of five handred years. In 1526 the male line of the ancient dynasty became ertinct, and on the 20th of August Sigismund received the homage of the Masovians at Warsaw, the capital of the duchy and ere long of the whole kingdom. Almost every acre of densely populated Masoviz was in the hands of her sturdy, ultra-conservative squires, in point of culture far below their brethren in Great and Little Poland. The additional revenoe gained by the Crown from Mesovia was at first but 14,000 gulden per annum

The four and twenty years of Sigismund II 's reign was a critical period of Polish history. Complications witb the Turk were avoided by the adroit diplomacy of the king. Whise the superior discipline and efficiency of the Polish armies under the great Tamowski (q.v.) and his pupils overawdd the Tatars and extruded the Muscowites, neither of whom were so trouble some as they had been during the last reign. All the more disquieting was the internal condition of the country, dse mainly to the invasion of Poland by the Reformation, and the coincidence of this invasion with an internal revolution of a quasi-democratic character, which aimed at substituting the rule of the salackta for the rule of the senste.

Hitherto the Republic had given the Holy See but firte anxicty. Hussite influences, in the begianing of the s th century, had been superficial and transitory. The Polish government had employed Hussite mercen- Thenion aries, but rejected Hussite propagandists. The Portex edict of Wielun (1424), remarkable as the first anti-heretiol decree issued in Poland, crushed the new sect in its infancy. Luthertnism, moreover, whs at first regarded with grave stis picion by the intensely patriotic Polish gentry, because of it German origin. Nevertheless, the extremely severe penal edixis issued during the reign of Sigismund I., though seldom appiel. seem to point to the fact that heresy was spreading widtiy throughnut the country. For a time, therefore, the Protestary had to be cautious in Poland proper, but they found a sure refuge in Prussia, where Lutheramism was already the established religion, and where the newly erected oniversity of Konigstierg became a seminary for Polish ministers ard preachers.

While Lutheranism was thus threatening the Polish Church from the north, Calvinism had already invaded her froen tte west. Calvinism, indeed, rather recommended itself to the Pcis as being of non-German origin, and Calvin actually dedicated his Commontary on the Mass to the young krolasicz (or crosz prince) Sigismund Augustus, from whom protestantism, e.ren cously enough, expected much in the futur: Meanwis' conversion to Calvinism, among the higher classes in Polv:became more and more frequent. We hear of crowded Calvirs conventicles in Little Poland from r545 onwards, and Calvicic: continued to spread throughout the kingdom during alhe latter
years of Stgetmund I. Another sect, which utimatily fotnil even more favour in Poland then the Calvinists, was that of the Bohemian Brethren. We first hear of them in Great Poland in 1548. A toyal decree promptly banished them to Prusola; where thoy soon increased so rapidly as to be able to hold their owa against the Luthcrans. The death of the uncompromising Sigismund I. came as a great relief to the Protestants, who entertained high hopes of his son and tuccessor. He was known to be familiar with the works of the leadiag reformers; he was surrounded by Protestant counsellors, and he was actually married to Barbara, daughter of Prince Nicholas Radziwill, "Black Radziwill," the all-powerful chief of the Lithuanian Calvinists. It was not so generally known that Sigismand II. was by conviction a sincere though not a bigoted Catholic; and nobody suspected that bencath his diplomatic urhanity lay a patriotic firmness and statesmanlike quallies of the first order. Moreover, they ignored the fact that the success of the Protestant propaganda was due rather to political than to religious causes. The Polish gentry's jealousy of the clerieal estate, whose privileges even exceoded their own, was at tho bottom of the whole matter. Any opponent of the established clergy was the natural ally of the selachia, and the scandalous state of the Chutch herself provided them with a most formidable weapon against her. It is not too much to say that the condition of the Catholic Church in Poland was almost as had as it was in Scoeland during the same period. The bishops were, for the most part, elegant trifiers, as pliant as reeds, with no fixed principles and saturnted with a false humanism. Some of them were notorious evillivers. "Pint-pot" Latuski, bishop of Posen, had purchased his office for 12,000 ducats from Queen Bona; while another of her erealures, Peter, popalariy known as the "vencher," was appointed bishop of Przemysi with the promise of the reversion of the atill richer see of Crnoow. Moreover, despite her immense walth (in the province of Little Poland alone she owned at this time 26 towns, 83 landed estates and 772 viliages), the Church claimed excmption from all public biurdens, from all political responsibilitics, although her prelates continued to exercise an altogether disproportionate political infuence. Education was shamefulty meglected, the masses being left in almost heathen ignorance-agd this, too, at a time when the upper classcs were greedily appropriating the ripe fruits of the Renaissance and when, to use the words of a contemporary, there were " more Latinists in Poland than there used to be in Latium." The university of Cracow, the sole source of know. ledge in the vast Polish realm, still moved in the vicious circle of scholastic formularice. The provincial schools, dependent upon so decrepit an alma mater, were suffered to deczy. This criminal neglect of national education brought along with it its own punishment. The sons of the sentry, denied proper instruction at home, betook themselves to the nearest universities across the border, to Goidberg in Silesia, to Wittemberg. to Leipzig. Here they fell in with the adherents of the new faith, grave, eamest men who professed to reform the abuses which had grown up in the Church; and a sense of equity as much as a love of novelty moved them, on their return home, to propagato wholesome doctrines and clamorr for the reformation of their own degenerate prelates. Finally the poorer ejergy, neglected by their bishops, and excluded from all preferment, took part with the stachta against their own apiritual rulers and engerly devoured and imparted to their focks, in their own langusev, the contents of the religious tracts which reached them by divers ways from Goldberg and Kðnigsberg. Nothing Indeed did so much to popularize the trew doctrines in Poland as this beaeficial revival of the long-negiected vernecular by the reformers.

Such was the sitmation when Sigismund II. began his selgr. The biabops at once made a high bid for the favour of the new Stho- king by consenting to the coronation of his Calvinist \sin /h. 156-450. consort (Dec. 7, 1550) and the king five days afterwands issued the celebrated edict in which he pledged his royal word to preserve intact the unity of the Church and to enf-re the law of the land against heresy. Encouraged by this pleasing symptom of orthodoxy the bishopen inotead
of erst atlempting to pat their own dilipidated house in orders at once proceeded to institute prosecutions for heresy againse all and sundry. This at once led to an explosion, and at the diet of Fiotitow, 1552, the selachia accepted a proposition of the king, by way of compromise, that the jurisdiction of the clerical courts should be suspended for twelve months, on condition that the gentry continued to pay tithes as hetetofore. Then began a religious interim, which was gradually prolonged for ten years, during which time Protestantism in Poland nourished exceedingly. Presently reformers of every shade of opinion, even those who were tolerated nowhere else, poured into Poland, which speedily became the hattle-ground of all the sects of Europe. Soon the Protestants became numerous enough to form ecclesiastical districte of their own. The first Calvinist synod in Poland was held at Pinczow in 1550. The Bohemian Brethren evangelized Little Poland, but ultimately coalesced with the Calvinists at the synod of Kouminek (August 1555). In the diet itself the Protestants werc absolutely supreme, and invariably elected a Calvinist to be their marshal. At the diet of 1553 they boldly demanded a national synod, absolute toleration, and the equalization of all the sects except the Antitrinitarians. But the king intervened and the existing interim was indefinitely prolonged. At the diet of Piotrkow, 1558-8559, the onslaught of the selachte on the clergy was fieroer than ever, and they even demanded the exclusion of the bishops from the senate. The king, however, perceiving a danger to the constitution in the violence of the slachita, not only supported the bishops, but quashed a subsequent reiterated demand for a national synod. The diet of $1558-1559$ indicates the high-water mark of Polish Protestantism. From this time forward it began to subside, very gradually but unmistakably. The chief causo of thls subsidence was the division among the reformers thenaselves. From the chaos of ereeds rosulted a chaos of ideas on all imaginable subjects, politics included. The Antl-trinitarian proved to be the chief dissolvent, and from rg6o onwards the relationd between the two principal Protestant sects, the Lutherans and the Calvinists, were fratricidal rather than fraternal. An auxiliary cause of the decline of Protestantiom was the beginning of a Catholic remction: The bulk of the poput lation still held persistently, if languidiy, to the falth of tis fathers; the new bishops were boly and leanted men, very unlike the creations of Qtein Bona, and the Holy See gave to the slowly reviving real of both clergy and laity the very necessary impeties from withoot. For Poland, unsike Seotland, was fortumately, in those days of difficult inter-communication, not too far off, and it is indisputable that in the first instance it was the papal nuncios, men like Berard of Camerino and Giovanal Commendone, who reorganized the scattered and faint-hearted battalions of the Church militant in Poland and led them back to victory. At the diet of Fiotriow in $\mathbf{1 5 6 2}$, indeed, the king's sore need of subsidies induced him, at the demand of the sidachers; to abotish altogether the jurisdiction of the ecelesiastical courts in cases of heresy; but, on the other hand, at the diet of 1564 he accepted from Commendone the Tridentine decrees and issmed an edict haniahning all foreign, and especially Anti-trinitarian, heretics from the land. At the diet of 1 g6s Sigismund went' still farther. He rejected a petition for a national 7 to pacifictitory bynod as unnecessary, inasmuch as the compor cormail of Trunt had already settled all religious Amomemer questions, and at the same time consented to the ta Paland introduction into Poland of the most formbdable advemaries of the Reformation, the Jesuits. These had already boen installed: at Polensk, and were permitted, after the diet rose, to found. establishments in the dioceses of: Posen, Erincland and Vilsw, which henceforth becaruc centres of a vigosous and victorions propaganda. Thus the Republic resosered her catholicity andher intemal barmony at the same time.
With rare sagacity Sigisurond II. had thus piloted the Republic. through the most difficult internal crigis it had yet encoumtered. In parely political matters also both initiatlve and fulfilment came entirely from the Crown, and to the last of the Jagiellot Pohand owed the important acquisition of Livonis and the
weldiag together of ber loosely connected component parts into a single state by the Union of Lublin.
In the middle of the 16th century the ancient order of the Knighes of the Sword, whose territory embraced Esthonia, Livonia, Couriand, Semgallen and the islands of Dags and Ocscl, was tottering to its fall. All the Baltic powers were more or leas iaterested ja the apportionment of this vast tract of land, whose geographical position raade it not only the chief commercial link between east and west, but also the emporium. whence the Eaglish, Dutch, Swedes, Danes and Germans obtained their corn, timber and most of the raw product of Lithuasia and Muscovy. Matters were complicated by the curious political

- intricacies of this long-coveted domain, where the grand-master, the archbishop of Riga, and the estates of Livonia poosessed concurrent and generally conficting jurisdictions. Poland and Muscovy as the rearest neighbours of this moribund state, which had so long excluded them from the sea, were vitally concerned in its fate. After an anarchic period of suspense, lastiag from 1546 to 1561 , during which Sweden secured Esthonis, while Ivan the Terrible fearlessly ravaged Livoaia, in the hope of making it valueless to any other potentate, Sigismund II., to whom both the grand-master and tho archbishop had appealed more than once for protection, at length intervened decisively. Both he and his chancelior, Piotr Myszkowski (d. 159x), were well aware of the importance of securing a coast-land which would enable Poland to become a naval power. But the dict, with almont incredible short-sightedness, refused to waste a penny oa an undertaking which, they argued, concerned only Lithuania, and it was not as king of Poland, but as grand-duke of Lithuania, and with purely Lithuanian troops, that Sigismund, in 150 r , occupied Livonia. At his cappp before Riga the last grand-master, Gotthard voa Ketteler, who had long been at the head of the Polish party in Livonita, and William of Brandenburg, archbishop of Riga; glarlly placed themselves beneath his protection, and hy a subsequent convention signed at Vilna (Nov. 28, 1561), Livonia was incorporated with Lithuania in much the same way as Prussia. had been incorporated with Poland thirty-aix years previously. Ketteler, who had adopted Lutheranism during a visit to Germany in 1553, bow profesed the Augiburg Confesion, and became the first duke of a new Protestant duchy, which he wai to hold as a fief of the Polish crown, with Jocal autonomy and absolute freedom of worship. The southern provinces of the ancient territory of the Order, Couriand and Semgallen, had first beea cerled on the a4th of June 1559 to Lithuania on similar conditions, the matter being finally adjusted by the compact of March 1562 .

The apathy of Poland in such a vital matter as the Livonian queation must have convinced so statesmanlike a prince as Sigismund 11. of the necessity of preventing any possibility of cleavage in the future between the two halves of his dominions whose absolute solidarity was essential to their existence as a great power. To this petriotic design be devoted the remainder of his lifo. A personal union, under one monarch, however close, had proved inadequate. A further step must be takenthe two iadependent countries must be transformed into a single state. The great obstacle in. the way of this, the only true solution of the difficulty, was the opposition of the Lithumainn magnates, who feared to lose the absolute dominancy they possessed in the grand-duchy if they were merged in the stlacher of the kingdom. But, at tho lest moment, the dread of another Muscovite invasion made them more pliable and, at. : Polith diet heid at Warsaw from November 1563 to June 1564 , which the Lithuanians attended, the question of an absolute union was hotly debated. When things came to a deadiock the king tactfully intervened and voluntarily relinquished his hereditary title to Lithuania, thus placing the two countries on a constitutional equality and preparing the way for fresh negotiations in the future. The death, in 1565, of Black Radziwill, the chief opponent of the union, still further weakened the Lithuanians, and the aegotiations were reopened with more prospect of auccess at the diet which met at Lublin on-the roth
of Jenvary 1569. Iut even now the Lithraniase mete indipposed towands a complete union, and frally they quitted the diet, leaving two commissioners behind to watch their intereas. Theo Sigismuad exccuted his master atroke. Knowing the senditiveneas of the Lithuanians regards Volhynia and Podolia, be suddenly, of his own aut hority, Sormilly incorporated both these provinces with the kingdom of Podand, whereupon; amidat great enthusisam, the Volhynian and Podolian depoties took their places on the same benches as their Polish brethren. The hands of the Lithuanians were forced. Even a complete union on equal terms was better than mutilated independence. Accordingly they returned to the diet, and the comptes union was unanimously adopted on the est of July conten of 1569. Henceforth the kingdon of Poland and the LManmet grand duchy of Lithuania were to constitute one pepmean inseparable and indivisible body politic, under one ${ }^{\text {mala }}$ sovercign, elected in common, with one diet and one currency. All dependencios and colonios, including Pruasia and Livonia, were to belong to Poland and Lithuania in common. The retention of the old duality of difnities was the one reminiscence of the original separation. No decision, however, coald be come to as to the successor of the childless king, party because of the multiplicity of candidates, partly because of Austrian intrigue, and this, the most momentous question of all. was still unsettled when Sigismund II. expired an the 6th of July 1572.

The Jagiellonic period ($1386-1512$) is the history of the coor solidation and fution into one homogeneous, political whole of numerous national elements, mora or less akin ethnologically, but difiering immensely in language, of er religion and, above all, in degrees of civilization. premenas Out of the ancient Piset kingdom, mutilated by the popta loss of Silesis and the Baltic shore, arose a repablic 2003-108. consisting at frst of various loosely connected entities, naturally centrifugal, but temporarily drawn together hy the urgent need of combination against a superior foe, who threatened then separately with extinction. Beneath the guidance of a dynatity of princes which, curiously enough, was supplied by the least civilized portion of this congeries of nationalities, the nascent republic gradually grew into a power which subjugated its former oppressors and, viewed externally, seemed to bear upoa it the promise of empire. It is dangerous to prophesy, but all the facts and circumstances before us point irresiatibly to the conclusion that had the Jagiellonic dynasty but endured this promise of empire might well have been realized. The extraordinary thing about. The Jagiellos was the equable persistency of their genius. Not oniy were five of the seven great statcomen, but they were statesmen of the same stamp. We are disturbed hy no such sharp contrasts as are to be found among the Plantagenets, the Vasas and the Bourbons. The Jagiellos mere all of the same mould and pattern, but the mould was a strong one and the pattern was good. Their predominant and comstant characteristic is a sober sagacity which instinctively judges aright and imperturbably realized its inspirations. The fagielios were rarely brilliant, but they were ahways perspicncions Above all, they alone seem to have had the gift of guiding the most dificult of aations properiy. Two centaries of Jagiellonic rule made Poland great despite her grave external dificulties. Had that dynasty been prolonged for another century, there is every reason to suppose that it would also have dealt satisfactorily with Poland's still more dangeroms internal pifficolties, and arreated the development of that anarchical constitution which was the ruliag factor in the ruin of the Repablic.

Simultantoushy with the transformation into a great porer of the petty principalities which composed ancieqt Poland. another and equally momentons political transformation \boldsymbol{y} as proceeding within the country itself.

The origin of the Polish constitution is to be soright in the wiece or conncils of the Polish princes, duting the partitioal period (c. 1270-1370). The privileges conferred upan the magnates of which these councils were composed, especially upom the magnates of.Little Poland, who brought the Jegiellos to
the throtse, drected their policy, and gretr rich upon their liberality, revolted the less favoured sulacita, or gentry, who, the pombly towards the end of the 14th century, combined for Cuarnyo alice mutual defence in their scjmiki, or local diets, of which originally there were five, three in Great Poland, one in Little Poland and one in Posen-Kaliszi In these sejmiki the deputies of the few great towns were also represented. The Polish towns, notably Cracow, had obtained their privileges, including freedom from tolls and municipal government, from the Crown in return for important services, such as warding of the Tatars, while the cities of German origin were protected by the Magdeburs law. Casimir the Great even tried to make municipal govermment as democratic as possible by enacting that one half of the town council of Cracow should be elected from the civic patriciate, but the other half from the commonalty. Louis the Great placed the burgesses on a level with the gentry by granting to the town council of Cracow juriadiction over all the serfs in the ext ra-rural estates of the citizens. From this time fortb deputies from the cities were summoned to the sejmiki on all important occasions, such, for instance, as the ratification of treaties, a right formally conceded to them by the scimik of Radom in 1384 . Thus at this period Poland was a confederation of half a dozen semiindependent states. The first general assembly of which we have certain notice is the sjasd wolny which was summoned to Koszyce in November 1404, to relieve the financial embarrassments of Whadisiaus, and granted him an extraordinary subsidy of twenty groats per hide of land to enable him to purchase Dobrzyn from the Teutonic Knights. Such subsidies were generally the price for the confirmation of ancient or the concession of new privileges. Thus at the diet of Brzest Kujawski, in 1425, the slackle obtained its first habeas corpus act in return for actnowledging the right of the infant krolewicz Whadislaus to his father's throne. The great opportunity of the slackfa was, of course, the election of a now king, especially the election of a minor, an event always accompanied and succeeded by disorders. Thus at the election of the infant Wladislaus III., his guardians promised in his name to confirm all the privileges granted by his father. If, on attaining his majority, the king refused to ratily these promises, his subjects were ipso facto absolved from their obedience. This is the first existence of the mischievous principle de prestande obedientia, subsequentiy elevated into a statute. It is in this reign, too, that we meet with the first rokoss, or insurrection of the nobility against the executive. The extraordinary difficulties of Casimir IV. were freely exploited by the stachea, who granted that ever impecunious monarch as little as possible, but got full value for every penny they grudgingly gave. Thus by the Articles of Cerek wica presented to him by the sejwik. or dietine of Great Poland in 1454 on the outbreak of the Teutonic War, be conceded the principle that no war should in future be begun without the consent of the local diets. A few months later he was obliged to. grant the Privileges of Nieszawa, which confirmed and extended the operation of the Articles of Cerekwica. The sejmiki had thus added to their original privilege of self-taxation the right to declare war and controi the national militia. This was a serious political retrogression. A strongly centralized government had ever been Poland's greatest need, and Casimir the Great had striven successfully against all centrifugal tendencies. And now, eighty-four years after his death, Poland was once more split up into half a dozen loosely federated states in the hands of country gentlemen too ignorant and prejudiced to look beyond the boundaries of their own provinces. The only way of saving the Republic from disintegration was to concentrate ali its political factors into a sejm-walny or general diet. But to this the magnates and the slachla were equally opposed, the former because they feared the rivalry of a national assembly, the latter because they were of more importance in their local diets than they could possibly hope to be in a

[^86]general diet. The firat scian to legialite for the whole of Poland was the diet of Piotrkow (1493), summoned by John Albert to grant him subsidies; but the mandates of its deputies were limited to twelve months, and its decrees were to have force for only three years. John Albert's second diet (1496), after granting subsidies the burden of which fell entirely on the towns and peasentry, passed a series of statutes benefiting the nobility at the expense of the other clasces. Thus one statute permitted the sylachea hencefortb to export and import goods duty free, to the great detriment of the towns and the treasury. Another statute prohibited the hurgesses from holding landed pioperty and enjoying the privileges attaching thereto. A third statute disqualified plebeians from being elected to canonries or bishoprics. A fourth endeavoured to bind the peasantry more closely to the soil by forbidding emigration. The condition of the serfis was subsequentiy (1520) still furtier deteriorated by the introduction of socage. In a word, this diet disturbed the equilibrium of the state by enfeebling and degrading the middic elasses. Nevertheless, 50 long as the Jagiello dynasty lasted, the political rights of the cities were jealously protected by the Crown against the usurpations of the nobility. Deputies from the towns took part in the election of John Albert ($\mathbf{5} 492$), and the burgesses of Cracow, the most enlightened economists in the kingdom, supplied Sigismund I. with his most capable counsellora during the first twenty years of his reign ($1506-1526$). Again and again the nobility attempted to exclude the deputies of Cracow from the diet, in spite of a severe edict issued hy Sigismund I. in 1509, threatening to prosecute for treason all persons who dared to infringe the liberties of the citizens. During Sigismund's reign, moreover, the Crown recovered many of the prerogatives of which it had been deprived during the reign of his feeble predecessor, Alexander, who, to say nothing of the curtailments of the prerogative, had been forced to accept the statute nihil nowi (I SO5) which gave the sejm and the senate an equal voice with the Crown in all executive matters. In the latter years of Sigismund 1 . ($153^{-2}-54^{8}$) the political influence of the stlachla grev rapidly at the expense of the executive, and the gentry in diet assembled succeeded in curtailing the functions of all the great officers of state. During the reign of Sigismund 11. ($154^{\left.8-157^{2}\right) \text { tbey }}$ diverted their attention to the abuses of the Churcb and considerably reduced both her wealth and her privileges. In this respect both the Crown and the country were with them, so tbat their interference, if violent, was on the whole distinctiy beneficial.
The childless Sigismund II. died suddeniy without leaving any regulations as to the election of his successor. Fortunately for Poland the political horizon was absolutely Imem unclouded. The Turks, still reeling from the shock rgen of Lepanto, could with difficulty hold their own derodera against the united forces of the pope, Spain and Venice; while Ivan the Terrible had just concluded a truce with Poland. Domestic affairs, on the other hand, were in an almost anarchicai condition. The Union of Lublin, barely three years old, was anything hut consolidated, and in Lithuania it continued to be extremely unpopular. In Poland proper the sulachica were fiercely opposed to the magnates; and the Protestants seemed bent upon still further castigating the clergy. Worst of all, there existed no recognized authority in the land to curb and control its jarring centrifugal political elements. It was nearly two hundred years since the Republic had suffered from an interregnum, and the precedents of $\times 382$ were obsolete. The primate, on hearing of the demise of the Crown, et once invited all the senators of Great Poland to s conference at Lowicx, but passed over the sylachta allogether. In an instant the whole Republic was secthing like a caldron, and a rival assembly was simultaneously summoned to Cracow by Jan Feriej, the head of the Prolestant party. Civil war was happily averted at the last moment, and a national convention, composed of senators and deputies from all parts of the country, assembled at Warsand, in April $\mathbf{1} 573$, for the purpose of electing a new king. Five candidates for the throne were already in the field. Lithu: anfin favoured Ivan IV. In Poland the bishopa and most of
the Catholic maunatios mere for an Âustrian archduke, while the atrongly anti-German silachia wera incliped to accept almost any candidate but a German, $s 0$ long as be came with a gift in his hand and was not a Muscovite. In these circumstances it whe an easy tast for the adroit and energetic French ambasaedor, Jean de Montluc (d. 1579), brother of the famous marshal, and bishop of Valence, to procure the election of the French candidate, Henry, duke of Anjou. Well provided with funds, he speedily bought over many of the leading magnaten, and his popularity reached its height when he strenuously advocated the adoption of the mode of election by the gentry an masse (which the selachta proposed to revive), ise opposed to the usual and more orderly "recret election" hy a congeress of senators and deputies, sitting with dosed doors. The religious difficulty, meanwhile, had been adjusted to the smisifaction of all parties by the compact of Warsiw (Jan 28, 1573), which granted absolute religious liberty to all non-Catbolic denominations (dissidontes de redigione, as they now began to be callod) without exception, thus exhibiting a far more liberal intention than the Germans had manifested in the religious pence of Augsburg eightoen years before. Finally, carly in April $\mathbf{~ 5 7 3}$, the election diet assembled at Warsaw, and on the nth of May, in the midst of intrigue, corruption, violence and confusion. Henry of Valois was elected king of Poland.

The election had, however, boen precedod by a correctura jwrum, or reform of the constitution, which resulted in the Nostr of famous "Henrican Articles" which converted Valoh tioge Poland from a limitod monarchy into a republic w73-15/d with an elective chief magistrate. Henceforward the king was to have no voice in the choice of his successor. He was not to use the word hoeres, not being an hereditary sovereign. He was to marry a wife selected for him by the senate. He was neither to soek for a divorce nor give occasion for one. He was to be neutral in all religious matters. He was not to lead the militia acroas the border except with the consent of the slachita, and then only for three months at a time. Every year the scnate was to appoint sirteen of its number to be in constant attendance upon the king in rotas of four, which scedecimvirs were to supervise all his actions. Should the king fail to observe any one of these articles, the nation was ipso facto absolved from its allegiance. This constitutional reform was severely criticized by conternporary political experts. Some strongly condemned the clause justifying renunciation of allegiance, as tending to treason and anarchy. Others protested against the anomalous and helpless position of the so-callied king, who, if he could do no harm, was certainly powerless for good. But such Cassandras prophesied to heedless ears. The Republic had deliberalely cast itscif upon the downward grade which was to lead to ruin.

- The reign of Henry of Valois lasted uhirteen months. The tidings of the death of his brother Charles IX., which reached him on the 14th of June 1574, determined him to exchange a thorny for what he hoped would bo a flowery throne, and at midnight on the 18 th of June 1574 he literally fled from Poland, pursued to the frontier by his indignant and bewildered subjects. Eighteen months later (Dec. 24, 1575), mainly through the influence of Jan Zamoyski, Stephen Bathory, prince of Transylvania, was elected king of Poland by the slacketa in opposition to the emperor Maximilian, who had been elected two days previously by the senate, after disturbances which would have rent any other state but Poland to pieces.
The glorious career of Stephen Báthory ($1575-1586$) is dealt with elsewhere (see Stepuen, King of Poland). His example sepanan demonstrates the superiority of genius and valour Bethory, over the most difficult circumstances. But his 2TJS-1SSa, reign was too brief to be permanenily beneficial.
The Vasa poriod of Polish history which begen...2te the
 sto epoch or liast und loin chem one. .nend the submersion Heudm. Muscovite tasrdommiry in the west by the Thirty

tunity of ameolidating ooce for all, her herct-won- ponition as the dominating power of central Europe. Everywhere circumatances were favourable to her, and in Zolkiewski, Chodkiewica and Kooiecpolski she poswessed throe of the greatest captains of that or any other age. With all the means at her dispoeal cheerfully pleoed in the hands of such valiant and capable ministers, it would have been no dificult task for the Republic to have wrestod the beax part of the Baltic littoral from the Scandinnvian powers, and driven the distracted Muscovites beyond the Volga. Permanent greatness and secular security were within ber reach at the commenoement of the Vasa period; how was it, then, that at the end of that period, ooly sity yoars later, Poland had already sunk irredoemably into mu-b the zame position as Turkey occupies now, the position of 2 moribund state, existing on sufferance simply beciuse nome was yet quile prepared to administer the coup de grocer" There is only one answer; the principal cause of this complete acd irretrievable collapse is to be sought for in the folly, egocisst and selfishness of the Polish geitry, whose inseape distike of al discipline, including even the salutary discipline of reguatr government, converted Poland into something very live a prinił tive tribal community at the very time when every Europeas statesman, inclucing the more enlightened of the Poles thersclves, clearly recognized that the political future belonged :a the strongly eentralized monarchies, which were everywhere rising on the ruins of feudalism. Of course there were other contributory causes. The tenacity with which Sigismound m. clung to his hereditary rights to the Swedish Crown involved Poland in a quite unnecessary series of wars with Charies LX. and Gustavus Adolphus, when her forces were sorely neade: eisewhere. The adhesion of the same monarch to the Leagir of the Catholic Reaction certainly added to the difficultios i: Polish dipiomacy, and still further divided the already distrated dict, besides alienating from the court the powerful and populy chancellor Zamoyski. Yet Sigismund DII. was a far more clairsighted statesman than any of his counsellors or conersdicters For instance, he was never misled by the succesees of the fïs Demerrius in Muscovy, and wiscly insisted on recovering the groat eastern foriness of Smolensk rather than atternptiaf the conquest of Afoscow. His much-decried alliance with the emperor at the outbreak of the Thirty Years' War was emineraly sagacious. He perceived at once that it was the onhy way it counteracting the restlessness of the sultan's protégts, ise Protestant princes of Transylvania, whose undisciplined boric. scarcely less savage than their allies the Turks and Talars, $x=r$ a perpetual menace both to Austria and to Poland. Fire'; he was bent upon reforming the Polish constitution by subsii:ing the decision of all matters by a plurality of votes for 2 unanimity impossihle to count upon.
When we turn to the sslachla who absolutely controllid te diet, we find not the slightest trace, I will not say of pol.u: foresight-that they never possessed-but of common pai: :ism, or ordinary public spinit. The most urgent nasic necessities were powerticss to stir their hearts or open is: purses. The dicts during the reign of Sigismund 1II. ve: even more niggardly than they had been under the Jaji-:-and-on the single occasion when the terrors of an immis: Tatar invasion constrained them to grant extraordinary s:sidies, they saw to it that such subsidies should rest er:-: on the shoulders of the burgesses (who had in the mear.been deprived of the franchise) and the already overburi:peasantry. In the very crisis of the Swedish War, the divir: army of the victorious Chodkiewicz was left unpaid, wiz... result that the soldiers mutinied, and marched off of Both Chodkicwicx and Zonkieuski frequently had to fer the irontier with ermies of 3000 or tiof their own pockets. E . retreated belore overs of 3000 or 4000 find hundreds of E : of cowardice and incompetences odey they more most. Whes still further the poncompetence. The determininblicly ar: stin further the power of the executive what af ition to this fatal parsimony, with the inervit was at che tion to
twhil the ling ad the semater were pewertaes, every speat noble or lord-matrber was free to do what he chose in his own domains, $s 0$ long es he flattered his "little broehers," the stechte. Incredibla as it may seem, the expedition to place the fase Demetrins on the Muscovite throne was a privite speculation of a fow Lithuanian magnates, and similar enterprises on the part of other irresponsible noblemen on the Danube or Daieter brought upon unhappy Poland retalintory Tatar raids, which reduced whole provinces to ashes. Every attempt to improve matters, by reforming the impoesible constitution, stranded on the opposition of the gentry. Talte, for instance, the typical and highly instructive case of Zebrzydowaki's rebellion. Nicholas Zebrzydowski, a follower of the chancellor Zamoyshi, was one of. the wealthiest and most respectable magnates in Poland. As palatine of Cracow be held one of the highest and most lucrative dignities in the state, and was equally famous for his valour, piety and liberality. Disappointed in his hope of obtaining the freat seal on the death of Zamoyshi, he at once conceived that the whole of the nobility had been insulted in his person, and proceeded to make all government impossible for the next three years. On the 7th of March 1606 Sigismand summoned a diet for the express purpose of introducing the principle of decision by majority in the diet, whereupon Zebrzydowski summoned a counter-confederation to Stenczyn in Wittle Poland, whose first act was to open negotiations with the prince of TYansylvania, Stephen Bocskay, with the view of hiring mercenaries from him for further operations. At subsequent confederation, held at Lublin in June, Zebrzydowski was reinforced by another great nobleman, Stanislaus Stadnicki, called the Devil, who "had more crimes on his conscience than hairs on his head," and was in the habit of cropping the ears and noses of small squites and chaining his serfs to the walls of his underground dungcons for months at a time. This champion of freedom was very eloquent as to the wrongs of the stachach, and proposed that the assembly should proceed in a body to Warsaw and there formally renounce their allegiance. The upshot of his oratory was the summoning of a rokosz, or national insurrection, to Sandomir, which was speedily joined by the majority of the stacha all over the country, who openly proclaimed their intention ol dethroning the king and chastising the senate, and sent Stadnicki to Transyivania to obtain the armed assistance of Stephen Bocskay. Only the clergy, naturally conservative, still clung to the king, and Sigismund III., who was no coward, et once proceeded to Cracow to overawe the rokoszanie, or insurrectionists, by his proximity, and take the necessary measures for hls own protection. By the advice of his senators he summoned a gjoz, or armed convention, to Wistica openly to oppose the Insurrection of Sandomir, which giasd was to be the frrst step lowards the formation of a general confederation for the defence of the throne. Civil war seemed inevitable, when the szlachta of Red Russia and Sieradz suddenly rallied to the king, who at once ordered his army to advance, and after defeating the insurrectionists at Janowiec (in October), granted them a full pardon, on the sole condition that they should refrain' from all such acts of rebellion in future. Despite their promises, Zebrzydowski and his colleagues a few months later were again in arms. In the beginning of 1607 they summoned another rokoss to Jendrzejow, at the very time when the dlet was asscmbling at Warsaw. The dict authorized the king to issuc a proclamation dissolving the rokosz, and the rokoss retorted with a manifesto in which an insurrection was declared to be as much superior to a parliament as a general council was to a pope. In a second manifesto published at Jezierna, on the 24th of June, the insurrectionists again renounced their allegiance to the king. Oddly enough, the diet before dissolving had, apparently in order to meet the rokoss half-way, issued the fanmous edict De non praestonde obedientia, whereby, in case of future malpractices by the king and his subsequent neglect of at least two solemn warnings there-anent by the primate and the senate, he was to be formally deposed by the next succeeding
that chey domanded, and they hed their caadidate for the throwo ready in the person of Gabriai Bethlen, the new prince of Transylvania. But the limits of even Polish complacency had at last been reached, and Zolkiewski and Chodkiewicr were sent against the rebels, whom they routed at Oransk near Guzow, after a desperate encounter, on the 6th of July 1607 . But, though driven from the field, the agitation simmered all over the country for nearly two years longer, and was only terminated, in $\mathbf{1 6 0 9}, \mathrm{by}^{2}$ general amneaty which excluded every prospect of constitutional reform.

Whadislaus IV., who succeeded his father in 1632, was the most popular monarch who ever ast on the Polish throne. The sllochta, who had had a "King Log" in Sigis- weatsmund, were determined that Wiadislaus should be mastr.0. "a King Bee who will give us nothing but honey "- mex-ack in ouher words they hoped to wheedle him out of even more than they had wrested from his predecessor. Whadislaus submitted to everything. He promised never to declare war or levy troops without the consent of the sejm, undertook to fill all vacancies within a certain time, and rejeased the szlachta from the payment of income-tax, their one remaining fiscal ohligation. This boundless complacency was due to policy, not weakness, The second Polish Vasa was a man of genius, fully conscious of his powers, and determined to use them for the benefit of his country. The events of the last reign had demonstrated the incompetence of the Poles to govern themselves. Any amelioration of the existing anarchy must be extra-parliamentary and proceed from the throne. But a reforming monarch was inconceivable unless he possessed the confidence of the nation, and such confidence, Wladislaus naturally argued, could only be won by striking and undeniable public services. On these prínciples be acted with brilliant results. Within three years of his accession ho compelled the Muscovites (Treaty of Polyankova, May 28, 1634) to retrocede Smolensk and the eastern provinces lost by Sigismund 11., overawed the Porte hy a military demonstration in October of the same year, and, by the Truce of Stumdorf (Sept. 12, 1635), recovered the Prussian provinces and the Baltic scaboard from Sweden. But these achicvements excited not the gratitude but the suspicion of the slachla. They were shrewd enough to gucss that the royal triumph might projudice their influence, and for the next five years they deliberately thwarted the enlightened and far-reaching projects of the king for creating a navy and Increasing the revenue without burdening the estates, by a system of tolls levied on the trade of the Baltic ports (see Whadrslaus IV.), even going so far as to refuse for nine years to refnnd the expenses of the Muscovite War, which he had defrayed out of his privy purse. From sheer weariness and disgust the king refrained from any intervention in public affairs for nearly ten years, looking on indifferently while the ever shorter and stormier diets wrangled perpetually over questions of preferment and the best way of dealing with the extreme dissenters, to the utter neglect of public business. But towards the end of his reign the energy of Wladislaus revived, and he began to occupy himself with another scheme for regenerating his country, in its own despite, by means of the Cossacks. First, however, it is necessary to describe briefly the origin and previous history of these romantic freebooters who during the second half of the 17 th century were the determining factor of Polish and Muscovite politics.
At the beginning of the 16 th century the illimitable steppe of south-eastern Europe, extending from the Dnieper to the Urals, had no setted population. Hunters and fishermen frequented its innumerable rivers, return-

76e ing home laden with rich store of fish and pelts, while runaway serfs cecasionally setted in small communities beneath the shelter of the fortresses built, from time to time, to guard the southern frontiers of Poland and Muscovy. Obliged, for fear of the Tasars, to go about with arms in their hands, these setters gradually grew strong enough to raid their raiders, selling the booty thus acquired to the merchants of Muscovy and Poland. Moreover, the Turks and Tatars being the natural enemies of Christendom, war of extermination
egringt them was regarded by the Conacks an a mered duty. Curiously enough, these champions of orthodory borrowed the name, which has stuck to them ever since, from their "dogheaded "adversaries. The rank and file of the Tatar soldiery were known as Kasaki, or Cossacks, word meanins " Ireebooters," and this term came to be applied indiscriminstely to all the free dwellers in the Ukraine, or border-lands. As tine went on the Cossaciss multiplied exceedingly. Their daring grow with their numbers, and at last they came to be a constant annoyance to all their neighbours, both Christian and Museulman, frequently involving Poland in dangerous and unprofitable wars with the Ottoman Empire. Indeed, it is not too much to say that, until the days of Sobieski, the Cossacks were invaniably the chief cause of the breaches between the Porte and the Republic. We have seen how carefully the Jagiellos avoided participating in any of the crusades directed by the Holy See agninst the arch-enemies of the Cross. So successful was their prudential abstention that no regular war occurred between Turkey and Poland during the two centurics of their sway. The first actual collisions, the Cecora campaign of 1620 and the Khotin War of 1621 (for John Albert's Moldevian raid does not count), were due to the depredations of the Cosatack upon the dominions of the sultan by land and sen, and in all subeequent treaties between the two powers the most eacential clouse was always that which bound the Republic to keep its freebooters in order.
But in the meantime the Cossacks themselves had become a semi-independent community. The origin of the Cossack state is still somewhat obscure, but the germs of it are visible as early as the beginning of the 16 th century. The union of Lublin, which led to the polonization of Lithuania, was the immediate occasion of a considerable exodus to the lowlands of the Dnieper of those seris who desired to escape from the tazes of the Polish government and the tyranny of the Polish landlords. Stephen Béthory presently converted the pick of them Into six registered regiments of 1000 each for the defence of the border. Ultimately the island of Hortica, just below the falls of the Dnieper, was fixed upon as their headquarters; and on the numerous islands of that broad river there gradually arose the famous Cossack community known as the Zaporozkskoya Syech, or Settlement behind the Falls, whence the Dnieperian Cossacks were known, generally, as Zaporoshians, or Backfallsmen. ${ }^{1}$ The Cossack kosh, or commonwealth, had the privilege of electing its helmam, or chief, and his chief officers, the starshins. The hetman, after election, received from the king of Pöland direct the insignia of his office, viz. the bulawa, or baton, the bunchuk, or borse-tail standard, and his official seal; but he was responsible for his actions to the kosh alone, and an inquiry into his conduct was held at the expiration of his term of office in the obschaya shkoda, or general assembly. In time of peace his power was little more than that of the responsible minister of a constitutional republic; but in time of warfare he was a dictator, and disobedience to his orders in the field was punishable by death.
The Cossacks were supposed to be left alone as much as possible by the Polish government so long as they faithfully fulfilled their chief obligation of guarding the frontiers of the Republic from Tatar raids. But the relations between a community of freebooters, mostly composed of fugitive serifs and refugees, and a government of small squires who regarded the Cossacks as a mere rabble were bound to be difficult at the best of times, and political and religious differences presently supervened. The Cossacks, mostly of Lithuanian origin, belonged to the Orthodos religion, so far as they belonged to any religion at all, and the Jagiellos had been very careful to safeguard the religious liberties of their Lithuanian subjecte, especially as the Poles themselves were indifferent on the subject. But, at the beginning of the $\mathbf{x} 7 \mathrm{th}$ century, when the current of the Catholic reaction was running very strongly and the Jesuits, after subduing the Protestants, began to undermine the position of the Ortbodox Church in Lithuania, a more intolerant spirit
${ }^{1}$ CI. American, Backwoodsmen.
began to prevall. The odi Calvinin nobility of Luthemenian mem speedily resonverted; a Uniate Church in conserion writh Ber. was establiahed; Greek Orthodox congregutions, if not gemer. persecuted, were at least depreseod and striitened; and :Comacks began to hate the Paus, or Polish londs, not mer. as tyrants, but as herectics. Yet all these obstacies 20 a fo undertanding mildht, perhaps, have been surmounted if is the Polish diet hed treated the Comacks with common faine and common sense. In rbig the Polish government an obliged to prohibit absotutely the piratical raids of the Cossa: in the Black Seat, where they habitually destroyed Tumic. property to the value of milliona. At the same tiroc, by ir compaci of Rastawica, the syjm undertook to allow the Cossac: partly as wagen, partly as compenation, 40,000 (raised by i compact of Kurukow to 60,000) gwlden and $\times 70$ Wagoos cloth per annum. These terms were never kept, despite $\because-$ earnest remonstrances of the king, and the complaints of $1=$ aggrieved borderers. Parkimony prevailed, as usoal, are prudence, and when the Cossacks showed unmistakable sip of restiveness, the Poles irritated them still further by orders the construction of the strong fortress of Kudak at the conffer: of the Dnieper and the Samara, to overawe the Zapororic: community. This further act of repression led to two te rible Cosseck risings, in 1635 and 1636 , put down only $w=$ the utmost difficulty, whereupon the diet of 1638 depriva the Cossacks of all their ancient privileges, abolished ut elective betmanship, and substisuted for it a commissioce is Polish noblemen with abeolute power, so that the Couskits might well declare that those who hated them were bars over them.
Such was the condition of affairs in the Ukraine when Wiads laus IV. proposed to make the Cossacks the pivot of his forcop policy and bis domestic reforms. His far-reaching plans wer based upon two facts, the absolute devotion of the Zaporachians to himself personally, and the knowledge, secretly coseryod to him by Stanislaus Koniecpolski (q.r.), that the whole of is Ukraine was in a ferment. He proposed to provoke the Taun to a rupture by repudiating the humiliating tribute with which the Republic had so long and so vainly endeavoured to boy of their incessant raids. In case of such rupture he meant, at the head of ro0,000 Cossacks, to fall upon the Crimea itself, the seat of their power, and exterminate the Khanate. This be calrlated would bring about a retaliatory invasion of Poland by the Turks, which would justify him in taking the feld agzinst them also with all the forces of the Republic. In case of succers be would be able to impose the will of a victorious king upon a discredited diet, and reform the constitution on an English or Swedish model. Events scemed at first to favour this audacious speculation. Almost simultaneously a civil war broke out in the Crimea and the Porte declared war against the Venetian republic, with which Whadislaus at once concluded an offensive and defensive alliance ($\mathbf{6} 645$). He then bade the Cossads prepere their boats for a raid upon the Turkish galleys, and secured the co-operation of the tsar in the Crimean expedition by a special treaty. Unfortunately, Venice, for her our safety's sake, insisted on the publication of Whadislaus's antiTurkish alliance; the Porte, well informed of the course of Polid affairs, remained strictly neutral despite the most outrageous provocations; and Wladislaus, bound by his coronation oasth not to undertake an offensive war, found himself at the wercy of the diet which, full of consternation and rage, assembled at Warsaw on the 2nd of May 1647. It is neediess to say that the Venetian alliance was repudiated and the royal power sill further reduced. A year later Wadialaus died at his huotingbox at Merecz, at the very moment wben the long-impendify tempest which he himself had conjured up burst with orewhelming fury over the territories of the Republic.
The prime mover of the great rebellion of 1648 , which shook the Polish state to its very foundations, was the Cossack Bobdan Chmielnicki (q.i.), who had been initiated in all the plans of Whadislaus IV. and, with good reason, feared to be the firs victim of the Polish magnates when the king's designs vere
unmasked and frustrated. To seve himecil he hit upon the novel and terrible expedient of uniting the Tatars and the Comaths cousemt th a deternined onslausht upon the Republic, whose Anotimact inward weakness, despite its brave outward show, wish he had been quick to tiscern. On the 18 th of April 1648, at the general assembly of the Zapororhians, he openly expressed his intention of proceeding against the Poles and wis elected hetman by acclamation; on the rgth of May he anvihilated a small detached Polish corps on the banks of the river Zheltndya Vodui, and seven days later overwhelmed the army of the Polish grand-hetman, massacring 8500 of his 10,000 men and sending the grand-herman himself and all his officers in chains to the Crimes. The immediate consequence of these victories was the outburst of a khlopskaya slobo, or "serfs' fury." Throughout the Ukraine the gentry were hunted down, flayed, burnt, blinded and sawn asunder. Every manor-house and castle was reduced to ashes. Every Unlate or Cathohic priest who could be caugbt whe hung up before his own high altar, along with a Jew and a hog. The panic-atricken trhabitants fied to the neareat strongholds, and soon the rebels were swarming over the palatinates of Volhynia and Podolle. Meanwhile the Polish army, 40,000 strong, with 100 guns, was assembling on the froatier. It consisted almost entirely of the noble militia, and was tricked out with a splendonr more befitting a bridal pageant than a battle array. For Chmiclnicki and his host these splendid cavaliers expressed the utmost ebntempt. "This rahble must be chased with whips, not milten with awords," they cried. On the 23rd of September the two armies encountered netr Pildawa, and after a stubbors three days' contest the gellant Pollsh pageant was scattered to the winds. The steppe for miles atound was strewn with corpses, and the Cossacks are said to heve reaped $10,000,000$ guldens worth of booty when the fight was over. All Poland now lay at Chrielnicki's feet, and the road to the defenceless capltal was open Joben. before him; hut he wasted two precious months in Cushanto, vain before the fortress of Zamose, and then the 764s-facs newly elected king of Poland, John Casimir, Wladislaus IV.'s hrother, privately opened negotialions with the rebel, officially recognixed him hy sending him the bulawa and the other insignia of the helman's dignity, and promised his "faithful Zapororhlans " the restoration of all their ancient liberties If they would break off their alliance with the Tatars and await the anival of peace commissioners at Pereyaslavl. Bnt the negotlations at Pereyaslavl came to nothing. Chmielaicki's conditions of pesce were so extravagant that the Polish cornmissiopers darst not accept them, and in 1649 be again invaded Polend with a countless host of Cossacks and Tatars. Agailh, however, he made the mistake of attacking a fortress, which delayed his advance for a month, and gave John Casimir time to collect an army for the relief of the besieged. By the compact of Zbor6w (Aug 21, 1649) Chmielnicki was recognized as hetman of the Zaporozhians, whose registered number was now raised from 6000 to 40,000 ; a general amnesty was also granted, and it was agreed that all official dignitles in the Orthodor palatinates of Lithuania should henceforth he held. solely by the Orthodox gentry. For the next eighteen months Chmielnicki ruled the Ukraine like a soveteign prince. He made Chigiris, his native place, the Cossack capital, subdivided the country into sixteen provinces, and entered into direct relations with foreign powers His attempt to carve a principality for his son out of Moldavia led to the outhreak of a third war between suzerain and subject in February 165I. But fortune, so long Bohdan's friend, now deserted him, and at Berestecako (July 1, 1651) the Cossack chieftain was ntteriy routed by Stephen Czarnieckl. All hope of an independent Cossackdom mas now at an end; yet It was not Poland but Muscovy which reaped the froits of Czanniecki's victory.
Chmidnicki, by suddenly laying hare the nakediness of the Polish republic, had opened the eyes of Muscovy to the fact that her secular enemy was no longer formidable. Three years after his defest at Berestecxio, Chmielnicki, finding himself unable to cope with the Poles single-handed, very reliuctantly
tramperted his alkegiance to the tsar, and the same year the tsar's armies invaded Poland, still bleeding from the all but mortal wounds inficted on her by the Cossacka. The war thus begun, and known in Russian history as the The Repo Thirteen Years' War, far exceeded even the Thirty planghove Years' War in gronsness and brutality. It resembled poned
nothing so much as a hideous scramble of ravening beasta and obscene fowls for the dismembered limbs of a headless carcase. for such did Poland seem to all the world before the war whe balf over. In the summer of 1655 , moreover, while the Republic was still reeling beneath the shock of the Muscovite invasion, Chaties X. of Sweden, on the flimsiest of pretexts, anverken of forced a war upon reluctant and inoffensive Poland, charnex. simply to gratify his greed of martial glory, and of Swatin, before the year was out pis forces had occupied the 1 and capital, the coronation city and the best half of the land. King John Casimir, betrayed and abandoned by his own subjects, fled to Silesia, and profiting by the cataclysm which, for the moment, had swept the Polish state out of existence, the Muscovites, unopposed, quickly appropriated nearly everything which was not already occupied by the Sweres. At this crisis Poland owed het salvation to two events-the formation of a general league against Sweden, brought about by the apprehensive court of Vienna and an almost simultaneous popular outhurst of religious enthusiasm on the part of the Polish people. The first of these events, to be dated from the alliance between the emperor Leopold and John Casimir, on the a7th of May 2557 , led to a truce with the tsar and the welcome diversion of all the Muscovite forces against Swedish Livonia. The second event, which began with the heroic and succensiul defence of the monastery of Czenstochowa hy Prior Kordecki against the Swedes, resulted in the return of the Polish king from exile, the formation of a national army under Stephen Czarnlecki and the recovery of almost all the lost provinces from the Swedes, who were driven back beadlong to the sea, where with difficulty they held their own. On the sudden death of Charies X. (Feb. 23, 1660), Poland gladly seized the opportunity of adjusting all her outstanding differences with Sweden. By the peace of Oliva (May 3, 1660), made under French mediation, John Casimir ceded Ljvonia, and renounced all claim to the Swedish crown. The war with Muscovy was then prosecuted with renewed energy and exeraordinary success. In the autumn of 166I the Russian commanders were routed at Zeromash, and neariy all the eastern provinces were recovered. In 1664 a peace congress was opened at Durovicha and the prospects ol Poland seemed most brilliant; but at the very moment when she needed all her armed gtrength to sustain her diplomacy, the rebellion of one of her leading magnates, Prince Lubomirsky, involved her in a dangerous civil war, compelled her to reopen negotiations with the Muscovites, at Andrussowo, under lar more unfavourable conditions, and after protracted negotiations practically to accept the Muscovite terms. By the truce af Andrussowo (Feh. 11, 1667) Poland received back tre trow from Muscovy Vitebsk, Polotsk and Polish Livonia, of Ambusp but ceded in perpetuity Smolensk, Syeversk, Cherni- momartil gov and the whoie of the eastern bank of the Dnicper, Including the towns of Konotop, Gadyach, Pereyaslavi, Mirgorod, Pollava and Izyum. The Cossacks of the Dnieper were henceforth to be under the joint dominion of the tsar and the king of Poland. Kiev, the religious metropolis of western Russia, was to remaln in the hands of Muscovy for two years.

The "truce" of Andrussowo proved to be one of the moat permanent peaces in history, and Kiev, though only pledged for two years, was never again to be separated from the Orthodox Slavonic state to which it rightly belonged. But for the terrible and persistent ill-luck of Poland It is doubtful whether the ", truce" of Andrussowo would ever have been signed. The war which it concluded was to be the last open struggle betweet! the two powers. Henceforth the influence of Rassia over Poland wis steadlly to increase, without any struggle at all, the Repuhlic being already stricken whth that creeping paralysia which utimately left her a prey to her acighbours. Muscovy
had done with Poland as an adversary, and had no longer any reason to fear her ancient enemy.
Poland had, in fact, emerged from the cataclysm of 1648-1667 a moribund state, though her not unskillul diplomacy had enabled her for a time to save appearances. Her territorial losses, though considerahle, were, in the circumstances, not excessive, and she was still a considerable power in the opinion of Europe But a fatal change had come over the country during the age of the Vasas. We have already seen how the ambition of the oligarchs and the lawlessness of the szlochta had reduced the executive to impotence, and rendered anything like rational government impossible. But these demoralizing and disintegrating influences had been suspended by the religious cevival due to the Catholic reaction and the Jesuit propaganda, a revival which reached its height towards the end of the i6th contury. This, on the whole, salutary and edifying movement permeated public life, and produced a series of great captains who cheerfully sacrificed themselves for their country, and would have been saints if they had not been heroes. But this extraordinary religious revival had wellnigh spent itself by the middle of the 17 th century. Its last manifestation was the successful defence of the monastery of Czenstochowa hy Prior Kordecki agninst the finest troops in Europe, its last representative was Stephen Czarniecki, who brought the fugitive John Casimir back from exile and reinstalled him on his tottering throne. The succeeding age was an age of unmitigated egoism, arowlag in which the old ideals were abandoned and the old cormplion examples were forgotten. It synchronized with, and to Potand. was partly determined hy, the new political system which wis spreading all over Europe, the system of dynastic diplomatio competition and the unscrupulous employment of unlimited secret service funds. This system, which dates from Richelieu and culminated in the reign of Louis XIV., was based on the secular rivalry of the houses of Bourbon and Halsburg, and presently divided all Europe into two hostile camps. Louis XIV. is said to have expended $50,000,000$ livres a year for bribing purposes, the court of Vienna was scarcely less liberal, and very soon nearly all the monarchs of the Continent and their ministers were in the pay of one or other of the antagonists. Poland was no exception to the general rule. Her magnates, having already got all they could out of their own country, looked cagerly abroad for fresh El Dorndos. Before long most of them had become the hirelings of France or Aust ria, and the value demanded for their wages was, not intrequently, the betrayal of their own country. To do them justice, the szjachta at first were not only frce from the taint of official corruption, but endaroured to fight against it. Thus, at the election diet of 1669, one of the depulies, Pieniaszek, moved that a new and hitherto unheard-of clause should be inserted in the agenda of the general confederation, to the effect that every senator and deputy should solemnly swear not to take bribes, while another selacic proposed that the ambassadors of foreign Powers should be excluded permanently from the Polish elective assemblics. But the gighty and ignorant salachia not only were incapable of any sustained political action, but they themsclves unconsciously played into the hands of the enemics of their country by making the so-called libcrum pelo an integral part of the Polish constitution. Tho libcrum vele was hased on the assumption of the absolute political equality of every Polisb gentleman, with the inevitahle corollary that every measure introduced into the Polish diet must be adopted unanimously. Consequently, if any single seputy believed that a measure already approved of hy the rest of the house might be injurious to his constituency, bo had the right to rise and exclaim nic possoclam," I disapprove," when the mensure in question fell at ance to the ground. Subsequently this vicious principle was extcoded still further. A deputy, hy interposing his individual velo, could at any time dissolve the diet, when all measures previously passed had to be re-submitted to the consideration of the following diet. The liberwm velo seems to have been originally devised to cut short interminable debates in times of acute crisis, but it was generally uned either by highly placed criminals, anxious to avoid an
inquiry into their misdeeds' of by maloontents, desirous of emburassing the executive. The origin of the liberwen eto is obscure, but it was first employed by the deputy Wladislaus Sicisski, who dissolved the diet of 1652 by means of it, and beifore the end of the 17 th century it was used so frequently and rectlessly that all husiness was irequently brought to a standstill In later days it became the chief instrument of foreign ambersadors for dissolving inconvenient diets, as a deputy could always be bribed to exercise his veto for a handsome consideration.

The Polish crown first became an object of universal comp petition in 1573, when Henry of Valois was elected: In 1575. and agein in 1587, it was put up for puhlic auctian, when the Hungarian B6atory and the Swede Sigismusd respectively gained the prize. But at all three elections, though monery and intrigue were freely employed, they were not the determining factors of the contest. The Polish gentry were still the umpines as, well as the stake-bolders; the best candidates generally wor the day; and the defeated competitors were driven out of the country by lorce of arms if they did not take their discomfiture, after a fair fight, like sportsmen. But with the election of Michacl Wisniowieckí in 1669 a new era hegan. In this case a native Pole was freely elected by the unanimous vole of his countrymen. Yet a few weeks later the Polish commander-in-chief formed a whole series of conspiracies for the purpose of dethroning tis Lawful sovereign, and openly placed himself beneath the protertion of Louis XIV, of France, just as the rebels of the aSth century placed themselves under the protection of Cutherine II. of Russia. And this rebel was none other than John Sobiesti, at a later day the heroic deliverer of Viennal If heroes could so debase themselves, can we wonder if men who were not heroes lent themsclves to every sort of villaiay? We have come, in fach, to the age of utter shamelessness, when diseppoinsed place-hunters openly invoked forcign aid against their own country. Sobieski himself, as John III. (he suc- Juberis. ceered Michacl in 1674), was to pay the penalty solust
 Despito his brilliant military achievements (see Joans III, King. of Poland), his reign of (wenty-two years was a failure. His victories over the Turks were fruitiess so far as Poland was concerned. His belated attempts to reform the constitution only led to conspiracies against his life and crown, in which the French faction, which he had been the first to encourage, took an aftive part. In his later years Lithuaria was in a state of chronic revolt, while Poland was bankrapt both morally and materially. He died a broken-bearted man, prophesying the incvitable nuin of a nation which he himseff had done so much to demoralize

It scarcely scemed possible for Poland to sink lower than she had sunk already. Yet an era was now to follow, compared with which even the age of Sobieski secmed to be an age of geld. This was the Saxon period which, with oceasional violent interruptions, was to drag on for nearly scventy years. By the time it was over Poland was irretrievahly doomed. It anly remained to be seen how that doom would be accomplished.

On the death of John III. no fewer than eighteen candidates for the vacant Polish throne presented themselves. Austris supported James Sobieski, the eldest son of the late king, France Francis Louis Prince of Conti (I 664 - Antant 1709), bui the successful competitor was Frederick Augustus, clector of Saxony, who checrfully renounced Lutheranism for the coveted crown, and won the day because he happened to arrive last of all, with fresh funds, when the agents of his rivals had spent all their money. He was crowned, as Augustus II., on the 15th of September 1697. and his first act was to expel from the country the prince of Conti, the elect of a respectable minority, directed by the cardinal primale Michal Radzicjowski (1645-1705), whom Augustus 1I. subsequently bought over for 75,000 thalers
${ }^{1}$ Thua the Supiehas, wha had been Mving wapine for yeare, dimolved tha diet of 1688 bs means of the veto of wee of chair him Lingh for fear of an investigation into their cosduce.

Good luck attended the opening years of the new reign. In 1699 the long Turkish War, which had been going on ever since 1683, was concluded by the peace of Karlowita, whereby Yodoiia, the Ukraino and the fortsess of Kamenets Podolskiy were retroceded to the Republic by the Ottoman Porte. Immediately atterwards Augustus was persuaded by the plausible Livonian exile, Johan Reinhold Packul, to form a nefarious league with Frederick of Denmark and Peter of Russis, for the purpose of despoiling the youthlui king ol Swoden, Charles XLI. (see Sweden: History). This he did as elector of Saxony, but it was Warwith ebe unfortunate Polish republic which paid for the Charhs XII hazardous speculation of its newly elected king. of Swoden Throughout the Great Northern War (see Sweden: Hislory), which wasted morthera and central Earope for twenty yean ($1700-1720$), all the belligerents treeted Poland as if she had no political existence. Swedes, Sazons and Russians not only lived upon the country, but plundered it systematically. The dict was the humble servant of the conqueror of the moment, and the leading magnates chose their own eides without the slightest regard for the interests of their country, the Lithuanians for the most part supporting Charles XIL, while the Poles divided their allegiance between seamena Augustus and Stanisiaus Lasecryiski, whom Charles Leancign placed upon the throne in 1704 and kept there till sth 1709. At the end of the war Poland was ruined materially as well as politically. Augustus attempted to indemnify himself for his failure to obtain Livonia, his covenanted share of the Swedish plunder, by offering Frederick William of Prussia Courland, Polish Prussiz and even part of Great Poland, provided that he were allowed a free hand in the disposal of the rest of the country. When Prussia declined this tempting offer for fear of Russia, Augustus went a step farther and actually suggested that "the four ${ }^{2}$ eagies" should divide the banquet between them. He died, however (Feb. 1, 1733) before he could give effect to this shameless design.
On the death of Augustus 11., Stanislaus Leszczyfiski, who had, in the meantime, become the father-in-law of Louis XY., attempted to regain his throne with the aid of a small French army corps and 4,000,000 livies from Versailles. Some of the best men in Poland, including the Crartoryscy, were also in his farour, and on the 26th of August 2733 he was elected king for the second time. But there were many malcontents, principally among the Lithuanians, who soliefted the intervention of Russia in favour of the elector of Saxony; soin of the late king, and in October 1733 a Russian army appeared before Warsan and compelled a phantom diet (it consisted of but 15 senators and Aucumente 500 of the selacita) 00 proclaim Augustus I.II. From Tht, i728. the end of 1733 till the 30th of June 1734 Stanishus 17火火. and bis partisans were besieged by the Rusains in Dandig, their last refuge, and with the surrender of that foriress the cause of Stanislaus was lost. He retired once more to his litle court in Lorraine, with the thile of king, benving Augustus III. in possession of the kingdom

Augustus III. was disqualified by constitutional indolenco from taking any active part in affairs. He left everything to his ommipotent minister, Count Heinrich Brahl, and Braht entrusted the government of Poland to the Cartoryacy, who had intimate relations of long standing with the court of Dresden.

The Czartoryscy, who were to dominate Polish politics for the next half century, came of an ancient Ruthenian stock which had intermarried with the Jagiellow at an carly date, and had always been remarkable for their civic virtues and political sagacity. They had powerfully contributed to the adoption of the Union of Lublin; were subaequently received into the Roman Catholic Church; and deted the begianiog of their infaence in Poland proper from the time (3674) when Flotian Czartoryski became primate there. Florian's nephews, Fryderyk Michal and Augustun, were now the principal representatives of "the Family;" as their opponents marcastically called them. The former, through the influcace of Augustus's minister and favourite Brilh, had beqome, in his twenty-eighth yeas, vioe

The fourth englo ves the White Eaglo, is. Polaod.
chanceilor and subequenlly grand chancellor of Lithuania was always the political head of the family. His hrother and Augustus, after fighting with great distinction against the Turks both by land and sca (riace Eugene decomted him with a sword of honour for his valour at the siege of Belgrade), had recumed home to marry Sophis Sieniawsta, whose fabulous dowry won for her husbiand the sobriquet of "the Family Crocsus." Their sister Constantia had already married Stanislaum Poniatowskl, the father of the future king. Thos wealth, position, court influence and ability combined gave the Czartoryscy a commanding position in Poland, and, to their honour be it said, they had determined from the first to save the Republic, whose impending ruin in existing circumstances they elearly. foresaw, by a radical constitutional reconstruction which was to include the abolition of the liberum aelo and the formation of a standing army.

Unfortunately the other great lamilies of Poland were obstinately opposed to any reform or, zs they called it, any "violation" of the existing constitution. The Potoccy, whose possessions in south Poland and the Ukraine covered thousands of equare miles, the Radziwillowie, who were omnipotent in Lithaunis and included half a dozen millionaires ${ }^{2}$ amonest them, the Luborairscy and their fellows, hated the Cartoryscy because they were too eminent, and successiully obstructed all their well-meant efforts. The castles of these great lords were the foci of the social and political life of their respective provinces. Here they lived like titule princes, surrounded by thousands of retainers, whom they kept for show alonc, making no attempt to organize and discipline this excellent military masterial for the defence of their defenceless country. Here congregated huadreds of the younger szlachla, fresh from their echool benches, whence they brought nothing but a smattering of Latin and a determination to make their way hy absolute subservience to their "elder brethren," the pass. These were the men who, a little laters at the bidding of their " benefactors," disaolved one laconvenient diet after another; for it is a significant fact that during the reigns of the two Augustuses every diet was discolved In this way. by the hirelings of some grent lord or, still worse, of some foredge potentate. In a wond constitutional govemment had practically ceased, and Poland had become an arena in which conterting chans atrove together for the mastery.

It wes against this primitive state of things that the Canar toryscy struggled, and struggled in vain. First they attemptad to abolish the liberum welo with the assistance of the Sazon count where they were supreme, but fear of foreign complications and. the opposition of the Potoccy prevented anything being doma Then they broke with their old friend Brah and turned to Rusain. Their chief intermediary wats their nephew Stanislaus Poniatowald, whom they sent, as Samon minister, to the Rumaiar court in the suite of the English minister Hanbury Williams in 1755 . The handsome and inalnurting Poniatowsid speedily won the susceptible heart of the grand-duchess Catherine, bat he won nothing else and returned to Poland in 1759 momewhat discreditod. Diseppainted in their hopes of Ruscia, the Cuas. toryscy next attempled to form a confederation for the deposition of Augustus III., but while the striía of factions was utill at its height the abeentec monsrch pot an end to the atruggio by expiring, conveniently, on the gth of October 1763 .

The interregnam occurring on the death of Ausuetut IIIL befell at a thas when all the European powers, exhausted by. the Seven Yeas' War, earnestly desired patace. The position of Poland was, consequently, much more advantageons this it had been on every other similar cocision, and if only the contending factions had been able to agree and unite, the finel catastrophe might, perhape, oven now, have bean averted The Catartoryscy, of all men, were bound by thoir principles and profetions to mot their fellow citivens an erample of fraternal concond. Yet thay rejected with soom and detision the pacifis overtures of their political spposents, the Potecey, the Radid--iflowie, and the Branicy, Prince Michal openly decinering that of two tyrannies be preferred the tyranay of the Muscovite to the

- Michal Kacimime Redathill alone was worth thirty sulliomes
tyranny of his equals. He had in fact already summoned a Russian army corps to assist him to reform his country, which safficiently explains his own heughtiness and the unwonted compliancy of the rival magnates.
The simplicity of the Czartoryscy was even more mischievous than their haughtiness. When the most enlightened statesmen of the Republic could sexiously believe in the benovolent intentions of Russia the end was not far off. Their naive expecta. tions were very speedily disappolnted. Catherine II. and Frederick II. had already determined (Treaty of St Petersburg, April 22, 1764) that the existing state of things in Poland must be maintained, and as early as the 18th of October 1763 Catherine hiad recommended the election of Stanistaus Poniatowaki as "the individual most convenient for our common interests." The personal question did not interest Froderick: so long as Poland was kept in an anarchical condition he cared not who whas called kling. Moreover, the opponents of the Czartoryscy made no serions attempt to oppose the entry of the Russian troops. At least 40,000 men were necessary for the purpose, and these could have been obtained for 300000 ducats; but a congress of magnates, whose coliective fortunes amounted to hundreds of millions, having decided that it was impossiblf to saise this sum, there was nothlng for it hut to fight a few skirmishes and then take refuge abroad. The Czartoryscy now fancied themselves the masters of the situation. They at once proceeded to pass through the convocation diet a whole serics of salutary measures. Four special commissions were appointed to superintend the administration of justice, the police and the finances. The extravagant powers of the grand hedmans and the grand marahnis were reduced. All financial and ecoriomical questions before the-diet were benceforth to be decided by a majority of sachaleme votes. Shortly afterwards Stanishus Poniatowski an ponks was elected king (Sept. 7, 1764) and crowned (Nov. 40wthl 25). But at the beginning of 1766 Princo Nicholas 176-179\%. Repnin was sent as Russian minister to Warsaw with instructions which-can only be described as a carefully elaborated plan for destroying the Republic. The first weapon' employed was the dissident question. At that time the population of Poland was, in round numbers, 11,500,000, of whom about ry000,000 mere dizaldents or distenters. Half of these were the Protestants of the towns of Polish Frussia and Great Poland, the other half was composed of the Orthodox population of Lithuania. The dissidents had no political rights, and their religious liberties had also been unjustly restricted; but two-thirds of them being agricultural labourers, and most of the rest artisans or petty tradeconen, thay bad no desire to enter public life, and were so ignorant and iliiterate that their new protectors, on a closer acquaintance, became heartily ashamed of them. Yet it was for these persons that Repnin, in the name of the empress, now demanded absolute equality, political and religious, with the gentlemen of Poland. He was well awne that arr aristocratic and Catiolic assembly like the sejom would never concede so preposterous a demand. He also calculated that the demand itself would make the sllachta suspicious of all reform, inchuding the Cartorysian reforma, especially as botb the king and bis uncles were generally unpopular, as being. innovators under foxeign influence. His calculationa were coritect. The sejme of 1766 not only rejected the dissident bill, but repealed all the Ceartorymcian reforms and insisted on the retention of the liberum selo as the foundation of the rational liberties. The discredit into which Stanislaus had now fallan encouraged the Saxin party, led by Gabriel Podoski ($\mathbf{1 7 1 9 - 1 7 7 7 \text {), to form a combination for the purpose of }}$ detbroaing the king. Repain. knew that the allied courta would mever coment to sucb a measure; but be secretly encouraged the plot for his own purposes, with signal sucters. Early in $\mathbf{2 7 6 7}$ the malcomtents, fortified by the adhesion of the leading cormentoris political refugees, formed a confederation at Radom, of Mriste wbose first act was to mend a deputatios to St cos Palese Peterbury, petitioning Catherine to ginarantee the liberties of the Republic, and allow the form of the Palish cointitution to be rettled by the Ruvian ambemados at

Warsaw. With this carla banche in his pocket, Repain proceeded to treat the diet as if it were already the slave of the Russian empress. But despite threats, wholesale corruption and the presence of Ruscian troops outside and even inside the isba, or chamber of deputies, the patriots, headed by foar bishops, Woclavi Hieronim Sierakowskl (1699-1784) of Lembers. Feliks Pawel Turakl of Chelm (1720-18co), Kajetan Ignaty Soltyk of Cracow (1715-1788), and Józef -Jendrzej Zahnsi of Kiev (1702-1774), offered il determined reaistance to Repain's demands: Only when brute force in its extremest form bad been ruthlessly employed, only when three senators and sone deputies had been arrosted in full session by Russian' grensdiens and sent as prisoncrs to Kaluga, did the opposition collapse The liberum veto and all the other ancient abuscs were now declared unalterable parts of the Poiish conslitution, which was placed under the guarantee of Russia. All the edicts agains the dissidents wore, at the same time, repealed.

This shameful surrender led to a Catholic patriotic uprisige, known as the Confederiation of Bar, thich was formed on the 29th of February 1768, at Bar in the Ukraine, by a handful of small squites. It never bad a chance comoners of permanent suecess, though, feebly fed by French subsidies and French voluntecrs, it lingered on for foar yeas till finally suppressed in 1772. But, insignificant itself, it \quad Es the cause of great events. Some of the Bar confederates scattered by the Russian regulars, fled over the Turkish border, pursued by their victors. The Turks, already alarmed as the progress of the Russians in Poland, and stimulated by Ver. gerines, at that time French ambassador at Constantinople, a: once declared war against Russia. Seriously disturbed at the prospect of Russian aggrandizement, the idea occurred, almost zimultaneously, to the courts of Berlin and Vieana that the bes mode of preserving the equilibrium of Europe was for all thre powers to readjust their ferritories at the expense of Polane The iden of a partition of Poland was nothing new, but the vast. ness of the country, and the absence of sufficiently powerful 2^{-2} : united enemies, had hitherto saved the Republic from spolinion But now that Poland lay utterly helpless and surrounded ty the throe great military monarchics of Europe, nothing eovid save her. In February 3769 Frederick sent Count Rochess Friedrich Lynar ($1708-1783$) to St Petersbury to somand the empress as to the expediency of a partition, in Aagust Joseph II solicited an interview with. Frederick, and in the course of the summer the two monarchs met, first at Neisese th Silesia $2=3$ again at. Neustadt tn Moravia. Nothing definite as to Pola: 1 seems to have been arranged, but Prince Kawnita, the Austria chancellor, was now encouraged to take the first step by ocruping, in 1770, the county of Zips, which had been hypothertel by Hungary to Poland in 1442 and never redeenced. This : : : decided the other coafederates. In June 1770 Frederict sar rounded those of the Polish provtnces he coveted with a military cordon, astensibly to keep out the cattle plague. Calberine I consent had been previausly obtained by a special missioa α Prince Henry of Prusia to the Russian capital. The first treaty of partition was signed at St Peters- Pay fir burg botween Prussia and Russia on the 6-17th of Ruat February 277 a; the second treaty, which admitred ling Austria also to \& share of the eppoil, on the $5-16 t h$ of Asgast the same year. It is unnecessary io rocapitulate the whears: of atrocities by which the consent of the sejm to this act of brigaudage was at last extorted (Aug. 18, 1773). Ruscin obtained the palatinates of Vitebst, Polotisk Mocialaw. Iftis sq. zn. of territory, wlth a popalation of 550,000 and as annal reveinue of 920,000 Polish guiden. Austria got the greater part of Galicia; minus Cracow: 1710 89. Bo. inith a population of 826,000 and an annual revemse of $3,408.000$ gulden. Prinaia roctivod the maritime pelatinete mions Danzig, the palatinate of Ktilm minus Thom, Great Pohand as far es the Nitan, and the palatinates of Marienburg and Erwehand 609 zq . m., with a population of 378,000 , and an anves revenae of 534,000 thaitrs. In fine, Poland lose about ome-fiet of her population and oncfourth of her tepritory.

In returt fite these anompons concewions the partitioning powers presented the Poles with a constitution auperior to anything they had ever been able to devise for themeelves. The most mischievous of the ancient abusce, the elective monarchy and the liberus pelo, were of course. retained. Poland was to be dependent on her despoilers, but they evidently meant to make ber a eerviceable dependart. The government was beaceforth to be in. the hands of a rodo nieustajaco, or permanent council of thirty-stx members, eighteen senators and eighteen deputies, elected biennially by the sejm in secret ballot, subdivided into the five depertments of foreiga aftairs, police, war, justice and the exchequer, whose principal members and assistants, as well as all other public functionaries, were to have fired salaries. The royal prerogitive was etill further reduced. The king was indeed the president of the permanent council, but be could not summon the diet without its consent, and in all cases of preferment was bound to select one out of three of the council's nominees. The annual budget was fixed at 30,000;000 Polish gulden! out of which a regular army of $30,000^{1}$ men was to be maintained. Sentiment apart, the constitution of 1775 was of distinct benefit to Poland. It made for internal stability, order and economy; and enabled ber to develop and husband her resources, and devote hersell uninterruptedly to the now burning question of national education. For the shock of the first partition was so far salutary that it awoke the public conscience to a sense of the national inferiorty; stimulated the younger generation to extraordinary patriotic efforts; and thus went far to produce the native reformers who were to do such wonders during the great quadrennial diet.
It was the second Turkish War of Catherine II. wbicb gave patriotic Poland her last opportunity of re-establishing her independence. The death of Frederick the Great (Aug. 17, 1786) completely deranged the balance of power in Europe. The long-standing accord between Prussia and Ruscia came to an end, and while the latter drew nearer to Austria, the former began to look to the Western powers. In August 1787 Russia and Austria provoked the Porte to declare war against them both, and two months later a defensive alliance was conctuded between Prussia, England and Holland, as a counterpoise to the alarming preponderance of Russia. In June 1788 Gustavus III. of Sweden also attacked Russia, with 50,000 men, while in the south the Turks held the Muscovites at bay beneath the walls of Ochakov, and drove back the Austrian invaders into Transylvania. Prussia, emboldened by Russia's difficulties, now went $s 0$ far as to invite Poland also to forsake the Ruscian alliance, and placed an army corps of 40,000 men at her disposal.

It whs under these exceptional circumstances that the "four years' diet " assembled (Oct. 6, 1788). Its leaders, Stanislaw Refornt of Malachowski, Hugo Kollontal and Ignaty Potocki, the coos- were men of character and capacity, and its measures atmelent were correspondingly vigorous. Within a few months 1734 of its assembling it had abolished the permanent council; enlarged the royal prerogative; raised the army to 55,000 men; established direct communications with the Western powers; rejected an alliance which Russia, alarmed at the rapid progress of events, had hastened to offer; declared its own session permanent; and finally settled down to the crucial task of reforming the constitution on modern lines. But the difficulties of the patriots were commensurate with their energies, and though the new constitution was drafted so early as December 1789, it was not till May 1791 that it could safely be presented to the diet. Meanwhile Poland endeavoured to strengthen her position by en advantageous alliance with Prussia. Prederick William II. stipulated, at first, that Poland shoold surrender Danzig and Thorn, and Pitt himself endeavoured to persuade the Polish minister Michal Kleophas Oginski (r755-1833) that the protection of Prossia was worth the sacrifice. But the Poles proving obstinate, and Austria simultaneocosly displaying a disguieting interest in the welfare of the Republic, Prussia, on

[^87]the soth of March 8791, concluded an alliance with Poland which engaged the two powers to guarantee each other's possessions and render mutual asaistance in case either were attacked.

But external aid was uselese so long as Poland was hampered by her anarchical constitution. Hitherto the proceedings of the diet had not been encouraging. \cdot The most indispensable reforms had been frantically opposed, the debate on the re. orgnization of the army had alone lested six months. It was only by an audacious surprise that Kollontaj and his associates oontrived to carry through the new constitution. Taking advantage of the Easter recess, when most of the malcontents were out of town, they suddenly, on the 3rd of May, brought the whole queation before the diet and demanded urgency for it. Before the opposition could remonstrate; the marshal of the diet produced the latest foreign despatches, which unanimously predicted another partition, whereupon, at the solemn adjuration of Ignaty Potocki, King Stanislaus exhorted the deputies to sccept the new comstitution as the last means of saving their country, and himself set the smample by swearing to defend it.

The revolution of the zid of May rygr converted Poland Into an hereditary" Hmited monarchy, with ministerial responsibility and duennial parlizments. The liberum selo and all the intricato and obatructive machinery of the anomalous old system were for ever abolished. All invidious class distinctions were done away witb. The franchise was entended to the towns. Seridom was mitigated, preparatorily to its entire abolition; absolute religious toleration was established, and every citizen declared equal before the law. Frederick William H. officially congratuIated Stenislaus on the success of "the happy revolution which has at last given Poland a wiee and regular government," and deciared it should henceforth be his "chief care to maintain and confirm the ties which unite us," Cobead, the Austilan minister at St Petersburg, writing to his court immediately after the reception of the tidings at the Russian capital, describes the empreas es full of consternation at the idea that Poland under an hereditary dynasty might once more become a considereble power. But Catherine, still in difficulties, was obliged to wateh in silence the collapse of her party in Poland, and submit to the double humiliation of recalling her ambassador and withdrawing her army from the country. Rven when the peace of Jassy (Jan. 9, 1792) finally freed Mer from the Turk, whe waited patiently for the Polish malcontents to afiond her a pretext and an opportunity for direct and decisive interference. She had not long to waft. The constitution of the 3rd of May had scarce been signed when Felix Potocti, Severin Raewuski and Xavier Branicki, three of the chief dignitaries of Poland, hastened to St Petersburg, and there entered into a secret conveation with the empress, wheroby she undertook to restore the old constitution by force of arms, but at the eame time promised to respect the territorial integrity of the Republic. On the rath of May 1792 the conspirators formed a confederation, consisting, in the first instance, of only ten other persons, at the little town: of Targowica in the Ukraine, protesting against the constitution of the 3rd of May as tyrannous and revolutionary, and at the same time the new Russian minister at Warsaw presented a' formal declaration of war to the king and the diet. The diet met the crisis with dignity and firmness. The army was at once despatched to the frontier; the male population was called to arms, and Ignaty Potocki was sent to Berlin to claim the assistance stipulated by the treaty of the 19th of March 1798. The king of Prussia, in direct volation of all his oaths and promises, dectined to defend a constitution which had never had his "concurrence." Thus Poland was left entirely to Rusile her own resources. The littlo Polish army of 46,000 evmelvowe men, under Prince Josepb Poniatowski and Tadeusz anc ComatrKosciusako, did all that was possible under the circumstances. For more than three months they Lept back the invader, and, sfter winning three pfiched batites, retired in perfect order on the capital (see Ponintownck, and

IOn the death of Stanislaus, the crown was to pass to the family of the elector of Sasony.

Zofcrusgro). Biut the King, ind even Kollontaj, despairing of success, now acceded to the confederation; hostillties were suspended; the indigoant officers threw up their commissions; the rank and file were distributed all over the country; the reformers fled abroad; and the constitution of the 3rd of May was abolished by the Targowicians as "a dangerous novelty." The Russians then pourcal into eastern Poland; the Prussians, at the beginning of 1793, alarmed lest Catherine should appropriate the whole Republic, occupied Great Poland; and a diminutive, debased and helpless assembly met at Grodno in order, in the midst of a Rusian army corps," to come to an amicable understanding" with the partitioning powers. After smonapme every conceivable means of intimidation had been atcon of uncrupulously applied for twelve weeks, the second Polasd treaty of parition was signed at three o'clock on the morning of the 23rd of September 1703 . By this pactum subjectionis, as the Polish patriots called it, Russia got all the eastern provincen of Poland, extending from Livonia to Moldavia, comprising a quarter of a million of square miles, while Prussia got Dobrayn, Kujavia and the grealer part of Great Poland, with Thorn and Danzig. Poland was now reduced to one-third of lier original dimensions, with a population of about three and a half millions
The focus of Polish nationality was now transferred from Warsaw, where the Targowicians and their Russian patrons atederesta reigned supreme, to Leipuig, whither the Polish patriots, Kosciussko, Kollonaaj and Ignaty Potocki among the number, assembled from all quarters. From the firat they medituted a national rising, hut their ignorance, enthusiasm and simplicity led them to commit blunder after blunder. The firat of such blunders was Kosciuszko's mission to Paris, in January 1794. He was full of the idea of a league of republics against the lcague of sovereigns; but he was unaware that the Jacobins themselves were already considering the best mode of detaching Prusia, Poland's worst enemy, from the anti-French coalition. With a hypocrisy worthy of the diplomacy of "the tyrants," the committee of public eafety declarod that it could not support an insurtection engineered by aristocrats, and Kosciuszito returned to Leipzig emply-handed. The mext-blunder of the Polish resugees was to allow chernelves to be drawn into a premature rising by certain Polish officers in Poland who, to prevent the incorporation of their regiments in the Russian army, openly revoliced and led their troops from Warsaw to Cracow. Kosciuszko himself condemned their hastiness; but, when the Russian troops begen to concentrate, his feelings grew too strong for him, and early in April he himself appeared at Cracov. In an instant the mutiny became a revolution. The dotaile of the heroic but useless struggle will be found elsewhere (eee Kosciveszo, Kollontaj, Potociz, Ignaty, Downrowssax). Throughout April the Polish arms were almost universally successful. The Russinns were defeated in more than ane pitched battle; three-quarters of the ancient territory was recoverred, and Warsaw and Vilna, the capitals of Poland and Lithuania respectively, were liberated. Kosciussko was appointed dictator, and a supreme council was established to ansist him. The first merious reverse, at Szczekociny (June 5), was soore than made up for by the succesesful defence of Warsaw against the Ruscians and Prussians Ouly 9 to Sept. 6); but in the meantime the inveterate lawlessness of the Poles had asserted itseli, as usual, and violent and ceaseless discensions, both in the supreme council and in the army, neutralized the superhuman efforts of the unfortunate but still uodaunted dictator. The death-blow to the movement was the disaster of Madejowice (Oct. 10), and it expired amidst the carnage of Praga (Oct. 29), though the last. Polish army corps did not capitulate till the 18 th of November. Yet all the glory of the bitter strugelie was with the vanquished, and it the Poles, to the last, had shown themselves childres in the acience of goverament, they had at least died on the feld of bastle like meen. The greed of the three partitioning powers very pearly led to a rupture between Austria and Prusuia; but the tact and statesmenachip of the empress of Ruscia forally adjusted all
difficulticen. On the 24th of October a795 Prusin accested to the Austro-Rusian particion compact of the zrd of Janman, and the distribution of the conquered provinces nuwar. was finally regulated on the zoth of October 7796, attom By the third treaty of partition Austria had to be Poued content with Western Galicia and Southerr Mesovia; Prussia took Podlachis, and the rest of Masovin, wilh Wanami and Russia all the rest.
The immediate result of the third partition was in immense emigration of the more high-spirited Poles who, during the pert ten years, fought the battles of the French Republic and of Napoleon all over Europe, but principally agninst their ova enemies, the partitioning powers. They were known is the Polish legions, and were commanded by the best Polish genervk, e.f. Joseph Poniatowski and Dombrowski. Only Rofcinscio stood alool. Even when, after the peace of Tinsit, the independent grand-duchy of Warsaw was conslructed out of the central provinces of Prussian Poland, his distrust of Napolean proved to be invincible. He was amply juslified by the colve of events. Napoleon's exaxiety to conciliate Russia effecturily prevented him from making Poland large and strong enoogh to be selfsupporting. The grand-duchy of Warsew origimal'y consisted of about 1850 sq . mm , to which Western Galita and Cracow, about 900 sq. M. more, were added in 1 socs. The grand-duchy was, from first to last, a mere recruiting-grousd for the French emperor. Its army was limited, on paper, to 30,000 men; but in January 1812 65,000 , and in November the same year 97,000 recruits were drawn from it. The carastitution of the little state was diclated by Napoicon, asad subject to the exigencies of war, was on the French model Equality before the law, aboolute religious toletation and loc-d autonomy, were its salient features. The king of Samay, as grend-duke, cook the initiative in all legisistave matters; but the administration was practically coneroiled by the Freach
(R.N.R)

The Congress Kingdom, 18 ry -1863.-The G̈rand Duchy α Warsaw perished with the Grand Army in the retreat frem Moscow in 1812. The Polish troops had taken a promineal part in the invasion of Russia, and their share in the plandering of Smolensk and of Moscow had intensified the racial bertud felt for them by the Russians. Those of them who sarvived or escaped the disasters of the retreat fird before the tsar's arzy and followed the fortunes of Napolcon in 2853 and 1814 The Russians occupied Warsaw on the 18Lh of February 1813 and overran the grand duchy, which thus came into their possessisa. by conquest. Some of the Poles continued to hope that Alezander would remember his ald favour for Ahreemers them, and would restore their kingdom under his
own rule. Nor was the tsar unwilling to encourrage ther delusion. He himself cherished the desire to re-estabtish the kingdom for his own advantage. As carly as the 1sth d January ${ }^{1813}$ he wrote to assure his former favourice and confidant, Prince Adam Czartoryski, that, "Whatever the Pold do now to aid in my success, will at the same time serve : forward the realization of their hopes." But the schemes ti Alexander could be carried out only with the co-operuise of other powers. They refused to consent to the annexation of Saxony by Prussia, and other territorial arrangements mizich would have enabled him to unite all Poland in hit necor own hand. By the final act of the Congress of rowa Vienna, signed on the git of June 1815 , Poland was Bem divided between Prussia, Austria and Russia, with one trisi-s exception: Cracow with its population of 61,000 was erece? into a republic embeddod in Galicia. Posen and Gnesea, wa a population of 810,000 , were left to Prussia. Austria remaire 1 in possession of Galicia with its $1,500,000$ inhabitants. Litruans. and the Rutbenian Palatinates, the spoil of former partiones continued to be incorporated with Russia. The remmant wis constituted as the so-called Congress Kingdom under the emperor of Russia as king (tsar) of Poland. It had been sripolated by the Final Act that the Poles ander forejer rale shockd be endowed with institutions to prectre their mational eximetese
according to such forms of political existence as the governments to which they belong shall think fit to allow them.

Alexander, who had a sentimental regard for freedom, so long as it was obedient to himself, had promised the Pales a The New constitution' in April 1815 in a letter to Ostrovpofica com-skiy, the president of the menate at Warsaw. His suterios, promise was publidy proclaimed on the 2 gth of TSB. May, and was reaffirmed in the Zamok or palace at Warsaw and the cathedral of St John on the roth of June. The constitution thus promised was duly drafted, and was signed on the 3 oth of November. It contained 165 articles divided under seven heads. The kingdom of Poland was declared to be united to Russia, in the person of the tsar, as a separate political entity. The kingdom was the Congress Kingdom, for the vague promises of an extension to the east which Alexander had made to the Poles were never fulfilled. Lithuania and the Ruthenian Palatinates continued to be incorporated with Russia as the Western Provinces and were divided from the Congress Kingdom by a customs barrier till the reign of Nicholas I. The kingdom of Foland thus defined was to have at its head a lieutenant of the emperor (namiestnik), who must be a member of the Imperial house or a Pole. The first bolder of the office, General Zajonczek (175-1826), was a veteran who had served Napoleon, Roman Catholicism was recognized as the religion of the state, but other rolagions were tolerated. Liberty of the Press was promised subject to the passing of a law to restrain its abuses. Individual liberty, the use of the Polish language in the lav courts, and the excluave employment of Poles in the civil government were secured by the constitution. The machunery of government was framed of a council of atate, at which the Imperial government was represented by a commiswioner plenipotentiary, and a diet divided into a senate composed of the princes of the blood, the palatines and councillors named for life, and a house of numtii elected for seven years, 77 chosen by the "dietines" of the nobles, and $5 I$ by the commons. The diet was to meet every other year for a sesaion of thirty days, and was to be renewed by thirds every two years. Poland retained its flag, and a national army based on that which had been raised by and had fought for Napoleon. The command of the army was given to the empcror's brother Constantine, a man of somewhat erratic charecter, who did much to offend the Poles by violence, but also a good deal to please them by his marriage with Johanna Grudzinska, a Polish lady afterwards created Princess Lowicz, for whose sake he renounced his right to the throne of Russia (see Constaninne Pavlovices).
The diet met three times during the reign of Alexander, in 1818, in 8820 and in 1825 , and was on all three occasions opened by the tsar, who was compelled to address his subjects in French, since be did not speak, and would not leam, their language. It is highly doubtful whether, with the best efforts on both sides, a constitutional government could have been worked by a Russian autocrat, and an assembly of men who inherited the memories and characters of the Poles. In fact the tsar and the diet soon quarrelled. The Poles would not abolish the jury to piease the tsar, nor conform as he wished them to do to the Russian law of divorce. Opposition soon arose, and as Alexander could not understand a freedom which differed from binself, and would not condescend to the use of corruption, hy which tbe ancient Polish diets had been managed, he was driven to use force. The third session of the diet-1 $3^{\text {th }}$ of May to $13^{\text {th }}$ of June 1825 -was a mere formality. All publicity was suppressed, and one whole district was disfranchised because it persisted in electing candidates who were disapproved of at court. On the other hand, the Poles were also to blame for the failure of constitutional government. They would agitate by means of the so-called National Masonry, or National Patriotic Society as it was afterwards called, for the restoration of the full kingdom of Poland. The nobles who dominated the diet did nothing to remove the most crying evil of the countrytbe miserable state of the peasants, who had been freed from personal seridom hy Napoleon in 1807, but were being steadily
driven from their holdiags by the Landiords. Ia epite of the general proeperity of the country due to peace, and the execution of public works mostly at the expense of Russia, the state of the agricultural class grew, if anything, worse.

Yet no open bresch occurred during the reign of Alexander, nor, for five years after his death in 1825. The Decembrist movement in Russia had little or no echo in Poland. On the death of Zajonczek in 1826, the grand duke Constantine beeame Imperial lieutenant, and his administration, The orand though erratic, was not ualavourable to displays Dowe coas of Polish nationality. The Polish army had no meotione share in the Turkish War of 1829 , largely, it is ssid, at the request of Constantine, who loved parades and thought that war was the ruin of soldiers. No attempt was made to profit by the embarrassments of the Russians in their war with Turkey. A plat to murder Nicholas at his coronation on the 24th of May 8829 was not carried out, and when he held the fourth diet on the 3oth of May $\mathbf{8 3} 30$, the Poles made an ostentetious show of their nationality which Nicbolas was provoked to describe as possibly patriotic but certainly not civil. Nevertheless, he respected the settlement of $\mathbf{8 8 1 5}$. In the meantime the Patriotic Society had divided into a White or Moderate party and a Red or Extreme party, which was subdivided into the Academica or Republicans and the Military or Terrorists. The latter were very busy and were supported by the Roman Catholic Church, which did littie for the Prussian Poles and nothing for the Austrian Poles, buf was active in harassing the echismatical government of Russia.
The outbreak of the French Revolution in 1830 and the revolt of Belgium produced a great effect in Poland. The spread of a belief, partly justified by the language of polit Nicholas, that the Polish army would be used to Rhigrof coerce the Belgians, caused great irritation. At last, RHiter on the 2gth of November 1830 , a military revolt took place in Warsaw accompanied by the murder of the minister of war, Hauke, himself a Pole, and other loyal officers. The extraordinary weakness of the grand duke allowed the rising to gather strength. He evacuated Warsaw and finally left the country: dying at Vitebsk on the 27th of June I83r (see Constanting Pavlovicis). The war lasted from January till September 183z. The fact that the Poles pomessed a well-drilled army of 23,800 loot, 6800 horse and 208 guns, which they were able to recruit to a total atrength of $80,8 a 1$ men with 158 guns, gave solidity to the rising. The Russians, who had endeavoured to overawe Europe by the report of tbeir immense military power, had the utmost diffculty in putting 114,000 men into the field, yet in less than a year, under the leadership of Diebitsch, and then of Paskevich, they mastered the Poies. Oa the political and administrative aide the struggle of the Poles was weakened by the faults which had been the ruin of their kingdomlaction pusbed to the point of anarchy, want of discipline, intrigue and violence, as shown by the abominable massacre which took place in Warsaw when the defeat of the army was known. The Poles had begun by protesting that they only wished to defend their rights against the tsar, but they soon proceeded to proclaim his deposition. Their appeal to the powers of Europe for protection was inevitahly disregarded.
When the Congreas Kingdom had been reconquered it was immediately reduced to the position of a Russian province. No rempant of Poland's separate political existence petead e remained save the minute repuhlic of Cracow. Ruaslas Unable to acquiesce sincercly in its insignificance movioca and even unable to enforce its neutrality, Cracow was a centre of disturbance, and, after Russia, Prussia, and Austria had in 1846 agreed to its suppreasion, was finally occupied by Austria oa the 6th of November 1848, as a consequence of the troubles, more agrarian than politicul, which convuled Galicia. The administration established by Nicholas 1. in Russian Poland was harsh aad aimed avowedly at destroying the nationality, and even the language of Poland. The Polish universities of Warman and Vilna were suppressed, and the students compelled to go to St Petersburg and Ziev. Polisb
recruits were distributed in Rascian segiments, and the use of the Rusaian language was enforced as far as possible in the civil administration and in the law courts. The customs barrier between Lithuania and the former Congress Kingdom was removed, in the hope that the infuence of Russia would spread more easily over Poland. A very hostile policy was adopted against the Roman Catholic Church. But though these measures cowed the Poles, they failed to achieve their main purpose. Polish mational sentiment was not destroyed, but intensified. It even spread to Líhuania. The failure of Nicholas was in good part due to mistaken measures of what he hoped would be conciliation. He supported Polish students at Russian oniversitiea on condition that they then spent a number of years in the public service. It was the hope of the emperor that they would thas become united in incerest with the Russians. But these Polish officials made use of their positions to aid their countrymen, and were grasping and corrupt with patriotic intentions. The Poles in Russia, whether at the universities or in the public service, formed an element which refused to assimilate with the Russians. In Poland itself the taar left macb of the current civil administration in the hands of the nobles, whose power over their peasants was hardly diminished and was misused as of old. The Polish exiles who Gilled Europe efter 1830 intrigued frora abroed, and maintained a constant agitation. The stern government of Nicholas was, however, 30 far effective that Poland remained quicscent during the Crisgean War, in which many Polish soldiers fought in the Russian army. The Russian government felt safe enough to reduce the garrison of Poland largely. It was not till 1863 , eight years after the death of the tsar in 1855, that the last attompt of the Poles to achicve independence hy arms was made.

The rising of 8863 may without injustice be said to be due to the more humane policy of the tsar Alexander II. Exiles were allowed to return to Poland, the Church was ofiscroctoa propitiated, the whight of the Rumian administration was lightened, police rules as to passports were relaxed, and the Poles were allowed to form an agricultural society and to meet for a common purpose for the first time after many years. Poland in short shared in the new era of milder rule whlch began in Russia. In April 1856 Alexander II. was crowned king in the Roman Catholle cathedral of Warsaw, and addressed a flattering speech to his Polish subjects in French, for he too could not speak their language. His warning, "No nonsense, gentlemen" (Point de rtheries, M(essicurs), was taken in very ill part, and it was perhaps naturally, but beyoad question most unhappily, the truth that the tsar's concessions only served to encourage the Poles to revolt, and to produce a strong Russian reaction against his liberal policy. As the Poles courd no longer dispose of en army, they were unablo to assail Russia as openly as in 8830 . They had recourse to the so-called "urarmed agitation," which was in effect a policy of constant provocation designed to bring on measures of repression to be represented to Europe as examples of Russian brutality. They began in 1860 at the funeral of the widow of General Sobinski, killed in 8330, and on the 27thof February 186i they led to the so-called Warsaw massacres, when the troops fired on a crowd which refused to disperse. The history of the agitation which eulminated in the disorderly rising of 1863 is one of intrigue, secret agitation, and in the end of sheer terrorism by a secret society, which organized political assassination. The weakness of the Russtan governor, General Gorchakov, in 1861 was a repetition of the feehleness of the Grand Duke Constantine in 1830. He allowed the Poles who organized the demonstration of the 27th of February to form a kind of provisional government: Alongside of such want of firmness as this were, however, to be found such measures of ill-timed repression as the ordet given in 1860 to the agrieultural society not to discuss the question of the settiement of the peasants on the land. Concession and repression were employed alternately. The Poles, encouraged by the one and exasperated by the other, finally broke into the partial revolt of 1863-1864. It was a struggle of ill-armed partisans, who were never even numerons, against regular troope, and was
marked by no real bettle. The suppresion of the rising was followed by a return to the hard methods of Nicholas. The Polish nobles, gentry and Church-the educated clacees generally -were crushed. It must, however, be noted that one class of the measures taken to punish the old governing part of the population of Poland has been very favourable to the majority. The peasants were freed in Lithuania, and in Poland proper much was done to improve their position. The Russian government has benefited by their comparative prosperity. and ty the incurable hatred they continue to feel for the classes which were once thetr oppreasors. The national history of Poland closes with the rising of 1863 .
(D. H.)

Bibliog raphy.-The beat general history of Poland is still J azel Szujski's monumental History of Poland according to the falest injes. trgotions (4 vols. Pol.. Lemberg. 1865-1866), a work which has all the authority of careful criticism and easy scholarship. It adopts thrqughout, the conservative monarchical stand point. Srujski's book has superseded even Joachim Lelewel's learned Hislory of Poland (Pol.. Brussels, 1837), of which there are excellent Frinch (Paris, 1844) and German (Leipzig, 1846) editions. The best contemporary genera! history is August Sokolowski's Mhustratad History of Poland (Pol., Viensa, iso6-1goo). The best independear German history of Poland is, on the whole. Roepell (Richard) and Caro's (Jakab) Geschuchte Polens (Hamburg and Gotha, 1840-1888). Scholars desiring to explore for themselves the sources of Polish history from the tith century to the 18 ch mave immense fields of research lying open before them in the Acla hreorice res gestes Polonice ilusirantia ($187^{8 .} \& \mathrm{\& c}$), the Scriplores rcrum polonkaram ($1872, \% \mathrm{c}$), and the Hislorical Disseriations (Pol, $187+$, \&c.). all three collections published, under the most careful' editorship. by the University of Cracow. To the same order belong Ludwik. Finhel's Fortes rerum poloricaram (Lemberg. 1901, \&c.), and the in numerable essays and articles in The Hestorual Quarterly Revico of Poland (Pol. Lemberg. $1887 . \& \mathrm{c}$.). The soundest history of Lithuania, before its union with Poiand, is still Lelewel's History of Lithuania (Pol. Leipzig, 18j9). of which a French translation was published at Paris in 1861. Procoeding to the earlier history of Poland. Lekerrl's Poland in the Middle Ages (4 vols., Posen, $1846-1851$) is stitl a standard work. though the greatest authority on Polish antiquities is now Tadcusz Wojciechowski, who unites astounding kearning with a perfect style. His Historical Shetches of the Elesenth Century (Pol., Cracow, 1904) is a very notable work. Karol Szajnocha's great monograph, justly described as "a pearl of historical literature." Jedwiga and Jagiello (4 vols., Lemberg. 1861). the resulf of twelve years of exhaustive study, is our best authority om the first union between Poland and Lithuania. On the other band, his Boledaws the Bold. Efc. (Lemberg 1859) would now be coosidered too romantic and pictureaguc. The relations between Poland. Prussia and Livonia are adequately dealt with by two sound Germana books. Theodor Schicmanns Russlond, Polen und Limand bis ins xviii. Jahrhwndell (Berlin, 1885-1887) and Max Pertbach's Prems-atch-poleusche Studiem (Halle, 18B6). A good guide to the history of the Jagiellonic period, 1386-1572, is also Adolf Pawinski's Powed in'the r5ih Ccnfury (Pol. Warraw, 1883-8886). Of the numeroas works relating to the reign of the heroic Stephen Bathory. $1515-$ 1586, Ignaty Janicki's Acta hastorica res qestas Stephani Batkori inusirantia (Cracow, 1881), and Paul Piering is Un arbitrage pori fical endre la Pologye af la Russie 1581-1582 (Brusacks, 1890) can be recommended. The best Polish work on the subject is Wiscerty Zakrzewski's The Resgn of Stephen Bethory (Pol., Cracow. 155-1. Of the books relating to the Polish Vasas the most notable is Szi;nocha's Two Yoars of our History, 1646-1648 (Lemberg, is6g). which deals exhaustively with the little-known but remartabit attempt (the last practical attempe of its kind) of Ladislaus IV. to abolish the incurably vieious Polish constitution. Another firstclass work, relating to the same period and deatiag specifically with the mode of wariare of heroic Poland, is Jósef Treciak's Bistery of the War of Chosin (Pol., Lembery, 1893). For works relating is the Sobieskian, Saxon and Partitional periods of Polish history. the reader is referred to the bibliographical notes appended to te biographics of John III., king of Poland, Michal Crattorystci, Stanio laus Il., Taderas Andrzej Kósiusziko, Jórel Poniatowsti, and the other chief actors of these perioda But tbe following additicat suthoritics should also be noted. (1) Lelewel's History of the Reis of Scunisliuss Augustus (Pol., Warsaw, 1831 ; Fr, ed., Paris, 1830 :the book is important as being based on unpubfished memeirs in the exclasive possemion of the authoe's farrily. (b) Moterials for tive History of the last cenulury of the Repablic, by S. Korvia (Crmoow. 1890). (3) Die Letzce polnische Konieswahl, by Srymon Askenaz: (Cracow, 1882-1886). (4) The extremely valuable Prince Reffixe in Poland by Aleksander Kraushar (Warsaw, 1000), one of the nour thorough of contemporary Polish hiseorians Inpumerable are the works relating to the Partitional period. Perhape the beat of all is Walery Jan Kalinka's great work in four volumcs, Der vierjā̄kric! polnische Reichstag (Berlin, 1896-1898). Kalinka is, however, Is: too evere upon the patriota and much too indulgent toward

King Stanislaus. Albert Sorel's La Qwastion droriont au XVIII. sitcole (Paris, 1889) is lucid and accurate, but somewhat superficial. Wolfgang Michael's Englands Stedung sur ersten Teilung Polens (Hamburb, 1890) is of especial interese to Englishmen. Maryan Dubiecki's Karol Prover (Pol., Cracow, 1897) shows with what self-sacrificing devotion the gentry and people supported Kosciuazko's rixing. For more complete bibliography sec Jozef Korzeniowski's Calalogus actorum et documentarum res gestas Poloniae illustrantium (Cracow, 1889), and Ludwik Finkel's Bibliography of Polish History (Pol., Lemberg, 1891). For the period 1815-1863 yee also N. A. Day, The Rustian Government in Poland (London, 1867); Theodor Schiemann Russland unter Kaiser Nikolaus I., voi. (Berlin, 1904).

polish literature

The Polish language belongs to the western branch of the Slavonic tongues, and exhibits the closest affinities with the Caech or Bohemian and Lusatian Wendish. Unlike the people of other Slavonic countries, the Poles are comparatively poor in popular and legendary poetry, but such compositions undoubtedly existed in early times, as may be seen by the writings of their chroniclers; thus Galius translated into Lathria poem written on Bolealaus the Brave, and a few old Polish songs are included in Wojcicki's Library of Ancicut Wrisers. A great deal of the early literature written in Poland is in Latin. The earliest specimen of the Polish language is the so-called Psalter of Queen Margaret, discovered in 1826 at the convent of St Florian. Tbe date of the manuscript appears to be the middie of the $\mathbf{1 4 t h}$ century, and probably in its present form it is only a copy of a much older text, there is also a translation of the fiftieth psalm belonging to the 13th century. ${ }^{1}$ The aacient Polish hymn or war song, Piesm Baga Rodeica, was an address to the Virgin, sung by the Poles when about to fight. The oldest manuscript of this production is dated $\times 408$, and is preserved at Cracow By a legend which subsequentiy grew up the composition of it was assigned to St Adalbert. John Lodzia, bishop of Posen from 1335 to 1346, composed several religious songs in Latin.
The next monument of Polish literature to which we come is the Bible of Queen Sophia or Bible of Starosupatak. It is imperfect, and only contains the early beoks, vix. the Pentateuch, Joshua, Ruth and Kings; there are, however, fragments of three others. It is said to bave been written for Sophis, the fourth wife of Jagiello, about the year 1455. It has been edited with great care by Malecki. Five religious songs in Polish dating from the 1 sth century have been preserved; they are ascribed to Andrew Slopachowski, prior of the monastery of the Holy Cross on Lysa Gora. There is also the fragment of a hymn in praise of WycliIte. To these fragments may be added the prayerbook of a certain Wactaw. a sermon on marriage, and some Polish glosses. These are all the existing memorials of the Polish language before the 16 th century.

Perhaps a few words should he said concerning the writers in Latin. Martin Gallus lived in Poland hetween 11 ro and 1135. The Latte Prom his name he has been supposed by some to have been a Fienchman or Walloon, and we must remember that Poland swarmed at that time with foreign ecclesiastics Lelewel, the Polish historian, considers that it is merely a translation into Latin of some such name as Kura, signifying "a fowl." Others suppose him to bave been an Italian, or a monk from the convent of St Gall in Switzertand. He has plenty of legends to tell us, and writes altogether in a poetical style, so that his prose seems to fall into rhythm unconsciously. His quotations from the classics, Sallust, Lucan and others, show the extent of his reading. Gallus was followed by Matthew Cholewa and Vincent Kadlubek. two bishops of Cracow, and Bogufal or Boguchwal (Gottlob), bishop of Posen, who all used Latin. The work of Kadlubek is more ornate iu diction than that of Bogufal, and for a iong tlme enjoyed great popularity. He was born in 1160, educated at the universtty of Paris, and died in Poland in 1223 as a Cistercian monk. His Latin, like that of Gallus, is far from classical. but he writes with spirit and throws in good deal of light upon
${ }^{1}$ The Pselter is called after Margaret. the first wife of King Louis, who died in 1349, by a mere conjecture: Caro thinks it prore probabie that the book bolonged to Mary, his daughter.
the events of his time. The education of the country whe wholly in the hands of the ecclesiastics, many of whom were foreigners. in this way we must explain the great prevalence of the Latin language. Such a system would be sure. to stifle all national outgrowth, and accordingly we have atmong the Poles none" of those early monuments of the language which other countries boast. For instaace, there are no bllimi or legendary poems, such as are found among the Russians, although many passages in the ancient chroniclers from their poetical colouring seem to be borrowed from old songs or legends, and the first verses of some of these compositions have been preserved. Mention may here be made of other chroniclers such as Martin the Pole (Polonius), who died in 1279 or 1880 , and Jan of Czarnkow, who died in 1389; the latter was the historian and panegyrist of Casimir the Great. With the reign of Casimir III. (1333^{-1370}) must be associated the statutes of Wislica. Jadwign, the wife of Jagtelto, was mainly instrumental in creating the university of Cracow, which received a charter in 1364, but did not'come. dnto effective existence till its reconstitution in 1400 . In thit institution for many ycars all the great men of Poland were trained-amang others Gregory of Sanok, Dlugoszand Copernicus. Casimir the Great may be said to heve laid the foundation of this university. Having obtained the consent of Pope. Urban V., he established at Cracow a studium generale on the model of the university of Bologne. It consisted of three facalties-Roman law, medicine and philosophy. But the aristocratic youth still preferred frequenting the unlversitics of Prague, Padua and Paris, and accordingly the newly founded studivm languished. Jadwiga, however, obtained from Boniface IX. permission to create a new chalr, that of theology; and the university of Cracom was remodelled, having been reorganized on the same basis as that of Paris. Another university was founded later at Vilna by Batory, and one at Zamost by the chancellor Zamoyski. There were also good echools in various places, such as the Collegium Lubranskiego of Posen and the school of St Maty at Cracow. In the year 1474 a press was set upin the latter city, where Gunther Zainer printed the Girst book. The first press from which books in the Polisk language appeared was that of Hieronymus Wietor, a Silesian, who commenced pablishing in 1515. A fow fragments printed in Polish had appeared before this, as the Lord's Preyer in the statutes of the bishops of Breslau in 1475, the story of Pope Urban in Latin, German and Polish in 1505 , icc.; hut the first complete work in the Polish language appeared from the press of this printer at Cracow in isni, under tbe title, Speeches of abe Wise King Solomon. The translation: was executed by Jan Kossycki, as the printer informs us in the preface, and the work is dedicated to Anna Wojnicke, the wife of a castellan. In 1522, a Polish translation of Ecclesiastet appeared from that press, and before the conclusion of that ycer The Life e Chrisf, with woodeuts, tramslated into Polish by Balthasar Opec. Many other presses were soon established. Printers of repute at Cracow, during the roth and beginining of. the 17th century, were Sybeneicher and Piotrkowctyk:

Little as yet had been produced in Polish, as the chronicters still adhered to latin; and here mention must be made of Jan Dlugoss, who called himeelf Longinus. He was bishop of Lemberg, the capfial of Galicia, and has left us a very Dhugene valuable history which has merits of style and shows considerable research. So anxious was Dhggosz to make his work as perfect as he could that he learned Russian so as to be able to read the' Chromicle of Nestor. The best part of his book is that which treate of the period between 1386 and 14 go. About 1500 was written an interesting hittle work entitled " Memoirs of a PolishJanissary " (Pametniki ianczara poloka). Although wfllen in the Polish language, it was probably the production of a Serb, Michael Constantinovich of Ostrovitza. He was taken prisoner by the Turks in 1455 and served ten years among the Janissaries, after which he escaped into Hungary. About' this time also flourished Nicholas Copernicus, a native of Thorn, one of the few Poles who have made themalves known beyond the limits of their country.
The Poles call the period between 1 s4 8 and 1606 thotir goldes
age. Poland was the great land of eastern Europe, and owing to the universal toleration encouraged by the government, Protestantism was widely spread. Many of the chief nobility were Calvinists, and the Socini came to reside in the country. All this, however, was to pass away under the great Jesuit reaction. At Rakow in Poland was published the catechism of the Socinian doctrines in 1605. The Jesuits made their appearance in Poland in 1564, and soon succeeded in getting the schools of the country into their hands. Besides extirpating the various sects of Protestants, they also busied themselves with destroying the Greek Church in Lithuania. Latin poetry was cultivated with great success by Clement Janicki (1516-1543), but the earliest poet of repute who wrote in Polish is Rej of Naglowice ($1505^{-1} 569$). Aiter a somewhat idle youth he betook himself to poetry. He was a Protestant, and among other religious works translated the Psalms. His best work was Zwierciadto albo sywot pocscivego calowieka (The Mirror or Life of an Honourable Man) - somewhst tedious didactic piece. He was also the author of a kind of play-a mystery we may term it, and productions of this sort seem to have been common in Poland from a very eariy time-entitled Life of Joseph in Egypl. This piece is interesting merely from an antiquarian point of view; there is but little poetry in it. It teems with anachronisms; thus we have mention of the mass and organs, and also of a German servant. Lucas Goinicki ($1527-1603$) wrote many historical works, and Dwortanin polski, an imitation of the Corlegiano of Castiglione.
Jan Eochanowaki ${ }^{1}(1530-1584)$, called the prince of Polish poets, came of a poetical family, having a brother, a cousin kmeneom- and a dephew who all enriched the literature of Kuchanemo their country with some productions. Kochanowski studied for some time at the university of Padua, and also resided in Paris, where he made the acquaintance of Ronsard. Returning to Poland, he became in 1564 secretary $t o$ Sigismund Augustus. He has left The Game of Chess, an imitation of Vida, and Proporsec albo hold pruski (The Standard or Investiture of Prussia), where he describes the fealty done by Albert of Brandenburg to Sigismund Augustus. He also executed a translation of the Psalms. He wrote a play-a piece of one act, with twelve scenes-The Despalch of the Greek Ambassadors. It is written in rhymeless five-foot iambics, and is altogether a product of the Renaissance, reminding us of some of the productions of George Buchanan. Rhyme is employed in the choruses only. It was acted on the marriage of the chancellor Jan Zamoyski with Christine Radriwill, in the presence of King Stephen and his wife, at Ujazdowo near Warsaw in 1578 . The poet's most popular work, however, is his Treny or "Lamentations," written on the death of his daughter Ursula. These beautiful elegies have been justly praised by Mickiewicz; they are enough to raise Kochanowski far above the level of a merely artificial poet. Besides poems in Polish, he also wrote some in Latin. It will be observed that we get this double-sided authorship in many Polish writers. They composed for an exclusive and learned circle, certainly not for the Jew, the German trader of the town, or the utterly illiterate peasant. It may be said with truth of Kochanowski that, alchough the form of his poetry is classical and imitated from classical writers, the matter is Polish, and there is much national fecling in what he has left us. Mention must also be made of his epigrams, whlch he styled "Trifles " (Fraszki); they are full of spirit and geniality. Stanislaus Grochowski ($1554-1612$) was a priest; but his poetry is of little merit, although he was celebrated in his time as a writer of panegyrics. His satire Babic Kolo (The Women's Circle) gave offence on account of its personalities. A great partisan of the Catholics in the time of Sigismund III. was Caspar Miaskowski, whose Walcta Wioszanororaska (Farewell to his Native Country) deserves mention. Szarzyiski, who died young in 1581, deserves notice as having introduced the
IHis collected works were printed in 1584; they were many times reprinted. the best edition being that of Warsaw (4 vols., 1884). His life was written by Pryyborowski (Pooen, 1857).
sonnet to the Poles. This species of poetry was afterwand te be carried to great perfection by Mickiewicz and Gascyasti

Szymonowicx (1554-1624) was a writer of grod pestonk Although they are fmitated from clasuical writers, be bs introduced many scenes of national life, which he describes with much vigour. Among the best are symer "The Lovers," "The Reapers," and "The Caice" (Kolact). Mickiewicx is very loud in his praise, and coesiden him one of the best followers of Theocritus. The conditiz: however, of the Polish peasants 'was too miserable to adze of their being easily made subjects for bucolic poerr There is an artificial air about the idylls of Syymonori: which makes one feel too keenly that they are productias of the Renaissance; one of their best features is the humax spirit towards the miserable peasantry which they every. where display. Another excellent writer of pastorals zy Zimorowics, a native of Lemberg, who died at the ant, age of twenty-five. Some of his short lyrics are very eleggir. and remind us of Herrick and Carew-e.g. that beginain! "Ukochane Lancelloto! Ciebic nie prosep " slobo." Anotis writer of pastorals, but not of equal merit, was Jan Gawist a native of Cracow. Some good Latin poetry was writton f Casimir Sarbiewski, better known in the west of Europe is Sarbievius (d. 1640). He was considered to have approache' Horace more neariy than any other modern poet, and a gote medal was given him by Pope Urban VIII. Mirtin Krome (1 512-1589) wrote a history of Poland in thirty books, and another voiume, giving a description of the country and its institutions-both in Latin. The history is written in an asy style and is a work of great merit. A poet of socne importesce was Sebastian Fabian Klonowicz (1545-1602), who batinized his name into Acernus, Klon being the Polish for maple, and wrote in both Latin and Polish, and through bis inclibation to reform drew down on himself the anger of the clecgy. Sometimes he is descriptive, as in his Polish poem entitled Flis (" The Boatman "), in which he gives a detailed account of the scenery on the banks of the Vistula. There is some poetry in this composition, but it alternates with very prosaic details Ia another piece, Rhoxolania, in Latin, he describes the beauties of Galicin. Occasionally he is didactic, as in Worek Judamom (The Bag of Judas) and Victoria deorum, where, under the allepory of the gods of Olympus, he represents the struggles of partis in Poland, not without severely satirizing the nobility and ecclesiastics. A curious work called Quincunar, written by Orzechowski (1515-1566), is concemed with religious polemias Andrew Modrzewski, a Protestant, in his work De repablice emendarda (1551), recommended the establishment of a mational church which should be independent of Rome, something upoa the model of the Anglican.

A florid Jesuitical style of oratory became very popular in the time of Sigismund ILI., not without rhetorical power, but frequently becoming tawdry. The chief representa-
tive of this school was Piotr Skarga ($1536-1612$), one
of the main agents in extirpaling Calvinism in Poland and the Greek Church in Lithuania. Among his numerous writings mas be mentioned Lives of the Saints, Discourses an the Sctere Sacrofments, and especially his sermons preached before the diet, it which he lashed the Poles for their want of patriotism and prophesied the dowinfall of the country. Mecherrymsti, in his "History of Eloquence in Poland" (Historys mymowy \% Polsce), especially praises his two funeral sermons on the burial of Amm Jagiellonka, widow of Stephen Batory, and Anna of Austria, first wife of Sigismund III. Besides the Latin histories of Wapowshi and Gwagnin (Guagnini, of Italian origin), we heve the fint bistorical work in Polish by Martin Bielski, a Protestant, vit Kronika polska, which was afterwards continued by his son. Tbe author was born in 1495 on his father's estate, Biale, and was educated, like so many other of his illustrious contemporaries at the university of Cracow. He lived to the age of eighty; hut, however great were the merits of his Chromicle, it was long considered a suspicious book on account of the leanings of the author to Calvinism. After his death his work was contisued by
his son Joachim ($1540-1599$). There is aboo a Choraick by Bartholomew Paprocki. In 1582 was also published the Chromicle of Stryjkowski, full of curious bearning, and still of greal use to the student of history. Five years later appeared the Annaler Polonice of Sarnicki. The inst three works are in Latin.

A lew words may be said here about the spread of Protestantigm in Poland, which is so intimately mixed up with the development of the national language The
sproen of protemanat 48. doctrincs of Hus had entered the country in very early times, and we find Polish recensions of Bohemian hymas; even the hymn to the Virgin previously mentioned is suppoed to have a Crech basia. The bishops were soon active againgt those who refused to conform to the doctrines of the Roman church. Thus we find that Bishop Andrew of Bnin scived five Hussite priests and caused them 10 be burnt in the market of Posen in 1439. A hundred years afterwards a certain Katharina Malcher, on account of her Utraquist opinions, was condernned by Gararat, the bishop of Cracow, to be burnt, which sentence was accordingly carried out in the ragmarket at Cracow. As early as 1530 Lutheran bymas were sung in the Polish language al- Thorn. In Königsberg, John Seklucyan, a personal friend of Luther, published a collection of Christion Songs. He was born in Great Poland, and was at first a Roman Catholic priest in Posen, but afterwards embraced the Protestant faith and was invited by Duke Albert as a preacher to Rönigsberg, where he died in 1578 . He executed the first translation of the New Testament in 1551. Fnur years afterwards appeared a complete Polish Bible published by Scharffenberg at Cracow. In 1553 appeared at Brecte the Protestant translation of the whole Bible made by a committee of learned men and divines, and published at the expense of Nicholas Radziwith, a very rich Polish magnate who had embraced the Protestant doctrines, This book is now of great rarity because his son Christopher, having been induced to become a Roman Catholic by the Jesuit Skarga, caused all copies of his father's Bible which be could find to be burnt. One, however, is to be seen in the Bodleian Library, and another in the library of Christ Church at Oxfond. A Socinian Bible was issued by Simon Budny in 1570 at Nieswier, as he professed to find many faults in the version issued under the patronage of Radziwih; in 1597 appeared the Roman Catholic version of the Josuit Wujek; and in 1632 the so-called Danzig Bible, which is 'in use among Protestants and is still the most frequently reprinted.

Up to this time Polish literature, although froquently rheworical and too much tinctured with classical influences, had mecarombs till exhibited signs of genins. But now, owing Mriod to the frivolous studies introduced by the Jesuits, the so-called macaronic period supervened, which lasted from 1606 to 1764 , and was a time of great degradation for the laggage and liternture. The former was now mired with latin and classical expressions; much of the literature consists of fulsome panegyric, verses written on the marriages and funerals of nobles, with conceits and fantastic ideas, devoid of all taste, drawn from their coats of arms. The poets of this period are, as may be imagined, in most cases nere rhymesters; there are, however, a few whose pames are worth recapitulating, such as Wactaw Potocki (c. 1691-c. 1696), now known to have been the autbor of the Wojne Chocimsha, or "War of Khotin," the same campaign which afterwarde formed the subject of the epic of Krasicki. At first the author was supposed to have been Andrew Lipehi, but the real poet was traced by the historian Sxajnocha. The epic, which remained in manuscript till 18 so , is a genuine representation of Polish Hic; no picture sof faithiul appeared till the Pan Todeuss of Mickiewicz. Moreover, Potocki had the good taste to avoid the macaronic style so much in vogue; his language is pore and vigorous. He does not hesitate to introduce occasionaliy sativical remarks on the luyury of the times, which he compares, to its disadviantage, with the simplicity of the old Pobish life. There is also another poemo attributod to Potocki called the New Mercury. In one
 Turks. Samuel Twardowsi (1600 -I660) was the most pro Lific poet of the period of the Vasas. His moot importunt poem is Whadyoless ! Y., King of Poland, in which he sings in is very. bombasic strain the various oxpeditions of the Polish momerch. A bittor antirist eppeared in the person of Chriatopher Opalinski ($\mathbf{r b o g}^{-1656 \text {). His works were published wider the titie of }}$ Jumenalis redisimer, and, althoagh boasting but little poetical merit, give us very curious pictures of the times. Hieronymus Vespasian Kohcowsk ($1638-1699$), whas a soldier-poet, who went through the campaigns aghinst the Swedes and Cossacks; he hes laft several books of lyrics full of vivacity, a Christian epic and 5 Polish pealmody. Another poet was Andrew Morsatyn (born about 1620 , died about the commencement of the 18th century), an astute courtier, who was fimince minister (podskdrbi) under John Casimir, and was a devoted adherent of the French party at court, in consequence of which, in the reign of Sobicski, he was compelled to leave his native country and settle in France. His poems are degant and free from the conceits and pedantry of the entior writers. In fact, he introduced into Poland the casy Freach manner of sach writers as Voiture. He translated the Cid of Corneille, and wrote a poom on the subject of Psyche, based upon the woll-known Greek myth. History in the macaronic period made a backward step: it had been written in the Polish language in the gotder age; it was now again to take a Latin form, as in the Chronice Geskarwm in Ewropa singularimm of the ecclesiastic Paul Piasecki ($1580-1649$), who is an authority for the reigns of Sigismund III: and Whadislaus IY., and Rudawski, who deacribes events; from the accessioa of John Casimir to the peace of Olive (1648-, 1660); and as valuable materials for history may be mentioned the Give huge volumes of Andrew Chrysostom Zatuski (175), bishop of Warmia. This work is entitled Episholae historicon fomilieres. It would be impossble to recapitulate here the great quantity of material in the shape of mumoirs which has come down, but mention mist be made of those of John Chry. sostom Pasek, a nobleman of Masovia,- who has left us very. graphic accounts of life and society in Poland; after a variety of adventures and many a well-fought battle, he returtred to the neighbourhood of Cracow, where he died between $\$ 699^{\circ}$ and r701. Some of the most characteristic atories iffustraing Polish history are drawn from this book. A later period, that of' the maserable epoch of Augustus III., Is described very graphically in the memnirs of Matusuevica, frst enited by Pawinski at Warsaw in 1876. Relating to the same period are sloo the memoirs of Bastholomew Michalowsld (Pamiesnihi Bardomieja Michatowskicgo). A curious insight into the courne of edreation which a young Polish nobleman underwent is furnished by: the instructions which James. Sobieaki, the father of the cele. brated John, gave to Orchownkt, the tutor of his soma. This has been twice printed in tomparatively recent times (Instrukcya Jababa Sobiaskiego koverclanh Krakomshieg dona pany Orchonar. skiamu strony symon, Vilna, 2840). The old gentleman in his aristocratic imperiousness frequently reninds us of the. amuring directious given by Sir Jom Wynne to his chaplata,' quoted in Pennant's Towe to Woles.

A History of the Lithwamions in Latin was puhlished by the Jesuit Koisiowicx; the first volume appeared at Danaig in 1050. A vahable work on the condition of Poland was written by Stanislaus Leszczymeki, who was twice chosen king, entitied Glas roiny wolmole ubanpiecsajqcy (A Free Volce Gearsiatechas Freedom), where he tells the Poles conne homely and perhape disagreeable truths illustrating the maxim Swame biberias ctiam perire molantibms.

A notable man was Joseph Andrew Zaluakt, bishopi of Riovil a Pole who had hecome thorbughly frenchified -to mueb so;" that he preached in French to tho fachionable congregation: of Warsaw. He collected a splendid library of about 300,000 volumes and 25,000 manescripts, which he begueathed to the Polish nation; but it was aftorwarels carried off to St Petersburg; where it formed the foundation of the impertal public librurys Accerding to Nitschmana in his Gaechichte der., pobtiepheni

1 merctur- mork which hat been of service in the preparation of this erticio-the books were tramported to Ruspis very care. kaly, and many of them injured by the way. It was especially rich in works relating to Polish history. Konarski edited in sir volumes a valanble work entithed Yolumaine kegua, containing a complete collection of Polish havs from the time of the statute of Wialica. He did much geod abso in founding throughout the country schools for the education of the mons of the upper clasees, but as yet nothing had been done for popular educntion properly so-called. About the close of this period we have mome valuable writes on Polish history, whirh now began to be stadied critically, such as Hartknoch in his All-mad Newes Pramssel (1684), a work in which are preserved interestiag specimens of the old Prumian language, and Lengnich (16891774), author of the valuable Jus publicula regad Polonice, which appeared in 1742 .

We now come to the reign of the last Polinhr king, Stanidaus Poniatownki, and the few quiet years before the final division of the country, during which the French tate was allpowerful. This is the second great period of the development of Polisk literature, which has known nothing of medieval romanticism. The literature of the first or Remaisgance period gives us some food poets, who although occasionally imitators are not without national feeling, and a goodly array of chronielert, most of whom made use of Latin. In the sccond or French period we get verse-makers rather than poets, who long to he Freachmen, and sigh over the barbarism of their country; but the study of history in a critical spirit is beginning under the influenco of Naruszewicz, Albertrandi and others. In the third period, that of modern romanticism, we get true nationalism, but it is too often the literature of exile and despair. Here may be mentioned, although living a little time hefore the reign of Stanislans, a Polish poetess, Elizabeth Druzbacka ($\mathbf{x} 695-1760$), whooe writings show a fecling for nature at a time when verte-making of the most artificial type was prevaient throughout the country. The portrait prefixed to the Leiprig edition of her works is a striking onc, representing a handmome, intellectual-looking women, dressed in the garb of gome religious order. Her Lifa of Dovid in verse appears tedious, but many of the descriptions in the Scosons are elegant. Unfortunately she introduces lacinisms, so that her Polish is by no means purc. A national theatre was founded at Warsaw in 1765 under the influence of the court, but it was not till long afterwards that anything really natioasl connected with the drama appeared in Poland. Thomas Kajetan Wygierski ($1735-1787$), who was chamberiain to the king, enjoyed a censiderable reputation among his countrymen for his satirical writing. He was a kind of Polish Churchill, and like his Eaglisk parnillel died young. His Hfe also appears to have been me irregułar as Churchill's In consequence of an attack on the empress of Rusaia, he was compelled to leave Poland, and accordingly made a tour in Italy, France, America, and England, dying at Marseilles at the early age of thirty-three. His poetry shows the influence of the French taste, then prevalent theoughout Europe. In times of great national disasters he descrves to be remembered as a true patriot; but the spirit of his poetry is altogether unwholesome. It is the wailing cry of A . moribund nation. The great laureate of the court of Stenislaus was Trembecki (1722-1812), whoee sympathics were too much with the Russian invaders of his country. He was litte more than a fluent poetaster, and is now almost forpotten. One of his most celchrated pieces was Zoffonota, writter on tbe country seat of Felix Potocki, a Polish magnate, for this was the age of descriptive as well as didactic poetry. Pertaps the Engish gave the hint in such productions as "Cocper's Hill." The old age of Trembecki appears to have been Igoobic and neglected; he had indeed "falten upon evil days mad ovil toogues "; and when he died at an advanced age all the gay courties of whotn he had been the parasite were ether dead or had submitted to the Muscovite yoke. He comes before us m_{1} a belated iepicurcen, whose airy trffies cannot be watbled in ap atinouphere aurcharged with tecapests and gueponden

The end of the sfth cencury was not the period for a court poet in Poland.

The moat conaptcuous poet, bowever, of the time was Igtalius Krasicki, bishop of Warmia (1735-1801). He was the triend of Frederich the Great and a promident member of xrmased the king's literary club at Sans Souci. Krasicki wrote an epic on the war of 保in-the same as had furnished the subject of the poem of Potocki, of which Krasieki in all probability had never heard, and aso that of the Dalmatian Cundulich. Krasicki's poem is at best but a dell affair, in fact a pale copy of a poor original, the Henriade of Voltaire. His mock heroics are, to my the least, amusing, and among these may be meationed Mysecis, where he describes how King Popiet, according to the legend, wase eaten up by rata. His Momachomachia is in six cantos, and to a satire upon the monks. The bishop was also the writer of some pretty good comedies. In fact most stylcs of composition were altempted by him-of course satires and fables among the number. He presents himself to us much more like a transplanted French abbe than a Pole. In the year i8or he travelled to Bertin, and dicd there after a short illness. Among his other works the bishop published in 1781-1782, in two volumes, a kind of encyclopaedia of belles lettres entitled Zbidr Wiadomosti. His estimates of various great poets are not very accurate. Of course he finds Shakcapeare a very "incorrect" anthor, altbough he is willing to allow him considerable prabe for his vigour. E. Morawsti (1783 -1861) published some excellent Fables (1800) in the manner of Krasicki, and in $\mathbf{8} 51$ an epic entitied My Grandfather's Farm. Adam Naruscewicz (1733-1796) was bishop and peet. The existence of so many ecclesiastical witters was a matural feature in Polish literature; they formed the only reaily cultured class in the commonity, which consisted besides of a haughty ignorant nobility living among their serfs, and (at a vast distance) those scrfs themselves, in a brutalized condition. Burghers there were, properly speaking, none, for moat of the cltizens la the large towns were forcigners governed by the Jus magdcburgicum. Naruszewicz has not the happy vivacity of Krasicki; he, attempts all kinds of poetry, esperially satire and fable. Fe is at best but a modiocre poet; but he has succeeded better as a histerian, and especially to be praised is his "History of the Polish Nation " (Histeryc manody polshicgel, which, however; he was not able to carry further than the year 1386. He also wrote an account of the Polish geperal Chodkiewics, and translated Tacitus and Florace. Interesting memoirs have been published by Kilinsid, a Warsaw shoernaker, and Kesmian, state referendary, who lived about this cime and saw rauch of the War of Independence and other political affairs. Assong the smaller poets of this period may be ricz-
 in the style then so very, much in fashion, and Francisuck Dyonizy Kniaźnin (1750-1807), who nouriahed his mase om classical themes and wrote several plays. He was the court poet of Prince Adam Czartoryald at Pulary, and furaished odes in commemoration of all the important events which occarred in the houschold. He lost his reason on the downfull of Poland, and died after eleven years' insanity in 1807; Julian Ursin Niemcewice ($175^{8-1841 \text {) whs one of the mosk }}$ popular of Polish pocts at the commencement of the present century (see Niesicewrca). His most popular worl is the "Collection of Historical Sones" (Spicwy historycrac), where he treats of the chief heroes of Polish hisfory. Besides tbese he wrote one or two good plays, and a novel in letters, on the story of two Jewish lovers. John Paul Waronicz (2757-1820) born in Volhynia, and at the close of his life bishop of Warsat and primate of Poland, was a very eloquent divine, and has been called the modern Skarga. A valuable worker in the field of Slavonic philology was Linde, the author of an excellient Polish dictionary in six volvmes. For a long time the culiivation of Polish philology was in a low state, owing to the prevalence of Letin in the 17th century and French in the 182 ch . No Polish grammar worthy of the name appeared till that of Kopczynakd at the cloce of the 18th century, but the reproach
has been taken away in modern times by the excellent works by Malecki and Malinowski. Rakowiecki, who edited the Rousskaic Prasda, and Macieiowski (who died in 1883, aged ninety), author of a valuable work on Slavonic law, may here be mentioned. Here we have a complete survey of the leading codes of Slavonic jurisprudence. At a later period (in 1856) appeared the work of Helcel, Starodatome pracea pol. skiege pomenite (" Ancient Memorials of Polish Law"). Aloysius Felitiski (1771-1820) produced an historical tragedy, Barbara Radziwill, and some good comedies were written by Count poant Alexander Frédro (1793-1876). In lact Fredro may prams be considered the most entertaining writer for the stage which Polend has produced. He introduced genuine comedy among his countrymen. The influence of Moliere can be very clearly seen in his pieces; his youth was spent chicfly in France, where be formed one of the soldiers of the Polish legion of Napoleon and joined in the expedition to Russia. His first production was Pan Geldhab, written in 1819 and produced at Warsaw in 1821. From 1819 to 1835 he wrote about seventeen pieces and then abandoned publishing, having taken offence at some severe criticisms. At his death he left several comedies, which were issued in a posthumous edition. There is a good deal of local colouring in the pieces of Fredro; although the style is French, the characters are taken from Polish life. From him may be said to date the formation of anything llke a national Polish theatre, so that his name marks an epoch. The Poles, like many ol the other nations of Europe, had religious plays at an early period. They were originally periormed in churchcs; but Pope Innocent II. finding fault with this arrangement, the acting was transferred to churchyards. Mention has already been made of plays written by Rej and Kochanowski; they are mere fruits of the Renaissance, and cannot in any way be considered national. Tho wife of John Casimir, a Frenchwoman, Marie Louisc, hired a troop of French actors and first Lamiliarized the Poles with something which resembled the modern stago. The Princess Franciszika Radziwit composed plays which were acted at her private residence, but they are spoken of as inartistic and long and tedious. The national theatre was really founded in the reign of Stanislaus Augustus; and good plays were produced by Bohonolec, Kamliski, Kropifiskl, Boguslawski, Zablockj, and others. Perhaps, however, with the exception of the works of Fredro, the Poles have not produced anything of much merit in this line. A great statesman and writer of the later days of Polish nationality was Kollataj, born at Sandomir in $\mathbf{r 7 5 0}$. He was a man of liberal scotiments, and, had his plans been carried out, Poland might have been saved. He wished to abolish sertdom and throw open state employments to all. The nobility, however, were too infatuated to be wlling to adopt these wise measures. Like the French aristocrats with the reforms of Necker, they would not listen till ruin had overtaken them. During the last war of Poland as an independent country Konataj betook himsclf to the camp of Kosciusako, but when he saw that there was no longer hope he went to Galicia, but was captured by the Austrians and imprisoned at Oimutz till 4803 . He died in 1812. An active co-operator with Kultataj was Salcsius Jezierski, who founded clubs for the discussion of pofitical questions, and Stanislaus Staszic, who did much for education and improved the condition of the university of Warsaw.

The reputation of all preceding poets in Poland was now destined to be thrown into the shade by the appearance of Pemers uctrow Mickiewicz (1798-1855), the great introducer of romanticism linto the country (see Micriewtea).
Poland, as has been said before, is not rich in national songs and legendary poetry, in which respect it cannot compare with its sistet Slavonic countries Russia and Servia. Collections have appeared, howewer, by Wachaw Zaleak, who mrites under the pseudonyms of Wactew a Oleska, Wojcicki, Roger, Zegota Pauli, and especially Oskar Kolberg. Poland and Lithuania, however, abounded with superstitions and legends which only awaited the coming poet to put them info verse. Is the gear :8gi Rumuald Zieficiowica publimed Songe of athe

Pesple of Plust, and collections have even appented of those of the Kashoubes, a remnant of the Poles living near Danaif. Mickiewics had had a prodeceseor, but of fer lest talent, Cucimitr Brodzinski (r791-1835). He served under Napoleon in the Polish legion, and has left a small collection of poeris, the most important being the idyl Wiesdow, in which the manners of the peasants of the district of Cracow are faithfully portrayed. The second great poet of the romiantic school who appeared in Poland after Mickiewica was Julius Slowacki (1800-1849); born at Krzemieniec. In 183: he left his native country and chose Paris as his residence, where he.died. His writings are folit of the fire of youth, and show great beauty and elegance of expression. We can trace in them the influence of Byron and Victor Hugo. He is justly considered one of the greatest of the modern poets of Poland. His most celebrated pieces are Hugo; Mmich (" The Monk"); Lambro, a Greek corsair, quite in the style of Byron; Awhelli, a very Dantesque poem expressing under the form of an allegory the sufferings of Poland; Krol duch ("The Spirit King "), another myaterious and allegorical poen; Wacdaw, on the same subject as the Morys of Malczewaki, to be afterwards noticed; Bemiososhi; a long poemi in allose rims on this strange edventurer, something in the style of Byron's humorous poems; Kordyon, of the same school as the English poet's Manfred; Lille Weneda, a poem dealing with the eariy period of Slavonic history. The iffe of Stowachi has been published by Professor Anton Mratecki in two volumes.
Mickiewicz and Slowacki were both more or less mystice, but even more we may assign this characteristic to Sigismund Krasifiski, who was born in 18 I 2 at Paris, and died there fis 1859. It would be impossible to analyse bere his extreordinary poem Nicboska komodja ("The Undivine Comedy "), Irydion, and others. In them Poland, veiled under different allegories, is always the central figure. They are powerful pocms written with great vigour of language, but enveloped in clouds of mys Licism. The life of Krasifiski was embittered by the fact that he was the son of General Vincent Krasifski, who had become unpopular among the Poles by his adherence to the Russian government; the son wrote anonymously in consequence, and was therefore caliod "The Unknown Poet." Among his lateat productions are his "Psalms of the Future" (Psalmy prrysulosci), which were attacked by the democratic party as a defence of aristocratic views which had already ruined Poland. His friend Slowacki answered them in some taunting verses, and this led to a quarrel between the poets. One of the most striking picces of Krasifiski has the title "Resurrecturis." The sorrowz of bis country and his own physical sufferimes have communicated a melancholy tone to the writings of Krasifaki, which read like a dirge, or as if the poet stood ahways by an open grave-and the grave is that of Poland. He must be considered as, next to Mickiewicz, the greatest poet of the country. Other poets of the romantic school of considerable merit were Gorecki, Witwicki, Odyniec, and Gaszynski; the last-named wroté many exquisite sonnets, which ought alone to embalm his name. Witwicki ($1800-1847$) was son of a professor at Krzemieniec, He was a writer of ballads and poems dealing with rural life, which enjoyed great popularity among his countrymen and had the good fortune to be set to music by Chopin. The works of Lelewel have separate mention (see LelewEL); but here may be specified the labours of Narbutt, Drigje starosytina arods Aliewoskieso ("Early History of the Lithuanian People "), pulblished at Vilna in nine volumes, and the valuable Monwmenla Poloniae hislorica, edited at Lemberg by Bielowski, of which several volumes have appeared, containing reprints of most of the early chroniclers. Bielowski died in 1876 .

A further development of romanticism was the so-calied Ukraine school of poets, such as Malcuewski, Goasczynski, and Zaleaki. Anton Malczewski (1793-8826) wrote one poem, Merga, a Ukrainiun tale which passed unnoticed at the time of its publication, but after its author's death became very popular. Malcuewski was one of Napoleon's officers; he led a wandering life and was ite timate with Byron at Venice; he is said to have sagested to.
tho mand ine mingy of Moneppa. Marye is a marrative in verse tu the manmer of Byron. It in written with much fecling and ahwewre, and in a moot harmanipus metre. The chief poem is Sorviom Civectaynsti ($1803-1876$) is Zamak KKomiowshi ("The Juwor of Kaniow"). The most intercsting poem of Bogdan Laluati is his "Spirit of the Steppe" (Duch od stepu). Other pocts of the so-called Ukraine school, which has been so well inspired hy the romantic legends of that part of Russia, are Thomas or Timko Padoura (who also wrote in the Malo-Russions, or Little-Russian, language), Alexander Groza, and Thomas Olizarowaki. For many of the original songs and legends we must turn to the work of Messrs Antonovich add Dragomanov. Bogdan Joseph Zaleski was born in 1802 in the Ukraine village, Bohaterka. In 1820 he was sent to the university of Warsaw, where he had Goszcaynski as a fellow student. Besides the longer poem previously mentioned, he is the author of many charming fyrics in the style of the Little Russian poems, such as Shevchenko has written in that language. He died at Villepreux, in France, in 2886, after more than fifty years of exile. Michacl Grabowski ($1805-1863$) belongs also to this achool by his fine Melodies of the Ukraine (1828). Maurice Coslawski ano won fame by his Poems of a Pdish Onllow in the struggle of $1830-1831$. A poet of great vigour was Stephen Garcaynski ($1806-1833$), the friend of Mickiewicz, celebrated for his War 'Sonnets and his poem entitled The Decds of Wactaw.:

Wincenty Pol (iBoy-18yz) was born at Lublin. and though of forcign extraction by both parents proved an artient patriot. He wrote a fine descriptive work, Obrasy a zycie i podrdsy (" Pictures of Life and Travel '), and also a poem, Piesm o siemi nasxej ('Song of our Land "). For about three ycars from 1849 he was professor of geography in the university of Crteow. In 1855 he published Mokeri, a poes relating to the tirnes of Stenisiaus Poniatowski. Ludwik Whadyshw Kondratowicx (who wrote chiclly under the name of Syrokomla) was born in 1823 in the government of Minsk, and died on the 15 th of September 1863 at Vitna. His parents were poor, and he received a meagre education, but made up for it by ctareful metf-culture. One of his most remarkabice pocms is his Jaw Deborot, in which, like Mickicwicz, he has well described the scencry of bis native Lithuania. He everywhere appears as the advocate of the suffering peasants, and has consecrated to them many beautiful lytica, In Kaczkowaki the Poles found a novelist who troated many periods of their history with grat success. His sympathies, however, were mostly aristocratic, though modified by the desire of progress. An inportant writer of history is Karl Szajnoctra (1818-1868), born in Galicia of Czech parents. He began his labours with The Age of Casintio the Greal (1848), and Bolestaw the Brase (i8q9), following these with Jadriga and Jagicllo, in three volumes ($1855-1856$)-a work which Spacovich in his Ruseian History of Slaponic Literature, compares in vigour of style and fuilness of colour with Macaulay's Hissory of England and Thicrry's Norman Compesf. One author was still further to resemble the latter writer in a great misfortuat : from overwork he lost his aitht in 1857 . Suajnocha, however, Fike Thierry and the American Prescott, did not abandon his studies. His excellent memory helped him in bis affiction. In 1858 be published a work in which he traced the onixin of Poland from the Varangians (Lechichi poczulek polski), thus making thess ideatical in origin with the Russians. He began to write the history of John Sobieski, but did not live to finish it. dying in 1868 , woon after completing a history of the Cossack wars, Dma lata driejon naszyck ("Two Years of Our History"). A writer of nomanocs of considerable power was Joseph Korzeniowski (17971863), tutor in early youth to the poet Krasifski, and afterwards director of a school at Kharkov. Bcsides some plays pow forgotten, he was author of some popular novels, such as Wedrcroki ory rinata ("Tours of an Original "), 1848:Garbafy (" The Hunchback "), 1852. Wic. But the most fertile of Polish authors was I. I. Kraspewahe (y.0.). His worts constitute a fibrary in themselves; they are chicily historicel and political novels, eome or which treat of carly times in Poland, and sonic of its condition under the Sexon kings As lyrical poets may also be mentioned Jachowicz: Jáskowslo, author of a fine pocm, The Beginning of Winter; Edmund Wasilew: tid (1814-1896), the authorof many popntar sonpan; and Holowinski, archbishopol Mogilev (1807-1855), author of retgious poenta. The etyle of poetry in voguc in the Polish parts of Europe at the present time is chiefly lyrical. Other writers deserving mention are Cornetius Ujejalci (3823-1897), the poct of the last revolt of 1863 ; Theophilus Lenartowice (bora 1832), who wrote eome very graceful poetry; Figismund Milkowsti (I. T. Tcž born in 8820), author of romances drawn from Polish history, for the novel of the school of Sir Walter Scott still flourishes vigorously among the Poles. Among the very stmmerous writers of romances may be mentioned fienry amewuki (1791-1 R66); Joseph Dzierakowaki wrote novels on aristo cpatic life, apd Michad Czajkowski (I808-j876) nomenoce of the

Ukraine; Valariun Wielogiowali (fach) gew gicture of conatry life.
In 1882 the Poles lost, in the prime of fife a very promicing historian Szujaki (bora in 1835), and also Sclmitt, who died in his fixty-sixth year. Sxujski commenced his literary carrer in i8s9 with poems and dramas; in 1860 appeared his firat historical pros duction, Rewl oka ma Bistorve Polshi ("A Clance at Polish History") which attracted universal attention; and in 1862 he commenced the publication in parss of his work Dsiffe Polshi ("The History of Poland "), the printing of which censed in 1866. The value of this book is great both on account of the seaparch it diepliays and its philosoptical and unprejudicod style. One of the lati works of Szujski, written in Gcrman, Die Polen and Rufienen is Galitiex. attracted a great deal of attention at the time of its appearance. Schmitt got mixed up with some of the political questions of the day The was a native of Calicia and therefore a subject of the Austrian emperor-and was mentenced to death in 1846, but the penalty was commuted Into Imprisonment in Spielberg, whence he was released by the revolution of 1848 . In 1863 he took part in the Polish rebetlion, and was compelled to Aly to Paris, where be oaly returned In 1871. His chicf works are History of the Polish People from the
 and 10th Centuries (1866), and History of Polamd from the time of the Partilion (1868), which he carried down to the year 1832. In opposition to the opinion of many historians, his contemporaries, that Poland fell through the nobility and the dieth, Schmitt held Gas did Lelewel) that the country was brought to suin by the kingen who always preferred dynastic interests to those of the country, and by the pernicious influence of the Jesuith. Adilbert Kefray Issti, who succeeded Bielowstit in 1877 in his poot of director of the Osealinsli Institute at Lemberg, is the authoc of sone valuable monographa on the history of Poland. He was born in 1838. Casimir Stadnicki has treated of the period of the Jagiellons; and Saranicwicz, proIcssor at the university of Lemberg, has written on the early bistory of Galicia. Thaddcus Wojciechowski has published a clever eort on Slavonic antiquities. Xavier biake, born in 1830, professor of universal history at Lemberg, has published many historical cmays of considerable value, and separate works by him have appeared in the German, Polish. Swedish, Danish and Spanish lapgeaget: The "Sketch of the History of Poland" (Deieje Polskie to Perysie) by Michacl Bobrayiski, born in 1849 in Cracow (profeseor of Polish and German law), is a very spirited work, and has given rise to a great deal of controversy on account of the opposition of many of its views to those of the school of Lelewel. Vincent Zalcrsewsk professor of bistory at Cracow, has written some worke which have attracted corsiderable attention, such as On the Origin and Grouth of the Reformation in Polend, and After the Flight of King Hewry, ia which he describes the condition of the country during the period between that king's departure from Poland and the efection of Stephen Batory. Smolka bas publiched a history entitled Miexebs the Elder and kis Age. Whadystaw Wistocki has prepared a cataloge of manuscripts in the Jagiellon tibrary at Cracow. Dr Jomph Casimir Plebaiksk, besides editing the Bibliokks marssareske. a very valuable literary journal which ctanda at the head of all works of the kind in Poland. has also written a dispertation (in Latia) on the liberum gelo, which puts that institution in a new light. Fehx Jezicrski, the previous editor of the above-mentioned fourash published in it translations of parts of Homer, and is aloo the author of an exceltent verulon of Famst.
The history of Polish literature has not been meglected. We first have the early history of Felix Bentkowaki ($177^{81}-1852$). followed by that of Michad Wisznicwski (1794-1865), which. how ever, only cxtends to the 17th century, and is at best bet a quarry of materials for subsequent writers, the style beind very heavy. A \because History of Eloquence": (Uistarye eymotry to Palice) was published by Kari Miccherryski. An elaborate history of Polish titerature has been written by Anton Malecki, who is the author of the best Polish grammar (Gramatyka historyczmo-porfowasucze jesthe polshicgo, 2 vols, Lembery, 1879). The Polish bibliography of Kan Estreicher, director of the Jagicllon Library at Cracov, is a wort of the highest importance. One of the most Act ive writers on Polist philology and literature is Whadyslaw Nehring, whose numerows contributions to the Arthis fir slavische Philologic of Professor Japic entitle him to the gratitude of all wbo have dewoted thermaselvea to Slavonic studies. Whadimir Spawowicz, a lawyer of St Petenberge assisted Pipin in his valuable work on Slavonic literature. The lectures of Professor Cybulski (d. 1867) on Polish literature in the furst half of the 19th century are written with much spirit and appreciation. The larer poetical works which appear during that time are carofulily analysed.

In recent times many interesting geotogical and anthropological investigations have been cartied on in Poland. In 186 Coupt Constantine. Tysalciewicz pubtished a valuable monogriph on the Tombs of Lithnanic and Wastern Rudhesia. And Profesmor lowph teplowild, of Cracow. has greatly enriched the archaeciogical muscum of his native city.
In philosophy the Poles (an the Slavs generally) have produced but few remarkable names. Goluchowsk, the brothers Andrew and John Snladechi, the latter of whom gained a reputacion almoot Earopean, Brevilain Trentomak. Kirol Lictedt and joesph Krexsi
doarve mation. Aogut Ciearlowthi hat witien on philosophical and coonomic aubjects. Moritz Strassewski, profestor of philowophy at the university of Cracow, has also published some remarlable wortas

Mention has already been made of the poetess Elizabeth Druzbacks. Female writers are not very common among Slavonic nations. Perhmpe the most celebrated Polish authoress wats Klemencina Hoffmann, whone naiden name was Tanska, born at Warsav in 1798. She married Karl Boromius Hofmann, and accompanied her hushand, in 1831, to Passy near Paris, where she died in 1845. Her novels still exjoy great popalarity in Poland. Of the poetiesues of later times Gabriele Narzymat Znichowsica (i825-1878). Maria Inicka, tramatator of Scott's Lord of the Ides, nond Jadwige Lusaczewslat may be mentioned.

A poet of considerable mert is Adam Asayk (1838-1897). In his poetry we geem to trace the wieps between romanticism and the modern realistic school, such as we see in the Russian poet Nekrasov. In come of the fights of his muse he reminds us of Slowacki, in the melody of his verse of Zaleski. Besides showing talent as a poet, he has also written wome good plays, as "The Jew" (Zid), Cold di Ricnzi, and Kicjstul. Other poets worthy of mention are Zagorski, Caerwiensti, and Maria Konopnicka, who has published two volumes of poems that have been very favourably noticed. Mention must also be made of Batucki (1837-1901), author of novels and comedies, and Narrymski (1839-1872), who was educated in France. but apent part of his short life in Cracow, author of some very popular tales.
The four eentres of Polish literature, which, in spite of the attempts which have been made to denationalize the country, is lairly active, are Cracow, Posen, Lember and Waraw. A cheap edision of the leading Polish classics, well sdapted for disaemination among the people, has been published, under the title of Bibliokika Polska. at Cracow. Not anly are the professors of Cracow University some of the most eninent living Poies, but it has been chosen as a place of residence by many Polish literary men. The academy of sciences, founded in 1872 , celebrated the bicentenary of the raising of the siepe of Vienna by Sobieski by publishmet the valuable Acta Joann is IJI. regis Poloniae. Some good Polish works have been issued at Posen. At Lemberg, the capital of Austrinn Galicia, there is on ctive Polish preas. Here appeared the Monmentia Poloniace historica of Bielowali, previoutly mentioned; but Polish in this proviace has to struggle with the Red-Russian or Ruthenian, a language or dialect which for all practical purposes is the same as the Southern or Little Rumian. At Warsew, since the last insurnection, the university has become entirly Russianized, and its Transections are publishod in Rumian; but Polish worlos of merit still inve from the press among others the lesding Polish liverary journal, BtMioteka twarssavgha.

Perhapa the most popalar modera writer in Poland is Elise Orseesako, of whose novels a complete "Jublice" adition has appeared" Many of her taler"al, for imstance, Argonamai (" The Argonauts ")-have appeared in the Trgodail, or wreeldy illustrated journal of Warsaw: Meir Exofowics has enjoyed great popularity. The object of this tale is to bridge over the gull between the Jew and Christian in Poland. Adoll Dygasinaki writes elever villowe tales of the "kail-yard" achool, as it has beed momotimes termed in England. Waclaw. Sieroseewski has writtea Twelbe Years in the Land of the Jaknts, contribution to the lieerature of folle-lore and ethnology such as only a real artist could produce. Amome the latest poets we may mention Wympiandi. Kisiliewski, Reyneprt, Mme Zapolsiza; the latter is the autbor of nome powerful realistic novels and plays, and she has been called the Polish Zole. It is this kind of poetry and traces of the decadent echool ehich we find in the later Polish poets. A pessimistic eppirit it apparept, as in the writiegs of Wenceslaus Berrent. Since the death of Asnyle and Ujejski the most prominent poet is Marya Konopnicka (1846). Some good critical work has been done in the leading reviews by Swietochowski and orhers. Historical work has been produced by Hirschbers, Pappee, Sobieski, Cuermak and others, and the histories of Polish Iterature by Stanislaus Tarnowslik and Piotr Chntielowski are of the highest value. the former dealing more with the aesthetic side of literature and the latter with the historical. The Poles are busy In revivigg their great past. Hence the enthusiasm for historical atudies, and the Bidiotels pration polskich. which shows us what abundance of litecature was produced in Poland in the $\mathbf{1 6 t h}$ and beginning of the $\mathbf{1 7 \text { th }}$ century, In Henryk Sienkiewicz (q.o.), the historkal novelist, Poland hat en rodern writer of European reputation.
Bibliogmaphy,-Plpia and Spafovich, Istorio shavianstikh Litcratur (in Ruscian; St Petersburer 1879); Ceschichte der polnischew Litcralur von DrA. Brackerer (Leiptik, Igor: also written in Polish); Chmielowsk, History of Polish Liermitura (in Polish, 3 vols): Stanis, Laus Tarnowski, History of Polish Lilerehery (in Polish) Grabowalit, Poesya Polske po roku 780; (Cracow, 1go3); Heintich Nitachmapa, Geschichte der polnischew Liferatwr (Leipsig: sime enfo). (W. R. M.)

POLAND, RUS81AM, iterritory consisting of ten governments Which formerly constituted the kingdom of Poland (see above). but now are officially described as the "govermments on the

Yiatula," or cccasionality is the in certitory on the Vistula. It Is bounded N. by the Prussian provinces of West and East? Prussia, W. by those of Posen and Prussian Silesia, S. by the Austritn crownland of Galicia, and E. by the Russian governmenls of Volhynia, Vilna, Grodino, and Kovno.

Physical Featreres. - The territory consists for the most part of an undulating plain, 300 to 450 ft . above the sea, which connecta the lowlands of. Brandenburg on the west with the great plain of central Russia on the east. A low swelling separates It from the Baltic Sea; while in the south it rises gradually to a series

of plateaus, which merge imperceptibly into the northern spurs of the Carpathians. These platenus, with an average elevation of 800 to roeo fi.t are mostly covered with forests of ouk; beech and tme; and are deeply cut by river valleys, some being natrow and craggy, and othera broad, with gentle slopes and marshy. botcoms Narrow ravines intrenct them in all directions, and they oftem asmane, especially. in the east, the character of wild, impassable, woody and marshy tracts. In the south-eastern corner of Poland they are called podlasie, and are in a measure akio to the polyesie of the Pripet. The Vistula, which skirts Hem en' the south-west, cute its way through them to the great plain of Poland, and thence to the Baltic. Its valley divides the hilly tracts Into two parts-the Lublin lieights on the east, and the Sepdomicrz (Sandomir) or central heights on the west. These last are divemsified by several ranges which run east-south-east, parallel to the Beskides of the Carpethian system, the highest of them'being the Lysa G8ra, which reach igro fi. and 2010 ft . above the sea. Another short ridge, the Checinski hitls in Kielce, follows the ampe direction along the Nida river and reaches $1345 . \mathrm{ft}$. south of the Nida; the Olkuss hills; linked on to spurs of the Beskides, fill up the south-west corner of Poland, reaching 1620 ft , and containing the chief mineral wealth of the country; while a fourth range 1000 to 1300 ft . high; runs north-west past Czonstochowa, separating the Oder from the Warta (Warthe). In the north; the plain of Poland is bordered by a fiat, broad swelling, 600 to 700 ft . above the sea, dotted with lakes, and recalling the lacustrine regions of northwestern Russia. Wide tracts of sand, marshes, peat-bogs, ponds, and small lakes, among which the streams lazily meander from one marsh to another, the whole covered with thin pincforests and scanty vegetation, with occasional patches of lertile
anil-such are the general characters of the nothern borderregion of the great plain of central Poland. The rivers flow across the plain in broad, level valleys, only a few hundred or even only a few dozen feet lower than the watersheda; they separate into many branches, enclosing islands, forming creaks, and drowning wide tracts of land during inuodations. Their basins, especially in the west, interpenetrate one another in the most intricate way, the whole bearing unmistakable evidences of having been in recent geological, and partly in historical times the bottom of extensive lakes, whose alluvial deposits now yield heavy crops. The fertility of the soil and the lacility of communication by land and by weter have made this plain the cradle of the Polish nationality. The very name of Poland is derived from it-Wielkopolska and Wielkopolane being the Stiv terms for the great plain and its inhabitants.

Rivers and Camals.-Ruesian Poland belonge moutly, though not eatirely, to the bacin of the Vistula-its western parte extending into the upper basin of the Warta, a tributary of the Oder, and its north-east spur (Suwalki) penetrating into the basin of the Mernel, of which it oceupies the left bank. For many centuries, however, t.e Poles have been driven back from the mouths of their rivers by the German race, maintaining only the middle parts of their basins. About Jocefow ($51^{*} N$.) the Vistula enters the great central plain apd fows gorth and weat-north-west between low banks, with a breadth of 1000 ydis. Its inandations, dangerous even at Cracow, becorre atill more so in the plain, when the accumulations of lofe is its lower course obstruct the outlow, or the heavy rains in the Cirpathians raise its level. Embankroenta 20 to 24 ft. high are paintained for 60 m., but they do not always prevent the river from inundating the plains of Opole in Lublin and Kozienice in Radorn, the waters sometimes extending for 150 m . to the east. Thousands of rafte and boats of all descriptions descend the stream every year fitfi cargoes of corn, wool, timber and wooden wares, giving acciupation to a large number of men. Secemers ply as far as Sandomit. The Wiepras (180 m .), a right-hand tributary of the Vistula, is the chief artery of the Lublin goverament; it is navigabic for samall boats and refts for log mi. irom Kranystaw. The Bug, another sight hand tributary of the Vistuls, describes a wide curve concentric with those of the middle Vianula and the Narew, and separates the Polish goveraments of Lublin and Siedlice from the Russian governments of Volhynia and Grodno. Only light boats (galary) are flonted down this broad, shallow stream, whose flat and open valley is often inundated. Its tributary, the Narew (250 m. .) brings the lorent-lauds of Byelovyerh in Grodno into communication with Poland, timber being foated down from Surazh and light boats from Tydocin in Lomza. The Pilica, which joins the Vistula from the left 30 m . above Warsaw, rises in the south-western corner of Poland, and towa for 300 m . north and east in a broed, flat, sandy and marahy valley, of evil peporte for its unhealthioces.

The Warta (450 man) rises in the Cxymatochowa hills, 900 ft . above the sca, and fows north and west past Sieradz and Kolo: Below Czgnstochowa it traverses a gat lowland, whose surface rises only 2 to 5 ft . above the level of the river, and the inhabitants have a conotant etrusgie to keep it to ite bed; every spring an immense lake is formod by the river at the month of the Ner, a little above. Kolo
The Mernel flows along the gorth-east fronticr of Poland, from Grodno to Yurburg, separating it from Lithuania. The yellowish eandy ptaims on ies left will grow nothing except oats, buckwheat and sotne rye. The river often changes its bed, and, not writhspanding repeated attempks to regulate it, offers great difficultice to navigation. Still, laget amounts of corn, wool and timber are floated down. especially after its confluence with the Black Hancza.
Though mavigable for a few months only, the rivers of Poland have always been of conaiderable importanco for the traficic of the councry, and their importance in further increased by eeveral canals connecting thern wish the Russian and German rivers. The Memel is connected with the Dricper by the Oginsky canal, situated in the Russian government of Minsk. The Dnieper and Bug canal in Grodno connects the Mukbavets, a tributary of the Bug, with the Pina in the batio of the Pripet, that is, the Dajeper with the Vistula The Vistula is coanected aloo with the Oder by the Bromberg canal in Prussia, which links the Brabe, in tbe basin of the Vist ula, cith the Netze, a tributary of the Warta. All these camals are, bowover, beyond Rumian Poland. In Poland proper, the Augustowo capal connocts the Vistula with the Memen, by means of the rivers Black Hancza, Netta, Biebrz and Narew. Another canal to the west of Lacrya, connects the Bzura, a tributary of the Vistula, with the Ner and the Warta; and tbe bed of the former has been altered so es to obtain regular irrigation of the meadows along its benks.
Lqkes.-Iakes are numerous in the goverament of Suwalki, but are all granll and mostly hidden in thick coniferous or birch forests, and their waters penetrate with undefined banks amidst marshes, and thatr waters penerate with und accunined banks amionst marshes,
group of manall takes is situnted in 'the hand of the Warta (xarth part of Kalise), the larestat being Goplo, 18 mm lons and 100 It deep
Climate--With the exception of the Lysa Corw hilly tracts (Kielce agd routh Redom), which lie within the inotherms of 41° and 43°. Poland is situated between the ispthermes of 42°. and 46°. The potheres and isocheims (i.e. lines of equal meen summer and winter tepperature reapectively) croasiog one anotber at right angles, and the former running east-north-etat, Poland is inctuded between, the ieotheres of 64° and 61° and the inocheims of $35-7^{\circ}$ and $39-2^{\circ}$. The prevailing winds are westerly, with porth-north-east and sorth winds in autumn and winter, and east wisds in epring. There is as average of 21.7 to 23.6 in . of rainfall in central Poingd, and the quantity increases slowly towards the south on acootst of the proximity of the Carpathiag, where it is $30 \cdot 3$ in . Oeines to this distribution the gnow-sheet in Poland is not very thick, asd epring ecte in eariy. Still, froms of -4° to -22° Fahr. ere not uparommon, and the rivers are generally icebound for two and a hali. to three monthe-the Warta being under ice for 70 to 80 days, the Vistula at Warsaw (or 80 days and (exceptionally) even for it6, and the Mgmel for 100 (exceptionally for I 40).

The following averages will aerve to illutrate the clismate of Poland:-

Earliest frost Latest front Absolute maxisum ternperature Abwolute minimutn temperature Arnual rainfall (total)	Warsam.	$\begin{aligned} & \text { Vilna } \\ & \text { (tan Resan). } \end{aligned}$
	Oct. 18	Oct. 17
	March 15	March 25
	$95.5{ }^{\circ}$	$89-3{ }^{\circ}$
	-37.6	
	22.8 in.	$7 \cdot 6 \mathrm{~m}$

Flora-The form of Poland is mone alin to thet of Germany than to that of Ruscia, everal middle European species finding their northeast limits in the basin of the Memel or in the marsiey of Lithuania. Conifcrous foresth, consisting mosty of pine (Piness syinesiris) and birch, cover laget tracts in Mazovia in the north, eatend toross the Baltic lakeridge southwards as far as the conflopence of the Bus with the Narew, and join in the south-eant the Polysie of the Pripet. The pine covers the Lym Gorm hills and the hills in the extceme south-west. The lonch, which three eentories apo covered barge tracts, has almoot entirely diapppeared. Pinys oumbra is only semembered, as aloo Tatwor bacoutio Pices obvectit is cultiveted.
Of deciducus treen, the common beech its the mont typieal: it extends from the Carpatbians to $52^{\circ} \mathrm{N}_{\mathrm{s}}$ and reaches three degrece farther north in small groupe or isolated specimens; the coniluence of the Bug and the Narow may be rerasded as its enstere Jimit. The white bech (Carpinus botolus), the fospen, and two elmes (Ulows compestris, U. ifusa) are found nearly everywhere. The lime eppears in groves only in the eact (Memel, Pripet, Lablin). It is the most popular tree with the Poles, as the birch with the Rusnians: judgment of old was pronoanced under kes shade, ath alt the folk: gongs repeat its amme. The oak-a highly venerated tree in Poland. though not so much as in Lithmaia-rrows in fortets only on the most fertilo land, but it is of common oceumence in conjunction rith the bereh, elm. Sce. The mapies (Aes platemoides and A. prete platames) are gomewhat rare; the hlack aider (Alater gimpinace) lipes
 The willow and orchard treem-apple, pear, gham and cheary-are cultivated ayeryolaere.

Fewac-The famm of Poland belongs to the rindila Eurogean soological group; withia the histotical period it has foet such epecies as formerly geve it a mabarctic charmeter. The reimoer now occurs only as a fopiil; the sable, meationed in the andals, has migraved cantwards; the wild horwo, deacribed by theatmats as intermediate between the horwe ath the ane-probably simitar to tpe gpans provealotil of central Asit-is repurted to have been met wich is the I3th oentury in the batin of the Varth, and two centuries later in the foremes of fietsania. The wild goat, bivor and efk have migriced to the Litmanian foreuts. The ly mand beaver have disappeared. Tive brown bear continues to hapnt the foreats of the souch, but it becoming rarer: the woll, the wild boar, and the for are mont comision throughout the ereat plain, as aloo the fare and ecveral species of Arvicolas The minmalts in Poland, however. do not exood fify epecies. The sivifana, which does not differ from that of central Europe, is represemed by come one hundred and twenty epecies, amont which the singing birds (Dematitrate and Conirostrat) are the most nurnerous. On the whete. Polamd lies to the westward of the most frequented roote of the migratory binds and is less visibed by them than the steppes of south-west Russia. Numerous aquatic.birds breed on the waters of che Baltis lale-region.

Population.-The population of Poland, 6, 193,710 in 2871. reached $\mathbf{7 , 3 1 9 , 9 8 0}$ in $\mathbf{1 8 8 1}$, and $10,500,000$ in $\mathbf{1 8 9 7}$. The estimated population In'1906 was 10,747,300. Betaile foce s8g7 are shown in the subjoined table.

Governmenta.	Area, tq. m .	Domicited Population, 1897.	Urban Population	$\begin{aligned} & \text { Dencity } \\ & \text { per } \end{aligned}$
Kallize	4.390	844.358	113,609	193
Kielore.	3,866	765.219	57.814	196
Lumat	6.666	+ 585.033	69,834	125 179
Piotritow	4.728	1,406,427	309,699	297
Prock.	4.199	557,229	29,621	133
Radors	4.768.	818,044	94,318	172
Siedice	5,533	775×326	110,995	140
Suwalki	4.845 5,605	$\begin{array}{r} 610,154 \\ 1,929,200 \end{array}$	73.306 791.746	126 344
Total.	49,130	9,456,105	2,059,340	193

The non-domiciked population numbered about $1,000,000$, and by tgo4 the total was estimated to have increased to $11,000,000$, the rate of increate between 1889 and 1904 having been $46 \cdot 6$. Poland. with 193 (domiciled) inhabltants or 213 inhabitants in all to the quare mile in 1897, and 240 to the equare mile in 1904, has a denser population than any other region in the Russian empire, the next to it being the governments of Notcow. with 189 inhabitants to the equare mile, Podolia with 186, and Kiev with I81. The drift townwards of tbe rural population began in 1890, when the urban population amounted to only 18% of the whole, whereas in 1904 it reached 24% as compared with 13% for the unban population of Russia as whole. Of the towns of Poland 32 have a population each exceeding 10,000, the largest being Warsaw the capital, with 636,208 inhabitants in 1897 and 256,426 in 1901 ; Lodz, with 315.209 in 1897 and 351,570 in 1900; Etenstochows, with 45.130 in 1897 and 53.650 in 1900; and Loblin, with 50,152 in 1897. According to nationabties, the population was made up as follows in $1897: 6,753.503$ Poles, equal to $64-6 \%$ of the total; $1,267,197$ Jcws, equel to 12.1% : $631,8+4$ Ruesians $(6 \%) ; 391,440$ Germans $(4 \%) ; 310,386$ Lithuanfans and Letts (3%) ; with a fevt housands each of Tatars, Boheminns, Rumanians, and Esthonians, and a lew Gypsies and Hungarians,

During prehistoric times the basin of the Vistula seems to have been inhabited by a dolichocephalic race, different from the brachycephalic Poles of the present day; bat from the dawn of history Slavs (Poles), intermingled to some extent with Lithuanians, have to be found on the plains of the Vistula and the Warta. The purest Polish type exists in the besin of the middle Vistula and in Posen. The Poles extend but little beyond the limits of Russian Poland. In East Prussia they occupy the southern slope of the Baltic swelling (the Mazurs), and extend down the left bank of the lower Vistula to ita mouth (the Kaszubes or Kassubians). Weatward they stretch down the Warta as far as Birmbaum (roo m. cast of Berlin); and in the south they extend along the right hank of the Vistula to the river San in western Galicia. In Russia they constilute, with Jews, Lithuanians, Ruthenians and White Russians, the town population, as also the landed nobility and the country gentry, in several governments west of the Dvina and the Dnieper.

According to the localities which they inhabit, tbe Poles tale different names. They are called Wielcopolanic on the plains of middle Poland, while the name of Malopolanie is reserved for those on the Warta. The name of Leczycanic is given to the inhabitants of the marshes of the Ner, that of Kurpie to those of the Podlasic; Kujawiacy, Szlacy in the Silecia, and Górale in the Carpathians

The Kaszubes, and expecially the Mlazurs, may be considered as separate stocks of the Polish family. The Mazurs are distinguished from the Poles by their lower stature, broad shoulders and massive frame, and atill more by their national dress, which has nothing of the smartness of that of the southern Poles, and by their ancient customs; they have also a dialect of their own, containing many words now obsolete in Poland, and several grammatical forms bearing witness to Luthuanian influence. They submit without difficulty to German culture, and in Prossia are Lutherans The language of the Kaszubes can aiso be considered as a separate diatect, The Poles proper are on the whole of medium stature (5 ft 4.6 in .) Ginely built, dark in the south and fair in the north, richly endowed by nature, inclined to deeds of heroism, but perhaps deficient in that energy which characterizes the northern races of Europe, and in that ensse of unity which has been the streagth of their preseat rulers.
The Gerrnan element is annualty increasing both in number and in influence. The Lodz manufacturing district, the Polish Birmingham, is becoming more German than Polish: and throoghout the governments weat of the Vistala German immigration is going on at a meadily increasing rate, especially in the goveraments of Plock, Kaliss, Piotrlebw and Warsaw.
The Jewn who are Iound everywhere throughout Poland, are pownere agricultural; is the larger towns many of them are artisams
but in the vilagee they ate almont evelusively enpored as shopkeepern second-hand traders, dealers on consminion, innkeepers aod ysuren. In the country. both commerce and agriculture are in tbe hands of their intimately connected trading amociationis. Their relations with Poies and Ruthenians are anything but cordial, and "Jcw-baiting" is of, frequent occurrence. They are increasing mach more rapidly than the Slave

Agracilture.-From remote antiquity Pole nd has been celebrated tor the production and export of grain. Both, however, greatly declined in the 1 Bith century; and towards the beginning of the rgth, the peasents, ruised by their proprietore, or abandoned to the Jews, were in more wretched comdition then even their Russian neighbours Serfdom wal abolished in 1807; but the liberated pcasants received no allotments of land, and the old patrimonial purisdictions were retained. Compelled to acoept the conditions imposed by the landlords, the peasants had to pay ratk-rents and to give compulsory labour in various forms for the use of their land. Only a limited number were conndered as pernansent farmers, while searly one-hall of thern became mere proledaires. Purving \& policy intended to reconcile the peasantry to Russian ruie and to break the power of the Polish nobility, the Rusaian sovernment promulgated, during the outbreak in 1864, a law by which thooe peasante who were holders of land on extates belonging to pifivate persons, institutions (such as monasteries and the like), or the Crown were recognised as propriefors of the soil-the scate paying compentation to the landlords in bonds, and the peasants having to pay a yearty annuity to the atate until the delt thws comtracted had been cleared of. The valuation of these allotments was made at a rate much Enore advantagcous thian in Ruscia, and the average slaz of holding amounted to 15 acres per family. Of thone who beld no band a number received grants cut of the confireated evthes of the notility and monasteries. At the game time the eefr-govermuent of the petsanta was organised on democratic principles. The co-called "ervitudes," however-that is, the right to pasture on and take wood from the landlond's estates-were maintainted for political reasons. These reforms resulted in a temporary increase of prosperity, or at any rate an alleviation of the previous miery of the peasants. But whercas between 1864 and 1873 the peanantry as a whole purchawed, in addition to the land granted to them by the sovernment, 297,000 scret, in the period $1873-1893$, they bought 540,000 acres and bet ween 1893 and 190\% as much as $1,690,000$ acres. Thus the procets of breaking up the harser extaten is procceding rapidly and at an accelerated rate. In ten yeart (I8601873) the area of cultivated soil increased by $1,350,000$ ecres, whive during the fourteen years 1845-1899 its increase had been only $5-0,000$ acres. But the maintcnance of the "eervitudes," the wathe of patare land, the lack of money for iomprowemenis, and the very rapid increase in the price of land, all helped to counteract the benefis of the artrarian measures of 1864

In Ig04 the village communitios (peasantry) owned 43.8% of the total area; private owners, mostly nobies, $40-6 \%$; the Crown and imperial family, 6%; and public bodies, such as cowns and monasteries, 2.6%; while $\$ \%$ was in the hands of the Jews. The holdinge of the peanint families vary generally from 8 to 13 acres, the minimum in Rumia being 16 to 22 acres By a law of 189 ; further subdivision below 8-3 acres is prohibited: But out of a total of sone $7,000,000$ peeponts the fewter than $3,000,000$ positem no tond. In comsequence of this every summer no fewer than 800,000 emigrate temporarily to Germany in quent of work.

Foreste cover over $21 \cdot 3 \%$ of the surface, of which neerfy onethird belong to the Crown, and only 315,000 acres (7.7%) to the petsantry.

Agricuture in Poland is on the whole carried on accondins to more advanced methods than in Rumein. The extensive cultivation of beetroot. of pocalocs for distilieries, and of fodder crops has led vo the introduction of a rotation of several years instead of the former " three-fields "" system; and agricultural machinery is in more general use, especially on the larger estates of the wett. Winter whet is extensively cultivated, especially in the south, the Sandomir (Sedomiera) wheat having a wide repute. Of the land in the possession of the peasents mo lesi than 70% h under crops, and of the land in the facger eatates 53\%; of the lommer cutctory 11% and of the latter $\mathrm{B}_{\mathrm{o}} \%$ is meadom. Altogether mearly 16 million acres of Russian Poland, or almost one-half of the total area, are under cropt principolly rye, oats, Theat, barley, potatoes and hay, with sotte flas, moup, pean, buckwhent and hopa After local wants att oupplied, there remains every year a curphut of about 3 . milligh quarters of cereals for export. Beetroot is lartely grown for the manufacture of augar. Potatoes are extensivcly grown tor vee in the distileries. The cultivation of tobacco is successidilly cartied on, especially in the governments of Warsaw, Plock and Lahbin. The breeding of livestock (cattlog choep and horames), in an ipporeant source of income. Fine brecds of horses and cattle are leept on the larger estates of the nobility, and cattle are cxported to Austria. Bee-keeping is widely followed, especiafly in the south east. Fishing is carried on remmeratively, thone particularly on the Vitula and its tributaries.

Mandochures and Mismer.-Since 1864, and more especially aluen 1875 , there has been a remarlable development of manufacturinit enterprise in Poland, the branch of industry which his shown the
mentent proprep being the thatile. Wheroas in re64 the anmual production all factories in Poland was valued at wot more than 3t millione sterligg, in 1875, when the workers aumbered 27,000, the output was estimated at even leas; but in rgos the value of the undustrial production reached 53 millions sterting. The principal industrinl centres are Lodz (textiles). Warsaw (iugar, leether and miscellapeous) and Bendsin-Soenowice-Dombrowa, in Piotriobw - (mining). The supar factorics and refineries, pituated ctivefly in the governments of Warasw. Lublin and Plock, turn out approximately one million tons of sugar in the year, the Polish sager industry; being enceeded in Rumia only by that of Kiev. Cotton is the principal product of the aills at Lods'end Lack, both in Piotrkbw; thousth woollen cloth, silk and linen are also produced. Tanning is centred in Warstw and Radom; Polish (i.e. Warsaw) boote and shoes have a great reputation throughout the Russian empire. Other nocable branches of manufacturint industry, besides those already named, are four-milis, jute, boeiery, lace, peper, cement, hats, haberdashery, machinery, lobecoo, somp and candle factories, iron and steel work, diatillerica, breweries, potteries, vineger, chocolate, varnish, furmit, sure, clothing and brickworks. The cottage industries, stach.as pootery and bogret-making, formerly of considerable importance, are gradually being replaced by the factory syeten of working.

Southern Poland poesesses abundane minerils, expecially in the Kiclee mountains and the region adjacent to Prusian Silces. The Devoaian mandatones cointain malachite ores near Kielce, and copper has been worloed there mince the 15th oentury, though the mines are now neglected. The bsown irom ores of Kielce contain no iess than $.40 \%$ of iron. The zinc ores of the Olkust district, more than go ft. thick, contain 8 to 14% sonetimes 25% of zinc. The tin ores of Olkuge are still more important, and were extensively wrought as eady ts the sth century. Brown iron ores appearing in the meighbourbood of Beadsin as lenticular mases 55 ft thect, and containing 28 to 33% of iron, accomplany the zinc orea. Spheroniderites and brown iron orcs are plentíful also in the "Keuper forma. tion-" Sulphur ls wrought in the district of Pificzow; the deposite, which contain 25% of culphur, reach a thicknese of 7 to 70 ft . Coal occurs in oouth-west Poland over act area of 200 sq. the in the districts of Bendzin and Olkuge. Brown coal. or lignite, which appears in the Olkuse district in beds 3 to 7 ft . thick, has been worked out. The put put of coal is 4000,000 to $6,000,000$ tons in the year, the number of hands employed being 18,000 to 20,000 . The yield of lignite is lees than 100,000 tons annually: of sinc 10,000 to 12,000 tons; of oopper and lead small. The production of iron and steel increased from 13,000 tors in 1862 to about g00.000 tons in 1905 . Of other mineral produce, chalk, exported from Lublin, tew quarrica of carble and many of building stones, are worthy of notice. Mincral waters ave used medicinally nt Ciechocinek in Plock end Nalpczow in Lublia.

Commumications.-The railway of Poland have an ongregate fength of 1300 m . A lipe of great importance, connecling Vienna with St Petersbus, cromes the country from squth-west to sorth-east, paaing through the mining district and through Warsaw, and rending a hort branch to Lode Another importapt line, connecting Dansig with Odessa, croses Poland from north-ment to quath-east. A branch llne, paraliel to this lagt, coanects Skiernie. wice with Thorn and Brombers; while a military railway connects the fortresces of Ws romw end Ivangorod with Brest-Litovele, vis Siedlice and Lukow. The lise from Berlin to St Petersburg traverses the north of Suwalki for 54 m between Eydelcunen and Kowno.

Connerve.-The geveral trade of Poland is merged in that of Rusain, under which herading it is treated. With the extension of the railways the fairs have lost much of their importance, but their eggregate yearly returns are still estimated at $43,000,000$. The principal fain are held at Wannaw (wool, hemp, bopa). Lyceyca易 Kalize, Strarysew in Radom, Ciechanoviec in Lomss, and Lowica in Warme.

Administralion.-The entire administration of Poland is under the governor-general residing at Warsaw. He is at the ame time the commander of the military forces of the "Warsaw military district." Iustice is represented by the gmina tribunals, which correspond to those of the mir in Russia; the justices of the peace (nominated by government); the syend, or "court " of the fustices of the peace; the district tribunals (assizes) in each government; and the Wersive courts of appeal and casantion. Foland has had no sepirrate badret since r867; its income and expenditure are included in those of the empire.

After the insurrection of 2863 all towns with less than 2000 inhabitants were deprived of their municipal rights, and were inchuded, under the derignation of posads, in the sminas. Viewed with suspicion by the Russian goverament, the Polish towns received no self-government like the villages. The elective municipal conncils, which enjoyed do jure very lange righes, including that of maintaining their own police, although in reality they were under the rule of the nobility. were practically abilished, and Russian officials. Were nominated in their place
and entrusted with all their rights. The municipal councils were, however, maintained to carry out the orders of the military chicfs. The new municipal liw of 1870 , first introduced at Warst ${ }^{\text {th }}$, reduced the functions of the municipal council almost to nothing. The burgomaster is entirely dependent upon the pollice and the chief of the district, and has 10 discharge all sorts of functions (bailiff, policeman, \&c.) which have nothing to do with municipal affairs. In all official communications the Russian language is obligatory, and a gradual climination of Poles from the administ ration has been cfiected.

Defence.-Poland contains the first line of defence of the Russian empire on its western frontice. The marshy lowlands, covered with forests on the western bank of the Vistula, are a natural defence against an army advancing from the west, and they are strengthened by the fortremes on that river. The centre of there latter is Wiarsat. with Novogcorgievak, formerly Modlin, in the north, at the moutl of the Bug, and Ivangorod, formerly Demblin, in the wouth. at the mouth of the Wieprz. Novogeorgievsk is a meronely Cortified camp which requires a garrison of 12,000 men, and may shelter an army of so,000 men. The town of Sierock, at the confurnce of the Bug and the Narew, is fortifod to protect the rear of Novogeorgievsk. The Vistula line of fortresses labourg however, under the great disedvantage of being easily turned from the near by armies advancing from Elst Prustia or Calicia. Brest-Litovak, at the weatern isuce from the marshes of the Pripet, the towns of Dubno, Lutak and Bobruisk constitute the second line of defence.

Religuon asd Educalion. - The prevalent religion is the Roman Canhoic, to which over 75% of the total population belongs. Protestante (mostly Lutherans) amount to 6% whale about 5% are members of the Orthodox Greak Church. After the insurrection of 1863, measure were taken to reduce the numbers of the Roman Catholic clergy in Poland. One diocese (Podlasie) was abolished. and a new one eatablished at Kicice, while several bishops sere aent out of the country. Poland is now divided into four dioceroWarmaw. Sedomierz, Lublin and Plock.

The educational institutions of Poland are represented by a university at Warsaw, with 1500 students. Teaching has been carried on in Rumian since 1873. There are exceling technical chools, an institute of agriculture and forestry at Noma-Alenadrya. and several seminaries lor teachers. At Wartaw thete is a good musical conservatory. The Jewish children are mostly sent to the Jewish schools, but they receive almost no instruction at all Although there has been a decided increase in the number of both the primary and the scoondary echooks, neverthelet the achool accoanmodation has in neither category of school kept pace with the growth of the population. The proportion of primary achools has in fact been steadily decreasing, and the epplications for admission to the secondary schools and colleges areon the average twice as great as the number of vacancies. All the same, Poland compares very favourably with Rustia in the general level of education, for wheross those able to read and write in 1897 amounted in Poland to $30-5 \%$ of the population (only 9.3% in 1862), in Russia it was 19.8%
(P.A. K.; J. T. BE)

POLARIMY (Lat. polaris, polss, pole), having two poles of parts at which certain properties are the opposite to one another, as in a magnet the ends of which have opposite magnetic characters. The act of producing polerity is termed polarivation. For electrolytie polarization see Barmezy and Brscriozyses, and for optical sce Polamizarion or Ligmr below.

POLARHEATOH OF IGCET. A stream of light coming directly from en intural source hat no relation to space except that concerned in its direction of propagation, round which Its propertics are alike on all sides. That this is not a necessary characteristio of light was discovered by Christian Eiuygens, who found that, whereas a stream of sunlight in traversing a thomb of spar in any but one direction always gives rise to two streams of equal brightness, each of these emergent streams is divided by a sccond rhomb into two portions having a relative intensity dependent upon the position with respect to one another of the principal planes of the faces of entry into the thombs-the planes through the axes of the crystals perpendicular. to the refracting surfaces. In certain cases, indeed, one portion vanishes entirely: thus the stream ordinarily refracted in the first rhomb gives an ordinary or an extrmordinary stream alone in the second, according as the principal planes are paralkel or perpendicular, the reverse being the casc wjth the extraordinary strean of the first thomh. In intermediate cases the intensitios of the two beams are proportional to the squares of the cosines of the angles that the principal plane of the second rhomb makes with the positions in which they have the grentent intensitys

On the other hand, if the emergent streams overiap and the common part be eramined, it is found to have all the properties of common light. To this phepomenon E. T Malus gave the name of polarisation, st he attributed it, on the emisaion theory of light, to a kind of polarity of the light-corpuscles. This term has been retained and the ordinary stream is mid to be plane polarized in the principal plane of the face of entry into the thomb, and the extenordinary stream to be plane polarized in the perpendicular plane.

The phenomenon of polarization observed by Huygens remained an isolated fact for over a century, until Malus in 1808 discovered that polarization can be produced independently of double refraction, and must consequently be something ciosely connected with the nature of light itself. Examining the light reflected from the windows of the Luxemburg palace with a doubly refracting prism, he was led to infer (though more refined experiments have shown that this is not strictly the case) that light reflected at a certain angle, called the polarising angle, from the sarface of transparent substances has the same properties with respect to the plane of incidence as those of the ordinary stream in Iceland spar with respect to the principal plane of the erystal. Thus in accordance with the definition, it is polarized in the plane of incidence. Further, if polarized light fall at the polariting angle on a refecting turface, the intensity of the reflected stream depends upon the aximuth of the plane of incidence, being proportional to the equare of the cosine of the angle between this plane and the plane of the polarization. At angles other than the polarizing angle common light gives a refiected stream that behaves as a mixture of common light with light polarized in the plane of incidence, and is accordingly said to be partially polarized in, that plane. The refracted light, whatever be the angle of incidence, is found to be partially polarized in a plane perpendicular to the plane of incidence, and D. F. J. Arago showed that at all angles of incidence the refected and refracted streams contain equal quantitics of polarised light. The polarizing angle varies from one transparent substance to another, and Sir David Brewster in 1815 enunciated the law that the tangent of the polarizing angle is equal to the refractive index of the substance. It follows then that if a stream of light be incident at the polarizing angle on a pile of parallel transparent plates of the same nature, each surface in turn will be met by the light at the polarixing angle and will give rise to a reflected portion polarized in the plane of incidence. Hence the total reflected light will be polarized in this plane and will of necessity have a greater intensity than that produced hy a single surface. The polarization of the light transmitted by the pile is never complete, but tends to become more nearly so as the number of the plates is increased and at the same time the angle of incidence for which the polarization is a maximum approaches indefinitely the polarizing angle (Sir G. G. Stokes, \mathbf{M} alk and Phys. Papers, iv. 145).

In order to isolate a polarized pencil of rays with a rhomb of Iceland spar, it is necessary to have a crystal of such a thickness that the emergent streams are separated, so that one may be stopped hy a screen. There are, however, certain crystals that with a moderate thickness give an emergent stream of light that is more or less completely polarized. The polarizing action of such crystals is due to the unequal absorption that they exert on polarised streams. Thus a plate of tourmaline of from I mm. to amm . in thickness with lts faces perpendicular to the optic axis is nearly opaque to light falling normally upon it, and a plate of this thickness parallel to the axis permita of the passage of a single stream polarived in a plane perpendicular to the priacipal section. Such a plate acts in the same why on polarized light, stopping it or allowing it to pass, according es the plane of polarization is parallel or perpendicular to the principal section. Certain artificial salts, e.g. iodo-sulphete of quinine, act in a similar manner.

From the above instances we see that an instrumental appliance that polarixes a beam of light may be used as a means of detectins and oramining poisrization. This latter process \& termed analysation, and an instrument is called a polariser
or an analyser according as it is used for the first or the second of these purposes.

In addition to the above facts of polarization mention may be made of the partial polarization, in a plane perpendicular to that of emission, of the light emitted in an oblique direction from a white-hot solid, and of the polarization produced by diffraction. Experiments with gratings have been instituted by Sir G. Gabriel Stokes, C. H. A. Holtzmann, F. Eisenlohr and others, with the view of determining the direction of the vibrations in polarized light (vide infra), but the results have not been consistent, and H. Fizean and G. H. Quincke have shown that they depend upon the size and form of the apertures and upon the state of the surface on which they are traced. The polarization of the light reflected from a giass grating has also been investigated by 1. Froblich, while 1. G. Gouy has studied the more simple case of diffraction at a straight edge. The polarization of the light scattered by small particles has been examined by G. Govi, J. Tyndall, L. Soret and A. Lallemand, and in the case of ultt:microscopic particles by H. Siedentopf and R. Zsigmondy (Drude Awn. 1903, 土. 1); an interesting case of this phenomenon is the polarization of the light from the sky-a subject that has been treated theoretically by Lord Rayleigh in an important series of papers (See Sxy, Cocour 0x, and Rayleigh, Scientific Works, i. 87, 104, 518; Iv. 397).

An important addition to the knowledge of polarization was made in 1816 by Augustin J. Fresnel and D, F. J. Arago, who summed up the resolts of a searching series of experiments in the following laws of the interference of polarized light: (s) Under the same conditions in which two streams of common light interfere, two streams polarized at right angles are without mutual influcnce. (2) Two streams polarized in parallel planes give the same phenomena of interference as common light. (3) Two streams polarized at right angles and coming from a stream of common light can be brought to the same plane of polarization without thereby acquiring the faculty of interfering. (4) Two streams polarized at right angles and coming from a stream of polarized light interfere as common light, when hrought to the same plane of polarization. (5) In calculating the conditions of interference in the last case, it is necessary to add a half wave-length to the aetual difference of path of the streams, unless the primitive and final planes of polarization lie in the same angie between the two perpendicular planes.

The lateral characteristics of a polarized stream lead at once to the conclusion that the stream may be represented by a vector, and since this vector must indicate the direction in which the light travels as well as the plane of polarization, it is natural to infer that it is transverse to the direction of propagation. That this is actually the case is proved by experiments on the interference of polarized light, from which it may be deduced that the polarization-vector of a train of plane wives of plane polarized light executes rectilinear vibrations in the plane of the waves. By symmetry the polarization-vector must be either parallel or perpendicular to the plane of polarization: which of these directions is assumed depends upon the physical characteristic that is attributed to the vector. In fact, whatever theory of light be adopted, there are two vectors to be considered, that are at right angles to one another and connected by purely geometrical relations.

The general expreasions for the rectangular components of a vector transverse to the direction of propagation (s) in the case of waves of length λ travelling with speed v are:-

$$
y=a \cos (T-a), s=b \cos (T-\beta),
$$

where $T=2 \pi(x-s) / \boldsymbol{n}$. The path of the extremity of the vector is then in general an ellipec, traversed in a right-handed direction to an observer receiving the light when $\alpha-\beta$ is between 0 and x, or between - T and -2r, and in a left-handed direction if this angle be between π and 2π, or between 0 and $-\pi$. In conformity with the form of the path, the light is said to be elliptically polarized, right- or left-handedly as the case may be, and the axes of the elliptic path are. determined by the planes of
maximum and minimum polarization of the light. In the particular case in which $a=b$ and $a-\beta=+(2 n+1) \pi / 2$, the vibrations are circular and the light is said to be circularly polarized.

These different types of polarization may be obtained from a plane polarized stream by passing it through a quarter-wave plate, i.e. a crystalline plate of such a thickness thatitintroduces a relative retardation of a quarter of a wave between the component streams within it. Such plates are generally made of mica or selenite, and the normal to the plane of polarization of the most setarded stream is called "the axis of the plate." If this axis be parallel or perpendicular to the primitive plane of polarization, the emergent beam remains plane polarized; it is circularly polarized if the axis be at 45° to the plane of polarization, and in other cases it is elliptically polarized with the axes of the elliptic path parallel and perpendicular to the axis of the plate. Conversely a quarter-wave plate may be employed for reducing a circularly or elliptically polarized stream to a state of plane polarization.

Two streams are said to be oppositely polarized when the one is, so far as relates to its polarization, what the other becomes when it is turned through an azimuth of 90° and has its character reversed as regards right and left hand. An analytical investigation of the conditions of interference of polarized streams of the most general type leads to the result that there will be no interference only when the two streams are oppositely polarized, and that when the polarizations are identical the interference will be perfect, the fluctuations of intensity being the greatest that the difference of intensity of the streams admits (Sir G. G. Stokes, Mash. and Phys. Papers, iii. 233).

It remains to consider the constitution of common unpolarized light. Since a beam of common light can be resolved into plane polarized streams and these on recomposition give a strcam with properties indistinguishable from those of common light, whatever their relative retardation may be, it is natural to assume that an analytical representation of common light can be obtained in which no Iongitudinal vector occurs. On the other hand a stream of strictly monochromatic light with a polarization-vector that is entirely transversal must be (in general elliptically) polarized. Consequently it follows that common light cannot be absolutely monochromatic. The conditions that are necessary in order that a stream of light may behave as natural light have been investigated by Sir G. Gabriel Stokes (loc. cil.) and by E. Verdet (Oewores, i. 28t), and it may be ahown that two polarized streams of a definite character are analytically equivalent to common light provided that tbey are of equal intensity and oppositely polarized and that there is no common phase relation between the corresponding monochromatic constituents. Further a stream of light of the most general character is equivalent to the admixture of common and polarized light, the polarization being elliptical, circular or plane.

We see then that there are seven possible types of light: common light, polarized light and partially polarized light; the polarization in the two latter cases being elliptical, circular or plane. Common light, circularly polarized and partially circularly polarized light all have the characteristic of giving two streams of equal intensity on passing through a rhomb of Iceland spar, however it may be turned. They may, however, be distinguished by the fact that on previous transmission through a quarter-wave plate this property is retained in the case of common light, while with the two other types the relative intensity of the streams depends upon the orientation of the thomb, and with circulariy polarized light one stream may be made to vanish. Plane polarized light gives in general two treams of unequal intensity when examined with a rhomb, and for certain positions of the crystal there is only one emergent stream. Elliptically polarized, partially elliptically polarized and partially plane polarized light give with Iceland spar two streams of, in general, unequal intensity, neither of which can be made to vanish. They may be differentiated by first passing the light through a quarter-wave plate with its axis parallel or
perpendicular to the plane of merimum polaristion: foe elliptically polarized light thereby becomen plane polarized and one of the streams is extinguished on rotatug the rhomb; but with the other two kinds of light this in not the case, and the light is partually plane or partinlly elliptically polarieed according as the plane of maximum polarization remains the same or io changed.
Colowrs of Crystolline Plater.-It was known to E. T. Malus that the interposition of a doubly refracting plate becween a polarizer and an analyser regulated for extinction has the effect of partially restoring the light, and he used this property to discover double refraction in cases in which the separation of the two refracted etreams was too alight to be directly detected. D. F. J. Ango in 1811 found that in the case of white light and with moderatcly thin plates the transmitted light is no longer whice but coloured. a variation of brightness but not of tint being produced when the polarizer and analyger being crossed are rotated together, while the rotation of the analywer alone produces a change of colour, which pasess through white into the complementary cint. This phenomenon was subjected to a detailed investigation by Jean Baptiste Biot during the years 1812 to 1814 , and from the results of his experiments Thomas Young, with his brilliant acumen, was led to lafer that the colours were to be attributed to interference between the ordinary and extraordinary streams in the plate of cryetal. This explanation is incomplete, as if leaves out of account the action of the polarizer and analyser, and it was with the purpose of removing this defect that Fresnel and Arago undertook the investigations mentioned above and thus supplied what was wanting in Young's explanation. In Biot's earlier experiments the beam of light employed was nearly parallel: the phenomena of rings and brustea that are scen with a conical pencil of light were discuvered by Sir Datid Brewsier in the case of uniaxal crystals in 1813 and in that of biacal cryatale in 1815 .

Let an β, ψ be the angles that the primitive and final plaves of polarization and the plate of polarization of the quicker wave within the plate make with a fixed plane, and let p be the relative retardation of phase of the two streams on emergence from the plate for light of period r. On entry into the cryatal the original polarixed stream is resolved into componenta represented by

$$
a \cos (\nu-a) \cos T, \epsilon \sin (t-a) \cos T, T=2 x / t \cdot
$$

and on emergence we may take as the expresion of the wavea

$$
a \cos (\psi-a) \cos \text { T. } a \sin (\psi-a) \cos (T-a) .
$$

Finally after traveraing the analyser the sum of the two rewolved components is
$a \cos (\psi-\alpha) \cos (\psi-\beta) \cos T+a \sin (\psi-\alpha) \sin (\psi-\beta) \cos (T-\rho)$, of which the intensity is
$\left(a \cos (\psi-\alpha) \cos (\psi-\beta)+a \sin (\psi-\alpha) \sin (\psi-\beta) \cos \rho \beta^{\mu}+\right.$ $a^{2} \sin ^{2}(\psi-a) \sin ^{2}(\phi-\beta) \sin ^{2} \rho=$
$\left.\alpha^{2} \cos ^{2}(\beta-\alpha)-\alpha^{2} \sin 2(\psi-\varepsilon) \sin 2(\psi-\beta) \sin ^{2}\right\}$.
When the primitive light is white, this expression must be summed for the different monochromatic constituenta. In strictnese the angle ϕ is dependent upon the frequency, but if the dispersion be weak redatively to the double refraction, the product sin $2(\psi-a)$ sin $2(\psi-\infty)$ has sensibly the same value for all terms of the summation, and we may write

$$
I=\cos ^{2}(\theta-a) E a^{1}-\sin 2(\phi-a) \sin 2(\psi-\beta) \sum a^{4} \sin ^{2} \mid \rho .
$$

This formula contains the whole theory of the colours of crystalline plates in polarized light. Since the first term represents a stream of white light, the plate will appear uncoloured whenever the plase of polarization of ether stream transmitted by it coincides with either the primitive or final plane of polarization. In intermediate cases the Gedd is coloured, and the tint changes to its complementary as the plate passes through one of these eight positions, since the second term in the above expresifon then changes sign If, however, the primitive and final planes of polarixation be parallel or crowsed. the field exhibits only one colour during a complete revolution of the plate
The crystalline plate shows no colour when it is very thin, and also when its thickness ecceeds a moderate amount. In the former case the retardation of phage varies so little with the period that the intensity is nearly the same for all colours; in the latter case it alters so rapidy that for a small change in the period the intensity passea from a maximum or a minimum, and consequently bo many constituents of the light are wealocned and these are 30 close to one another in frequency, that the light presents to the eye the appearance of being white. The true character of the light in this cese may be revcalad by analysing it with a spectroscope, when a spectrum is obtained traveried by dark bands corresponding to the constituents that are weakened or annulled. The phenomenon of coloor may, however, ve obtained with thick plates by superposing two of chem is a suitable manner, the combination actiag as a thicker or a thianer plate according as the planes of polarization of the quiccker waves withis them are parallel or crossed. In this way a delicate lest for singht traces of double refraction is obtained. When the retardation of phase for light of mean period is 5 or a smali multiple of I a cryatalline plate placed between a cromed polariser and andywer
exhibits in white tight a dietinctive greyish violet colour, known as a ensitive tint from the fact that it changes rapidly to blue or red, when the retardation is very slightly increased or diminished. If then the senaitive plate be cut in half and the two parts be placed side by side after the one has been turned through 90° in ite own plane, the tint of the one half will be raiged and that of the other will be lowered when the compound plate is associated with a aecond doubly relracting plate.

When light from an extended source is made to converge upon the crystal the phenomenon of rings and brushes localized at infinity is obtained. The exact calculation of the intensity in this case is very complicated and the resulting expreasion is too unwieldy to be of any use, but as an approximation the formula for the case of a parallel beam may be employed, the quantities ψ and p therein pccurring being regarded as functions of the angle and plane of incidence and conscquently as variables. In monochromatic light, then, the interference pattern is characterized by three systems of curves: the curves of constant retardation $o=$ const; the lines of like polarization ψ const.; the curves of constant intenaity I = conpt. When $\rho=2 \mu r$ and aleo when $\psi=a$ or $\varepsilon+\pi / 2$ or $\psi=\beta$ or $\beta+\pi / 2$, that is at points for which the strcams within the plate are polarized in planes parallel and perpendicular to the planod of primitive and final polarization, the intensity (called the fundamental intemeity) is the same as when the plate is removed. These conditions define two system of curves called respectively the principal curves of constant retardation and the principal lines of like polarisation, these latter lines dividing the field into reqions in which the intensity is alternately greater and less than the fundamental intensity. When, however, the planes of polarization and analyman are parallel or crossed, the two pairs of principal lines of like polaritation coincide, and the latenaity in at all point in the former case not greaser than, and is the latter case not lese than, it was before the introduction of the plate. The determination of the curves of conetant retardation depends upon expreasing the retardation in term of the optical comstants of the crystal, the arglo of incidence and the asimuth of the piane of incidence. P. A. Bertin bas ohown that a uedul picture of the form of these curvea may be obtained by taling motions, parallel to the plate, of surface that be calls the " isochromatic surface." and that is the locus of pointe on the cryatal at which the relative retardation of two plane waves pasain s aimultaneously through a given point and travelling in the same direction has an aseigned value. But as this surface is obtained by cmumins that the joterfering ot reame follow the same route in the crystel, and by neglecting the refrection out of the cryotal, it does not lend itself to socurste numerical calculations. Ta the tame degree of accuracy as that employed in obttanits the expreation for the intencity, the form of the linee of like polarization is given by the sections parallel to the plate, of a cone, whowe generating line are the direction of proparation of waves that have their planee of polarisetion parallel and perpendicular to a given plane: the cone is il general of the third degree and pasees through the optic aves of the cryata. We must limit ourgelves it this articla to indicating the chaf feature of the phenomenon in the more important cases. (Reference should be mede to the artiele Cryerallognapuy for illustrations, and for applicatione of these phonomena to the determination of crystal form.)

With an unianal plate perpendicular to the optic arios the curves of constant retardation are concentric circles and the linee of like polarisetion are the radii: thuts with polariser and anglyser requlated for extinction, the pattern consinta of a meries of bright and dark circies internupted by a black cross with ita drms parallel to the plames of polarimition and gmalyeation. In the cage of a biaral plate perpeodicular to the bisector of the moute angle between the optic axes, the curves of constant retardation are approcinately Cassini's ovala, and the lines of like polarimaion are equilateral hyperbolae pacing through the points correuponding to the optic axps. Winh a cromeed polarizer and annlywer the ringe are interrupted by a dark hyperbolic brush that cuts the plane of the optic axes at right angles, il this plane be at 45° to the planes of polarization and enalywation-the so-called diagonal position-and that becomen a rectangular croes with its arms paraliel and perpendicular to the plane of the optic axes when this plane coincides with the plane of primitive or final polarization-the normal position.

When white light is employed coloured rings are obtained, provided the relative retandation of the interfering streams be not $t 00$ great. The isochromatic lines, unlese tbe dispertion be excessive, follow in the main the coume of thecurves of contsant retardation, and the principal lines of like polarization are with a croased polariser, and amalyser dark brames, that in certain cases are fringed with colour. This state of things may, hnwever, be considerahly departed from if the axes of optical symmetry of the crystal are different for the various colours. The examination of dispersion of the optic axes in biaxal crystals (ece Repinaction, $\frac{1}{}$ Domde) may be conveniently made with a plate perpendicular to the acute bisectrix placed in the diagonal position lor light of mean period berween a crosted polarizer and analyser. Whet the rings are coloured oymmetrically tith respect to two perpendicular lines the acute bisectrix and the planc of the optic axes are the same for all frequencies, and the colour for which the separation of the axes is the least in that on the concave uide of the nammit of the myperbolic brumber

Cromed, inclined and bocinontal diepernion are characten ed reapeop tively by a distribution of colour that is bymmetrical with rempect to the centre alono, the plane of the optic axes, and the perpendiculat plane.

The phenomenon of interference produced by crystalline piatei is coneiderably modified if the light be circulariy or elliptically polarized or analyted by the interpomition of a quarter-wave between the crystal and the polariser or analyter. Thus in the two case deacribed above the bruches diappear and the rings are continuous when the light is both polarized and analysed circularly. But the most important case, on acoount of its practical appliceition to determining the gign of a erytal, is that in which the fight in plans polarised and circularly analyed or the reverse Let ua appose that the light is circularly analywed and that the primitive and final planes of polarization are at right encles. Then with an unional plate perpendicular to the optic axis, the black erve is replaced by two linees, on crowing, which the rings are discontinuous expaneina or contraction occurring in the quadrants that contain the axia of the quarter-wave plate, according an the erystal in positive cr meytive. With a biaral plate perpendicular to the optic aris in the diamonal ponition, the hyperbolic brush becomes en hyperbolic tise and the rines are expanded or contracted on its concave side, with a ponitive plate, according at the plane of the optic ares is parmal or perpendicular to the axis of the quarterwave plate, the revare bein the can with a negative plate

With a combisation of plates in plane-polarised and plane-analymad light the interferenes pattern with monochromatic light is geterally very complicated, the daris eurven when polnriser nad analyper are crowed being replaced by isolated darle epocs or aegmente of lines When, however, the field is very emall, or when the primitive Hipht Is white so that interference is only visible for amall relative retarda. tions, the problem beoomes ia many catea cone of far les complexity. An Instance of comaidernble importance in afforded by the combinetion known as Savart's plate. This consinte of two platee of as uninal crystal of equal thickness, cot at the tame incliantion of about 45° to the getic axis and auperponed with their principal planee at right angles. The interference pattern produced by this corabine tion is when the field ia small, a syatem of parallel straight lines biseoting the angle between the principal plapes of ite constituents Theae attain their maximum visibility when the plame of anatyation is at 45° to theer planea, and vanich when the place of polarization is parallel to either of the priocipal planes.

The phenomena of chromatic polarimtion afford a ready means of detecting doubly refracting structure in cases, rach as that produced in isotropic bodies by strain, in which its effects ase very minute. Thus a bar of glass of sufficicnt thicknese, placed In the diagonal poaition between a crosoed polarizer and analyoer and bent in a plane perpendicular to that of vision, exhibits two sets of coloured band aeparated by a neutral tine, the double refraction being positive on the dilated and negative on the compressed side. Again, a system of rings, sinular to those of an uniaral plate perpendicular to the axi, may be produced with a glass cylinder by tranamitting heat from its surface to lts axes by Immersion in heated oil, and gias that has been raied to a red heat and then cooled rapidly at ite edges gives in polarised light an Interference pattera of a regalar form dependent upon the shape of the contour.

Ratery Palarisation.-In generaile utream of pleme-polarined lifht undergoea no change in traversing plate of an unfiam cryntal in the direction of itm ayis, and when the emergent stream is analyned, the light, if originally white, is found to be colourica and to be extingulahed when the polarizer and analywer art crowed. When, however, a plate of quarts is used in this experiment, the fight is coloured and in in no caraecut ofi by the anmlywer, the tint, however, changiag as the analymer is rotated. This phesomenon may, be explained, as D. F. J. Arago pointed out, by supposing that in pasint through the plate the phane of polarization of each monochrometic constituent is rotated by an amount dependent upon the frequency -an explanation that may be at once verified either by uising monochromacic light of by analyaing the light with a spectroscope, the epectrum in the latter case beirg traversed by one or more dart bende, according to the thickness of the plate, that pasa along the spectrum from end to end as the analywer is rotated. J. B. Biot further asecrtained that this rotation of the plane of polariantion varies at the distance traversed in the plate and very meary at the inverve square of the wave-length, and found that with certain specimena of quattz the rotation is in a clockwise or fight-handed direction to an observer receiving the light, while in others it is in the oppontte direction, and that equal plates of the right- and lefthand varicties neutralize one another'e effects.

A similar rotary property is possessed by other umand cryetals, such as cinambar and the thiosulphates of pottesituma lead and calcium. and as H. C. Pocklington (Phy. Mas. $1901\{6\} \frac{1}{1}, 361$) and I. H: Dufet (Jown. te phys., 1904 14), 五. 757) have shown by a few biani crystals, aich as sugar and Rochelle salt, the rotation produced by a given thickness being in general different, and in some cabes of oppogite wign for the two optic axes. Further, certain cubic cryatals, wach as modium chlorate and bromate, and aloo some liquids and evea vapoars, rotate the plane of polarization of the light that traverses them, whatever may be the direction of the stream.

In crytalis the rotary property appean to betometimen inberctit
in the crymalline armazement of the molecules, as it is lost on fusion or colution, and in several cases belongs to enantiomorphous eryetels, the two correlated Corms of which are the one right-handed and the other left-handed optically as well at crystallographically, this being nectesarily the case if the property beretained when the cryetal is fused or dimolved. In organic bodies the rotary property. as the researchee of J. A. Le Bel, J. H. van't Hof and others have established, corresponds to the presence of one or more tyymmetric atoms of cerbon-that in, atome directly united to elements or radiciea all different from one another-and in every case there exists an momer that rotates the plase of polarization to the ampe degree in the opponite direction. Abvence of rotary power when asymmetric carbon atom are present, may be caused by an Internal compensa tion within the molecule ${ }^{\circ}$ with the inactive tartaric acid (mesoiertaric scid), or may be due to the fact that the compound is an equimolecular mixtrire of left- and right-hand varietion, this being the cave with racemic scid thet was broken by Louis Pasteur into leevo-and dextro-tartaric acid (ace Stranco-Isonereism).

Substances that by reason of the etructure or armngement of their molecules rotate the plane of polariantion are mid to be tructurally active, and the rotation produced by unit length is called their rotary power. If unil mite of a colution contain m grammes of an active subetance and if a be the denaity and ρ be the rotary power of the wolution, the epecific rotary power is defined by p/me, and the molecular rotary power is obtained from thia by multiplying by the hundredth part of the molecular mase. This quanticy is not aboolutely constant, and in many carea variea with the concentration of the solution and with the nature of the solvent. A mixture of two active mubstances, or even of an active and an inactive eabetance, in one solution coaretimes produces anomalous fifects.

Freand sbowed that rotary polarisetion could be explained lcinenetically by suppoing that a plane-polarised stream is resolved on entering an active medium imto two opponitely circulariy polarised streame propagated with different opeods, the rotation being riatht- or left-handed according te the right- or left-handed otrean travels at the greater mate.

The poinrigationvector of the primitive stream being $\$$ an α cos wh, the first circularly polarized etream after traversing a distance iin the medium misy be repremented by
and the eecond by

$$
G=\operatorname{ccos}\left(n-h_{2}\right), x_{0}=-\sin (n t-h) .
$$

The resultant of these is

which shows that for any fixed value of sthe light is plane polarised
 plane of polarization, λ_{1} and λ_{a} being the wave-lengthe of the circular componente of the tame frequency.

Shace the two circular stream have differeat opeeds, Freanel agued that it mould be poomible to aeparate them by oblique refraction, and though the divergence is enall, Ance the difference of their reiractive indices in the case of quarts is only about 090007 , he aucceeded by a suitable arrangement of alternately, rifht- and peft-handed primene of quarts in reaclving a plane-poiarised etream into two distinct circularly polarized streams A timilar arrangement was aped by Erngt V. Fleisch! for demonstrating circular polarixation in liquids. This remalt is not, however, conclusive; for an application of Huygens's prisciple show that 1 t is a consequence of the rotation of the plase of polarization by an amount proportional to the distance traversed, independently of the state of affairs vithin the active medium. Not more convincing is a second experiment devised by Fresnel. If in the interference experiment rith Freacel's mirrors or biprison the alit be illuminated with white hight that has pased through a polariver and a quarts plate cut perpendicularly to the optic anis, it is found on enalysing the light that in addition to the ordinary central set of coloured fringes two fateral systems are seen one on either side of it. According to Fresmel's explanation the light in each of the interfering streams consista of two trains of wavee that are circularly polarimed in opposite direction and have a relative retardation of phase, istroduced by the passage through the quarts: the central fringes are then due to the similarly polarized waves; the lateral systems are produced by the oppositely polarised strmems, these on analysation being capable of interfering. A. Righi has, however, pointed out that this experiment miy be explaind by the fact that the function of the quartz plate and analyser is to eliminate the constituents of the composite strcam of white light that masic the interference actually cocurring at the positlons of the lateral systems of fringes, and that any other method of removing thom is equally effective. In fact, the lateral systems are obtaped when a plate of gelenite is aubstituted for che guartz

Sir G. B. Airy extended Fressel's bypotheais to directions inclined to the axis of uniaxal crystals by asuming that in any such direction twe two waves, that can be propagated without alteracion of tbeir ofate of polarization, are oppocitely elliptically polinized with their planes of maximum polarization parallel and perpendiculat to the principal plane of the wave, these becoming practically plane polar-
have been made to test the correctmen of Airy's viewnen but it munt be remembered that it is only possible to experiment on wravea after they have left the crystal, and L G. Gouy (fowom. de plys., 1885 [2], iv. 149) has shown that tbe results deduced from Airy's waves of permanent type may be obtained by regarding the action of the medium as the superponition of the effects of ordinary double refraction and of an independent rotary power. As regards the course of the etreams on refraction into the crystal, it is found that it is determined by the Huygenian law (see Repaiction, (Dowhe); at, however, the two streams in the direction of the axis have difierent opeeds, the apherical and the spheroidal sheets of the wavesurface do not touch as in the case of inactive uniaxal crystala. On these principles Airy, by an elaborate mathematical investigation, succestully explained the interierence patterns obetined with plates of quartz perpendicular to the optic aris. When the polariarer and analyet are parallel or crowed, the pattern is the pame tas vith inactive plates, with tbe exception that the brushoe do not extend to the centre of the field; but as the analyser is rotatod a man crow begins to appear at the centre of the field, while the ringechange their form and become nearly squares with rounded corners, when the planes of polarization and analymation are at 45°. With two plates of equal thicknem and of opposite rotations, the pattera consiste of a serien of circles and of four similar opirals starting from the centre, each epiral being turned through 90° from that adjacent to it. When the light is circularly polaried or circularty analysed, a single plate give two matually inwrapping spirah, and aimilar spirals in circularly polarised light are obtainod with pintes of an active biamal crystal perpendicular to one of the optic axes. It wat in this way that the rotary property of certain biamal crystabs was first extablisted by Poclolington.
F. E. Reurch hate shown that a pacleet of identical insctive plates arrangud in epiral fachion gives an artificial active gyatem, and the behaviour of certain peendonymmetric crystals indicates a formation
 ix. 504) and 5. Mallard (Traite de cristallographin, vol. il. ch. ix.) have buitt up a theory of the etructure of active media, but in the instances in which otatic epirality bes been clowin to be efective in prodacing optical rotation the coarme-grainedness of the structure it copparable with the wave-length of the radiation affected.
The rotary property may be induced in subtencee maturally inctive. Thus A. W. Evell (Amer. Jow. of Saimer, 1899 . 14 I vila, 89) has dhown the eristence of a rotational effect in twisted glam and gelatine, the rotation being oppoaite to the direction of the twith. Bnt a far anore important instance of finduced activity is afforded by Michnel Faradiy's diacovery of the rotary polarization connected with a magretic field. There is however, a unarked difference between thle magectic rotation and that of a tructurally active medium, for In the hetter it is always righthanded or almays left-handed with reapect to the direction of the ray, wrie in the former the eense of rotntion fis determbind by the difuetion of angnectiantion and therefore rtantint the eame though the ray be reverned. This mubject is treated in the article Mareripo-Ortics, to which the rater is also referred for Jobe Kerr's diwovery of the offect on polarization ptoduced by gelection from a reagretic pole, and for the action of a gavgnetic field on the maliation of a pource-the " Zerman effect."

Refiection and Rufraction-Huy, Hens matifactorily explained the Inwe of relection and refraction on the principies of the wave theory. so far as the direction of the waves is concerned, but his explanation gives no account of the intensity and the polarization of the reflected fight. This was aupplied by Freapel, who, startiof from a mechasical hxpotheais, showed by ingenious but not errictly dyamical reasonim that if the incident etream heve unit amplitude, that of the reflected streas will be

$$
-\operatorname{mon}(i-p) / \sin (i+r) \text { or } \tan (i-p) / \tan (i+r)
$$

acconding as the incident tight is polarized in or perpendicularly to the plane of incidence i, r, beintg tbe angles of incidence and rifraction connected by the formula sin $\bar{\xi}=\mu \sin$. At normal incidence the intensity of the reflected light, measured by the square of the amplitude, is $|(\mu-1) /(\alpha+1)|^{3}$ in both cases; but whercas in the former the intensity increases uniformaly with it to the value unity for i=90., in the latter the intensity $\frac{7 t}{} \mathrm{f}$ first decreases as increases, watil it attains. the value zero when $i+y=90^{\circ}$, or tan $i=p-t h e$ polarizing angie of Brewster and then increasea unth it becomes traity at grazing incidence. If the incident light be polarised in a plane. making an angle a with the plane of incidence, the atream may be resolved into two that are polarized in the principal asimuths, and these will be reflected in sccordance with the above laws. Hence If β be the angle between the plane of incidence and that in which the reflected light is polarised
$\tan \beta=-\tan a \cos (i+r) / \cos (i-r)$.
The exprestions for the intensity of the refracted light may be obtained from thoee relating to the rebected light by the principle of energy. In ordat to avoid the question of the measurements of the intensity in differeat medin, it is convenient to suppose that the nefracted stream emerges into a medium similar to the first by a transition 90 gradual that no light is lost by refection. The intensities of the incident, reflected and refracted stresms are then meesured in the atme way, and we have merely to exprete that
the square of the axplitede of the incident vibrations is equal to the sum of the aquares of the amplitudes of the reflected and refracted ribrations.

Fresnel obtained his formulae by asoumine that the optical difference of media is due to a change in the effective density of the echer, the elasticity bcing the same-an assumption inconsistent with his theory of double refraction-and was led to the result that the vibrations are perpendicular to the plane of polarisation Franz Neumann and James MacCullagh, starting from theopposite astumption of constant density and diferent elasticities, arrived at the ame lormulae for the intensitics of the refected ligbt polarixed in the principal azimuths, but in this case the vibrations must be regarded as parallei to the plane of polarization. The diversence of these views has led to a large number of experimental anvestigations. instituted with the ider of deciding between them in the main such inveatigations have only an academic interest, as, whatever theory of light be adopted, we have to deal with two vectors that are parallel and perpendicular respectively to the plane of polarization. Thus certain experimente of Otto H. Wiener (Widd Ant. 1890, xl. 203) show that chemical action is to be relerted to the latter al these vectors, but whether Fresal's of Neumann's bypothesis be correct is only to be decided when we know if it be the meen kinctic energy or the mean potent bal energy that determines chemical action Similariy on the electromagnetic theory the electric or the magnetic force will be perpendicular to the plane of polarizetion, according as chemical action depends upon the electric or the mur nctic energy. Lord Rayleigh (Scientifc Papore, i 104) has, however, thown that the polarization of the tight from the aky can only be explained on the elastic solid theory by Fresnel's hypothesis of different density, and from the study of Hertzian oacilations, in which the dlrection of the electric vibrations can be a priori assigned. we learn that when these are in the plane of incidence there 150 reflection at a certain angle, so that the electric forme is perpendicular to the plane of polarization.

It has been supposed in the abowe that the medium into which the light enters it the reflecting-iurface is the more refrecting in the contrary case, total refiection commences as soon as sin $1={ }_{a}{ }^{-1}$, being still the relative refirtctive index of the more hishly refracting medium; and for greater ansles of incodence P becomes imarinary Now Fresnct's formulae were obtained by assuming that the incident. refiected and refracted vibrations tre in the same or opposite phases at the interface of the media, and since there is no real factor that converts cos T into cos $(T+\rho)$. he inferrod that the occurrence of imaginary expressions Ior the conficients of vihration denotes a change of phase other than x, this being represented by a change of Gn If this be so, it is clear that the factor $\sqrt{ }-t$ denotes a change of phase of $5 / 2$. since this twice repeated converts cos T into cos $(T+\pi)=-\cos T$, and hence that the factor $a+b \sqrt{ }+I$ represents a change of phase of tad ${ }^{-1}(b / a)$ Applying this interpretiation to the formulae given above, it follows that when the incident light is polarized at an azimuth a to the plane of incidence and the second modium is the lest refracting, the reflected tight at angles of incidence exceedin the critical angie is elliptically polarized with a diference of phame a between the components polarized in the priscipal asimuths that is given by
$\tan (\Delta / 2)=\cot \operatorname{id}\left(1-x^{-1} \operatorname{cosec}^{2}\right)$.
Thus Δ is aero at grazing incidence and at the cricical angle, and ttaine ite maximum value $\pi-4 \tan ^{-1}(1 / \mu)$ at an angle of incidence given by $\sin ^{2} t=2 /\left(\omega^{2}+1\right)$.
It is of some interest tu determine under what eonditions it is pousible to obtain asecified difference of phase Solving for cot's we obtain

and since tan $\{(x-\Delta) / 4\}$ is less than unity, μ must exceed $\cot [(\pi-\Delta) / 4\}$ if cot ${ }^{2}$ is to be real. Thus if $\Delta \omega x / 2, p$ nust exceed $m / 8$ or 2414 , that is, the substance must be at leart as highly refracting as a diamond if $\Delta=F / 4, \mu$ must be greater than $3 \pi / 46$ or 14966 , and when this is the case, it is possible by two reflections to convert into a circularly polarized stream a beam of light polarized at 45° to the plane of ancidence. This is the principle of Fresnel's rhomb, that is sometimes employed instead of a quarter-wave plate for obtaining a stream of circularly polarized light. It consists of a parallelopiped glate so constructed that light falling normally on one end erperges at the other after two internal refiections at such an angle as to introduce a relative retardation of phase of $\pi / 4$ between the components polarixed in the principal samuths.

Freacl's lormulae are aufficiently aceurate for most pactical purposes, but that they are not an exact representation of the facts of reflection was showa by Sir David Brewster and by Sir G B Airy. Detailed investigations by J C Janin. C. H Quincke. C. W. Wernicke and ofhers have eatablished that in gencral light polarized in any but the principal asimuths becomes elliptically polarized by reflection, the relative retardation of phase of the components polarized in these azimuths becoming $\pi / 2$ at a certain angle of incidence, called the principal incidence. In some cases it 1 the cofnpontent polarized in the plame of incidence that is most retarded and the reflection is then said to be positive' in the cate of negative refection the reverte talces place It was at furst eupposed
that the defect of Fresnel's formulae was due to the redect' of the superficial undulations that, on a rigorous elastic solid theory of the ether, are called into existence at reflection and refraction. But the result of taking these into account is far from being in accordance with the facts, and experiments of Lord Rayleigh and Paul Drude make it probable that we ought to assume that the transition from one medium to another, though taking place in a disance amounting to about one fiftieth of a wave-length, is gradual instead of abrupt. The effect of such a transition-layer can easily be calculated, at least approximately; but it is of fitcle use to take account of it except in the case of a theory of reflection that gives Fresnel's formulae as the resnlt of an abrupt transition. Lord Rayleagh has pointed out that all theorics are defective in that they disregard the fact that one at least of the media is dispersive, and that it is probable that finite refection would result at the interface of media of different dispersive powers, even in the case of waves for which the refractive indices are absolutely the same.

A more pronounced case of elliptic polarization by reflection is afforded by metals. Formulae for metallic reflection may be obtamed from Fresnel's expressions by writing the ratio sin $i /$ sin p equal to a comples quantity, and interpreting the imaginary coefficients in the manner explained above The optical constants (refractive index and co-efficient of extinction) of the metal may then be obtained from observations of the principal incidence and the elliptic polarination then produced. A detailed investigation of these constants has been made by Drude (Wicd Axn, 18go, xxxix. 504), who has found the remarkable resuit that copper, gold, magnesium and silver have refractive indices less than unity, and this has been completely confirmed by observations with metallic prisms of small refracting angle He further showed that except in the caset of copper, lead and gold the dispersion is abnormal-the inder for red light being greater than that for sodium light. The higher the co-efincient of extinction lor light ol a given period, the more copious witl be reflection of that constituent of a mixed pencil. This fact has been employed for separating wavet of large wavetength, and in this way waves of length 0.061 mm . have been imolated by five succeesive refiections from the surface of sylvite.

The Sludy of Polarisation.-The best method of obtaining a stront beam of polariacd light is to isolate one of the streams into which a beam of common fight is resolved by double refraction. This is effected in polarizing prisms of the earlier type, devised by $A M$ de Rochon, H H de Stnarmont and W H Wollaston, by blocking of one of the atreams with a screen, sufficient lateral separation being obtained by combining two equal erystalline prisms cut differently with respect to the optic axis-an arrangement that achromatizet more or less completely the pencil that is allowed to pass In a second type, called Nicol's prisms, one stream is removed hy total reflection Theoretically the best construction lor prisms of this class is the following' a rectangular block of Iceland spar, of lengeh about four times the width and having its end and two of its side faces parallel to the optic axis, is cut in half by a plane parallel to the optic axis and making an angle of sbout 14° with the sides; the two halvee are then reunited with a cement whose refractive index is between the ordinary and extraordinary sndices of the spar and as nearly as possibite equal to the latter Thus constructed, the prism produces no lateral shift of the transmitted pencil: a conical pencil, incident directly, has nearly constant polarization over ats extent, and coneequently the error in determiniog the polarization of a parallel pencil, incident not quite normally, is a minimum. In a Nicol's prism it is the extraordinary stream that passes, in a prism suggested by E Sang and somerimes called a Bertrand'a prism, it is the ordinary stream that is utilized This is made by fixing a thin crystalline plate between iwo glass prisms turned in opposite directions by a cerment of the same refractive index as the glase This refractive index shnuld be equal to the greatest index of the plate, and with a biaxal plate the mean axis of optical symmetry chould be paraliel to its faces and in the normal section of the prisms, while with an umaxal plate the optic axis should be in a plane perpendicular to this normal section These prisms have the advantage of econoany of material and of a greater feld than the ordanary Nicol's prism, but a dificulty seems to be experienced in finding a suitable permanent cement

For an accurate deternination of the plane of polarization analyaers that act by extinction are not of much practical use, and a different device has to be employed Savart's analyser consista af a Savart's plate (see above) connected to a Nicols pristh, the principal section of which bisects the angle between the principal planes of the plate. the plane of polarimation is determined by turning the analyser untif the bands, ordinarily seen, digappear. In which case it is parallel to one of the principal planes of the plave Half-shade analymers depend upon the facility with which the oye can diatinguish slight dfferences in the intensities of two streama zeen in juxtaposition, when the illumination is not too bright The ficld is divided into two pirte that for most positions of the anatyacr have different intentities, and the eetting is effected by turnins the analyser until both halves are equatly darts These instrumenta are very sensitive, but care must be taken to avoid errore catued by changes in the relative intensities of parts of the source of light a precaution that is mometimes overlooked in furnishing polarineter with thea analymers. In J. H. Jellet's and M A Cormu's anelyoux
fermed-the one from two parts of a rhemb of spap, the other from twa portions of a Nicol's pram-the two halves of the field are andlyped in shightly differeat planes, bet these, though they have certain edvantages, are now eeldom ecoployed. partly on account of a diff talty in their construction and partly because their sensitiveness cannot be edjusted. The more usual hall-shade asalyser is avail able for light of only one frequency, as it depends upon the action of a balf-wave plate, in traversing which the plase of polarization is turned until it makes the same angle with the principal section as at firt but on the opposite side: hall the field is covered with the plate, to which ie attached a Nicol's prism with its principal section inclined at a mall angie to that of the plate. The eye must be Cocused on the edige of the plate, and the two hatves of the ficla will only be equally dark when the principal plane of the plate is paraliel to the primitive plame of polarisation. Another plan, due to J. H. Poynting, is belore analysation to impress unequal rotatione upon the pitne of polarization of the two parts of the ficld, eizher by means of an active medism, or by oblique tranamision through stass plates

Eiliptseatly polarised light is investigated by the seduction of the pencil to a state of plane polarization, and a decermination of the ceaulting plane of polarization. One merhod conslsts in finding diroczly the elliptic constants of the vibration by means of a quarterwave plate and an analyser; but the more usual plan is to measure the relatuve retardation of two rectangulat components of the stream by a Babinet's compensator. This is a plate made of two equal wedges of quartz, that can be moved over one anothec, so as to vary its thickness, and are cut so that the faces of the plate are parallel to the optic axis, which in the first wedge is perpendicular and in the second is parallel to the refracting edye. It ls clear thet direct transmision through the plate at a point where the thick. thesses of the prioms are d_{1} and d_{1} will introduce a relative retardation of $\left(\mu_{1}-\mu_{0}\right)\left(d_{1}-d_{2}\right)$ between streams polarized in plancs paraliel and perpendicular to the edges of the prisms, mond ma, being the ordinary and the extraordinery relractive indices; and it is hence poesiblc by an adjustment of the thicknens to reduce elliptically polarized to plane polarization at an assigned point marked off by two parallel lines. A subsiguent determination of the plane of polarization gives the ratio α the amplizuded of the vibrations in the component streams

For the observation and messurement of rings in crystals polaricopes are constructed on the following principle. Light from an extended source passes alter polarization through iso convex pystems of lenses, bet ween which the eryotalline plate is placed, and is then received in an eyepiece fumighed with an analyser. If measurements be required, the plate must have a motlon round an exis perpeadicular to that of the optical symtems, and also about an asis nosmal to its faces; the polarizer and analyser must also be capable of adjustment. All the reys through a given point in the firot priscipal local plane of the anterior syetem of lenses traverse the plate as a parallel beam and rewnite at the corresponding point of the second foeal plane of the posterior syetem, ench in its passage being divided into two by the plate having a given relative retardation It is on thin latter plane that the eyepioce must be focuracd, and bere tbe meamining web must be placed. The actual details of the zystems of lenses depend upon the object for which the polaricope in intemded, and are given for some of the principal typee of instruments in Th. Liebisch's Physikehisehe Kristallogrophic.

Of polarimeters for the utudy of rotary polarization there art three principal forms. In Wilds polaristrobometer, light from soda fiame, rendered parallel by a lens, is polarized by a Nicol's prism, and aiter traversing the spece into which the active substance W to be insetted, fails ois a Savare's plate placed in from of an astrosomical telescope of low power, shat contains in its eyepiece a Nicol's prism, whach with the plate forms a Savart's analyser. A web in the focal plane of telescope marks the point in the ficld at which the bands are to be made to dismppear, this is effected by turning the polarizer by, means of a rack and pinion worked by an arm from the obscrver's end of the instrument. The polarizing prism is fixed at the contre of a circular disk, that has a scale on jts circumercses. which with a fixed vernicr determines the pootions of the polarizer, for which the bands dissppear at the assigned pontt of the field. Laurent's polarimeter is a hall-shade instrument Soda light, furt sifted by pasagge chrough a plate of potassium bichromate, traverses in succession a lens, a Nicol's prism, and a slass plate balf covered with a hall-wave plate of quartz. that is cut parallet to the optic axis and has its principal section inclined at a small angle to that of the prism. This combination forme a halfshade polariver, the sengitiveness of which can be varied by a shight edjustment that can be given to the Nicol. The tight is finalty reccived in ofalitean telescope, comtaining an amalyser and carried at the centre of a circular phate, that is graduated on Ite rim and ean be turned in front of a vernier hy means of m rack and pinion. The seleacope must be focussed on the edze of the quarty plate, and in order thas all points of the fich may be illuminated by the same part of the eotrce, the flante must be so placed that ite image is thrown by the lana on the diaghragm of the objoct glass of the telescope Ine chisf features of Soleil's acchanimeter are the biquarta nand the compensator. The former conoists of two semicircular plasen - acirti, perpendiculer to the optic axis and of opposite rotations,
placed so ala to have a commoin diameter and having turch a theleneat that each rotites the plane of polarimation of mean yellow light through the same multiple of 90°. If then a stream of polarizod white light traverte the blquartz, it is postible by an adaly cut of the menn yellow light from each half of the field, aod the whole will then have the semaitive tint; but a small change in the plame of analysation will give the one half a red and the other half a blae tone. A motation of the plane of polarizatlon is not, however. measured by an adjustment of the amtyser, but by annulling the potation with compensator. This is made of two plites of quartz, cut normally to the optic anis and of opponite rotations, placed the one in front of the other; the thickness of. the one plate is fuxed, while that of the ocher can be varied, as it is formed of twa equal prisms that can be moved over one another along their common face. When the plates are of equal thekness, their combined effect is wal, but by adjusting the recond, a rotation in the one or the other diroction may be introduced, a tacale attached to one prism and a vernier to the other siving the thickness of the resultant quart: plate. At one end of the instrument is placed a polarizer and the bequartz, and at the other a Gatilean telescope, that must be focused on the edge of biquartz, having in front of its object.glass the compensator and an anslyser that to regulated for producing the sensitive Inint, when the plates of the compensator have the same thickness The ecmitivencas of the instrument deprends upon the exactness of the sensitive tint, when the colour of the two halves of the ficld are the same, and this is luble to be upeet by absorption in the substance under inveetigation. In erder to correct this, the light alter analysstion is passed through thother plare of quartz and then the sensitive tiat may be more or lese restored by cutting off tome colour, the same for the whele field, by a Nicol's primm placed in the eyepiece of tte telescope. Soleil's tuccharimeter, as it ntme implies, is desigrod for the study of solutions of suger, and it is clear that it will only work atidfactorthy with' active media that have ncarly the ame rotary dispervion as quartz.

BisLIoorarht - A bibilography of the uubjects treated in this article win be found at the end of the corresponding chapters of E. Verdet's Lepons dopmque pthysime (1869); this work has been brought to a Inter date in the German translation by Kart Exener (Braumachweig, tasi); references to Later pagers will be found in J. Walker's The Amalyncel Theory of Light (rgap). In addition to the above the reader may consulf for the general subject of polarization the following treatises: Th. Preston (3rd. ed. by C. J. Joty), Tha Theory of Lighl (1got), A. Schuster, At Introduction to the Theary of Optics (1904): R.W. Wood. Physical Optics (1005); E. Mascart. Tradte droptique (188g); and for the phenomena exhibited by crystals F. Pockel, Lokromeh der Kristalfoptis (tgo6); Th. Liebiseh.
Phystatishe Knstaltogrophic (1891).

POLAR REMIONA, general term for the regions about the North or South Pole, otherwise called the Arctic or Antarctic regions. The ancients had no actual knowledge of anomef the Polar regions. They had probably beard rumours Accert of the Inght summer nights and the dart winter Etapermena Dights in the north, as is shown by Homer's description of the Laestrygons having the short nights and the Cimmerians tiving in perpetual darkness. By astronowical apeculations the Grechs bed combe to the conctusion that north of the Arctic Circle there must be midnught sun at midsummer and no sun at mudwinter The general view was that the Polar regions, north and south, belonged 10 the unimbabstable fracer zones; while according to a less scicntific notion there was a happy region north of the north wind (Boreas), where the sum was always shining and the Hyperboreans led a peaceful life. The first travelier of history who probably approuched the Arctic Circte and reached the land of the midnight sun was the Greck Pytheas ($q . \nabla$.), from Massalia (Marscilles), who about 325 s.c. made a vojage of discovery northwards along the west caset of Europe, which is one of the most remarkatie in hiscory. He visited England, Scorlind, the Scotlish isles, and probably also northern Norway, which be called Thule. He moved the limits of the known world from the south coast of England northward to the Arctic Circle. It seens probabid that be made two or perhaps several voy ges. He also discovered the morthery coasts of Germany as har east as Jutland.

We hear of no other yoyages towards the Arctic regions before the Irish monk Bituil, writing about 825, mentions the discovery by lrish mortks of a group of small islands the trat Faerocs), and a greater island (Iceland), which be Discewery calls Thule, where there was hardly any night at oficelent midsummer. It is possible that Iceland and the Faeroes were imbabited by a small Celtie population before the Irish monks

came thither. The faet that Irsbi monkelived in Ictaland before the Norscmen wettled there in the end of the oth century is verifed by the Icelandic sagas
In his transiation of Orosius, King Alfred unserts the interesting atory of the firs known really Arctic voyage, told him by the

otur.

 Norwegina Ottar (Alfred calls huma Ohthare), who about 870 rounded the North Cape, sailed enstwards along the Murman const and discovered the White Sca, where he reached the south coast of the Kola Pemasula and the bound. ary of the land of the Biarmans (Beormas) Ottar told King Alfred that " he chtefly went thuther, an aldition to the seeing of the country, on account oj tho walruses."After Ottar's time the king of Normay look poression of all Land as far enst as the White Sea and the land of the Biarmians, and the native "Finns" had to pay him tributa Many voyages, mostiy of homtile nature but also for trade purposes, were undertaken from Norway to the White Sot, and even kingt went as far It is told of King Eric, called Bioodyare, who died as kung of York in England, that be made such a vesage, and fought with the Biarmians, about 920 , and about 965 , his son Hincold Graafuld deferted the Blarmians and hilled many people in a great battle near the river Dvina, where Archangel was builk later

After having settied in Iteland in the end of the gth century, the Norsemon sone discovered Greendand and settied there The first who is reported to have seen the coase of Greenliand was a Norwegian, Gumabjorn Ulisson, who or his way to Iceland was storm-driven westwards. He came to some islands, afterwards called Gunabjomashier, and.saw a coast, but, without exploring the now had, he had evidently comtinued his way tul erke the fied he reached Iceland The real diacoverer and explorer of Greenland was the Norwaginn, Eric the Red, who, wheh his faither had sotiled on Iccland As he and his men had there been deciared outlaws for baving killed seyeral people they had to leave lcelend for threo years, and he want westward to find the land which Gunnbjort was seported to have seen. He'explored the wost const of Greeniand for three years, probably about $982-085$. He then returned to Iccland, but founded the follawing your a colony in Greenland (q F) Many coloniste fohowed, and two Norse set tiements were formed, viz. the Eystrabygd (ie eastern sertlement) on fhe southeantern part of the Greentand west cosst, betwcen Cape Farewell and about 67° N lat., where Eric the Red had his bouse, Bratteld at the Einksfjord, and the Vestrabygd (i.e western settlemeat) in the region of the present Godthanb district, betwoen 63° and $66^{\circ} \mathrm{N}$ Lat The Norse sct tlers carried on their soal and whalemonting still farther north alang the wost coast beyond the Arctic circle, and probably in the region of Disco Bay A sunic stone was found in a cairn on a smatl ichand in 72° i $55^{\prime} \mathrm{N}$ lite north of Upetnivik, showing that Norsemen had been there The stone prohably dates from the isth cometury- Absut talip an expedition was seal northwarts slong tho weat coath and snay posaibly have reached some distance north of Upernvir

The last known communication Between. the Nurse selllements in Greenland and Norway was in 1410, when some Ictundert returned, who four years previously had been atorm-driven to Greenland. After that time we porests no reliable information about the fate of these settlements When Greenland wis rodiscovered in the 16 th cantury no doscendants of the Norse seclers were found The probability is that having gradually been cut off from ;all communieations with Earope, the remaining settlers who had not retorned to she motherland were obliged to adopt the Eskimo moda of life, which in those surroundings was far superiar to the Europeas, and by inter* marriage they would then soon be absorbed amongst the more nomerous native Thero is evidence to show ahat an expedition was probably, sent from Denmark or Norway to Greenland
in the latter pari of the isth eentury (periape about

Plong and

 \$oplvus. 1476) uader Pining and Pothorat (by Purchas ralled"Punnus and Pothorse " 7 , and pertaps with Johan Scolvus as pilot Is is probable that this expedition had intercourse with the natives of Greenland, and'possibly even reached

Latbratior, but it is unknown whether any remains of the None settements were found on the Greenland west coast

It is reported by Adam of Bromen (about 107a) that the Norwegian king Harold Haardrande (in the isth century) made an expodition into the Arctic Sex (probably northwards) in order to examine how far it extended, Marak but we know nothung more about thas voyage

The Icclandic annals report that a land called Svalbordi was discovered in 1194 The name means the cold slde or coam The land was, according to the sagas, stuated four days' sailing from north-eastem. Iccland northwards in the Hofsbote ($x e$ the northern termination of the sea. which was supposed to end as a bay) There can be no doubt that this land was Spitsbergen. The Norsemen carried on seal, wairus and whale hunting, and it is believed on good erownd that they extended therr hunting expeditions castwards as far as Novaya Zemlya and northwards to Spitsbergen.

On his way to Greenland from Norway in the year 1000 Leil Ericsson found America, probably Nova Scotia, which he called Wineland the Good. A fow youri later Thorfinn Karlscini sailed from Greentand with three ships to make if settlement in the land discoverad by Leif They first ceme to Labrador, which thoy called Helhuland, then to Newfoundland, which was called.Markland (ie woodland), and then to Cape Breton and Nova Scotia (Vinlond, Wineland) After three yenrs they had to give up the undertaking on account of hoatititics with the nativen, probably Red Indians, and they reluaned to Grecolinad about 1006 We know of no later expertition of the Norsemen that reached Greentand, it is stated that Eric Uppri, the first hishop of Greenland, went in 1121 to seck Vinland, bul it is not related wher her he ever reached it, and the probability is that he never returned

The Icelandic annals state that in 1349 a smalt Greasiand ship which had sailod to Markland (Newfoundland) was afterwards storm-driven to Iecland with seventeen men.
This is the last known voyage made by the Norse- Nownomed men of Greculand which with cortainty reached tood.

America

The diacoveries of the old Norscmen exteaded over the north. ern' eas from. Novaya Zomby in the east to Labrador, Newroundlandiand Novi Scotia in the west, they had visited all Arcus lands in these segions, and had explored the White 6en, the Barents Sca, the Spistorgon and Grcenland Sca, Davia Strat, and even some part of Baffin Bay. They were the first natyigaters in history who williagly left the coasts and mailed across the open ocean; and they croasert the Atlantic bewean Norwey and America, thereby being the real discovercrs of this ocean, as well as the pioncers in eccanic. navigation. They were the teachers of the navigators of taler centuries, aind it is hardty on accident that the underiakings of England towards tho west started from Bristol, whero many. Norwagiens had salled, and which from the beginning of the 1 gth century had muck trade with Iceiand.
John Cebot, sent aul by the merchants of Bristol, rediseovered the Ambrican continent in 2497 He canre to Cape Breton and Nova Scotia, probably the wame land whent Leff Ericssem had landed 500 yearn hefore: John Jobn Cabol. Cabot satarted on a: new expedtition towards the weat in 1498; but no more is known of this expedition, pet oven whather Cabot retarned or not. Thote is no rellable eyidence to prove that John Cabos or his son Sdbestinn ever discovered Labrador, as has been generally believed.

The Porruguese:Gaspar Corta Real rediscovered Greenland in 1500 . He solled along its east roast withoort heing able to land od account of the ico. Whether the visittd the
west cosst is uncertain. In igor the made a new Corte-Real expedition when he elso rediseoverad Newfoundland. One of his ships returned home to Lisbon, but he himself and his ahip disappeared. His brother went in teanch of him the following year, but was heard of no more.

Cabot's and Cortoreal's discoveries wre followed by the development of the Newfoundiand und Labrador finherime,
and a whole fleet of English, Portuguese, Basque and Breton Gishermen was soon met with in these waters, and they probably went along the Labrador coast northward as far as Hudson Strait, without having left any report of their discoveries.

It is believed, on good grounds, that expeditions (comhined Englush-Portuguese) were sent out to the newly discovered regions from Bristol in $1 g 01$ and 1502 . It is unknown what thoir discoveries were, but they may posalbly have sailed along the coast of Labrador.

It is poasible that John Cabot's son, Sebastian Cabot, made an Arclic expedition in $1508-1509$, in search of a short pessage

Sobastice

Gebol.
to Chima towards the north-west, and later, in 1521 , Geor. the merchants of London to support him in sending out an expediucn, under Sebestian Cabot, to the north-western countres It is uncertan whether it ever started, hut it is certain that it achieved nothing of importance

John Rut sailed from Plymouth in $\mathbf{1 5 2 7}$, in order to seek a passage to China through the Arctic seas towards the north. west, followng the suggestion of Robert Thorne of doharac. Bristol. He met ice in $53^{\circ} \mathrm{N}$. lat and returned to
Newioundand. Several other expeditions were sent out from vanous countries towards the north-west and west during this period, but no discovencs of importance are known to have leen made in the Arctic regions.

There are rumours that the Portuguese, as early as 1484 , ender King John II , had sent out an expedition towards Novaya Crominana. Zemiya in search of a north-east passage to Inda. The Genovese Paolo Centurionc probably proposed to King Henry VIII of Engiand, in $\mathbf{1 5 a 5}$, to make an expedtion in search of such a pasagec to India north of Russa, and there is evidence to show that there had been much talk about an andertaking of this tind in Eagiand and at the Enghsh court during the following period, as it was hoped that a new market mught be found for English merchandise, especially doth. Dut m led $t 0$ notions untia 1553, when Sebastian Cabot was one of the ctinef promoters. Three shipe and 112 men under Sir Hugh Willoughby sailed from Rateliffe on the 10th whourithy. (20th) May 1553. Richard Chancelor commanded one of the ships, which was separated from the two others in a gate off northern Norway on the 3 rd (13 th) Augest. Willoughby, after having agghted land is various places, probably Kolguev Island, where they tanded, the coast near the Pechore never and Kanin Nos, came on the $14 t \mathrm{~h}$ (24th) September to a good Marbour on the northern coast of the Kola Peninsuia. His one ship being leaky, Willoughby resolved to winter there, but Ghaocior. he and all his men perished. Chancelor, after has North Cape, to whuch be or his sailing-master, Stephen Borough, gave this name. He reached Vardobus, and after having waited there in vain for Willoughby, he followed the route of the Norsemen to the White See and reached the bay of St Nicholns, with a monastery of this name, near the mouth of the Dvina tiver, where Archangel was huilt later. Chancelor undertook a joorney to Moscow, made arrangements for commercial intercourse with Russia, and returned next year with his ship, which was, however, plundered by the Flemings, but he reached Loodon safely with a letter from the tsar. In spite of the dissster of Willoughby and his men this expedition became of fundaraental importance for the development of English trade Chancelor's success and his so-called discovery of the pansage to the White Sea, which was well known to the Norwegian traders in that region, proved to people in England the practical utibity of polar voyages. It led to a charter being granted to the Association of Merchant Adventurers, also called the Muscovy or Russia Company, and gave a fresh impulse to Arctic discovery. Chancelor undestook a new expedition to the White Ses and Moscow in r555, on his way home in the following year he was wrecked on the coast of Scotland and perished.

In 1556 Stephen Borough (Burrough), who had served with Chanctior wis sent out by the Muscovy Company in a small sinasbe called the "Search-thrift," in order to try to reach the
river Ob, of which rumours had been heard. Novay Zemlya, Vagach Ialand, and the Kara Strait leading into the Kara Sea, were discovered. Burough kept a carefud
joumal of his voyage. In igbo the compeny futted Boreart out two vescels under Arthur Pet and Charies Jactmin, with orders to sall eastwands north of Russin and Asis to the lands of theemperor of Cathay (Chuna). They pentrated through the Kara Strait into the Kara Sea; they possibly saw the wett coast of Yalmal, hut met with much ice and were compelled to return. The two shipe wese acparated on the way bome, Per reached Loadon on December 26th in safety, Jackman wintered with his ship in Norway and sailed thence in Febraary, hut wis never beard of agin.

About 1574 the Portuguese probably made an attempt to find the north-went parage under Vasqucanes Corte-Real. They reached "a great entrance," which may have been Hudson Strait, and they "passed above tweatie Vamponoer leagues" anto it, "withourt all impediment of ice,"
"but their victailes fayling them, . . . they returned backe agayne with ioy."

Alter the expeditions in search of the north-east passage schieved the soccess of opening up a profitable trade with Russin, via the White Sea, new hife was inspired in the undertakings of England on the sea, at the same time the power of the Hanseatic merchants, called tho Easterlings, was much reduced It was therefore ondy notural that the plan of seeking a north-west pasaage to China and India should again come to the front in England, and it was much discumoed. It was Sir Martin Frobisher who opened that long series of expeditions all of which during three hupdred years

Froneter. were sent Irom Englamd in search of the north-west pascage until the last expedition, which actuelly accomplished it, sailed Irom Norwey. "Beng persuaded of a new and neertr pasange to Cataya" (China) towards the nortb-west, Frobisher "determined and resolved wyth humelíe, to 80 make full proote thereof . . . or else never to retourne againe, knowing this to he the onely thing of the workde that was left yet undore, whereby a notable mind mighte be made famous and fortunate." After having attempted in vain for fifteen years to find sapport for his enterprise, he at last obtained asovatance from Ambrose Dudley, earl of Warwick, and through hum the unterest of Queen Elizabeth was also secured. The Mnscovy Company was now obliged to give a hoence for the voyage in 1 574, and the nocessary money was found by London merchants. Aided especially by Michaed Lok, an induental merchant and diligent student of geography. Frobssher sailed, on the 7 th (r 7 th) of Jume 1576 , from Deptford with two small vessch of 20 and 25 toms, called the "Cabriel" and "Michacl," and a small pinnace of 10 tons; the crews amounted to 35 men all told. Da the 8th (18th) of July they lost sight of the pinnace, which wis seen no more. On the inth (zrist) of July they sughted a high, rueged land, but could not approech it for ice Thus was the east coost of Greenland, but, micted by his charta, Frobrsher assumed it to be the fictitiousi Frishand, which was the iabrication of a Venetian, Nicrolo Zeno, who in 155^{8} published a sparious narrative and map (which he pretended to have found) as the work of an ancestor and his brother in the ruth century. The Zeno map was chiefly fabricated oa the basis of a map by the Swede Ofrus Magnus of $\mathbf{t} 53$ and the map by the Dane Claudius Clavus of the isth cemtury. It was accepted at the time as a work of high authority, and its fictitious names and islands continued to appear on subsequent maps for at tean a century, and have puzzled both grographers at houre and explorers in the field. These ishands had also been introduced on the charts of Mercator of 1569 and of Ortelius of 1570 which were probably used by Frobusher. Evidently írightened by the sught of the great quantities of ice off the Greenliand const, one ship, the "Michad." left him secretly, "and retourned bome wyth greate reporte that he was catt awaye." The gallant Frobisher continued his voyage towarda the northwest in the "Gabriel" alone, although his mast was sprung. his topmast hlown overboard, and his " miagem-mast" had had to be cut away in a cale. On the soth of Jely (Aug-8) he sighted higs

Land which he called Queen Elizabeth's Foreland. This was the southern part of Baffin Land (Resolution Island) in about $62^{\circ} \mathrm{N}$. lat. He was stopped by ice, but nearly two wecks later he reached the coast and entered an initet which he considered to be the strait of the north-west passage, and he gave it his awn name (it is now Frobisher Bay on Baffon Land). The land was called "Meta Incognita." Frobisher was not well prepared for going much tarther, and aiter his boat with five men had disappeared be returned home, where, unfortunately, some "gold-finders" in London took it into their heads that a piece of dark heavy stone brought back contained gold ore. This caused great excitement; it was now considered much more important to collect this precious ore than to find the north-west passage, and much larger expeditions were sent out in the two following years. As many as fifteen vessela formed the third expedition of 1578, and it was the intention to form a colony with a hundred men in the gold land, but this scheme was given up. Frobisher came into Hudson Strait, which was at Girst thought to be Frobisher Strait and therefore called Mistaken Strait. There was an open sce without any land or ice towards the west, and Frohisher was certain that he could sail through to the "Mare del Sur" (Pacific Ocean) and "Kathaya," hut his first goal was the "gold mines," and the vessels returned home with full loads of the ore. One of them, a huss (small ship) of Bridgwater, called the "Emmanuc," reported that on ber voyage home she had first sighted Frisland on the 8th (asth) of September, but four days later she had sighted another land in the Atlantic and sailed alongit till the following day; they reckoned its southern end to be in about $573^{\circ} \mathrm{N}$. lat. This land soon found its place on maps and charts south-west of Iceland

cend of Sust

 under the name of Buss Island, and as it was never seen again it was after 1745 called "the sunken land of Buss." The explanation is that, misled by the maps, Frobisher assumed Grecnland to be Frisland of the Zeno map and Baffin Land was afterwards assumed to be the cast coast of Greenland. When the buss on her way home sighted Greenland in about 62° N., she therefore thought it to be Frisland, but when she four days later again sighted land near Cape Farewell and her dead reckoning probably had carried her about two degrees too far south, she naturally considered this to be a new land, which puzzied geographers and navigators for centuries. Owing to a similar mistake, not by Frohisher, but by later cartographers and especially by Davis, it was afterwards assumed that Frobisher Strait (and also Mistaken Strait). was not in Baffin Land but on the east coast of Greepland, where they remained on the maps till the 18th century.John Davis, who made the next attempt to discover a northwest passage, was one of the most scientificseamen of that age. Davis. He made three voyages in three successive years aided and fitted out by William Sanderson and other merchants. Sailing from Dartmouth on the 7 th (g th) of June i585, with two ships, he sighted on the 20th (30 hh) of July "the most deformed, rocky and mountainous land, that ever we sa we." He named it the Land of Desolation, although he understood that he had rediscovered "the shore which in ancient time was called Groenland." It was its east coast. He visited the west const, where Frobisher had also landed mistaking it for Frisland. Davis anchored in a place called Gilbert's Sound in $64^{\circ} 10^{\prime}$ (near the present Danish settlement of Godthazb) and had much intercourse with the Eskimo. He then, crossing the strait which bears his name, traced a portion of its western shore southwards from about $66^{\circ} 40^{\circ} \mathrm{N}$. lat. and came into Cumberland Sound, which he thought to be the strait of the north-west passage, but returned home on account of contrary winds. In the second voyage (with four ships) Davis traced the western shore of Davis Strait still farther southwards, and sailed along the coast of Labrador. In the third voyage (with three ships) in 1587 he advanced far up his own strait along the west coast of Greenland in a small leaky pinnace, the "Ellin," and reached a lofty granite island in $72^{\circ} 4 y^{\prime}$ N. lat., which he named Hope Sanderson. He met with ice in the sea west of this place, but
reported that there was not " any yce towards the north, but a great sea, free, large, very salt and blew, and of an unsearche: able depth." By contrary winds, however, he was prevented from sailing in that direction. He sailedinto Cumberland Sound, but now lound that there was no passage. He also passed on his way southwards the entrance to Frobisher Strait, which be named Lumley Inlet, and Hudson Strait, without understanding the importance of the latter. When Davis came to Labrador, where his two larger ships were to have waited for him, they had sailod to England. The lituc "Ellin" now struck a sunken rock and sprung a leak, which was repaired, and he crossed the Atlantic in this small leaky craft. He still believed in the existence of a possage through Davis Strait, but could find no support for another Arctic voyage. Davis was not the first to discover this strail; it was well-known to the Norsemen. Gaspar Corte-Real had possibly also been there, and Frobiaher had during his voyages crossed its southern part every year. The result of Davis's discoveries are shown on the Molyneux globe, which is now in the lilirary of the Middle Temple; they are also shown on the "New Map" in Hakluyt's Primcipal Navigations ($1598-1600$). When Davis was trying to reconcile his discoveries with the previous ones, especially those of Frobisher, he made fatal mistakes as mentioned above.

As early as 1565 , by the intervention of a certain Philip Winterkönig, an exile from Vardöhus in Norway, Dutch merchants formed a settlement in Kola, and in 157^{8} two Dutch ships anchored in the mouth of the river Dvina, and a Dutch settlement was estahlished where Archangel was built a few ycars later. The leading man in these undertakings was Olivier Bruncl, who is thus the founder of the White Sea trade of the Dutch; be was also their first Arctic navigator. He had travellod both overland and along the coast to Siberia and reached the river Ob ; he had also visited Kostin Shar on Novaya Zemlya. He propounded plans for the discovery of the north-east passage to China, and in rg8i he went from Russia to Antwerp to prepare an expedition. He probably started with one ship in 1582, on the first Arctic expedition which left the Netherlands. Littic is known of its fate except that it ended unsuccessfully with the wreck of the ship in the shallow Pechora Bay, possibly after a vain attempt to penetrate through the Yugor Strait into the Kara Sea. In 1583 we find Olivier Brund in Bergen trying to organize a Norwegian undertaking, evidently towards the north-east, but it is uncertain whether it led to anything.

The Dutch, however, had begun to see the importance of a northern route to China and India, especially as the routes through the southern scas were jealously guarded by the Spaniards and Portuguese, and after 1584 all trade with Portugal, where the Dutch got Indian goods, was forbidden. By Brunel's efforts their attention had been directed towards the north-east passage, but it was not until 5594 that a new expeditlon was sent out, one of the promoters being Peter Plancius, the learned cosmographer of Amsterdam. Four ships sailed from Huysdunen on the 5 th ($15^{\text {th }}$) of June 1594 . Two of these ships from Amsterdam were under the command of Willem Barents, who sighted Novaya Zemlya, north of Matochkin Shar, on the $4^{\text {th }}$ (14^{ch}) of July; and from that date until the ist (ath) of August Barents continued perseveringly to seck a way through the ice-floes, and discovered the whole western coast as far as the Greal Ice Cape, the latitude of which he, with his admirable accuracy, determined to be 77° N. Having reached the Orange Islands at the north-west extremity, he decided to return. The two other ships undor the command of Cornelis Nay had discovered the Yugor Strait, through which they sailed into the Kara Sea on the ist (Inth) of August. They reached the west coast of Yaimal; being sure that they had passed the mouth of the river Ob , and finding the sea open, they thought they had found a free passage to Japan and China, and returned bome on the 11th (21st) of August. A new expedition was made the following year, 1595, with seven ships under the command of Cornelis Nay, as admiral, and Willem Barents as
chief pllet, but it merely made severai unsuocessful attempts to enter the Kara Sea through the Yugor Strait. The third expedition was more important. Two vessels sailed from Ansterdam on the toth (20th) of May 1506 , under the command of Jacob vain Heemsterck and Corncliszoon Rijp. Barents accompanied Heemsterck as pitor, and Gerrit de Veer, the historian of the royage, was on board as mate. The masses of ioe in the straits leading to the Sea of Kara, and the impenetrable nature of the pack near Novaya Zemlya, had uggested the advisability of avoiding the land and, by keeping a northerly course, of seeking a passage in the open sea. They sailed northwards, and on the gth (rgth) of Jume discovered Bear Island. Continuing on the same course they sighted a mountainous suow-covered land in about $80^{\circ} \mathrm{N}$. lat., soon afterwards being stopped by the polar pack ice. This important discovery was named Spitsbergen, and was believed to be a part of Greenland. Arriving at Bear Island again on the ist of July, Rijp parted company, while Heemskerck and Barents proceeded eastward, intending to pass round the porthern extreme of Novaya Zemlya. On the 26th of August (Sept. 5) they reached Ice Haven, after rounding the northern extremity of the land. Here they wintered in a house built out of driftwood and planks from the 'tween decks and the deck-house of the vessel. In the spring they made their way in boats to the Lapland coast; but Barents died during the voyage. This was the first time that an arctic winter was successfully faced. The voyages of Barents stand in the first rank amone the polar enterprises of the roth century. They led to flourishing whale and seal fisheries which long enriched the Netheriands.

The English enterprises were continued hy the Muscovy Company, and by associations of patriotic merchants of London; Waymente. and even the East India Company sent an expedition under Captain Waymouth in 1602 to seck for a passage by the opening seen by Davis, but it had no success.
The best servant of the Muscovy Company in the work of polar discovery was Ifenry Hudson. His first voyage was Ampese undertaken in 1607, when be discovered the most northern known point of the east coast of Greenland in $73^{\circ} \mathrm{N}$. named "Hold with Hope," and examined the ice bet ween Greenland and Spitsbergen, probably reaching Hakluyt's Headland in $79^{\circ} 50^{\circ} \mathrm{N}$. On his way home he discovered the island now called Jan Mayen, which he named "Hudson's Tutches." In his second expedition, during the season of 1608 , Hudson examined the edge ol the ice between Spitsbergen and Novaya Zemfya. In his third voyage be was employed by the Dutch East India Company; he again approached Novaya Zemlya, but was compelled to return westwards, and he explored the coasts of North America, discovering the Hudson river. In $\mathbf{1 6 r o}$ he entered Fudson Strait, and discovered the great bay which bears and immortalizes his name. He was obliged to winter there, undergoing no small hardships. On his way home his crew mutinied and set him, his littie son and some sick men adrift in a boat, and the exploret perished in the seas the had opened up.
The voyages of Hudson Ied immediately to the Spitsbergen whale fishery. From ${ }^{1} 609$ to 1612 Jonas Poole made four soltaberspe voyages for the prosecution of this lacrative business, Whats. Prevery. and Edge. These bold seamen, while in the pursuit of whales, added considerably to the knowledge of the archipelago of islands known under the name of Spitsbergen, and in 1617 Captain Edge discovered an island to the eastward, which he named Wyche's land.

About the same period the kings of Denmark began to send expeditions for the rediscovery of the lost Greenland colony. In thos Christian IV. sent out three ships,
pambly under the Englishmen Cunningham and Hall and a Dane named Lindenov, which reached the western coast of Greenland and had much intercourse witb the Eskimo. Other expeditions followed in 1606-1607.

Mearwhile, the merchant adventurers of London contigued
to push forward the western discovery. Sir Thomas Dution, in command of two ships, the "Resolution" and "Discovery," sailed from England in May 1612. . He entered Hudson Bay, crossed to its western shore, and wintered at the mouth of a river in $57^{\circ} 10^{\circ} \mathrm{N}$. which was named Nelson river after the master of the ship, who diet and was buried there. Next year Button explored the shore of Southampton Island as far as $65^{\circ} \mathrm{N}$., and returned bome in the autumn of 1613. An expedition under Captain Gibbons despatched in 1614 to Hudson Bay was a failure; but in 1615 Robert Bylot as master and William Baffin as pilot and navigator in the "Discovery" examined the coests of Hudson Strait and to the north of Hudson Bay, and Bafin, who was the equal of Davis as a scientific seaman, made many valuable observa.
lions. In 16IG Bylot and Baffin gaain set out in the
"Discovery." Sailing up Davis Strait they passed that mavigator's farthest point at Sanderson's Hope, and sailed round the great channel with smaller channels leading from it which has been known ever since as Baffin Bay. Bafinn named the most northern opening Smith Sound, after the first governor of the East India Company, and the munificent promoter of the voyage, Sir Thomas Smith. Lancaster Sound and Jones Soand were named after other promoters and friends of the voyage. The fame of Baffin mainly rests upon the discovery of a great channel extending north from Davis Strait; but it was unjuslly dimmed for many years, owing to the omission of Purchas to publish the navigator's tabulated journal and map in his great collection of voyages. it was two hundred ycars before a new expedition sailed north through Baffin Bay. It may be mentioned, as an illustration of the value of these early voyages tomodernscience, that Professor Hansteen of Christiania made wse of Baffin's magnetic observations in the complation of his series of magnetic maps. In 1619 Denmark sent out an expedition, under the command of Jens Munk, in search of the north-west passage, with two ships and 64 men . They reached the west coast of Hudson Bay, where they wintered near Charchill rive. hut all died with the exception of one man, a boy, and Mumk himsclif, who managed to sail home In the smallest ship.
In 1631 two expeditions were despatched, one by the merchants of London, the other by those of Bristol. In the London ship "Charies" Luke Fox explored the westem side of Hudson Bay as lar as the place called "Sir teme Ran: Thomas Roc's Welcome." In Augast he encountered Captain James and the Bristol ship "Maria" in the middle of Hudson Bay, and went north until be reached "North-west Fox bis farthest," in $66^{\circ} 47^{\prime} \mathrm{N}$. He then returned home and wrote an entertaining narrative. Captain James had to winter off Chariton Island, in Jarnes Bay, the southern extreme of Hudson Bay, and did not return until October 1632. Another English voyager, Captain Wood, attempted, without success, to discover a north-east passage in 1676 through the sen round the North Pole, but was wrecked on the coest of Novaya Zemily.

The 16th and 27 th centuries were periods of discovery and daring enterprise. Hudson Strait and Bay, Davis Strait and Baffin Bay, the icy seas from Greenland to Spitsbergen and from Spitsbergen to Novaya Zomilya had all been explored; but much more was not discovered than bad been well knowa to the Norsemen five or six centuries earlier. The following century was rather a period of reaping the results of former efforts than of discovery. It saw the settlement of the Hudson Bay Territory and of Greenland, and the development of the whale and seal fisheries.
The Hudson's Bay Company was incorporated in 1670, and Prince Rupert sent out Zachariah Gillan, who wintered at Rupert river. At first very slow progress was made. A voyage undertaken by Mr Knight, nearly 80 years old, who had been appointed governor of the factory at Neison river, was unfortanate, as his two ships were lost and the crews perished. This was in 1719 . In 1722 John Scroggs was sent from Churchill river in search of the missing ships, hut merely entered Sir Thomas Roe's Welcome and returned. His reports were believed to ofier decisive proofs of the exikenct
of a pasage finto the Pacific; and a naval expedtion was despatched under the cormmand of Captain Christopher Middketon, uncelotas. consisting of the "Discovery " pink and the "Yurnsce "bomb. Wintering in Churchill river, Middletonatarted in July 1742 and discovered Wager river and Repulse Bay. In 1746 Captain W. Moor made anotber voyage in moor. the aame direction, and explored the Wager Inlet. Later in the centory the Hudson's Bay Company's servants made some important land journeys to discover the shores of the American polar ocean. From 176920 1772 Samuc! Hearne descended the Coppermine River to the polar sce; and in 1789 Alerander Mackenzie discovered the moutb of the Mackenxie river. (For tbe establishment of the modern Danish settlements in Greenland, see Greenland.)

The countrymen of Barents vied with the countrymen of Hudson in the perious calling which annually brought fleets Detst of ships to the Spitsbergen seas during the 17 tb and Whato Whelo Pitubior. r8th centuries. The Dutch had their large summer station for boiling down blubber at Smectenberg, near the northern extreme of the west coast of Spitsbergen. Captain Viamingh, in 1664, advanced as far round the northern end of Novaya Zemiya as the winter quarters of Barents. In 3700 Captain Cornelis Roule is said by Witsen to have sailed north in the longitude of Novaya Zemlya and to have seen on extent of 40 m . of broken land, but Theunis Ys , one of the most experienced Dutch navigators, believed thet no vessel had ever been nortb of the 82nd parallel. In 167r Frederick Mertens, a German surgeon, visited Spitsbergen, and wrote the beat mcoount of its physical features and natural history that existed previous to the titne of Scoresby. In 1707 Captain Cornelis Gilfes went far to the eastward along the northern shores of Spitsbergen, and saw land to the east in $80^{\circ} \mathrm{N}$., which has since been known as Gilics Land. The Dutch geographical knowledge of Spitsbergen was embodied is the famous chart of the Van Keulens (father and son), $1700-$ 1728. The Dutch whale fishery continued to flourish until the French Revolution, and fortned a aplendid mursery for traising the seamen of the Netheriands. From 1700 to 1775 the whaling fieet numbered 100 ships and upwards. In 1719 the Dutch opeped a whale fishery in Davis St rait, and continued to frequont the west coast of Greenland for upwards of sixty years from that time.

The most flourisbing period of the British fisherg in the Spitsbergen and Greenland seas was from 1751 to $\mathbf{2 8 2 0}$. Bountics arime of sos. per ton were granted by act of parliament; What and in 1778 as many as ass sail of whalers were phenerr. employed. In order to encourage discovery f 5000 was offered in 1776 to the first ship that shouid sail beyond the 8gth parallel (i6 Geo. III. c. 6). Among the numeroys daring somasiby. and able whaling captains, William Scorcsby takes the first rank, alike as. a successful whaler and a scientific observer. His admirable Aacound of the Ardic Regions A still a textbook for all students of the subject. In 1806 he sucreeded in advancing his ship "Resolution" as far north as $81^{\circ} 12^{\prime} 49^{\prime \prime \prime}$. In 1822 he forced his way through the ice which encumbers the approach to land on the east coast of Greenland, and surveyed that coast from 75° down to $69^{\circ} \mathrm{N}$, a distance of 400 m . Scoresby combined the closest attention to his business with much valuable scientific work and no insignificant amount of exploration.
The Russians, after the acquisition of Siberia, succeeded in gradually exploring the whole of the northem shores of that vast region. In 1648 a Cosenck named Simon Deahneff is said to have equipped a boat expedition in the river Kolyma, passed through the strait since named after Bering, and reachod the Gulf of Anadyr. In 1738 a voyage was made by two Russian officers from Archangel to the mouths of the Ob and the Yenisei. Efforts were then made to effect a pasage from the Yenisai to the Lena. In 1735 Lieut. T. Curbyellele Chelyuskin got an far as $77^{\circ} 25^{\prime}$ N. near the cape wbich bears his name; and in 1743 he rounded that most merthem point of Siberin in sledges, in $77^{\circ} 41^{\prime} \mathrm{N}$. Captain

Vitus Bering, a Dand, was appointed by. Peter the Greet. to command an expedition in 1725. Two vessels were baitt a Okhotsk, and in July 1728 Bering ascertained the existence of a strait between Asla and America. In 1740 Bering was again employed. He sailed from Okhotel in a vesset calied the "St Paul," with G. W. Steller on bound as naturalist. Theit object was to discover the Amerfcan side of the strait, and they sighted the magnificent peak niamed by Bering Mi St Elias. The Aleutian Islande were also explored, but the ship was wrecked on an island named after the ju-fated discoverer, and scurvy broke out amongst his crew. Bering himsell died there on the 8 th of Deecmber 174r:

Thirty years after the death of Bering a Russian merchant named Liakhoff discovered the New Siberia or. Liakbofi Istands, and in 1771 he obtained the exclusive right from the empress Catherine to dig there for fossil ivory. ${ }^{\text {ondengiom. }}$ These islands were more fully explored by an officer named Hedenstrom in 1809 , and seekers for fossil ivory anneally resorted to them. A Russian expedition under Captain Chitschakoff, sent to Spitsbergen in 1764, was only able to attain a latitude of $80^{\circ} 30^{\circ} \mathrm{N}$.
From 1773 onwards to the end of the $29 t h$ century the objects of polar exploration were mainty the mequisition of innowledge in various branches of science. It was on these grounds that Daincs Barrington and the Royal Society indoced the Brilish government to undertake aretic oxploration once mare. The result was that two vessels, the "Racchorse" and ", Carcass" bombs, were commissioned, under the command of Captain J. C. Phipps. The expedition aniled from the Nore on the and of June $\mathbf{1 7 7 3}$, and was stopped by the ice to the north of Hakluyt Headhnd, the north-westers point of Gpitir bergen. Phipps teached the Seven Islands and discovered Walden Island; but beyond this point progress was impossible. When be attained their highest latitude in $80^{\circ} 4^{\prime} \mathbf{N}$., north of the central part of the Spitsbergen group, the ise at the edse of the pack was 24 ft. thick. Captain Phipps returned to England in Seplember 1773. Five years afterwards Jamea Cook received instructions to proceed northward from Kamchatka and search for a north-east or morth-west passage from the Pacific to the Atlantic. In accordance with these orders Captain Cook, during his third-voyage, reached Cape Prince of Wates, the western extremity of America, on the gth of August 1778. His ships, the "Resolution" and "Discovery." arrived at the edge of the ice, efter pessing Bering Strait, in $70^{\circ} 41^{\prime} \mathrm{N}$. On the 17th of August the farthest point seen ou the American side was nansed Icy Cape, Om the Asiatic side Cook's survey entended to Cape North. In the following year Captatn Clerke, who had suoceeded to the command, made another voyage, but his ship was beset in the ice, and so much damaged that further attenapts ware abandoned.

The wars following the French Revolution put an end to voyages of discovery till, after the peace of 1815 , north polar research found a powerful and indefaligable edvocate in Sir John Barrow. Through his influence a measure for Barrow. promoting poiar diseovery became law in 1818 (58 Geo. U1. c. 20), by which a reward of $\{20,000$ was offered for making the north-west passage, and of $\left\{5000\right.$ for axaching $89^{\circ} \mathrm{N}$., while the commissioners of longitude wese empowered to swand proportionate sums to those who might achieve certain portions of such discoveries. In 1817 the icy scas were reported by Captain Scoresby and others to be remarkably open, and this circurmatance enabled Barrow to obtain sanction for the despatch of two expeditions, each consisting of two whalers-one to attempt discoveries by way of Spitsbergen and the other by Maffin Bay. The vessels for the Spitsbergen, route, the "Dorothes" and "Trent," were commanded by Captain David Buchan and Licut. John Franklin, apd sailed in April 1818. Driven into the pack by a beavy swoll from the south both vessels were severely nipped, and had to retura to England. The other cxpedition, consisting of the "Isabellas n. uind "Alexander," commanded by Captain John Ross and Lient.

Edward Parry, followed in the wake of Baffin's voyage of 1616. Ross sailed from England in April 1818. The chief merit of his voyage was that it vindicated Buffin's accuracy as a discoverer. Its practical result was that the way was shown to a lucrative fishery in the "North Water " of Baffin Bay, which continued to be frequented by a lleet of whalers every year. Captain Roas thought that the inlets reported by Baffin were merely bays, while the opinion of his second in command was that a wide opening to the westward existed through the Lancaster Sound of Baffin.

Parry was selected to command a new expedition in the following year. His two vessels, the "Hecla "and "Griper," porros. passed through Lancaster Sound, the continuation From of which was named Barrow Strait, and advanced sroser Vayaus. weatward, with an archipelago on the right, since known ss the Parry Islands. He observed a wide opening to the north, which be named Wellington Channel, and saited onwards for 300 m . to Melville Island. He was stopped by the impenetrable polar pack of vast thickness which surrounds the archipelago to the north of the American continent, and was obliged to winter in a harbour on the south coast of Melville Island. Parry's hygicnic arrangements during the winter were judicious, and the scientific resules of his expedition were valuable. The vessels returned in October 1820; and a fresh expedition in the "Fury " and "Hecia," again under the command of Captain Parry, sailed from the Nore on the Bth of May 1821, and passed their first winter on the coast of the newly discovered Melville Peninsula in $66^{\circ} 11^{\prime}$ N. Still persevering, Parry passed his second winter among the Eskimo at Igloolik in $69^{\circ} 20^{\prime} \mathrm{N}$., and discovered a channel leading westward from the head of Hadson Bay, whicb he named Fury and Hecla Strait. The expedition returned in the autumn of $\mathbf{1 8 2 3}$. Meantime Parry's erantimrs friend Franklin had been employed in attempts to Girse reach by land the northern shores of America, cermuy. hitherto only touched at two points by Hearne and Mackensie. Franklin went out in 1819, with Dr John Richardson, George Back and Robert Hood. They landed at York factory, and proceeded to the Great Slave Lake. In August of the following year they started for the Coppermine river, and, emberking on it, reached its mouth on the 18th of July 1821. From that point 550 m . of coast-line were explored, the extreme point being called Cape Turnagain. Great sufferings, from starvation and cold, had to be endured during the return journey; but eventually Franklin, Richardson and Back arrived saiely at Fort Chipperyan.

It was thought desirable that an attempt should he made to connect the Cape Turnagain of Franklin with the discoveries merry made by Parry during his second voyage; but the gworefirst effort, under Captain Lyon in the "Griper," was TH. unsuccessful. In 1824 three combined attempts were organized. While Parry agzin entered by Lancaster Sound and pushed down a great opening he had seen to the south named Prince Regent Iniet, Captain Beechey was to enter Bering Strait, and Franklin was to make a second journey by land to the shores of Arctic Americe. Parry was unfortunate, but Beechey entered Bering Strait in the "Blossom " in August 1826, and extended owr knowledge as har as Point Barrow Prakikns in $7 \mathrm{r}^{\circ} 23^{\prime} 30^{\prime \prime} \mathrm{N}$. Iat. Franklin, in $1825-1826$, deSmoned scended the Mackenzie river to its mouth, and exDr pit plored the coast for 374 m . to the westward; while Dr Richardson discovered the shore between the mouths of the Macikenxie and Coppermine, and sighted land to the northward, named by him Wollaston Land, the dividing channel being called Union and Dolphin Strait. They returned in the autumn of 1826 .

Work was also being done in the Spitsbergen and Barents Seas. From 1821 to 1824 the Russian Captain Latke was Lifita surveying the west ccoast of Novaya Zemlya as far as Cape Nassau, and examining the ice of the adjacent sen. In May 1823 the "Griper" sailed, under the command of Captain Clavering, to convey Captain Sahine to obvervations. Clavering pushed through the make in $75^{\circ}-30^{\prime} \mathrm{N}$.,
and succeeded in reaching the cast const of Greenland, where observations were taken on Pendulum Island. He charted the coast-line from 76° to $78^{\circ} \mathrm{N}$.

In Parry's attempt to reach the pole from the northern coast of Spitsbergen by means of sledge-boats (see Pansy), the highest latitude reached was $82^{\circ} 45^{\prime} \mathrm{N}$., and the attempt was persevered in until it was found that the ice as a whole was drifing to the south more rapidly than it was pomible to travel over it to the north.
In 1829 the Danes undertook an interesting piecse of explorntion on the east cosest of Greenland. Caplain Grath of the Danish navy rounded Cape Farewell in boats, with four Europeans and twelve Eskimo. He advanced Greet. as far as $65^{\circ} 18^{\prime} \mathrm{N}$. on the east coast, where he was stopped by an insurmountable bartier of ice. He wintered in $63^{\circ} 22^{\prime} \mathrm{N}$., and returned to the settlements on the west side of Greenland is 1830.

In the year 1829 Captain John Ross, with his nephew James Clark Ross, having been furnished with funds by wealthy distiller named Felir Booth, undertook a private expedition of discovery in a small vescel called the 7 me Remsen "Victory." Ross proceeded down Prince Regent Inlet to the Gulf of Boothia, and wintered on the enstern side of a land named by him Boothia. Felix. In the course of exploring excursions during the summer months James Ross crossed. the land and discovered the position of the north magnetic pole on the westers side of it, on the 1st of June 1831 . He also discovered a land to the westward of Boothia which he named King Willimen Land, and the northern shore of which he examined. The most nortbern point was called Cape Felix, and thence the coast treaded southwest to Victory Point. The Rosses could not get their little vessel out of its winter quarters. They passed three winters there, and then fell beck on the stores at Fury Beach, where they passed their fourth winter, 3832-1833. Eveatually they were picked up hy a whaler in Barrow Strait, and brought home. Grcat anxiety was saturally felt at their prolonged abeence, and in 1833 Sir George Back, with Dr Richard King as a
companion, set out hy land in search of the missing Beat explorers. Wintering at the Great Slave Lake, they left Fort Reliance on the 7th of June 1834, and descended the Great Fith river for 530 m . The mouth was reached in $67^{\circ} 11^{\prime} \mathrm{N}$., and then the want of supplies obliged them to return. In 1836 Sir George Back was sent, at the suggestion of the Royal Geographical Society, to proceed to Repulse Bay in his ship, the "Terror," and then to cross an assumed isthmus and examine the coastline thence to the mouth of the Great Fish river; but the ship was obliged to winter in the drifting pack, and was brought home in a sinking condition.

The tracing of the polar shores of America was completed by the Hudson's Bay Company's servants. In June 1837 Thomas Simpson and P. W. Dease left Chippewyan, reached the mouth of the Mackenric, and connected that position Smpore with Point Barrow, which had been discovered by the
"Blossom" in 1896. In 1839 Simpson passed Cape Turnagain of Franklin, tracing the cosst east ward so as to connect with Back's work at the mouth of the Great Fish river. He landed at Montreal Island in the mouth of that river, and then advanced eastward as far as Castor and Pollux river, his farthest castern point. On his return he travelled along the north side of the channel, the south shore of the King William Island discovered by James Ross. The southwestern point of this island was named Cape Herschen, end there Simpson built a cairn on the 26th of August 1839 Little remained to do in order to complete the delineation of the northern shores of the American continent, and this task was entrusted to Dr John Rae, a Hudson's Bay factor, in 1846. He went in boats to Repulse Bay, where he wintered in a stone hut nearly on the Arclic Circle; and there be and his six Orkney men maintained themselves on the detr they shot. During the spring of 1847 Dr Rae explored on foot the shores of a greal gulf having 700 m . of coast-line. He thus connected the work of Parry, at the mouth of Fury and Hiecia

Sernit, with the work of Row on the coast of Boothis, proving that Boothia was part of the American continent.

While Britiph explorers were thus working hard to solve some of the geographical problems relating to Aretic America, the Russians were similarly engaged in Siberia. In 1821 Andom Lleut. P. F. Anjou made a complete survey of the New Siberia lslands, and came to the conclusion that it was not possible to advence fer from them in a northerly direction, owing to the thinness of the ice and to open water existigg within 20 or 30 m . Baron Wrangell proscWracing cuted similar investigations froin the mouth of the Kolyma
between 1820 and 1823 . He made four journeys with dog between 1820 and 1823 . He made lour Journeys with dog
sledges, exploriag the const between Cape Chelagskol and the Kolyma, and making attempts to extond his journeys to some distance from tbe land, but he was always atopped by thin ice: In 1843 Middendorf was sent to explore the region which terminates in Cape Chelyuskin. He reachod Taimyr Bay in the height of the short summer, whence he saw open water and no lce blink in any direction. The whole aretic shore of Siberia had now been explored and delineated, but no vessel bad yet rounded the extreme northern point.

The auccess of Sir Janes Ross's Antarctic expedition and the completion of the northern coast-line of America by the Hudson's Bay Company's sorvants gave rise in 1845 to a fresh

Proallo

 Expodiliow. attempt to make the passage from Lancaster Sound to Beting Strait. The story of the unhappy expedition of Sir John Franklin, in the "Erebus " and "Terror," is told under Franklin; but some geographical details may be given bere. The heavy polar ice flows south-east betweon Melville and Baring Islands, down M'Clintock Channel, and impinges on the north-west coast of King William Land. It was this branch from the "palacocrystic" sea which finatly stopped the progress of Franklin's expedition. On leaving the winter quarters at Beechey Isiand in 1846 Franklin lound a channel leading south, along the western shore of the land of North Somerset discovered by Parry in 1819. It be could reach the channel on the American coast, he knew that he would be able to make his way along it to Bering Strait. This channel, now called Poel Sound, pointed directly to the south. He salled down it towards King William Island, with land on both sides. But directly the southern point of the western land was passed and no ionger shielded the channel, the great ice stream from Mclyille Island, pressing on King William Island, was encountered and found impassable. Progress might have been made by rounding the eastern aide of King William Island, but its insularity was then unknowa.It was not until 1848 that anxiety began to be felt about the Franklin expedition. In the spring of that year Sir James Ross soarch was sent with two ships, the "Enterptise" and argodmery "Investigator," by way of Lancaster Sound. He apen wintered at Leopold Harbour, near the north-east point of North Devon. In the spring he made a long sledge journey with Lieut. Leopold M'Clintock along the northern and western coasts of North Somerset, but found nothing.

On the return of the Ross expedition without any tidings, the country became thoroughly alarmed. An extenslve pian of search was organized-the "Enterprise" and "Investigator" under Collinson and M'Clure proceeding

Auntlo

 by Bering Strait, while the "Assistance" and "Resolute,"with two steam tenders, the " Pioncer" and "Intrepid," sailed on the grd of May 1850 to renew the search by Barrow Strait, under Captaln Horatio Aust in. Two brigs, the "Lady Franklin " and " Sephia," under William Penny, an energetle and able whaling captain, were sent by the same route. He had with him Dr Sutherland, a naturalist, who did much valuable scientific work. Austin and Penny entered Barrow Strait, and Franklln's winter quarters of 1845-1846 were discovered at Beechey Island; but there was no record of any kind indicating the direction taken by the ships. Stopped hy the ke, Austin's expedition wintered (1850-1851) In the pack of Griffith Island, and Penny found refuge In a harbour on the south coast of Cornwallis Island. Austin, who had been with Parry during his thfd voyage, was
an admirable organizer. Fis arrangements for'passing the winter were carefully thought out and answered perfectly. It concert with Penny he planned a thorough and extensive systern of search by means of sledge-travelling in the spring, and Liout. M'Clintock superintended every detail of this part of the work with unfiliing lorethought and skill. Penny undertook the search by Wellington Channel. M'Clintock advanced to Melville Island, marching over 770 m . in eighty-one days; Captaln Ommanney and Sherand Osborn pressed southward and discovered Prince of Wales Island. Lieut. Brown examined the western shore of Pcel Sound. The search was exhaustive; but, except the winter quarters at Beechey Island, no record was discovered. The absence of any record made Capeain Austin doubt whether Frankllin had ever gone beyond Beechey Island; so he also examined the entrance of Jones Sound, the next inlet Irom Baffin Bay north of Lancester Sound, on his way home, and returned to Engiand in the autumn of 185x. This was a thomughly well conducted expedition, especially as regards the sledge-travelling, which M'Clintock brought to great perfection. So far as the search for Franklin was coneerned, nothing remained to be done west or north of Barrow Strait.

In 185s the "Prince Albert " schooner was sent out by Lady Franklin, under Captain Wm. Kennedy, with Lieut. Bellot of the French navy as second. They wintered on the east cosst of North Somerset, and in the spring of 1852 the gallant Frenchman, In the course of a long Bamentery aledging journey, discovered Bellot Strait, separating North Somerset from Boothia-thus proving that the Boothia comet facing the strait was the northern extremity of the continent of America.

- The "Enterprise" and " Investigator " salled Irom England in January 185o, brat aceidentally parted company before they reached Bering Strait. On the 6th of May 18 gi the
" Enterprise " passed the strait, and rounded Polnt collumom Barrow on the 2 gth . Collinson then made his way up the narrow Prince of Wales Strait, between Banks and Prince Albert Islands, and reachod Princess Royal Islands, where M'Clure had been the previous year. Returning southwards, the "Enterprise " wintered in a sound in Prince Albert Island in $71^{\circ} 35^{\circ} \mathrm{N}$. and $117^{\circ} 35^{\prime} \mathrm{W}$. Three travelling parties were despatched in the spring of 1852 -one to trace Prince Albert Land in a southerly direction, while the others explored Prince of Wales Strait, one of them reaching Melville Island. In September I852 the ship was free, and Colllmson pressed eastward along the coast of North America, reaching Cambridge Bay (Sept. 26), where the second winter was passed. In the spring be examined the shores of Victoria Land as lar as $70^{\circ} 26^{\prime} \mathrm{N}$. and $100^{\circ} 45^{\prime}$ W.: here he was within a few miles of Point Victory, where the fate of Franklln would have been ascertained. The "Enterprise" agaln put to sea on the 5th of August 1853, and returned westward along the American coast, until she was stopped by ice and obliged to pass a third winter at Camdon Bay, in $70^{\circ} 8^{\prime} \mathrm{N}$. and 545 29^{\prime} W. In 1854 this remarkable voyage was completed, and Captain Collingon brought the "Enterprise " back to England.

Mcanwhile M'Ciure in the "Investigator " had passed the winter of $\mathbf{2 8 5 0 - 1 8 5 1}$ at the Princess Royal Islands, only 30 m . Irom Barrow Strait. In Oetober M'Clure ascended a hill whence he could see the frozen surfice of michren Barrov Strait, which was navigated by Parry in 1819-1820. Thus, like the survivors of Franklin's crews when they reached Cape Herschel, M'Clure discovered a north-west passage. It was impossible to reach it, for the stream of heavily packed lee which stopped Franklin of King William Land lay athwart their northward course; so, as soon as he was free in 1851, MPClare turned southwards, round the southern extreme of Banks Land, and commenced to iorce a passage to the northward between the western shore of that land and the enormous fields of ice which pressed upon it. The clifts rose like walls on one side, while on the ot her the stupendous lee of the" palaeocrystic see "rose from the water to a level with the "Investigator's" lower yards. After many hairbreadth escapes M'Clura took refuge in a bay on the northetn shore of Banks Land, which he named the Bay of

Cod's Mercy. Fere the "Investigator" remained, never to move again. After the winter of 1851-1852 M'Clure had made a jouracy across the ice to Melville Island, and left a record at Parry"s winter harbour. Abundant supplies of musk ox were fortunately obtained, but a third winter had to be faced. In tho spring of 5853 M'Clure was preparing to abandon the ship with all hands, and attempt, like Franklin's crews, to seach the American coast; hut succour arrived in time.

The Hudson Bay Company contipued the scarch for Franklin. In 1848 Sir John Richardson and Dr Rae examined the American pene Coast from the mouth of the Mackenxie to that of the jomimana Coppermine, In r849 and 1850 Rac continued the search; and by a long sladge jourocy in the spring of 1851 , and a boat voyage in the summer, he examined the shores of Wollaston and Victoria Laods, which were Elterwards explored by Captain Collinson in the "Enterprise,"

In 1852 the British government resolyed to despatch another expedition by Lancaster Sound. Austin's four vessels wero recommissioned, and the "North Star" was sent out as a depot Enann. chip at Beechey Island. Sir Edward Deicher commanded the "Assistance," with the "Pionecr" under Sberard Osborn as steam tender. He went up Wellington Channel to Northumberland Bay, where be wintered, passing a second winter jower down in Wellington Chanael, and then abamdoning his ships and coming home in 1854. But Sherard Osbom and Com. G. H. Richards did good work. They made sleder journeys to Mclvilic island, and thus discovered the mate northern side of the Parry group. Captain Kellett received command of the "Resolute," with M'Clintock in the steam tender "Intrepid." Among Kellett's officers were the best of Austin's sledge-travellers، M'Clintock, Mecham, and Vesey Hamilton, so that good work was sure to be done. George S. Nares, leader of the future expedition of $1874-1875$, was also on board the "Resolute." Kellictt pressed onwards to the westward and passed the winter of $1852-1853$ at Melville Island. During the autumn Mecham discovered M'Clure's record, and the position of the "Investigator" was thus ascer. tained Lieut. Pim made his way to this point carly in the following spring, and the officers and crew of the "Investigator," ied by M'Clure, arrived sulely on board the "Resolute" on the 17 th of Juoe 1853 . They reached England in the following year, having not only discovered but traversed a north-west passage, though not in the same ship and partly by travelling over ice. For this great leat M•Clure received the honour of knighthood, and a reward of $\{10,000$ was granted to bimself, the other officers, and the crew, by a vole of the Ilouse of Commons.

The travelling parties of Kelletl's expedition, led by II'Clintock, Mecham and Vescy Hamilton, completed the discovery of the northern and western sides of Melville Island, and the whole outline of the large island of Prince Patrick, Iurther west. M‘Clintock was away from the ship with his sledge party for one hundred and five days, and travelled aver 1328 m . Mecham was away ninety-four days, and travelled over 1163 m . Sherard Osborn, in $\mathbf{1 8}_{53}$, was away ninety-seven days, and travelled over 035 m. The "Resolute" was obliged to winter in the pack in $1853-1854$, and in the spring of 1854 Mecham made a remarkable journey in the hope of obtaining news of Captain Collinson at the Printess Royal Islands. Leaving the ship on the 3rd of April he was absent seventy days, out of whicb there were sixty-one and a half days of travelling. The distance gone over was 1336 statute miles. The average rate of the homeward journey was ${ }^{3} 3$ m. m a day, the everage time of travelling each day nine hours twenty-five minutes.

Fearing detention for another winter, Sir Edward Belcher ordered all the ships to be abandoned in the ice, the officers and crews being taken home in the "North Star," and in the "Phernix" and "Talbot," which had come out from England to communicate. They reached home in October 1854- In 1852 Captain Edward A. Inglefield, R.N., had mada a voyage up Baffin Bay in the "Isabel" as far as the entrance of Smith Sound. In 1853 and 1854 he came out in the "Phoenix " to communicate with the "North Star" at Beechey Island.

The drift of the " Resolute" was a remartabie pieof of athe direction of the current out of Barrow Strait. She was abandoned in $74^{\circ} 4^{\prime} \mathrm{N}$. and $101^{\circ} 11^{\prime} \mathrm{W}$. on the 14 th of May 1854 . On the ioth of September 1855 an American whateringropthe" sighted the "Resolute " in 67° N. hat. about twenty nailes from Cape Mercy, in Davis Strail. She had drilted nearly a thousand milcs, and haviag been brought into an Amcrican port, was purchased hy the United States and presested to the British goverament.
In $18 \mathrm{~s}_{3} \mathrm{Dr}$ Rac was employed to connect a few points which would quite complete the examination of the const of America, and establish the insularity of King Willian Land. Ife went up Chesterficld Inlet and the river Quoich, amoren wintering with eight men at Repulse Bay, where venison and fish were abundant. In 1854 he set out on a journey whicb occupied fifty-six days in April and May. He succeeded in connecting the discoveries of Simpson with those of James Ross, and thus established the fact that King William Land was an island. Rae also brought home the firse tidings and relics of Franklin's expedition galhered from the Eskimo, which decided the Adniralty to award him the f10,000'offered for defindte news of Franklin's face. Ledy Fraakin, however, aent out the "For " under the command of M'Clintock (see Frankeum). M^{\prime} Clintock prosecuted an exhausive scarch over part of the west casct of Boothia, the whole of the shores of King Winliam Island, the mouth of the Great Fish Rlver and Montrcal Island, and Allen Young completed the discovery of the southern side of Prince of Wales Island.
The catastrophe of Sir John Franklin's expedition led to 7000 m . of corst-line being discovered, and to a vast extent of unknown country being explored, securiag very considerable additiona to geographical knowledge.

The American mation was first led to take an interest in Polar research through a noble and gencrous sympethy for Franklia and his companions. Mr Grinnell of New York gave practical expression to this feeling. In 1850 be artmon. equipped two vesscls, the "Advance" and " Rascue," to aid in the scarch, commanded by Lieuts, de Haven and Geiffith, and accompanied by Dr E. K. Kane. They reached Beechey Ishand on the 27th of August 1850, and assisted in the examination of Franklin's winter quariers, but returned without wintering. In 1853 Dr Kane, in the litlie brig. "Advance," of 120 tons, undertook to lead an American expedition up Smith Saund, the most porthern outlet from Baffin Bay. The Remo "Advance" reached Smith Sound on the 7th of August 18 ss. but was stopped by ice in $78^{\circ} 45^{\circ} \mathrm{N}$. only 17 m . from the entrance. Kane doscribed the coast asconsisting of procipitous clifis 800 to 1200 fl . high, and at their base there was a belt of ice about 18 ft . thick, resting on the beach. Dr Kane adopted the Danish name of "ice-foot" (is fod) for this permanent frozen ledge. He named the place of his winter quarters Van Renyselaer Harbour. In the spring some interesting work was dome. A great glacier was discovered with a sea face 45 th. long and named the Humboldt glacier. Dr Kane's stevard, Morton, crossed the foot of this glacier with a team of does, and reached a point of land beyond named Cape Constilution. But sickness and want of means prevented much from being done by travelling parties. Scurvy attacked the whole party duriag the second winter, although the Eskimorupplied them with fresh meat and were true friends in need. On the ayth of May 18ss Dr Kane abandoned the brig, and reached the Danish settement of Upernivik on the 6th of August. Lieut. Hartstene, who was sent out to search for Kanc, reached the Van Rensselser Harbourafter he bad gone, but took the retreating crew on board on his seturn voyage.
On the ioth of July 1860 Dr I. I. Hayes, who had served with Kane, sailed from Boston for Smith Sound, in the achooser "United States," of 130 tans and a crew of Giteen men. His object was to follow up the line of research mene opened by Dr Kanc. He wintered at Port Foulke, in 78° 17^{\prime} N., but achieved nothing of importance and his marrative is not to be depended on.

Chariss Hall (9.3.), in bis first journey (1860-1801), discovered remains of a stone house which Sir Martin Frobisher buit on the End Countess of Warwick Island in 157^{8}. In his sccond expedition (1854-1869) Hall reached the fine of the retreat of the Franklin survivors, at Todds Island sad Peffer River, on the couth coast of King Wiltiam isiand. He heard the story of the retreat and of the wreck of one of the ships from the Estimo; be was told that seven bodies were buried at Tood Ikland; and he brought home some bones which are believed to be those of Lieut. Le Vescomie of the "Erebus." Finaliy, in 1871 he took the "Polaris" for 250 m . up the channcl which leads northwards from Smith Sound. The various parts of this long channel are called Smith Sound, Kane Basin, Kennedy Channel and Robeson Channel. The "Polaris" was beset in 83° if ${ }^{\prime} \mathrm{N}$. on the soth of August; her vinter quarters were in Thank God Harbour, $81^{\circ} 38^{\prime} \mathrm{N}$., and here Hall died.
The Spitsbergen ceas were explored during last century by Norwegian fishermen as well as by Swedish and German expedi-

Norweghen

 Explowitr tions and by British yachtsmen. In 1827 the Norwegian geologist Keilhau made an expedition to Bear Island and Spitsbergen which was the first purely scientific Arctic expedition. The Norwegian Spitsbergen fishery dates from 1820 , but it was only in the latter part of thecentury that Professor Mchn of Christiania carefully collected information from the captains who had taken pert in the work when at its height. In 1863 Captain Carlsen circumnavigated the Spitsbergen group for the first time in a brig called the "Jan Mayen." In 1864 Captain Tobiesen sailed round North-East Lend. In 1872 Captains Altmann and Nils Johnsen visited Wiche's Land, which was discovered by Captain Edge in 1617. In that year there were twenty-three sailing vessels from Tromso, tweat y-four from Hammerfest, and one from Vardo engaged in the Arctic sealing trade, averaging from 35 to 40 tons, and carrying a dozen men. Explorationwent on slowly, in the course of the sealing and fishing voyages, the records of which are not very full. In 1860 Carisen crossed the Kara Sea and reached the mouth of the Ob. In 1870 there were about sixty Norwegian vessels in the Barents Sea, and Captain Johannesen circumnavigated Novaya Zemlya. In 1873 Captain Tobiesen was unfortunately obliged to winter on the Novaya Zemlya coast, owing to the loss of his schooner, and both he and his young son died in the spring. Two years previously Captain Carisen had sutceeded in reaching the winter quarters of Barents, the first visftor since 1597, an interval of two bundred and seventy-four years. He fanded on the gth of September 1871, and lound the house still standing and full of interesting relics, which are now in the naval museurn at the Hague.Between 1858 and 1872 the Swedes sent seven expeditions to Spitsbergen and two to Greenland, marking a new scientific swodiah era in Arctic exploration, of which Keilhau had been Expedratoas, the pioneer. All returned with valuable scientifie results. That of 1864 under A. E. Nordenskibld and Duner made observations at 80 different places on the Spitsbergen shores, and fixed the heights of numerous mountains. In 1868, in an iron steamer, the "Sophin," the Swedes attained a latltude of $81^{\circ} 42^{\circ} \mathrm{N}$. on the meridian of $18^{\circ} \mathrm{E}$., during the month of September. In 1872 an expedition, consisting of the "Polhem " steamer and brig "Gladen," commanded by Prolessor Nordenakiold and Lieut. Palander, wintered in Mossel Bay on the northern shore of Spitsbergen. In the spring an important sledging journey of sixty days' duration was made over NorthEast Land. The expedition wis in some distress as regards supplies owing to two vessels, which were to have returned, having been forced to winter. But in the summer of $\mathbf{8} 83$ they were visited by Mr Leigh Smith, in his yacht "Dlana," who supplied them with fresh provisions.

Dr A. Petermann of Gotha urged his countrymen to take their share in the work of polar discovery, and at his own risk he fited out a small vessel called the "Germania," which sailed from Bergen in May 1868, under the command of Captain Koldewey. His cruise extended to Hinlopen Strait in Spitsbergen, but was merely tentative; and in

1870 Baron von Heuglin with Count Zeil explored the Ster Fjord in a Norwegian schooner, and also exemined Walter Thymen Strait. After the return of the "Germania" in 1868 a regular expedition was organized under the command of Captain Koldewey, provisioned lor two years. It consisted of the "Cermania," a screw stcamer of 140 tons, and the brig "Hansa," commanded by Captain Hetemann. Lieut. Juliws Payer, the future explorer of Franz Josel Land, gained his farst Arctic experience on board the "Gcrmenia." The expedition saded from Bremen on the $\mathbf{1}$ sth of June $\mathbf{3 8 6 9}$, its destimation beimg the east coast of Greealand. But in latitude $70^{\circ} 40^{\prime}$ N. the "Hamse" got separated from her consort and crushed in the ice. The crew buile a house of patent fucl on the floe, and in thes strange abode they passed their Christmas. In two months the current carried them 400 m . to the south. By May they had drifted 1100 m . on their ice-raft, and finally, on the 14th of Juae 1879 they arrived safely at the Moravian mission station of Friedrituhal, to the west of Cape Farewell. Fairer fortume attended the "Germania." She sailed up the east coast of Gremiand as far as $75^{\circ} 30^{\prime} \mathrm{N}$., and eventually wintered at the Pendulum Islapds of Clevering in $74^{\circ} 30^{\prime} \mathrm{N}$. In March 1870 a travelling party set out under Koldewey and Payer, and reached a distance of 100 m . from the ship to the northward, when want of provitions compelled them to return. A grim cape, named after Prince Bismarck, marked the northern limit of theis discoveries. As soon as the vessel was frce, a deep branching fjord, named Franz Josel Fjord, was disoovered in $73^{\circ} 15^{\prime} \mathrm{N}$. stretching for a iong distance into the Interior of Greealand. The expedition returned to Bremen on the 1sth of September 187 a.

Lieut. Payer was resolved to continue in the path of polar discovery. He and the maval officer Weyprecht chartered a Norwegian schooner called the "Isbjorn", and eramined the edge of the ice between Spitsbergea

Payer apd Wrypocht: and Novaya Zembya, in the summer of.1871. Their observations led them to seloct the route by the morth end of Novaya Zemiya with a view to making the north-enst passage. It was to be an Austro-Huagarian eapedition, and the idem was scized whh enthusiasm by the wholo monarchy. Weyprecht was to command the ship, while Julius Payer conducted the sledge parties. The steamer "Tegethoff," of 300 tons, was fitted out in the Elbe, and left Tromst on the 14th of July 1872. The season was severe, and the vessel was closely beset near Cape Nassau, at the northern end of Novaya Zemlya, in the end of August. The summer of $\mathbf{8} 83$ found her still a dose prisoner drifting, not with a current, but chiufly in the direction of the prevailing wind. At length, on the 3 rst of August, a mountainous country was sigined about 14 m . to the north. It October the vessel was drifted within 3 m . of an island lying of the main mass of land. Payer fanded on it, and found the latitude to be $79^{\circ} 54^{\prime} \mathrm{N}$. It was named after Count Wilczetc; one of the warmest friends of the expedition. Here the second winter was passed. Bears were numerous and sixty-seven were killed, their meat proving to be an efficient preventive of scurvy. In March 1874 Payer made a preliminary stedge fourney in intense cold (thermometer at $-58^{\circ} \mathrm{F}$.). On the 24th of March he started for a more prolonged journey of thinty days. Payer believed that the newly discovered country equalled Spits bergen in extent, and described it as consisting of two or more large masses-Wilezek Land to the east, Zichy Land to the wext; Intersected by numerous fjords and skirted by a large number of Islands. A wide channel, named Avstria Sound, was supposed to separate the two main masses of land, and extend to $82^{\circ} \mathrm{N}$. The whole country was named Frans Josef Land. Payer's large land-masses have by later discoveries been broken up into groups of islands and much of the land he thought he saw towards the east was found by Nansen not to exist. Payer returned to the "Tegethoff" on the 24th of April; and a third journey was undertaken to explore a large island named after M^{\prime} Clintoct. It then became necessary to abandon the ship and attempt a retreat in boats. This perilous voyage wis comnienced on the 20th or May. Three boats stored with provisions were placed on sledges. It was not until the rath of August that they reinched
the edge of the pact in $77^{\circ} 40^{\circ} \mathrm{N}$., and hunched the boats Eventually they were picked up by a Russinn schooner and arrived at Vardo on the 3rd of September 1874.

One of the most interesting problems connected with the physical geography of the poler regions is the actual condition

Whyremer.

 of the vast elevated interior of Greenland, which is one enormous glacier. In 1867 Mr Edward Whymper planned an expedition to solve the question, and weat to Greenland, accompanied by Dr Robert Brown; but their progress was stopped, after going a short distance over the ice, by the breaking down of the dog-sledges. The expedition brought home geological and matural history collections of value. Dr H. Rink, for many years royal inspector of South Grecnland and the most distinguished authority on all Greenlandic questions, also visited the inlaod ice. An important inland journey was undertaken by monter Professor A. E. Nordenskjold in 1870, accompanied sabuly by Dr Bergeren, professor of botany at Lund. The arventend difficulty of traversing the inland ice of Greenland is caused by the vast ice-cap being in constant motion, advancing showly towards the sea. This movement gives rise to huge crevasses which bar the travelier's way. The chasms cocur chiefly where the movement of the ice is most rapid, mear the ice streams which reach the sea and discharge icebergs. Nordenakibld therefore chose for a starting-point the northern arm of a deep inlet called Aulcitsivikfjord, which is 60 m . south of the discharging glacier at Jakobshavn and 240 north of that at Godthaab. He commenced his inland journey on the sgth of July. The party consisted of himself, Dr Berggren, and two Greenlanders; and they advanced 30 m . over the glaciers to a height of 2200 ft . above the sea.The gellant enterprises of other countries rekindled the zeal of Great Britain for Aretic discovery; and in 1874 the prime arceles Expoditien deapetched in the following year. Two powerful ©sish ceamers, the "Alert" and "Discovery," were selected for the service, and Captain George S. Nares was recalled from the "Challenger" expedition to act as leader. Commander Albert H. Markham, who had made a cruise up Baffin Bay and Barrow Strait in a whales during the previous year, Lieut. Pelham Aldrich, an accomplished surveyor, and Captain Henty Wemyss Feilden, R.A., as meturalist, were elso in the "Alert." The "Discovery" was commanded by Captain Heary F. Stephenson, with Lieut. Lewis A. Beaumont as first lieutenant. The expedition left Portsmouth on the soth of May 1875, and entered Smith Sound in the last days of July. After much difficulty with drifting ice Jady Franklin Bay was reached in $81^{\circ} 44^{\prime}$ N., where the "Discovery" was estabilched in winter quarters. The "Alert" pressed onwards, and reached the edige of the beavy ice named by Nares the palaeocrystic sea, the ice-floes being from 80 to 100 ft . in thickmesa Leaving Robeson Channel, the vessel made progress between the land and the grounded fioe picces, and passed the winter off the open coast and facing the great polar pack, in $83^{\circ} 27^{\circ}$ N. Autumn travclling parties were despatched in Soptember and October to lay out depots; and during the winter - complete scheme was matured tor the examination of as much of the unknown area as possible, by the combined efforts of sledgiag parties from the two ships, in the ensuing spring. The partics sturted on the 3 rd of April 1876. Captain Markham with Lieut. Parr advanced, in the face of great difficulties, over the polar pack to the latitude of $83^{\circ} 20^{\circ} \mathrm{N}$. Lieut. Aldrich explored the coast-line to the westward, facing the frozen polar ocean, for a distance of 250 m . Lieut. Beaumont made discoveries of great interest along the northern coast of Greenland The parties were atlacked by scurvy, which increased the dificulty and hardships of the work a hundrediold. The expedition returned to England in October 1876. The "Alert" reached a higher latitude and wintered farther north than any ship had ever dose before. The results of the expedition were the discovery of 300 m . of new coast line, the examination of part of the fromen polar ocean, a series of metcorological, magnetic and tidal olservations at two points farther north than any such
observations had ever been taten before, and large seofonfol and natural history collections.
In the same year 1875 Sir Allien Yoang undertook a voyage in his steam yacht the "Pandorn" to attempt to force his way down Peel Sound to the magnetic pole, and if poasible vorwe to make the north-west pasage by rounding the 0 ato eactera shore of King Willism Istind. The "Pandora" "promorn" entered Peel Sound on the agth of Ausust 1875, and proceeded down it much farther than any vessel had gone since it was passed by Franklin's two ships in 1846. Sir Allen reached a latitude of $72^{\circ} 14^{\prime}$ N., and sighted Cape Bird, at the northern side of the western entrance of Bellot Strait. Bet here ioe barred his progress, and he was obliged to retrace his track, returaing to England on the $\mathbf{1 6 t h}$ of October 1875. In the following year Sir Allen Young made another voyage in the "Pandore" to the entrance of, Smith Sound.

Lieut. Koolemans Beynen, young Dutch officer, who had shared Young's two polar voyages, on his return successlully endeavoured to interest his countrymen in polar discovery. It was wisely determined that the first expeditions of Holland should be summer reconnaissances on a small scale. A sailiog schooner of 79 tons was built at Amsterdarn, and named the "Willem Barents" In her first cruise she was cotmmanded by Lieut. A. de Bruyne, with Koolemans Beynen as mecond, and she sailed from Holland on the 6th of May 1878. Her instructions ware to examine the ice in the Barents and Spitsbergen seas, take deep-sen moundings, and make matural history collections. She was also to erect memorials to early Dutch polar worthics at certain designated points. These instructions were ably and zealously carried out. Beynen died in the following year, but the work he initiated was carried on, the "Willem Barents" continuing to make annual polar cruises for many years.

In 1879 Sir Henry Gore-Booth and Captain A. H. Markham, R.N., in the Norwegian schooner "Isbjoinn" sailed along the west coast of Novaya Zernlya to its most northern ame-geest point, passed through the Matochkin Shar to the east aed mertcoast, and examined the ice in the direction of Franz ban. Josef Land as far as $78^{\circ} \quad 24^{\prime} \mathrm{N}$., bringing homecollections in various branches of natural history, and making useful observalions on the drift and nature of the ice in the Barents and Kara Seas.
In 1880 Mr B. Leigh Smith, who had previously made three voyages to Spitshergen, reached Franz Josef Land in the polar steam yacht "Eira." It was observed that, while the Greenlend icebergs are generally angular and peaked, those of Franz Josef Land are flat on the top, like the Antarctic bergs. The "Eira" sailed along the south side of Franz Josef Land to the westwand and discovered 110 m . of coast-line of a new island named Alexandra Land, until the coast trended north-west. A landing was effected at several points, and valuahie collections were made in matural history. In the following year the same explorer left Peterhead on the 14th of July; Frana Josef Land was sighted on the a3rd of July, and the "Fira" reached a point farther west than had been possithe in ber previous voyage. But in August the ship was caught in the ice, was nipped, and sank. A hut was built on shore in which Mr Leigh Smith and his crew passed the winter of 1881-1882. their health being well maintained, thanks to the exertions of Dr W. H. Neale. On the $215 t$ of June 1882 they started in four boats to reach some vessels on the Novaya Zemlya coast. It was a most laborious and perilous voyage. They were first seen and welcomed hy the "Willem Barents" on the 20d of August, and soon afterwards were taken on board the "Hope," a. whaler which had come out to search for them under the command of Sir Allen Young.
Professor A. E. Nordenskiold, when he projected tbe achievement of the north-east passage, was a veteran polar explorer, lor he had been in six previous expeditions to Greenland and Spitsbergen. In 1875 he tumed his attention to the possibitity of navigating the seas along the northern coast of Siberia. Captain Joseph Wiggins of Sunderland was a pioneer of this route.
and his voyages in 1874, 1875 and 1876 led the wrey for a trade between the ports of Europe and the mouth of the Yenisei River.

Anateren atione treNa Reseate In June 1875 Profeseor, Norderakiold railed from Tromes in the Norweginn vessel, the "Proven," reached the Yenisei by wryy of the Kars Sen, and discovered an excellent harbour on the eastern side of its mouth, which was named Port Dickson, in bonour of Baron Osear Dictson of Gothenburg, the munificent mpporter of the Swedish expeditions. It having been saggested that the success of this voyage was due to the unusual state of the ice in 1875 ; Nordenskith undertook voyago in the following year in the "Ymer," which what equally sucoessfol. By a minute study of the history of former attempts, and a cureful consideration of all the circumstances, Professor Nondenskiald convinced himself that the schievement of the north-east pasage. Was feasible The kitig of Sweden, Baron Oscar Dickson, and M. Sibirinkoff, , wealthy Siberian proprietor, Bupplied the funds, and the steamer "Vegs" was purchnsed. Nordenkibid was leader of the expedition; Lient. Palander was appointed commander of the ship, and there was an efficieat sta量 of officets and naturalists, including Lieut. Hovgaard of the Danish and Lieut. Bove of the Italian nayy. A small steamer called the "Lena" was to keep company with the "Vegi "as far as the mouth of the Lent, and they sailed from Cothenburg an the 4 th of July 1878 . On the morning of the zoth of August they left Port Dickson, and on the rgth they reached the most northern point of Siberis, Cape Chelyuskin, in $77^{\circ} 4 t^{\prime} \mathrm{N}$. On leavins the extreme northern point of Asie a sonth-easteriy course was steered, the sea being free from ice and very shallow. This absence of ice is to some ertent due to the mass of warm water discharged by the great Siberian rivers during the anmmer. On the 27th of August the month of the river Lens was passed, and the "Vega" parted poupany. with the litele "Lens," continaing her course enstward. Professor Nordenskiold very nearly made the north-eart pessage in one season; but towards the end of September the "Vegr" was frozen in off the shore of a low pitim in $67^{\circ} \gamma^{\prime}$ N. and $173^{\circ} 20^{\circ}$ W. near the setthements of the Chulachis During the voyage very large and important matural history collections were made, and the interestIng sboriginal tribe among whom the winter was passed was studied with great care. The interior was also explored for some distance. On the 18th of July 1879 , fifter heving been imprianed by the ice for 294 days, the "Vega "again proceeded on ber voyage and passod Bering Strait on the 20th. Sir Hugh Willoaghby made his disastivis attempt in 2553. After a Inper of 326 years of internaftent effort, the north-east pasage had at length been accomplished without the loss of (gingle life and without damage to the vessel. The "Vegan" arrived at Yolcohmas on the and of September 1879.

In 8879 an enterprise wras andertaken in the United Staten, with the object of throwing further light on the sad history of the reterett of the officers and men of Sir John Franklin's epedition, by eramining the west coast of King Eclumetras Willian Inland in the mammer, when the spow is off the groupd. The party comaisted of Lieut. Schwatks of the United States army and three othens. Wintering neer the entrance of Cheaterfield Inlet in Hindeon Bay, they set out Overland for the estung of the Grest Disk river, saristed by Fetrino and dogs, on the zst of April 1879 . They took only one month' provisions, eheir moin reliane being upon the game afforded by the region to be traverod. The party obtained, during the foutneys out and home, 20 bens than 522 zeindeer. After collecting varions stories from the Fakinno at Montrenl Lsiand and st an iniet west of Cape Richandion, Schwatke crossed over to Cape Fershel on King William Land in June. He eramined the westera chose of the isinud with the grestest cere for relics of Sir Johe Franklin's parties, as far as Cape Felix, the northern extarnity. The return joumey was commenced in November by ascending the Great Finh aiver for some distance and then marching over the intervening region to Hudson Bay. The cold of the winter monthes in that country is intense, the thermometer filling as low as - yo E. 8 , 0 that the return journey was mod
penarkable, and reflects the highest credit on Lieut. Schwatka and his companions. As regards the search hittle was left to be done after M^{4} Clintock, but some graves were found, as well as a medal belonging to Lieut. Irving of H.M.S. "Terror," and some bones believed to be hit, which were brought homo and interred at Edinburgh.

Mr Cordon Bennett, the proprietor of the Nes Yofk Eicald, having resolved to despatch an expedition of discovery at his own experse by way of Bering Strait, the "Pandort" was purchased from Sir Allen Young, and rechristened the " Jeannette." Iíeut. de Iong of the United States nery was appointed to command; and it was made a national undertaking by special act of Congress, the vessel being placed under martial Lnw and officered from the navy. . The "Jeannette" sniled from San Francisco on the 8th of July:I879, and was last seen steaming towards Wrangell Land on the 3rd of September. This land: hed been seen by Captain Kellett; in H.M.S. "Herald " on the. 17th of August 1879, but no one had landed on it, and it was shown on the charts by i long dotted line. The " Jeannette" was provisioned for three years, but as no tidings had been received of her by $\mathbf{2 8 8}$, two steamers were sent up Bering Strait in search. One of these, the ". Rodgers," under Lieut. Berry, anchored in a good harbour on the south cont of Wrangell Land, in $70^{\circ} 57^{\circ}$ N., on the 261 h of August 1881 . The lapd was explored by the officers of the "Rodgers" and found to be an island sbout 70 m . long by 28 , with a ridee of hills traversing it east and west, the 7 rit parallel running along its southern shore, Liett. Berry then proceeded to cramine the ice to the porthward, and attained a higher latitude by 21 m . than had ever been retched before on the Bering Strait meridian-mamely; $73^{\circ} 44^{\prime} \mathrm{N}$. No news was obtained of the "Jeancette," but 800 n afterwards melancholy tidings arrived from Siberin. After having been beset in heavy pack ice for twenty-t wo monthe, tha "Jeannette" was crushed and sunk on the I3th of June 188r, in $77^{\circ} 15^{\prime}$ N. lat., and $155^{\circ} \mathrm{E}$. long. The officers and men dragged their boats over the fee to an island which was named Bennett Island, where they landed on the agth of July. They reached one of the New Siberia Islands on the roth of September, and on the z th they aet out for the mouth of the Lems. But in the same evening the three boats were separated in a gale of wind. A boat's crew with Mir Melville, the engineer, reached the Lena delta and searching for the other partics found the ship's books. on the ifth of November, and resuming the search at the earliest possible moment in spring, Melville disoovered the dead bodies of De Long and two of his crew on the 2gnd of March x882. They had perished from exhaustion and want of food. Three survivors of De Long's party had succeeded in making their way to a Siberion vilhge; but the third boat's crev was lost. The "Rodgers" was burnt in its winter quarters, and one of the oficers, W. H. Gilder (1838-1900), made a bazardous journey homewards through north-east Siberia
The Norwogion gealogist. Professor Amxind Helland made an erpedition to Greenland in $\mathbf{8} 855$ and discovered the rasvellously rapid movements of the Greenland glaciers.

The Danes hewre been very active in prosecuting discoverien and scientific investigations in Greenland, since the joumey of Nordenskiold in 1870 . Idiert. Jensen made a gallant attempt to penetrate the inland ice in 1878 , collecting important obeervations, and Dr Steenstrup, with Liert. Hammar, closely investigated the formntion of ice masses at Omenal and Jacobshavn. In 1883 an expedition nader Lieuts. Holm and Garde began to explore the east coast of Greeniand. In tho sumper of 1879 Captain Mourier, of the Damish man-of-war "Ingolf," sighted the coast from the 6th to the roth of July, and was enabled to observe and delineate it from 68° s 0^{\prime} N. to $65^{\circ} 55^{\circ} \mathbf{N}$., this being the gap left between the discoveries of Scoresby in 1822 and those of Graah in 2829 . Nansen sighted part of the same comst in 1882. Lieut. Hovgand of the Danish navy, who accompanied Nordenskiold in his discovery of the north-east passage, planned an expedition to ascertain if lnad existed to the north of

Cape Chelyuskin. Fio fitted oute a small steamer called the "Dymphin" and sailed from Copenhagen in July 1882, hat was unfortunately beset and obliged to winter in the Kara Sea. In 1883 Banon A. E. Noxdenskibld undertook another journey ower the inland ice of Greenland. Starting from Avileitsivicjoord on the 4 th of July, his party penctrated 84 m , castwerd, and to an alcitude of 5000 ft . The Laplanders. who were of the party were gent farther on anow-shoes, travolling over a devert of anov to a height of 7000 ft . Usefui reaults in physical geography and biology were obtained.
On the 18 ch of September r 875 Lieut. Weyprecht, one of the discoverers of Fraos Jasef Land, read a paper before elarge mect Crrasmpoter ing of German naturalists at Graz on the scientific Strimiones. results to be obtained from polar tesearch and the best means of tecuring them. Ee urged the importance of estahlishing a number of stations within or near the Arctic Circle, and also a ring of stations as near as possihle to the Antarctic Circio, in order to record complete series of synchronous metcoralogical and magnetic observations. Lilertu Weyprecht did not live to sce his suggestions carried into exrecution, but they bore fruit in due time. The various mations of Europe were reptesented at an international polar conference beld at Hamhurg ho 8879 under the presidency of Dr Georg Neumayer, and at another at Beme in 1880; and ft was decided that each ration should establish one or more stations where syichrongus obsorvations should be taken for a year from August 1882. This fine project was matured and muccesstolly carriod tnto enseation. The statlons arranged for in the North Polas region were it the following locelitiest-
Norwegians: Bossekop, Ahen Fjond, Normay (M. Aksel S. Steca).
 Dutch: Pert Dicksom, mouth of Yanisei, Siberia (Dr Mi. Secllen). Resians: $\left\{\begin{array}{l}\text { Sagasyy I sland, mouth of Lena, Sibcria (Lidut. Jurgens), }\end{array}\right.$ Rsmans: Noraya Zcmlya, $12^{\circ} 23^{\prime} \mathrm{N}$. (Licut. C. Andrcic). Finns: Sodiankya, Finland 'Professor S. Lemstrom).
 British: Great Slave Lake, Dominion of Canada Licut. Hracy, Dayson). Germans: Cumberland Bay, west side of Davis Strait (Dr W. Glesc). Danes: God haob, Greenland (Dr A. Paulsen).
Austrians: Jas Mayen, Norch Atiantic, 71° N. (Lieut. Wohlgemuth).
The whole selieme wis successfully accomplished with the exception of the part assigned to the Dutch at Port Dicksoni. They started in the "Vams "but were beset in the Kara Sea and ohliged to "finter there. The "Varna " was lost, and the crew" took refuge on board Lieul. Hovgaard's vessel, which was also forced to winter in the pack during 1882 m 883 . The scientifie observations were kept up on both vessels during the time they were difting with the ice.
The American tations commenced work in 1882 and one of these furnished a rare example of heroic devotion to duty in aroely. face of diffieulties due to the fault of those who should have hrought relief at the appointed time. Lieut. A. W. Grtely's party' consisted of $t w 0$ other lieutenants, tyenty sergeants and privates of the United States army, and Dr Pavy, an enthuslastic explorer who had been educated in France and had passed the previous winter among the Eskimo of Greenland. On the rith of August 888r the steamer "Protens" conveyed Lieut. Greely and his party to Lady Franklin Bay during an execptionnlly favourable season; a house was built at the "Discovery's" winter quarters, and they were left with two years' provisions. The regular series of observations was at once commenced, and two winters were passed without aecident. Travelling parties were also sent out in the summer, dogs having been obtained at Disco. Lleut. Lockwood with twelve men and eleven aledges made a journey along the north coast of Greenland and reached Lockwood lishond in $83^{\circ} 24^{\prime} \mathrm{N}$. and $42^{\circ} 45^{\circ}$ W., the Mighest Intitode reached np to that time. From this island at a height oi 2600 ft. on a clent day an unbroken expanse of ice was scen stretching to the northward, the view extending far beyond the 84th parallel. A promontory of the north coast of Greenland seen to the north-east in $83^{\circ} 35^{\prime}$ N. was named Cape Washington. Vegetation was found at the extreme position and animal life was represented by foxes, hares,
kemminga apd ptarmigan. The party returned to Fort Conger on the ist of June 1882 after an absence of 59 days. Groely reade two journeys trestward into the interior of Grimell Land follow. ing up the northern hranch of Chandler Fjord to a griat sheat of ímaen fresh watet; Elacen Lake, with an area of about goo eq. m. Beyond this, 175 m . from Tort Conger, he climbed it: Arthur, 4500 ft .; the bighest stmonit of Grinnell Land, and aster distant mountains heyond a fjord to the sontherest. In the apring of 1883 Lock wood made still more emenvive foemess crossing Grinnell Land to Greely Fiom, which entered the-wester sea. The central depreasion of Grioncil Land abounded in mask oxen and was free from ice, though the highar hand to north and gouth lay under permanent ioc-capas. Importint as these geographical discoveries were; the main ohject of the expedition was the series of scientific observatives at the headquarters, and there were carried out during the whole period wish the most scrupelous exactress. As meither the relief ship whict whs to have bieen despatched in 1882,-tor chat in 1883 , weot the expected reliaf to the station at Fort Conger, Lieat. Greely started frew Indy Frantlin Bay with his men in a stiam launch and three boats on the oth of August, expecting to find a veteal in Smith Soevid The bonts were besct and had to be abandoned, the party genching the showe scress the ice with great difficulty, "carying their supplize of food, now rapidly diminishing. On the 3 Int of October t888 they were oblgod to encamp at Cape Sabine, on the western abore of Smith Sound, and huild a hut for vintering. A few depots were foumi, which had been left by Sir Ceorge Nares and LJeut. Beebe, bot anl supplies were extmosed before the apring. Then came a time of indescribable mixery and aeate stiffering. The party.proved insubordiante and the sternest measures werc required to msintuin militery discipline. When the sun teturned in 1884 the poor sellows begon to die of actual starvation; but it was not until the anad of Juwe ress that the reheving steameis "Thetis" and "Bear" rewched Cape Sablnc. Leut. Greely and str suffering companions were found just allve, but with all their acientific recoeds, their intruments in order and the great collections of specimora intact. The failure of the sclief expeditions to overcome difficuilles which were chlldts play to what Greely and his companions had come through only enhances the aplendid courage and deturnination of the heroic survivors.

Dapish expeditions under Lieut. G. Holm explored the eat coast of Greesland from Cape Farewell northwards in Escime boats betweon 1833 and 1885; and at Angmagasebik zlecy oncountered a tribe of Eskimo who had never seen white men before. Lieat. Ryder and Liout. T. V. Garde comtinned the exploration of Rast Oreenluad, and Ryder explored the great Scoresby Flord. Captain Elolm established a missionary and meteorological statioes at Angmagesalit Fjord in 1894, from Which the Danish government take charge of the Eakimo of that region. In 1892-1893 an expedition seat out by the Berin Geographiasi Society umder Dr Erich von Drygiski studied the lee formations on the west of Greenland.

In July 1886 Leant. Robert E. Penry, civir engmeer, US Navy, accompanied by the Dane Christion Maigand, riade a fourney on the iniand foe of dirsenland enstward freme Dives Bay in about $69^{\circ} 30^{\circ} \mathrm{N}$. They reachad a height of 7360 ft., when according to Peary's observations they were $100 \mathrm{~m}_{\mathrm{r}}$ from the cosest, and then rothey were 100 my from the cosest, and then ro- frowerne
tufned. Dr Fridtjof Nansen who Otto Sverdrup and five ctier companions, after overcoming great differifies in peactratiag the for-floes, surceeded in landiag on the enat comet of Grevinan in August r888 in 64° a 3^{\prime} N. aad reached a height of 8920 it. on the inland fot, which was crosed on elloi to the weat coust. The interior was found co bo a nearly flat plateau of asod resembling a frozen octan, and at cho liga alcitnde of more that 8000 ft . the celd was totemse. The cruant two weeks, and the party not having dogs had themselves to haul all their gear on sledges. As they approeched the meitern edge of the loe thefr progrtss vas checked by dangerecas eromerer but on the 26 th of September they stroceeded in reaching the when boat the thead of the Amurilit Fiord th $60^{\circ} 3 x^{\prime} N_{0}$ haning
eraverad 260 m . of gherier. ' Nensen erspovered that in that hatitude the inland ice of Greenland has the form of a huge shield rising rather. rapidiy but regulady from tho cast const to nearty goco ft., flat and oven in the middle and falling again regularly toward the western side, completaly anveloping the land. An important principle acted on for the first time in Arctic travel on this journey was that of atarting from the less acceswible side and pusbing strigglt through with no possibility of turning back, and them with no neccessity for forming a base or travering the same rouse twice over.

Peary apent the winter of x8gi-1892 at Inglefield Gulf on the north-west coast of Greemsend, Mrs Peary, Dr F. A. Cook, Fivind Astrup end a coloured sectvant Mantehew Hemeon being in his party, and a large number of the Etah Exkimo in the vicinity. In April $x 89 z$ be set out for a journey acrous the inlend ice to the northerestward in the hope of reieching the easticosast and also the northen entremity of the land. After getting well ap on the icc-covered plateau a supporting party returned to winter quarters, while Peary and Astrup, with twe companions and sixteen dogs, entersed on the sericue part of their work. The highest part of the inland ice was found to be about 5700 ft ., and as usual after thefirx part of the descont, towarde the north: cast in this asse, the surface was beoken by numerous dangerouss crevissea, progresa mmongrt witich was very slow. Great hardships were experienced from cold, insufficiency of food and the wearing out of aledges and cothes, but oo the ath of July, having left the ice and got on bare land in $85^{\circ} 37^{\prime}$ N., where musk oxen and other game were found and fowers were growing, Peary was rewarded by a glimpte of the sea to the north eemstwand, and named. it from tho date Independence Bay. He also truced a chermed to the north boyond which lay, new land largety free from snow, no doubt the southern part of the island along the north of which Markham and Lockwood had travelled to their. farthert north. Tho retuin journey to Inglefield Gull way a woaderful feat of endurance, which was completed on the ath of August; the total dystance marched on the whole journey out and home was 1300 m . Peary returned to northern Greenland in 1893 , heving spent the whole time between the two expeditions in writing and lecturing in order to raise funds; for he travelied at his own charges. He lanided on the shore of Inglefield Gulf on the 3rd of August and wintered there with a party of thirteen, inclading Mrs Peary, and there their daughter was born. Astrup was taken ill after starting on the great journey in March 1894, which wes to have ertended the explorations of the previous year, and had to return; others were severcly frost-bitten, disease broke out amongest the dogs, and a month after the start Peary was onty 130 m . from his base and had to return. Peary with two of his party, Hugh J. Lee and Matthew Henson, remained at Inglefied Gulf for another winter, and on the rst of April 8895 , with deer and walrus meat in place of pemmican, the supply of which had been lost, set out for Independence Bay. They reached the icefree land when their food was echausted and fortunately fell in with a herd of musk oxen, the meat from which made it possible to get back to Inglefield Gulf, though without adding anything matcrial to the results of 1892. The experience of ice-travel and of Eskirno nature gained in tho four years' almost contincous residence in northern Greenland were however destined to bear rich fruit.
Dr Nansen, after making an exhaustive study of the winds and currents of the Arctic Sea, and lafluenced hrgely by the Namonis occurrence of driftwood on the shores past which the Drwefolo ice-laden waters fowed southward betireen Green"Prime" land and Spitsbergen, satisfied himself that there mas a gemetrl drift across the polar basin and perhaps across the Pole. Ho.plenmed mexpedition to take advantage of this drift on the principle which guided his crossing of Greenland, that of entering at the least accessible point and not turning back, thus having po fine of retreat and making a relief expedition impossible. He planned a ship, the " Fram," which was immenseiy strong, to resist crushing, and of such a section that if nipped in the ice the opposing fice-masses would pasa under ber and lift her on to the eurface. The plan of the expedition was based on eccentific
reasoning, but the meebode were totully at variance whth those of provious explorers. Otto Sverdrup, who had been one of Naosen's party in crossing Greenland, was captain of the " Fram," and the party included eleven others, the whole ship"z company of thirteen living together on terms of social equality. Nansen paid the greatest possible attention to the provisiona, and all the armagements for the health and happiness of those an board were carefully thought out. The clothing of the expedition was as original in design as the shlp; instead of having furs, thick woollen uinderclothing was adopted, with a light wind-proof material for the outer dress. The "Fram" loft Christiania in the summer of 1893 and made ber way through the Kara Sea and along the north coast of Asin until on the 20th of September she was run Into the ice in $77^{\circ} 3^{\circ}$ N.; off the New Siberia Islands, and the great drift commenced. : As anticipated, she rose to the premure of the ice and was borme on an everi keel high above the water lor the whole duration of the drift. The movement of the ice was irregular, and on the 7th of November the " Fram" was back at her starting-point, but on the whole the movement was north-west wand until the 15th' of November 1895, whan the highest latitude of the ship was attaioed, $85^{\circ} 35^{\circ} \mathrm{N}$. In $66^{\circ} 31^{\prime}$ E., the meridian of the east of Novayz Zemly; then it wes westward and finally southwand antil the ice was broken by hlasting round the ship in June in $83^{\circ} \mathrm{N}$. Lat.; and after being a Doat, though unable to make much progrese until the middle of July, the "Pram" broke out of the ice off the north coast of Spitsbergen on the 13th of August 1896. No ship belore or stace has reached so high a latitude. In all ber drift the "Fram" came in sight of no new land, but the soundings made through the ice proved that the Arctic Sea was of great depth, increasing towards the Pole, the greatest depth exiceeding 2000 fathoms. The great mass of water fillirg the polar basin was comparatively warm, indicating Iree circulation with the Allantic. It was established that the ice formed of the coast of Asia drifted across the polar basin in a period of from three to twe years, and the bypothesis on the truth of which Nansen risked his success was absundantly verified by facts. The ship's company all returned in perfect heahth. After the second winter on the "Fram" at a time when the northward movement of the drift scemed to be checked, Nansen, accompanied by Licut. Hjalmar Johansen, left the ship in order to explore the regiohs towards the Pole by travelling on ski with dog sledges carrying kayaks. It was obviously hopeless to at tempt to find the drifting ship on their return, and Nansen intended to make for Spitsbergen in the hope of mecting dne of the tourist steamers theth. A more daring plan was never formed, and it was justified by success. Leaving the ship on the r4th of March 1895 in 84° N. 102° E., they made a fairy rapld march northward, reaching a latitude of $86^{\circ} 5^{\circ} \mathrm{N}$. on the 8 th of Aprit; the nearest approach to the Pole so far achicved. Turning south-rest wards they travclled with much difficulty, sometimes on the ice, sometimes in kayaks in the open lanes of water, lincurring great danger from the aitacks of bears and walrus, but at length reaching a group of netr islands east of Franz Josef land. They travelied westward through this archipelago until the 28 ch of August, when they built a small stone but rooled with thetr light silk tent, in which they passed the winter on a Ind since called Frederick Jackson Island There they Ifved like Eskimo on bear and walros meat cooked over a blubber lamp. The journey southward was resumed in the spripg of 2896, and on the \mathbf{r} th of June they met Mr F. G. Jackson, in whose relicif ship, the "Windward," they returned to Norway. Nansen and Johansen reached Vardo on the 13th of August: 1806 full of anxicty for the fate of their old comrades, when by a coincidence unparalleled in the history of exploration, the "Fram" was on that very day bretiking out of the ice off Spitsbergen and the original party of thirteen was reunited at Tromso the following week and retumed together to Christiania. On this remarkable expedition'no uife was lost and the shlp came back undamaged under the skilled guldance of Sverdrup, with a greaf harvest of scientific results.
Mr Frederick George Jackson planned an exploring expedition
to attuin a high latitude by the Prans Jowef Land route and was supported financially by Mr A. C. Harmsworth (Lord Northsuckeop cliffe). He was accompanied by Lieut. Albert mermarert Armitage, R.N.R., as second in command and six Expodmber scientific men, including Dr Reginald Koettlizz; Dr W. S. Bruce also was one of the number in the second year. The Jacknon-Harmsworth expedition sailed in 1894, and was landed at Cape Flora, where log houses were built. In the apring of 1895 Jackson made a journcy northward to $81^{\circ} 19^{\prime} N$., the highest latitude reached, and added considerably to our knowledge of the archipelago by discovering a channel between croups of islands west of the Austria Sound of Payer. He made numerous other journeys by land and in boats, and gurveyed a considerable portion of the islands on which he landed, the most intcresting being that of 1897, to the western portion of the group. The geological collections were of some value and the specimens secured indicated that Franz Josef Land and Spitsbergen were parts of an extensive land existing in Tertiary times. The expedition returned in 1897.
In 1899 and subsequent years a party led by Sir Martin Cosway explored the interior of Spitsbergen. Dr A. G. Nathorst, the Swedish gcologist, explored the eastern coast and offlying islands, and made important obscrvations on North-East Land, circumnavigating the Spitsbergen archipelago in 1898. In 1899 Nathorst visited the north-east coast of Greenland in search of Andrée's balloon expedition, and here he mapped Franz Josef Fjord and discovered the great King Oscar Fjord in waters that had never been navigated before.

In subsequent years valuable surveys and scientific observations were made by the Prince of Monaco in his yecht "Princesse Alice," by Dr W. S. Bruce, notably on Prince Charles Foreland and by others. Franz Josef Land was visited by the American explorer W. Wellman in 1898 and 1900 , and his companion E. Baldwin in the former year made the discovery of several. islands in the east of the archipelago. A wealthy American. W. Zeigler, also sent out expeditions to Franz Josef Land in 1901 and between 1903 and 1005 , in the course of which A. Fiala reached the high latitude of $82^{\circ} 4^{\prime} \mathrm{N}$. in the "America," but the ship was afterwards lost in Teplitz Bay. These expeditions added little to our knowledge of polar gcography, but some-useful meteorological, magnetic and tidal observations were made.

The Italian expedition under the command of H.R.H. Prince Luigi, duke of the Abruzai, was the most successful of all those Datte of ite Abruxal which have attempted to reach high latitudes by way of Franz Josef Iand. Embarking in the summer of 1899 on the "Stella Polare" (formerly the Norwegian whaler "Jason" which had handed Nansen on the east coast of Greenland in 1888) the expedition put into Teplitz Bay in Rudolf Land, where they wintered and there the ship was scriously damaged by the ice. In the spring of 1900 a determined effort was made to reach the North Pole by sledging over the sea-ice. The duke of the Abruzzi having been disabled hy frost-hite, the leadership of the northern party devolved upon Captain Umberto Cagni of the Italian navy, who started on the xith of March 1900 with ten men (Alpine guides and Italian sailors) and nearly a hundred dogs. His plan was to sledge morthward over the sen-ice, sending back two parties as the diminishing stores allowed the advance party to take on the whole of the supplies destined to support them on their way to the Pole and back. Before losing sight of Rudolf Island three men forming the first party started to return, but they never reached winter quarters and all must have perished. The second pirty went back from latitude $83^{\circ} 10^{\prime} \mathrm{N}$., and reached their base in safety. Cagni pushed on with three companions, determined il he could not reach the Pole at least to outdistance his predecessor Nansen, and on the asth of April 1900 he succoeded in reaching $86^{\circ} 34^{\circ} \mathrm{N}$. in $65^{\circ} 20^{\prime} \mathrm{E}$. Diminishing food supplies made it necessary to turn at this point, and although he had reached it in 45 days it took Cagni 60 days to return. The. advance of summer loosened the ice-fioes, and the westward component of the drift of the pack became a more and mose serious danger, threatening to carry the party past Franz Josef

Land without sightiar in. Porturately Cape Min, a heaciand of characteristic outline, was sighted just in time, and with this as a guide the party succeeded in reaching Teplitz Bay, having eaten the last of their dogs and been reduced to great extremities. At the farthest north no land was vieible, the rough ses-ice extending to the horizon on every aide.

As early as 1895 a scheme for an exploring expedition in a balloon was put forward serionsly, and in $\mathbf{t 8 9 7}$ the Swedish aeronnut S. A. Andree carried it out. He had brought a balloon to Danes Island, in the north. of

Andion. Spitsbergen, the previous year, but the weather was unpropitious and the ascent had to be postponed. On the rith of July 1897 be started in a new and larger balloon with about five tons of supplies and two companions, It was hoped that the balloon could be steered to some extent by the use of heavy guide ropes dragging over the ice, and Andret had already made successful flights in this way. Rising at 2.30 p.m. the helloon whe out of sight of Danes Island in an hour. At 10 p.m. Andrte threw out a buoy containing a message which was recovered, and this stated that the balloon was in $82^{\circ} \mathrm{N} .25^{\circ} \mathrm{E}$., moving towards the north-east at an altitude of 800 ft . above a rugeed ice-feld This was the last news received, and although scarcely a year has passed without some rumour of the balloon having been found in Siberis or North America, nothing further has ever been ascertained.

In 1899 Admiral Makaroff of the Russian navy arranged for the trial trip of the great icebreaker "Yermak," which be designed, to take the form of an expedition into the sea-ice off Spitsbergen. Though no high lati- materon tude was attaized on this occasion he formed the opinion that a. vessel of sufficient sise and power could farce a pasagge ever to the Pole. The Russian-Japanese War put an end to the polar projects of this gifted man of science.

Captain Otto Sverdrup, who had been Nansen's companion on his two polar expeditions, planned an Arctic voyage for the cincumanaigation of-Greenland, and the "Fram" was altered and refitted to suit her for the work. Swroreth. Starting in 1899, he was obliged to abandon the attempt to get northward through Smith Sound and making his way west ward into Jones Sound he spent three years in exploring and mappin the portion of the Arctic archipelago which lay to the north of the field of labour of the Franklin search expeditions, Ellesmere and Grinnell Lands were shown to be part of one large land masp called King Oscar Land, which is separated by a namow channel, Eurcka Sound, from an extensive island named Axel Heibere Land. Two of bis party (Isachsen and. Hascel) disoovered and explored two islands west of Heiberg Land, and Dr Schei made most valuable obscrvations on the geology of the whole of the district examined. Sverdrup's journeys cleared up a great deal of uncertainty regarding the geography of the least known portion of the Arctic archipelago, and leave hule more to be done in that quarter. He brought the "Fram" mafely back to Norway in 1903.
Many American whalers working in the sea reached thronge Bering Strait believe that land of considerable extent lies farther west than the Arctic archipelago, north of the mouth of the Mackenrie River, but noither the English traveller A. H. Harrison in 1905, nor the Dane Einar Mikkelsen in 1907, was able to find any trace of it, though the latter sledged over the sea ice as far as $72^{\circ} \mathrm{N}$., where in $150^{\circ} \mathrm{W}$. he got a counding of 330 fathoms with no bottom. This depth makes it somerwhat improbable that land exists in that quarter.
Russian surveyors and explorers continued to map partions of the Siberian coast, and in 1886 Dr Bunge and Baman Toll visited the New Siberia Islands and made known
the remarkable remains of mammoths which exist serot Tant there in great numbers. In 1893 Baron Toll.made an important geological cxpedition to the islands, discovering many well-preserved remains of mammoths and other extinct mammals and finding evidence that in the mamenoth period trees grew at least as far as $74^{\circ} \mathrm{N}$. Indefatigable in the pursuit of his studies, Toll set out once more in igor on board the
"Zarya," hoping to reach Sannikofi Island, the most northern and still unvisited portion of the New Siberia group. In August sooz he reached Bennet Island with the astronomer Seebarg and two men; he found the island to be a platean about 3500 it in elevation, and remained there until November atudying the geological features. Nothing more was heard of the expedition, and a relief expedition in 1904, under Lieuts. Brusnef and Kolchak, failed to find any trace of the explorers beyond a record left on Bennet Island, which gave a summary of thes movements up to the time of lesving the island.

In igot Captain Roald Amundsen, a Norwegian, who had been mate on tbe "Belgica" in her Antarctic voyage, planned an expedition to the area of the north magnetic pole visited by Sir James Ross in 1831, in order to re-locate it, and as a secondary object he had in veew the accomplishment of the North-West Passage by water for the first tume, M'Clure not having carried his ship through from sea to sea. A small Norwegian sealing sloop, the "Gjoba," the cabin of which measured only 9 ft by 6 , was fitled with a petroleum motor engine of $39 \mathrm{~h} . \mathrm{p}$ for use in calm weather and serengthened to withstand ice-pressure. She left Christianai on the 17 th of June 1903 with a total company of six men, second in command belng Lieut Codfred Hansen of the Danish navy She passed through Lancaster Sound and worked her way down the west side of Boothsa Felix in August, and took up wnter quarters in Gjoa Harbour at the head of Petersen Bay in King William Land Here the little vessel remained for two years while magnetic and meteorological observations were carried out, and sledging excursions were made to the magnetse pole and along the consts of Victoria Land, which was charted up to $72^{\circ} \mathrm{N}$ In August 1005 the "Gjöa" proceeded west ward along the American coast but was frozen in of King Point for a third winter. On the sith of July 1906 she got free, and after much difficalty with the ice reactued Bering Strait on the $30 t h$ of Angust and entered the Pacific, the first ship to pass from cocean to ocean north of Patagonia.
Danish explorers have continued to concentratc their attention on the prohlems of Greendand, and especially the geogrephy of the east coast. Lieut, G. D Amdrup, in a series of expeditions between 8898 and rg00, charted the coast-line as far north as $70^{\circ} \mathrm{zg}$ N., and made important scientific observations and collections. From time to time whaiers reached the east Greenland coast at points in hlgh latitudes. The duke of Orleans in the "Belgica," under the command of Captain Gerfache, made an important voyage in 1905, in the course of which he cruised along the const of Germania Land bet ween 76° and $78^{\circ} \mathrm{N}$, and fixed the general outline of the land up to that latitude. This expedition did a large amount of scientlic work, especially in oceanography. The stream of sea-ico which presses outwards from the polar basin every summer bears close against the east coast of Greenland, and exploration by sea has always proved exceedingly dificult and precarious, success depending very mach on the occurrence of chance leads amongst the ice. Taking edvantage of all previous experience; the most important of the Danish expeditions was planned by L. Mylius-Erichsen in 1905, the expenses being partly raised by private Arliter subscriptions and party provided by the Danish government. He sailed in the "Danmark" in June rgo6 and found winter quarters in Danmarkhaven, $75^{\circ} 43^{\circ} \mathrm{N}$, where the ship remained for two years, while systematic magnetic and meteorological observations were kept up at the base and the main wort of exploring to the northward was carried on by aledge. From existing maps it was believed that about 680 m . of cosst separated the winter quarters from the northern point of Greentand, but when the sledge expedition went out in 1907 the coast was foand to curve mach farther to the eastward than Irad been anticipated, and the out ward journcy extended to 800 m . Having left the winter quarters on the 28 th of March 1907, Mylius-Erichsen, with Captain Koch, Hagen, an educated Eskimo, Bronlund and two others. reached North.Enst ForeFind, the eastern extremity of Greenland ($\left.81^{\circ} 20^{\prime} \mathrm{N} ., 11^{\circ} 15 \mathrm{~W}.\right)$. Here they divided; Koch with Bertheisen and the Eskimo

Tobias went north-westward to explore the east coest of Peary Land, and succeeded in reaching the northernmost extremity of the land beyond Cape Bridgman in $83^{\circ} 30^{\prime} \mathrm{N}$. From this great journey he returned in safety to winter quarters, arriving on the 24th of June. Meanwhile Mylius-Erichsen, with Hagen and the Eskimo Brorilund, followed the const westward into what was believed to be the Independence Bay scen from a distance hy Peary, this turned out to be a deep falet now named Danmark Fjord Keeping to the coast, they entered the great channel separating the mainland of Greenland from Peary Land, and surveyed Hagen Fjord on the southern shore and Bronlund Fjord on the northern shore of the strait. They had pushed on to Cape Glacier in $82^{\circ} \mathrm{N}$. and $35^{\circ} \mathrm{W}$ by the 14th of June 1907, within sight of Navy Cliff, which had been Peary's farthest coming from the west side, and here the softness of the snow kept them all summer When they could travel, more than a fortnight was wasted adifit on a floe in the effort to cross Danmark Fjprd. Here the sun left them, while they were witheut food, almost worn out and more than 500 m . from the ship. It was impossible to attempt the long journey round the coast, and the only chance of safery, and that a very slender one, was to make a way southward over the inland ice and so cut of the eastern horn of Greenland which the expedition had discovered. Under the mont terrible difficulties, with only lour starved doga, and their equipment going to preces, they accomplished the feat of marching 160 m in 26 days, and reached the east coast again in $79^{\circ} \mathrm{N}$. Hagen died on the way, Mylius-Erichsen himself struggied on until he nearly reached the provisions left on Lambert Island on the northern journey, but he too perished, and only Bronlund reached the supplies. He was frost-bitten and unable to proceed further, and after recording the tragedy of the return journey in his diary, he died also alone in the Aretic night. His body and the records of the great journey were discovered in the following year by Koch, who started on a reticf expedition as soon as travelling became possible. The resalts of this expedition are a splendid monument to tbe courage and devotion of the leader and his followers. The channel between Spitsbergen and Greenland was shown by their efforts to be far narrower than had previously been supposed, and the outline of Greenland itself was fixed for the first time, and that by an extremely accurate sarvey.

There only remains one further episode to bring the history of polar exploration up to rgro, bet that is the crowning event of four hundred years of unceasing effort, the attain-
ment of the Pole itself; and it was accomplished by Anerg. the undaunted perseverance of one man who would never aecept; defeat. After the reium of the Jackson-Harmsworth expedition, Lord Northelifie presented the "Windward" to Lieut. Peary, who resumed in 1898 his systematic explorations of the Smith Sound region in the hope of finding a way to the Pole. He was not restrained by the precedents of earlier travellers and made some long sledge journeys in the winter of $1898-189 g_{1}$ having his feet badly frost-bitten and losing eight toes. Even this crippling did not stop his work. He wintered amongst the Etah Eskimo in 1899-1900 and next spring made a suceessful journey to the most northerly land north of Greenland in $83^{\circ} 35^{\prime}$ where the land had an abundent fore and fauna, and he pushed north over the sea-ice for twenty miles farther, reaching $83^{\circ} 54^{\circ}$ N Peary wintered again at Fort Conger in 1900-1001, and for the fourtb year in succession he went through the Arctic winter, 1901-r902, at Payer Harbour. In the spring of 1902 he made a great journey to Cape Hecla in the north of Grant Land and thence northward over the frozen sea to $84^{\circ} 17^{\prime} \mathrm{N} . \operatorname{in} 70^{\circ} \mathrm{W}$. Frequent open leads of water and the moving of the ice-floes made further advance impossible, and after aut unparalleled sojoorn in the farthest north, Peary returned to the United States. The Peary Arctic Clab of New York, formed to support this indomitable explorer, provided funds for a new expedition and a ship differing in some respects from those hitherto employed and named the "Roosevelt." In her he proceeded in the summer of rgos through Smith Sound and the northern channels to Cape Sheridan on the north coust of Orant Land;

Captain Robert Barteat being in command of the ship From this point he advanced by sledge to Cape Hecla, whence he mede a most strenuous attempt to reach the North Pole. Organixing has large following of trained Eskumo, whose confidence in him had been won by many years of friandship, and his few white companions in separate partics, each complete in itself and well furnished with dogs and food, he ect of at the end of February 1906. A very broad lead of open water was encountered in $84^{\circ} 3^{\prime} \mathbf{N}^{\prime}$. and as the party did not carry kayaks much time was lost in getting across. The floes had a marked eastwand drift and it was difficult to make progress northmard, however, Peary struggled on by forced marches to $87^{\circ} 6{ }^{\prime}$ N., which he reached on the 21st of April 1906, the most northerly point co far attained. His return journey was the most dangerbus in his experience; many leads had to be crossed, sometumes on ice so thin that it bent beneath the weight of the explorets, provisions were exhausted and the men were reduced to eating their dogs before they made lasd at Cape Neumayer in the north of Greenland, where game was found, and whence the return to the ship comparatively easy

Returning to Amarica, Peary prepared for a last auempt The "Roosevelt" was overhauled and various defects made prov's. good, but not in trme for the sumsaer of 1907. thempay to Leaving New York in July igo8 the "Roosevelt," the Norti again under the command of R. Barthett, brought men. the party, with the Eskimo who were picked up on the way, to Cape Shoridan by the sth of September. During the winter all supplies were transported to Cape Columbia, farther west on the coast of Grant Land. Here there were ready to start in the first light of the Aretic day seven explorers, 17 picked. Eskimo and 133 of the best dogs in Greenland with 19 sledges. As the outcome of all Peary's experience the expedition was arranged to consist of a lightly equipped advance party to select the route and make the trail by clearing a way through rough ice, and a maim party componed of uniss of four men each with sledges containing all their requirements marching one day behind the piomeer party. From this anit parties were to return southward at intervals. with the emply siedges, leaving the diminished main party to push on fully provisionod. The "hig lead "which. marks the edge of the continental shelf in $84^{\circ} \mathrm{N}$. was crossed after some delay and here the sun appeared for the.firat time on the 5 th of March Lgop. Dr MacMillan with three Eskimo and three sledges returned along the outward trail after the 7 th of March from 84° 20 9^{\prime}. A sounding at this point showed the depth of the sea to be 825 fathomb. After five more masches C. Borup turned back in $85^{\circ} 23^{\prime}$ with three Eskimo and three sledges, the best Eskimo and.doge remsining with the main party. From this paint the advance was regular, the pioneer party started from the snow-houscs they had huilt and slept in when the main party arrived, and while the latter slept the pioneers marched, selected a camp, built new snowhouses, and slept till the main party came up. At $86^{\circ} 38^{\prime} \mathrm{N}$ Prof. R. G. Marvin turned back, as usual with the three worst Eskimo and the worst dogs. His party reached the ship, but be himself was drowned in recrossing the "big lead," the only casualty of the expedition. At $88^{\circ} \mathrm{N}$. Bartlett turned back on the ist of April in accordance with the system with two Eskimo, one sledge and 28 dags. Up to this point Peary had saved himself as much as possible, leaving the path-finding and the observations to his very competent collcagues; but now he put forth all his strength for the arduous 140 m. which separated him from the Pole. He was accompanied by Henson and four Eskimo. The ice improved as the went on and it was possible to do 25 m . in a daily march of 10 hours, and on one occasion 30 m. in in hours. On the 6th of April an observation gave $89^{\circ} 57^{\prime}$ N., and here a camp was made and observations taken throughout 24 hours ta fix the position, as well .as excursions a few milas farthei on and a lew miles to right and left so as to be sure of actually geaching the Polc. No land was to be seen, and a squading through the ice gave a depth of 1500 fachoms With no bottom. The Americin flag was hoisted; the goal of all the afen, of exploration had been reached.

The retum joomey wis quictr and easy The tracks kepl open by the pasage of the various return parties were distinct mongh to follow, the now-houses stood ready for abditering at the end of each march, and a northerly gale kept the ice pressed well together and the teads closed. On the 23rd of April Cape Columbia was renched and soon after the party was sife on boerd the "Roorevele" Succoss was due to the accumulated experience of ewenty-three years' constant Arctic work. and to the thorough acquantarice with the Eskimo and their dogs, which enabled the beat morts to be got out of them.
Dr F A. Cook spent two years in the Arctic regions, 1907-1909. and claumed to have reached the Pole by dedging abone with two Eskimo year before Peary He submitted the evi- Pa A Cones
dence for this achevement to the universaty of Copendence for this achievement to the university of Copen-
hagen. which failed to find it satisfactory, and Dr Cook did aok appear to challenge this decision

Payslography of tee Arctic Regiom

Gcology - Although much remains to be done in the explocstion of the North Polar aret, the main features of the physical geography of the region have been determinod beyond any reasonable doubt. Within the Arctic Circle the northern portions of Europe, Aeia, America and Grecoland surround a central area of doep see, the southern margin of which forms a broad contineatal shelf beering many islands. The ring of land and aballow sea is broken only by the broad channel between Greenland and Europe through which Atlandic water gains an entrance to the Arctic Sda. The physical condition of this sca, which povers the greater part of the Arctic redions, are dealt with later in detail; but there is less to be said regarding the land.

In a climate which taxes human powess to the utmost to carry on the simplest route-surveys in the course of an exploring axpedition, and in the presence of a snow covering wich is permapent on all high ground and conly disappears for a short time in sumamer, even on the shores and islends, it is obvious that any knowledge of the geotogy must be difficult to obtain. On the earlier Apctic expeditions enthusiastic collectors brought togetber quantities of specimens, many of which it was found impossible to bring bome, and they have been found abandoned by later travellers. As Arctic exploration whas usually carried out on the see or over the sed-ice even thoce expedilions in which experienced geologists took part furnithed few opportanilies for making investigations. The result is that the geotogy of the Anctic lands has to be inferred from observations made at isolated paints whore the fortune of the ice stopped the ship, or where on land journeys a favgarablic exposure was found. Almost every geological formation is known to be represented, from the Archacan to the Quatermary, and there is a gencral resemblance in the known geological leatures of most of the great Arctic islands. The fundamental rock in all appears to be Archaean gneste In the extreme north-east Carboniterous atcata have recently been disoovered sumilar to the Carboniferous rocks of Spitsbergen. The Jurastic rocks farther coulh are in plaoes capped by Cretaceous beds, and closely resemble the Jurassic rocks of Spitsbergen, Frans Josct hand and the northern parts of Norway and Russia. Cretaceous and Tertiary rocks are foumd on the west coast of Greenland covened over by great flows of basalt, probably of Tertiary age, at Disco Island, Nugseak Pcnissula and various points tarther north. The only mineral of economic value found in Greenland is cryolite, which is mined at Ivigtut in the sonth-west. Native iron occurs in considerable maspes in several places, some of it undoubtedly of telluric origin, though some is probably meteoric.

The second "Fram " expedition confirmed and exteaded the geological obervations of the Franklin search expeditions on the American Arctic archipelago, and showed the presemceabove the Archaean rocks of Cambrian, Silurian and Devonian strata. the Silurian being represented by a widespread brawn libestone abounding in fossils. Carboniferous, limestones also accur aned less extensive beds of quartz sandstones, schists and limestomes containing aramonites and other Mesosoic foscils. Tertiary

POLAR REGIONS

ISOTHERMAL CHARTS.
Temperature in degrees Centigrade: $0^{\circ}=32^{\circ}-\mathrm{F},-17^{\prime} 8^{\circ}=0^{\circ} \mathrm{F}$
4. Isobars, January.

ISOBARIC CHARTS.
Pressure in millimetres, the Figures indicating the addition to 700 . Thus on the charts 55 $=755 \mathrm{~mm}$. $=29^{\circ} 7 \mathrm{~m}$. to the nearest tenth; $60=760 \mathrm{~mm}, \square$ $29^{\circ} 9 \mathrm{in}$; $65=765 \mathrm{~mm}-301 \mathrm{in}$: $75=755 \mathrm{~mm} .=30^{\circ} 5 \mathrm{in}:$
5. Isobars, July.

From the North Pole Expedition, 1893-18g6, Scienfific Reswith, edited by Fridijof Nansen, by permission of the Fridijof Nanven Fand for the Adsancement of Scierice.
rocks theludins bede of lignite and plant tosils of Miocend age ahro occur, and they are intentratifiod and ovenspread with busalts and other eruptive rocks as is Greenland. In Grant Land Tertiary coal occurs in Lady Franklin Bay ($8 x^{\circ} 45^{\prime} \mathrm{N}$.), the most nertherly deponit of fossil fuel knovm. Arctic Canda consists of Archean and Palseosoic rocke worn-down into phatess or plains and bearing marks of glacial action, the abeence of which ts the soat remankable fealure of the tundra regiour of Siberia. The Siberian cosst is auperficially formed to a lerge eateat of frozen woil and gravel sometimes interbedded with clear lce, and in this adil the frozen bodies of mammoths and ocher Quaternary animals have been found preserved in a fresh condition by the low temperatute. The absence of a glacial period in northern Siberia is probably indirectly due to the very low temperature which prevailed there, preventing the accest of witer vapour from without and to stopping the supply required to produce sufficient precipitation to form glaciers or ice-caps. On the New Siberis Islands Silurian and Tertiary rocks have been recognized, the latter with abundant deposite of fossil wood.
The geological evidence is complete as to the existence of a genial climate in Tertiary times as fat north as the present land extends, and of a climate less severe than that of to-day in the Qusternary period. The existence of raised sea margins in many Arctic linds and especially in the American Arctic archipelago hears evidence to a recent elevation of the land, or a withdrawal of the sea, which has been influential in forming some of the most prominent features of the present configuration.

It is noteworthy that no great mountain range runs into the Aretic region. The Rocky Mountains on the west and the Ural range on the east die down to insignificant elevations before reaching the Arctlc Circle. The plateau of Greenland forms the loftiest mass of Arctic land, but the thickness of the ice cap a unknown. The one active volcano within the Arctic Circle is on the little island of Jan Mayen.

The Arctic Climate.-As the water of the Arctic Sea is free from ice around the margin only for a lew months in summer, and is covered at all times over its great expanse with thick ice in slow uneasy motion, there is less contrast in climate between land and sea, especially in winter, than in other parts of the world. The cimate of the polar area may be described as the most characteristic of all the natural features, and observations of temperature and pressure are more numerous and systematic than any other scient fic observations. The Russian meteorological system includes Siberia, and long series of observations exist from stations up to and within the Aretic Circle. The Canadian Meteorological Service has sectred tike observatlons for the extreme nort h of North America, though the records are more fragmentary and of shorter duration. Norway and Iceland aiso yield many records on the margin of the Aretic Circle. The international circum-polar stations maintained during 1882 connected the Siberian, Norwegian and Canadian land stations with the more fragmentary work of the various polar expeditions which have wintered from time to time in high latitudes. The most valuable records and practically the only data a vallable for the climate north of 84° are those of the first expedition of the "Fram" in het three years' drift across the polar basin. Later expeditions beyond the 84tb parallei were merely dashes of a Iew weeks' duration, the records from which, however aecurate, are of an altogether different order of importance. The data collected by the "Fram" were discussed In great detail hy Professor H. Mohn in 1904, and that eminent authority combined them with all that had been known previously, and all that was ascertained by later explorers up to the return of Captain Sverdrup from the second "Fram" expedition, so as to give the completest account ever attempted of the climate of the North Polar rrgions, and on this we rely mainiy for the following summary,

Temperature.-From Professor Mohn's maps of the isotherms porth of $60^{\circ} \mathrm{N}$. it is evidert that the temperature reduced to sea-level is lowest in the winter months within an area stretching across the pole from the interior of Greenland to the middie of

Cheria, the lans majs of this very cold aren bolagim the meridian of $40^{\circ} \mathrm{W}$. and $540^{\circ} \mathrm{E}$. For every month from October to April the mean temperature of this cold area is below 0° F., and in the t wo coldest monthe there are three very cold areas or poles of cold with temperatures below- 40° artanged glons the axis. These are the interior of Gretaland, an aret around the North Pole and the centre of Northern Siberin. Professor Mohn in antisfied that these three poles of cold are separated by somewhat warmer bets, ate observations on the north coast of Greenland sbow a temperature higher both than the temperature of the interlor reduced to sea-level and the teraperalure on: the fromen sea farther north. An summer advances the temperature tiven to the freeting point most sapidly in North America, the mean temparature for June, July and August for the Americas coast and the Arctic archipelago being above the freezing point. In July and Auguse the Arctic shores in America, Asia and. Eurepe have a mean air-temperatare of about $40^{\circ} \mathrm{F}$., but the Interior of Greenland and the area round the North Pole remaia below 32°, thoue two poles of cold persisting throughont the year while the winter cold pole in Asfis dianppears in summer. ${ }^{1}$ There is no reason to doubt that in winter the Asiatic area is the coldent part of the Arctic region, and as it is permanently inhabited it is pleln that low temperature alone is no bar to the wintering of expeditions in any pert of the North Polar tegiont The loweat temperature experienced during the drift of the "Fram "was -63° F., on the 12 th of March 1894 in lat. $79^{\circ} 41$!, long. $134^{\circ} 17^{\prime}$ F. The minimum temperatures recorded on Sir George Nares's expedition wert $-73.8^{\circ} \mathrm{F}$. on the "Alert " in $82^{\circ} 27^{\prime}$ N. and -70.8° on the "Discovery" in $8 y^{\circ} 44^{\prime}$ N., both in March 1876, and the minimum on Sverdrup's expedition in Jones Sound in 76° 50 N. was $-60^{\circ} \mathrm{F}$. in January 1901 . In February 3882 Greely recorded-66-1 ${ }^{\circ}$ at Fort Conger, $81^{\text {E }} 44^{\prime}$ N., and at Fort Censtance in Cenada ($06^{\circ} 40^{\circ} \mathrm{N} .110^{\circ} \mathrm{W}$.) a temperature of $-72^{\circ} \mathrm{F}$. what noted in January 1851. The lowett temperature ever reconded on the earth's surface was probably that experienced at Verkhoyansk in Siberia ($67^{\circ} 34^{\prime}$ N.) where the absolute minimum fin the month of February was - 93.6°, and minima of -70° or more have been recorded in every winter month from November to March inclusive, and as the absolute maximum in July was $+92.7^{\circ}$ F. the total range experienced is no less than 386.3°, far exceeding that known in any other part of the world.
The normal monthly mean temperatures for various paraliels of latitude are given as follows by Prolessor Mohn, the last column showing the calculated conditions at the North Pole Itself expressed to the nearest degree.

The interior of Greenland is believed to be below the normal temperalure for the tailturie in all months and so is the refion bet ween Bering Strait and the Polef the Norwegian Sea, und the region north of it as far as the Pole, has a temperalure above the normal for the latitude in elt months; while the temperature
It must be remembered that for cartographical purposes temperature is reduced to its value at sen-level. allowing for a charge of $1^{\circ} \mathrm{F}$. in about 300 ft . Thans the atesual temperature on, ithe mowcap of Greenland at the leight of gooo ft is $30^{\circ} \boldsymbol{F}$. Dwer at all scasons than is shown gn an isothermal map, and that of Verkhoyansk (500 ft.) is only $1 \cdot \mathbf{5}^{\boldsymbol{*}} \mathfrak{F}$. lower than is charted.
in the morthem coatinents is belpw the normal in winter and cbove the normal in summer.

The "Fram" observations showed thet while the ordinary Alumal ragge of temperature prevalled for the months when the sun was above the borizon during come part of the day, there wis also a diurnal range in the wister months when the sun did not appear, the minimum then occurring about 2 p.m. and the maximam about I a.m., the "day" being colder than the "night." Except in July and August the temperature was always found to be lower with the weaker winde and higher with the stromger vinds irrespective of direction. Extraordinerily rapid variations of temperature have been observed in the vinter months, on one occasion in February 1806 (north of 84° N.) the thermometer rising within 24 bours from -45.4° to $+28.3^{\circ}$ F., a rise of 67.7°.

Clond and Precipication.-Tbe amount of cloud in the far north is greater is the daytime than at night, the summer months being cloudy, the winter very clens, aod the amount is greater with the stronger wiods and lese with the weaker winds. Precipitation is most frequent in the sumaser sonths, the "Fram" resalts showing an average of 20 days per month from May to September; while from Oclober to April the average was only $1 \times \frac{1}{2}$ days per month. Rain wis only observed in the months from May to September; but enow occurs in every month and is most frequent in May and June, least frequent in November and December, which are the monthe of minimum precipitation. It has never been possible to make satisfactory measurements of the amount of prectipitation in the Arctic regions on account of the drifting of spow with high wind. Fogs occur most frequently in July and Auguat (20 or 16 days par montb); they are practically unknown between November and April.

Presswe.-The "Fram" observations enabled Profescor Molnn to revise and extend the isobaric mape of Dr Buchan, the correctness of which was strikingly confirmed. The Atlantic and Pacific bow presure areas are found at all seasons on the margin of the Arctic area, the position shifting a little in longitude from month to month. The two low pressures are separated in the winter months by a ridge of high pressure (exceeding $30-00 \mathrm{in}$.) stretcbing from the Canadian to the Siberian side be(ween the North Pole and Bering Strait; this ridge has been termed by Profeseor Supan "the Arctic wind divide." In April the high pressure over Asia gives way and an intense low pressure area takes its place during the summer, uniting in Augist with the leas intense low-preasure area which develops later over Canads, and reducing the Arctic high pressure ares to an irregular belt extending from North Greenland to Frans Josef Land on the Attantic side of the Pole. The general preseure over the polar area is much higher in wirter than in summer and the gradients are oteeper also in the oold weather, giving rise to stronget winds. The isobaric conditions indicate light variable winds in summer along the route of the "Eram" from the New Siberia Islands to the north of Spitsbergen, and in winter couth-easterly or easterly winds of greater force; this is in accord with the observations made during the drift. Profestor Mohn belicves that the mazimum pressure at the North Pole takes place in April, when it is about 30.08 in ., and the minimum pressure from June to Seplember, when it is about 29.88 in., the annual range of monthly mean pressure being thus only 0.20 in ., so that the Polo mny be said to be in a region of permanently high atmospheric pressure. Cyclonic depressions crossed the region of the "Framis" track with considerable frequency, 73 being experienced in the three years, the frequency being greatest in winter but the wind velocity in cyclones greatest in summer; the most common direction of movement whs from west to east. The average velocity of the cycionic winds encountered hy the "Frem" was only ahout 29 m . per hour, the highest 40 m . per hour, the portion of the Arctic See she crosed being much less stormy than the coasts of the Arctic lands, where winds have been recorded of far greater severity, ag. 45 m . per hour in Spissberpen in 1882, $\$ 5 \mathrm{~m}$. per hour in Teplitz Bay, Franz Jouef Land, in 1900, 62 m . per hour on the Siberian cosast in the "Vega" In 1870 , and as much as 90 m . per hour at Karmalual
in Novage Zemlya in 1883. There meern titic doubt tint the interior of the polar area is a fair weather zone as comparad With its margins, where the contrast of the aesacms is mose marked.

Flors.-The land flore of the Arctic repions, although necesearily confined to the lower levels which are free from goow for some time overy year, and gready reduced in haxuriapce and number of species as compared tith the flore of the teriperite sone, is will in its own way both rich and varied, and it estends to the most northerly land known. In aome of tho fjord of weatern Greenland and also of Ellesratere Land alvost on the 8oth paralial the previiling colour of the landecape in mumact is due to vegetation and not to rock. The plants which accur an the margin of the Arctic Ses and in the polar inhonds represent the hardier species of the North Europeas, Avintic and Americen flora, the tolal number of species amounting to probably about a thousand phanerogams and a still harger number of cropeogams. The habit of all is lowly, but eoroe grasees grow to a beight of I ft. 6 in., and the mosses, of which the Eakimo math their lamp-wicks, frequently form cushions more than a foot in depth. Trees are abseat north of $73^{\circ} \mathrm{N}$., which is the extrense point reached in Siberia, or they are dwarfed to the height of shrubs as in southers Greenland, or farther north to that of the prevailing herbage. The flowers of many Arctic apecies of phanerogans have an intensely hrilliant colour. The plains and lower slopes of the plateaux of Ellesmere Land and Heibers Land and the plaun of Peary Land north of Greenland are sufficiently clothed with vesetation to support large numbers of rodents and ruminants, the plants occurring not as occasional curiositics, but as the normal summer covering of the ground, playing their full part in the economy of nature. The cold of winter is not sufficient to put a stop to plant life even at the pole of cold in northern Siberia; and there is no reason to doubt that if there were islands close to the North Pole they would bear vegetation.
Famna-Animal hfe is comparatively abundant in the waters of the Arctic Sea, though the whalebone whale, Baloena mysto cefis, has become almost extinct by reason of the energy with which its pursuit has been carried on. The white whale and narwhal still abound in the open waters as far morth as shipe can go. The walrus and several species of seal prey on the marine Hile, and the polar bear, the king of Arctic beastis, probably roams the whole surface of the frozen sea in pursuit of seals and the larger fish. The other Arctic carnivora include the Arctic fox and wolf, the latter attacking all the land memmalia except the polar bear and old musk-oxen. The wild reindeer is still found in all the circum-polar lands except Franz Josed Land; but its range does not extend so far to the north as that of the typical ruminant of the polar lands, the musk-ax (Owibos moschatus), which now abounds only in Peary Land, north Greenland and in the American Arctic Archipelago, though it was formerly circum-polar in fits distribution. The Arctic hare is almost equally characteristic and more abundant, and the lemming probably more common still. The ermine and other valuable fur-bearing animals also occur. The animals are either permanently white like the polar bear, or change their coats with the season, being brown in summer and white in winter like the hares and lemmings. The birds of the Aretic regions are all migrants, retreating southward in winter but nesting in incredible numbers on the Arctic coast-lands, and in summer probably finding their way at individuals to every part. They are mainly sea-birds, though the snow bunting, the Arctic owl and other land birds are amongst the summer visitors. It must be remembered that the elevated plateaux of the interior of Greenland and of many of the large islands are totally devoid of life of every kind on account of their unchanging covering of snow and the intensely rigorous climate due to their great altitude.

Arclic People.-The conditions of life in the conlinental parts of the Arctic regions are extremely severe as regards tempera: ture in the winter, but it has been found possible for civilized people to live permanently both in the extreme porth of North

America and in the north of Siberia. In the north of Norway where the winter is mild on account of the warm south-westerly winds from the open Atlantic, organized communities dwell within the Aretic Circle in froe communication with the south by telegraph, telephone, steamer, and in some cases by rail also, all the year round. The climate on the coast of Norway is scarcoly less favourahie in the north than in the south except for tha absance of light in winter when the sun never rises, and the absence of darkness in summer when the sun never sets. If there were natural products of sufficient value permanent setuements might arise in any part of the. Arctic regions where there is land free from snow in summor; but as a rule Arctic land is poor in mineral wealth and the pursuit of whales and seals requires only a summer visit. The original people of the farthost north of Europe are now reprecented hy the Lapps, who lead a migratory life, deponding mainly on fishing and on their herds of reindecr. Farther east their place is taken by the Samoyodes who live along the coast of the Kara Sea and the Yalmal Peninsula; they have also a small setterment in Novaya Zemlya. The Samoyedes, tike the Lapps, live on the produce of the soa in summer and on their herds of reindeer, moving rapidly over the frozen country in winter by means of reindeer and dog slodges Spitsbergen and Franz Jowef Land appear never to have had native inhabitanta. Along the coast of Siberia there is no continuous population, except in the land of the Chukchis in the extreme east between the Kolyma river and Bering Strait; but amall settlements of many tribes of pagan byperboreans occur here and there. North American Indian eribes wander far to the north of the Arctic Circle in Canada and Alaska, keeping their hereditary enemies the Eskimo to the coast and islands. The Eskimo of the American coast aro interraingling not only with the American whalers but also with the Polynesians who como north as part of the crew of the whalers, and the pure race is tending to disappear. The traces of Eskimo oncampments in the Polar archipelago, where no Eskimo now live, may mark a former wider range of hunting grounds, or a greater extension of the population. The Greenland Eskimo are the most typical and the best known of their race. A few hundred live on the east coast, where they were formeriy much more numerous. The greater part of the weat coast Eskimo ere now civilized members of the Danish colonics, and it is statod that whereus in 1855 only about 30% of the population were half-breeds, the biending of the Eskimo and Europeans is now so complete that no full-blooded Eakimo remain in Danish Groenland. The tribe of Eakimo living to the north of Meville Bay, the glaciers of which separate chem from the people of Danish Groenland, was first described by Sir John Ross, who called them Arckic Fighlenders. They have been fully ixudied by Commander Peary, who suceceded In utilizing them in his great series of journeyz, and to their aid he attributes the suceass of his method of Axctic travelling.

The Arctic Sean

Accordlag to lts geographical poastion, the Aretic Sen might be described tas the seen wituated north of the Arctic Circle; but accoording to its natural configuration, it is better definod as the gulfilike northern termination of tha long and relafively narrow Atlantic arm of the ocsean which extends north between Europe on one side and America on the other. By this situation as the northern end of a long arm of the occan its physical conditions are to a very great extent deternined. This Aratic gulf is bounded by the northern coests of Europe, Siberia, North America, the Amberican Arctic archipelago, Greemand and Icoland. Its entranco is the opening between Europe and Labrador tivided by Icoland, Greenland and the American Aretic islands; and its natural southern boundary would be the submarime ridge extending from Scotland and the Shetiand Islende throwgh tho Feeroe ilsands and Iceland to Greenland, and continuiag on the other side of Greenland across Davis Strait to Batfin Land. This ridge separates the dopression of the Arctic Sen, filled with cold water at the bottom, from the deep deprosion of the North Atlantic. The Aretio See communicates
with the Pacijic Ocoun through Bering Strait, which is, howover, only 49 ith broad and 27 fathoms deap. The aree of the Arctic Sea may be estimated to be about $3,600,000 \mathrm{sq}$. m., of which noarly two-thirds (or $2,300,000 \mathrm{sq} . \mathrm{m}$) in continuounly covered by floating lce.
The Arctic Sea may be divided into the following parta: (1) The North Polar Basin (including the Siberian See), bounded by the northern coasts of Siberia (from Bering Strit to the westorn Taimyr Peninsula), Franz Josef Land, Spitsbergen, Greenland, Grinnell Land, Axol Heiberg Land, Ringnes Land. the Parry İslands and Alaska; (a) the Kara Sea, bet ween Novaya Zomlya and the Siberian comst, south of a line from the north point of the former to Lonely Island (Enombedion) and Nordenakiold Island; (3) the Barenls and Murman Sea, bounded by Novaya Zomiga, Franz Josof Land, Splisbergen, Bear Island and the Dorthern coasts of Norway and Russia; (4) the Norvesian Sea, betweon Norway, Spitsbergen, Jan Mayen, Icelind and the Facroos; (5) the Greenland Sea, betweon Spitabergen, Jail Mayen, Iceland and Greenland; (6) Bafin Bay and Davis Straih, between Groenland, Ellosmere Land, Nortb Devon and Baffil Land.

Depths.-The Arctic See formes an extended depression separating the two largest continental massess of the wortd -the European-Asiatic (Eurasia) and America. Along its centre this depression is deep, but around its whole margin, on both sides, it is unusually shallow-a shallow submarine plateau or drowned plain extending northward from both continents, forming the hargest known continental shelf. North of Europe this sholf may be considered as reaching Spitsbergen and Franz Josef Land, extending over more than ro degrees of latitude, although there is a somewhat doeper depresion in between. North of Spitsbergen it reaches beyond $81^{\circ} \mathrm{N}$., and north of Franz Josef Land probably somewhat north of $82^{\circ} \mathrm{N}$. North of Siberia the shelf is 350 m . broad, or more, with depeth of 50 to 80 fathoms, or less. In longitude $135^{\circ} \mathrm{E}$. It reaches neariy $79^{\circ} \mathrm{N}$., where the bottom suddenly sinks to form a deep sea with depths of 2000 fathoms or more. Farther east it probably has a similar northward extenslon. North of America and Groenland the shelf extends to about latitude $84^{\circ} \mathrm{N}$. This shelf, or drowned plain, evidently marks an old extension of the continents, and its northern edge must be considered as the real margin of thelr masses, the coasts of which have probably beea overflowed by the sea at some comparatively recent geological period. On this submarine plateau the Arctic lands are situated - Spitsbergen (with Seven Islands to the north, Bear Ioland avd Hope Island to the south), Franz Josef Land, Novaya Zemlya, Lonely Island, the New Siberia Islands, Wrangel Island, the American Aretic archipelago. The depth of the shelf is, especially north of Siberia, very uniform, and usually not more than 50 to 80 fathoms. North of Europe it is intersected by a submarine Iford-like depression, or broad channel, axtending castward from the Norwegien Sea. Betwoen Norway and Bear Island this depresslon is about 240 fathoms deep, ant between Novaya Zemlya and Franz Josef Land 100 to 150 fathoms deep. It gives of several submerged fjords or channels towards the south-asst into the shallow Murman Ses, e.8. one channel, more than 100 fathoms deep, along the Murman coast towards the entrance of the White Sea; another narrow channel, in parts 800 fathoms deep, along the south-west const of Novayr Zemlyt through Kara Strait. It also extends into the Kara Sea, rounding the north polnt of Novaya Zomilya and forming a narrow channel along its eastern cosst. On the American side simllar but much narrower submarine depreasions, which may be called suhmarine lfords, extend from Baffin Bay into the continental shelf, northward through Smith Sound, Kane Basia and Rennedy Channel, and west ward througt Lancaster Sound

The greatest depths in the Arctic Sea have boen found in the North Polar Basin, where depths of 2100 fathoms, in about 81° N. and 130° E., have been measured with certainty. It is deeper than 1650 fathoms along the whole route of the "Fram," from about 79° N. and $\times 38^{\circ}$ E. to near Spitabergen. In 84$\}^{\circ}$ N. and about 75° E. the depth is 2030 tethomas,
and is $83^{\circ} \mathrm{N}$. and $23^{\circ} \mathrm{E}$ it in is 860 fathome The northern and easterm extension of this deep basin is not known. Commander Peary reports a depth of 1500 tathoms with no botion at 5 sea miles from the Pole (about $89^{\circ} 55^{\prime} \mathrm{N}$.) where be tried to obtain a sounding. It was formerly believed that still ereater depths existed west of Spitsbergen, in the co-called Swedish deep, where 2600 fathoms had been sounded, but the Nathorse expedition in 1898 found no greater depths there than about 1900 fathoms. The Norwegian Sea, farther south, is 2000 fathoms deep midway between Iceland and Norway, in about $68^{\circ} \mathrm{N}$. This so-called Norwegian deep is, as before stated, separated from the North Athantic Basin by the Wyville Thomson ridge and the Faeroc-Iceland ridge. Farther morth there is a low transverse ridge extending east werds from Jan Mayen, in about $72^{\circ} \mathrm{N}$., which is about 1300 fathoms deep. North of this the sea is again deeper-ro8s fathoms in $75^{\circ} \mathrm{N}$. From the north-west corner of Spitsbergen a submarine ridge extends in a north-westerly direction, with depths of about 430 fathoms in $81^{\circ} \mathrm{N}$. and about $4^{\circ} \mathrm{E}$. How far this ridge extends is unknown, but there is a probability that it reaches Greenland, and thus separates the Swedish and the Norwegian deep from the deep depression of the North Polar Basin. Bation Bay forms, probably, a relatively deep basin of ahout 1000 or 1200 fathoms, which is separated from the West Aclantic Basin by the shallow submarine ridge from Greenland to Baffin Land in ebout 65° or $66^{\circ} \mathrm{N}$.

The depost componing the bottom of the Arctic Sea contains in its northern part, in the North Polar Basin, extremely little matler of organic origin. It is formed mainly of mineral material, sandy clay of very fine grain, to an extent which is hardly found in any other part of the ocean with similar depths. It contains only from it to 4% of carbonate of lime. Farther south, in the sea between Spitsbergen and Greenland, the amount of carbonate of lime gradually increases owing to the shells of foraminifera (especially biloculinac); west of Spitsbergen the proportion rises to above 20 or even 30%, while in the direction of Greenlaud it is considerably lower.

The circulation of the Arctic Sea may be explained firstly by the vertical and horizontal distribution of temperature and salinity (i.e. density); secondly, by the influence of the winds, eapecially on the ice-covered surface. The currents in this ses may to some extent be considerod as convection currents, cataed by the cooling of the water near the surface, which beopros beavier, sinks, and must be replaced on the suriace by warner water coming from the south, which is also influenced by the prevailing winds. On sccount of the rotation of the earth the northward-roaning water on the surface, as well as the sinkins water, will be driven in a north-easterly or easterly dirtection, while the southward-fiowing water along the bottom, it well as the rising water, is driven south-west or westward. This very simple circulation, however, is to a great extent complicated on the one hand by the irregular configuration of the soa-hottom, expecislly the transverse submarine ridges-e.g. the Spitsbergen ridge, the Jan Mayen ridge, and the Scotland-Faeroe-Iceland ridge; and on the other hand by the circumstance that the upper water strata of the sea are comparatively light in spite of their low temperature. These strata, about 100 or 120 fathoms thich, are diluted by the addition of fresh water from the North European, Siberian, Canadian and Alaskan rivers, as well as by precipitation, while at the same time the evaporation from the surface of the mostly ice-covered sea is insignificant. The light surface strats will have a tendency to spread over the heavier water farther south, and thes the poiar marface currents running southward along the east cosets of Greenland, Baffin Land and Labrador are formed, owing their weaterly course to the rotation of the earth. These currents are certainly to a great extent helped and increased by the prevaling wiads of the region. The winds get a firm hold on the rough surface of the floating ice, which, with its deep hurnmecks and ridgee, gets a good grip of the water, transferring the movemeat of the surface immediately down to at least 5 or 10 fathorge.

1. The Gulf Stream. or Atlantic drift, paming borth-eastrard over the Scotland-Faeroe-Iceland ridge, along the west coast of Norway, with one arm branching of eastward round the North Cape into the Berents Sen, and asother brancl rumaing morth mand along the margia of the thelf between Normay, Bear Cland and Spitsbergen, passing as a very narrow current along the west coast of the latter, over the Spitsbergen ridge (at its north-wes corner). and into the North Poler Basin, where it inows gredeally northward and eatward (on account of the rotation of the earth) below the cold but lighter layer, 100 fathome thick, of polar velcer, and file the whole basin below 100 or 120 Gathoras to the botion with Atlantic water.
2. The Irminger Curront, running north along the west conat of Ioland. One part branchen of wertward and sousthwird agnia in Deamark Strait. following the Greenland Polar Curreat, winet another smaller part runs northward, eastward and south-eastward to the north and cast of lecland.
3. An Atlantic current runs northward along the wext const of Greenland, paspes the ridge acroes Davis Strint, and hows into Baffin Bay, forming ite dcepper strata below the polar water in a similar way to the Culf Stream in the North Polar Basio. There is a possibility that some slight portion of this current even reaches the latter along the bottom of the deep chanmel through Smith Sound.
4. A small current rumning morthward into the Niorth Polar Basin through Bering Strait.
The Arctic Sea receives also a contribution of frech water from the rivers of northern Europe, Siberia and America, as well as from the glaciers of Grecnland and the precipitation over the Fhole aren of the sea itgelf.
The chief currents running out of the Arctic Sea are: (1) The Greenland Polar Current. running southward along the cast const of Greenland, and dividing into iwo branches north of Iceland(d) the eart Greenland branch, pessing wouth throuph Depmart Strait and roundigg Cape Farewell; (b) the eatrin Ioeland branch running south-eastward between Iccland and Jan Mayen, towards the Facrocs lt seems as if only a small portion of this current actually pasess the Faero-lceland ridge and reaches the Atlantic Ocoan. The greater part in partly mived with the tre tre of the Gulf Stream and is turned by the latter in a north-anterly direction, forming a kind of eddy or vortex movernent in the southern Norwegian Sea. (2) The Labrador Polar Current, formed by the water running south through Smith Sournd, Lancaster Sound and Jones Sound, at well as wrater from Bafian Bay, and tho froma the east Groenland current rourdiag Cape Farewell and croeing Davis Strait. (3) Along the south east const of Spitabergen a polar current also passes in a south-westerly or westerly directioa current probably also russ out aloos the westere tide of Berint Strait.

Tomperakere and Salinity.-While the temperaturefscomparstively uniform, with small vatiations, the difference in salinity between the upper and lower atrata is greater than in mont other parts of the ocoan. In the North Polar Basin the vertical distribution of temperature as well as alinity is very much the ame in all places examined. Near the surface, from o dorm to 100 fathoms, the water is below the fretaing point of frech water-with a minimum of betreen $88.7^{\circ}\left(-1.8^{\circ} \mathrm{C}\right.$) and $28-6^{\circ}$ ($-1.9^{\circ} \mathrm{C}$.) at a depth of ebout 30 fathom-and is mach dilated with fresh water (see ebove), the salinity gradually increasing downward from about 29 or 30 per mille near the surface to nearly 35 per mille in roo fathoms. Below roofathoms the temperature as well as the salinity gradually incremses, untia they appronch their maximum in about 160 or 200 fatibems where the temperature varies between $32.5^{\circ}\left(0.3^{\circ} \mathrm{C}\right)$, north of the New Siberia. Lslands, and abowt $33^{.8^{\circ}}$ ($x^{\circ} \mathrm{C}$.) north of Frane Josef Land; and the salinity is about $35-1$ per mille. From this depth the temperature gradually sinks downwand; $33^{\circ}\left(0^{\circ} \mathrm{C}\right.$) is found at aboat 490 fathoons in the western part of the basine.g. bet ween about 84° N. $25^{\circ} \mathrm{E}$. and $85^{1^{\circ}}$ N. $58^{\circ} \mathrm{E}$, while it is found in about 400 fathoms farther enst-ag. in $811^{\circ}{ }^{\circ}$ N. and $123^{\circ} \mathrm{E}$. In dept bs het ween 1400 and 1600 fachoma the teseperature has a second minimum hetween $30-6^{\circ}\left(-0.8^{\circ} \mathrm{C}\right.$.) and $30-4^{\circ}$ (-0.9° C.), below which depth the temperatere agria rise slowly, a few tenthy of a degree towards the boetecti. In all depths below 200 fathoms the salinity of the water remenios very much the same, about $35 \cdot \mathrm{x}$ per mille, with very slight variations This comparatively warm and saline water evidently arigiatea from the branch of the Gulf Stream passing aerth secous the submarine IIdgo from north-weat Spitsbergen. The vertical distribution of temperature and minity to very much the manes,
snmmer and winter, throughout the North Polar Basin, except near the surface, which in summer is covered by a layer of fresh water arising from the melting of the snow-covered surface of the floe-ice. This fresh-water laycr may attain a thickness of 5 or 6 ft . between the floes. North of the Siberian coast the sem is, during summer, covered with a layer of warm water from the Siberian rivers, and the temperature of the surface may rise to several degrees above freczing-point.
In the Norwegian and Greentand Seas there are greater variations of temperature. Below a certain limit, which in the northern part (on the castern side) is about 550 fathoms deep, and in the sbuthern part between 300 and 400 fathoms deep, the whole basin of thin sea is filted with water which has an unusually uniform salinity of about 34.92 per mille, and the temperature of which is below zero centigrade, gradually sinking downward from the above-mentioned limit, where it is $32^{\circ}\left(0^{\circ} \mathrm{C}\right.$.) ; and down to $29.8^{\text {a }}\left(-1 \cdot 2^{\circ} \mathrm{C}\right.$.) or $29.6^{\circ}\left(-1 \cdot 3^{a} \mathrm{C}\right.$.) near the bot tomin 1400 or 1600 fathoms. This cold underlying water of such a remarkably uniform and comparatively low salinity is formed chiefly in a small area between Jan Mayen and Spitsbergen, by the formation of ice and cooling down of the Athatic surface water by radiation of heat during the winter. In this manner the surface water Decomes heavier than the underlying water and gradually sinks to the botlom. This.water seems to be distinctly different from the hitherto known water filling the deep of the North Polar Basin, as it has a lower salinity and lower temperature; the known bottom temperatura of the North Polar Basin being be tween $30.7^{\circ}\left(-0.7^{\circ} \mathrm{C}\right.$.) and $30.4^{\circ}\left(-0.9^{\circ} \mathrm{C}\right.$.), and the salinity about $35 \cdot \mathrm{E}$ per mille. This fact neems to indicate that there can be no direct communication between the deep depression of the North Polar Basin and the Norwegian-Greenland Sea, which are probably separated by a submarine ridge running from the north-weat corner of Spitsborgen to Greepland.

The above-mentioned layet of nuiform cold water of the Norwegian-Greenlaad Sea is, along its eastern side, covered by the wafm and salipe water of the Gulf Stream flowing northward along the west coast of Norway, Bear Isiand and Spitsbergen, and forming the upper strata of the sea aboot 300 to 500 fathoms deep. The maximum temperature of this water is on the surface about $46^{\circ}\left(8^{\circ} \mathrm{C}\right.$) to 50° ($10^{\circ} \mathrm{C}$.) west of northern Norway, and about $37^{\circ}\left(3^{\circ} \mathrm{C}\right.$.) to $39^{\circ}\left(4^{\circ} \mathrm{C}\right.$.) west of Spitsbergen. The salinity is generally between 35.0 and 35.3 per mille.

Along the western side of this sea, towards the east coast of Greeniand, the underlying cold water is covered by the less satine water of the polar current, which in the upper strata of the sea, from the surface down to about 100 fathoms, has very much the same temporature and salinity as in the upper cold and less saline strata of the North Polar Basin. Near the east coast of Greenlind, a layer of comparatively warm and saline water, with a temperature of $32-7^{\circ}\left(0.4^{\circ} \mathrm{C}\right.$.) and a salinity of 35.2 per milie, has bees found (by the Ryder expedition in 1891) below the cold and lighter polar water in a depth of 70 to 90 fathoms. This warmer undercurrent is a continuation of the warm Spitsbergen current sending off a branch westward from Spitsbergen, end thus forming a gteat vortex movement in the SpitsbergenGreonland Sea similar to the one mentioned farther soyth in the Normegian Sea,

In Barents Sco the temperature and salinity are highest in the western part near Norway or between Norway and Bear Island, Where the eastern branch of the Gulf Stream enters and where In summer the salinity generally is between 34.8 and 35 per mille from the surface down to the bottom, and the surface temperature generally is about $4 x^{\circ}$ or $43^{\circ}\left(5^{\circ} \mathrm{C}\right.$. or $6^{\circ} \mathrm{C}$.), and the botton temperature is above zero centigrade. The eastern part of Barents Sea is filled with water of a little lower salimity, the deeper strata of which are very coid, with'temperature even eid low as $28.9^{\circ}\left(-1.7^{\circ} \mathrm{C}.\right)$, but often with salinity above 35.0 per mille. This cold and saline water fs formed during the formation of ict on the sea-surface. The bottom temperature is every. where to the eastern part below zero centigrade and generally below $-\mathrm{I}^{\circ} \mathrm{C}$.
The KKara Sea is covered riear the sorince with a layer of cold
water much diluted by the freeh water from the Siberian rivers, especially the Ob and the Yenisei. The salinity varies betwean 29 and 34 per mille; sear the mouth of the rivers it is maturally much lower.

The vertical distribution of tomperature and salinity in Baffin Bay scems to be very similar to that of the North Polar Basin, with a cold but less saline upper stratum of water-with a minimum temperature of about $28.9^{\circ}\left(-1 \cdot 7^{\circ} \mathrm{C}\right.$.)-and a warmer and more saline deeper stratum from 100 to 200 fathoms downwards, with a maximum temperature of $33.6^{\circ}\left(0.9^{\circ} \mathrm{C}\right.$.) in about 900 fa thoms, and the temperature slowly decreasing towards the bottom.

Arclic Ice-As before mentioned, at least two-thirds of the Arctic Sea is constantly covered by drifting ice. This ice is moally formed on the surface of the sea itself hy freexing, the so-called floe-ice or searice. A sman part is also river-ice, formed on the rivers, especially those of Siberia, and carried into the sea duriag the spring or summer. Another comparatively small part of the ice originates from the glaciers of the Arctic lande. These pieces of glacier-ice or ictbergs are, as a rule, easily distinguished from the foe-ice by their siae and structure. They occur almost exclusivcly in the seas round Greenland, where they originate from the gleciers descending into the ses from the inland ice of Greenland. Some small icebergs are also formed in Fraaz Josef Lend, Spitsbergen, Novaya Zemlya, Grinnell Land, \&c., but they are comperatively insignificant, and are not as a rule carried far from the consts. Seavice or floo-ica is formed during the autumn, winter and spring, especially in the North Polar Basin, but aleo in the Kara Sea, the greater part of Barents Sea, the northernmost part of the Norwegian Sea (near Bear Island and towards Jan Mayep), Greeniand Sea and Bafin Bay. The focice does sot, as a rule, grow thicker than y or 8 ft . in one year, but when it floats in the water for some years it may attaln a thickness of 16 ft . or moro directly by freezing. By the constant upheaval from pressure much greater, thicknesses are attained in the piled-up hummochs and rubble which may be 20 to 30 ft . high above the water when floating. During the summer the floe-ice docreases agoin by meluing partly on the surface owing to the direct radiation of beat from the sun, partly on, the undcr side owing to the higher temperature of the water in which it floats. The girst kind of melting is that which prevaits in the North Polart Basin, which the secood occura in more southern latitudes. The floe-ice is constantly more or less in movernent, carried by winds and currents The changing wind, and also to a great extent the changing tidal current, causes diverging movements in the ice by breaking it into larger or smaller fioes. When the floen separate, lanes and channels ate formed; when they mett, ice-pressures arise, and the floes are piled up to forth hummocks or ridges, tad thus the aneven polar. ice arises. In the North Polar Baein the floofice is slowly carried by the prevailing winds and the currents in an twerage direction Iroen Bering Strait and the New Siberia Islands, north of Fran Josef Land and Splisbergen, near the Nomth Pole, towards the Groentand Soa and southerad along the cest conat pf Gxeentand. Such a drift of an ico-fine from the sea north of Bering Strath to the east const of Grecoland probably takes, as a rale, four or fiva years, and the fives found in this part of the sea are not, therefore, generally older. What the drift of the ice is on the American side of the North Polar Bacin is still litule known. But there it in probably more or less blocked up in its southward movement by the islands of the American Arctic archipelago, and the ice-fioes may thus grow very old and thick. Commander Peary found a ctrong easterly movement of the floes in the region north of Grant Land in 1907. The southward distribution of the driftint floe-ice (the pack ice) in Barents Sea, Norwegian-Greenland Ses and Davis Strait may difier much from one year to another, and these variations are evidently due to more or less periodical variations in the curricate and also in the directions of the presvailing winds. In most places the ice bas its most southerly distribution during the late winter and spring, while the lats summer and antamp (end of August and September) is the mont opets acesom.

Biological Conditions.-The development of organic life is comparatively poor in those parts of the Arctic Sea which are continuously covered by ice. This is, amongst ot her things, proved by the bottom deposits, which contain exceptionally litele carbonate of time of orgenic origin. The reason is evidently that the thick ice prevents to a great extent the development of plant bife on the surface of the sea by absorbing the light; and as the plant life forms the base for the development of animal bife, this has also very unfavourable conditions. The result is thate.8. in the interior of the North Polar Basin-there is exceptionally little plant life in the sca under the ice-covering, and the animal life both near the surface and in deeper strata is very poor in Individuals, whilst it is comparatively rich in species. Near the outskirts of the Arctic Sea, where the sea is more or less open during the greater part of the year, the pelagic plant life as well as animal life is unusually rich, and, especially during the early summer, there is often here such a development of plankton (i.c. pelagic life) on the sea-surface as is hardly found in any other part of the ocean. It seems as if the polar water is specially favourable for the development of pelagic plant life, which makes the fora, and consequently also the fauna, flourish as soon as the icecovering disappears and the water surface is exposed to the full sunlight of the long Arctic day. At the same time the temperature of the water rises, and thus the conditions for the chemical changes of matter and nutritive assimilation are much improved. The Arctic Sea, more especially the North Polar Basin, might thus be considered as a lung or reservoir in the circulation of the ocean where the water produces very little life, and thus, as it were, gets time to rest and accumulate those substances necessary for organic life, which are everywhere present only in quite minimal quantities. It is also a remarkable fact of interest in this connexion that the greatest fisheries of the world seem to he limited to places where waters from the Arctic Ocean and from more southern seas meet-e.g. Newfoundland, Iceland, Lofoten and Finmartien in Norway.

The mammalina life is also exceptionally tich in individuals sloag the outskirts of the Arctic Sea. We meet in those wnters, especially along the margin of the drifting ice, enormous quant ities of seals of various kinds, as well is whales, which live on the plankton and the Gishes in the water. A similar development of mammalian life is not met with anywhere else in the ocean, except perhaps in the Antarctic Ocean and Bering Sea, where, towever, similar conditions are present. In the interior of the Arctic Sea or the North Polar Basin mammalian life is very poor, and consists mostly of seone stragging polar bears which ptobably occationally wander everywhere over the whole oxpanse of ice; some seals, especially Phect foetida, which has been seen as far north as between 84° and $85^{\circ} \mathrm{N}$.; and a few whales, especially the narwhal, which has been seen in about $85^{\circ} \mathrm{N}$.

The bird life is siso exceptionally rich on the outskirts of the Arctic Sen, and the coasts of most Arctic lands are every summer inhabited by millions of sea-hirds, forming great colonies almost on every rock. These birds are also dependent for their living on the tich plankton of the surface of the sea. In the interior of the Arctic Sea the bird life is very poor, but straggling seabirds may probably be met with occasionally everywhere, during summer-time, over the whole North Polar Basin.

Bibliography.-For very full references to polar exploration eee A. W. Greely, Hemdowh of Poler Disconery (4th ed., London and Ne York, z910), and for a nearly complete bibliography of earlier polar literature tee I. Chavanoe and others, The Literature of the Polar Regions (Vlenna, 1878). W. Scoresby, An Account of the Arctic Repions (2 vols., Edinburgh. 1820): W. E. Parry, Attempe to teach the Nerth Pole (London, 1828); S. Osborn, The Discoury of the Norih-Weaf Passage (London, 1857): M'Clintock, A Narratine of the Discooery of the Fate of Sir Jain Franidin, \&c. (London, 1859); G. S. Nares, Voyage to the Polar Sea, $1875-1876$ (2 vols., London, 18, 8); A. H. Markham, The Great Froves See (London, i878, \&c.): f. Richardson, The Polar Regioms (Edinburgh, i861); A. v. Middendoeff, "Der Golfstrom ont warts vom Nondlcap," Petermanms MitGifunges (Gotha, 187i): A. Petermann, "Die Erschliessung eines Theiles des nordichen Eismeeres . . . im Karischen Meere, 1870," Petermanns Mitentingem (1871); and numerous other papers in the tame periodical; C. R. Markham, The Threnhold of the Vin-

 Manual of at Naturat History, Goology, and Physics of Cramand and the neighowring Regions, published by the Admiralty (London, 1875): Arclic Geology and EAhnology, published by the Royal Geographical Society (London, 1875); C. Weyprecht, Din Metmosphosen des polaraises (Vienna, 1879): pepers on the results of the Austro-Hungarian Expedition. $1872-1874$, in Peternamas Mitleilmengen (1875, and eapecially 1878); I. Payer, New Lands withat the Arctic Circle (2 vole, London, 1876); E. Bemels Scuentific Rerwlts of the U.S. Arctic Expudition, C. F. Hial com-
 Expelihon (Leipety, 1879): The Norwegian Norlh Allantic Expedt fion, 1876-1878, expecilly:H. Mohn, The North Ocean: its Depths. Temperature and Circulation" (Christiantia, 1887); and "Chemistry," by H. Tornde and J. Scbmelk (Chriationis, 1880, 1882): A. E. Nordenaliold. TV Voyage of the "Vese" (Lomdons 1881; weveral reports on the six voyages of the " Willem Harents" in the summers of 1878 to 1883, published in Dutch (Amsterdam and Haariem, 1879-1887); De Long, The Vorage of the "Jeannette ": the Ship and fea Jowrnaly of Gevere. W. De Long (a volser Londion 1883): Otto Petterseon, "Contributions to the Rydrography of the
 (Stockbolm, 1883); Axel Hamberg, "Hydrografisk Kemisla Ialkttagelser under den evenka Expedrionen till Gronland, $1883^{\circ}{ }^{\circ}$ Binane till h. sumshas wat, -ald. Handimary, vol. is. No. 16 and vol. x. No. 13 (Stockholm, 1884 and 1885); O. Krammel, Fiesfonch der Orearograplic (a vole, Stuttgart; 2ad ed. 1907, \&ic); C Ryder, "Den Ostgronlandske Expedition" Moddider on Crbmand, pt. xvil. (Copenhagen, 1895): ISforhodene i Nordmean 1877 7802, with 10 charts (Copenhagen, 1896); O. Pettermon ated (6. Ekman, "Die hydrogwaphischen Verhsitniese der oberen Waserachichten des nordlichen Nordmeerss zwischen Spiszberpen. Grom land und der norwegischen Kaste in den Jahren 1896 und 1897 ," Bihang till der K. Swensha Yel.Ahad. handtimgar, vol. miii. pp. in No. 4; The Daisish Impalf Expedition; mee eapecially M. Knudne日. "Hydrography" in vol. $\mathrm{i}^{\text {" (Copenhagen, } 18 g 9) \text {; F. Napsen, Farthest }}$ North (2 vols, London, 1897); The Nornegics Nord Pelar Expadstson, 1893-1890: Scientific Reswlts; see especiany F. Naneen. The Oceanography of the North Polar Basin." in vol. 直. No. 9;' Some Results of the Norwegian Arctic Expedition ${ }^{1893-1896}{ }^{\circ 1}$ Cow graphical Jommal (London, May IE9y). By V. Garde and othe there are, ince 1895, yearly reports with charts of the state of the ice of the Arctic eeses in the Nautical-Mcieorological Awnmal of the Danısh Ieteorological Institute (Copenhagen). Several Rumiat papers in various Russian periodicals, e.f: N. Kmipovitch. "" Materit coocerning the Hydrology of the White Sea and the Muram Sea." Bulletin de facademie inop. des sciences de St Pcemborars (October 1897); Prince B. Galitiin, "On the Extension of the Gud Stream in the Arctic Ocean." Ibid. (November 1898, Both ia Russian), \&c.; N. Knipovitch, "Hydirolopicche Untersuchuane
 (1905); Fjilip Akerblom, "Recherchee ockanographiques Expedttion de M. A. G. Nathorst en 1899," Upsala Umiersitets Arsilvif (rgo3). Math ork Natwrwetexshap TI. (Upsala, 1go4); Arel Hamberg. "Iydrographische Arbeiten der voa A. G. Nathoret fileitete: schwedischen Polarerpedition 1898," Fond anowh fillelel Favdingar vol. xil. No. I (Stochbolm, 1906) ;F. Nansen. Northers Waters," Videnskabs Sedshabets Skrifter, vol. i. No. 3 (Christinnin. 1906); B. Helland-Haasen and F. Nangen, it The Norvegian Sea, Report one Normegion Fishery and Masime Tuasigations, wol. i.
 dans la Mer di Grinland on 1 gos (Brussels, 1909). wee especintly B. Helland-Hansen and E. Koefoed, Hydrographit.
(H. R. M.; F. N.)

Antarctic Regtont

Iistory of Aptarctic Exploration.-Alhough the Antarctic region was not reached by the first explorer until the Arctic region had been for centuries a resort of adventurers in search of the route to the East, the discovery of Thensem the south polar region was really the more direct out come of the main stream of geographical exploration. It mas early understood by the Greek geographers that the known workd covered only a small portion of the nort hern bemisphere and that the whole southern hemisphere awaited exploration, with its torrid, temperate and figid zones repeating the climatic regions familiar in the northern hemisphere, the habitable land of the south temperate zone being separated from the known warld by the practically impassahle belt of the torrid zone. Daring the middle ages the sphericity of the earth came to be viewed is contrary to Script ure and was generally discredited, and it was not until Prince Henry the Navigator began in 448 to encourage the penctration of the torrid sone in the effort to reach Indis hy circumnavigating Africa thet the exploration of the southern hemisphere began. The douhling of the Cape of Good Hope in
c487 by Bartholomew Dias firat broaght explosers within touch of the Antarctic cold, and proved that the ocean separated Africa from any Antarctic land that might exist. The passage of Magellan's Strait in 1520 showed that America and Asia also were separated from the Antarctic continent, which was then believed to extend from Tierra ded Fuego southward. The doubling of Cape Horn hy Drake in 1578 proved that the Tierra del Fuego archipelago was of small extent and that any continent
ever died a harder death. It is not to the purpose here to descrite in detail how Schouten and Le Maire redícovered the southern extremity of Tierra del Fuego and named Cape Horn in 16i5, how Quiros in 1606 took possession for the king of Spain of all the lands he had discovered in Australia del Espiritu Santo (the New Hebrides) and those be would discover "even to the Pole," or how Tasman in 1642 showed that New Holland (Australia) was separated by sea from any continuous southern continent.

which ley to the south mand be within the region of perpetual winter. Before this, however, vague reports of land to the south of the Malay archipelago had led European geographers to connect on their globes the cosest of Tierra del Fuego with the coast of New Gaines, and allowing their imaginations to run riot in the vast unknown spaces of the eouth Atlantic, south Indian and Pacific ocetans, they sketched the outlines of a vast continent stretching in parts into the tropics. The search for this great south land or Third Worid was a leading motive of explorers in the 16th and the cundy part of the $\mathbf{3}$ th centuriet, and no illualon

Voyagers round the Horn frequently met with contrary winds and were driven southward into anowy skies and ice-encumbered seas; but so far as can be ascertained none of them before 1770 reached the Antarctic circle, or knew it, if they did. The story of the discovery of land in $64^{\circ} \mathrm{S}$. by Dirk Gerritsz on board the "Blijde Boodschap" in 1599 has recently been shown to bt the result of the mistake of a commentator, Kasper Barlaeus, in 1622. Much controversy has arisen as to whether South Georgis Whas sighted in 1675 by La Roche, but the point is of no importance in the development of the history of exploration. It may
salely be taid that all the navigators who fell in with the southern ite up to z750 did so by being driven of their course and not of set purpose. An exception may perhaps be made in favour of Halley's voyage in H.M.S. "Paramour " for magnetic inventigations in the South Atlantic when be met the iec in $52^{\circ} \mathrm{S}$. in January 2700; but that latitude was his farthest south. A determined efiort on the part of the French naval officer Pierre Bouvet to discover the South Land described by a half legendary sieur de Conneville resulted only in the discovery of Bouvet Island in $54^{\circ} 10^{\circ} \mathrm{S}$., and in the navigation of 48 degrees of longitude of ice-cumbered sea nearly in $55^{\circ} \mathrm{S}$. in 1739. In 1771 Yves Joseph Rerguelen sailed from France with instructions to proceed south from Mauritius in search of "a very large continent." He lighted upon a land in 50° S. which he called South France, and believed to be the central mass of the southern continent. He was sent out again to complete the exploration of the new land, and found it to be only an inhospitable island which be remamed in disgust the Isle of Desolation, bot in which posterity has recognized his courageous efforts by naming it Kerguelen Land. The obsession of the undiscovered continent culminated in the brain of Alexander Dalrymple, the brilliant and erratic bydrographer who was nominated by the Royal Society to command the Transit of Venus expedition to Tahiti in 1769, 2 post he coveted less for its astronomical interest than for the opportunity it would afford him of confirming the truthfulness of his favourite explorer Quiros. The command of the expedition was siven by the admiralty to Captain James Cook, whose geographical results were criticized by Dalrymple with a force and persistence which probably had some weight in deciding the admiralty to send Cook out again with explicit instructions to solve the problem of the southern continent.

Sailing in 1772 with the "Resolution," 2 vessel of 462 tons under his own command and the "Adventure" of 336 tons under Captain Tobias Furneaux, Cook first searched in vain lemes coak for Bouvet Island, then sailed for 20 degrees of ward for the most part south of $60^{\circ} \mathrm{S}$. a higher southern latitude than had ever been voluntarily entered before by any vessel. On the $17{ }^{\text {th }}$ of January 1773 the Antarctic Circle was crossed for. the first time in history and the t wo ships reached $67^{\circ} 15^{\circ} \mathrm{S}$. in 39° 35^{\prime} E., where their course was stopped by ice. There Cook turned northward to look for South France, of the discovery of which he had received news at Cape Town, but from the rough det ermination of his longitude by Kerguelen, Cook reached the assigned latitude 10° too far east and did not see it. He turned south again and was stopped by ice in $61^{\circ} 52^{\prime} \mathrm{S}$. and $95^{\circ} \mathrm{E}$. and conLinued east ward nearly on the parallel of $60^{\circ} \mathrm{S}$. to 147° E. where on March 16th the approaching winter drove him northward Eor'rest to New Zealand and the tropical islands of the Pacific. In November 1773 Cook left New Zealand, having parted company with the "Adventure," and reached $60^{\circ} \mathrm{S}$. in $177^{\circ} \mathrm{W}$., whence he sailed castward keeping as far south as the floating ice allowed. The Antarctic Circle was crossed on the 20th of December and Cook remained south of it for three days, being compelled after reaching $67^{\circ} 37^{\prime}$ S. to stand north again in $135^{\circ} \mathrm{W}$. A long detour to $47^{\circ} 50^{\prime} \mathrm{S}$. served to show that there was no land connexion hetween New. Zealand and Tierra del Fiego, and turning south again Cook crossed the Antarctic circle for the third time in $109^{\circ} 30^{\prime} \mathrm{W}$., and four days later his progress was blocked by ice in $71^{\circ} 10^{\prime}$ S., $100^{\circ} 54^{\circ}$ W. This point, reached on the 3oth of January :774, was the farthest south attained in the $\mathbf{8}$ th century. With a great detopr to the east, almost to the coast of South America, the expedition regained Tahiti for refreshment. In November 1774 Cook started from New Zealand and crossed the South Pacific without sighting land between 53° and $57^{\circ} \mathrm{S}$. to Tierra del Fuego, then passing Cape Horn on the 2gth of December he discovered the Isle of Georgia and Sandwich Land, the only ice-clad land he had seen, and crossed the South Atlantic to the Cape of Good Hope between 55° and 60° S., theroby wiplng the Dalrymple's continent from all ibe oceans and taying open the way for future Antarctic exploration by explotins the myth of a
habitabio southers continent. Cook's mone southerfy diecovery of land lay on the temperate side of the foth paralled, and be convinced himself that if land lay farther south it was pacticalty insccessible and of no comomic vahue.

Soon after Cook's return sealers set otte on royages to Sooth Ceorgia both from England and America, but no clear accounts of the southers limity of their voyages before the semern year 1819 can now he obtained. In February of that Veraser year William Smith of the brig" Wititams" trading between Monte Video and Valparaiso, rounding the Horn with a wide sweep to tbe south, save land in $63^{\circ} 40^{\circ} \mathrm{S}$. Repeating the voyage in October he saw the land distinctly, and named it New South Shetland. The "Williams " wras chartered by the British naval commander on the Pacific station, and in 1820 Edward Bransfield, master R.N., surveyed the group and went as far as $64^{\circ} 30^{\circ}$ among the islands. Meanwhile American sealers from Stonington, Connecticut, had begun operations on the newly discoverod land, and one of these, Nathaniel B. Patmer, discovered the mountainous archipelago still farther south which now bears his name. In 182t-1822 George Powell, apperently a British sealer, discovered and surveyed the South Orkney Islands which, though typical Antarctic lands, lie outside the Antarctic region.
A voyage only second in importance to that of Cook was planned in Russia and sent out by the emperor Alerander I. under the command of Fabian von Bellingshausen in the Ecmer "Vostok," with Licut. Lazarefi in the "Mim" " in company, both veseels being about 500 tons. The object of the expedition was to supplement that of Cook hy circumnavigating the Antarctic ares, taking care to kecp as far south as possible in those longitudes where Cook had made his nort hward detours. Bellingshausen entered on his exploring work by sighting South Georgia at the end of Deceraber 1819, discovered the Traverse Islands, sighted the Sandwich group and met a solid ice-pack in 60° S., to get round which he made a wide detour, sailing east to the south of Cook's track, and getting south of the 60th perallel in 8° W. On the 26th of January he crossed the AntarcticCircle in 3° W. and by Fcbruary ist had reached $69^{\circ} 25^{\circ}$ in $1^{\circ} 11^{\prime}$ W., a latitude which has never been surpassed on that meridian. Being stopped by ice, Bellingshausen turned northward and then continued to the east well to the south of Cook's track. getting south again as the ice permitted and reaching $69^{\circ} 6^{\prime} \mathrm{S}$. in ${ }^{18} 8^{\circ} \mathrm{E}$. On this occasion he was able to sail for three degrees of longtitude within the circle before being forced north of it by a succession of heavy gales. He still kept east ward south of $65^{\circ} \mathrm{S}$ and crossed the circle once more in $41^{\circ} \mathrm{E}$., where the number of birds seen suggested the proximity of land, and in fact Enderby Land was not very far off, though out of sight. A storm of unexampled violence drove the ships northward, but they stitl held to the east south of $60^{\circ} \mathrm{S}$. as far as $87^{\circ} \mathrm{E}_{\text {., }}$, having followed the edge of the ice through those meridians south af Kerguelen Land where Cook had made a great detour to the north. Bellingshausen now made for Sydney to rest and refit. arriving there on the 29th of March 1820 , after 13I days under sail from his last port. At Sydney Bellingshausen heard of the discovery of the South Shetlands, and leaving early in November reached the sixtieth parallel a month later in bongitude $\mathbf{4} 43^{\circ}$ W., and sailing eastward kept south of that pera!!el through 145 degrees of longitude during sixty-five days, never out of sight of the ice, keeping close along the pack edge through the great gap left by Cook south of New Zealand. He managed to cross the circle three times more, in $164^{\circ} 30^{\circ} \mathrm{W}$., in $120^{\circ} \mathrm{W}$. and in $92^{\circ} 10^{\prime} \mathrm{W}$., where be reached $69^{\circ} 59^{\prime} \mathrm{S}$., the culminating point of the voyage. As the cruise was supplementary to Cook's, no attempt was made to get south of the meridian where that great navigator made his highest latitude. On the 2and of January 1821, the day after reaching his higheat latitude. Bellingshausom sighted the first land ever seen within the Anter another and laxger land, indinamed aiter Peter L. A veet at a distance of 40 m . and stetches mimAlexander 1. . was seem which the black sock stood out in contintes bold outline ie
the suop

Bellingshaumen then made for the South Shetlands, where be met tho American sealers, and thence returned to Russia. The soyage was a worthy pendant to that of Cook; it was carried out with a falthiful devotion to instructions and consummate seamanship, and as a result it left only half the periphery of the Antarctic Circle within which land could posslbly project beyond the Frigid Zone.

The next episode in the history of Antarctic exploration was the voyage of James Weddell, a retired master R.N., in 1823 Wedenll Woddell was in command of the "Jane," a brig oi 160 tons, with the cutter "Beauloy" of 65 tons in company, and after cruising among the South Orkneys during January he started for the south on exploration, and as he was well equipped with chronometers his ponitions may be taken as of a far higher dogree of accuracy than those of ordinary sealers. On the 2oth of February he reached the highost latitude yet attained, $74^{\circ} 15^{\prime} \mathrm{S}$. in $34^{\circ} 17^{\prime} \mathrm{W}$., having sten much ice but no impenetrable pack, and at the farthest point the sea was clear and open, but the lateness of the scason and the length of the return voyage decided him to go no farther. Weddell made interesting collections of Antarctic animals, including the type specimen of the seal which bears his name, and the book in which he describes his voyage cestifies to the keenness of his observations and the soundness of his reasoning. The sea which he penecrated so far to the south he named after the reigning king, George IV., but it is now known as Weddel Sec.

In 5829 Captain Henry Foster, R.N., in ì.M.S. "Chantclect " spent some months in the South Shetlands carrying on pendulum and gravity observations at the most southerly harbour that could be found, and though he did not go south of $63^{\circ} 0^{\prime}$ S. the careful obscrvations which were made threw much light on the physical conditions of the Antarctic regions.
The firm of Enderby Brothers of London took a conspicuous part in the exploration of the Antarctic seas during the first Bbecee. Sour decades of the 19 th century. They encouraged the masters of the whaling and sealing craft which they sent to the southern scas to take every opportunity that offered for exploration and to fix the position of any land seen with the greatest possible accuracy. The voyage of the Enderbys' brig "Tula," under the command of John Biscoe, R.N., with the cutter "Lively" in company, is worthy to rank with Cook's and Bellingshausen's expeditions, for it repeated and advanced upon their achievements with a mere fraction of their resources. Biscoe, who apparently had never heard of Bellingshausen's discoveries, was a keen explorer and a man given to thinking over and reasoning upon all that he saw, and in many of his conclusions he was far in advance of his time. At the beginning of January $\mathbf{1 8 3 1}_{1}$ Biscoe, who had been hunting vainly for seals on the Sandwich group, started on a voyage easterly to look for new islands, and in trying to get south of $60^{\circ} \mathrm{S}$. he had to coast the impenetrable ice-pack as far as $10^{\circ} \mathrm{W}$., and continulng he got within the Antarctic Circle in $1^{\circ} E$. on a track parallel to that of Bellingshausen but farther east. Contrary winds delayed the litile vessels, no seal-bearing lends were to be found, hut in spite of difficultics, constant danger from fogs and icebergs, and disappointed crews he held on east ward for five weeks far to the south of Cook's track, and, except at one or two points, to the south of Bellingshausen's also. Though his highest latitude was only 69° S. in $10^{\circ} 43^{\prime}$ E. on the 28 Lh of January, he remained south of the Antarctic Circle, or within a fow miles of it, for another month, when, in longitude $49^{\circ} 18^{\circ} \mathrm{E}$., he was rewarded by the discovery of land. But just as he was entering on a clear lead of water running straight for a promontory which be named Cape Ann, a terific storm descended on the vessels, damaged them seriously and drove them helpless before it with the driving ice. A fornight's struggle with the wind and ice brought Cape Ann into sight again on the 166 h of March but the weather was not to be conquered, the sea was beginning to freeze and half the crew were helpless with tho effects of exposure, so Biscoe was compelled to give up the Gigh and reluctanlly jet the land-now known as Enderby rend-drop out of sight attern. With only throe men ablo to
stand; Biscoe brought the "Tula " Into Hobart Town, Tasmania, and the "Lively," with only the master, one man, and a wounded boy alive, just escaped shipwreck in Port Philip Bay. After recruiting their healith and completing their crews the two captains put to soe again and spent some time in sealing on the shores of New Zealand and neighbouring islands. They started south once more, and crossed $60^{\circ} \mathrm{S}$. in $131^{\circ} \mathrm{W}$. on tho asth of January 1832. Biscoe kept between 60° and the Anlarctic Circle, north of Bellingshansen's route, for he dared not risk the lives of his second crew, but he got south to $67^{\circ} \mathrm{S}$. in $72^{\circ} \mathrm{W}$., and here, on the 14th of February, he again sighted land, which, in ignorance of Bellingthausen's discoverios in the same region, he believed was the most southerly land yet known. He named it Adelaide Land aftor the queen. A fow days later he passed a row of low ice-coyered islands-the Biscoe Islands-running from W.S.W. to E.N.E. Beyond these islande lay the mountains of an extensive land of which Biscoo took possession in the name of King William IV., and to which the name of Graham Land was subsequently given. Biscoe returned home after an arduous two months' eealing in the South Shetlands, and the splendid results of his relentiess determination as an erplorer won for him the gold medals of the young Geographical Societies of London and Paris.

In 8833 anotber of Enderbys' captains named Kemp raported the discovery of land in $66^{\circ} \mathrm{S}$. and $60^{\circ} \mathrm{E}$. about 20° east of Enderby Land. The last of the great voyages of Bancay. exploration due to Enderby Brothers was the cruise of the "Eliza Scott "under the command of John Balleng, with the cutter "Sabrina" in company. This voyage is interesting because it was the first attempted in high latitudes from oesk to west, and all those made in the opposite direction had suffered much from the buffetings of head winds. Balicny left Campbell Island south of New Zealand on the 17 th of January 1839 and crossed the Antarctic Circle in 178° E. on the 29th. Heavy pack ice stopped him in $60^{\circ} \mathrm{S}$., a higher latitude than had previously boen reached in that region. On the gth of February, after the little vessels had been working north-westward along the edge of the pack ice for more than a week, land was seen and found to be a group of mountainous islande-the Balleny Islands-one of which rose to a height of $12,000 \mathrm{ft}$., and another was an active volcano. Captain Freeman of tho "Sabrina" made a momentary landing on one of the islands and was nearly drowned in the attempt, but socured a few stones which showed the rocks to be volcanic. The vessels held on their way west ward bet ween latitudes 63° and $65^{\circ} \mathrm{S}$, far south of any carlier voyager, and land, or an appeanance of land, to which the name of the "Sa brina "was given, was reported in 120° E. In $103^{\circ} 4^{\circ}$ E. an icoberg was pasted with a rock embedded in the ice, clear proof of land existing to the southward. A few days later the "Sabrina" was lost in a galc, but Ballicny returned in safety.
About $18 \mathbf{3 5}$ the importance of obtaining magnetic observations in the far south, and the scientific interest of the study of the south polar regions led to plans being put forward for expeditions in the United States, France and Great Britain. The Franch were first in the field; an expedition, equipped in the frigates " Astrolabe " and "Zeleo" under Jules Dumont D'Urville for ethnographical research in the Pacific Islands, was instructed to make an attempt 10 surpass Weddell's latitude in the South Allantic Ocean, and this D'Urvile triod to do with conspicuous ill-success, for be never reached the Antarctic Circle though he spent the first two months of 1838 round the edge of the ice-pack south of the South Shetlands and the South Orkneys. Some portions of the land south of the South Shellands were charted and named Joinville island and Louls Philippe Land; hut the addition to knowledge was not great. Two years later, after fulfilling the main purpose of his oxpedition in the Pacific, D'Urvillo resolved for the glory of France to attempt to reach the Magnetic Pole, towards which he was aware that a British and an American expedition were directing their course. He left Hobart Town on the ist of January 1840, and on the roth ho crosmed the 66th paralled in $140^{\circ} \mathbf{E}$. and diccovored land 3000
or 4000 h. high, which be mamed Adelie Land and took poasesgion of by hooling 00 a rocky islet off the icebound coast. Ten days later in $64^{\circ} 30^{\prime}$ S. D'Urville cruised westward along a high ico-barrier, which be believed to be connected with land; from longitude $131^{\circ} \mathrm{E}$. and he named it the Clarie Coast. A fow days later he loft the Antarctic regions for the Pacific.

As early as 1836 the United States Congress had authorized en American Exploring Expedition in the programme of which Antarctic exploration had a leading place. Lieut. Charles Wilies was appointed to command the expedition of five vessels in August 1838, and his instructions, dited in that month, required him amongat other things (1) to follow Weddell's route as far as possible, (2) to visit the most southerly point reached by Cook in the Antarctic, and (3) to make an "attempt to peoctrate within the Antarctic region, south of Van Diemen's Lapd, and as far west as longitude 45° E., or to Enderby Land." The ships were in bad repair and illadapted for mavigation in theice, and many of the officers were not devoted to their chief; but in spite of great difficulties Wilkes fulfilled his programme. In following Weddell's route Wilkes in March 1839 fared no better than D'Urville in the previous year, but the "Flying Fish " of 96 tons under Lieutenant Walker reached $70^{\circ} \mathrm{S}$. in $105^{\circ} \mathrm{W}$., thus nearly reaching Cook's position of 1774. The third item of the Antarctic programme was made the subject of the most strenuons endeavour. Wilkes sailed from Sydney in the "Vincennes " on the 26th of December 1839, accompanied by the "Pencock" under Lieut. William L. Indson, the "Porpoise" under Lieut. Cadwaladar Ringsold, and the "Mying Fish" under Lieut. Pinkney. They went south to the west of the Balleny Islands, which they did not see, and cruised westward along the ice-barrier or as near it as the ico-pack allowed towards Enderby Land nearly on the Antarctic Circle. The weather was bad with fogs, spowstorms and frequent giles, and although land was reported (by each of the vessels) et several points along the route, it was rarely seen distinctly and the officers wose not agreed amongst themsolves in some cases. Unfortunate controversies have arisen at intervals during sixty years as to the reality of Wilkes's discoveries of land, and as to the justice of the claim he made to the discovery of the Antarctic continent. Some of tho land claimed at the eastern end of his route has been shown by later expeditions not to exist; but there can be no doube that Wilkes ean land along the line where Adelie Land, Kemp Land and Enderby Land are known to exist, even if the positions he asigas are not quite accurate. No one, however, could establish a chim to the discovery of a continent from sighting a discontinuous chain of high land along its coast, without making a landing. It seems no more than due to a gallant and much-persecuted officer, who did his best in most difficult circumstances, to leave the name of Wilkes Land on the map of the region he explored.

Unlike the other two expeditions, that equipped by the British government in 1839 was intended solely for Antarctic Reas exploration and primarily for magnetic surveys in "Erebus "of 370 tons, and the "Terror" of 340 , stoutly buili craft specially strengthened for navigation in the ice. Captain James Clark Ross, R.N., was in command of the "Erebus" and of the expedition; Commander Francis Rawdon Moira Crozier of the "Terror.". A young surgeon, Joseph Dalton Hooker, joined the Royal Navy in order to go on the expedition, and he lived totake a keen interest in every subsequent Antarctic expedition down to that of Captain Scott in 1910. Ross had intended to make straight for the meridian of the Magnetic Pole, but, finding that D'Urvilloand Wilkes had already entered on those seas be determined to try to make a high latitude farther east, and leaving Hobart Town on the 12th of November 8840 he crossed the Antarctic Circle on the ist of January 1841 and entered the pack ice on the 5 th in $174^{\circ} \mathrm{E}$. Instead of proving an impenetrable obstacie, the pack let the two ships work through in five days, and thoy emerged into open sea. Sailing towards the Magnetic Pole they found a chain of creat mountains rising from a coast which ran due south
from a prominert cape (Cape Adere) in $71^{\circ} \mathrm{S}$. The coatimat was taken formal possession of for Queen Victoris by landing on Possession Island, the mainland being inaccessible, and the ships continued southward in sight of the coast of Victoris Land, where the loftiest mountain was named Mt Melbourne after the Prime Minister, until the twin volcanoes named Erebus and Terror were sighted in 7° S. on the 28 th of January. From Cape Crozier, at the base of the mountains, a line of lofty cliffs of ice ran east. wards, the great ice-barrier, unlike any object in nature ever seen before, rising perpendicularly from the water to the height of 300 or 300 ft . and continuing unbroken for 250 m . Along the barrier the highest latitude of $78^{\circ} 4^{\prime} \mathrm{S}$. was altained, and the farthest point to the east was $167^{\circ} \mathrm{W}$., whence Ross turned to look for a winter harbour in Victoria Lend. Being derirous to winter near the South Magnetic Pole, Ross did not explore McMurdo Bay between Mt Erebus and the north-ronning coast. where, as we now know, a harbour could have been found, and as he could not reach the land eisewhere on account of ice extyoding out from it for 15 or 16 mm ., after sighting the Baileny Islands at a great distance, on the and of March the mhips returned to Hobart. This was the mout remarkable Antarctic voyage for striking discoveries over mado.
In November 1841 the "Erobus " and "Terror" returned to Antarctic waters, steering south-east from Now Zealand and entering the ice-pack in about $60^{\circ} \mathrm{S}$. and $146^{\circ} \mathrm{W}$., the idee being to approach the great burrier from the oustward, but by the end of the year they had just struggled as far as the Antarctic Circle and they, together with the pack, were several times driven far to the northward by heavy gales in which the ships were at the mercy of the floating ice During 2 storm of terrible severity on the 18th of January the rudders of both ships were smashed, and not until the 1 nt of February did they break out of the pack in $67^{\circ} 29^{\prime} \mathrm{S}$., $159^{\circ} \mathrm{W}$. The bartior was sighted on the ${ }^{\prime}$ 2and and the ships reached $78^{\circ} 10^{\prime} \mathrm{S}$. in $163^{\circ} 27^{\circ} \mathrm{W}$., the bighest latitude attained for 60 yours. To the eastward the barrier surface roee to a mountainous height, but although Ross believed it to be land, he would only treat it afficially as "an appearanco of land ${ }^{2}$ " leaving the confirmation of its discovery as King Edward Land to the next century. No more work was done in this quarter, the "Erebus" and "Terror" turned the edge of the pack to the northward and on getting into clear water sailed eastward to Cape Horn, meeting the greateat danger of the whole cruise on the way by colliding with anch-other at night while pascing between two icebergs in a gale.

After wintering in the Falkland Islands and making good the damage received, Ross made his third and last attack on the southern ice, and for six weoks he cruised amongst the pect off Joinville Island and Louis Philippe Land trying in vain to reach the Antarctic Circle. Failing in this attempt he turned to follow Weddell's route and skirted the pack eastward in $65^{\circ} \mathrm{S}$. crossing Weddell's track on the 14th of February 1843, more than a degree farther south than D'Urvillo in his attempt four years before, but on the edge of an equally impenetrable pack. Coasting it eastward to $12^{\circ} \mathrm{W}$. the "Erebus" and "Terror" at last rounded the pack and found the way open to the south, crossing the circle on the 1st of March.' Four days later the pack was met with again and the ships were forced into it for 27 miles to latitude $71^{\circ} 30^{\prime} \mathrm{S}$. in $14^{\circ} 51^{\prime} \mathrm{W}$. ninetera degrees east of Weddell's farthest south. No sign of land tas seen, a deep-sea sounding showed 4000 fathoms with no boltom, and although this was a mistake, for the real deprh was later proved by Dr Bruce to he only 2660 fathoms, it showed at least that there was no land in the immediate neighbourhood.

This was Ross's last piece of Antarctic work, but the magmetic observations of his expedition were continued by Lieut. T. E. I. Moore, R.N., in the hired barque "Pagoda," which left Simon's Bay in January 1845 and proceeded south-east, crossing she Antarctic Circle in $30^{\circ} 45^{\prime} \mathrm{E}$ and reaching a farthest south of $67^{\circ} 50^{\prime}$, nine degrees farther east. 'An attempt to reach Enderby Land was frustrated by the weather, and Moore coocinued his
voyage to Anstralia in a high latkude beating againast contrary gales, a condition to which all previous experience pointed as tikely to occur.

No further attempt at South Polar exploration was made for nearly thirty years, except a short cruise by Mr Tapsell in the "Cluntion awor "Brisk," one of Enderhy's ships which in February eastward to $143^{\circ} \mathrm{E}$. at a higher latitude than Wilken without sighting land. The first steamer to cross the Antarctic Circle was H.M.S. "Challenger," on the 16 th of February 8874 : she only penetrated to $66^{\circ} 40^{\circ} \mathrm{S}$., in $98^{\circ} 30^{\circ} \mathrm{E}$., south of Kerguelen Land; but she continued her course to Australia for some distance in a high latitude, passing within 15 m . of the position assigned to Wilkes's' Termination Land without secing any sign of land. Her dredgings and soundings yiekded evidence as to the nature of the unknown region farther south. Sir John Murray believed that the soundings showed a general shoaling of the ocean towards the Antarctic lee, Indicating the approach lo a continent. By collecting and analysing all samples of deep-sea deposits which had been secured frora the far south, he discovered a remarkahle symmetry in the arrangement of the deposits. The globigerine ooze, or in deeper waters the red clay, carpeting the northern part of the Southern Oceans, merges on the southward into a great ring of dlatom ooze, which gives place in turn, towards the fee, to a terrigenous blue mud. The fine rock particles of which the thue mud is composed are such as do not occur on oceanic islands, and the discovery of large blocks of sandstone dropped by icebergs proved the existence of sedimentary rocks within the Antarctic Circle.
During the southern summer in which the "Challenger" visited Antarctic waters, a German whale-ship, the "Gronland," oellmana, under Captain Dallmann, visited the western coast of the Antarctic land south of Tierra del Fuego, and modified the chart in several particulars. The chief discovery was a channel, named Bismarck Strait, in 65°. ., which seemed to run betweeq Palmer Land and Grahara Land.
When the International Circumpolar observations were set on foot in $\mathbf{2 8 8 2}$, two scientific stations were maintained for a year in the southem hemisplere in order to obtain data for comparison with the observations at twelve stations round the North Pole. One of these was occupied hy French observers in Tierra del Fuego in $55^{\circ} \mathrm{S}$., the other hy German observers at Royal Bay on South Georgis in $54^{\circ} 30^{\circ} \mathrm{S}$. The magnetic and meteorological observations were of considerable importance.

In 1892 four steamers of the Dundee whaling fleet-the "Balaena," "Active," "Diana " and "Polar Star""-went out to test Ross's. statement that the "right whale" inhabited Antarctic waters. The surgeons of two of the vessels-on the "Balaena" Dr W. S. Bruce, on the "Active" Dr C. W. Donald -were selected for their scientific tastes, and equipped with all requisite instruments for ohservations and collecting. The result of the experiment was disappointing. No whales were ohtained, and the ships devoted their attention to sealing on the east of Joinville Island and Louis Philippe Land, not going farther south than 65° S. (Geographical Jowrnal, 1896, vii. 502-525, 625-643).

A Norwegian sealer, the "Jason," Captain Larsen, also visited those seas in the same season, but the captain landed and collected Lerses. fossils at several points north of $65^{\circ} \mathrm{S}$. In 1895-1894 the "Jason," accompanied by two other Norwegian vessels, the "Hertha "and the "Castor," retumed to the Antarctic and entered the ice-laden waters in November at the very beginning of summer. Captain Larsen in the " Jason" made his way as far south as $68^{\circ} 10^{\prime}$ in 60° W. on the eastern side of Gra ham Land, but several miles from the coast, which was bordered by a high icc-barrier. The land beyond this barrier was named Foyn Land, after a famous Norwegian whaleship owner. Retuming northwards. two small islands, Lindenberg and Christensen, were discovered and found to be active volcanoes. Meanwhile the "Hertha," Captain Evensen, had reached the South Shetiands on the rst of November 1893, and worked her way southward along the west side of Palmer Land and past the Biscoe Istands,
reaching the Antarctic Clircte on the oth of November without meeting ice. This was the first time the Antaretic Circie had been crosed since the "Challenger " did so twenty years before. Captain Evensen sighted Alexander Land, and without experjencing any trouble from ice-Aoes he reached his farthest south, $69^{\circ} 10^{\prime} \mathrm{S}$. in $76^{\circ} 12^{\prime} \mathrm{W}$. (Mincilangen der Geographidchen Goeelh. schaft, Hamburg, 1895, pp. 245-304).
In 1894 the well-known Norwegian whaler, Svend Poyn, sent out one of his vessels, the "Antarctic, "Captain Christensen, to try his luck of the coast of Victorin Land. The "Antarctic", sailed Irom Melbourne in September, vorntspois having on board Carstens Egeberg Borchgrevink, 2 young Norwegian resident In Australia, who, being determuned io take part in a voyage he could join in no other way, shipped as an ordinary seaman. He made notes of the voyage, and pubbiched an account of it on His return to Europe (Report of Sith Internelional Grographical Congress, London, $8805, \mathrm{pp}$. 169-275)The "Antarctic" entered the pack in $62^{\circ} 45^{\circ} \mathrm{S}$., $177^{\circ}{ }^{\circ} 3^{\circ} \mathrm{E}$ E., on the 8th of December 1894 . The Balleny Islands were sighted on the 14th of December, and Cape Adare on Victoria Land two days latex. On the 2and of January 1895 the farthest point was reached at Coulman Island in $74^{\circ} \mathrm{S}$.; the rea was then easily navigathe to the south. On the 33 rd of January a amall party, including the captain and Mr Borchgrevink, linded on the mainland near Cape Adare, the first people to set foot on the Antarctic continent.
Efforts had been made from time to time, by Professor Ceors von Neumayer In Germany and by Sir John Murray and others in Great Britaih, to induce leamed societies to in. augurate a new era of scientific Ansarctic research armeter, under Government or at least under national auspices.
In 1805 Sir Clements Markham, as president of the Royal Geographlcal Society and of the International Geographical Congress, also took the matter up, and interest in the Antarctic regions began to be aroused in every civilized country. Captain Adrien de Gerlache organized and led a Belsian expedition, for which he raised the funds with difficulty. M. Georges Lecointe, captain of the "Beigica," and Lieut. Danco, magnetic observer, were Belgians; Mr Roald Amundsen, the mate, a Norwegian; M. Argtowski, the geologist and physicist, a Pole; M. Racovitza, the biologist, a Rumanian; and Dr F. A. Cook, the surgeon, an American. On the 14 th of January 1808 , already long past midsammer, the "Belgica," leit Staten Island for Antarctic waters. She sighted the South Shetlands on the arst and proceeded to Hughes Gulf, from which a channel, Gerlache Strait, was explored leading south-west ward between continuous land, named Danco Land, on the east (the northem extension of Graham Land), and Palmer Land on the west. Palraer Land was found to be a group of large islands. On the $\mathbf{x 2 t h}$ of February the "Belgica" roentered the open sea to the west at Cape Tuxen in $65^{\circ} 15^{\prime \prime} \mathrm{S}$. Much fog was experienced, hut on the $\mathbf{6 6 t h}$ Alcxander Land was sighted in the distance. Continuing on a westerly course, the "Belgica" made every effort to enter the pack, which was successfully accomplished after a heavy storm on the 88th. By taking advantage of the leads, the expedition advanced to $71^{\circ} 30^{\circ} \mathrm{S}$. in $85^{\circ} \mathrm{rs} 5^{\prime}$ W. hy the and of March, but the ship was blocked next day by the growth of young ice soldering the pack into one continuous moss. For more than a year furtber independent movement was impossible; hut the ship drifted with the ice between the limits of $80^{\circ} 30^{\circ} \mathrm{W}$. and $102^{\circ} 10^{\prime} \mathrm{W}$., and of $69^{\circ} 40^{\prime}$ and $77^{\circ} 35^{\circ}$ S., which was the highest lalitude attained (May 31, 8898). The sun did not rise for seventy days, and all on board suffered severely from depression of spirits and disorders of the circolation, which Dr Cook attributed to the darkness and to improper food. Lieut. Danco died during the period of darkness. On the 13 th of March 1809, when 2 second winter in the ice began to seem probabie, the "Belgica " was relensed in 69° 50 S. and $102^{\circ} 10^{\circ} \mathrm{W}$. The geographical results of this expedition were insignificant so far as the discovery of land or penetration to a high lattiude is concernet. The ship passed several times to the south and west of Peter I. island, proving that the land seen hy Bellingsiausen at that
point is of very linited axteat. Daring the drift in the ice the soundings were usually between 200 and 300 fathoms, which, compared with the great depths to the north, clearly indicated a contisental shelf of considerable breadth, probably connected with land in the south. The ecientific collections were of unique value and have been. workeq up and the results published at the expense of the Belgian governmeat.

The Hamburg America Company's steamer "Valdivia," chartered by the German Government for a acientific voyage "Velemine" under the leadership of Professor Carl Cbun of Leipaig, with Dr Gerhard Schott as oceanographer, left Cape Town on the 13 th of November 1898, and on the asth was fortunate in rediscovering Bouvet Istand ($54^{\circ} 26^{\prime} \mathrm{S} .13^{\circ} 24^{\prime}$ E.), which bad been searched for in vain by Cook, Ross, Moore and many otber sailors. Steering south, the "Valdivia," although an unprotected steel vessel, followed the odge of the pack from 8° E. to $58^{\circ} \mathrm{E}$., reaching $64^{\circ} 15^{\prime} \mathrm{S}$. in $54^{\circ} 20^{\prime}$ E. on the 16 th of December. At this point a depth of 254 r lathoms was lound, so that if Enderby Land occupies its assigned position, 102 nautical miles larther south, the sub-oceanic slope must be of quite upusual steepness. The rocks dredged up contained epecimens ol gneiss, granite and schist, and one great block of red sandstone waighing 5 cwt . was secured, confirming the theory of the continental nature of the land to the south.

On his return to Eagland in 1895 Mr Borchgrevink made strenuous efforts to organize an Antarctic expedition under his own leadership, and in August 1898 he left the anctiono Thames on the "Southern Cross," in charge of a private expedition equipped by Sir Ceorge Newnes. His scientific stafl included Lieut. Colbeck, R.N.R.; Mr Louis Bernacchi, a trained magnelic obscrver, and Mr N. Hanson, biologist. About fifty dogs were taken out, the intention being to land at Cape Adare and advance towards the magnetic, and perhaps also towards the geographical pole by sledge. The "Southern Cross " sighted one of the Ballcay Islands on the 14Lb of January 1899 , and after in vain attempting to get south about the meridian of $164^{\circ} \mathrm{E}$., the ship lorced her way castward and emerged from the pack (after having been beset for forty-eight days) in 70° S., $174^{\circ} \mathrm{E}$. She reached Cape Adare, and anchored in Robertsoo Bay on the $17^{t h}$ of February. The land party, consisting of ten men, was established in a house built on the strip of beach at the base of the steep ascent to the mountains, and the ship left on the and of March. Mr Borchgrevink found it impossibie to make any land jounoey of importance and the party spent the first year ever passed by man on Antarctic land in making natural history collections. and keeping up meteorological and magnetic observations. The" Southern Cross:"returned to Cape Adare on the 284h of January 1900, and after taking the winter party on boerd-diminished hy the dealh of Mr Hanson-set out for the south on the and of February. Leadings sere made on several islands, on the mainland at the base of Mt Melbourne, and on the 1oth of February at the base of Mt Terror, near Cape Crozier. From this point the ship steamed eastward along the great ice-barrier to a point in $164^{\circ} \cdot 10^{\circ} \mathrm{W}$., where an inlet in the ice was found and the ship reached her highest latitude, $7^{\circ} 34^{\prime} \mathrm{S}$., on the 17 th of February. The edge of the ice was found to be about 30 m . farther south than it had been when Ross visited it in 1882. Mr Borchgrevink was able to land on the ice with sledges and dogs, and advaniced south ward about 16 m ., reaching 78° sod. S. He discovered that plant life existed in the shape of mosses and lichens in some of the rocky islands, a fact not previously knowo.

In the autumn of sgor three well-equipped expeditions left Earope for Antarctic exploration. The British National Antarctic expedition was organized by a joint committec of the Boyal Society and the Royal Geographical Society, and equipped under the superintendence of Sir Clements Martham. Most of the cust was borne by the government, the rest mainly by Mr L. W. Longstaff, who provided \{30,000, the Royal Geographical Society, and Mr A. C. Harmsworth (afterwards Lord Northcliffe). A stroag wooden ship of about 700 tope register (1700 tons displacement) was huil at Dundee, and named the "Discovery."

She was made entirely non-maspetic amidships, so that magnetic observations might be carried on without interference from local attraction. The expedition sailed under scoplospery." the command of Commander R.F. ScotL, R.N., with Lieut, Albert Armitage, R.N.R., as second in command, Lieuts. Royds and Barne, R.N., Lieut. Shackleton, R.N.R., and Engineer-Lieut. Skelton, R.N. The crew of lorty men were almost entirely sailors of tbe Royal Navy. The scientific staff included Dr Koettlitz, who had ahared with Mr Armitage ia the Jackson-Harmsworth arctic expedition; Mr Louis Bernecchi, who bad wintered with Mr Borchgrovink at Cape Adare; Dr E. A. Wilson, Mr Hodgyon, biologist, and Mr Ferrar, geologist. The "Discovery" sailed from New Zealand on the 24th of December 1903, met the pack ice on the Antarctic circle and was through into the open sea in 175° E. on the 8th of January 1902. . Sbe made a quick run to Cape Crozier and cruised along the great ice barrier, confirming Borchgrevink's discovery that it lay 30 m . farther south than in 1842, and at the eastern end of the barrier Scott discovered and named King Edward Land where Ross had recorded an "appearance" only. The sea in the neigbbourbood had ahoaled to less than 100 fathoms and the ice-barrier in places was so low that the "Discovery" was able to lie alongside as at a quay. A captive balloon ascent was made from the burrier but nothing was seen to the south. Returaing to McMurdo Bay the "Discovery" found that Mis Erebus and Terror were on an island, the " bay "being really a sound. The ship was secured in winter quarters in $77^{\circ} 49^{\circ} \mathrm{S}$. $166^{\circ} \mathrm{E}$., and a but erected on shore. From this base land-cxploration in the Antarctic was initiated, and the history of exploration entered on a new phase. Although some symptoms of scurvy appeared during the ninter they were checked by change of diet; and with the beginning of spring sledge journeys with dogs were commenced and a quantity of provisions was laid down in depoles to assist the great journey which Scott had planned to the south. On the and of November 190z Captain Scott, with Lieut. E. H. Shackleton and Dr E. A. Wilson, set out with dog-sledges travelling south over the surface of the barrier in sight of a range of new mountains running parallel to their track on the west. The conditions of travelling were unlike those in the Arctic region. the weather being more incleraent and the summer temperature much lower than in similar latitudes in the north. There were no bears to menace the safty of the travellers, and no wolves or foxes to plunder the depots; thut on the other hand there was mo game of any sort to be met with, and all food for men and dogs had to be carried on the sledges. The surface of the ice was of tea rough and much crevassed, especially near the westera land, snow blizzards frequently occurred making travelling impossible and the heavy sledges had at first to be brought forward by relays, making it necessary to march three miles for every mile of southing made. The dogralso weakened and had to be killed one by one to feed the rest. On the $30 t h$ of December they were in 82° i $7^{\prime} \mathrm{S}$. and Scott detcrmined to try to reach the mountains to the west; but on approaching the land he found the ice so much crevassed and disturbed that the attempt had to be given up. Great peaks in $83^{\circ} \mathrm{S}$. were named Mt Markham ($15,100 \mathrm{ft}$) and Mt Longstaff (9700 ft .) a fter the chief promoters of the expedition. The outward journcy of 380 m . had taken 59 days, and was a splendid achievement, for the conditions to be encountered were totally unknown, and new methods had to be devised as the necessity arose, yet no previous polar explorer had ever advanced so far beyond his predecessor as Scott did. The return joumey occupied 34 days and the ship was reached on the 3rd of February 1903, hut Shackleton had broken down on the way and he had to return by the relief ship " Morning " on the zrd of March, Lieut. Mulock, R.N., taking his place on the " Discovery:" During the absence of the commander in the great southern journey Armisage and Skelton had found a way to ascend by a giacier in $7^{\circ} \mathrm{S}$. to the summit of the vast snow-covered platean beyond the granite summits of the western mountains. They reached a distance of 130 m . from the ship and an elevation of 9000 ft . Many shorter journeys were made; Ferrar studied the gealogy of the
mountains and Hodzson was indefatigable in collecting marine fauna, while Bernacehi kept up the physical and metebrological observations. The second wiater was lightened by the use of acetylene gas for the first time, and the dark months were passed in better spirits and better health than in the case of any previous polar wintering. In the spring of spo3-1904 Scott undertook a great journey on the western plateau, starting on the a6th of October without dogs. By the zoth of November he had reached a point on the feat ureless platenu of dead-leval snow, 300 m . due west from the ship, the position being $77^{\circ} 59^{\prime} \mathrm{S} .1146^{\circ} 33^{\prime}$ E. and 9000 ft . above sea-level. The ship was reached again on the 25 th of December, and on the 5th of Janumry the "Morning" arrived accompanied by a larger vessel, the "Terra Nova," sent out by the Admiralty with orders to Captain Scott to abandon the "Discovery" and return at once. Fortunately, although all the stores and collections had been transferred to the relief ships, the "Discovery" broke out of the lee on the r6th of February 1904 and Caplain Scott had the galisfaction of bringing her home in perfect order. The relief ahips had provided so little coal that a most promising voyage to the westward of the Balleny Islands had to be sbandoned in 155° E.; but it showed that the land charted by Wikes east of that meridian did not exist in the latitude assigned.

Simultaneously with the "Discovery" expedition and in full co-operation with it as regards simaleaneous meteorological and Drganath magnetic observations, the German government "oovas," equipped an expedition in the "Gauss" whlch was specially buill for the occasion. The expedition was under the charge of Prolessor Erich won Drygalski and the sclentific staff included Professor Vanhëfien as naturalist, Dr Emil Philippi as geologist and Dr Friedrich Bidiingmaier as meteorologist and magnetician. The ship was under the command of Captan Hans Ruser of the Hamburg-American line. A supplementary expedition set up a station for simultaneous obscrvations on Kerguelen Land. The "Gauss" crossed the paratiel of $60^{\circ} \mathrm{S}$. in 92°.E. carly in February 1902 and got within 60 m . of the charted position of Wilkes's Termination Land, where a depth of 1730 fathoms was found with no slgn of land. The pack made it necessary to turn south-weat ward and land was seen to the eastward on Februaty 1902 on the Antarctic Circle in the direction of Termination Liand. Soon afterwards the "Gauss" was beset and spent the winter in the ice. Land of considerable extent wis seen to the south and was named Kaiser Wilhelm II. Land; the most conspicuous fcature on it was a hill of bare black rock with an elevation of about 1000 ft ., which was callied the Gaussberg, and was situated in $67^{\circ} \mathrm{S}$., 90° E. This was the ofly bare land seen, and lis neighbourhood was thoroughly investigated by sledge parties, but no distant joumey was undertaken. In February 1903 the "Gauss" was freed from the iee; but although Drygalski struggled for two months to thread the maze of floes to the east ward and sout h he could gain no higher latitude and was able to force his way only to 80° E. before seeking the open sea. The scientific observations and coilections were most extensive and of great value.
Two private expeditions organized by men of scierice were in the Antarctic region simuitaneousiy with the Britlsh and Noordeast. German national expeditions, and the synchronous Fsin. meteorological and magnetic observations added to the value of the scientific resulis of all the parties. Dr. Otto Nordenskjold, nephew of the discoverer of the North-East Passage, led a Swedish party in the "Antarctic," with Captain C. A. Larsen in command of the ship, and reached the South Shetiands in Januaty 1902, afterwards exploring on the east side of Joinville Island and Louis Philippe Land, and wintering on shore on Snow Hill Island in $64^{\circ} 25^{\prime} \mathrm{S}$. From this point a long journcy on ski over the flat sea ice bordering Ring Oscar Land was made to the south, but the Antaretic Circle was not reached. Meanwhile the "Antarctic" had succeeded in penetrating the pack in the Weddell Sea almost to the cirele in $50^{\circ} \mathrm{W}$., where D'Urville and Ross had failed to get so far south. A second winter was spent at the base on Snow Hill Island, and, the ship having been
loat ls the ice on her way to-take them onf, the party. wit rescuad by a brilliant dash of the Argentine gunboat "Uruguay," under Captain Irizar, before the relief abip semt from Sweden arrived.

Meamwhe Dr W. S. Bruce, largely aided financially by Mr James Costs and Captain Andrew Coats, equipped a Scottish Expedition in the "Scotia," with Captain Thomas Robertion in command of the ship, and a scientific staff including Mr R. C. Monsman as meteorologist, My R. N. Radmose Brown as naturalist, and Dr J. H. H. Fitle as geologist. The principal object of the expedition was the explortion of the Weddell Sea. The "Scotia" sighted the South Orkneys on the 3rd of February 1903, and after a short struggic with the pack the found an open sea to 70° 25 Sa, where she was best on the asnd in $18^{\circ} \mathrm{W}$., and whence she returned by a more westerly course, rocrossing the Antarctic Circle in $40^{\circ} \mathrm{W}$. This important voyage midway between the tracks of Weddell and Ross, who alone of all who tried had reached $70^{\circ} \mathrm{S}$. in this region, praccally demonstrated the navigabjlity of Wedidell Sea in favourable conditions, and the oceanographical observations made were the moat valuable yet carried out in the Antarctic region. The following year, staring from the Sendwich group, Bruce crosed the Antarctic Circle about $22^{\circ} \mathrm{W}$., and was able to make a straight run south to $74^{\circ} \mathrm{I}^{\prime} \mathrm{S}$., where the "Scotia" was stopped by the ike in 159 fathoms of water, the sea having shoated rapidly from a great depth. From the 3 rd of March to the tith the "Scotis" remained in shallow water, catching occastonal glimpses of a greal ice wall with snowcovered heights beyond it, aiong a line of 150 m ., and dredging quantliies of continental tocks. On this evidence the name Coats Land was given to the land within the batrief. The " Scotia " crossed the Antarctic Clrcie northward in is ${ }^{\circ} \mathrm{W}$., having in the two years explored a totally unknown see for ${ }^{1}$ distance of thirty degrees of tongitude. A metcorological station was established by Mr Mossman on Laurie Island, in the South Orkneys ($61^{\circ} \mathrm{S}$.) in March 1903, and kept up by him for two years, when it was taken over by the Argentine government, and it now has the distinction of being the most southerly station at which contiauous observations have ever been taken for over five years.

In January 1904 Dr Jean B. Chareot, a man of sicience and an accomplished yachtman, left the Fuegian archipelago for the Antarctic in the "Français," in command of a French exploring expedition equipped at his own
instance. He cruised through the islands of the Palmet Archipelago, and wintered in a cove or Wandel Isiand $65^{\circ} 5^{\prime} \mathrm{S}$. near the southern entrance of Geriache Strait. On the $\mathbf{2 j t h}$ of December 1904 the "Francais" was free, and continued to eruise southward along the coast of Graham Land, to the south of which, on the 1 gth of January, when nearly in latitude 67°, a new coast appeared, mountainous and alretehing to the sonth-west, but Charcot could not determifte whether it was joined to Graham Land or to Alezander Land. While approaching the Iand the "Francais" struck a rock, and was so much damaged that further exploration was impossible, and after naming the new discovery Loubet Land, the expedition returned. Charcol organized a seciond expedition in 1908 on board the "Pourquod Pas?" and, leaving Punta Arenas in December, returned to the Paimer Archipelago, and during January 1909 made a detailed examination of the coast to the southward, finding that Loubet Land was practically continuous on the north with Graham Land and on the south with Alexander Lerd, which was approached within a mile at one point. Adélaide Islarid, reported by Biscoe as 8 m . long, was found to be a large island 70 m . in length; consisting of a serits of summits rising ont of an icefield. The Biscoe Isiands were found to be much more numerous than was formerly supposed. The expedition wintered at Petermannisland in 65° so 0° S., and attempts were made to reach the interior of Graham Land, though with litte success. After coaling from the vhaleri' depol at Duception

POLAR REGIONS

Leland, the "Pourquoi Pas $?$ " sailed on the 6th of January 1910 to the south-west, and reached $70^{\circ} \mathrm{S}$. on the 11th, whence views of Alexander Land were obtained from a new position, and a new land discovered farther to the south-west. The highest latitude reached was about $70^{\circ} 30^{\circ}$ S., and Charoot was able to steam westward nearly along this parallel crossing the region of the "Belgica's" drift, passing close to Peter I. Island acrose the meridian of Cook's highest latitude, where the ice seemed to promise an easy way south if coal had permitted, and on to 128° W. through an absolutely unknown aen, from which point a direct course was made for Punta Arenas. Frequent coundiness and dredgings were made, and Dr Charcot satisfied himself from all the appearances that along the 20 degrees of longitude west of Gerlache's farthest, and more than balf-way from Graham Land to King Edward Land, land was probably not far distant to the south.

After his return invalided from the "Discovery," Lieut. Shackleton planned a fresb expedition, which he equipped at suathene his own expense; aided by his personal friends, and be started in the small whader "Nimrod" from Lyttelton, New Zealand, on the 1st of January 1gos, being towed by a steamer to the Antarctic Circle, in order to save coal. The plan was to land a shore party on King Edward Land and return to take them off in the following year, but although a strenuous effort was made to reach the land the floe ice was too heavy, and it would have been madness to establish winter-quarter on the barrier, the coast-line of which had altered greatly since 1002 , and was obviously liable to break off in great ice-islands. On the a6th of January the "Nimrod" began to relurn from the extreme east of the barrier, and the landing of stores commenced on the 3rd of February at Cape Royds, at the base of Mit Ercbus, 20 m . north of the "Discovery's" winter-quarters. The shore party included the leader and fifteen companions, amongst them Professor T. W. Edgeworth David, of Sydney University; Lieut. Jameson Boyd Adams, R.N.R.; Sir Philip Brockiehurst, Bart.; Mr James Murray, biologist; Mr Raymond E. Priestley, geologist; Dr Alistair Forbes Mackay; Dr Enic Marshall; Mr Douglas Mawson, geologist; and Ernest Joyce and Frank Wild of the Royal Navy, who had taken part in the "Discovery" expedition. No casually occurred during the whole duration of the expedition, special care having been taken to supply the best provisions, including fresh bread baked daily and dried milk in unlimited quantity, while abundant artificial light was sccured by the use of acetylene gas. A motor-car was taken in the hope that it might be used on the barrier surface, but this was found impracticable, although it did good work in laying depors on the sea-ice. Another and more successful experiment in traction was the use of Manchurian ponies. Eight of these extraordinarily hardy creatures were taken south in the "Nimrod," but four died in the first month after landing. The others did good servica Nine dogs were also taken, but the experience on the "Discovery" expedition did not lead ta much dependence being placed on them. The "Nimrod" left for the north on the and of February and the scientific staff at once begap the observations and collections which were kept up to the end. The discovery of a considerable fresh-water fauna and of a poor but characteristic flora was one of the mosi unexpected results. Apart from many mipor excursions and surveys, the expedition performed three joumeys of the first importance, each of them aurpassing any previous land work in the Antarctic regions. Before winter set in, Professor David, with five companions, made the ascent of Mt Erebus, starting from the winter quarters on the 5th of March, and gaining the summit at an altitude of $13,300 \mathrm{fL}$. on the toth; this was found to be the edge of an active crater, the abyss within being 900 ft . deep. though rarely visible on account of the steam and vapours which rose in a huge cloud 1000 ft . above the summit.

The second achievement was the attainment of the South Magnetic Pole by Professor David, with Mr Douglas Mawson and Dr Mackay. They left wintes-quarters on.the 6th of October

1908, drasging two sledges over the sen-ice. Proceeding aloog the const they were able to supplement their provitions and fuel by acal-meat and blubber, and on the ist of December they reached the Drygalski ice barrier in 75° S., which proved very difficult to cross. Leaving this ice-tongue on the 19th, they proceeded to ascend the plateau with one sledge, and ran great risks from the crevasses into which they were constantly falling. On reaching the summit of the platcau travelling became easier, and on the 16th of January 1909 the magnetic dip was 90°, and the position of the magnetic pole was determined as $72^{\circ} 25^{\prime} \mathrm{S}$., $155^{\circ} 16^{\prime} \mathrm{E}$., at an altitude of 7360 fL . and 260 m . from the dSpote of provisions left at the Drygakki glacier. The return journey to this point was accomplished by forced marches on the 3rd of February, and next day the party was picked up by the "Nimrod,", which was scouting for them along the coast.
The third and greatest achievement of this remarkahle expedition was Shackleton's great southern journey. Depots had been laid out in advance on the barrier ice, and the main southern party, consisting of Mess Shackleton, Adams, Marshall and Wild, started from winter-quarters on the agth of October 1908, with the four ponies and four $11-\mathrm{ft}$. sledges; a sapporting party of five men accompanied the main division for ten days. In order to avoid the disturbed and crevassed ice near the great south-running mountain range, Shackieton kept about 40 m . farther to the ease than Scott had done. The ponies enabied rapid progress to be made, but after passing the 8ist parallel on the z1st of Novernber, one pony broke down and had to be shot, the meal being left in a depot for the return journey. In spite of cold weather and frequent high winds, progress was made at the rale of 15 m . per day, and on the 26th of November the farthest south of the "Discovery" expedition was passed, and Mts Markham and Longstaff were full in view. New mountains continued to appear beyond these, and the tange changed its southerly to a south. easterly trend, so that the path to the Pole led through the mountains. On the 28th a second pony became used up and was shot, and a dépot was formed with provisions and stores for the return in $82^{\circ} 38^{\prime} \mathrm{S}$., and progress was resumed vith two sledges. The surface of the barrier ice formed great undulations of gentle slope. On the ast of December a thind pony had to be shot, in $83^{\circ} 16^{\prime} \mathrm{S}$., and horseflesh became the principal article of diet; the remaining pony hauled one sledge. the four men took the other. On the 4th of Docember the party left the barrier, passing over a zone of much disturbed ice, and commenced the ascent of a great glacier (the Beardmore glacier) which descended from the mountains bet ween magnificent granite cliffs 2000 fl . high. On the 7th, when toiling amongst a mare. of crevasses on the giacier, 2000 ft . above sea-level, the last poany fell into a crevasse and was lost, though the loaded sledge was saved; the pony was to have been shot that night as it could not wost on the disturbed ice, hut its loss meant so much less food, and as far as can be judged this alone made it impossible for the party to reach the Pole. For the next few days of laborious advance one or other of the party was continually falling into 2 crevasse, but the sledge harness saved them, and no serious harm resulted. After climbing upwards for 100 m . on the glacier, a dtpot was made at a height of 6300 ft . of everything thet could possibly be left behind, including all the warm clothing, for it was found possible with Jaegers and wind-proof Burberrys to meet any weather in which exertion was possible. By Christmas Day the plateau surface was fairly reached at a level of 9500 ft ., in latitude $85^{\circ} 55^{\prime}$ S., and there was no more difficulty to overcome as regarded the ground, but merely the effort of goips on over a nearly level surface with insufficient food in a very bow temperature, intensified by frequent blizzards. Rations were reduced in the hope of being able to push on to the Pole. Three days later the last crevasse was passed and the sarface, now $12,200 \mathrm{ft}$. above sea-level, grew smoother, allowint 15 m . a day to be done with fair weather. At 4 a.m. on the oth of January 1909 the four explorers left their sledge and
meing, mit walbing, half running, they reached $88^{\circ} 25^{\prime} \mathrm{S}$. in 162° E. at 9 a.m., the height above sea being $11,600 \mathrm{ft}$. The utmost had been done, though more food would have emabled the remaining 97 geographical miles to the South Pole to be accomplished. 'The camp was reached again at 3 p.m. The recum journey of over 700 m . to the ship was one long nightmare of toil and suffering, but the length of the marcbes was unsurpased in polar travel. Once and again all food wis exhausted tbe day before the depot, on which the only hope of life depended, was picked up in the waste of snow. Snow-blindrese and dysentery made life almost unendurable, but, despite it all, the ship was reached on the ist of March, and the geological specimens from the southernmost moanthins, which prevented the sledses of the exhausted men being lightened as they went on, were safely secured. Never in the history of polar exploration had any traveller outdistanced his predecessor by so vast a step towands either Pole.
During the return journey of the "Nimrod" Shackieton was able to do a little piece of exploration to the south of the Balleny Islands, tracing the coast of the mainland for 50 m . to the south-west beyond Cape North, thus indicating tbat the Antarctic continent has not a straight coost-line running from Cape Adare to Wilkes Land. The British government contribated $f 20,000$ to the expenses of the expedition in recognition of the great results ohtained, and the king conferred a knighthood on the expiorer, the first given for Antarctic exploration since the time of Sir James Clark Ross.
Captain R. F. Scott left Eugland in the summer of rgro with a new expedition in the "Terra Nova," promoted by his Anpenmeas owis exertions, aided by a government grant, and of ion- with a carefully selected crew and a bighly comself. petent scientific staff. He intended to arrange for two parties, one leaving King Edward Land, the other McMurdo Sound, to converge on the South Pole.' A German expedition under Lieut. Withelm Fiichner was announced to teave early in cgir with the hope of exploring inland from a base in the western part of Weddell Sen, and Dr W. S. Bruce has annownced for the same year an expedition to the eastern part of Weddell Sez mainly for oceanographical exploration. It appears that the greatest extension of knowrledge would now be obtained by a resolute attempt to cruise round the south polar area.from east to west in the highest latitude which can be reached. This has never been attempted, and a modern Biscoe with steam power conld not fail to make important discoveries on a westward circumnavigation.

Physiography of Antarctic Region.-In contrast to the Aretic region, the Antarctic is essentially a land area. It is almost certain that the South Pole lies on agreat plateau, part of a land that must be larger and loftier than Greenland, and may probably be as large as Australia. This land area may be composed of two main masses, or of one continent and a great archipelago, but it can no longer be doubted that the whole is of contlnental character as regards its rocks, and that it is permanently massed into one surface with ice and snow, which in some parts at least unites lands separated by hundreds of miles of sea. But all round the land-mass thete is a ring of deep ocean cutting off the Antarctic region from all other land of the earth and setting it apart as a region by itself, more unlike the rest of the world than any continent or island. The expedition of the "Scotia "showed the great depth of the Weddell Sea area, and the attention paid to soundings on other expeditions-notably that of the " Belgics "-has defined the beginning of a continental shelf whicb it cannot be doubted slopes up to land not yet sighted. In the Arctic region large areas within the Polar Circle belong to climatically temperate Europe, and to habitable lands of Asis and America; but in the Antarctic region extensive lands -Graham Land, Louis Philippe Land, Joisville Island and the Palmer archipelago outside the Polar Circle-partake of the typically polar character of the higher latitudes, and even the ichands on the warmer side of the sixtieth parallel are of a sub-Antarctic nature, akin rather to lands of the frigid than to thoee of the temperate zone.

Geology - Definite information as to the geology of Antarctic land is available from three areas-Graham Land and the archipelago to the north of it , Kaiser Wilhelm Land and Victoria Land. In the Graham Land region there seems to be a fundamental rock closely resembling the Archaean. Palacozoic rocks have not been discovered so far in this region, although 2 graptolite fossil, probably of Ordovician age, shows that they occur in the South Orkneys. Mesozoic rocks have been found in various parts of the archipelago, a very rich Jurassic fossil flora of ferns, conifers and cycads having been studied by Nordenskjold, some of the genera found being represented also in the rocks of South America, South Africa, India and Australia. Cretaceous ammonites have also been found, and Tertiary fossils, both of land and of marine forms, bring the geological record down probably to Miocene times, the fauna including five genera of extinct penguins. Raised beaches show an emergence of the land in Quaternary times, and there is evidence of a recent glacial period when the inland ice on Graham Land was a thousand feet higher than it is now. The most prominent features of the scenery are due to eruptive rocks, which have been identified as belonging to the eruptive system of the Andes, suggesting a geologically recent connection between South America and the Antarctic lands. Volcanic activity is not yet extinct in the region.

As regards Raiser Wilhelm Land, the Gaussberg is a volcanic cone mainly composed of leucite-basalt, but its slopes are strewn with erratics presumably transported from the south and these include gneiss, mica-schist and quartzite, apparently Archacan.

Much more is known as to the geology of Victoria Land, and the results are well summarized by Professor David and Mr Priestley of Sir Emest Shackleton's expedition, whom we follow. From Cape North (71 ${ }^{\circ}$ S.) to 86° S. a grand mountain range runs south curving to south-eastward, where it vanishes into the unknown; it is buill up of gneiss and granite, and of horizontal beds of sandstone and limestone capped with eruptive. rock, the peaks rising to heights of $8000,10,000$ and even 15,000 leet, the total length of the range so far as known being at least 1 roo miles. This range rises abruptly from the sea, or from the ice of the Great Barrier, and forms a slightly higher edge to a vast snow plateau which has been traversed for several hundred miles in various directions, and may for aught we know extend farther for a thousand miles or more. The accumulated snows of this plateau discharge by the bugest glaciers in the world down the valleys between the mountains About $7^{8^{\circ}} \mathrm{S}$. a group of volcanic islands, of which Ross Island, with the active Mt Erebus is the largest, rise from the sea in front of the range, and at the northern extremity the volcanic peaks of the Balleny Islands match them in height. The composition of the volcanic rocks is similar to that of the volcanic rocks of the southern part of New Zealand. The oldest rocks of Victoria Land are apparently banded gneiss and gneissic granite, which may be taken as Archaean. Older Palacozoic rocks are represented by greenish grey slates from the sides of the Beardmore glacier and by radiolarian cherts; but the most widespread of the sedimentary rocks occurring in vast beds in the mountain faces is that mamed by Ferrar the Beacon sandstones, which is the far south Shackleton found to be banded with seams of shale and coal amongst which a fossil occurred which has been identified as coniferous wood and suggests that the place of the formation is Lower Carboniferous or perhaps Upper Devonian. No Mesomoic strata have been discovered, but deposits of peat derived from fungi and moss are now being accumulated in the fresh-water lakes of Ross Island, and raised beaches show a recent change of level. The coast-line appears to be of the Atlantic, not the Pacific type, and may owe its position and trend to a great fault, or series of faults, in the line of which the range of volcanoes, Mt Melbourne, Mt Erebus, and Mt Discovery, stand. Boulders of gneiss, quartzite and sandstone have been dredged at 80 many points between the Balleny Istands and the Weddell Sea that there can be no doubt of the existence of cimilar contineptal land along the whole of that side, at least within the Antarcte Circts.

Antargtic Ice-Conditions.-It is difficult to decide whether the ice of the polar regions should be dealt with as a geological formation or a meteorological phenomenon, but in the Antarctic the ice is so characteristic a feature that it may well be considered by itself. So far as can be judged, the total annual precipitation in the Antarctic region is very slight, probably not more than the equivalent of 10 in. of rain, and perhaps less. It was formerly supposed that the immerse accumulation of snow near the South Pole produced ah ice-cap several miles in thickness which, creeping outward all round, terminated in the sea in vast ice-cllffs, such as those of Ross's Great Barrier, whence the huge Blat-topped ice-islands broke off and floated away. Evidence, both in the Graham Land and in the Victoria Land areas, points to a former much greater extent of the ice-cap. Thus Shackleton found that the summit of Mt Hope, in $83^{\circ} 30^{\prime} \mathrm{S}_{\text {., }}$ which stands 2000 feet above the ice of the surrounding glaciers, was strewn with erratics which must have been transported hy ice from the higher mountains to the south and west. In McMurdo Sound, as in Grabam Land, evidence was found that thesurface of the ice-sheet was once at least a thousand feet above ita present level. These facts appear to indicate a period of greater snowfall in the geologically recent past-i.e. a period of more genial climate allowing the air to carry more water vapour to the southern mountains. Whatever may have been the case in the past the Antarctic glaciers are now greally sbrunken and many of them no longer reach the sea. Others project into the sea a tongue of hard ice, which in the case of the Drygalski glacier tongue is 30 m . long, and afloat probably for a considerable distance, Sorne of these glacier tangues of smaller size appear now to be cut off at their shoreward end from the parent glacier. At one time the Victoria Land glacier tongues may have been confluent, forming a great ice barrier along the coast similar to the small ice-barriers which clothe the lower slopes of some of the islands in Gerlache Strait. The Great Ice Barricr is in many ways different from these. Captain Scott showed that it was afloat for at least 400 m . of its extent from west to east. Sir Ernest Shackleton followed it for 400 m . from north to south, finding its surface in part thrown into long gentle undulations, but with no evidence of the surface being otherwise than level on the avcrage. The all-butforgotten experiments and cogitations of Biscoe convinced that sbrewd observer that all Antarctic icebergs were sea-ice thickened with snow "accumulated with time." The recent expeditions seem to confirm this view to a great extent in the case of the Barrier, which, so far as the scientific men on the "Nimrod" could see, was formed everywhere of compressed newe, not of true giacier ice. Instances have been seen of tabular bergs floating with half their bulk above water, showing that they
are of very much lesp density than'solid ice. The thrust of the glaciers which descend from the western mountans upon the Barricr throws it into sharp crevessed folds near the point of contact, the duaturbance extending 20 m . from the tip of the Beardmore glacier, and the seaward creep of the whole suriace of the Barrier is possbly due to this impolse, the rate of movement at the eastern ade of the Barrier was formd to be at the rate of 500 yds per annum for the seveh years between Scott's and Shackleton's axpedit ions

Pack ice composed of broken-up sea-ice and fragments of icebergs appears to form a floating break water round the Antarctic area. It is penetrated by powerful stemars with ease or with difficulty according to the action of the wind which loosens the pack when it driwes it towatds the open een, and closes it up when it drives it againat a coask or a harrier of fast ice. At every point but one around the circumpolar area the pack, be it light or dense, appears to extead up to the southern permanent ice or land, though, ss in the Weddell Sea, the pack seems at times to be deiven bodily away. The exceptional region is the opening of the Rose Sea east of Cape Adare, whert a comparatively marrow band of peck ice bas always been peartrated by the resolute advance even of sailing ships and led to an extensive open ses to the souct. No doubt the set of the ocean currents accounts for this, but how they att is stlll obscure. The great flat-topped icc-ialasds which in some years drift out from the Antarctic area in great numbers are msually met with in all parts of tho Southers Ocean south of $50^{\circ} \mathrm{S}$, and worndown iccbergs have been sighted in the Atlantic even as far north as $26^{\circ} 30^{\prime} \mathrm{S}$. The greater frequency of iceberge in the Southern Oceas in aame years is ateributed to earthginkes in the Antarctic breaking off masses of the floating edge of the Barrier.

Autarctic Climote.-Although a vast mess of observations has recently been accumulated, it is not yet possible to treat of the climate of the South Polar region in the same broad way as in the case of the North Polar region. The following table shows the mean temperatures of each month and of the year at all the stations at which, the Antrretic winter has bren passed. The mesult is to show that while the winter is on the whole leas severe at high hatitudee than at equal latitudes in the north, the sammer is very mact colder, and has little relation to latitude Even in the South Orkneys, in latitude $60^{\circ} \mathrm{fin}$ the three warmest months the at cearcely rises above the freeving point as at average, while in Shecind ($60^{\circ} \mathrm{N}$.) the temperature of the three summer months averages $64^{\circ} \mathrm{F}$. But on the other hand, the warmest month of the year even in $97^{\circ} \mathrm{S}$. bas had a mean temperature as bigh as. 30°. A study of the figures quoted in the accompanying table shows that until longer records

			Cape Adare				$\begin{gathered} \text { Cuye } \\ 65^{\prime} 5^{\prime} . \end{gathered}$							sortner.		Wandel bland		Petarament	
	1808.	3809.	4809.	8000.	1902.	19 O .	1902.	1994.	2002.	1993.	3894.	1909.	1009.	${ }_{5009}$	1900.	296	seas	spea	5009-
Jun		+xit		+3s0		+300		+306		+ $26 \cdot 1$	+32		+262	+304	+3:3		+310		(+204)
Fit.		+30:8	(+76.6)			+28.4		+2590)	+2500	+113	(+213)		+80.4	(+30.4)	+320	+31:			+3.5
Ners.	+196		+177		+241	+110	+160		+80	-0.8		+49		(+30.0)	+124	± 208			+337
Ape.	+10.3		+:80.3		+ 6.3	+6.7	+30		- 31	-260		-100		+2006	+as2	+296			+2911
May	+201		-46		$+37$	- 16	+68		-123	-360		- 5.5		+ HV_{1}	+10.3	+133			+217
Juct.	+48		-118		- $0 \cdot 4$	-0.8	+ + \%		-nbe	-13.8		- 71		40.5	+16.8	+118			+803
Juy	-303		-86		-x9	-0.2	-0.0		-81	-x, 2		-170		+160	+ 70	-16			+107
Aus.	+117		-13:		-97	+ 38	-74		-16.5	-163		-157		+184	+837	++0s			+38
Sep.	-83		-:10		+ 53	+0.3	+0.7		-120	- 8.6		-57		+154	+x-s	+ $\times 1$			
Oat.	+178		- 18		+ 8.9	+800	+86		-8.9	-68		+ 4.3		+170	+16.	+r87			+273
Nov.	4196		+178		+165		+190		+190	+154		+170		+28.3	+3'1	+313			+200)
Doc.	+380		+318		+189		+3000		+23:1	+257		+3e.0		+3.1	+888	+as':		+230)	
Year	+142		+70		$+0.4$		+143		$+0_{4}$		- $3 \cdot 0$		+34	+890	+214		+83'2		(+36
	$\begin{aligned} & \text { Mer. } \\ & x_{20} \\ & \hline \end{aligned}$				$\left\|\begin{array}{c} \text { Mar. } \\ \text { ratin } \end{array}\right\|$		$\begin{gathered} \text { Fec. } 20 \\ \text { Fche } 18 \end{gathered}$		$\begin{aligned} & \text { F.b. } 9 \\ & \text { Fhe. } 12 \end{aligned}$		$\begin{aligned} & \text { Frth } 1 \\ & \text { Len. ys } \end{aligned}$		$\begin{aligned} & \text { Mre. } \\ & \text { tob. } \end{aligned}$				$\begin{aligned} & \text { Fek } \\ & \text { JNE. } \end{aligned}$		

becoses avaliable it is impossible to speak definitely as to the normal distribution of monthly temperature throughout the year, for even at the same station in. consecutive years the months vary greally. Thus at Snow Hill (65° S.) the meas temperature of August 1903 was 13.5^{6} higher than that of Auguse s902, though June had been 7° colder; and at the "Discovery's" wipter quarters July 1003 was 13° colder than July 1902 though June was 2° warmer, August having exactly the same mean temperature in each year. The mean temperacure of the year is evidently higher in the position of the "Belgen's" drift than in Victoria Land at the same latitude; bet it is noticeable that on the west side of Grabam Land, where Charcot wintered, the average mean temperature was (taking the average of his (wo winterings) 5° higher than on the east side, where Nordenskjobld wintered in mearly the same latitude. The obseryalions, however, were not synchronous, and it may not be right to compare them. We may perhaps say that along the whole of the known Antarctic coasts the temperature in the two midsumamer months is within a degree or two of $32^{\circ} F$., and varies little from place to place or from year to year; but in the winter moaths the temperature is lower as the latitude increases and is subject to great variations from place to place and from year to year. It seems quite possible that at no place in the Antarctic region do the mean monthly sea-level winter temperatures fall so low as in the Arctic poles of cold, but data regarding winter temperatures in the interior are lacking. All the complete yearly series of temperature show that the winter cin manths from April to September have a low and nearly equal temporature, there being a very abrupt fall in February and March, and an equally abrupt rise in October and Novem her. The warmest day experienced at the "Discovery's" winterquarters had a mean temperature of 347°, and the coldest $-45^{\circ} 7^{\circ}$, the extreme range of daily temperature being thus $80 \cdot 4^{\circ}$.
The aboolutely lowest temperature recorded in the Antarctic regian was- 66.8° on a journey southward from the "Discovery's" winter-quarters by Lieut. Barne on the 15 th of September 1903; the lowest temperature at the winter-quarters was $-58 \cdot 5^{\circ}$ on the 28 th of Septeniber 1903. On Sir Ernest Shackleton's expedition the lowest temperature was -57°; but no other expedition met temperatures lower than -45.6° on the "Belgica," $-43 \cdot I^{\circ}$ at Cape Adare, and $-41 \cdot 4^{\circ}$ on the "Gauss." Sudden rises of temperature during storms are common in the Antarctic region, from whichever quarter the wind blows.
During the ascent of Mt Erebus the temperature was found to fall as the height increased from $0^{\circ} \mathbf{F}$. at sea-level to -24° at 5000 ft .; it remained stationary to 8600 ft ., fell to $-\mathbf{2 8 ^ { \circ }}$ at $20,650 \mathrm{ft}$., and then rose to -22° at $11,500 \mathrm{ft}$., and fell a few degrees at the summit. It might appear as if the "isothermal layer" of the upper atmosphere had been reached at a remarkably low celevation; but the temperature variations may also be explained by differences in the temperature of the strong air currents which were passed through.

Pressure and Winds.-The normal fall of pressure southward, which gives rise to the strong westerly winds of the roaring lories, appears to be arrested about 65° S., and to be succeeded by a rise of pressure farther south. This view is supported by the frequency of south-easterly winds in the neighbourhood of the Antarctic Circle reported by all explorers, and the bypothesis of a south polar anticyclone or area of high pressure over the Antarctic continent has gained currency in advance of any observations to establish it. The complete data of Sir Ernest Shackleton's expedition are not available at the time of writing, but the yearly mean pressure as recorded at the "Discovery's" winter-quarters was 29.35 in. for 1902, and 29.23 in . Tor 1903. At Cape Adare it was 29.13 in. for 1899 , in the "Belgica" 29.31 in. for 1898 , and in the "Gauss" 29.13 in. for 1902. These figures, so far as they are comparable, show distinctly bigher pressures in the higher Latitudes, and the wind observations bear out the inference of a south-polar high pressure area, as at the "Discovery's" winter-quarters 80% of the winds had an easterly component, and only 3% a weaterly component. . It is bewildering,
however, to find that on the sledge joumeys there was an equally marked preponderance of wind with a westerly component, and in disccussing the result in the published records of the expedition Mr R. H. Curtis, of the Meteorological Office, ielt compelled to ask whether the correction for variation of the compass (in that region about 145 ${ }^{\circ}$) was possibly omitted in the casc of the sledge journeys. The "Gauss" observations and those at Cape Adare bore out the frequency of easterly winds, and on the "Scotia" it was observed that practically all of the easterly winds met with were to the south of the Antarctic Circle. The "Belgica" found rather more westerly than easterly winds in her drift; easterly winds predominating in summer, westerly winds in winter. At Cape Royds Shackleton found easterly winds to predominate, the most frequent direction being south-east; but on the great southern journey, south-south-east winds prevailed, occasionally swinging round to south-south-west, and even at the farthest south ($88^{\circ} \mathrm{S}$.) the ridges into which the snow was hlown, $10,000 \mathrm{ft}$. above the sea, showed that south-southeasterly winds predominated. On the journey to the Magnetic Pole Professor David found that along the coast the prevailing winds were south-westerly, with occasional blizzards from the soulb-east, but be noticed that the westerly winds were of the nature of a land breeze, springing up soon after midnight and continuing to blow fresh until about 10 a.m. Thus the halance of probability inclines towards the bypot hesis of a south-polar high-pressure arca. An upper current of air blowing from a nortb-westerly direction was usually indicated by tbe clouds and smoke on Mt Erebus, and on the occasion of a great eruption, when the steam column reached more than $20,000 \mathrm{ft}$. above the sea it entered a still higher stratum of wind blowing from the south-east.
The intensity of the blizzards is worthy of remark, for the velocity of the wind often reached 40 or even 60 m . an hour, and they were usually accompanied by a rapid rise of temperature.
Ohservations of sunshine made at the "Discovery's" winterquarters yielded many records of continuous sunshine extending throughout 24 consecutive hours. and in the summer months about 50% of the possible sunshine was often recorded, the maximum being 400 hours, or 60% of the total possible for December 1903. Thus, although the sun was above the horizon only for 246 days, it shone sufficiently to yield more than 1725 hours of bright sunshine for the year, an aroount exceeded in few parts of England, where the sun may shine on 305 days. The intensity of solar radiation in the clear weather of the Antarctic makes it feel exceedingly hot even when the air temperature is far below the freezing poipt. There is a great difference bet ween the ciear skies of $7^{8^{\circ}} \mathrm{S}$. and the extremely frequent fogs which shroud the coast near the Antarctic Circte and render navigation and surveying exceedingly difficult. Heavy snowstorms are frequent on the cosst, but inland during the snow blizzards it in impossible to say whether the whirting snow-dust is falling from the air or being swept from the ground Professor David is inclined to believe that the surface of the snow-plains is being lowered more by the action of the wind sweeping the snow out to sea than it is raised by precipitation, the total amount of which appears to be very small.
Flora and Fauna.-Recent expeditions have discovered that, despite the low temperature of the summer, in which no month has a mean temperature appreciably above the freezing point, there are on the exposed Antaretic land patches of ground with a sparse growth of cryptogamic vegetation consisting of mosses, lichens. fungi and fresh-water algae. The richest vegetation discovered on the "Nlmrod " expedition consisted of shcels of a licheo or fungoid growth, covering the bottom of the freshwater lakes near Cape Royds, and visible through the clear ice throughout the many months when the water is frozen. . No flowering plants occur within the Antarctic Circle or in the immediately adjacent lands.
The marine fauna is very rich and abundant. AN the expedir tions ohtained many new species, and the resemblance which occurs between many of the forms and those which inhabit
the Aretic seas has given rise to the hypothesis that certain species have been able to pass from one frigid zone to the other. It is argued on the other hand that all the forms which resemhle each other in the two polar areas are cosmopolitan, and occur also in the intermediate seas; but the so-called " problem of bipolarity " is still unsettled. Bird life on sea and land is fairly abundant, the most common forms being the skua gull, snow petrels, and the various species of penguins. The penguins are specially adapted for an aquatic life, and depend for their food entirely on marine animals. The largest species, the emperor penguin, inhabits the most southerly coast known on the edge of the Great Barrier, and there it breeds at mid-winter, very interesting specializations of structure and habit making this apparently impossible feat practicable. The social organiza. tion and habits of the various species of penguins have been carefully studied, and show that these birds have arrived at a stage of what might almost be called civilization worthy of the most intelligent beings native to their continent. The only mammalian life in the Antarctic is marine, in the form of various species of whales, but not the "right whale," and a few species of seals which live through the winter hy keeping open blow-holes in the sea-ice. Tbere is no trace of any land animal except a few species of minute wingless insects of a degenerate type. The fresh-water ponds teem with microscopic life, the lerdigrada, or "water bears" and rotifers showing a remarkable power of resistance to low temperature, being thawed out alive after being frozen solid for months and perhaps for years.

Autaontiss,-H. R. Mil, The Siege of the South Pole, a history of Antarctic exploration with complete bibliography (London, 1905); K. Fricker; Antarklis (Berlin, 1898; trans. as The Antarctic Regions (London, 1900); A. Rainaud, Le Condiment amstrol. (Paris, 1893. historical): E. S. Balch, Antarctics (New York, 1902, historical): Jamen Cook, A Voyage Tomards the Sowth Pole and Round the World (3 vols., London, 1777); H. Gravelius, P. von Bellingshassonis Forschungsfahrien im siduchen Eismear $1810-1821$ (Leipzig, 1902): James Weddell. A Voyage Toward's the Soud. Pole (London, 1825); J. S. C. Dumont D'Urville, Voyage au Pole Sud et dans b'Oceanic (29. vols-, Paris, 1841-1845): Charles Wilkes, Norralise of the Exploring Expedition during $1838-1842$ (6 vols, Philadelphis, 1845): J. C. Ross, A Voyage of Discovery and Research in the Southarn and Antarclic Regions (2 volse, London, 1847): W. G. Burn-Murdech, From Edinburg's to the Antarctic (London, I894; an account of the voyage of the "Balaena," $1892-1893$); H. J. Bull, The Cruise of the "Andarctic" to the South Polar Regions (London, 1896); the voyage to Victoria Land in 1894-1895) : F. A. Cook, Throught the First Anlarctic Night, 1898-1800 (New York and London, Igec): the voyage of the "Belgica": A. de Gerlache, Quinue mois dansl'A ntarclique (Paris, 1902): Georges Lecointe, Au pays des Maninots (" Belgica," Brussels, 1904); Reswlials du noyage du S. X. "Bclgica." Repports scientijiques (many vole. Brussels, v.d.); C. E. BorchErevink, First on the Antarclic Contiment (London, 1901); L. Bera. acchi, To the Soult Polar Regions (London, I901; the expedition of the "Southern Cross "); Report on the Collections of the "Southern Cross" (British Museum, London, 1902); G. Murray (editor), The Antarctic Manual (London, 1901): R. F. Scott, The Voyage of ahe "Discovery" (2 vols." London, 1g0s); A. B. Armitage, Two Years in the Antarctic (London, 1905); National Avarctic Expeditiom 1901-sg04 (scicntific resulis published by the Royal Society London, several vols., v.d.): G, von Neumayer, Auf sum Südpol (Berlin, 1goi): E. von Drygalski, Zum Romainens des exsigen Sudens (Berlin, 1904); Scientific Results of "Gauss" expedition; Otto Nordenskiold and J. G. Andersson, Antarcites (London, 1905)i R. N. R. Brown, R. C. Mossman and J. H. H. Pirie, The Voyage of at "Scotia" (London, 1906); Report on the Scientific Results If the Voyage of the "Scotia" (several vols., Edinburgh, v.d.); J. B. Charcot, Le Frangais au Pote Sud (Paris, 1906); E. H. Shackde: ton, The Heart of the Antarctic (2 vols. London, 1go9); British Alaratic Exfedilion 1007-1009, Reports on the Scientific 7masties Homs (Ecveral vols., London, v.d.).
(H. R. M.)

POthER, the Dutch name for a piece' of low-lying, marshy land reclaimed from the sea or other water by drainage and diking (see HoLtand).

Pols (ramyy). The family of the Poles, earis and dukes of Sufiolk, which, but for Richard III.'s defeat at Bosworth, might bave given the next king to Engiand, had its origin in a house of merchants at. Kingston-upon-Hull. It has been said that these Poles were the first English peers whose fortunes had been founded upon riches gained in trade; but the Berkeleys, descendants of Robert fits Harding, therich burghess of Gloucester,
must perhaps be reckoned before them. Their peditree beghe with one Willism atte Pole (d.c. I329), a merchant of Revensrode who settled in Hull, whare his widow became the wife of John Rotenhering, also a merchant. His some, Sir Richand and Sir William atte Pole, were both famous for their weelth at time when the Crown had gieat need of rich men's aid. Sir Richard (d. 1345), the king's butler in 1327, removed to London, and is styled a London citizen in his will. The male line of this, the elder branch of the Poles, failed with a grandson, John Pole, who by his marriage with Joun, daughter of John, Lord Cohbam, was father of Joan, Lady of Cobham, the Kentish heiress whose lands brought ber five knightly husbands, the fourth of them Sir John Oldcastle the Lollard.

Sir William atte Pole (d. 1366), the second son of William, joined his brother in advancing large sums to the government while keeping safely apart from politics. The first mayor of Hull, he sat for Hull in five parliaments, and was advanced to be knighe banneret and a baron of the exchequer. He was counted "second to no merchint in England," but after his time his descendants left the counting-bouse, his four sons all serving in the French wars. The eldest son, Michaed Pole, who had fought under the Black Prince and John of Gaunt, was summoned as baron in 1366 , before the father's death, and, as a stout supporter of the Crown, was appointed in 1381 governor of the person of the young king Richard If., whose marriage with the Lady Anne of Bohemia he bad arranged on a visit to her brother the king of the Romans, In 1383 be became chancellor of Figland and thereafter, as the loyal servant and nearest counsellor of the king. he had to face the jealousy of the great lords and the hatred of the Commons. His wealth added to the envy of his enemies, for, to his inberited Yorkshire and Lincolnshire lands, his marriage with Catherine, daughter and heir of Sir John of Wingfield, added a great Suffolk estate, where, fortifying the manor-house of the Wingfieds, be made his chief seat. In 1385 he was created earl of Suffolk, a grant from the Crown giving him the castle and honour of Eye with other East Anglian lands formeriy held by the Ufiond earls. In 1386 the opposition, led by Gloncester, the king's uncle, pulled him down. He was dismissed from his chancellorship, and impeached by the Commons on charges which, insuftcient upon the face of them, secured his conviction. Richard was forced to send his minister into ward at Windsor until the pariliament was dissolved, when Sufolk once more appeared as the leader of the king's party. But the opposition was insistent, and Suffolk, after Richard had been compelled to give his word that those who had advised him ill should answer for it to the next parliament, fied over sea to Calais. One of the earliest of the many popular songs that bark against the Poles tells joyfully of this flight of the detested "Jate." Sentence of death by the gallows was passed in his absence. The over-zealous governor of Calais who found him at his gates, clad as a poor Fleming, his chin sheved, packed him bact to England, whence he'escaped again, doubtless with the king's aid, reaching his native town of Hull, where he saw for the lest time his "goodly house of brick." Old friends found him a ship that landed him ia the Low Countries, and he died an exile in Paris in 1389.

The exile's son Michael, who had married Catherine, danghter of the earl of Stafford, was restored to the earldom in 1397, and, although his father's attainder was revived by the act of the first parliament of Fienry IV., the carldom was restored once again in 1399, together with the castle and bonour of Eye. Ifis life was that of a soldier, and he was with the bost before Bar fleur in 1415, when he died of a violent dysentery. Michach, the eldest son and heir, marched from his father's deathbed to Agincourt, where he fell. Drayton's ballad recalling bow he plied his axe on the great day. By his wife, a daughter of the first duke of Norfolk, he had three daughtera, but no one of them marrying, his lands passed with the exrldom to his brocher Wiliam.

This William ($1396-1450$), the fourth earl of his name, had sailed with his father and elder brother to Elatiour, but had
been sent home sick after the siege. Be returned with the "viage" of 1417 , leading thirty men-at-arms and ninety archers. Heary V, made him adminal of Normendy, and until the crowning of Henry VI. in Paris in 143I be served in France without, hy his own account, coming home or seetng England. He held the chief command before Orieans after Salishory had fallen to a cannon-shot from the city, hut was forced to surrenderto Joan of Are at Jargeau, where his brother Alexander was killed, another brother, John, being taken prisoner with the earl. A fourth brother, Thomas, a clerk, becume hostage to Dunois until the vast rassom of the earl was paid down. After 1431 Suffolk turned to English politics. Like his grandfather, he found a king's uncle, another Gloticester, the chief of his enemies. Defeating Gloucester's project of an Armagnac match, Suffolk arranged for the young king's marriage with Margaret of Anjou, and brought home the hride to Portamouth in 1445. In the year before he had been created marquess of Suffolk, being the fourth Eaglishman to take the style of marquess. His party and the queen's were on the point of overthrowing their opponent, Gloucester, when the "good duke" died suddenly in the hands of those who had arrested him. This denth, followed by that of Cardinal Beaufort, left the field to Suffolk. Under a patent of 1443 Suffolk became eari of Pemhroke at Duke Humphoey's death. His honours were capped in 1448 with a dukedom of Suffolk, be being then admiral of England, governor of Calain, constahle of Dover, and warden of the Cinque Ports. But it seemed that long service in the foreign wars had not purged the offence of the name of Pole. All the old enmity which had driven his grandfather into exile was gathering against Suffolk. His peace policy had cost the cession of Maine and Anjou, while the blunders of his ally, Somerset, as lieutenant in France, lost Normandy to Englend. Early in 1450 the Commons in spite of Suffolk's appeal to his years of loyal service, accused him of treason and he was sent to the Tower. A long indictment was reinforced by new accusations, and the king could do no more for his minister than get him free under a sentence of five years' banishment. He sailed from Ipswich on the May Day of 1450, but before he could enter tbe port of Calnis he was cut off hy a royal ship, the "Nicholas," whose master had him put overboard into the cockboat, where his head was hacked off by an Irish knave's rusty sword. His body, cast beadless upon Dover beach, was carried by the king's orders to the Poles' vault in Wingfield church, where his effigy may still be seen. Who sent out the "Nicholas," and by whose orders Suffolk died, are questions which remain unanswered. He was the third husband of Alice Chaucer, whom he married as the widow of Thomas, Earl of Salisbury, slain before Otleans. She was the daughter and heiress of Thomas Chaucer, of Ewelme, and, although direct evidence Is wanting, the granddaughter, without douht, of Geoffrey Chaucer, the poet. Ste lies at Ewelme, under a magnificent tomh.

John Pole (1442-1491), only son of the murdered duke, should have suceeeded to the dukedom, his father having died unattainted. But the honours were apparently regarded as forfeited, and the dukedom was formally restored to the boy in 1455, the earidom of Pemhroke being allowed to lapse. Although three generatlons of warrior lords lay between him and the Hull warehouses, the origin of his house was still fresh in men's memories. John Peston, writing in 1465 , could tell every name in the duke's pedigree back to "William Pool of Hull," who had been "first a merchant and affer a knight," and " what the futher of the said Willinm was" John Paston knew " right well." The duke's father was an upsiart for the crowd, whone ballads palted him wilh the name of "Jac Napes," suggeated by his familiar hadge of the ape's clog and chain. Nevertheleas a wife of royal blood was found for the young duke, King Edward IV.'s own sister Elizabeth. The marriage confirmed him a partisan of the White Rose. The gon of Margarti's faithful minister rode against her man at the second bastle of St Alhans. Before be was of age he was stewsrd of England at his hrother-in-law's crowning, and at

Queen Elyabeth's crowning he bore her sceptre. Having held many offices under Edward IV. he was ready to bear a sceptre at Richard's coronation, and, after Bosworth, to swear fealty to tbe Tudor dynasty and to bear another sceptre for another Queen Elizabeth. He died in 1491, having safely kept his lands, his dukedom, and his head through perilous years.

But each advance in rank had brought danger and misfortune to the Poles. Before the death of the second duke they had begun to pay the price of their matching with the royal bouse. In the next generation their name was hlotted out. John Pole, eldest son of Duke John and the Lady Elizabeth, had been created Earl of Lincoln by his uncle, Edward IV. Before he followed Richard to Bosworth, the young man had been choeen as beir to the chrone, Clarence's son Warwick being put aside. He survived King Richard and Henry VII. spared him. But he egged on Simael's plot, joined the rebels in Ireland, and was killed at Stoke in 1487, leaving no issue by his wife, the daughter of the earl of Arundel. Edmund, his younger brother, (\mathbf{c}. 1472-1513) should have succeeded in 149 I as duke of Suffolk, hut on coming of age he agreed to satisfy himself with the title of earl of Suffolk, the king grudgingly restoring some portion of the eatates forfeited hy his brother. In 1499 he suddenly left the kingdom, hut was persuaded to return. But the death of the imprisoned earl of Warwick may have suggested to him that Henry's court was a dangerous place for those of the blood of York, and in 1501 he found his way to the emperor Maximilian in Tirol with a scheme for the invasion of England. Although the kalser at first promised him men for the adventure, nothing came of his promises. Maximilian, persuaded hy a gift of English money, bound himself not to succour Eaglish rebels. Suffolk, who had reassumed the ducal style, was atuainted in 1504, and in the sume year was seized hy the duke of Guelders. From the duke's hands the prisoner was taken hy Philip, king of Castile, who surrendered him to England on a promise that his life chould be spared. But in 1513, when Richard, his brother, was in arms in the French service, Edmoud Pole was taken from his prison in the Tower to the block.
Richard Pole, who in 1501 escaped from England with Edmund, had been received by the kligg of Hungary, and afterwards by Louis of France, who assigned him a pension. Commanding German Lanzknechts in the French service, he was the Iriend and companion in arms of the chevaller Bayard. At the death of his hrother Edmund, he took the title of the duke of Suffolk, clatming the throne of Eagland. In 1514 Louls gave him the leading of 18,000 riotous Gernian mercenaries to essay the conquest of England. The treaty of peace stayed the adventure, hut Louis refused to surrender Rlchard, and allowed him to depart for the imperial city of Mets. Francis 1. continued the payment of his allowance, and gave him employment. In 1522 the anonymous writer of a journal describes the coming to Paris of "Richard de la Poulle, soydisant duc de Suffort et la Blanche Rose." In 1525 the White Rose was killed by the French king's side at Pavia. With him died the last descendant in the male line of William Pole, the Hull merchant.

By one of the strange chances of history, another family of the name of Pole, having no kinship with the house of Suffor, owed, like the Suffolks, their advancement and their fall to a match with a princess of the royal house. Sir Rlchard Pole, a Buckinghamshire knight, was the son of Geofirey Pole, a squire whose wife, Edith St John, was sister of the half-hicod to the mother of Henry VII. About 1490 or 149 t he married the Lady Margaret, daughter of George, duke of Clarence. He died in 1505, and in 1513 King Fenry V111. created the widow countess of Salisbury, as some amends for the judicial murder of her brother, the Earl of Warwick. Four years later, the barony of Montague was revived for her eldest son Henry. Until the king's marriage with Anne Boleyn, the countess of Salisbury was about the court as governess of her godchlld, the Lady Mary. When her son, the famous Cardinal Pole, published his treatios,

De arilate ecclesioutice, the whole family fell under the displeasure of the king, who resolved to make an end of them. The Lord Montague was the first victim, beheaded in 1539 on a charge of treasonable conversations, evidence having been wrung from his unhappy brother, Sir Geofirey Pole. In I541 the aged countess, attainted with her son Montague, met her death at the barbarous hands of an unskilful headsman. Sir Geoffrey Pole, seeing that his house was dooned, fled the country, and joined the cardinal in exile. He returned with him at Mary's accession, both dying in 1558 . His sons Arthur and Edmund, taken in $5 \sigma_{2}$ as plotters against Queen Elizabeth, were committed to the Tower of London, where they died after eight years of imprisonment.

See T. Rymer's Feodery; C. Frost, Hithory of Hould (1827); Chronicon de Melsa (Rolls Series): G. E. C., Complede Pearage; Teslamente Eboracensid (Surtees Soc.); Hon. and Rev. H. A. Nupicr, Swincombe and Ewelme (1858); Dicl. Nat. Biog., s.0. "Pole"; E. Foss, Judges of England (1848-1864); Chronicon Angliae (Rolls Seriets); Pastom Lethers, edited by J. Gairdper; Sir 1. H. Ramasy, Lencaster and Yorh (182z); Letlers and Papers of Richard III. and Henry VIJ. (Rolls Serics): Inquests post morken, Close and Patent Rolls, Rolls of Parliament.
(0. Ba.)

POLB, REOINALD (1500-1558), English cardinal and archbisbop of Canterbury, born at Stourton Castle, Staffordshire, was the third son of Sir Richard Pole, Knight of the Garter, and Margarel, countess of Salisbury, a daughter of George, duke of Clarence, and therefore niece of Edward IV. He was intended for the church from his youth; and when seven years old was sent for five years to the grammar school which Colet hed founded wear the Certhusian monaxery at Sheen. Here be had Linacre and William Latimer as teachers. In his thirteenth year be went to Magdalen College, Oxford, and two years after took his degree in arts. In 1517 Henry VIII. appointed his young tinsman to a prebend in Salisbury, and soqn afterwards to the deaneries of Wimborne and Exeter. He was a friend of Sir Thomas More, who says that Pole was as learned as he was moble and as virtuous as he was learned. In 1519, at the king's expense, he went to Padua, the Athens of Europe, according to Erasmas; and there, where Colet and Cuthbert Tunstall had also been educated, the "nobleman of England" as he was called, came into contact with the choicest minds of the later Italian Renaissance, and formed the friendships that influenced his life.

In 1525 he went to Rome lor the Jubilee, and two years after returned to England and was initinted by Thomas Cromwell into the mysteries of atatesmanship, that master telling him that the main point consisted in discovering and following the will of princes, who are not hound by the ordinary code of honour. When the divarce question arose, Pole, like many otber excellent men, seems at first to have been in its favour. He probably took the same view that Wolsey had, viz. that the dispensation of Julius II. was insufficient, as of two existing diriment impediments only one had been dispensed. When however the king. raised the theological argument which ended in disaster, Pole could not sccept it; and, after the failure of Campeggio's mission, when the king asked him for his opinion, he excused himself on the score of inexperience, but went by Henry's order to Paris (1530) to obtain the judgment of the Sorbonne, making the condition that another should be joined with him to do the necessary business. At this time, he seys, the more be saw into the case the less he knew how to act as he was desired, On his return to England he spoke strongly against the project to the king, who seems to have deall gently with hing in the hope of using him for his own ends. He offered him the sees of York or Winchester, and kept them vacant for ten months for his acceptance. There was a stormy interview at Yotk Place; but Pole succeeded in mollifying the king's rage wo far that Henry told him to put into writing his reasons against the divorce. This was done, and, recognizing the difficulties of the situation, the king gave him leave to travel abroad, and allowed him still to retain his revenues as dean of Exeter. In r535, which saw by the deaths of Bishog Fisher and Sir Thomas More a change in Henry's policy, Pole recrived orders to send
a formal opiniton an the royal supremacy, and the lifore promised to find him suitable employment in England, even if the opinion were an adverse one. The parting of the whys had been reached. Pole's reply, which took a year to write, and was afterwards published with additions under the title Pro minitate ecclesioe, was sent to Eagland (Muy 25, 1536) and was meant for the king's eye alone. It contained a vigorous and severe attack upon the royal policy, and did not shrink from warning Henry with temporal punishment at the hands of the emperor and the king of France if he did not repent of his cruelties and return to the Church. He was again summoned to return to England to explain himself, but declined until be could do so with honour and safety; but he was on the point of going at all risks, when he heard from his mother and brother that the whole family would suffer if he remained obstinate. Paul III. who had prepared a bull of excommunication and deposition against Henry, summoned Pole to Rome in October, and two months after created him cardinal. In January 1537 he received a sharp letter of rebuke from the king's council, together with the susgestion that the differences might be tiscussed with royal deputies cither in France or Flenders, provided that Pole would attend without being commissioned by any one. He replied that he was willing and had the pope's leave to meet any deputies anywhere. Paul III. in the early spring of that year nawed him legate a bolere to Charles V. and Francis 1 . for the purpose of securing their assistance in enforcing the bell by helping a projected rising in England against Henry's tyranny. The mission failed, as the mutual jealousy of the sovercigns would not allow either to begin operations. Moreover, tbe fear of Henry was suffcient to make the French kiag refuse to allow one who was attainted by act of parliament to remain in the kingdom; so Pole passed over to Flanders, to writ for the possible arrival of any royal deputies. The proposed conference never took place, and in August 1537 the cardinal returned to Rome. There he was appointed to the famous commission which Peul III. cstablished for considering the reforms necesaery for the church and Roman curia. The report Consilime delectorimen cordinalium is, in its plain-spoken directness, one of the most noteworthy documents of the history of the period. Towards the end of 1 539, after Henry hed destroyed the shrine of St Thomas Becket, another attempt was made to launch the hall of deposition, and Pole again was sent to urge Charles V. to assist. Once more his efforts were in vain, and he relired to his friend Sadoleto at Carpentras. As Pole had escaped Henry's power the royal vengeance now fell on his mother, who was erecuted as a traitor on the 37 th of May 1541 . When the news came to the cardinal he said to his secretary Beccatelli that he had received good tidings: "Hithorto I have thought myself indebsed to the divine goodness for having received my birth from one of the most noble and virtuous women in England; but benceforth my obligation will be much greater, as 1 understand 1 am now the som of a martyr. We have one pacron more added to those we already have in heaven "; and returning to his oratory Pole found peace in his sorrow.

On the 2 ist of August 154 r the cardinal was appointed legate at Viterbo, and for a few years passed a happy and congenial life amid the fricods that gathered round him. Here he came into close relations with Vittoria Colonna, Contarini, Sedoleto, Rembo, Morone, Maxco Antonio, Flaminio, and olher scholass and leaders of thought; and many of the questions raised by the Reformation in Germany mere eagetly discussed in the circle of Viterbo. The bursing question of the day, justification by faitb, was a epecial subject of discussion. The "dolce libriccino," the famous Tratlotp wilissing ded beneficio di Gesu Ckrislo cracifissa werso i Clvistiemi, which was the composition of a Sicilion Benedictine and had beea toucbed up by the great latinist Flamunio, just appeared at Mantua in 1542 under the auspices of Monone, and had a wide circulation (over 40 ,000 copies of the second edition, Venice 1543, were sold). Containing extacts from the Hundred and Ten Divine Considerationa of Junn Yaldes (a,s)
it was soon regarded with the utmost horror by many. But at. Viterbo it was in favour, and the orthodox interpretation was regarded rather than the other which might be takph in the Lutheran sense. Pole's own attitude to the question of justification by faith is given by Vittoria Colonna, to whom he said that she ought to set berself to believe as though she must be saved by laith alone and to act as though sbe must be saved by works alone. In the excited temper of the times any defendor of justification hy faith was looked upon by the old achool as heretical; and Polo, with the circle at Viterbo, was denounced to the Inquisition, with all sorts of crimes imputed to him. Though the process went on from the pontificate of Paul III. to that of Paul IV., nothing was done against the cardinal until the time of the latter pope, who was his personal enemy. It is by no means certain that Pole cver knew about the process begun against bim; and immediate subsequent events show that no credence wes given to tho charges.

While at Vlterbo his rule was firm but mild; and no charge of persecuting heretics is made against him. He regained many, such as his friend Flaminio, by palience and kindliness, to a reconsideration of their errors. During this time also he was still engaged in furthering a proposed armed expedition to Scotland to aid the papal party, and in 1545 he was again asking help from Charles V. But the Council of Trent (q.v.), first summoned in 1536, was at last on the point of mecting, and this required all his attention. In 1542 be had been appointed one of the presiding legates and had written in preparation his work De concilio; and now in 1545, after a brief visit to Rome, he went secretly, on account of fear of assassination by Henry's agents, to Trent, where he arrived on the 4 th of May 1545 . At the council be took a high spiritual line, and his learning and devout life made him a great leader in that assenbly. He advocated that dogmatic decrees should go together with those on relorm as affording the only stable foundation. His viens on the subject of original sin, akin as it is to that of justification, were accepted and cmbodicd in the decree. He was present when the latter subject was introduced, and he entreated the fathers to study the subject well before commitling themsolves to a decision. On the 28th of June $\mathbf{r} 546$ he left Trent an account of ill-healib and went to Padua. While he was there frequent communications passed between him and the council and the draft of the decree on justification was sent to him. His sug-. gestions and amendments were accepted, and the decree cmbodies the doctrines that Pole had always held of justification by a living faith which showed itself in good works. This effectually disproves the story that be left the Council of Trent so as to avoid laking part in an adverse decree.

On the death of Henry (Jan. 28, 1547), Pole, by mame, was left out of the general pardon; and in the subsequent rising in the West the insurgents demanded that he should be sent for and made the first on the record in the council. He wrote several times to England to prepare a conference, but only received a rude reply from Somerset, who sent him a copy of the Book of Common Prayer. At the conclave of 1549 Pole received two-thirds of the votes, but by a delay, caused by his sense of responsibility, he lost the election and Julius III. succeeded. He then retired to Magazzano on the Lake of Gardi and occupied bimself by cditing his book Pro uxilate ecteriae, with an intended dedication to Edward VI.

The accession of Mary opens the third period of his life. On the gth of August 1553 he was appointed legate to the new queen and began bis negotiations. But many difficulties werc put in the way of return. He was still under attainder; and the teraper of Eugland was not yet ripe for the presence of a cardinal.

[^88]The project of the queen's marriege was also an obstacle. A marriage between ber and Pole, who was then only a deacon, was proposed by some, but this did not at all meet the views of the emperor, who therefore hindered him the more from setting out for England. The marriage with Philip, of which Pole did not approve, having taken place (July 25, 1554), and Rome yielding on the practical difficulties of the lay holders of Church lands, a parliament favourable to the proposed reunion now assembled, and Pole was allowed to return to England as cardinal. On his landing he was informed that the attainder had been reversed; and he received the royal patent authorizing his performance of the legatine duties within the realm. Arriving at Whitehall, where he, was received with joy by Mary and Thilip on the 301 h of November, he proceeded to parliament and there absolved the kingdom and accepted in the pope's name the demands respecting eccleslastical property. He entered wiscly on his work of reformation, for which he was well prepared. One of the most important matters he had to deal with was to rectify the camonical position of those who had been ordained or consecrated since the breach with Rome. Acting according to the instructions he had received from Rome, where the matter had beon fully gone into, be made an investigation, and divided the clergy ordained after that period into two classes; one consisting of those ordained in schism, indeed, but according to the old Catholic rite, and the other of those who had been ordained by the new rite drawn up by Cranmer and enforced by act of parliament 15t of April 1550 . The first class, after submission, were absolved from their irregularity, and, receiving penance, were reinstated; the second class were simply regarded as laymen and dismissed without penance or absolution. At.his first convocation he exhorted the bishops to use gentleness rather than rigour in their dealings with herelics; and Pole, in himself, was true to his principle. He was not responsible for the crued persecution by which the reign was disfigured. On the 4th of November 1555 Pole opened, in the chapel royal at Westminster, a legatine synod, consisting of the united convocations of the two provinces, for the purpose of laying the foundations of wise and solid reforms. In the Reformatio Angliae which he brought out in 1556, based on his Legatine Constitutions of 1555 , he ordered that every cathedral church should bave its seminary, and the very words he uses on this subject secm to have been copied by the Council of Trent in the twenty-third session (1563). He also ordered that the Catechism of Caranza, who, like him, was to suffer from the Inquisition for this very book, should be translated into English for the use of the laity. On Cranmer's deprivation, Pole became archbishop of Canterbury; and, having been ordained priest two days belore, he was consecrated on the 22nd of March 1556, the day after Cranmer suffered at Oxford.
Soon afterwards the clouds began to gather round him. His personal enemy Caraffa had become pope under the name of Paul IV. and was biding his time. When Rome quarrelled with Spain, and France, on behalf of the pope, took up arms, England could no donger observe neutrality. To injure Spain and heedless of England's need, Paul IV. deprived Pole of his power both as legate a latere and legalus nalus as archbishop of Canterbury (June 14, 1557); he also reconstitutod the process of the Inquisition against the cardinal and summoned him to Rome to answer to the crime and heresics imputed to him. No remonstrances on the part of the queen, of Fole or the English clergy could induce the pope to withdraw his sentence except to declare that the cardinal still held the' position of legalus nalus inherent in the primatial see. In a dignifed but strong letter Pole says: "As you are vithout example in what you have done against me, I arm also without an example how 1 ought to behave to your Holiness": and he drew up a paper containing an account of the various acts of hostility he had experienced from the pope, but on second thoughts he bums the document, saying it were not well to discover the shame of his father. Mary, who had been warned by her ambassador to the pope that prison awaited Poic, prevented the hreve ofdering the cardindt to proceed to Rome from being dellverd,
and so Pole remained in England. Broken down as much by the blow as by ill-health the cardinal died at Lambech on the 17th of November 1558, twelve hours after Mary's death and under the unmerited disgrace of the papacy in defence of which be had spent his life. He was buried at Canterbury near the spot where the shrine of St Thomas Becket once stood.
The chief sources for Pole's biography are his life written in Italian by his secretary Beccatelli, which was translated into Latin by Andrew Dudith as Vila Poli cardinalis (Venice, 1563) end his letters (Epistolar Reginaldi Podi) edited by Girolamo Quirini and published in 5 volumes (Breacia, 1744-1757), a new edition Which is in preparation at Rome with additions from the Vatican Archives See also the State Papers (foreign and domestic) of Henry VIII-, Edward VI. and Mary; the Spanish and Venetian State Papers; vol. i. of A. Theiner's Acte zexuina S.S. Oecumenici Caecilai rindentini (1874); the Compendio dai procasri ded santo ufisio di Rama da Paolo III. a Paolo IV. (Societa romana di storia patria, Archioio, iii. 261 seq.); T. Phillipp's History of the Life of R. Pole (Oxford, 1764-1767); Athanasius Zimmermann. S.J., Kardinal Pole sein Leben sud scine Schriften (Regensburs, 1893), Martin Hailic, Lifc of Reginald Pole (1910); and F.G. Lee. Repinald Pole
(E. TM.)

POLE, RICHARD DE LA (d. 8525), pretender to the English crown, was the fifth son of John de la Pole (1442-1491), 2nd duke of Suffolk, and Elizabeth, second daughter of Richard, duke of York and sister of Edward IV. His eldest brother John de la Pole, earl of Lincoln (c. 1464-1487), is said to have been named heir to the throne by his uncle Richard III., who gave him a pension and the reversion of the estates of Lady Margaret Beaufort. On the accession of Henry VII., however, Lincoln took the oath of allegiance, but in 1437 he joined the rebellion of Lambert Simnel, and was killed at the battle of Stoke. The second brother Edmund (c. 1472-1513), succeeded his father while still in his minority. His estates suffered under the attainder of his brother, and be was compelled to pay large sums to Henry VII. for the recovery of part of the forfeited lands, and also to exchange his title of duke for that of earl. In 1 sot he sought the German King Maximilian in Tirol, and received from him a promise of substantial assistance in case of an attempt on the English crown. In consequence of these treasonable proceedings Henry scized his brother William de la Pole, with four other Yorkist noblemen. Two of them, Sir James Tyrell and Sir John Wyndham, were executed, William de la Pole was imprisoned and Suffolk outlawed. Then in July 1502 Henry concluded a treaty with Maximilian by which the king bound himself not to countenance English rebels Presently Suffolk feli into the hands of Philip, king of Castile, who imprisoned him at Namur, and in 1506 surrendered him to Henry VII. on condition that his life was spared. He remained a prisoner until 1513, when he was beheaded at the time his brother Richard took up arms with the French king. Richard de la Pole joined Edmund abroad in 1504, and remained at Aix as surety for his elder brother's debts. The creditors threatened to surrender him to Henry VII., but, more fortunate than his brother, he found a sale refuge at Buda with King Ladislas VI. of Hungary. He was excepted from the general pardon proclaimed at the accession of Henry VIII., and when Louis XII. went to war with England in 1512 he recognized Pole's prelensions to the English crown, and gave him a command in the French army. In 1513 , after the execution of Edmund, he assumed the tide of earl of Suffolk. In 1514 be was given 12,000 German mercenaries ostensibly for the defence of Brittany, but really for an invasion of England. These he led to St Malo, hut the conclusion of peace with England prevented their embarcation. Pole was required to leave France, and be estahlished himsell at Metz, in Lorraine, and built a palace at La Haute Pierre, near St Simphorien. He bad numerous interviews with Francis I., and in 1523 he was permitted, in concert with John Stewart, duke of Albany, the Scottish regent, to arrange an invasion of England, which was never carried out. He was with Francis I. at Pavia and was killed on the ficld on the 24th of February 1525 .
 Efewry VII, edited by J. Cairdner (2 vols, "Rolls Series" 24, IS6x;:

Calendar of Letlere and Papers, Fonvige and Domente, of the Rige of Henry VIII.; and Sir William Dugdale, The Baromage of Eadam (London, 1675).

POLE, WILSAM (1814-1900), English engineer, was born at Birmingham on the anod of April 1814 . He was a man of many accomplishments. Having spent his earlier years in various engineering occupations in Enghand, he went out to Indie in 1844 as professor of engineering at Elphinstone College, Bombay, where he had to first organize the courne of instruction for native students, but his health obliged him to return to Eugland in 1848. For the next ten years he worked in London under Jamea Simpeon and J. M. Rendel, and the high repatatioa be achieved as a acientific angineer gained his appointmeat in 1859 to the chair of civil engineering in University Collese, London. He obtained a considerable amount of official wort from the government. He served on the committees which comaidered the application of armour to ships and fortfications ($2861-1864$), and the comparative advantages of Whitworth and Armstrong guns (1853-1855). He was secretary to the Royll Comnission on Railways (1855-1867), the duke of Richmond's Commimion on London Water ($\mathbf{8 8 6 7 - 1 8 6 9 \text {), also tahing part in the subeequent }}$ proceedings for establishing a constant supply, the Royal Commission on the Disposal of London Sewage (1882-1884), and the departmental committee on the science museums at South Kensington in $\mathbf{1 8 8 5}$. In 1878 he was employed by the War Office to report on the Martini-Henry rifle, and in the mame year was appointed consulting engineer in London to the Japamese government, a position through which he exercised consideratie influence on the development of the Japanese railwaysystem. He was elected a fellow of the Royal Society in 1861, in recognition of some investigations on colour-bindsess. Muric was also one of his chief interests. At the age of twenty-two he was appointed organist of St Mart's, North Avdley Street, in open competition, the next selected eandidate being $\mathbf{D r}$ E. J. Hopkins (1818-1901), who subsoquently wis for fifty years organist of the Temple Church. He took the degree of Bachelor of Music at Orford in 1860, proceeding to his doctor's degree in 1867, and in $\mathbf{1 8 7 9}$ published his Phriosophy of Masic. He was largely concerned in the institution of mussical degrees by the University of London in 1877, and for many years acted as one of the examiners. His mathematical tastes found congeniad occupation in the study of whist, and as an exponent of the scientific principles of that game he was even carlier in the field than "Cavendish." His literary work inchuded treetises on the steam-engine and on fron construction, biographical studies of famous engineers, inclufing Robert Stephensor and I. K. Brunel, Sir William Fairbairn and Sir W. Siement, zeveral books on musical subjects and on whist, and many papers for reviews and scientific periodicals. He died on the soth of December 1900. His son, Wiliam Pole (18g2-), became known as an actor and writer under the stage-name of Wibiam Poel, more especially for his studies in Shakespearian drama and his wort in connerion with the Elizabethan Stage Society.

FOLE (1) (O. Eng. paf, cf. Ger. Pfoht, Du. poal, from Lat. palws, stake), a tapering cylindrical post or stake of some considerable length, used as a support in scaffolding, for telegraph or telephone wires, hops, \&c., and as a means for taking jumps (see Pole-Vaulinc), and abs as a single shaft for a vehicle drawn by two or more horses. As a measure of length a "pole," also called "rod " or "perch," is equal to $5 \frac{1}{2}$ yds. ($66 \frac{1}{2} \mathrm{ft}$), as a measure of aren it is equal to 30 t sq. yds. (2) (Let. polms. adapted from Gr. xilor, pivot, axis), one or other of the extremities of the axis of the earth; the "celestial pole "is one or other of the points in the heavens to which the earth's aris points; in the northern hemisphere this point is hear the star Ursae minoris, better known as the Pole-star or Polaris (see Uasa Majoz). For the regions lying about the north and south poles of the earth see Poink Recions.

In mathematics the word pole has several meanings In spherical trigonometry the "pole" of a circle on a sphere is the point otere the diameter of the aphere perpendicular to the plane of the circle intersects the sphere. In crystallography ($\mathbf{0}, \mathrm{o}$) the " pole" of a face is the intersection of a line perpendicular to the face writh
the ephere of projection. The term is also applied to a point from which lines radiate, as, for instance, the origin in asystem of polar co-ordinstes, or the common point of a pencil of raye. In the feometry of conic sectiont the "pole of a line, termed the "polar" of the point, is the intersection of the tangents (either real or imaginary) at the pointe where the line meets the conic (see Gromet हy: I Projective). The " magnetic poles" of the earth are the points on the earth's surface where the dipping needle is vertical (nee Ts mestmal Magnetism) ; and the polea "of a magnet an the points of the magnet where the magnetic intensity Is greatest. In electricity, the term is applied to the elementa of a galvanic battery ($\mathrm{g} . \mathrm{b}$), or to the terminals of a frictional electrical machine.

POKTOAT, the common mame given to ny member of the Musteline genus Pulorims (see Caknuvona). The polecats form a small group confined to the northern hernisphefe, of which the best lnown and most widely distributed is the common polecat of Europe (P. foctidus or P : prutorims). This animal, at least 50 far as its disposition, size and proportions are concerned, is well known in. its domesticated condition as the ferret, which is but a tamed albino variety of the true polecat. The colour of the latter, however, instead of the familiar yellowish-white of the ferret, is of dark brown tint above and black below, the face being variegated with dark brown and white markinge. Its skull is rough, strongly ridged, and altogether of a lar more powerful type than those of the stoats, weasels or martens; the skull of the female is very much maller and lighter than that of the male. The fur is long. coarse, and of comparatively small value, and changes lts colour very little, if at all, at the different scasons of the year.

The Common Polecat.
The polecat ranges over the greater part of Europé, reaching northwards into southern Sweden and in Russia to the region of the White Sea. It does not occur in the extreme south, but is common everywhere throughout central Europe. In the Alps it ranges far above the tree-line during the summer, but 'retreats in winter to lower ground. It is confined to the northern counties of England and Scotland, where it is becoming very rare, owing to persecutions from game-keepers, and in Ireland it appears to be extinct. In fine weather it lives eit her in the open air, in holes, fox-earths, rabbit-warrens, under rocks or in wood-stacks; while in winter it seeks the protection of deserted buildings, barns or stabies. During the day it sleeps in its hiding place, sallying forth at night to plunder dovecots and hen-houses. It climbs but little, and shows far less activity than the marten. It feeds ordirarily on small mammals, such as rabbits, hamsters, rats and mice, on such birds as it can catch, especially poultry and pigeons, and also on snakes, lizards, frogs, fish and eggs. Its prey is devoured only in its lair; but, even though it can carry away but a single victim, it commonly kills everything that comes in its way, often destroying all the inhabitants of a hen-house in order to gratify its passion for slaughter. The pairing time is towards the end of the winter, and the young, from three to eight in number, are born in April or May, after a period of gestation of about two months. The young, if taken early, may be easily
trained, like ferrets, for rebbie-catching The polocat in very tenacious of life and will bear many severe wounds belore ovccumbing; it is aloo anid to receive with impunity the bite of the adder. Its fotid mell has become proverbial. To thit it is indebted for its generic namo Puterius (derived, as are aloo the fow Lat. pulacins, Fr. putois, and Ital pumala, from puleo), as well as the desigmation foumart (i.a. foul marten) and its other English names, fitchet, fitchew. Attempts to account for the firse syllable of the word polecat reat entirely an conjecture.

The Siberian polecat (Putorims enersmamen is very like the European in sive, colorr and proportions, but with heed and back both nearly or quite white, and skull more heavily built and sharply constricted behind the orbite, at least in fully adule individuals. It inhabits the greater part of south-westers Siberia, extending from Tibet into the steppes ol couth-eastem European Russia.
The black-footed or American polecat (Pulorixs migripes) is a native of the central plateay of the United States, and extends southwards into Teras. It is often called the prairiodog hunter, as it is nearly always found in the warrens of that animal. The fur is cream-yellow, the legs are brown, and the feet and tail-tip black.

The mottled polecat (Puterime sarmaticus), a speciap occurring in southern Russia and south-western Asia, and eritending from castern Poland to-Aighanistan, differs from other polecats both by its smaller sise and its remarkable coloration, the whole of the upper-parts being marbled with large irregular reddith apots on a white ground, while the under-aide, limbe and tail are deep ahining black. Its babits appear to be much like those of the common polecat.
(R.L.*)

POLBNTA, DA, the name of a castle in Romagna, from which came the noble and ancient Italian family of De Polenta. The founder of the house is said to have been Guido, surnamed l'Antico or the Elder, who wielded great authority in Ravenna in the $13^{\text {th }}$ century. His grandson Guido Novello upheld the power of the house and was also capilano ded popolo at Bolognas he was overthrown in 1322 and died the following year. Hist chief claim to renown lies in the fact that in 1321 he gave hospitality to the poet Dante, who immortalized the tragic history of Guido's daughter Francesca, unhappily married to Malatesta, lord of Rimini, in an episode of the Inferno. Guido's kinsman Ostasio I. was lord of Cervia and Revenaa from 1322 to 2329, and, after being recognized as a vassal of the Holy See, again became independent and went over to the house of Este, whom he served faithfully in their struggles with the Church until his death in 1346. His son Bernardino, who succeeded hip as lord of Ravenna in 1346, was deposed in 1347 by his brothers, Pandolio and Lamberto II., but was reinstated a few montha later and ruled until his death in 1359; he was famous for his profligacy and cruelty. His son Guido III. ruled more mildiy and died in 1390. Then followed Ostasio II. (d. 1396), Obixa9 (d. 1431), Pietro (d. 1404), Aldobrandino (d. 1406), wll sons of Guido III. Ostasio II. (or V.), son of Obizmo, was at first allied with the Venetians; later be went over to the Milaneso, and, although he again joined the Venetians, the latter never forgave his intrigue with their enemies, and in 1441 they deprived him of his daminions. He died in a montitery in 1447.

POLE-VAULTMN, the art of springing over an obstacle with the aid of a pole or staff. It is probable that an exercise of the kind was a feature of Greek gymnastics, but with this exception there is no record of its ancient practice as a sport. As a practical means of passing over such natural obstacles as canals and brooks it has been made use of in many parts of the world, for instance in the marshy provinces along the North Sea and the great level of the fens of Cambridgeshire, Huntingdon shire, Lincolnshire and Norfolk. The artificial draining of these marshes brought into existence a network of open drains or canals intersecting each other at right angles. In order to cross these dryshod, and at the same time avoid tedious roundabout journeys over the bridges, a stack of jumping poles was
hept at avery homie, which mexe commonly used for vealting ovir the camils.

- As a sport, pole-vauting mode its appearance in Cermany in the first part of the roth century, when it was added to the symastic exercises of the Turner by Johann C. F. GutsMuths and Frederich L. Jahn. In Great Britain it was first commonly practised at the Caledonian gamea. It is now an ovent in the athletic championshipe of neariy all nations. A1though strength and good physical condition are essential to efficiency in pole-vaulting, skill is a much more important element. Broed-jumping with the pole, though the original form of the sport, has never found its way into organized sthletics, the high jump being the only form recognized. The object is to clear a bar or lath supported upon two uprights without knocking it down. The pole, of hickory or some other tough wood, is from 13 to 15 ft . long and is in . thick at the middle, tapering to 14 in. at the ends, the lower of which is truncated to prevent sinking into the earth and shod with a single spike to avoid slipping. A bole in which to place the end of the pole is often dug beneatb the ber. In bolding the pole the height of the cross-bar is first ascertained, and the right hand placed, with an undergrip, about 6 in . above this point, the left hand, with an over-grip, being from 14 to 30 in . below the right. The vauker then runs towards the bar at full apeed, plants the spiked end of the pole in the ground about 18 fm . in front of the ber and springs into the air, grasping the pole firmly as he rises. As he nears the bar he throws his lege forward, and, pushing with shroulders and erms, clears it, letting the pole fall beckwards. In Great Britain the vaulter is allowed to climb the pole when it is at the perpendicular. Tom Ray, of Ulverston in Lancashire, who was champion of the wordd in 1887, was able to gain several feet in this manner. In the United States climbing is not allowed. Among the best British vaulters, using the climbing privilege, have been Tom Ray, E. L. Stones, R. Watson and R. D. Dickinson; Diekinson having cleared ir ft. 9 in. at Xidderminster in 189 I . The record pole-vault is $\mathrm{Ia} \mathrm{ft} .6 \frac{1}{3} \mathrm{in}$., made by W. Dray of Yale in 1907.

POLCE (Fr. police, govermment, civil administration, a police force, Gr. wohsreia, constitution, condition of a state, mbiss, city, state), a term used of the enforcement of law and order in a state or community, of the department concerned with that part of the civil administration, and of the body or force which has to carry it into execution. The word was adopted in Fnglish in the 18th centary and was disliked as a symbol of foreign opprestion. The first official use appears, according to the Now English Dictionary, in the appointment of "Commissioners of Poliee" for Scotland in 1714. A police system has been devised for the purpose of preventing evils and providing benefits. In its first meaning it protects and defends society from the dissidents, those who decline to be bound by the general standard of conduct accepted by the larger number of the law-abiding, and in this sense it is chiefly concerned with the prevention and parsuit of crime. It has a second and more extensive meaning as applied to the regulation of public order and enforcing good government.
U ailed Kingdom. -The establishment of a systematic police force wes of slow growth in England, and came into effect long after its creation abroad. A French king, Charles V., is said to have been the first to invent a police, "to increase the happiness and security of his people." It developed into an engine of horrible oppression, and as such was repugnant to the feelings of a free people. Yet as far back as the i3th century a statute, known as that of "Watch and Ward," was passed In the 13th year of Edward I. (1285), aimed at the maintenance of peace in the city of London. Two centuries later (1585) an act was passed for the better government of the city and borough of Westrinster, and this act was re-enacted with extended powers in 1737 and soon succeeded by gnother (1777) with wider and stricter provisions. The state of London at that date, and indeed of the whole country at large, was deplormble. Crime was rampant, highwaymen terrorised the
roads, foolpads infested the atreets, hurglaries were of comstamt occurrence, river thicves on the Thames committed depredations wholesale. The watchmen appointed by parishes were useless, inadequate, inefficient and untrustworthy, acting often as accessories in aiding and abething crime. Year after year the shortcomings and defects were emphasized and some better means of protection were constandy advocated. At the combmencement of the 19th century it was computed that there was one criminal to every twenty-two of the population. The efforts made at repression were pitifully unequal. In the district of Kensington, covering 15 sq. m., the protection aflorded was dependent on three constables and three headboroughs. In the parish of Tottenham nineteen attempts at burglary were made in six weeks, and sixteen were entirely successful. In Spitalfields gangs of thicves stood at the street corners and openly rifled all who came near. In other parishes there was no police whatever, no defence, no protection aflorded to the community but the voluntary exertions of individuals and "the honesty of the thieves." In those days victims of robberics constantly compounded with felonies and paid blackmail to thieves, promising not to prosecute oa the restitution of a portion of the stolen property.
The crying need for reform and the introduction of a proper police was admitted hy the govermment in 1819, when Sir Robert Peel laid the foundation of a better system. Much opposition was offered to the scheme, which was denounced as an insidious attempt to enslave the people by arbitrary and tyrannical methods. The police were to be employed, it was said, as the instruments of a new despotism, the enlisted members of a new standing army, under the centralized autbority, riding roughshod over tbe peaceable citizens. But the guardians of order, under the judicious guidance of such sensible chiefs as Colonel Rowan and Sir Henry Maine, soon lived down the hostility first exhibited, and although one serious and lamentable collision occurred between the mob and the police in 1833, it was agreed two years later that the unfavourable impression at one time existing agalnst the new police was rapidly diminishing, and that it had fully answered the purpose for which it was formed. Crime had alrcady diminished; it was calculated that the anowil losses inflicted on the public by the depredations of the denserous classes had appreciably fallen and a larger number of convictions had been secured.

The formation of the metropolitan police was in doe course followed by the extension of the principle to the provinces Borough constabulary forces were established by the Municipal Corporation Act (1835), which antrusted their administration to the mayor and a watch committee, and this act was revised In 1882, when the general powers of this authority were defined Acts of 1839 and 1840 permitted the formation by the justices of a paid county police force. Action in this case was optional, but after an interval of fifteen years the Police Act of 1856 made the rule compulsory, It being found that an efficient police force throughout England and Wales was necessary for the more effectual prevention and detection of crime, the suppression of vagrancy and the maintenance of good order. Local acts had aiready endowed Scotland with a police system, and in 1857 , and again in 1862, counties were formed into police districts, and the police of towns and populous places was generally regulated. Ireland has two police forces; the Dublin metropolitan police originated in 1808, and in 1829 the provisions of Sir Robert Perl's act for London were embodied in the Police Law for Ireland.
The extent to which the metropolitan police has developed will best be realized by contrasting its numbters on tirst creation and the nalure of the dotics and functions that then appertained to it. The firse act (the Metropolitan Police Act 1829) applied to the metropolis, exclusive of the city of London, and constitured a police arca having a radius of 12 m. from Charing Cross Iwo justices of the peace were appointed, presently paned commis sioners of police, to administer the act under the immediate direction of the secretary of state for the home department: The first police office was located in Whitehall In Scothand Yand, from which it was removed in the autumn of 1890 to the new and imposing edifice on the Embankmemt in which all branchee are now cem centrated, known as New Scotland Yard. The firs constablet
epposnted were 3000 in number, who, then aworn in. enjoyed all the powers of the old constables under the common law, for prewerving the peace, preventing mbberies and other felonies, and apprehending offenders. The mubdivision o the district into divicions, on much the same lines as now existing, was at once made for admiaiotrative convenience, and a proportion of officers was ailotted to each in the various grades then first conscituted and still papeservod, comprising in cecending orver, conatables, sergeants inspectors and superiatendenta. Some time later the grade of district superintendent was created, held by gentlemen of superior status and intelliyence, to each of whom the control of a large eection of the whole fonce, embracing a wide area, was entrusted. Thit grade has since been merged in that of chief constable, of whom there are four exercising powers of disciplinary mupervision in the metropolitan districts, and a fifth who is assistant in the brameh of criminal invertigation. The supreme authority in vested in the home socretary, but the immediate command and control is exercised by the chief commissioner, with three aseistants, replacing the two comprissioners provided for in 1889.
Alter various parliamentary reports and some legialation by way of extension, an important act was pamed in 1839 reciting that the system of police established had been found very ineficient and might be yet further improved (Metropolitan Poline Act 1839). The metropolitan polise district was extended to is m . from Chaning Cross. The whole of the river Thames (which, in its course through London, wo far as related to police matters, had been managed under distinct acts) wat brought within it, and the coilateral but not exclusive powers of the metropolitan police were extended to the royal palaces and to m. round, and to the counties adjacent to the district. Various summary powers for dealing with street and other offences were conferred. When the police was put on a more complete footing and the area enlarged, provision was made or the more effectual adminiatration of justice by the magietrate of the metropolie (Metropolitan Police Courts Aet 1839). The changes that occurred in magisterial functions are ecarcely lese remarkable than the tranaition from the parish constable to the organized polico. The middirected activity of the civil magiatrate in the 17th century is illustrated by the familiar literature of Butler. Bunyan and others. The zcal of that age was suoceeded by apathetic reaction, and it becamo necesary in the metropolis to secure the services of paid justices. At the beginning of the 19 h century, outside of the city of London (where magisterial dutien were, as now, performed by the lord mayor and aldermen), there ware various public offices beaides the Bow Street and Thamen poiice offices where magistrates attended. To the Bow Street office was subsequently attached the "horse patrol "; each of the poiice offices had a fixed number of constables attached to it, and the Thamer police had an eetablishmeat of constablee and surveyors. The hone patrol was in 1836, at previously intended, placed under the sew police. It becane desirable that the horse patrol and constables allotted to the several police offices not interfered with by the Act of 1828 should be incorporated with the metropolitan police farce. This was effected, and thas magisterial functions were completely separated from the duties of the evecusive police; for although the jurisdiction of the two justioes, afterwards cailed commissioners, as magistrates extended to ordinary duties (exocpt at courts of general or quarter ensoions), from the first they took no part in the examination or committal for trial of persons charged with offences. No prisoners were brought before them. Their functions were in practice confined to the discipline of the force and the prevention and detection of offences, their action limited to having persons arreaterl or summoned to be dealt with by the ordinary macistrates, whose courts were not isterfered with.

The aim and object of the police force remsin the same as when first created, but its lunctions have been varied and extended in scope and intention. To secure obedience to the law is a first and principal duty; to deal with breaches of the rules made by authority, to detect, pursue and arrest offenders. Next comes the preservation of order, the protection of all repatable people, and the maintenance of public peace by checking riot and disturbance or noisy demonstration, by eaforcing the observance of the thousand and one regulations laid down for the general good. The police have become the ministers of a social despotism resolute in its watchful care and control of the whole community, well-meaning and paternal, although when carried to extreme length the tendency is to diminish self-rellance and independence in the individual, The police are necessarily in close relation with the state; they are the direct representatives of the supreme government, the servants of the Crown and legislature. In England every constable when he joins the force makes a deciaration and swears that he will serve the sovereign loyally and diligently, and to acquires the rights and privileges of a pence officer of and for the Crown.

The state employs police solely in the intereats of the public welfare. No sort of espionage is attempted, no effort made to penetrate privacy; no claim to pry into the secret actions of law-abiding persons is or would be tolerated; the agents of authority must not seek information by underhand or unvorthy means. In other countries the police system has been worked more arbitrarily; it has been used to check froe speech, to interfere with the right of public meetings, and condemn the expresston of opinion hostile to or critical of the ruling powers. An all-powerful police, minutely organized, has in some forcign states grown inte a terrible engine of opprcssion and made daily life nearly intolerable. In England the people are lree to assemble as they please, to march in procession through the streets, to gather in open spaces, to listen to the barangues, often forcibly expressed, of mob orators, provided always that no obstruction is caused or that no disorder or breach of the peace is threatened.
The, strength of the metropolitan police in 1908 was 18,167 comprising 32 superintendents, 572 inspectors, 2378 sergeants and 15.185 constables. At the head is a commissioner, appointed by the home office; he is assisted by four assistant commistionerf: one of whom was appointed under the Polioe Act 1909, in accordance with the recommendation of the Royal Commistion on the Metropolitan Police 1906, his duty especially being to deal with complaints made by the public agaigat the police. The metropolitan police arr divided into 21 divisions, to which letters of the alphabet are assigned for purposes of distiaction. There is in addition the Thames division, recruited montly from seilons, charged with the patrol of the river and the guardianship of the shipping. To the metropolitan police also are asaigned the control and guardianship of the various naval dockyards und arsenale
The city of London has its own distinct police organization under a commissioner and assistant commissioner, and its functions extend over an area of 673 statute acres containing two courts of justice, those of the Guildhull and Mansion House, where the lord mayor and the aldermen are the magistrates. Although the arca in comparatively amall the rateable value is enormous. The force comprises 2 zuperintendente, 48 inspectors, 86 scrgeants and 865 constablea; also some 60 constables on private service duty.
The total police force of England and Wales in 1908 was 30,376 almost equally divided between counties a nd boroughs; that of Scotland numbered 5575 . In Ireland the Royal Irish Constabulary are a semi-military larce, numbering over 10,500 i they police the whole of Ireland, except the city of Dublin, which is under the Dublia metropolitan police, 2 particularly fine body.
The most active and by ao means the least efficient branch of the modern Endish police is that especially devoted to criminal investigation or the detection of crime. The detective is the direct descendant of the old "Bow Street rumners" or "Robin Redbreaste" $\rightarrow 0$ styled from their scarlet waistcoate-officers in attendance upon the old fashioned police offices and despatched by the sitting magistrates to follow up any very serious crime in the interests of the public of at the urgent request of private persens. The "runners". had disappeared when the police ongacization introduced by Sir Robert Pecl came into force in 1829, and at first no part of the new force was capecially attributed to the detection of crime. They were much missed, but fifteen years elapsed before Stir James Graham (then home secretary) decided to allot a few constables in plain clothes for that purpose as a tentative measure. The first "detectives" appointed numbered only a dozen, three inspectors and nine serpeants, to whom; however, six constables were shortly added as "auxiliaries", but the number was gradually enlarged as the manifest usea of the system became more and more obvious.
Other Countries.-Brilish India is divided into police diasricts. the general arrangements of the system of the regular police, which dates from the disappearance of the East India Company, resembling in most respects those of the Engliah police, but difering in detaite in the different presidencies. All aro in uniform, trained to the use α firearms and drilled, and may be called upon to perform military duties The superior officers are mearly all Europeans and many of thern are military officers. The rest ase nativen, in Bombay chiefly Mahommedans. The orranimation of the poilico was not dealt with by the criminal code wifith carme into force in 1883 , but the code is full of provisions tending to male the forse efficieat. By that oode as well as by the former code the police have a legal sanction for doing what by practice they do in Eagland; they take evidence for their own information and guidance in the investigation of cacen and are clothed with the power to compel the attendanoe of witneswes and question them. The sanalinem of the number of European magistrates, and other circumastances make the police mowe important and relatively far more powerfu in Indis than in England (Segphen). The dilinculties in the way

suppresed cases are very great. As regrards the rural police of Indi every village hendman and the village watchman as well as the village police affice are required by the code to communicate to the bearest magiotrate or the officer in charge of the, nearest police tation, whichever is pearet. any information reapecting pfienders. On the whole the system is very efficient. The police, which has numerous duties over and above those of the prevention and detection of crime, sreatly aids a government 00 paternal as that of India in keeping touch with the widely extended masees of the population.
Prance-It is a matter of history that under Louis XIV., who created the police of Paris, and in succoeding times, the moen unpopular and unjustifiable use was made of police as a sccret instru. ment for the purposes of despotic government. Napoicon availed himself lar dy of police instrumente, eapecially througb his minister Fouch6. On the reatoration of constitutional government under Louis Philippe, police action was leas dangerous, but the danger revived under the second empire. The ministry of police, created by the act of the Directory in 1796, was in 1818 suppreneed as an indepencient office, and in 18g2 it was unitad with the ministry of the interior. The regular police organimation, which preserve order, checks evil-doing, and "runs in malefactors, falia naturally and broadly into two grand divisions, the administrative and the active, the police " in the office" and the police "out of doors." The first attends to the clerical basinces, voluminous and incewant. An army of clerks in the numerous burcaus, hundreds of patient sovernment employts, the ronds de cwir, as they are contemptuously called, because they sit for choice on round leather cushions, are engaged constantly writing and filling in forms for hours and hours, day after day. The actlve army of police out of doors, which constitutes the second hall of the whole machine, is divided into two clacoes: that in uniform and that in plain clothes. Every visitor to Paris in familiar with the rather theatrical-looking policeman, in his short frock-coat of cape, smert hepi cocked on oove side of his head, and witb a aword by his side. The first is known by the title of arent, sergent de ville, gardies de la peist, and is a very useful public servart. He is almost invariably an old soldier, a sergent who has left the army with a first-class character, honeaty and wobriety being indisposmable qualifications.

These uniformed police are not all employed in the streets and arrondinements, but there is a large remerve compoeed of the tix central brigedes, as they are called, a very smart body of ofd coldiers, well drilled, well dressed and fully equipped; armed, moreover, with rifies, with which they mount guard when employed as eentries at the doors or entrance of the prefecture. In Paris argot the men of these six central brigedes are nicknamed "saisseaur " (vespels), because they carry on their collars the badge of the city of Paris-an ancient ship-while the sergeants in the town districts wear only numbers, their own individual number, and that of the quarter in which they serve. These waisseawx claim to he the \&ite of the force; they come in daily oontact with the Gardes de Paris, horse and foot, a fine corps of city gendarmerie, and, as competing, with them, take a particular pride in themselves. Their comrades in the quarters resent this pretension and declare that when in contact with the people the paisscasm make bed blood by their arrogance and want of tact. The principal business of four at least of these central brigades is to he on call when required to reinforce the out-of-door police at special times.
Of the two remaining central brigades one controls public carriages, the other the Halles, the great central market by which Paris is provided with a large part of its lood. Every cab-stand is under the charge of ite own policeman, who knows the men, notee their arrival and departure, and marks their general behaviour. Other police officers of the central brigades euperintend the street traffic.

So much for the polite in aniform. That in pitin clothes, ex bowreois, as the French call it, is not no numerous, but fulfils a higher, or at least a more confidential mastion. Its members are styled inspectors, not agents, and their functions fall under lour principal heads. There is, first of all, the aervice of the Sorettin other words. of public safety-1he detective department, employed entirely in the pursuit and capture of criminals; next coraes the police, now amalgamated with the SOrete, that watches over the morals of the capital and possesmes arbitrary powers under the existing laws of France; then there is the brigade de garwis, the police charsed with the supervision of all lodging-houses, from the commonest "sleep-sellers" shop, as it is called, to the grandest hotels. Last of all there is the brigade for enquiries, whose business it is to act as the eyes and ears of the profecture.

The pay of the gardiews de la paix is from 1400 to 1700 francs; brigadiers get 2000 francs; soms-brisadiers 1800 france; opiciers de peire 3000 to 6000 fracs. The proportion of police to imhabitants s one in 352.

Germany.-Taking the Berlin force as illustrative of the police system in the German Empire, police duties are tes varions as in Frence; the system includes a political police, conttoiling all matters relating to the press, nocieties, chibe and public and social amusementa. Police duties are carried out under the direction of the royen police presidency, the executive police force comprising a potice coionel, with, betiden conaminaries of criminal meventipations,
captains, lieuterante, scfiog-lientemante, angeant-miono and a larm $2 \cdot 4$ of conatables (sehmbendmwr).
Berlin is is principally pronided from fiscal solurces and varies in an ascendine cale from 1125 marks and lodging allowance for the lonest chase of constable.

Austria.-Takiog Vienna in the eane way as Mrutative of the Austrian police, it is to he obmerved that thero are thrte braschea: (1) administrati, n (2) public aftety and judicial police; and (3) the government 1 olice. At the bead of the polioe service in Vienna there is a presilent of police and at the bead of each of the three branchus there is an Oberpolinainalt or chiof commismary. The head of the government brameh mometimes fils the office of presideat. Ench of the branches is subdivided into departments, at the head of which are Polinoincthe. Paming over the aubdivitions of the administrative branch, the public afety and jodicial branch includes the following dopartments: the ofica for pablic efiety, the central inquiry office and the recond or E-idemburcats. The government police branch comprises thre departmente: the goviernment police office, the press office, and the Vereinsbureasi or office for the registration of socictics. The proportion of pollce constable to the inhabitancs is one to 436.

Befriam-In Belgian meunicipalition the brapomasters are the heads of the force, which is ander their comtrol. The adminiatrator of public salety is, however, specially under the minister of justice, who aees that the laws and regulations affecting the police are properly carried out, and be can call on all public functonatries to act in furtberance of that object. The administrator of publite asiety is opecially charged wich the adruinietration of the law in regard to aliens, and this law is applied to pervons stiring up sedi; tion. The duty of the gendarmerie, who conntitute the horse and foot police, is generally to malntain internal order and peece. It Bruasels as elsewhere the burgomaster is the head, but for esecutive purpones there is a chief commitary (wubject, bowever, to the orders of the burgomater), with asaistant commitenries, and commisaries of divisions and other officers and central and other buresus, with a body of sgents (police oontables) in ench.

There are two main clases of polioe functions recogniged by lrw, the adminiscrative and the judicin! police, the former engenged in the daty maintenanoe of peace and order and to preventing offences, the latter in the investigation of crime and tracing offenders: but the duties are necosoarily periormed to a great extent by the same agents. The two other functions of the judicial police are. however, limited to the same clasees of oficers, and they perform the same dutios as in Paris-the law in practice there being expremaly adopted in Brustels.

In Switseriand, which is tometime classed with Belgium as among the kast-policed states of Europe, the laws of the cantoma vary. In eome reapects they are stricter than in Belgium or even in Franoe. Thus a permis de stiow is nometimes required where none is in practics mecemary in Paris or Bruselis.

Russias was till lately the most police-ridden country in the morid: not even in Franot in the worst days of the monarchy were the people so much in the hands of the police. To give some iden of the ridereaching functions of the police the power asouned in mattern momentous and quite insignificant, we may quote from the firt of circulars isased by the minister of the interior to the governors of the various provinces during four recent years. The governors were directed to regulate religions instruction in escufar achionis to prevent borve-atealing, to control subueriptiont collected for the holy places in Palestine, to regulate the sdvertimments of medicines and the printing on cigarette papers, to examine the quality of quinine soap and overfook the cosmetics and ocher toliet articlessuch as soap, starch, brillantine, tootb-brushes and insect-powder -provided by chemista. They were to inne regulations for the proper oonctruction of houtes and villagea, to exercise an active censorship over published price-lists and printed notes of invilation and visiting cards, as well as scals and rubber stamps. All private meetings and public gatherings, with the exprestions of opinion and the class of subjects discused, were to be controlled by che police.

The political or state police was the invention of Nicholas 1. Alexander 1. had created a ministry of the interior, but it was Nicholes who devised the second branch, which he designed for his own protection and the security of the etate. After the in surrection of 1865, he created a special bulvark for his defence and invented that eecret police which mew into the notorious "Third Section" of the emperor's. own chancery, and while it lasted, was the most dreaded power in the empire. It was practically supreme in the state, a ministry independent of afi opher miniatres, placed quite above them and reponsible oaly to the tsar himsell.

Umited Stales.-The organization of police foroes in the United States differs thore or less in the different states of the Urion. As a rule the force in cities is under municipal control, but to this rule there are numerous exceptions. In Booton, for instance. the three commissioners at the head of the force are appointed by the governor of Masachusetts. The force in New Yort City: stree from the anndpoint of numbers and of the sese and chancter
of the city, is the most important in the Uaited Statex, It included in 1910 a commisioner appointed by the mayor and excrcieing a wide range of authority; four deputy commissioners; a chief in. apector, who has immediate charge of the force and through whom all orders are issued; he is asaisted by 18 inspectors, who are in charge of different sections of the city, and who carry out the orders of the chief; 87 captains, each of whom is in direct charge of a precinct; 583 sergeants; and last of all, the ordinary policemen; or patrolmen, at they are often called from the character of their daties. There is a separate branch, the detective burean, composed of picked men, charged with the investigation and, still more, the prevention of crime. The total number of patrol men in 1909 was 8562 . Appointments are for IIfe, with pensions in case of disability and after a given number of years of service.

Litrerature-Patrick Colquhoun, Treatise on the Police of the Metropalis (1796); Pierre Clement, Le Police sons Lowis XIV. (1866); Maxime Du Camp, Paris, ses orpanes, ses fonctions at sa vie (1869-1875); Dr Norman Chevers, Indias Medical Jurisprudence (Calcutta, 1870); A. T. Crawford, Reminiscences of an Indiar Police Official (1894 ; ${ }^{2}$. R. W. Hervey, Records of Indian Crime (1892); Arthur Griffthe, is ysteries of Police and Crime (1903); Captain W.L. Melville Lee, A Bistory of Police in England (Methuen, 1901); Sidney and Beatrice Webb English Local Goacrmment (Longmans, 1906-1908) ; article by H. B. Simpson, "The Office of Constable," in the English Historical Review. (October 1895); F. W. Mailland, fustice and Police (Macmillan, 1885); Le F. Fuld, Police Adminis: bration (New York, 1910).
(A. G.)

POLICE COURTS, courts of summary jurisdiction, held in London and certain large towns of the United Kingdom hy specially appointed and salaried magistrates. They were originally called "public offices" (Middlesex Justices Act 1792), but after the establishment of the police force, in $\mathbf{1 8 2 9}$, they came to he called "police offices," although no change had taken place in their nature. They are so described in a report of a select committee which inquired into the system in 1837 and 1838; in the same report the magistrates who presided in the courts were first described as "police magistrates." Police offices were first officially described by their modern title in the Metropoition Police Courts Act $\mathbf{1 8 3 9}$. In 1839 there were nine police courts; since $\mathbf{2 7 9 2}$ there had been three magistfates to each court, and the act of 1839 retained twenty-seven as the maximum number at any time (s. 2). In 1835 unsalaried justices ceased to sit in the police courts along. with the paid magistrates. The Metropolitan Police Courts Act 1840 gave power to map out the whole of the metropolitan police district into police court divisions, and to establish police courts wherever necessary, the artificial limit of twenty-seven magistrates being at the same time preserved. Additional courts have from time to time heen established by orders in council, and in 2910 there were in London fourteen courts with twenty-five magistrates. Their divisions are regulated hy orders in council of 1903 and 1905; the nine original courts are Bow Street, Westminster, Marylebone, Marlborough Street, Worship Street, Clerkenwell, Thames, Tower Bridge and Lambeth.

The courts are held every day Irom $10 \mathrm{a} . \mathrm{m}$. to $5 \mathrm{p} . \mathrm{m}$ e except on Sunday, Cbristmas Day, Good Friday or any day appointed for a public fast or thankselving or bank holiday. The Greenwich and Woolwich court, which comprises one division, is held at Greenwich in the mornitg and at Woolwich in the afternoon. The chief magistrate (sitting at Bow Strect) receives a salary of 61800 a year and the other magistrates $\mathbf{x} 4500$ each. The magistrates are appointed by the Crown; they must have been practising barristera for seven years or stipendiary magistratea for some place in England or Wales. One police magiatrate has the same powers as two justices, but may not act in anything which has to be done at special or petty sessions of all the justices acting in the division or at quarter sessions. He can do alone when sitting in a police court any act thich any justice or justices can do under the lndictable Offences Act $\mathbf{1 8 4} 8$, or vinder the Summary Jurisdiction Act; he has eperial powers under the Metropolitan Police Courts Act 1839, and is also given apecial powers under certain other acts The Bow Street court has jurisdiction in extradition. The precedent of appointing salaried magistrates was followed for certain towns in the provinces by partictular acts, and in 1863 the Stipendiary Magistrates Act gave power to towns and borougha of 25,000 inhabitants and upwards to obtain a stipendiary magitrate.

POLIGIAC, an ancient French family, which had its seat in the Cevennes near Puy-en-Velay (Haute Lotre). Its authentic pedigree can be traced to the gth century, hut in 142 I the male line became extinct. The heirems married Guill ume, sire de

Chalancon (not to be confused with the barons of Chalançon in Vivarais), who ansumed the name and arms of Polignac. The first member of the family who was of any historical importance was Cardinal Melchior de Polignac ($1661-1742$), a younger son of Armand XVI., marquis de Polignac, who at an early age achieved distinction as a diplomatist. In 1695 he was sent as ambassador to Poland, where he contrived to bring about the clection of the prince of Conti as successor to John Sobieski (1697). The subsequent failure of this intrigue led to his temporary disgrace, hut in 1702 be was restored to favour, and in 1712 he was sent as the plenipotentiary of Louis XIV. to the Congress of Utrecht. During the regency be became involved in the Cellamare plot, and was relegated to Flanders for three years. From 1725 to 1732 he acted for France at the Vatican. In 1726 be received the archbishopric of Auch, and he died at Peris in 1742. He left unfinished a metrical refutation of Lucretius which was published after his death by the abbe de Rothelin (Anti-Lucrelius, 1745), and had considerahle vogue in its day. Count Jules de Polignac (d. 1817), grandnephew of the preceding, was. created duke by Louis XVI. in 1780, and in 1782 was made postmaster-general. His position and influence at court were largely due to his wife, Gahrielle de Polastron, the bosom friend of Marie Antoinette; the duke and duchess alike shared the mpopularity of the court, and were among the first to "emigrate" in 1789 . The duchess died shortly after the queen, hut her husband, who had received an estate from Catherine II. in the Ukraine, survived till 18:7. Of their three sons the second, Prince Jules de Polignac ($1780-1847$), played a conspicuous part in the clerical and ultra-royalist teaction after the Revolution. Under the empire he was implieated in the conspiracy of Cadoudal and Pichegru (1804), and was imprisoned till 2813. After the restoration of the Bourbons be held various offices, received from the pope his title of "prince" in 1820, and in 1823 was made ambassador to the English court. On the 8th of August 1829 he was called by Charies X. to the ministry of foreign affairs, and in the following November be became president of the council. His appointment was taken as symbolical of the king's intention to overthrow the constitutlon, and Polignac, with the other ministers, was held responsible for the policy which culminated in the issue of the Four Ordinances which were the lmmediate cause of the revolution of July 1830. On the outbreak of this he fled for his life, hut, after wandering for some time among the wilds of Normandy, was arrested at Granville. His trial before the chamber of peers resulted In his condemnation to perpetual imprisonment (at Ham), but he benefited hy the amnesty of 1836 , when the sentence was commuted to one of exile. During his captivity he wrote Considtrations politiques (2832). He afterwards spent some years in England, but finally was permitted to re-enter France on condition that he did not take up his abode in Paris. He died at St Germain on the 29th of March 1847.

FOLIGNY, a town of eastern France, capital of an arrondissement in the department of Jura, 18 m . N. N. E. of Lons-le-Saunier on the Paris-Lyons railway. Pop. (2906), 3756. The town lies in the valley of the Glantine at the base of a hill crowned by the ruins of the old castle of Grimont, once the repository of the archives of the county of Burgundy. The church of Mont1villard, ita most remarkable building, dates in the oldest portions from the 1 th century, its chief features being a Romanesque tower and reredos of the Renaissance period. Amongst the other old huildings of the town, the church of St Hippolyte, of the first half of the 15 th centary, and a convent-church serving as corn market are of some interest. The tribunal of first instance belonging to the arrondissement is at Arbois. Poligny has a sub-prefecture, a communal college and a school of dairy instruction. Under the name of Polemniacum the town secma to have existed at the time of the Roman occupation.

POLISH sUCCESSION WAR (1733^{-1735}), the name given to a war which arose out of the competition for the throne of Poland between the elector August of Saxony, son of August II. (the Strong), and Stanislaus Leszcynski, the king of Poland installed thirty ycars before by Charles XII. of Sweden and displaced by.

August the Strong when Charies's projects collapsed. The claims of Stanislaus were dupported by France, Spain and Sardinis, thoee of the Saxon prince by Russia and the cmpire, the local quarrel being made the pretert for the settlement of minor outstanding claims of the great powers amongst themselves. The war was therefore a typical 18th century "war with a limited objoct," in which no one but the cabinets and the professional armies were conoerned. It wal fought on two theatres, the Rhine and Italy. The Rhine campaigns were entirely unimportant, and are remembered only for the last appearance in the field of Prince Eugine and Marshal Berwick-the latter was killed at the siege of Philippsburg-and the baptism of fire oi the young crown prince of Pruseia, afterwands Frederick the Great. In Italy, bowever, there were three hard-foughtthough indecisive-battles, Parms (June 29, 1734), Luzara (Sept. 19, 1734) and Bitonto (May 25, 1735), the first and lant won by the Austrians, the second by the French and their allies. In Poland itself, Stanislnus, elected king in September 1733, wats $s 00 n$ expelled by a Russian army and was afterwards besieged in Danzig by the Russians and Sarons (Feh.--June r733).

POLTIAN (1454-1494). Angelo Ambrogini, known in literary annals as Angelo Poliniano or Politianus from his birthplace, was born at Montepulciano in Tuscany on the 14 th of July 1454. His father, Benedetto, a jurist of good family and distinguished ability, was murdered by political antagonists for adopting the cause of Piero de' Medici in Montepulciano; and this circumstance gave his cldest son, Angelo, e claim on the family of Medici. At the age of ten the boy came to prosecute his atudies at Florence, where he learned Latin under Cristoforo Lendino, and Greck under Argyropulos and Andronicos Kallistos. From Marsilio Ficino he imbibed the rudiments of philosophy. The precocity of his genius for scholarship and poetry was early manifested. At thirteen years of age be began to circulate Latin letters; at seventeen he sent forth easays in Greck versification; al eighteen he published an edition of Catullus. In 1470 he won for himself the title of Homericus juvenir by translating four books of the Iliad into Latin hexnmeters. Lorenzo de' Medici, who was then the autocrat of Florence and the chief patron of learning in Italy, took Poliziano into his household, made him the tutor of his children, and secured bim a distinguished post in the university of Florence. Before he reached the age of thirty, Poliziano expounded the humanities with almost unexampled lustre even for that epoch of brilliant professors. Among his pupile could be numbered the chicf students of Europe, the men who were destined to carry to their homes the spolia opime of Italian culture Not to mention Italians, it will suffice to record the names of the German Reuchlin, the English Grocyn and Linacre, and the Portugucse Tessiras.

Poliziano had few advantages of person to recommend him. He was ungainly in form, with eyes that squinted, and a nose of disproportionate length. Yet his voice was rich and eapable of finc modulation; his eloquence, case of utterance and copious stream of erudition were incomparable. It was the method of proiessors at that period to read the Greek and Latin authors with their class, dietating philological and critical notes, emendIng corrupt passages in the reccived texts, offering ducidations of the matter, and pouring forth stores of acquired knowledge regarding the laws, manners, religious and philosophical opinions of the ancients. Poliziano covered nearly the whole ground of classical literature during the years of his professorship, and puhlished the notes of his courses upon Ovid, Suctonius, Statius, the younger Pliny, Quintilian, and the writers of Augustan histories. He elso undertook a recension of the text of the Pandectr of Justinian, which formed the subject of one of his courses; and this recension, though it does not rank high in the scale of juristic erudition, gave an impulse to the scholarly criticism of the Roman code. At the same time he was busy as a translator from the Greek. His versions of Epictetus, Herodian, Hippocrates, Galen, Plutarch's Eroticus and Plato's Charmides delighted contemporaries hy a certain limpid fluency of Latin style and grice of manner which distinguished him also
as an original writer. Of these learned habours the most unt versally acceptable to the public of that time were a serios of discursive essays on philology and criticiem, first published is
 a lasting and a wide renown, encouraging the scholars of the nert century and a half to throw their occasional discoveries in the Geld of scholarship into a form at once so attrective and so instructive. Poliziano was not, however, contented with these simply profemorial and scholastic compositions. Nature had endowed him with Eiterary and poetic gifts of the highest orier. These be devoted to the composition of Latin and Greek verses, which count among the best of those produced by men of modern times in rivalry with ancient suthors. The Manto, in which be pronounced a panegyric of Virgil; the Ambra, which contains a beautiful idylite sketch of Tuscan landscape, and a studied eulogy of Homer; the Ruslicus, which celehrated the plensures of country life in no frigid or scholastic spirit; and the Nutricu, which was intended to serve as a general introduction to the study of ancient and modern poetry-chese are the masterpieres of Poliziano In Latin verse, displaying an authenticity of inspiration, a sincerity of feeling, and a command of metrical resources which mart them out as original productions of poetic genius rather than as merely professorial lucubrations. Exception may be taken to their style, when compared with the best work of the Augustan or even of the Silver age. But what renders them always noteworthy to the student of modern humanistic Iitcrature is that they are in no sense imitative or conventions, but that they convey the genuine thoughts and emotions of a born poet in Latin diction and in metre moulded to suit the characteristics of the singer's temperament.

Poliziano was great as a scholar, as a professor, as a critic, and as a Latin poet at an age when the classics were still studied with the passion of ascimilative curiosity, and pot with the scientific industry of a later period. He was the representative bero of that age of scholarship in which students drew their ideal of life from antiquity and fondly dreamed that they might 50 restore the past as to compete with the classics in production and bequeath a golden age of resuscitated paganism to the modern world. Yet he was even greater as an Italian poet. Between Boceaccio and Ariosto, no single poet in the mother tongue of Italy deserves so high a place as Poliziano. What be might have achieved in this department of literature had be lived at a period less preoccupied with humanistic studies, and bad he found a congenial sphere for his activity, can only be guessed. As it in, we must reckon him as decidedly the foremost and indubitahly the most highly gifted among the Italian poets *ho obeyed Lorenzo de' Medici's dertand for a resuscitation of the vulgar literature. Lorenzo led the way himself, and Poliziano was more a follower in his path than an initiator. Yee what Poliziano produced, inmpelled by a courtly wish to satisfy his patron's whim, proves his own immeasurable superiority is an artist. His principal Italian works are the stanzas called ls Giosira, written upon Giuliano de' Medici's victory in a toninament; the Orfeo, a lyrical drama performed at Mantua with musical acoompaniment; and a collection of fugitive pieces reproducing various forms of Tuscan popular poetry. La Ciosfra had no plan, and remained imperfect; but it demonstrated thecapacities of the octa vestanza for rich, harmonious and sonorous metrical effect. The Orfee is a alight plece of wort, thrown of at a heat, yet abounding in unpremeditated lyrical beauties, and containing in itself the germ both of the pastoral play and of the opera. The Tuscan songs are distinguished by a "roseate fluency" an exquisite charm of balf romantic, hali humorous abandonment to fancy, which mark them out as improvisations of genius. It may be added that in all these departments of Italian composition Poliziano showed how the taste and learning of a classical acholar could be engrafted oa the stock of the vemacular, and how the highest perfection of artistic form might be altained in Italian without a secrifice of native sponlaneity and natural flow of hanguge.

It is difficult to combine in one view the eeveral aspects presented to us by this many-sided man of literary genius. As

- period when humanismtcok thelead in forming Italian character and giving tone to European culture, he climbed with facility to the height of achievement in all the hranches of scholarship which were then most seriously prized-in varied knowledge of ancient authors, in critical capacity, in rhetorical and poetical exuberance. This.was enough at that epoch to direct the attention of all the learned men of Eumpe on Poliziano. At the same time, almost against his own inclination, certainly with very little enthusiasm on his part, ho lent himself so successfully to Lorenzo de' Medici's scheme for resuscitating the decayed literature of Tuscany that his slightest Italian effusions exercised a potent influence on the immediate future. He appears before us as the dictator of Italian culture in a double capacity-as the man who most perfectly expressed the Italian conception of humanism, and hrought erudition into accord with the pursuit of noble and harmonious form, and also as the man whose vernacular compositions were more significant than any others of the great revolution in favour of Italian poetry which culminated in Ariosto. Beyond the sphere of pure scholarship and pure literature Poliziano did not venture. He was present, indeed, at the attack made hy the Pazzi conspirators on the persons of Lorenzo and Giuliano de' Medici, and wrote an interesting account of its partial success. He also contributed a curious document on the death of Lorenzo de' Medici to the students of Florentine history. But he was not, like many other humanists of his age, concerned in puhlic affairs of state or diplomacy, and he held no office except that of professor at Florence. His private life was also uneventful. He passed it as a house-friend and dependant of the Medici, as the idol of the learned world, and as a simple man of letters for whom (with truly Tuscan devotion to the Saturnian country) rural pleasures were always acceptable. He was never married; and his morals incurred suspicion, to which his own Greek verses lend a certain amount of plausihle colouring. In character Poliziano was decidedly inferior to the inteliectual and literary eminence which he displayed. He died, half hroken-hearted by the loss of his friend and patron Lorenzo de' Medici, on the 24th of September 1494, just before the wave of foreign invasion which was gathering in France swept over Italy.
For the life and works of Politian, see F. O. Mencken (Leipzig, 1736), a vast repertory of accumulated erudition: Jac Mahly. Angedus Politianus (Leiprig. 1864); Carducci's edition of the Italian pocms (Florence, Barbera, 1863); Del Lungo's edition of the Italian prose works and Latin and Greck poems (Florence, Barbera. 1867); the Opera ommia (Basel, 1554); Greswell's English Life of Politian (ISos); Roscoe": Lorenzo de' Medici (roth ed., ${ }^{1851}$) ; J. Addington Symonds's Renaissance in Italy, and translations from Poliziano's Italian poems in Symondsis Sketches and Studies in Ilaly, which include the Orfeo.
(J. A.S.)

POLK, JAMES KNOX (1795-1849), eleventh president of the United States, was born in Mecklenhurg county, North Carolina, on the 2nd of November 1795. In 1806 he crossed the mountains with his parents and settled in what is now Maury county, Tennessee. He graduated from the university of North Carolina in 1818, studied law in the office of Felix Grundy (1777-1840) at Nashville in 1819-1820, was admitted to the bar in 1820, and began to practise in Columhia, the county-seat of Maury county After two years of service (1823-1825) in the state House of Representatives, he represented the sixth Tennessec district in the National House of Representatives from 1825 to 1839. In the party conllicts which succeeded the presidential election of 1824 he sided with the Jackson-Van Buren faction, and soon became recognized as leader of the Democratic forces. He was speaker from 1835 until 1839, when he retired from Congress to become governor of Tennessee. His administration (1839-1841) was successful, but he was unahle to overcome the popular Whig movement of that period, and was defeated in 184I and again in 1843. When the Democratic national convention met in Baltimore in 1844 he was mentioned as a possihle candidate for the vice-presidency, hut was suddenly brought forward as a " dark horse" and selected to head the ticket. Finding it impossible under the two-thirds rule to nominate their candidate, the foliowers of Van Buren brought forvard Polk, who was popular
in the South, in order to defeat Lewis Cass and James Bucharian. George Bancroft, the historian, has asserted that this suggestion came originally from him, and Gideon J. Pillow, Polk's intimate friend, did much to bring about the nomination.

The unequivocal stand of Polk and his party in favoar of the immediate anneration of Texas and the adoption of a vigorous policy in Oregon contrasted favourahly with the timid vacillations of Henry Clay and the Whigs. Polk was elected, receiving 170 electoral votes to 305 for his opponent Clay. In forming his cahinet he secured the services of James Buchanan of Peansylvania; as secretary of state, Robert J. Walker of Mississippi, as secretary of the treasury, William L. Marcy of New York, as secretary of war, and George Bancroft, then of Massachusetts, as secretary of the navy. ${ }^{1}$ There is no douht that each of these men, and Bancroft in particular, influenced the policy of the administration, yet the historian James Schouler, who has made a careful study of the Polk papers, is douhtless correct in saying that the president himself was "the framer of the public policy which be carried into so successful execution, and that instead of being led (as many might have imagined) by the more famous statesmen of his administ ration and party who surrounded him, he in reality led and shaped his own executive course." Bancroft's opinion is that Polk was "prudent, far-sighted, bold, exceeding any Democrat of his day in his undeviatingly correct exposition of Democratic principles."

The four chief events of President Polk's artministration were the final establishment of the independent treasury system, the reduction of the tariff hy the Walker Bill of 1846 , the adjustment of the Oregon boundary dispute with Great Britain hy the treaty concluded on the Isth of June 1846, and the war with Mexico and the consequent acquisition of territory in the south-west and west. The first three of these were recommended in his first annual message, and he privately announced to Bancroft his determination to seize Califormia. The independent treasury plan originated during Van Buren's administration as a Democratic measure; it had been repealed by the Whigs in 1841 , and was now re-enacted. Protectionists contend that the tariff legislation of 1846 was in direct violation of a pledge given to the Democrats of Pennsylvania in a letter written by Polk during the campaign to John K. Kane of Philadelphia. Briefly summarized, this letter approves of a tarif for revenue with incidental protection, whereas the annual message of the and of December 1845 criticizes the whole theory of protection and urges the adoption of a revenue tariff just sufficient to meet the needs of the government conducted on an economical basis. It is difficult to determine whether this was always his idea of incidental protection, or whether his views were changed after 1844 through the infuence of Walker and the example set by Sir Robert Peel in Great Britain, or whether he was simply "playing politics" to secure the protectionist vote in Pennsylvania.

The one overshadowing issue of the time, however, was territorial expansion. Polk was an ardent expansionist, but the old idea that his policy was determined entirely by a desire to advance the interests of slavery is no longer accepted. As a matter of fact, he was personally in favour of insisting upon $54^{\circ} 40^{\prime}$ as the boundary in Oregon, and threw upon Congress the responsihility for accepting 49° as the boundary, and he approved the acquisition of California, Utah and New Mexico, territory from which slavery was excluded hy geographical and climatic conditions. Furthermore a study of his manuscript diary now shows that he opposed the efforts of Walker and Buchanan in the Cahinet, and of Daniel S. Dickinson (1800-1866) of New York and Edward A. Hannegan (d. 1859) of Indiana, in the Senate, to retain the whole of Mexico, territory in which slavery might have thrived. At the close of his term (March 4, 1849) Polk retired to his home in Nashville, Tennessee, where he died on the risth of the following June.

[^89]See John S. Jenkins, Jamar Kmax Polh (Aubum and Buffalo, 1850), and L. B. Chase, Mistory of the Polk Administration (New York, 1850), both of which contain some documentary material, but are not discriminating in their method of treatment. George Bancroft contributed a good short sketch to J. G. Wilson's Presidends of the Uniled Stales (New York, 2nd ed., 1894). He made copies of the Polk manuscripts and was working upon a detailed biography at the time of his death in 1891 . These copies, now deposited in the Lenox Library, New York City, contain a diary in 24 typewritten volumes, berides some correspondence and other private papers. They have been used by James Schouler in his Historical Briefs (New York, 1896), and by E. G. Bourne in an article entitled "The Proposed Absorption of Mexico in 18471848," published in the Amnual Report of the American Historical Asseciation for 1890, i. 157-169 (Washington, 1900). Bourne discuases the part which Polk took in preventirg the complete absorption of Mexico. See also the Diary of James K. Polk 1845 to 1849 (Chicago, 4 vols., 1910), edited by M. M. Quaife.
(W. R. S.*)

POLK. LEOMIDAS (1806-1864), American soldicr, was born at Raleigh, North Carolina, on the 1oth of April 1806, and was a cousin of James Knox Polk, president of the United States. He was educated at West Point, but afterwards studied theology and took orders in the Protestant Episcopal Church in 183I. In 1838 be became missionary bishop of the Soutb-West, Arkansas, Indian Territory, Louisiana, Alabama and Mississippi, and in 1841 he was consecrated bishop of Louisiana. His work in the Church was largely of an educational kind, and he played a prominent part in movements for the establishment of higher
educational institetions in the South. At the outbreak of the Civil War in 1861 he resigned his hishopric and, like many other clergymen and ministers of religion, entered the army which was raised to defend the Confederacy. His rank in the hierarchy and the universal respect in which he was held in the Soutb, rather than his carly military education, caused him to be appointed to the important rank of major-general. He fortified the post of Columbus, Kentuck y, the foremost line of defence on the Mississippi, against which Brigadier-General U.S. Grant directed the offensive reconnaiscance of Belmont in the autumn. In the following spring, the first line of defence having fallen. Polk commanded a corps at Shiloh in the field army commanded by Albert Sidney Johnston and Beauregard. In October 3862 he was promoted lieutenant-general, and thenceforward be commanded one of the three corps of the ammy of Tennessee under Bragg and afterwards was in charge of the Department of Alabama, Mississippi and East Louisiana. He was killed in the fighting in front of Mariotta, while reconnoitring near Pine Mountain, Georgia, on the isth of June 1864
See Life, by his soa W. M. Poik, (1893).
POLKA (either from the Czech pulha, half, with an allusion to the short steps characteristic of the dance, or from the Polish Polka, feminine of Polak, a Pole), a lively dance of Bohemian origin, danced to music written in 7 time. (Set Dance.)

[^0]: ${ }^{1}$ Hemoir of Massachusetts Slate Board of Trade (Feb. 13, 1905).
 ? This was merely reviving an idea which had come and gone many times before. See Barclay, Problems of International Practice and Diplomacy (1907).

[^1]: - At the thind congress of the new series, held at Rome in 1891, was created the Bureau International de la Paix. This most useful institution, which has its office at Bern, serves as a means of bringing and keeping together all the known peace societies. Its Corre. spondance bimensuelle and Annuaire du moxvement pacifiste are well known, and its oblizing hon. secretary, Dr A. Gobat, is always ready to wupply information from the now considerable archives of the Bureau. In this connexion we may mention that the wecretary of the London Peace Society, Dr Evans Darby, has edited an cxhaustive collection of materials called Internofional Tribunals. His statements every two years on the progress of arbitration at the Inicrnational Law Ascociation meetings also form an excellent source of materials for reference.
 :Art. I of Statutes revined Sept. 1908.

[^2]: - At the Conference the Rusian povernment, further developing the proposal, submitted the following details:-
 ${ }^{-1}$ 1. Eitabitiahment of an international undertanding for a term of five yourl, bipulating nom-increaze of the present figures of the peace effective of the troope hept up for home use.

 2. Fixation, in case of this understanding being arrived at, and, if possible, of the figures of the peace effective of all the powers excepting colonial troope.
 "3. Maintermace lor a like term of five years of the amount of the military budgets at prement in force."
 ${ }^{1}$ This Conference was held at Geneva in June-July 1906. The revised Convention, composed of 33 articles, is dated July 6, 2906.
 8 This is an amended edition of that of 1899
[^3]: ${ }^{4}$ This is an amended edition of that of 1899.

 - This was practically a re-enactment of that of 1899 .
 - This has since been done to a large extent by the Conference of London (t908-1909). See Bloceade, Cont Raband, International law Peace.

[^4]: ${ }^{1}$ A narrative of the expedition written by Mrs Peary, and containing an account of the "Great White Journey across Greenland," by her husband, was published uoder the title of My Arctic Journal.

[^5]: 'Mr Fleay goes so far as to sec in the preposterous names of Huancbango's kith and kin puns on Harvey's father's trade. Huanebangos kith and kin puns on Harveys father trade.

[^6]: 1 It is suggeated with probability that the Diacrii were rather the miners of. the Laurium district (P. M. Ure. Journ. Hell. Stid. 1906, pp. 131-142).

[^7]: ${ }^{1}$ Some hintorians prefer to call it the Second Peloponnesina War: the first being that of 457. which ended with the Thirty Year: Peace.

[^8]: ${ }^{1}$ So Thuc. iii. 50. It is wugrested that this number is an error for 30 or 50 (i.e.; A or N for A). It eeeme incredible that 1000 could be deacribed as "ringleaders " out of a population of perhape 5000.

[^9]: I They subsequently escaped Irom Julland. on British veseele, and reached Santander in October 1808.
 ${ }^{2}$ The king. the quecn and Godoy were eventually removed to Rome. and Ferdinand to Vakengay in France.

[^10]: ${ }^{1}$ Governors of New Netherland and of the Durch metzleavents on the Delatrare.
 , The Swediah colonies on the Delaware conquered by the Dutch in 1635 .

 XXI 3

[^11]: 1 The date can hardly be fixed; probably it was alter 440.
 2 It has been doubted whether Pericles lavoured this enterprise, but among its chief promoters were two of his friends, Lampon the soothsayer and Hippodamus the architect. The oligarch Cratinus (in a frag. of the ourade) violently stiacks the whole project.
 These dates are sugzested by the decrease of tribute which the inscriptions prove for this year.

 - This is the date given by the Comol. Ath., which also mentions a suapphogndy riv duagrà) (Blase restoration) in frag. c. 18. The confused story of Philochorus and Plutarch, by which 4760 citizens were disfranchised or even sold into slavery in 445, when an Egyptian prince sent a largess of corn, may refer to a subsequent application of Periclew' law, thougb probably on a much milder ccale than is here represensed.

[^12]: ${ }^{2}$ John Limbind, to whom even before Chambert or Kinght is due the cartying out the idea of a cheap and good periodical for the poople, died on the 3Ift of October 1883 . whout having achieved

[^13]: ${ }^{1}$ The fundamental work on the history of the Iranian Siga is Nordcke., Das iranische Nationalepos I\&g6 (reprinted from the Crumdrite der irem. Phillotosit. ii.).

[^14]: ${ }^{1}$ The diceussion of theetg gevente by Hoparth "The Deification of Alexander the Great," fo the English Historical Rewiape, ii (1887), is quite unsatisfactory.

[^15]: iSee Saint-Martin. Recherches sur la Méseme et la Characine (1838): Reinaud, Mimonnas sur Le royamme do la Mdscme (2861); E. Babelon, "Numism. et chronoh. des dynastes de la Charackne,"

[^16]: It may be obscrved that this innovation was also known te the Mithras-cult of tbe West, where Zervan appeara as aike.

[^17]: ${ }^{1}$ Tahlr died 822 or 824; Talha d. 828; Abdallah, 828-844; Tahir

[^18]: ${ }^{2}$ The dynasty of the Assassins or Isma'ilites was founded in 2090 and extended its rule over much of western Persia and Syria (Gor the rulers aee Stockvis, op. cif. i. 131, and article Assiestri).

[^19]: So thinke the editor and annotator of the Italian Trovels in Parsia, Charies Grey.

 - Powibly Kara-digh, ne beling the mope direct mod.

[^20]: 1 Angiokello.
 Knolles, Malcolm, Creasy, Markham, \&c.

 - Zeno. Angiolello says that "the Sophi monarch had left for Tauris [Tabriz] in order to assemble more troops." Krusinski infers much to the same effect, for he notes that "Selim came in person and took Tauris from Ismail, but at the notse of his approach was obliged to retreat with precipitation." The battie must thus have boen fought and the victory gained when the shah was himeelf absent. Yet Markham quotes a journal which thus records his feats of prowese: "It was in vain that the brave Shah, with a blow of his cobre, wevered a chain with which the Turkish gups wece fastened together to resiet ibe shock of the Percian cavalry."

[^21]: ${ }^{1}$ Markham. Morier says of Karim Khan's family, "it was a Wow branch of an obscure tribe in Kurdistan."

 3 Journoy from Bengal to England (1798), ii. 201; see also Markham; Pp. 341, 342.

[^22]: ${ }^{3}$ Lady Sheil says (1849); "I saw a few of these unhappy captives who all had to embrace Mathommedanism, and many of whom had risen to the highest atations, just as the Circassian ulaves in Contantinople."

[^23]: ${ }^{2}$ Name of the supreme god of the Perrians.

 - Cl. 1. Darmestectri. Etules irasiones, 1, 10 (Paris, 1883).
 - This, and not Zumd-A vesta, is the correct title for the original text of the Persian Bible. The origia of the word is doubtiol, and we cannot point to it before the time of the Sassanians. Perhaps it means "announcement." " revelation."
 - The Asesta is divided into three parts: (1) Yaena, with an appencix, Vieparad a collection of prayere and forma for divino wervice; (2) Vendidad, containing directions for purification and the penal code of the ancient Persians; (3) Khordah-Avesta, or the Small Avesta, comtrining the Yasht, the contents of which are for the most part mythological, with thorter prayers for private devoclon.

[^24]: ${ }^{1}$ The romance of his lile has been admirahly written by Manuel Billuon (ist ed., Lima, 1853 ; 2nd ed., Buenos Aires, 1867).
 \mathbf{x} The succession of presidents and supreme chiefs of Peru from
 1834-1835, Luis Jose Orbegoso; 1835-1836, Felipe Santiago Salaverry: 1836 -1839. Andres Santa Cruz: 1839-1841, Agustin Camarra;
 1891-1844, Manuel Menendez.

[^25]: 'Pervipitiser was the term for a nocturnal festival in honour of some divinity, especially Bona Des.

[^26]: ${ }^{1}$ Rubl. Gesth der Edomiler (1893), po 52.
 Ed. Me ver, Dis Ioradiom m. ikro Nachberstimmes P . 357 .

 Das A. T. in Lichio d. alien Orients P. 457.

[^27]: seatements co as to find out the original word rendered "pheasant" by the tranclator; but a reference to what is probably the same pastage with the mane meaning is given by Ray (Symops. meth. aminadinm, pp. 253, 284) on the authority of Liwnd or Lloyd, though there is no mention of it in Wotton and Clarke's Leges Wallicae (1710). A charter (Kemble, Cod. diplom. iv. 236). pro. Feseedly of Edward the Confessor. pranting the wardenshjp of certain forests in Essex to Ralph Peperling, speaks of "fezant hen" and "feant cock," but is now known to be spurious.

 1n hii De statio mililari (not printed till 1654) he gtates (p. 195) that the pheasant wal brought from the Easi by "Palladius ancorista.
 'Quoted by the writer (Broderip 7) of the anticle "Spaniel"" in the Primy Cydopaedic. The lines !hrow light on the aworted Welsh pryetice mentiowed in a former note.

[^28]: 1Many of the statues and other works of art in Feirmount and

[^29]: ${ }^{1}$ History of the New Testament Times (1895), iv. 832-123. See, on this, Scheakcel's Bibd-Lexihon, iv. 531-532.

[^30]: ${ }^{3}$ See Diels, Doxograthi Gracci, 1879, pp 1-4; Zeller, Phit. d. Gr. iii. 2, p. 340 (3 rd ed).
 ${ }^{2}$ Monalsh. L. Berd. Alad. (1876), gp. 589-609.
 1037.

[^31]: ${ }^{1}$ For this quotation and the following historical sketch in general wee Th. Beuley, Geschichte der Sprachwissemschaff, D. 43^{8} (Munich. 1869). and especially B. Delbrick, Introduction to ithe Sindy of Language, p. I (Leipaig, 1882; a fifth German edition appeared in (900).

[^32]: ${ }^{9}$ The extensive progress made in this period in best illustrated by the foundation of iwo periodicals eapecially devoted to IndoEuropean comparative philology. Kuhn's Zeiuchrift firr vergleichende Sprachforschung (now 27 vola, Berlin, from 1851), and Kuhn's Beitrage sur vergleichenden Sprachforschung (8 vola, Berin, from 1858). Benfry's school is more esperially represented by the contribetors to Benfey's Orieut wad Decident (3 vols., Gotingen, (rom 1867), and unbsequently through Beexenberger's Beierige swr Kmade der indagermanaschen Sprachen (30 vols, Goktingen, from 1877); this journal has now been amalgamated with Kuhn's 2eif schrift. The views of the "New Grammarians"-Leakien, Brusmann. Osthoff and their mehools-are representod in Indogermamiscle Forschnugen (27 vols, sidece 1890). The Cortlngen school has a further representative in Glotea, now (1910) in its third volume. The history of the meaning of words has a special periodical for itself. Worter und Sacher, now in its second volume. Beaides thove mentioned there are many journals, publications of academies, se., in Belgium. Sweden. Denmark; Italy, \&e.، which no serious student of comparative phifology can ignore. France pomesers two periodicals of the same kind, the Rome de Linguistique (Paris, Trom 1868) and the Mt́moires de la Socifte de Linguistigue de Paris (also from 1868), while England is represented by the Praceedings and Trassfactions of the Philological Societies of London and Cambridge, the Classical Reviaw (23 wois, fince 1887). and the Classical Omartort) (4 vols., since 1907), and America by the Traspactions of ile λ mericat Philological Association (from 166), the American Jewral of Phiflology (30 vols., from 4880). Clasmical Phitoloes (s vola, from 1906), and ocher coore apecialite organs.

[^33]: "Techumer'e Internationale Zeischrift fir Sprochwissenschaft, iv. 200.
 : B. I. Wbecler. Journal of Germanic Phitology, ii. 528 sq9-

 - Pluraloildxingen der indogermanischeis Neatra (1889).

[^34]: ${ }^{1}$ The revisional office which philosophy here aseumes constitutes her the critic of the acience. It is in this connexion that the measing of the definition of philosophy as ". the ecience of principles" can best be seen. This is pertage the moth usual defimition, and. though vague, one of the least misleading-

[^35]: ${ }^{1}$ It was aid to have boen founded by a band of emigranta frosa Phocis, under the guidance of two Athenian leaders, namect Pbito genes and Damom, but it joined the lonian confederacy ty accepting the government of Athenian rulers of the house of. Codrum.

[^36]: ${ }^{1}$ The above interpretation of Menander and the Assyrian evidence is based upon Ed. Meyer, EMcy. Bib. col. 3755 For a different explanation mee Landau, Beith, i. Allerlumsk. d. Or. vol. i., followed by Winckler, Allor. Forsck. ii. 65 sqq. : these scholars take Menander to refer to the later war of Esarhaddon and Assur-bani-pal against Bal of Tyre.
 ${ }^{1}$ See the facsimile in Ausgrabungen in Sendschirli (Berlin, 8893), and p. 17 for the aboye interpretation of it.
 Hohn LL. Myres, Journ. Hell. Studies (ıgo6). xoxvi. 84 seq., criticizing Winchier, bes A the Orient (igos), vol. vii. pt. 2.

[^37]: ${ }^{4}$ So the Babylonians, Cannanitea (e.g. In the case of the Nephilim. Gen, vi. 2), Arabs. Greeks, traeed the descent of heroic families to the gods. W. R. Smith, Kinship and Marriage, p. 206; S. 1. Curtis'U Primitise Sem. Rel. To-day (London, 1900), p. 112 seq.
 in An inser. from Tyre may be read, Ald batil chicf of the Ilundred," NSI. p. 129: Clermom-Ganneav, Recweil derch. or. il. 294 req.

[^38]: ${ }^{1}$ Traces of ancient mining for iron have been found in the Lebanon; cf. LXX. 1 Kings ii. 46 c (ed. Swete), which has been caken to refer to this quarrying in mearch of iron; Jer. wn. 12. See Benzinger on I Kings ix. \mathbf{I}.

[^39]: An excellent and critical account of Philo's work is given by Lagrange, Efmiley swi las red stan (2nd ed., 1905), ch. xi.

[^40]: 'An account of Sayce's process to be found in the Pholographic News of October 1665 . or the Photogrophic Jowrwal of tive arme date. ${ }^{2}$ The advantaget of this salt were patmod out by Leop Warmertat in 1875.

[^41]: Various modifications of Rood's forms have been constructed from time to time by different experimenters The ${ }_{s t}$. Simmance and Abady ficker photometer is an Indenious Sunabed's and yet mechanically simple method by which (as it pretenont were) the wedpe itself is made to oscillate so as to throw
 on the eye in rapid succession; first the one qide and then the other. The rim of a whed of white macerial is beveled

[^42]: 7 Fechner, Elenconte der Psychophysil, ii. 396
 19 Some of the medieval views were very fanciful, thas Shabbethai b. Abraham, the earlich Jewish writer on medicine (d. 4.b. 959), thought that the spirit of life has its seat in the brain-smembrane: expanded over the brain and subarachnoid fivid, tas the Shelcinah In the heavens arched over the earth and maters. See Dow Mansch als Gpttes Ebentild, en. Jellinek (Leiprig, 1854). and Caetelifi, Conimenhe (Fiorence, 1880).

 15 Vermischte medicimista Schrifher (1764), in 58.

 - See Laycock's trans. in Sydenh Sociely's Pub. (1851).

[^43]: ${ }^{-1}$ Other buriesque and satirical writing were published at this time. notably The Phretolorisi, a farce by wade (1830): THe KFeadpiecie, of Plyevolocy oppased to Divine Rempation, by James the Less; and A Hedmed for the Ficadpiece, or Phrenalocy incempatidle gill Reasen, by Daniel the Seer.
 ${ }^{1}$ For topographical purposes Broca's names are adopted as the mont eonventent for lacalities on the head.
 a Apollogias Rhodius epenking of the love of Medea for Jason

 cilaro blat baxe. .-.

[^44]: - Newrologisches Centralblall (1883). p. 457.

 1 Weisbach, Med. Jehobuch. der Li. Geselfich, der Aerate, xvii. 133 (Vienne, 1869); Merted, Beitrdge 2 p post-embryomadew Enh ichelung des masucid. Schadel (Bonn, 1882): Calori, Mem. de raccad. di Bologna (1871). 2.35 - Cunningham, Cusningham Memoir, Royal Irish Acidemy.

 - Martius tells us that the Caribs cactrate their own children,

[^45]: a This liberty was not granted to the cities of any other province in Anatolia.
 *A number of inscriptions in a language presumably Phrygian have boen discovered in the centre and east of the coontry; they belong genernily to the cind of the and and to the 3 rd centmry.

[^46]: ${ }^{1}$ For Scriptural allusions to physiomomy soe Vecehius, Obsernationes in div. scriph. (Naples, 1641). Other clansleal references are contained in the Procwiwns to the tggs edition of the works of contained in the
 Baptista Portac.

[^47]: : Cp. Leemans on Horapollo I. 16. 34
 4 Including the Apocrypha. Soe the Icelandic account of the elephant, also a decidedly Alexandrian fragment upon the alimex founded uppan 4 Macc. i. 3. Which has got into the ccholia upon the Odyssey xvisi. 2 (ii. 533, ed. Dindorf, Oxiord, 1855).

[^48]: ${ }^{1}$ See Victor C. Mahilion. Cotalogme dearripit (1880), I. P. ${ }^{320}$, No 454 : regal with two bellows, end of XVI. C. Compass E to as.
 ${ }^{2}$ La Musique axx Pays Bas, i. $27^{8 .}$
 ${ }^{2}$ See Dr Alwin Schulz, op. ciit., fig. sat.

 - V. 410 and 414- See Ambros, Geschichte der Musik (18ga). ii. 226.
 ${ }^{2}$ L'Harmonic sziverselle (Paris, 1636), livre III. p. 107.
 - A. J. Hipkina, History of Piamoforte (landon, IP66), p. 5 .

[^49]: ${ }^{3}$ This eramalation, published at Hamburg and reproduced in exteiso, may be reed in Dr Oscar Paul's Cesclitichto des Cloviers (Leipzig, 1868).

[^50]: - Reeq's New Cyclopacilie, art. "Marpeichord.'"

[^51]: ${ }^{1}$ Shalford Fair, the chapels on the two hilfs and the Surrey hille are probably the scene of Bunyan's Pilgrim's Prograss, see E. Renovard Jamea, Noles on the Pijgrim's Way in West Surrey (1871).

[^52]: 1 The references are to the edition of Pindar by C A. M. Fennell

[^53]: ${ }^{1}$ The etymology of "pink" is disputed; it may be conpected with "to pink" (apparently a naturalized form of "pick") properiy to prick or punch holes in material for the purpose of ornament, hence, later, to scallop or cut a pattern in the edge of the material. The flower has jagged edges to the petals, but the name occurs in the 16 th century, and the later metning, "t to acallop." not till the 19th. Others connect with "pink,' hallshut blinking of the eyes, as in "plumpie Bacehus, with pinbt eyne " (Shakspeare Ani. and Cl. II. vii. 121); this word is seen is Dutch pinken, to blink, shut the eyes, and may be connected vith "pinch." The French name for the flower, ocillet, little eye, may point to this derfvation. The diecase of horsen, known as ripiakeve," a contagious influcnra, is mocalled from the oolour of che inlramed coojunctive, a sympeom of the affection

[^54]: 1 la Sermbo's time in was only 2 m . away. but the increase of
 stive coapt-lime.

[^55]: *The dhete on the door, 1330 , sefoen to the original wax model.

[^56]: 2 "Pittsburgh " is the official spelling of the charter and seal; but "Pittsburg" is the spelling adopted by the US. Geographic Board and is in more gemeral use.
 ${ }^{2}$ In previous census years the population was as follows: (1800 ', 1565: (1840). 7248; (1840), 21,125; (t860), 49,225; (1880), 156, 389.

[^57]: : Josephus Ripamontius, De peste anni 3630 (Milan, 264), 4 to.
 : For this period we Index to Remembrancia in Arehties of City of London 1570-1664 (London, 1878); Richardson, Plague and Pestibence in Norin of Encland (Newcastle, 1852).

 - Graunt, Obsemations on the Bills of Mortality (3rd ed., Landon, 866sh

[^58]: - On the plague of 1665 see Nath. Hodges, Loimologia sive pestis nuperae abvd populum londinensem narratio (London, 1672) 8vo-in English by Quincy (London, 1720), (the chief authority); Aoupypapla or an Experimental Relation of the last Plague in the City of London, by William Boghurat, apothecary in St Giles's-In-the.Fields (London, 1606),-a MS. in British Museum (Sloane 349), containing im. portant details; George Thomson, $\triangle O L M O T O M I A$, or the Pers Anatomised, 8vo (London, 1666); Sydenham, "Febris pestilentialis et pestis annorum 1665-1666," Opera, ed. Greenhill, p. 96 (London, 1844); Collection of Scarce Pieces on the Plague in 1005 (London. 17a1), 8vo; Defoén fascinating Jowrnal of a Citizen, which should be read and admired as a fiction, but accepted with caution as history; T. Vincent (minister of the gospel), Cod's Terrible Vaice in the Cily, 8 vo (London, 1667): Calendar of Slate Papers (16651666: "Domestic " everies), by M.E. Green.

[^59]: ${ }^{1}$ Keiation hisiorione de le peste de Marseille (Cologne, $172 x_{1}$ Paris, 1722, \&c.); Chicoyrleal, Verny, tec., Obsermations a reftexions de la peste (Marseilles, 1721): Chicoynear, Triuld de la peste. Paris. 1744); Litirt, article Peste," in Dictionisafre de modicime,

[^60]: - Tholozan, La Paste en Turguie dans les lemps modernes (Paris, r880).
 IJ. Netten Radclife, Refort of the Medical Oflictr of the Priby Counci, \&e. (1875); also in Papers on Letamtine Fhague, presented to parliament (1879). p. 7.
 :Tholoran, Le Peste en Turguse, p. 86.
 - See tis seport cited by Radelife, Papers on Lemandine Plagme (1879).

[^61]: : Warming, Plantesamfund, Kjobenhavn, 1895. (See German trans. by "Knoblauch, "Lehrbuch der . bloologischen Pfanzageographe "' (Berlin, I896); new German ed. by Gracbner (Berlin, 1902).
 ${ }^{4}$ Schouw. Grunderach til an almindelig Plantequagrafie (Kjobenhavn, 1822): German trans., "Grundzage einar allgemeinen Pflanzengeographic " (Berlin, 1823).
 ${ }^{-}$Schimper, Pfiansengrographie anf, physiologiccher Gruallage (Berlin. 1898): Eng. trans. by Figher, "Plant Ccography upos: Physiological Basin " (Oxford, 3903-1904).

[^62]: Warming (1909, op. cil.).
 : Ibid. (1894, 0p. cii.).

[^63]: ${ }^{1}$ See Moss, Rankin, and Tansley, "British Woodlands.' Botany

[^64]: * As very little experimental work has been done with regard to physiological dryness in physlcally wet habitats, any classification such as the above must be of a tentative nature.

[^65]: ${ }^{1}$ Cl. E. Hubner, Die antiken Bildwerke in Madrid, pp. 213 sqq. A. Odobescu, Le Trézor de Petrossa, pp. $153 \mathrm{sqq} . \mathrm{Fig} .68$.
 ${ }^{3}$ D. Bracci, Dissertasione sopra un clipeo votivo (Lucea, 1771).

 - See R. v. Schneider, Albw auserlesenster Gegenstinde der Antihensammin: des allerhöchsten Kaiserhaseses (1895): and cí. Verhandlunger der 47 Versamminng deulscher Philologen (i893), pp. 297 sqg :
 ${ }^{5}$ Sir G. Birdwood, Industrial Arts of India (I880).
 -Wilson's Arcauc artique (1841).
 - Archacologia, Iv. 534.

[^66]: Sce D'Acincourt, Histoire de l'arl (1823).
 Bock, Die Kleinodies des hel. nowisches Reicher (1864).
 Arch. Jour xiv. 8.
 ${ }^{3}$ Arckacologia, 10 CoC 144-148.

[^67]: ${ }^{2}$ See Rosenberg in Kunst und Geurerbe (1885).
 -See twenty-one facsimiles of these ecchings pubtianed by J. Rimell (London, 1862).
 "Keller, " Three Silver Cups at Zürich," Arch. Journ. xvi. 1 st.

[^68]: 1 Illustrated in Old Cambridge Plate; pp. 102-103.

[^69]: ${ }^{1}$ See De Fleury, La Messe (Paris, 1882), \&c.

[^70]: 1 See Laws, vit. 814 c.
 : Some epigrams in the Anthology are attributed to him.

 - This is told on the authority of Aristoxenus But Ptato cannot have been at Delium.

[^71]: 4t had been the policy of Pericles to Invite distinguished foreigners to Athena.
 Theses. 180 D.

[^72]: ${ }^{2}$ The origin of this traditional belief is very obscure. The Greeks themselves were apt to associate it with Pythagoras and with the "Orphic" mysterica.
 S Euch. i. 47 (the case where the triangle is isosceles).

[^73]: ${ }^{1}$ Laws viii. 836.
 1 Jowet t-who has, notwithstanding, thrown much lughs on the Cratylus in hin brilliant inaroduction.

[^74]: See especially Rep. v. 473; Legt. v. 746.

[^75]: - Introd. to the Phacdrus.
 a Krohn, Der platonisehe Slate (Halle, 1876).

[^76]: ${ }^{1}$ Grote.
 See, for example, the admission of huxury and the after-purification through " music." bkse ii. iil.

[^77]: ${ }^{1} \mathrm{Cl}$. Memo.

[^78]:

 ${ }^{1}$ Published by Philippus the Opunian.
 4 See especially iv. 716 seq; v. 727 . seq. 735 seq. ; vi. 766 ; vii. 773 seq. $777,794,803$ seq.. 811,817 ; viij, 835 seq. ; ix. $875 ; \mathrm{x} .887$ seq. 897 seq .904 seq.
 ${ }^{6}$ Legs. xii. 968 E. (Ath.) "I am willing to share with you the danger of sating to you my views about education and murture, which is the quertion coming to the surface again."

[^79]: Cf. Laches.
 ${ }^{\prime} \mathrm{Cf}$. Prolagoras.

 - According to Schaarschmidt. only nine dialogues are genuioeProtug., Phacdr.. Symp., Apol., Crito, Phaedo, Rep.. Tim., Legea.

[^80]: The ingenuity of the plesder showing itsell chiefly in framing special as opposed to general pleas, the term "special pleading" grew to be used for the whole proceedings of which it was the most important part.

 In Chancery the "English Bill"" wo called frow its beting in the Engliyh language, had existed. according to G. Spence, as early as the reign of Henry V. (Equilable furisdiction, i. 348).

 - Bullen and Leake, Precedents of Pleadire (3rd ed., 1868).

[^81]: 1 Magdalenien from the caves of Madelaine, Perigord.
 :Salutre, Bourgogne.

 - Chelles, near Paris. Other subordinate stages are the Mowsterien from Moustier, Dordoyme, and Acheulten, Saint Achenl

[^82]: ${ }^{1}$ This prediction is sometimes attributed to Laplace.

[^83]: 1 "Table otakes" means playing strictly for cash; "unlimited" explains itself, although even when this is the rule a certain high Pronit is pretty generally observed.

[^84]: ${ }^{1}$ Archdencoin of Cnceen 1367: vivo-chancelior of Poinel: 4

[^85]: ${ }^{1} 18,000$ of their 21,000 villages were destroyed. 1000 churches were rased to the ground, and the popalation was dimiminbed by more than a quarter of a million.

[^86]: 1 The Red Ruesian aejmik was of later origin, e. 1433.
 In view of the frequency of the Tatar inroads, the control of the maitia was in-transfeqred to the Crown in 1501.

[^87]: 51 Pol gulden $=5$ silher groachon.
 At the very next diet, 1776, the Polea themselves reduced the ermy to 18,000 men.

[^88]: 'See, however, Herzog-Hauck, Realencyitopadia (ed. 3) "Pole,", where it is said that "only his procrastination, and then his death saved him from appearing before the Inquisition." Within the instirution of the Inquisition his name continued to be reparded as that of a heretic and mislcader of others, as is proved by the mase of evidence accumuluted against him in the Crmpendium Enquisitorum (e. archizio della societh di storia palria, Rome, 3880), p. 283, Ac.-(ER)

[^89]: ${ }^{1}$ Barcroft served until September 1846, when he was appointed minister to England. He was succeeded as secretary of the navy by John J. Mason, who had previously hald the office of attorneygeneral.

